
On the Properties of Metamodeling in OWL

Boris Motik

FZI Research Center for Information Technologies at the University of Karlsruhe
Karlsruhe, Germany

motik@fzi.de

Abstract. A common practice in conceptual modeling is to separate
the intensional from the extensional model. Although very intuitive, this
approach is inadequate for many complex domains, where the borderline
between the two models is not clear-cut. Therefore, OWL-Full, the most
expressive of the Semantic Web ontology languages, allows combining
the intensional and the extensional model by a feature we refer to as
metamodeling. In this paper, we show that the semantics of metamodel-
ing adopted in OWL-Full leads to undecidability of basic inference prob-
lems, due to free mixing of logical and metalogical symbols. Based on this
result, we propose two alternative semantics for metamodeling: the con-

textual and the HiLog semantics. We show that SHOIQ— a description
logic underlying OWL-DL— extended with metamodeling under either
semantics is decidable. Finally, we show how the latter semantics can be
used in practice to axiomatize the logical interaction between concepts
and metaconcepts.

1 Introduction

A common practice in conceptual modeling is to separate the intensional from
the extensional model of a domain. The intensional model is analogous to a
database schema and it describes the general structure and the regularities of
the world. The extensional model is analogous to a database instance and it
describes a particular state of the world. Such a modeling style has also influenced
the design of the Ontology Web Language (OWL) [14], the W3C standard for
building ontologies in the Semantic Web. Namely, OWL provides concepts and
properties for building the intensional model, and individuals and relationships
among them for building the extensional model.

To better understand this duality, consider the following example, originally
presented in [16]; a similar example may be found in [15]. A natural way to
represent kinship between animal species is to organize them in a hierarchy of
concepts. For example, the concept Bird represents the set of all birds, and the
concept Eagle is a subconcept of Bird , stating that all eagles are birds. This is
an example of intensional knowledge, as it is concerned with defining the general
notions of birds and eagles. Knowledge about concrete animals is represented by
extensional knowledge, e.g. by stating that the individual Harry is an instance
of Eagle. Now the intensional knowledge implies that Harry is an Bird as well.



2 Boris Motik

However, one might also make statements about individual species, such as
“eagles are listed in the IUCN Red List1 of endangered species.” Notice an
important distinction: we do not say that each individual eagle is listed in the
Red List, but that the eagle species as a whole is. Hence, we introduce a concept
RedListSpecies , and consider the relationship between RedListSpecies and Eagle.
Making the former a superconcept of the latter is incorrect, as it would imply
that Harry is a RedListSpecies — clearly an undesirable conclusion. It is better
to say that Eagle is a type of RedListSpecies . Thus, RedListSpecies acts as a
metaconcept for Eagle. The style of modeling which provides for metaconcepts
is called metamodeling, and it can be used to build concise models if we precisely
axiomatize the properties of metaconcepts. For example, by stating that “it is
not allowed to hunt the individuals of species listed in the Red List”, we formalize
the logical properties of the metaconcept RedListSpecies , allowing us to deduce
that “it is not allowed to hunt Harry .”

The examples such as the one given above are often dismissed with an ar-
gument that “eagle as a species” and “eagle as a set of all individual eagles”
are not the one and the same thing, and should not be referred to using the
same symbol. Whereas an in-depth philosophical investigation might provide a
more definitive answer, we simply observe that the word “eagle” in most peo-
ple’s minds invokes a notion of a “mighty bird of prey.” The interpretation of
this notion as a concept or as an individual is secondary and is often context-
dependent, so using different symbols for the same intuitive notion makes the
model unnecessarily complex.

Metamodeling is provided in OWL-Full, the most expressive language of the
OWL family. However, its semantics is controversial, mainly because it is non-
standard, and therefore makes realizing practical reasoning systems difficult [5].
Therefore, OWL-DL was conceived as a “well-behaved” subset of OWL-Full by
imposing the following restrictions: (i) the sets of logical and metalogical sym-
bols are strictly separated, (ii) the sets of symbols used as concepts, roles and
individuals are strictly separated, and (iii) restrictions required to yield a decid-
able logic, such as the one on simple roles in number restrictions [7], are enforced.
These restrictions make OWL-DL a syntactical variant of the SHOIN (D) de-
scription logic, which is known to be decidable. This is desirable since, to prac-
tically implement reasoners for expressive logics, advanced optimization tech-
niques are essential, and these are much easier to develop if the logic is decidable
[1, ch. 9].

Since it does not enforce (iii), OWL-Full is trivially undecidable. To obtain a
decidable logic supporting metamodeling, it is natural to ask whether OWL-DL,
extended with metamodeling in the style of OWL-Full, remains decidable. How-
ever, in Section 2 we show that even the basic description logic ALC becomes
undecidable if restrictions (i) and (ii) are not enforced.

We analyze this undecidability result, and show that it is actually due to (i),
that is, to free mixing of logical and metalogical symbols. In a way, metamodeling
in OWL-Full goes beyond its original purpose, and allows the user to tamper with

1 http://www.redlist.org/



On the Properties of Metamodeling in OWL 3

the semantics of the modeling primitives themselves. Therefore, in Section 3 we
present two alternative semantics for metamodeling: a contextual or π-semantics,
which is essentially first-order, and a HiLog or ν-semantics, which is based on
HiLog [4] — a logic providing a second-order syntax for first-order logic. We show
that, under some technical assumptions, both semantics can be combined with
SHOIQ, a description logic underlying OWL-DL, yielding a decidable fragment
of OWL-Full without increasing the complexity of reasoning. Furthermore, we
present a resolution-based decision procedure for the SHIQ fragment which, we
believe, provides a basis for a practical implementation. Finally, in Section 4 we
discuss the added expressivity of metamodeling on a concrete example. Technical
details from this paper are presented in the technical report [9].

2 Undecidability of Metamodeling in OWL-Full

The semantics of OWL-Full [14] is quite technical, so we introduce ALC-Full—
an extension the basic description logic ALC with metamodeling in the style of
OWL-Full. We use rdf:, rdfs: and owl: for the standard namespace prefixes.

Definition 1. Let V be the vocabulary set consisting of these symbols:

owl:Thing, owl:Nothing, rdf:type, rdfs:subClassOf, owl:sameAs,
owl:differentFrom, owl:complementOf, owl:unionOf1, owl:unionOf2,
owl:intersectionOf1, owl:intersectionOf2, owl:someValuesFrom,
owl:allValuesFrom, owl:onProperty

Let N be the set of names such that V ⊆ N . An ALC-Full knowledge base KB
is a finite set of triples of the form 〈s, p, o〉, where s, p, o ∈ N .

An interpretation I is a triple (△I , ·I ,EXTI), where △I is a non-empty set,

·I : N → △I is a name interpretation function and EXTI : △I → 2△
I
×△

I

is an

extension function. Let CEXTI : △I → 2△
I

be the concept extension function
defined as CEXTI(x) = {y | (y, x) ∈ EXTI(rdf:typeI)}. An interpretation I is a
model of KB if it satisfies all conditions from Table 1. KB is satisfiable if and
only if a model of KB exists.

ALC-Full differs from OWL-Full in that: (i) it does not provide concrete
predicates, (ii) it does not include the meta-level resources such as owl:Class,
and (iii) it allows only binary union and intersection. These distinctions are not
relevant for our undecidability proof. We use 〈a⊔b, p, o〉 as a syntactic shortcut for
〈x, p, o〉, 〈x, owl:unionOf1, a〉 and 〈x, owl:unionOf2, b〉, where x is a fresh name.
We use similar shortcuts for 〈s, p, a ⊔ b〉 and for ⊓.

We show the undecidability of ALC-Full by a reduction from the well-known
domino tiling problem [3]. A domino system is a triple D = (D,H, V ), where
D = {D1, . . . ,Dn} is a finite set of domino types, and H ⊆ D×D and V ⊆ D×D
are horizontal and vertical compatibility relations, respectively. A D-tiling of an
infinite grid is a function t : N × N → D such that t(0, 0) = D0 and, for all
i, j ∈ N, (t(i, j), t(i, j + 1)) ∈ H and (t(i, j), t(i + 1, j)) ∈ V . For an arbitrary
domino system D, determining whether a D-tiling exists is undecidable [3].



4 Boris Motik

Table 1. Semantics of ALC-Full

1. 〈s, p, o〉 ∈ KB implies (sI , oI) ∈ EXTI(pI)
2. CEXTI(owl:ThingI) = △I

3. CEXTI(owl:NothingI) = ∅
4. (x, y) ∈ EXTI(rdfs:subClassOf I) implies CEXTI(x) ⊆ CEXTI(y)
5. (x, y) ∈ EXTI(owl:sameAsI) implies x = y

6. (x, y) ∈ EXTI(owl:differentFromI) implies x 6= y

7. (x, y) ∈ EXTI(owl:complementOf I) implies CEXTI(x) = △I \ CEXTI(y)
8. (x, y) ∈ EXTI(owl:unionOf I

1 ) and (x, z) ∈ EXTI(owl:unionOf I
2 ) imply

CEXTI(x) = CEXTI(y) ∪ CEXTI(z)
9. (x, y) ∈ EXTI(owl:intersectionOf I

1 ) and (x, z) ∈ EXTI(owl:intersectionOf I
2 ) imply

CEXTI(x) = CEXTI(y) ∩ CEXTI(z)
10.(x, y) ∈ EXTI(owl:someValuesFromI) and (x, p) ∈ EXTI(owl:onProperty I) imply

CEXTI(x) = {w | (w, z) ∈ EXTI(p) ∧ z ∈ CEXTI(y)}
11.(x, y) ∈ EXTI(owl:allValuesFromI) and (x, p) ∈ EXTI(owl:onProperty I) imply

CEXTI(x) = {w | (w, z) ∈ EXTI(p) → z ∈ CEXTI(y)}

For a domino system D, let KBD be the ALC-Full knowledge base consisting
of triples (1) – (9). Lemma 1 shows that satisfiability of KBD exactly encodes
the problem of deciding whether a D-tiling exists.

〈Di ⊓ Dj , rdfs:subClassOf, owl:Nothing〉 for 1 ≤ i < j ≤ n (1)

〈GRID , rdfs:subClassOf, D1 ⊔ . . . ⊔ Dn〉 (2)

〈NotGRID , owl:complementOf,GRID〉 (3)

〈Di, rdfs:subClassOf, αi〉, 〈αi, owl:onProperty, owl:allValuesFrom〉, (4)

〈αi, owl:allValuesFrom,NotGRID ⊔
F

(Di,d)∈H
d〉 for 1 ≤ i ≤ n

〈Di, rdfs:subClassOf, βi〉, 〈βi, owl:onProperty, rdf:type〉, (5)

〈βi, owl:allValuesFrom,NotGRID ⊔
F

(Di,d)∈V
d〉 for 1 ≤ i ≤ n

〈GRID , owl:someValuesFrom,GRID〉 (6)

〈GRID , owl:onProperty, owl:allValuesFrom〉 (7)

〈GRID , owl:onProperty, rdf:type〉 (8)

〈GRID , rdfs:subClassOf, owl:allValuesFrom〉 (9)

〈rdf:type, owl:sameAs, owl:onProperty〉 (10)

〈a0,0, rdf:type,GRID ⊓ D0〉 (11)

Lemma 1. A D-tiling exists if and only if KBD is satisfiable.

Proof. (⇒) For a D-tiling t, let I be an interpretation depicted in Figure 1, with
CEXTI(GRIDI) = {ai,j} and CEXTI(DI

k) = {ai,j | t(i, j) = Dk}, for i, j ≥ 0
and 1 ≤ k ≤ n. The triples (3) – (5) encode the compatibility relations of D
(including NotGRID into (3) and (4) ensures that compatibility is enforced only
among instances of GRID). Hence, it is easy to see that I is a model of KBD.

(⇐) Let I be a model of KBD. An excerpt of I is shown in Figure 1, in
which a triple 〈s, p, o〉 is represented as an arc pointing from the node s to the



On the Properties of Metamodeling in OWL 5

Fig. 1. Grid Structure in a Model of KBD

node o, whereas p is encoded by the line type according to the legend. To refer
easily to arcs, we assign them labels ti, hi and vi (these do not correspond to p).
For example, the arc s1 represents the triple 〈a0,0, rdf:type, owl:allValuesFrom〉.
Due to (10), rdf:type and owl:onProperty are synonyms, so s1 also represents the
triple 〈a0,0, owl:onProperty, owl:allValuesFrom〉. By an abuse of notation, we do
not distinguish between the symbols and their interpretations.

Due to (11), a0,0 is linked by t1 to GRID . Due to (6), (7) and (8), a0,0 is
linked to a0,1 and a1,0 through h1 and v1, respectively, and a0,1 and a1,0 are in
the concept extension of GRID by t2 and t3, respectively. Due to (6) and (7),
a1,0 is linked by h2 to a1,1, and by t4 to GRID . Finally, by (9), all ai,j are in the
concept extension of owl:allValuesFrom, that is, all ai,j have an sl arc to it.

Consider now the arcs at the node a1,0. The arc s3 can, due to (10), be read
as 〈a1,0, owl:onProperty, owl:allValuesFrom〉. By applying Item 11 of Table 1 for
x = a1,0 and y = a1,1, we conclude that, if w is in the concept extension of
a1,0 and it is connected via p = owl:allValuesFrom to some z, then z must be
in the concept extension of a1,1. However, we may now set w = a0,0 due to v1,
and z = a0,1 due to h1; this implies that a0,1 is in the concept extension of a1,1,
that is, that a0,1 is connected to a1,1 by v2. Hence, a0,0, a0,1, a1,0 and a1,1 are
arranged in a two-dimensional grid, which continues indefinitely due to (6) – (8).

A node ai,j in I is allowed to have multiple owl:allValuesFrom and rdf:type
successors, and all ai,j need not be distinct, so I need not be a two-dimensional
grid. However, a two-dimensional grid can easily be extracted from I: one can
choose any owl:allValuesFrom successor ai,j+1 and any rdf:type successor ai+1,j

of ai,j , as well as any owl:allValuesFrom successor ai+1,j+1 of ai+1,j . Regardless
of the choices, ai,j+1 is always connected to ai+1,j+1 by rdf:type, so ai,j , ai,j+1,
ai+1,j and ai+1,j+1 are connected in a grid-like manner.

Hence, I contains a two-dimensional infinite grid in which owl:allValuesFrom
are horizontal, and rdf:type are vertical arcs. The triples (1) – (5) ensure that each
grid node is assigned a single domino type corresponding to the compatibility
relations H and V of D, so a D-tiling can easily be constructed from I. ⊓⊔

Together with [3], Lemma 1 immediately implies the following result:

Theorem 1. Checking satisfiability of an ALC-Full knowledge base KB is un-
decidable.



6 Boris Motik

3 Two Decidable Approaches to Metamodeling

The proof of Lemma 1 reveals the causes for the undecidability of metamodeling
in OWL-Full. Namely, this logic not only allows treating concepts as individuals,
but it also allows mixing logical and metalogical symbols, and exposes its mod-
eling primitives as individuals. We exploited this in axioms (5) and (6) of KBD,
by stating an existential restriction on owl:allValuesFrom and rdf:type symbols
and thus affecting their semantics. One would easily agree that tampering with
the semantics of the ontology language is hardly desirable in practice, so in this
section we present two alternative semantics for metamodeling.

In the following, we consider the description logic SHOIQ, since it acts as
the logical underpinning of the OWL family of languages. We do not consider
datatypes here for the sake of simplicity. However, in [9] we show that, as long
as datatypes are not subjected to metamodeling, they do not affect our results.
We believe that this is not a practically relevant restriction: treating datatype
individuals as concepts and vice versa will just unnecessarily confuse the users.

3.1 The Syntax and Semantics of SHOIQ with Metamodeling

Definition 2 (Syntax). For Na a set of atomic names, the set of names is
defined as N = Na ∪ {n− |n ∈ N}. For each n ∈ N , let Inv(n) = n− and
Inv(n−) = n. A SHOIQ RBox KBR is a finite set of transitivity axioms
Trans(R) and role inclusion axioms R ⊑ S, where R,S ∈ N . As usual, we assume
that R ⊑ S ∈ KBR implies Inv(R) ⊑ Inv(S) ∈ KBR, and that Trans(R) ∈ KBR

implies Trans(Inv(R)) ∈ KBR. Let ⊑∗ be the reflexive-transitive closure of ⊑.
A name R is simple if for each name S ⊑∗ R, Trans(S) /∈ KBR. A set of
SHOIQ concepts over KBR is inductively defined as follows: each A ∈ N is a
concept and, for R and i names, S a simple name, C and D SHOIQ concepts
and n a non-negative integer, {i}, ¬C, C ⊓ D, C ⊔ D, ∃R.C, ∀R.C, ≥ nR.C
and ≤ nR.C are also SHOIQ concepts. A SHOIQ TBox KBT is a finite set
of concept inclusion axioms of the form C ⊑ D, where C and D are SHOIQ
concepts. A SHOIQ ABox KBA is a finite set of assertions of the form C(a),
R(a, b) or (in)equality axioms of the form a◦b, where ◦ ∈ {≈, 6≈}, C is a SHOIQ
concept, and R, a and b are names. A SHOIQ knowledge base KB is a triple
(KBR,KBT ,KBA). The logic ALCHOIQ is a fragment of SHOIQ without
the transitivity axioms. The logics ALCHIQ and SHIQ are the fragments of
ALCHOIQ and SHOIQ, respectively, without the nominal concepts {i}.

The major difference of Definition 2 to the usual definitions is that the sets
of concept, role and individual names are not disjoint, but are merged into one
set of names. We denote with NKB the subset of those names that occur in KB ,
and with |KB | the size of KB with the numbers coded in unary. We now define
the so-called contextual semantics for SHOIQ.

Definition 3 (Contextual Semantics). For a SHOIQ knowledge base KB, a
π-interpretation I is a 4-tuple (△I , ·I , CI , RI) where △I is a non-empty domain



On the Properties of Metamodeling in OWL 7

a

Syntaxp-model n-model

¢
I

CI

CI¢
I

x x

Fig. 2. π- and ν-models of the Axiom a(a)

set, ·I : N → △I is a name interpretation function, CI : N → 2△
I

is an atomic

concept extension function and RI : N → 2△
I
×△

I

is a role extension function.
The function CI is extended to concepts as specified in Table 2, upper left section,
where symbols are interpreted contextually, that is, depending on their syntactic
position. A π-interpretation I is a π-model of KB if it satisfies all conditions
from Table 2, lower left section. The notions of π-satisfiability, π-unsatisfiability
and π-entailment (written |=π) are defined as usual.

The contextual semantics is essentially equivalent to the one from [4] and
to standard first-order semantics. Namely, in a first-order formula, the role of a
symbol can be inferred from the place at which the symbol occurs in a formula,
so the set of constant, function and predicate symbols need not be disjoint. We
use π-semantics mainly as a baseline for a comparison with the HiLog semantics,
defined below. This semantics is more in the spirit of OWL-Full, and is based
on HiLog [4].

Definition 4 (HiLog Semantics). For a SHOIQ knowledge base KB, a ν-
interpretation I is a 4-tuple (△I , ·I , CI , RI) where △I is a non-empty domain

set, ·I : N → △I is a name interpretation function, CI : △I → 2△
I

is an

atomic concept extension function, and RI : △I → 2△
I
×△

I

is a role extension
function. The extension of the function CI to concepts and the interpretation
of axioms are specified in Table 2, right section. The notions of ν-satisfiability,
ν-unsatisfiability and ν-entailment (written |=ν) are defined as usual.

To understand the essential difference between these two semantics, consider
the knowledge base KB containing only the axiom a(a), where the symbol a is
used both as an individual and as a concept. A π-model of KB is depicted on the
left-hand side of Figure 2: both the individual interpretation ·I and the concept
interpretation CI are assigned directly to the symbol a. A ν-model of KB is de-
picted on the right-hand side of Figure 2: the individual interpretation ·I assigns
the domain individual x to the symbol a; however, the concept interpretation is
not assigned to a, but to x. We discuss the consequences that such a definition
of semantics has on entailment in Section 4.

Neither semantics requires different names to be interpreted as different do-
main objects. If this is required, the unique name assumption should be axiom-
atized explicitly, by introducing an axiom ni 6≈ nj for each ni, nj ∈ N , ni 6= nj .



8 Boris Motik

Table 2. Two Semantics for SHOIQ with Metamodeling

π-semantics ν-semantics

Extending CI to concepts

A CI(A) ⊆ △I

{i} {iI}
¬D △I \ CI(D)

D1 ⊓ D2 CI(D1) ∩ CI(D2)
D1 ⊔ D2 CI(D1) ∪ CI(D2)
∃S.D {x | (x, y) ∈ RI(S) ∧ y ∈ CI(D)
∀S.D {x | (x, y) ∈ RI(S) → y ∈ CI(D)

≤ n S.D {x | ♯{y | (x, y) ∈ RI(S) ∧ y ∈ CI(D)} ≤ n}
≥ n S.D {x | ♯{y | (x, y) ∈ RI(S) ∧ y ∈ CI(D)} ≥ n}

Interpretation of axioms

RI(S) = RI(Inv(S))−

S ⊑ T RI(S) ⊆ RI(T )
D1 ⊑ D2 CI(D1) ⊆ CI(D2)
Trans(S) RI(S)+ ⊆ RI(S)

D(a) aI ∈ CI(D)
S(a, b) (aI , bI) ∈ RI(S)
a ≈ b aI = bI

a 6≈ b aI 6= bI

CI and the interpretation of
axioms are obtained from the
ones for π-semantics by apply-
ing the following changes:

C
I(A) C

I(AI)

R
I(S) R

I(SI)

R
I(T ) R

I(T I)

R
I(Inv(S)) R

I(Inv(S)I)

Note: ♯S is the number of elements in S, S+ is the transitive closure of S,
and S− is the inverse relation of S.

Since the contextual semantics is essentially first-order, it can be decided us-
ing known algorithms, such as [8]. Therefore, we focus on deciding ν-satisfiability.
In Subsection 3.2 we consider ALCHOIQ knowledge bases, in Subsection 3.3
we discuss the problems introduced by transitivity axioms, and in Subsection
3.4 we present a resolution-based practical decision procedure for the ALCHIQ
fragment.

3.2 Deciding ν-satisfiability of ALCHOIQ

An equivalence relation E over a set of names N induces a set or equivalence
classes, so for each equivalence class we may arbitrarily select one representative
name from it. For a name n, let n/E denote the representative name chosen for
the equivalence class of n, and for α an ALCHOIQ concept (axiom), let α/E
denote the concept (axiom) obtained from α by replacing each name n with n/E .
Finally, let KB be an ALCHOIQ knowledge base and E an equivalence relation
over NKB ; then KB/E is the knowledge base obtained from KB by (i) replacing
each axiom α with α/E , and by (ii) appending an axiom ni/E 6≈ nj/E for each
pair of names ni, nj ∈ NKB such that ni/E 6= nj/E .

An algorithm for checking ν-satisfiability of KB can be easily obtained by
non-deterministically guessing an equivalence relation E over NKB , and then by
checking π-satisfiability of KB/E . The correctness of the algorithm is demon-
strated by the following lemma:



On the Properties of Metamodeling in OWL 9

Lemma 2. An ALCHOIQ knowledge base KB is ν-satisfiable if and only if an
equivalence relation E over NKB exists, such that KB/E is π-satisfiable.

Proof. (⇐) Let E be an equivalence relation over NKB and Iπ a π-model of
KB/E . We construct a ν-interpretation Iν by setting △Iν = △Iπ , nIν = (n/E)Iπ ,
CIν (nIν ) = CIπ (n/E), RIν (nIν ) = RIπ (n/E), for each n ∈ NKB and, finally,
CIν (x) = CIπ (x) and RIν (x) = RIπ (x) for each x ∈ △Iν such that there is
no n ∈ NKB with nIν = x. Due to inequality axioms ni/E 6≈ nj/E , we have
Iπ(ni/E) 6= Iπ(nj/E), so the construction assigns a unique value to CIν (x) and
RIν (x) for each x ∈ △Iν , and Iν is correctly defined. Furthermore, for each
concept X, CIν (X) = CIπ (X/E), so Iν is obviously a ν-model of KB .

(⇒) Let Iν be a ν-model of KB . We define E = {(ni, nj) | ni
Iν = nj

Iν}
and construct a π-interpretation Iπ by setting △Iπ = △Iν , (n/E)Iπ = nIν ,
CIπ (n/E) = CIν (nIν ) and RIπ (n/E) = RIν (nIν ), for each n ∈ NKB . Again, for
each concept X, CIπ (X/E) = CIν (X), so Iπ is a π-model of KB/E . ⊓⊔

Now Lemma 2 immediately implies the following result:

Theorem 2. Checking ν-satisfiability of an ALCHOIQ knowledge base KB can
be performed in non-deterministic exponential time, assuming numbers are coded
in unary.

Proof. Observe that |NKB | is linear in |KB |, and that each equivalence relation E
is a subset of NKB ×NKB . Hence, the number of possible equivalence relations is
exponential in |KB |. A decision procedure for checking ν-satisfiability of KB can
systematically examine all equivalence relations E and for each one perform a π-
satisfiability check of KB/E . The last step can be performed in non-deterministic
exponential time, since ALCHOIQ is a fragment of C2 — the two-variable first-
order logic with counting, which is decidable in NExpTime assuming numbers
are coded in unary [12]. Hence, the overall algorithm runs in non-deterministic
exponential time as well. ⊓⊔

We briefly compare the results of Theorems 1 and 2. The main feature of
ν-semantics is the reification of concept and role names. However, it is more
like π-semantics and less like OWL-Full semantics in the way it handles the
modeling primitives. In particular, in ν- and π-semantics, these are expressed
as formulae and are not accessible as individuals in the knowledge base. On the
contrary, OWL-Full reifies the modeling primitives as well, and thus allows their
semantics to be altered by the statements in the knowledge base.

3.3 HiLog Semantics and Transitivity

The differences between the algorithms for checking ν- and π-satisfiability are
minor. Since the latter algorithm can easily handle transitive roles, one might ex-
pect the former one to be easily extended to handle transitivity as well. However,
consider the following knowledge base KB :



10 Boris Motik

⊤ ⊑ ≥ 3S (12)

S ≈ T (13)

Trans(T ) (14)

Notice that KB is a SHOIQ knowledge base: the role S is simple, since it
passes the syntactic criterion specified in Definition 2 (i.e., it is neither tran-
sitive nor it has transitive subroles). However, in any ν-interpretation I, (13)
ensures that SI = T I = α. Furthermore, due to (14), RI(α) is transitive. Effec-
tively, in (12) a transitive role is used in a number restriction, even though S is
syntactically a simple role.

Since equality of role names might be non-trivially entailed by KB , identi-
fying this requires theorem proving itself. This makes a check for simple roles
under ν-semantics difficult, if not impossible. Because allowing transitive roles
in number restrictions leads to undecidability [7], we get the following result:

Proposition 1. Checking ν-satisfiability of a SHOIQ knowledge base KB is
undecidable.

Decidability can be regained by using unique role assumption, requiring sym-
bols used as roles in KB to be interpreted as distinct domain individuals.

Definition 5 (Unique Role Assumption). A SHOIQ knowledge base KB
employs unique role assumption (URA) if it contains an axiom S 6≈ T for each
two distinct names S and T occurring as roles in KB.

If KB employs URA or if it contains neither explicit equality statements nor
number restrictions, role interpretations of different symbols can be assumed
to be independent. Then, simple roles can be checked as usual, and transitiv-
ity axioms of KB can be eliminated by transforming KB into an equisatisfiable
ALCHOIQ knowledge base Ω(KB), as done in [10]. Roughly speaking, a tran-
sitivity axiom Trans(S) is replaced with axioms of the form ∀R.C ⊑ ∀S.(∀S.C),
for each R with S ⊑∗ R and C a concept occurring in KB . This transforma-
tion is polynomial, so it does not increase the complexity of reasoning. Hence,
ν-satisfiability of a SHOIQ knowledge base KB employing URA can be deiced
by checking ν-satisfiability of the ALCHOIQ knowledge base Ω(KB).

3.4 A Practical Reasoning Procedure for ALCHIQ

The reasoning procedure from Section 3.2 is worst-case optimal, but is unlikely
to be effective in practice, since it systematically examines exponentially many
equivalence relations. Therefore, we now present a practical, resolution-based
algorithm for ALCHIQ. It is an extension of our algorithm for deciding π-
satisfiability from [10], and extending it to handle nomials is part of our ongoing
work. Using the transformation of transitivity axioms from the previous subsec-
tion, this algorithm can also decide ν-satisfiability of SHIQ knowledge bases.
Due to space constraints, we omit many technical details, which are given in [9].
We assume familiarity with first-order logic and resolution theorem proving.



On the Properties of Metamodeling in OWL 11

Table 3. ν-semantics by Mapping into First-order Logic

Mapping Concepts to FOL

νy(A, X) = isa(A, X)
νy(¬D, X) = ¬νy(D, X)

νy(D1 ⊓ D2, X) = νy(D1, X) ∧ νy(D2, X)
νy(D1 ⊔ D2, X) = νy(D1, X) ∨ νy(D2, X)

νy(∀S.D, X) = ∀y : arole(S, X, y) → νx(D, y)
νy(∃S.D, X) = ∃y : arole(S, X, y) ∧ νx(D, y)

νy(≤ n S.D, X) = ∀y1, . . . , yn+1 :
V

arole(S, X, yi) ∧
V

νx(D, yi) →
W

yi ≈ yj

νy(≥ n S.D, X) = ∃y1, . . . , yn :
V

arole(S, X, yi) ∧
V

νx(D, yi) ∧
V

yi 6≈ yj

Mapping Axioms to FOL

ν(D1 ⊑ D2) = ∀x : νy(D1, x) → νy(D2, x)
ν(S ⊑ T ) = ∀x, y : arole(S, x, y) → arole(T, x, y)
ν(D(a)) = νy(D, a)

ν(S(a, b)) = arole(S, a, b)
ν(a ◦ b) = a ◦ b for ◦ ∈ {≈, 6≈}

Mapping KB to FOL

ν(S) = ∀x, y : arole(S, x, y) ↔ arole(S−, y, x)
ν(KB) =

V
α∈KBR∪KBT ∪KBA

ν(α) ∧
V

S∈NKB
ν(S)

Notes:
(i): X is a meta variable and is substituted by the actual variable,
(ii): νx is defined as νy by substituting x, xi and νx for y, yi and νy, respectively.

Translation into First-order Logic. Our algorithm is based on resolution, so in
Table 3 we define an operator ν which translates KB into a formula ν(KB)
of first-order logic with equality. As shown by the following lemma, ν(KB) is
first-order satisfiable if and only if KB is ν-satisfiable. Intuitively, for a name n,
isa(n, x) encodes the concept extension of n and arole(n, x, y) encodes the role
extension of n. Therefore, a ν-interpretation Iν of KB can be easily converted
into a first-order interpretation I of ν(KB) and vice versa.

Lemma 3. For an ALCHIQ knowledge base KB, KB is ν-satisfiable if and
only if a first-order model of ν(KB) exists.

Basic Superposition Calculus. We decide first-order satisfiability of ν(KB) by
basic superposition [2] (BS), a clausal calculus optimized for theorem proving
with equality. The calculus is parameterized by a certain term ordering and a
selection function. It consists of resolution and superposition rules, which are
applied only to literals in clauses designated by the chosen parameters. A set
of clauses N is saturated by BS if applying a rule of BS to premises from N
produces an already derived clause. BS is sound and complete: a saturated set
of clauses N is unsatisfiable if and only if it contains the empty clause.

Decision Procedure by BS. In order to apply BS, we transform ν(KB) into the
set of clauses Ξν(KB) using the so-called structural transformation [11], which
ensures that this step is polynomial.



12 Boris Motik

We now saturate Ξν(KB) by BSDL, where BSDL denotes the BS calculus
parameterized as discussed in [9]. It is possible to show that during such a
saturation, only clauses of a certain syntactic form are derivable, and that the
number of possible derived clauses is exponential in |KB |. Therefore, saturation
by BSDL will terminate after an exponential number of steps. Since BSDL is
sound and complete, it decides satisfiability of Ξν(KB) and, by Lemma 3, ν-
satisfiability of KB . The actual algorithm has to deal with several techical issues,
for which we direct the reader to [9]. Hece we just state our main result:

Theorem 3. For an ALCHIQ knowledge base KB, saturation of Ξν(KB) by
BSDL decides ν-satisfiability of KB and runs in time exponential in |KB |, as-
suming numbers are coded in unary.

4 Expressivity of Metamodeling

We now discuss the benefits of metamodeling in terms of additional consequences
that can be drawn. These results are similar to the ones for HiLog from [4].

It is easy to see that ν-satisfiability is a strictly stronger notion than π-
satisfiability. Consider the following knowledge base2 KB :

Eagle(Harry) (15)

¬Aquila(Harry) (16)

Eagle ≈ Aquila (17)

Under the contextual semantics, the interpretations of the symbols Eagle and
Aquila as concepts and as individuals are independent, so KB is π-satisfiable.
However, KB is ν-unsatisfiable: in each ν-interpretation EagleI = AquilaI = α,
so it cannot be that HarryI ∈ CI(EagleI) and HarryI /∈ CI(AquilaI). For the
other direction, we have the following lemma:

Lemma 4. A ν-satisfiable SHOIQ knowledge base KB is also π-satisfiable.

Proof. Let Iν be a ν-model of an SHOIQ knowledge base KB . We construct a
π-interpretation Iπ as follows: △Iπ = △Iν , nIπ = nIν , CIπ (n) = CIν (nIν ) and
RIπ (n) = RIν (nIν ), for each n ∈ NKB . By a straightforward induction on the
concept structure it can be shown that, for each concept X, CIπ (X) = CIν (X),
so Iπ is a π-model of KB . ⊓⊔

Furthermore, for a knowledge base with unique name assumption or without
equality (either explicit or implicit, introduced through number restrictions),
π-satisfiability and ν-satisfiability coincide:

Lemma 5. Let KB be an SHOIQ knowledge base such that it employs unique
name assumption, or it contains neither explicit equality statements nor number
restrictions. Then KB is π-satisfiable if and only if it is ν-satisfiable.

2 “Aquila” is the Latin name for “eagle.”



On the Properties of Metamodeling in OWL 13

Proof. The (⇐) direction follows from Lemma 4. For the (⇒) direction, let
KB be π-satisfiable in some model Iπ. Since KB either employs unique name
assumption or it does not employ equality, without loss of generality, we may
assume that for each ni, nj ∈ N , ni 6= nj implies ni

Iπ 6= nj
Iπ .

We now construct a ν-interpretation Iν as follows: △Iν = △Iπ , nIν = nIπ ,
CIν (nIν ) = CIπ (n) and RIν (nIν ) = RIπ (n), for n ∈ NKB . Furthermore, for all
x ∈ △Iν such that there is no n ∈ NKB with x = nIν , let CIν (x) = RIν (x) = ∅.
Since we can assume that different names of NKB are interpreted as different
elements of △Iν , the construction assigns a unique value to CIν (x) and RIν (x)
for each x ∈ △Iν , so Iν is correctly defined. By a straightforward induction on the
concept structure it can be shown that, for each concept X, CIν (X) = CIπ (X).
Therefore, Iν is a ν-model of KB . ⊓⊔

To summarize, ν-semantics allows deriving new consequences only if it is
possible to derive that two symbols are equal; for example, from (15) and (17) it
is possible to derive Aquila(Harry). Furthermore, if the unique name assumption
is employed, as it is often the case in practice, ν-semantics does not yield any
additional consequences. This seems to suggest that the benefits of ν-semantics
do not outweigh its drawbacks, namely, the fact that it is non-standard and
that it introduces problems for transitive roles. Moreover, π-semantics might be
sufficient for many practical applications.

However, ν-semantics unlocks its full potential when combined with a lan-
guage more expressive than OWL. For example, by combining ν-semantics with
the Semantic Web Rule Language (SWRL) [6], one can explicitly axiomatize the
semantics of metaconcepts. Consider the example from Section 1. By (18) we
state that Eagle is an RedListSpecies , and by a SWRL rule (19) we state that
instances of species listed in the Red List are not allowed to be hunted. Notice
that in atom S(I) we use the variable S at the position of a predicate. Under
ν-semantics this is equivalent to isa(S, I), but under π-semantics this would not
be possible without leaving the confines of first-order logic. Now from (15), (18)
and (19), we may infer CannotHunt(Harry), so RedListSpecies semantically acts
as a metaconcept of the Eagle concept.

RedListSpecies(Eagle) (18)

RedListSpecies(S) ∧ S(I) → CannotHunt(I) (19)

To summarize, from the logical perspective, ν-semantics alone does not bring
much, and π-semantics may be sufficient for numerous applications. However,
ν-semantics provides a sound foundation for metamodeling, which, when com-
bined with expressive logical formalisms such as SWRL, allows precisely axiom-
atizing the interaction between concepts and metaconcepts. Thus, we believe
ν-semantics to be very relevant for the future extensions of OWL.

5 Related Work

The definition of ν-satisfiability given in Section 3 is inspired by HiLog [4], a logic
in which general terms are allowed to occur in place of function and predicate



14 Boris Motik

symbols in formulae. The semantics is defined by interpreting each individual
as a member of the interpretation domain, and by assigning a functional and a
relational interpretation to domain objects. The authors show that HiLog can
be considered “syntactic sugar”, since each HiLog formula can be encoded into
an equisatisfiable first-order formula. The definition of the ν operator in Table 2
closely resembles this encoding. Finally, the authors show that a satisfiable first-
order formula without equality is also satisfiable under HiLog semantics.

In [13], the RDFS Model Theory was criticized for allowing infinite number
of meta-layers. The authors argue that such semantics is inadequate for the Se-
mantic Web because (i) it does not provide adequate support for inferencing, (ii)
it allows defining classes containing themselves, which may lead to paradoxes,
and (iii) by adding classes, one necessarily introduces objects in the interpreta-
tion universe. The authors propose RDFS-FA, a stratified four-level approach,
consisting of the meta-language layer, the language layer, the ontology layer and
the instance layer. In [5] similar arguments were used to criticize the seman-
tics of OWL-Full. We follow the principles of RDFS-FA by strictly separating
the modeling primitives from the ontology and the instance layers. However,
to allow metamodeling, our definition of ν-semantics merges the ontology and
the instance layers into one. Furthermore, we show that (iii) affects the logical
consequences only if equality reasoning is required, which matches well with the
intuition behind metamodeling.

In [16] the authors point out the usefulness of metamodeling in many applica-
tion domains. They propose separation of modeling layers, which are connected
using so-called spanning instances. However, the authors do not consider the
logical consequences of their approach.

6 Conclusion

In this paper we have analyzed the metamodeling features of OWL-Full, the
most expressive of the Semantic Web ontology languages. We have shown that
the style of metamodeling adopted in OWL-Full leads to undecidability of basic
reasoning problems, due to mixing logical and metalogical primitives. In order
to obtain a decidable and expressive language supporting metamodeling, we
have proposed two alternative semantics: the contextual one, which is essen-
tially first-order, and the HiLog one, which is more in the spirit of OWL-Full.
Under certain technical assumptions, both semantics are decidable when com-
bined with the description logic SHOIQ. Furthermore, we have presented a
practical resolution-based decision procedure for reasoning with SHIQ knowl-
edge bases under HiLog semantics, thus obtaining practical support for a logic
with metamodeling whose expressivity is between OWL-Lite and OWL-DL.

We have analyzed the added expressivity of metamodeling and have shown
that the HiLog semantics allows deriving new conclusions only by equality rea-
soning. However, this approach unlocks its full potential if combined with ex-
pressive extensions, such as SWRL, since it allows axiomatizing the logical in-
teraction between concepts and their metaconcepts.



On the Properties of Metamodeling in OWL 15

In future, we shall attempt to extending the practical decision procedure from
Subsection 3.4 to handle nominals as well, and thus to cover all of OWL-DL.

Acknowledgements

This work was partially funded by the EU IST project DIP 507483. We thank
the anonymous reviewer for valuable comments regarding Subsection 3.2.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, January 2003.

2. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation.
Information and Computation, 121(2):172–192, 1995.

3. R. Berger. The undecidability of the dominoe problem. Memoirs of the American

Mathematical Society, 66, 1966.
4. W. Chen, M. Kifer, and D. S. Warren. HILOG: a foundation for higher-order logic

programming. Journal of Logic Programming, 15(3):187–230, 1993.
5. I. Horrocks and P. F. Patel-Schneider. Three Theses of Representation in the

Semantic Web. In Proc. WWW 2003, pages 39–47. ACM, 2003.
6. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language.

In Proc. WWW 2004. ACM, 2004.
7. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive

Description Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.
8. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Descrip-

tion Logic SHIQ. In Proc. CADE 2000, number 1831 in LNAI, pages 482–496.
Springer, 2000.

9. U. Hustadt, B. Motik, and U. Sattler. Reasoning for Description Logics around
SHIQ in a Resolution Framework. Technical Report 3-8-04/04, FZI, Karlsruhe,
Germany, April 2004. http://www.fzi.de/ipe/publikationen.php?id=1172.

10. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to
Disjunctive Datalog Programs. In Proc. KR 2004, pages 152–162, Menlo Park,
California, USA, June 2004. AAAI Press.

11. A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 6, pages 335–367. Elsevier Science, 2001.

12. L. Pacholski, W. Szwast, and L. Tendera. Complexity Results for First-Order
Two-Variable Logic with Counting. SIAM Journal on Computing, 29(4):1083–
1117, 2000.

13. J. Pan and I. Horrocks. RDFS(FA) and RDF MT: Two Semantics for RDFS. In
Proc. ISWC 2003, number 2870 in LNCS, pages 30–46. Springer, 2003.

14. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language;
Semantics and Abstract Syntax. http://www.w3.org/TR/owl-semantics/, 2002.

15. G. Schreiber. The Web is not well-formed. IEEE Intelligent Systems, 17(2):79–80,
March/April 2002. Contribution to the section “Trends & Controversies: Ontolo-
gies KISSES in Standardization”, edited by S. Staab.

16. C. Welty and D. Ferrucci. What’s in an instance? Technical Report 94-18, Max-
Planck-Institut, 1994. RPI Computer Science.


