
Representing and Querying Validity Time in
RDF and OWL: A Logic-Based Approach

Boris Motik

Oxford University Computing Laboratory, Oxford, UK

Abstract. RDF(S) and OWL 2 currently support only static ontologies.
In practice, however, the truth of statements often changes with time,
and Semantic Web applications often need to represent such changes
and reason about them. In this paper we present a logic-based approach
for representing validity time in RDF and OWL. Unlike the existing
proposals, our approach is applicable to entailment relations that are not
deterministic, such as the Direct Semantics or the RDF-Based Semantics
of OWL 2. We also extend SPARQL to temporal RDF graphs and present
a query evaluation algorithm. Finally, we present an optimization of our
algorithm that is applicable to entailment relations characterized by a set
of deterministic rules, such RDF(S) and OWL 2 RL/RDF entailment.

1 Introduction

RDF(S) and OWL 2 currently support only static ontologies. In practice, how-
ever, the truth of statements often changes with time, and Semantic Web appli-
cations often need to represent such changes and reason about them. We discuss
these issues on an example derived from the author’s collaboration with Expe-
rienceOn (abbreviated EO)—an IT start-up company from Barcelona, Spain.

EO aims to improve search in the tourism domain by providing an advanced
system that can answer complex queries such as “trips to the second week of
Oktoberfest.” Users will input their questions in natural language, and NLP
technology will translate such questions into one or more queries over a knowl-
edge base containing information about flights, lodging, events, geography, and
so on. EO’s system must be able to represent statements that are not universally
true, but are associated with validity times. For example, “Oktoberfest is being
held in Munich” is true only while the festival is being held; similarly, state-
ments describing airline flight schedules are valid only in certain time intervals.
Validity time must be tightly integrated with reasoning; for example, from the
knowledge about Oktoberfest and German geography, EO’s system should con-
clude that “Oktoberfest is being held in Bavaria” is true for the duration of the
festival. Validity time should also be integrated with a query language, allowing
one to retrieve “flights from London to Munich during Oktoberfest.” Validity
time thus affects virtually all aspects of knowledge representation and reasoning
in scenarios such as EO’s. Some applications also need to represent transaction
times, which specify when facts were added to the database. In this paper we
focus on validity time since it is more relevant to knowledge modeling.

Validity time has been extensively studied in databases and artificial intel-
ligence [4, 19]. Neither RDF nor OWL, however, supports validity time, and
SPARQL does not provide temporal query primitives. These deficiencies have
been recognized by the community, and several proposals have emerged. A com-
prehensive framework for representing validity time in RDF was presented in [7],
and it encompasses notions of temporal graphs and entailment, a characteriza-
tion of temporal entailment via closures [6], an encoding of temporal graphs into
regular RDF graphs, and a sketch of a temporal query language. This approach
was extended in [9] with more general temporal constraints. In [15], the authors
extended the approach from [7] with unknown time points, defined a tempo-
ral query language based on graph matching, and presented a way for indexing
temporal graphs. A general framework for annotating RDF data was presented
in [17]; the very general notion of annotations can be used to represent validity
time. A temporal extension of SPARQL was presented in [18]. Approaches to
extending description logics (DLs) [3]—the family of formalisms underpinning
OWL 2 DL—with temporal features were surveyed in [2]. A temporal extension
of OWL based on concrete domains was presented in [10].

None of these proposals is applicable to all variants of RDF and OWL. For
example, the notion of closures from [7] relies on the fact that the inference rules
of RDF(S) are deterministic—an assumption that does not hold in expressive
languages such as OWL. In this paper we present a novel approach for repre-
senting validity time that is applicable to all Semantic Web languages, including
RDF(S) and all profiles of OWL 2. In particular, in Section 3 we develop a first-
order interpretation of temporal graphs, which we use to define temporal graph
entailment. Our approach coincides with the one from [7] on RDF(S), but it is
applicable to all languages of the RDF and OWL family.

In Section 4, we argue that a temporal query language defined in the obvious
way would allow for queries that have very large and often even infinite answers.
We present a query language whose queries always have finite answers, we in-
tegrate our query primitives into the formalization of SPARQL from [14], and
we present a general query evaluation algorithm. In Section 5 we optimize our
general evaluation algorithm for the case of deterministic inference rules.

We implemented our approach in EO’s system. Given the nature of EO’s
business, we cannot make the system publicly available; however, EO is success-
fully using our approach to answer temporal queries, which we take as indication
that our approach is suitable for practice.

The proofs of all technical results are given in the appendix.

2 Preliminaries

We assume the reader to be familiar with the syntax and semantics of OWL
2 DL [12]; for simplicity, we write OWL 2 DL axioms using the description
logic syntax [3]. We use the standard definitions of constants, variables, terms,
predicates, atoms, multi-sorted first-order logic, and skolemization [5]. For α an
OWL 2 DL axiom or an ontology, let θ(α) be the translation of α into a first-order

formula. We assume that the equality predicate ≈ is treated in θ(α) as a standard
first-order predicate explicitly axiomatized as a congruence; this does not affect
the consequences of θ(α) [5]. Moreover, we assume that θ maps the blank nodes
(also called anonymous individuals) in α into free first-order variables, so the
semantics of α is ∃y1, . . . , yn : θ(α) where y1, . . . yn are the blank nodes of α.

Let U , B, and L be infinite sets of URI references, blank nodes, and liter-
als, respectively, and let UBL = U ∪ B ∪ L. A triple is an assertion of the form
〈s, p, o〉 with s, p, o ∈ UBL.1 An RDF graph (or just graph) G is a finite set of
triples. The semantics of RDF is determined by entailment relations.

Simple entailment, RDF entailment, RDFS entailment, and D-entailment are
defined in [8], and OWL 2 RL/RDF entailment and OWL 2 RDF-Based entail-
ment are defined in [16]. The logical consequences of each entailment relation
X from this list can be characterized by a (possibly infinite) set of first-order
implications ΓX . For example, for RDF entailment, ΓRDF contains the rules in
[8, Section 7], and for OWL 2 RL/RDF entailment, ΓRL contains the rules in [11,
Section 4.3]. The semantics of a graph G w.r.t. X can be defined by transforming
G into a first-order theory as follows. We assume that each blank node corre-
sponds to a first-order variable (i.e., for simplicity, we do not distinguish blank
nodes from variables). Let bX(G) be the set of all blank nodes in G. For a triple
A = 〈s, p, o〉, let πX(A) = T (s, p, o), where T is a ternary first-order predicate.
For a graph G, let πX(G) =

∧
A∈G πX(A). The first-order theory correspond-

ing to G is then νX(G) = {∃bX(G) : πX(G)} ∪ ΓX . Let ξX(G) be obtained from
νX(G) by skolemizing the existential quantifiers ∃bX(G)—that is, by removing
∃bX(G) and replacing each blank node in πX(G) with a fresh URI reference.
Theory νX(G) is equisatisfiable with ξX(G). A graph G1 X-entails a graph G2,
written G1 |=X G2, if and only if νX(G1) |= ∃bX(G2) : πX(G2); the latter is the
case if and only if ξX(G1) |= ∃bX(G2) : πX(G2).

We next define OWL 2 Direct entailment (written DL due to its relationship
with description logic). A graph G encodes an OWL 2 DL ontology if G can be
transformed into an OWL 2 DL ontology O(G) as specified in [13]. For such G,
let bDL(G) be the set of blank nodes occurring in O(G); let πDL(G) = θ(O(G));
let νDL(G) = ∃bDL(G) : θ(O(G)); and let ξDL(G) be obtained from νDL(G) by
skolemizing the existential quantifiers ∃bDL(G). Formula νDL(G) is equisatisfi-
able with ξDL(G). For G1 and G2 graphs that encode OWL 2 DL ontologies,
G1 DL-entails G2, written G1 |=DL G2, iff νDL(G1) |= ∃bDL(G2) : πDL(G2); the
latter is the case if and only if ξDL(G1) |= ∃bDL(G2) : πDL(G2).

SPARQL is the standard W3C language for querying RDF graphs, and the
1.1 version (currently under development) will support different entailment rela-
tions. In this paper we focus on group patterns—the core of SPARQL that deals
with pattern matching and is largely independent from constructs such as aggre-
gates and sorting. We formalize group patterns as in [14], and we treat answers
as sets rather than multisets as this simplifies the presentation without changing
the nature of our results. Let V be an infinite set of variables disjoint from UBL.

1 RDF actually requires s ∈ U ∪ B, p ∈ U , and o ∈ UBL, but this is not important in
our framework so we assume s, p, o ∈ UBL for the sake of simplicity.

A mapping is a partial function µ : V → UBL. The domain (resp. range) of µ is
written dm(µ) (resp. rg(µ)). We define µ(t) = t for t ∈ UBL ∪ V \ dm(µ). Map-
pings µ1 and µ2 are compatible if µ1(x) = µ2(x) for each x ∈ dm(µ1) ∩ dm(µ2);
in such a case, µ1 ∪ µ2 is also a mapping. The following algebraic operations on
sets of mappings Ω1 and Ω2 are used to define the semantics of group patterns.

Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1 and µ2 are compatible}
Ω1 \Ω2 = {µ1 ∈ Ω1 | each µ2 ∈ Ω2 is not compatible with µ1}

A built-in expression is constructed using the elements of V ∪ U ∪ L as spec-
ified in [14]; furthermore, for each built-in expression R and each mapping µ,
we can determine whether R evaluates to true under µ, written µ |= R, as spec-
ified in [14]. A basic graph pattern (BGP) is a set of triples of the form 〈s, p, o〉
where s, p, o ∈ UBL ∪ V. A group pattern (GP) is an expression of the form B,
P1 and P2, P1 union P2, P1 opt P2, or P1 filter R, where B is a BGP, P1 and P2

are group patterns, and R is a built-in expression. For A a built-in expression
or a group pattern and µ a mapping, var(A) is the set of variables occurring in
A, and µ(A) is the result of replacing each variable x in A with µ(x).

The answer to a group pattern P on a graph G depends on an entailment
relation X. For each X, we assume that a function exists that maps each graph
G to the set adX(G) ⊆ UBL called the answer domain of G; this set determines
the elements of UBL that can occur in answers to group patterns on G under X-
entailment. To see why this is needed, let B = {〈x, rdf :type, rdf :Property〉}; due
to the axiomatic triples [8], ∅ |=RDF µ(B) whenever µ(x) ∈ {rdf : 1 , rdf : 2 , . . .}.
Without any restrictions, the answer to B under RDF entailment would thus
be infinite even in the empty graph. To prevent this, adRDF (G) excludes rdf : 1 ,
rdf : 2 , . . . that do not occur in G, which makes adRDF (G) finite and thus ensures
finiteness of answers. Similar definitions are used for X other than RDF .

SPARQL treats blank nodes as objects with distinct identity. To understand
this, let G = {〈a, b, c〉, 〈d, e, :1〉} where :1 is a blank node, let P = 〈a, b, x〉,
and let µ = {x 7→ :1}. Even though G |=RDF µ(P), the answer to P on G under
RDF entailment does not contain µ. Roughly speaking, :1 is distinct from c even
though :1 is semantically a “placeholder” for an arbitrary URI reference. We
capture this idea using skolemization: we replace the blank nodes in G with fresh
URI references, thus giving each blank node a unique identity. Our answers are
isomorphic to the answers of the official SPARQL specification, so skolemization
allows us to simplify the technical presentation without losing generality. We
formalize this idea by evaluating group patterns in ξX(G) instead of νX(G).
Table 1 defines the answer JP KXG to a group pattern P in a graph G w.r.t. X.

3 Representing Validity Time in RDF and OWL

To incorporate validity time into RDF, one could simply equip each triple with
a validity time instant; however, it would be impractical or even impossible
to explicitly list all such time instants. To this end, Chomicki distinguishes an
abstract from a concrete temporal database [4]. The former is a sequence of

Table 1. Semantics of Group Patterns

JBKXG = {µ | dm(µ) = var(B), rg(µ) ⊆ adX(G), ξX(G) |= ∃bX(µ(B)) : πX(µ(B))}
JP1 and P2KXG = JP1KXG ./ JP2KXG

JP1 union P2KXG = JP1KXG ∪ JP2KXG
JP1 opt P2KXG = JP1KXG ./ JP2KXG ∪ JP1KXG \ JP2KXG
JP1 filter RKXG = {µ ∈ JP1KXG | µ |= R}

“static” databases each of which contains the facts true at some time instant.
Since the time line is unbounded, an abstract temporal database is infinite, so
a concrete temporal database is used as a finite specification of one or more
abstract temporal databases. We next apply thus approach to RDF and OWL.

We use a discrete notion of time, since the ability to talk about predeces-
sors/successors of time instants is needed in Section 4. Thus, the set T I of time
instants is the set of all integers, ≤ is the usual total order on T I, and +1 and
−1 are the usual successor and predecessor functions on T I. The set of time
constants is T C = T I ∪ {−∞,+∞}; we assume that UBL ∩ T C = ∅. Time con-
stants −∞ and +∞ are special in that they can occur in first-order formulae
only in atoms of the form −∞ ≤ t, −∞ ≤ +∞, and t ≤ +∞ for t a time instant
or a variable; all such atoms are syntactic shortcuts for true. This allows us to
simplify the notation for bounded and unbounded time intervals; for example,
to say that the interval described by formula t1 ≤ xt ≤ t2 has no lower bound,
we write t1 = −∞, which makes the formula equivalent to xt ≤ t2.

Definition 1. A temporal triple has the form 〈s, p, o〉[t] or 〈s, p, o〉[t1, t2], such
that s, p, o ∈ UBL, t ∈ T I, t1 ∈ T I ∪ {−∞}, and t2 ∈ T I ∪ {+∞}. A temporal
graph G is a finite set of temporal triples.

In this work, we focus mainly on the conceptual aspects of temporal graphs
and we do not discuss practical issues such as serialization syntax. We interpret
temporal graphs in multi-sorted first-order logic. Let t be a distinct temporal
sort interpreted over T I; we write xt to stress that a variable x ranges over T I.
For each n-ary predicate P , let P̂ be the n+ 1-ary predicate where positions 1–n
have the same sort as in P , and position n+ 1 is of sort t. For t a term of sort t
and P (u1, . . . , un) an atom, let P (u1, . . . , un)〈t〉 = P̂ (u1, . . . , un, t), and let ϕ〈t〉
be obtained by replacing each atom A with A〈t〉 in a first-order formula ϕ.

Intuitively, atom P̂ (u1, . . . , un, t) encodes the truth of atom P (u1, . . . , un) at
time instant t: the former is true iff the latter is true at time t, so our approach is
similar to the temporal arguments approach [19]. Similarly, ϕ〈t〉 determines the
truth of ϕ at time instant t. As explained in Section 2, ≈ is an ordinary predicate
with an explicit axiomatization, so ≈̂ is well defined and it gives us a notion
of equality that changes with time. Finally, to understand why a multi-sorted
interpretation is needed, consider a graph G that encodes the OWL 2 DL axiom
> v {c}. Such G is satisfiable only in first-order interpretations consisting of a
single object, which contradicts the requirement that a domain should contain

T I. Multi-sorted logic cleanly separates temporal instants from other objects
in the domain, so axioms such as > v {c} do not quantify over time instants,
which solves the problem. We next define the semantics of temporal graphs.

Definition 2. Let X be an entailment relation from Section 2 other than DL,
and let ΓX be the first-order theory that characterizes X. For G a temporal
graph, uX(G), bX(G), and tcX(G) are the subsets of U ∪ L, B, and T C, respec-
tively, that occur in G. Mappings πX and νX are extended to temporal graphs as
shown below, where O is a fresh unary predicate. Furthermore, ξX(G) is obtained
from νX(G) by skolemizing the existential quantifiers in ∃bX(G), and ubX(G) is
uX(G) extended with the URI references introduced via skolemization.

πX(〈s, p, o〉[t]) = T̂ (s, p, o, t)

πX(〈s, p, o〉[t1, t2]) = ∀xt : (t1 ≤ xt ≤ t2)→ T̂ (s, p, o, xt)

πX(G) =
∧

u∈bX(G)

O(u) ∧
∧

A∈G

πX(A)

νX(G) = {∃bX(G) :
∧

u∈uX(G)

O(u) ∧ πX(G)} ∪ {∀xt : ϕ〈xt〉 | ϕ ∈ ΓX}

A temporal graph G1 entails a temporal graph G2 under entailment relation X,
written G1 |=X G2, if and only if νX(G1) |= ∃bX(G2) : πX(G2).

Intuitively, predicate O in νX(G) “contains” all elements of uX(G) ∪ bX(G)
that occur in G, which ensures that, whenever G1 |=X G2, all blank nodes in
G2 can be mapped to uX(G1) ∪ bX(G1). We discuss the rationale behind such a
definition at end of this section; for the moment, we just note that, when applied
to RDF(S), our definition of entailment coincides with the one from [7].

We next present a small example. Let G1 be the temporal graph containing
temporal triples (1)–(3). Triples in (1) state that there is a flight from LHR
to MUC; this information may have been gathered from two distinct sources,
so validity times of the two triples overlap. Triple (2) states that Munich hosts
Oktoberfest. Finally, triple (3) states that, if x hosts y, then x has y as an
attraction; that this statement is not universally true might be due to the fact
that attractions are relevant only during holiday seasons. One can easily verity
that G1 |=RDFS 〈:Munich, :hasAttraction, :Oktoberfest〉[130, 180].

〈:LHR, :flightTo, :MUC 〉[50, 120] 〈:LHR, :flightTo, :MUC 〉[100, 150] (1)

〈:Munich, :hosts, :Oktoberfest〉[80, 180] (2)

〈:hosts, rdfs:subPropertyOf , :hasAttraction〉[130, 300] (3)

OWL 2 Direct entailment is not characterized by a fixed set of first-order
implications, so we define temporal OWL 2 Direct entailment separately.

Definition 3. A temporal OWL 2 DL axiom has the form α[t] or α[t1, t2] for
α an OWL 2 DL axiom, t ∈ T I, t1 ∈ T I ∪ {−∞}, and t2 ∈ T I ∪ {+∞}. A
temporal OWL 2 DL ontology O is a finite set of temporal OWL 2 DL axioms.

Temporal axioms and ontologies are mapped into formulae as θ(α[t]) = θ(α)〈t〉,
θ(α[t1, t2]) = ∀xt : (t1 ≤ xt ≤ t2)→ θ(α)〈xt〉, and θ(O) =

∧
A∈O θ(A).

A temporal graph G encodes a temporal OWL 2 DL ontology O(G) if O(G)
can be extracted from G using the mapping from [13] modified as follows:

– Each 〈s, p, o〉 in Tables 3–8 and 10–15 is replaced with 〈s, p, o〉[−∞,+∞].
– Each triple pattern from Tables 16 and 17 without a main triple2 producing

an axiom α is changed as follows: each 〈s, p, o〉 in the pattern is replaced with
〈s, p, o〉[−∞,+∞], and the triple pattern produces α[−∞,+∞].

– Each triple pattern from Tables 16 and 17 with a main triple 〈sm, pm, om〉
producing an axiom α is replaced with the following two triple patterns.
• The first one is obtained by replacing each triple 〈s, p, o〉 in the pattern

other than the main one with 〈s, p, o〉[−∞,+∞], replacing the main triple
with 〈sm, pm, om〉[t], and making the triple pattern produce α[t].
• The second one is obtained by replacing each triple 〈s, p, o〉 in the pattern

other than the main one with 〈s, p, o〉[−∞,+∞], replacing the main triple
with 〈sm, pm, om〉[t1, t2], and making the triple pattern produce α[t1, t2].

For G encoding a temporal OWL 2 DL ontology O(G), uDL(G), bDL(G), and
tcDL(G) are the sets of named individuals, blank nodes, and temporal constants,
respectively, in O(G). Mappings, πDL and νDL are extended to G as shown be-
low, where O is a fresh unary predicate. Furthermore, ξDL(G) is obtained from
νDL(G) by skolemizing the existential quantifiers in ∃bDL(G), and ubDL(G) is
uDL(G) extended with the named individuals introduced via skolemization.

πDL(G) =
∧

u∈bDL(G)

O(u) ∧ θ(O(G))

νDL(G) = ∃bDL(G) :
∧

u∈uDL(G)

O(u) ∧ πDL(G)

For G1 and G2 temporal graphs that encode temporal OWL 2 DL ontologies, we
have G1 |=DL G2 if and only if νDL(G1) |=DL ∃bDL(G2) : πDL(G2).

Definition 3 allows us to attach validity time to axioms (but not to parts
of axioms such as class expressions), which provides us with a flexible language
that can represent, for example, class hierarchies that change over time.

We next explain the intuition behind the predicate O in Definitions 2 and
3. Note that ∃bX(G) occurs in νX before the universal quantifiers over T I,
so blank nodes in G are interpreted rigidly—that is, they represent the same
objects throughout all time. For example, let G2 = {〈s, p, :1〉[−∞,+∞]}, so
πDL(G2) = ∃ :1 : O(:1) ∧ ∀xt : p̂(s, :1, xt); since ∃ :1 comes before ∀xt, blank
node :1 refers to the same object at all time instants. In contrast, the existen-
tial quantifiers in ϕ〈xt〉 and θ(O(G)) are not rigid—that is, they can be satis-
fied by different objects at different time instants. For example, let G3 be such
that O(G3) = {∃p.>(s)[−∞,+∞]}, so πDL(G3) = ∀xt : ∃y : p̂(s, y, xt); since ∃y
2 Please refer to [13] for the definition of a main triple.

comes after ∀xt, the value for y can be different at different time instants. Con-
sequently, G2 is not DL-equivalent to G3; in fact, G2 DL-entails G3, but not
vice versa. Blank nodes can thus be understood as unnamed constants, which
we believe to be in the spirit of RDF and OWL. In line with this intuition, con-
juncts

∧
u∈bX(G)O(u) and

∧
u∈uX(G)O(u) in Definitions 2 and 3 ensure that, if

G2 |=X G3, then the blank nodes in bX(G3) can be mapped to the rigid objects in
uX(G2), but not to the nonrigid objects whose existence is implied by existential
quantifiers. Without this restriction, G3 would DL-entail G4 = {〈s, p, :1〉[1, 1]}
(since the triple in G4 refers only to a single time instant, the nonrigidity of ∃p.>
is irrelevant), which seems at odds with the fact that G3 does not DL-entail G2.
Under our semantics, G3 does not DL-entail G4 due to the O predicate, which
seems more intuitive and it is also easier to implement.

4 Querying Temporal Graphs

The first step in designing a query language is to identify the types of questions
that the language should support. The language of first-order logic readily reveals
the following natural types of questions:

Q1. Is BGP B true in G at some time instant t?
Q2. Is BGP B true in G at all time instants between t1 and t2?
Q3. Is BGP B true in G at some time instant between t1 and t2?

Such questions can be easily encoded in first-order formulae, and an answer to a
formula Q over a graph G under entailment relation X can be defined as the set
of mappings µ of the free variables of Q such that G |=X µ(Q). Such an approach,
however, has an important drawback. Let G5 = {〈a, b, c〉[5, 12], 〈a, b, c〉[9,+∞]}
and let Q(x1, x2) = ∀x : x1 ≤ x ≤ x2 → 〈a, b, c〉[x] be a question of type Q2.
Evaluating Q(x1, x2) on G5 is not a problem if x1 and x2 are concrete time
instants. Note, however, that Q(x1, x2) does not ask for maximal x1 and x2 for
which the formula holds. Thus, the answer to Q(x1, x2) on G5 is infinite since it
contains each mapping µ such that 5 ≤ µ(x1) ≤ µ(x2) ≤ +∞.

One can restrict answers to mappings that refer to time instants explic-
itly occurring in G, but this is also problematic. First, answers can contain
redundant mappings. For example, µ1 = {x1 7→ 5, x2 7→ +∞} is the “most gen-
eral mapping” in the answer to Q(x1, x2) on G5, but the answer also contains
a “less general” mapping µ2 = {x1 7→ 9, x2 7→ 12}. Second, answers can differ
on syntactically different but semantically equivalent temporal graphs. For ex-
ample, G6 = {〈a, b, c〉[5, 10], 〈a, b, c〉[7,+∞]} is equivalent to G5 under simple
entailment; however, µ2 is not contained in the answer to Q(x1, x2) on G6,
and µ3 = {x1 7→ 7, x2 7→ 10} is not contained in the answer to Q(x1, x2) on G5.
Third, computing redundant answers can be costly: an answer to a formula such
as Q(x1, x2) in a graph with n overlapping intervals consists of mappings that
refer to any two pairs of interval endpoints, so the number of mappings in the an-
swer is exponential in n. One might try to identify the “most general” mappings,
but this would be an ad hoc solution without a clear semantic justification.

We deal with these problems in two stages. First, we introduce primitives
that support questions of types Q1–Q3, as well as of types Q4–Q5, thus explicitly
introducing a notion of maximality into the language.

Q4. Is [t1, t2] the maximal interval such that BGP B holds in G for each time
instant in the interval?

Q5. Is t the smallest/largest instant at which BGP B holds in G?

We define our notion of answers w.r.t. T C, which makes the answers independent
from the syntactic form of temporal graphs. To ensure finiteness, we then define
a syntactic notion of safety, which guarantees that only questions of type Q4
and Q5 can “produce” a value.

Practical applications will often need to express constraints on time points
and intervals retrieved via Q1–Q5. For example, to retrieve “hotels with va-
cancy during Oktoberfest,” we must require the duration of Oktoberfest to be
contained in the hotels’ vacancy period. Such conditions can be expressed, for
example, using Allen’s interval algebra [1], and they can be integrated into our
query language via built-in expressions; for example, we can provide a built-in
expression that takes two pairs of interval end-points and that is true iff the first
interval is contained in the second. Such extensions of our query language are
straightforward, so we do not discuss them further in the rest of this paper.

Definition 4. A temporal group pattern (TGP) is an expression defined induc-
tively as shown below, where B is a BGP, P1 and P2 are TGPs, R is a built-in
expression, t1 ∈ T I ∪ {−∞} ∪ V, t2 ∈ T I ∪ {+∞} ∪ V, and t3 ∈ T I ∪ V. TGPs
from the first two lines are called basic.

B at t3 B during [t1, t2] B occurs [t1, t2]
B maxint [t1, t2] B mintime t3 B maxtime t3
P1 and P2 P1 union P2 P1 opt P2 P1 filter R

We redefine a mapping as a partial function µ : V → UBL ∪ T C. Let X be
an entailment relation and G a temporal graph. Let adX(G) = adX(G′), where
G′ is the nontemporal graph obtained by replacing all triples in G of the form
〈s, p, o〉[u] and 〈s, p, o〉[u1, u2] with 〈s, p, o〉. The answer to a basic TGP P in G
under X is the set of mappings defined as specified below, where δX(µ(P)) is a
condition from Table 2. Answers to all other TGP types are defined in Table 1.

JP KXG = {µ | dm(µ) = var(P), rg(µ) ⊆ adX(G) ∪ T C, and δX(µ(P)) holds}

We next present several TGPs that could be used in our running exam-
ple. TGP (4) returns the maximal intervals [y, z] during Oktoberfest in which
a flight from airport x to the Munich airport exists; the answer to (4) on G1

is {{x 7→ LHR, y 7→ 80, y 7→ 150}} . TGP (5) retrieves all events z in London
that have at least one time instant in common with Oktoberfest; if occurs were
changed to during, the TGP would retrieve all events z in London whose du-
ration is contained in the duration of Oktoberfest. TGP (6) retrieves the first
time instant at which Munich hosted Oktoberfest; the answer to (6) on G1 is

Table 2. Semantics of Temporal Graph Patterns

P δX(P)

B at t3 ξX(G) |= ∃bX(B) : πX(B)〈t3〉
B during [t1, t2] ξX(G) |= ∃bX(B) ∀xt : [t1 ≤ xt ≤ t2]→ πX(B)〈xt〉
B occurs [t1, t2] ξX(G) |= ∃bX(B) ∃xt : [t1 ≤ xt ≤ t2 ∧ πX(B)〈xt〉]
B maxint [t1, t2] a function σ : bX(B)→ ubX(G) exists such that

ξX(G) |= ∀xt : [t1 ≤ xt ≤ t2]→ πX(σ(B))〈xt〉, and
t1 = −∞ or ξX(G) 6|= πX(σ(B))〈t1 − 1〉, and
t2 = +∞ or ξX(G) 6|= πX(σ(B))〈t2 + 1〉

B mintime t3 a function σ : bX(B)→ ubX(G) exists such that
ξX(G) |= πX(σ(B))〈t3〉 and
ξX(G) 6|= πX(σ(B))〈xt〉 for each xt ∈ T I with xt ≤ t3 − 1

B maxtime t3 a function σ : bX(B)→ ubX(G) exists such that
ξX(G) |= πX(σ(B))〈t3〉 and
ξX(G) 6|= πX(σ(B))〈xt〉 for each xt ∈ T I with t3 + 1 ≤ xt

Note: δX(P) does not hold if P is malformed (e.g., if it is of the form B at t3 and
t3 6∈ T I); and σ(B) is the result of replacing each blank node v in B with σ(v).

{{x 7→ 80}}. Finally, TGP (7) returns all rooms x that have price y during an
event z in Munich within the time interval [50, 100].

{〈x, :flightTo, :MUC 〉, 〈:Munich, :hosts, :Oktoberfest〉} maxint [y, z] (4)

{〈:Munich, :hosts, :Oktoberfest〉} maxint [x, y] and
{〈:London, :hosts, z〉} occurs [x, y]

(5)

{〈:Munich, :hosts, :Oktoberfest〉} mintime x (6)

{〈x, :hasPrice, y〉, 〈:Munich, :hosts, z〉} occurs [50, 100] (7)

We next turn our attention to the formal properties of TGPs. By Definition 4,
adX(G) does not contain time constants occurring in G and answers are defined
w.r.t. T C, which ensures that answers do not depend on the syntactic form of
temporal graphs. For example, temporal graphs G5 and G6 mentioned earlier
are equivalent and adX(G5) = adX(G6), so JP KXG5

= JP KXG6
for each TGP P .

Proposition 1. Let X be an entailment relation, and let G1 and G2 be temporal
graphs such that G1 |=X G2, G2 |=X G1, and adX(G1) = adX(G2). Then, for
each temporal group pattern P , we have JP KXG1

= JP KXG2
.

Since the answers are defined w.r.t. the entire set T C, temporal basic graph
patterns can have infinite answers. We next define a notion of safe TGPs and
later show that such group patterns always have finite answers.

Definition 5. For P a temporal group pattern, uns(P) is the set of variables as
shown in Table 3. Pattern P is safe if and only if uns(P) = ∅.

Table 3. The Definition of Safety

P uns(P) P uns(P)

B at t3 {t3} ∩ V B maxint [t1, t2] ∅
B during [t1, t2] {t1, t2} ∩ V B mintime t3 ∅
B occurs [t1, t2] {t1, t2} ∩ V B maxtime t3 ∅
P1 and P2 uns(P1) ∪ [uns(P2) \ var(P1)] P1 union P2 uns(P1) ∪ uns(P2)
P1 opt P2 uns(P1) ∪ [uns(P2) \ var(P1)] P1 filter R uns(P1)

Intuitively, x ∈ uns(P) means that there is no guarantee that µ(x) ∈ T C im-
plies µ(x) ∈ tcX(G) for each µ ∈ JP KXG . Thus, B at t3, B during [t1, t2], and
B occurs [t1, t2] are safe iff t1, t2, and t3 are not variables: B can hold at po-
tentially infinitely many time intervals, which could give rise to infinite answers
if t1, t2, or t3 were a variable. In contrast, B maxint [t1, t2], B mintime t3,
and B maxtime t3 are always safe as there are finitely many maximal inter-
vals in which B holds. The nontrivial remaining cases are P1 and P2 and
P1 opt P2, in which we assume that P1 is evaluated “before” P2—that is,
that the values for variables obtained by evaluating P1 are used to bind un-
safe variables in P2; this will be made precise shortly in our algorithm for TGP
evaluation. Thus, (B1 occurs [x, y]) and (B2 maxint [x, y]) is not safe while
(B2 maxint [x, y]) and (B1 occurs [x, y]) is, which may seem odd given that con-
junction is commutative. Without a predefined evaluation order, however, we
would need to examine every possible order of conjuncts in a conjunction to find
an “executable” one, which could be impractical.

We next present an algorithm for evaluating TGPs. We start by showing
how to decide three types of temporal entailment that are used as basic building
blocks of our evaluation algorithm. We first present some auxiliary definitions.
Let G be a temporal graph and X an entailment relation. A pair of time con-
stants (t1, t2) is consecutive in G if t1, t2 ∈ tcX(G), t1 < t2, and no t ∈ tcX(G)
exists with t1 < t < t2. The representative of such (t1, t2) is defined as t1 + 1
if t1 6= −∞, t2 − 1 if t1 = −∞ and t2 6= +∞, and 0 otherwise. Furthermore,
tiX(G) ⊆ T I is the smallest set that contains tcX(G) ∩ T I and the represen-
tative of each consecutive pair of time constants in G. Finally, note that by
Definitions 2 and 3, ξX(G) contains

∧
u∈ubX(G)O(u) ∧ Λ and zero or more for-

mulae of the form ∀xt : ϕi〈xt〉, and that Λ is a conjunction of formulae of the
form ψi〈ti〉 and ∀xt : (t1i ≤ xt ≤ t2i)→ κi〈xt〉; then, for t ∈ T I, ΞX(G, t) is the
set of all O(u), all ψi such that ti = t, all κi such that t1i ≤ t ≤ t2i , and all ϕi.

Proposition 2. Let G be a temporal graph, let X be an entailment relation, let
B be a BGP such that var(B) = ∅, and let t1 ∈ T I ∪ {−∞}, t2 ∈ T I ∪ {+∞},
and t3 ∈ T I. Then, the following claims hold:

1. ξX(G) is satisfiable iff ΞX(G, t) is satisfiable for each t ∈ tiX(G).
2. ξX(G) |= ∃bX(B) : πX(B)〈t3〉 iff ξX(G) is unsatisfiable or some function

σ : bX(B)→ ubX(G) exists such that ΞX(G, t3) |= πX(σ(B)).

Table 4. Evaluation of Temporal Group Patterns

evalX(P,G) is the set of mappings defined as follows depending on the type of P :

P = B at t3 or P = B during [t1, t2] or P = B occurs [t1, t2] :

{µ | dm(µ) = var(B), rg(µ) ⊆ adX(G), and δX(µ(P)) holds}

P = B maxint [t1, t2] :

{µ | dm(µ) = var(P), rg(µ) ⊆ adX(G) ∪ tiX(G) ∪ {−∞,+∞}, and δX(µ(P)) holds}

P = B mintime t3 :

{µ | dm(µ) = var(P), rg(µ) ⊆ adX(G) ∪ tiX(G), δX(µ(B at t3)) holds, and
δX(µ(B at t′)) does not hold for all t′ ∈ tiX(G) such that t′ ≤ µ(t3)− 1}

P = B maxtime t3 :

{µ | dm(µ) = var(P), rg(µ) ⊆ adX(G) ∪ tiX(G), δX(µ(B at t3)) holds, and
δX(µ(B at t′)) does not hold for all t′ ∈ tiX(G) such that µ(t3) + 1 ≤ t′}

P = P1 and P2 :

{µ1 ∪ µ2 | µ1 ∈ evalX(P1, G) and µ2 ∈ evalX(µ1(P2), G)}

P = P1 union P2 :

evalX(P1, G) ∪ evalX(P2, G)

P = P1 opt P2 :

evalX(P1 and P2, G) ∪ {µ ∈ evalX(P1, G) | evalX(µ(P2), G) = ∅}

P = P1 filter R :

{µ ∈ evalX(P1, G) | µ |= R}

3. ξX(G) |= ∃bX(B) ∀xt : [t1 ≤ xt ≤ t2]→ πX(B)〈xt〉 iff ξX(G) is unsatisfiable
or some σ : bX(G)→ ubX(G) exists such that ΞX(G, t) |= πX(σ(B)) for
each t ∈ tiX(G) with t1 ≤ t ≤ t2.

4. ξX(G) |= ∃bX(B) ∃xt : [t1 ≤ xt ≤ t2 ∧ πX(B)〈xt〉] iff ξX(G) is unsatisfiable
or some σ : bX(B)→ ubX(G) exists such that ΞX(G, t) |= πX(σ(B)) for
some t ∈ tiX(G) with t1 ≤ t ≤ t2.

Proposition 2 reduces temporal entailment to standard entailment problems
that can be solved using any decision procedure available. This provides us with
a way to check conditions δX(µ(P)) needed to evaluate safe TGPs. Further-
more, note that Claim 3 can be straightforwardly extended to general temporal
graph entailment. We use these results as building blocks for the function shown
in Table 4 that evaluates safe temporal group patterns. For P a basic TGP,
evalX(P,G) can be computed by enumerating all mappings potentially relevant
to P and then eliminating those mappings that do not satisfy the respective
conditions; optimizations can be used to quickly eliminate irrelevant mappings.

Proposition 3. Let G be a temporal graph, let X be an entailment relation
such that adX(G) is finite, and let P be a safe temporal group pattern. Then
evalX(P,G) = JP KXG and JP KXG is finite.

5 Optimized Query Answering

The algorithm from Table 4 checks temporal entailment using a black box de-
cision procedure, which can be inefficient. In this section we first present an
optimization of this algorithm that is applicable to simple entailment, and then
we extend this approach to any entailment relation that can be characterized by
deterministic rules, such as RDF(S) and OWL 2 RL.

5.1 Simple Entailment

Simple entailment is the basic entailment relation in which BGPs can be eval-
uated in nontemporal graphs by simple graph lookup. Such an approach pro-
vides the basis of virtually all practical RDF storage systems and has proved
itself in practice, so it would be beneficial if similar approaches were applicable
to TGPs and temporal graphs. As the following example demonstrates, how-
ever, this is not the case. Let P = {〈:LHR, :flightTo, :MUC 〉} maxint [x, y]; then

JP Ksimple
G1

= {{x 7→ 50, y 7→ 150}}. Note, however, that G1 does not contain tem-

poral triple α = 〈:LHR, :flightTo, :MUC 〉[50, 150], so JP Ksimple
G1

cannot be com-
puted via lookup. Temporal graph G1 is, however, equivalent to the normalized
temporal graph nrm(G1) obtained from G1 by replacing (1) with α; then, P can
be evaluated in nrm(G1) via lookup, which simplifies query processing. TGPs of
other types can additionally require adequate interval comparisons.

We next formalize this idea. We say that temporal triples 〈s, p, o〉[t1, t2] and
〈s′, p′, o′〉[t′1, t′2] overlap if s = s′, p = p′, o = o′, and max(t1, t

′
1) ≤ min(t2, t

′
2);

this definition is extended to triples of the form 〈s, p, o〉[t1] by treating them as
abbreviations for 〈s, p, o〉[t1, t1]. Let G be a temporal graph and let A ∈ G be a
temporal triple. The maximal subset of G w.r.t. A is the smallest set GA ⊆ G
such that A ∈ GA and, if β ∈ GA, γ ∈ G, and β and γ overlap, then γ ∈ GA

as well. The normalization of G is the temporal graph nrm(G) that, for each
A ∈ G of the form 〈s, p, o〉[t1, t2] or 〈s, p, o〉[t1], contains the temporal triple
〈s, p, o〉[t′1, t′2] where t′1 and t′2 are the smallest and the largest temporal con-
stant, respectively, occurring in the maximal subset GA of G w.r.t. A.

Let G′ be the list of the temporal triples in G of the form 〈s, p, o〉[t1, t2]
and 〈s, p, o〉[t1] sorted by s, p, o, t1, and t2. For each A ∈ G, the triples that
constitute the maximal subset GA of G occur consecutively in G′, so nrm(G)
can be computed by a simple sequential scan through G′.

We next show how to use nrm(G) to evaluate temporal group patterns.
Let B = {〈s1, p1, o1〉, . . . , 〈sk, pk, ok〉} be a BGP, let x1, . . . , xk and y1, . . . , yk
be variables not occurring in B, and let G be a temporal graph. Then 〈B〉G
is the set of all mappings µ such that dm(µ) = var(B) ∪ {x1, y1, . . . , xk, yk},
µ(〈si, pi, oi〉[xi, yi]) ∈ nrm(G) for each 1 ≤ i ≤ k, and µ↓ ≤ µ↑, where the lat-
ter are defined as µ↓ = max{µ(x1), . . . , µ(xk)} and µ↑ = min{µ(y1), . . . , µ(yk)}.
Furthermore, ν|B if the restriction of a mapping ν to var(B). Table 5 then shows
how to evaluate basic TGPs under simple entailment in a normalization.

Table 5. Evaluation of Temporal Group Patterns under Simple Entailment

evalsimple(P,G) is the set of mappings defined as follows:

P = B at t3 :

{ν | dm(ν) = var(P) and ∃µ ∈ 〈B〉G : ν|B = µ|B ∧ µ↓ ≤ t3 ≤ µ↑}

P = B during [t1, t2] :

{ν | dm(ν) = var(P) and ∃µ ∈ 〈B〉G : ν|B = µ|B ∧ µ↓ ≤ t1 ≤ t2 ≤ µ↑}

P = B occurs [t1, t2] :

{ν | dm(ν) = var(P) and ∃µ ∈ 〈B〉G : ν|B = µ|B ∧max(µ↓, t1) ≤ min(µ↑, t2)}

P = B maxint [t1, t2] :

{ν | dm(ν) = var(P) and ∃µ ∈ 〈B〉G : ν|B = µ|B ∧ ν(t1) = µ↓ ∧ ν(t2) = µ↑}

P = B mintime t3 :

{ν | dm(ν) = var(P) and ∃µ ∈ 〈B〉G :

µ↓ ∈ T I ∧ ν|B = µ|B ∧ ν(t3) = µ↓ ∧ ∀λ ∈ 〈B〉G : µ|B = λ|B → µ↓ ≤ λ↓}

P = B maxtime t3 :

{ν | dm(ν) = var(P) and ∃µ ∈ 〈B〉G :

µ↑ ∈ T I ∧ ν|B = µ|B ∧ ν(t3) = µ↑ ∧ ∀λ ∈ 〈B〉G : µ|B = λ|B → λ↑ ≤ µ↑}

Proposition 4. For each temporal graph G and each safe temporal group pat-
tern P , we have evalsimple(P,G) = JP Ksimple

G .

We explain the intuition behind this algorithm for P = B maxint [t1, t2].
First, we compute 〈B〉G by evaluating the conjunctive query

∧
〈si, pi, oi〉[xi, yi] in

nrm(G) via simple lookup. Consider now an arbitrary µ ∈ 〈B〉G. By the definition
of normalization, each µ(xi) and µ(yi) determine the maximal validity interval
of 〈si, pi, oi〉 so, to answer P , we must intersect all intervals [µ(xi), µ(yi)]. Note
that µ↓ and µ↑ give the lower and the upper limit of the intersection, provided
that µ↓ ≤ µ↑. Thus, what remains to be done is to convert µ into ν by setting
ν(x) = µ(x) for each x ∈ var(B) and ensuring that ν(t1) = µ↓ and ν(t2) = µ↑.
Based on these ideas, EO’s system translates TGPs into SQL, which allows us
to use a standard database query planner to optimize query execution.

5.2 Entailments Characterized by Deterministic Rules

Let X be an entailment relation that can be characterized by a set ΓX of deter-
ministic rules of the form (8).

A1 ∧ . . . ∧An → B (8)

To evaluate a SPARQL group pattern in a graph under X-entailment, most
existing (nontemporal) RDF systems first compute the closure of the graph
w.r.t. ΓX . We next show how to compute the temporal closure clsX(G) of a
temporal graph G using the rules from ΓX . After computing the closure, we can
normalize it and then apply the algorithm from Section 5.1.

Definition 6. For X and ΓX as stated above, let ΣX be the set containing the
rule (9) for each rule (8) in ΓX .

A1[x1, y1] ∧ . . . ∧An[xn, yn] ∧max(x1, . . . , xn) ≤ min(y1, . . . , yn)→
B[max(x1, . . . , xn),min(y1, . . . , yn)]

(9)

Let G be a temporal graph consisting of triples of the form 〈s, p, o〉[t1, t2].3 The
skolemization of G is a temporal graph obtained from G be replacing each blank
node with a fresh URI reference. Furthermore, the temporal closure of G is the
(possibly infinite) temporal graph clsX(G) obtained by exhaustively applying the
rules in ΣX to the skolemization of G.

By applying this approach to G1 under RDFS entailment, one can see that
(2) and (3) produce 〈:Munich, :hasAttraction, :Oktoberfest〉[130, 180].

The following proposition shows that, instead of evaluating TGPs in G under
X-entailment, one can evaluate them in clsX(G) under simple entailment.

Proposition 5. Let X and G be as stated in Definition 6. For each temporal
group pattern P , we have JP KXG = JP Ksimple

G′ , where G′ = clsX(G).

6 Implementation and Outlook

In this paper we presented an approach for representing validity time in RDF
and OWL, an extension of SPARQL that allows for querying temporal graphs,
and two query answering algorithms. We implemented our approach in EO’s
knowledge representation system. The system is based on a proprietary exten-
sion of RDF that supports n-ary relations; it uses an ontology language based on
OWL 2 RL; and it implements a proprietary query language based on the prim-
itives and the notion of safety outlined in Section 4. The PostgreSQL database
is used for data persistence and query processing. Ontology reasoning is im-
plemented by translating the ontology into a datalog program, which is then
compiled into a plSQL script that implements the seminäıve datalog evaluation
strategy. Datalog rules are modified as described in Section 5.2 in order to deal
with validity time; furthermore, the resulting set of facts obtained by applying
the rules is normalized to allow for efficient query answering. Finally, temporal
queries are translated into SQL and then evaluated using PostgreSQL’s query
engine; the translation essentially encodes the query evaluation algorithm from
Section 5.1. The source of the system is not open, and EO has no plans for
licensing the system to third-party developers. Therefore, we do not present a
performance evaluation since such results could not be validated by the commu-
nity. We merely note that EO is successfully using our approach with datasets
consisting of tens of millions of triples, which we take as confirmation that our
approach is amenable to practical implementation.

3 For simplicity we assume that G does not contain triples of the form 〈s, p, o〉[t1].

An important open theoretical question is to determine the worst-case com-
plexity bounds of the query answering problem for our query language. Fur-
thermore, one should see whether the general algorithm from Section 4 can be
successfully used with expressive languages such as OWL 2 DL. We believe this
to be possible provided that the algorithm is adequately optimized.

References

1. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Artale, A., Franconi, E.: A survey of temporal extensions of description logics.
Annals of Mathematics and Artificial Intelligence 30(1–4), 171–210 (2000)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, 2nd edn. (August 2007)

4. Chomicki, J.: Temporal Query Languages: A Survey. In: Proc. ICTL. pp. 506–534
(1994)

5. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd Edition.
Texts in Computer Science, Springer (1996)

6. Gutiérrez, C., Hurtado, C.A., Mendelzon, A.O.: Foundations of Semantic Web
Databases. In: Proc. PODS. pp. 95–106 (2004)

7. Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing Time into RDF. IEEE
Transactions on Knowledge and Data Engineering 19(2), 207–218 (2007)

8. Hayes, P.: RDF Semantics, W3C Recommendation (February 10 2004)
9. Hurtado, C.A., Vaisman, A.A.: Reasoning with Temporal Constraints in RDF. In:

Proc. PPSWR. pp. 164–178 (2006)
10. Milea, V., Frasincar, F., Kaymak, U.: Knowledge Engineering in a Temporal Se-

mantic Web Context. In: Proc. ICWE. pp. 65–74 (2008)
11. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2

Web Ontology Language: Profiles, W3C Recommendation (October 27 2009)
12. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language:

Structural Specification and Functional-Style Syntax, W3C Recommendation (Oc-
tober 27 2009)

13. Patel-Schneider, P.F., B, M.: OWL 2 Web Ontology Language: Mapping to RDF
Graphs, W3C Recommendation (October 27 2009)

14. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Transactions on Database Systems 34(3) (2009)

15. Pugliese, A., Udrea, O., Subrahmanian, V.S.: Scaling RDF with Time. In: Proc.
WWW. pp. 605–614 (2008)

16. Schneider, M.: OWL 2 Web Ontology Language: RDF-Based Semantics, W3C
Recommendation (October 27 2009)

17. Straccia, U., Lopes, N., Lukácsy, G., Polleres, A.: A General Framework for Rep-
resenting and Reasoning with Annotated Semantic Web Data. In: Proc. AAAI
(2010)

18. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying
of RDF Data with SPARQL. In: Proc. ESWC 2009. pp. 308–322 (2009)

19. Vila, L.: A Survey on Temporal Reasoning in Artificial Intelligence. AI Communi-
cations 7(1), 4–28 (1994)

A Appendix: Proofs

Proposition 1. Let X be an entailment relation, and let G1 and G2 be temporal
graphs such that G1 |=X G2, G2 |=X G1, and adX(G1) = adX(G2). Then, for
each temporal group pattern P , we have JP KXG1

= JP KXG2
.

Proof. Assume that P = B at t3; then ξX(G1) |= ∃bX(µ(B)) : πX(µ(B))〈µ(t3)〉
iff ξX(G2) |= ∃bX(µ(B)) : πX(µ(B))〈µ(t3)〉 due to G1 |=X G2 and G2 |=X G1;
but then adX(G1) = adX(G2) implies JP KXG1

= JP KXG2
. The proof is analogous

for other types of basic temporal group patterns, and for P of any other form
the claim follows by a straightforward induction on the structure of P . ut

Proposition 2. Let G be a temporal graph, let X be an entailment relation, let
B be a BGP such that var(B) = ∅, and let t1 ∈ T I ∪ {−∞}, t2 ∈ T I ∪ {+∞},
and t3 ∈ T I. Then, the following claims hold:

1. ξX(G) is satisfiable iff ΞX(G, t) is satisfiable for each t ∈ tiX(G).
2. ξX(G) |= ∃bX(B) : πX(B)〈t3〉 iff ξX(G) is unsatisfiable or some function

σ : bX(B)→ ubX(G) exists such that ΞX(G, t3) |= πX(σ(B)).
3. ξX(G) |= ∃bX(B) ∀xt : [t1 ≤ xt ≤ t2]→ πX(B)〈xt〉 iff ξX(G) is unsatisfiable

or some σ : bX(G)→ ubX(G) exists such that ΞX(G, t) |= πX(σ(B)) for
each t ∈ tiX(G) with t1 ≤ t ≤ t2.

4. ξX(G) |= ∃bX(B) ∃xt : [t1 ≤ xt ≤ t2 ∧ πX(B)〈xt〉] iff ξX(G) is unsatisfiable
or some σ : bX(B)→ ubX(G) exists such that ΞX(G, t) |= πX(σ(B)) for
some t ∈ tiX(G) with t1 ≤ t ≤ t2.

Proof. Assume that ξX(G) is of the form as stated before Proposition 2, and let
Υ be the set of all O(u), all ψi〈ti〉, all κi〈t〉 such that t ∈ T I and t1i ≤ t ≤ t2i ,
and all ϕi〈t〉 such that t ∈ T I. Clearly, ξX(G) and Υ are equivalent.

(Claim 1) The (⇒) direction is trivial, so we focus on the (⇐) direction.
For each t ∈ tiX(G), let It be a model satisfying ΞX(G, t); furthermore, for each
t ∈ T I \ tiX(G), let It = It′ where t′ is the representative of the pair of time
constants (t1, t2) that is consecutive in G and t1 ≤ t′ ≤ t2. W.l.o.g. we can as-
sume that each It is a Herbrand model with parameters [5]—that is, that the
domains of all It are identical—and that OIt = ubX(G). Let I be the Herbrand
interpretation such that P I =

⋃
t∈T I P

It for each predicate P . Interpretation
I clearly satisfies all formulae O(u) ∈ Υ . Furthermore, for each φ〈t〉 ∈ Υ , each
atom A occurring in φ〈t〉 is of the form P̂ (u1, . . . , un, t), so A is true in I iff A
if true in It; since It satisfies φ〈t〉, then I satisfies φ〈t〉 as well. Consequently, Υ
is satisfiable in I, and so is ξX(G).

(Claim 2) The claim is trivial if ξX(G) is unsatisfiable, so assume that ξX(G)
is satisfiable. The set ξX(G) contains a formula of the form

∧
u∈ubX(G)O(u) ∧ Λ,

and πX(B) contains
∧

u∈bX(B)O(u), so ξX(G) |= ∃bX(B) : πX(B)〈t3〉 iff some

σ : bX(B)→ ubX(G) exists such that ξX(G) |= πX(σ(B))〈t3〉; the latter is the
case iff Υ |= πX(σ(B))〈t3〉. Let Υt3 be the subset of Υ containing all O(u) and
each φ〈t3〉 ∈ Υ . Since each atom in πX(σ(B))〈t3〉 is of the form P̂ (u1, . . . , un, t3),

we clearly have Υ |= πX(σ(B))〈t3〉 iff Υt3 |= πX(σ(B))〈t3〉; clearly, the latter
holds iff ΞX(G, t3) |= πX(σ(B)).

(Claim 3) In the same way as in the proof for Claim 2, we can conclude that
ξX(G) |= ∃bX(B) : ∀xt : (t1 ≤ xt ≤ t2)→ πX(B)〈xt〉 if and only if some σ exists
such that ξX(G) |= ∀xt : (t1 ≤ xt ≤ t2)→ πX(σ(B))〈xt〉. Let (ta, tb) be any pair
of consecutive time constants in G. Then, for all time instants t and t′ such that
ta < t < tb and ta < t′ < tb, we have ΞX(G, t) = ΞX(G, t′); thus, by Claim 2,
ξX(G) |= ∀xt : (ta ≤ xt ≤ ta)→ πX(σ(B))〈xt〉 iff ΞX(G, t) |= πX(σ(B)) for each
t ∈ tiX(G) such that ta ≤ t ≤ tb. This fact then clearly implies Claim 3.

(Claim 4) The proof is analogous to the proof of Claim 3. ut

Proposition 3. Let G be a temporal graph, let X be an entailment relation
such that adX(G) is finite, and let P be a safe temporal group pattern. Then
evalX(P,G) = JP KXG and JP KXG is finite.

Proof. The proof is by induction on the structure of P .
(P = B at t3 or P = B during [t1, t2] or P = B occurs [t1, t2]) Since P is safe,

t1, t2, and t3 are not variables, so for each µ ∈ JP KXG we have dm(µ) = var(B)
and rg(µ) ⊆ adX(G); since these sets are finite, so is evalX(P,G). But then,
evalX(P,G) = JP KXG by the definitions of evalX(P,G) and JP KXG .

(P = B maxint [t1, t2]) Consider an arbitrary µ ∈ JP KXG , let B′ = µ(B), let
t′1 = µ(t1) and t′2 = µ(t2), and let σ be the function from Table 4 that satisfies
δX(µ(P)). Assume now that t′1 6∈ tiX(G); then ΞX(G, t′1) = ΞX(G, t′1 − 1), so
by Proposition 2 we have ξX(G) |= πX(σ(B′))〈t′1 − 1〉, which contradicts the
fact that δX(µ(P)) holds; hence, we have t′1 ∈ tiX(G). In analogous way we
conclude t′2 ∈ tiX(G), so rg(µ) ⊆ adX(G) ∪ tiX(G). Thus, evalX(P,G) is finite,
and evalX(P,G) = JP KXG by the definitions of evalX(P,G) and JP KXG .

(P = B mintime t3 or P = B maxtime t3) As in the previous case, we have
µ(t3) ∈ tiX(G) for each µ ∈ JP KXG , which then clearly implies our claim.

(P = P1 union P2 or P = P1 filter R) The claim holds straightforwardly by
the definition of JP KXG and the fact that, if P is safe, so are P1 and P2.

(P = P1 and P2 or P = P1 opt P2) Since P is safe, by Definition 5 we have
that P1 is safe and uns(P2) \ var(P1) = ∅. Thus, for each µ1 ∈ evalX(P1, G), by a
straightforward induction on the structure P2 one can show that µ1(P2) is safe.
The claim then holds straightforwardly by the definition of JP KXG . ut

Proposition 4. For each temporal graph G and each safe temporal group pat-
tern P , we have evalsimple(P,G) = JP Ksimple

G .

Proof. Clearly, G and nrm(G) are equivalent w.r.t. any entailment relation. Fur-
thermore, by the definition of a maximal subset of G, it should be clear that
〈s, p, o〉[t1, t2] ∈ nrm(G) if and only if J{〈s, p, o〉} maxint [t1, t2]Ksimple

G 6= ∅—that
is, each temporal assertion in nrm(G) covers the maximal time interval in which it
is valid. But then, by the definition of 〈B〉G, it is clear that µ ∈ 〈B〉G if and only

if Jµ(B) maxint [µ↓, µ↑]Ksimple
G 6= ∅, which straightforwardly implies the claim of

this proposition for P = B maxint [t1, t2]. The cases for the remaining forms of
P are analogous. ut

In the following proof we abuse the notation and allow a temporal graph
G without blank nodes to be infinite; for such G, let πX(G) =

⋃
A∈G πX(A).

Furthermore, we define an expansion of G as the smallest temporal graph G′

such that 〈s, p, o〉[t] ∈ G implies 〈s, p, o〉[t] ∈ G′, and 〈s, p, o〉[t1, t2] ∈ G implies
〈s, p, o〉[t] ∈ G′ for each t ∈ T I with t1 ≤ t ≤ t2.

Proposition 5. Let X and G be as stated in Definition 6. For each temporal
group pattern P , we have JP KXG = JP Ksimple

G′ , where G′ = clsX(G).

Proof. Let G1 be the skolemization of G; then JP KXG = JP KXG1 , so the claim of

this proposition holds if JP KXG1 = JP Ksimple
G′ .

Let G2 be the expansion of G1; let ΩX be the set containing a rule of the
form (10) for each rule of the form (8) in ΓX ; and let G3 be the temporal graph
obtained by applying exhaustively the rules in ΩX to G2.

A1[xt] ∧ . . . ∧An[xt]→ B[xt] (10)

By the well-known results from logic programming and datalog, for each tem-
poral triple A for the form 〈s, p, o〉[t], we have πsimple(G3) |= πsimple(A) if and

only if πX(G1) ∪ {∀xt : ϕ〈xt〉 | ϕ ∈ ΓX} |= πsimple(A), so JP KXG1 = JP Ksimple
G3 .

Let G4 be the expansion of G′. It is straightforward to see that each deriva-
tion tree for a triple 〈s, p, o〉[t] ∈ G3 can be transformed to a derivation tree
of a triple 〈s, p, o〉[t1, t2] ∈ G′ such that t1 ≤ t ≤ t2; similarly, one can easily
see that each derivation tree for a triple 〈s, p, o〉[t1, t2] ∈ G′ can be transformed
to a derivation tree of the triple 〈s, p, o〉[t] ∈ G3 for each t1 ≤ t ≤ t2. Conse-
quently, G3 = G4, so πsimple(G3) and πsimple(G′) are equivalent, which implies

that JP Ksimple
G3 = JP Ksimple

G′ . ut

