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ABSTRACT
The vision of the Semantic Web can only be realized through prolif-
eration of well-known ontologies describing different domains. To
enable interoperability in the Semantic Web, it will be necessary to
break these ontologies down into smaller, well-focused units that
may be reused. Currently, three problems arise in that scenario.
Firstly, it is difficult to locate ontologies to be reused, thus lead-
ing to many ontologies modeling the same thing. Secondly, current
tools do not provide means for reusing existing ontologies while
building new ontologies. Finally, ontologies are rarely static, but
are being adapted to changing requirements. Hence, an infrastru-
cture for management of ontology changes, taking into account de-
pendencies between ontologies is needed. In this paper we present
such an infrastructure addressing the aforementioned problems.

Categories and Subject Descriptors
H.3.4 [Software]: Information Systems—Distributed systems;
D.2.13 [Software]: Software Engineering—Reuse models

General Terms
Management
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1. INTRODUCTION
Nowadays Semantic Web applications are still in an early stage.

Ontology development is difficult and time-consuming, and this is
even worsened by the fact that ontologies are mostly created from
scratch, resulting in the “Babel of Ontologies” problem. In general
it can be said that there is a lack of methods and tools supporting
and facilitating ontology reuse. Furthermore, processes for evolv-
ing distributed ontologies haven’t yet been established, thus making
propagation of changes to distributed ontologies impossible.

To better understand the problem of searching, reusing and evolv-
ing distributed ontologies in the Web, we consider the following
B2B catalog integration scenario throughout the whole paper. Let’s
assume that a service provider A produces various sports utilities
and that he wants to publish his catalog on-line. To enable other
players in the market place to semantically process the catalog, he
creates a sports ontology (SO) and bases his catalog on it. Let’s
assume that the service provider B specializes in production of bi-
cycles and also wants to publish his catalog on-line. To achieve
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that, he will create a bicycle ontology (BO) for catalog description.
In doing so, he should reuse as many definitions as possible from
existing ontologies to speed up the engineering and to enable inter-
operability. However, two challenging problems arise:

• It is not clear how to locate ontologies that can be used as a
basis for developing BO.

• Even if an appropriate ontology has been found, it is not clear
how to reuse its definitions in BO.

After reusing SO as the basis for BO, a further problem arises
when SO needs to be adapted due to change in business require-
ments. Thus, the fundamental question of how to evolve dependent
ontologies arises. This problem is worsened by the fact that ontolo-
gies are distributed in the Web.

From this scenario we derive three important ontology infrastru-
cture components: First, an ontology registry providing means for
locating existing ontologies is required. Second, means for reusing
distributed ontologies are required. Third, we consider methods
supporting the consistent evolution of distributed ontologies as cru-
cial for the success of the distributed system in the long run. This
paper describes an integrated approach for establishing an infra-
structure for searching, reusing and evolving distributed ontologies.
The approach has been implemented within the KAON ontology
management framework1.

The rest of this paper is structured as follows. In section 2 we
give an overview of our infrastructure and identify its key compo-
nents. We elaborate these components further in sections 3, 4 and
5. In section 6 we discuss how the infrastructure described in this
paper has been implemented. Before we conclude, in section 7 we
present an overview of the related work.

2. INFRASTRUCTURE OVERVIEW
This section presents at a high-level overview of how our inte-

grated approach works. The B2B catalog integration scenario is
presented in more detail in Figure 1. We envisage the Semantic
Web being realized using many ontology servers (nodes) that co-
operate to provide semantic information sharing. The task of each
server is to store and maintain ontologies and to provide data inter-
change facilities.

Service provider A uses his ontology server to develop a sports
ontology (SO) (cf. 1). To make it a standard, A contacts a well-
known ontology registry and registers SO there (cf. 2). He provides
metadata about SO using an Ontology Meta-Ontology (OMO) (see
Section 3). It is important to note that SO is stored in A’s ontology

1http://kaon.semanticweb.org



server. The registry doesn’t store the ontology itself – it stores only
metadata about the different available ontologies.

Figure 1: B2B Catalog Integration Scenario

Service provider B may now search the registry for ontologies
that are appropriate to be used as a foundation for BO (cf. 3), per-
forming a metadata-driven search for existing ontologies . To reuse
SO, B replicates it from the A’s ontology server into his ontology
server (cf. 4). Replication is done to decouple subjects in the sys-
tem. To develop BO (cf. 5), B uses the inclusion facilities of his
ontology server, making all definitions from the SO available in
BO (see Section 4). When done, B registers BO with the registry
to enable reuse of BO (cf. 6).

As the business requirements change, A will change the SO2 (cf.
7). At this stage the entire system is inconsistent – B hasn’t yet
updated BO or his local copy of SO. In the WWW context such
situations simply cannot be avoided, due to numerous factors, such
as the number, geographical distribution and technological hetero-
geneity of subjects involved, independence of their business cy-
cles etc. Therefore, we must simply accept the fact that the service
provider B works with an outdated version of the ontology – a re-
quest directed to B must be formulated using concepts from the
version of SO that B currently understands, or the system will pro-
duce incorrect results. Although inconsistencies are inevitable, the
infrastructure should provide means for their easier detection and
management. In our case this means that B may check for newer
ontology versions at leisure (cf. 8). When ready, he needs to de-
termine which included ontologies have been updated and to apply
the distributed ontology evolution algorithms (cf. 9) to bring both
the BO and the local copy of SO up-to-date (see Section 5).

To demonstrate the complexity of the problem, let’s assume that
A also creates the climbing gear ontology (CO) based on SO (cf.
10). The service provider C combines all available ontologies into
an integrated catalog ontology (ICO) based on both BO and CO (cf.
11). However, the dependencies now form a directed acyclic graph.
This means that changes in the system must be propagated layer-
by-layer. E.g., if SO changes, BO and CO must first be updated
(in any order) and only then changes from both ontologies can be
propagated to ICO.

3. ONTOLOGY REGISTRY
The scope of the Semantic Web spans various fields of human

activities: business, research and cultural, to name just a few. Al-
though seemingly isolated at first, these fields are often intertwined.
Even in e-business, the same concept could be needed in com-
pletely different contexts (e.g. the BICYCLE concept can also be
used to report the news on the Tour-de-France). To facilitate reuse
2For example, A may refine the hierarchy by distinguishing sports
utilities for professionals and for hobbyists

between such radically different contexts, ontologies should be kept
small and coherent, describing information that logically fits to-
gether. Processes and methodologies that promote such practices
have been discussed in [20] and are not further elaborated in this
paper. Making ontologies smaller and easier to reuse comes with
a downside that the number of ontologies proliferates, so when a
new ontology is needed, it is difficult to decide whether to build
it from scratch, or whether an ontology can be reused. In order
to maximize the reuse potential, a way of registering and locating
well-known ontologies is needed.

3.1 Describing Ontologies using OMO
An approach for locating ontologies has been discussed in [1]

and is based on describing domain ontologies in a meta-ontology,
containing information such as the ontology author, ontology loca-
tion, used ontology language. This information is used by the on-
tology registry for providing functionalities such as searching and
browsing.

We follow that approach and define the ontology meta-ontology
(OMO), whose core structure is presented in Figure 2. It is an adap-
tation of the meta-ontology given in [1], extended with specific as-
pects required for management of multiple ontologies (see sections
4). Each registered ontology is represented as an instance of the
OIMODEL concept, which contains information such as creation
date, ontology name, etc. The creator of the ontology is represented
either as an instance of PERSON or ORGANIZATION concepts. Fur-
ther, an ontology may be associated with a particular project and an
application field. The TERM concept is used to describe in more de-
tail what the ontology is actually about – this is described in more
detail in the next subsection.

Figure 2: Ontology Meta-Ontology (OMO)

3.2 Improving Search Using WordNet
Locating ontologies described by meta-data certainly contributes

to ontology reuse in the Web, but is not completely satisfactory.
The main problem is that the content of the ontology isn’t actually
used for searching. Most users distinguish ontologies by their con-
tents (e.g. about bicycles or climbing), which are often correlated
with a couple of central concepts in the ontology. Hence, a natu-
ral criteria for the search is by the concepts contained in the target
ontology.

This is actually more difficult to realize than it may seem at first.
The fundamental problem is that the search condition should refer-
ence the ontological entities which are not known until the search



is executed. For example, the user may look for an ontology about
bicycles. However, the concept BICYCLE is part of the ontology
being sought for and will be known only when the search is exe-
cuted. We call this the search bootstrapping problem.

Our solution to this problem is to match each ontology element
against a well-known lexical semantic net, thus obtaining the ontol-
ogy “digest” – a list of relevant ontology terms that is then included
into the meta-ontology. The search for an ontology can than be ex-
pressed in terms of the lexical semantic net.

Currently, the most well-known lexical semantic net is Word-
Net3 [7], whose design is inspired by current psycholinguistic the-
ories of human lexical memory. English nouns, verbs, adjectives
and adverbs are organized into so-called synonym sets (synsets),
each representing one underlying lexical concept. Different types
of relations link the synsets, e.g. the hyponym relation describing
a specialization relationship between two synsets. We have con-
verted WordNet4 into our model [15] (which is discussed in more
detail in section 4) as follows:

• Each synset is transformed into an instance of the SYNSET
concept, which is in turn made a subconcept of the TERM
concept.

• Synset words are transformed into instances of the SYNONYM
concept and are attached to appropriate synset instances.

• Hyponym relationship between synsets are represented through
a HYPONYMOF transitive property.

When a new ontology is registered at the registry, lexical infor-
mation about concepts (labels, synonyms, etc.) is matched against
synonyms in WordNet. Thus, for each concept a set of synsets –
possible meanings – is obtained. In case too many possible mean-
ings for a concept exist, the user is asked to disambiguate them
manually.

It is important to understand that it is not the ontology itself that
is stored into the registry – the registry will contain only meta-
information about an ontology and references to chosen WordNet
terms. In such a way a compact representation suitable for efficient
search is obtained.

WordNet doesn’t contain terms from all the fields of human ac-
tivities. If the ontology is highly specialized, its terms may not
exist in WordNet. For example, an ontology about mountain bi-
cycles will likely contain the concept BOTTOM BRACKET, which
doesn’t exist in WordNet. Such terms will be generated automati-
cally, added to WordNet and classified under the most general term.
It is up to the registry maintainer to periodically reclassify these
terms, manually or semi-automatically.

In [12] various methods for learning ontologies from texts are
discussed and have been implemented in our infrastructure in form
of the Text-To-Onto package. For example, if texts that describe
the domain of registered ontologies are available, they can be used
to extract possible suggestions for improvement of the hierarchy.

3.3 Searching the Registry
Searching the registry is performed by combining two different

types of conditions. Query-by-example (QBE) is used for specify-
ing conditions on the OMO definitions, supplying the constraints
on various fields. Another part of the search condition consists of
the keywords specifying the relevant terms that the ontology must
contain. This has the following benefits:

3http://www.cogsci.princeton.edu/ wn/
4http://wim.fzi.de:8080/WordNet/WordNetAsInstance.zip

• It is possible to find ontologies in a natural way by specifying
terms that the ontology is about. This solves the search boot-
strapping problem and increases the usability of the system.

• By using the hyponym links in the lexical semantic net, on-
tologies containing terms more specific than specified can be
found.

The search is processed according to the following approach:
Each search term is matched against the lexical semantic net and
the list of possible meanings is retrieved. If the number of possi-
ble meanings exceeds a certain threshold, the user is presented with
the list of possible meanings and asked to disambiguate the mean-
ings. For each term a set of more specific terms is determined.
Registered ontologies matching the search terms and subterms are
retrieved. The average distance of the matched terms to the search
terms is computed for each ontology. Ontologies are sorted in the
increasing order of the average distance. Finally the list of ontolo-
gies is filtered against the supplied constraints on OMO fields.

For example, in our e-business scenario service provider B might
issue a following search: the ORGANIZATIONNAME of the ontol-
ogy is ANSI, the ontology is classified in the APPLICATIONFIELD
of E-BUSINESS and the ontology references terms such as FRAME
and BICYCLE. A possible result to this search will include on-
tologies containing the MOUNTAIN BIKE concept, since WordNet
specifies the term MOUNTAIN BIKE as the hyponym BICYCLE.

4. ONTOLOGY REUSE
This section describes the issues enabling the reuse of ontologies

located through the registry. In our approach we identified two
basic building blocks for realizing reuse. First, ontology inclusion
allows reusing ontologies available within the same node. Second,
ontology replication enables inclusion in the case when ontologies
are distributed on different ontology servers (nodes).

4.1 Ontology Inclusion
In traditional software systems significant attention is devoted

to keeping modules well separated and coherent with respect to
functionality, thus making sure that changes in the system are lo-
calized to a handful of modules. Reuse is seen as the key method
in reaching that goal. One of the main focuses of all existing reuse
mechanisms is completely eliminating the copy-and-paste reuse,
which is seen as the prominent source of problems on software
projects. Ontology-based systems in the Web are just a special class
of software systems, so the same principles apply. If reuse is per-
formed through duplication, problems arise when the reused ontol-
ogy changes, as these changes must be applied on various multiple
copies. Paraphrasing the open-closed reuse principle [14], each on-
tology should be a closed, consistent and a self-contained entity,
but open to extensions in other ontologies.

These goals may be achieved by incorporating an explicit mecha-
nism for including ontologies by reference into ontology languages
and tools. Our approach is based on the ontology language given in
[15]. Briefly, the ontology language is similar to existing Seman-
tic Web standards, such as DAML+OIL or OWL, and is based on
RDFS, but with clean separation of modelling primitives from the
ontology itself (thus avoiding the pitfalls of self-describing prim-
itives such as subClassOf) and incorporating several commonly
used modeling primitives, such as transitive, symmetric and in-
verse properties. In order to preserve tractability and enable ontol-
ogy evolution, in our approach we treat property domain and range
specifications as constraints, not as axioms. We found this view to
be intuitive and desired by most users having a strong background



in object-oriented and database technologies. A distinguishing fea-
ture of our model is explicit support for modeling meta-classes and
explicit modeling of lexical information. All information is orga-
nized in so-called OI-models (ontology-instance models), contain-
ing both ontology entities (concepts and properties) as well as their
instances5. This allows grouping concepts with their well-known
instances into self-contained units.

Reusing is supported by allowing an OI-model to include other
OI-models, thus obtaining the union of the definitions from all in-
cluded models. Cyclical inclusions are not allowed because evolu-
tion of cyclically dependent OI-model would be too difficult. In-
clusion is performed by-reference – models are virtually merged,
however, the information about the origin of each entity is repre-
sented explicitly. Currently we don’t support resolving semantical
heterogeneities between included models (e.g. establishing equiv-
alences between the BICYCLE and the FAHRRAD concepts) – we
plan to extend our approach to handle such cases in future.

Returning to the scenario from section 1, Figure 3 presents four
example OI-models (SO – sports ontology, BO – bicycle ontology,
CO – climbing ontology and ICO – integrated catalog ontology).
BO and CO each include SO, thus gaining immediate access to
all of its definitions. However, the information about the origin of
ontology entities retained. Thus, the following distinctions exist:

• In SO and CO SPORTS UTILITY concept doesn’t have any
sub- or superconcepts. However, in BO it has one subcon-
cept BICYCLE, and in ICO it has one subconcept and one
superconcept CATALOG ITEM.

• Relationships between concepts also belong to appropriate
OI-models. Hence, it is possible to establish that the sub-
concept relationship between the SPORTS UTILITY and the
CATALOG ITEM is established in ICO.

• In SO the property USED IN has only SPORTS UTILITY as
domain concept, whereas in ICO it has an additional domain
concept POWER DRINK.

Figure 3: Ontology Reuse through Inclusion

On the right-hand side the direct acyclic inclusion graph be-
tween OI-models is shown. SO is indirectly included in ICO twice
(once through BO and once through CO). However, ICO will con-
tain all SO elements only once (in ICO there will be only one
SPORTS UTILITY concept). The possibility of including an on-
tology through multiple paths has significant consequences on the
ontology evolution, as discussed in subsection 5.2.

This example demonstrates the open-closed principle. Each OI-
model keeps track about its own information and is a consistent,
self-contained and closed unit. On the other hand, each OI-model
5In the rest of this paper we use the terms OI-model and ontology
interchangeably.

is open to reuse, in which case any part of its structure can be ex-
tended, as long as the original model itself is not changed.

Our approach is currently limited to including entire models,
rather than including subsets. Also, when a model is reused, in-
formation can only be added, and not retracted, and we currently
don’t deal with semantic inconsistencies between included ontolo-
gies. Although such advanced features may sometimes be useful,
we deliberately limit our approach. By allowing inclusion of a part
of a model it would be much more difficult to ensure the consis-
tency of the including model, since it is not clear which additional
elements from the original model must be included. For example,
if USED IN property is not included in ICO, it is not clear how to
treat instances having this property instantiated. Further, changing
ontologies becomes more complex, because it is not clear how to
propagate changes in ICO to SO.

4.2 Reusing Distributed Ontologies
Ontology inclusion allows reusing ontologies available within

one node in the system. However, we envisage the Semantic Web
where ontologies are spread across many different nodes, so the
inclusion mechanisms cannot be used directly. There are two pos-
sible solutions how to achieve reuse in this case.

The first solution is to make all ontologies accessible through
an ontology server, which could integrate the information from in-
cluded ontologies virtually (on-the-fly) by accessing the servers of
these ontologies. Such solution has the benefit that all changes in
the included ontologies are immediately visible in the including on-
tologies. While this desirable feature increases the consistency, it
has several serious drawbacks:

• Servers are tightly coupled – a failure of one system will
cause failure of all servers that include the ontology.

• Standard top-level ontologies will be reused in many ontolo-
gies. Servers hosting them will therefore be overloaded, be-
cause they will be often contacted by many other servers.

• Because answering every query requires distributed process-
ing, the performance of the system with today’s infrastru-
cture would be unacceptable.

Therefore, a more practical solution to the problem in the WWW
context is to replicate distributed ontologies locally and to include
them in other ontologies. Replication eliminates afore mentioned
problems, but introduces significant evolution and consistency prob-
lems, which we further discuss in section 5. The most important
constraint is that replicated ontologies should never be modified di-
rectly. Instead, the ontology should be modified at the source and
changes should be propagated to replicas using the distributed evo-
lution process.

The ontology replication should not be understood as simple
copying of the original ontology. If this operation is performed
in an ad-hoc way, evolving replicated ontologies will be impossi-
ble. Distributed evolution process requires associating meta-data
with each ontology, which must be maintained during the replica-
tion process. This is described in further detail in in subsection 5.3.
In order to replicate an ontology, it must be physically accessed.
Ontologies on the Web are typically known under a well-known
URI, which can be used to access the ontology through appropriate
protocol (e.g. HTTP). However, this introduces problems when the
ontology is replicated, since the URI used to access the ontology
and the URI under which the ontology is originally known become
different. To consistently handle this, we establish two different
URIs for each ontology:

• The logical URI is unique for each ontology and is always the
same, regardless of the ontology’s location. The uniqueness



of the URI is typically achieved by incorporating into it the
Internet name of the organization that created the ontology.

• The physical URI unambiguously identifies the location of
the ontology and contains all information necessary to ac-
cess the ontology, such as the protocol to be used or relevant
connection parameters.

For example, the SO from our example may have the logical URI
http://www.sport.com/so. No other ontology with that URI exists
anywhere in the world. However, the ontology may be replicated
to the file system, and the physical URI will be file:/c:/so.kaon. If
the ontology is stored in the database, then its physical URI may be
jboss://wim.fzi.de:1099?http://www.sport.com/so.

To locate an ontology by the logical URI, this URI must be re-
solved to a physical URI through the ontology registry described in
the previous section. After replication, the ontology registry is not
needed any more, so the registry doesn’t represent a single point of
failure of the proposed system.

5. ONTOLOGY EVOLUTION
Ontology evolution can be defined as the timely adaptation of

an ontology and consistent propagation of changes to the depen-
dent artifacts. The complexity of ontology evolution increases as
ontologies grow in size, so a structured ontology evolution process
is required. Such a process has been described in [13]. The pro-
cess starts with capturing changes either from explicit requirements
or from the result of change discovery methods. Next, changes
are represented formally and explicitly. The semantics of change
phase prevents inconsistencies by computing additional changes
that guarantee the transition of the ontology into a consistent state.
In the change propagation phase all dependent artifacts (ontology
instances on the Web, dependent ontologies and application pro-
grams using the changed ontology) are updated. During the change
implementation phase required and induced changes are applied to
the ontology in a transactional manner. In the change validation
phase the user evaluates the results and restarts the cycle if neces-
sary.

In this paper we extend this process towards handling multiple,
distributed ontologies. As shown in Table 1, two dimensions of the
overall ontology evolution problem may be identified.

Nodes
One Multiple

Ontologies One Single OE -
Multiple Dependent OE Distributed OE

Table 1: Levels of Ontology Evolution (OE) Problem
The first dimension defines the number of the ontologies be-

ing evolved, whereas the second specifies the physical location of
evolved ontologies. Since it is not possible to fragment [17] one on-
tology across many nodes, we discuss ontology evolution at three
levels. In subsection 5.1 we summarize the single ontology evolu-
tion problem. In subsection 5.2 we extend the change propagation
and capturing phases to cover the evolution of multiple dependent
ontologies within a single node. Finally, in subsection 5.3 we ex-
tend the change capturing and change implementation phases of
the dependent evolution process to support evolution of distributed
ontologies.

5.1 Single Ontology Evolution
For evolution of single ontologies the essential phase is the se-

mantics of change phase, whose task is to maintain ontology con-
sistency. Applying elementary ontology changes [19] alone will

not always leave the ontology in a consistent state. For example,
deleting a concept will cause subconcepts, some properties and in-
stances to be inconsistent.

Definition 1. [Single Ontology Consistency] A single ontology
is consistent if it satisfies a set of invariants defined in the ontology
model [15] and if all used entities are defined.

Returning to the example in Figure 3, let’s assume that the con-
cept SPORTS UTILITY should be deleted. To prevent inconsisten-
cies, before deleting it, the SPORTS UTILITY concept must be re-
moved from the domain of the USED IN property. Since the ontol-
ogy model definition specifies that properties without domain con-
cepts aren’t allowed, the property must be deleted as well. To do
that, the SPORT concept must be removed from the range. The
complete list of necessary changes obtained in the semantics of
change phase is presented in the Figure 4:

Figure 4: Generated Changes

For some change request, there may be multiple consistent re-
sulting states. For example, when a concept from the middle of the
concept hierarchy is deleted, all subconcepts may either be deleted
or reconnected to other concepts. Further, the consistent state may
be defined in multiple ways. For example, properties without do-
main and/or range concepts may or may not be considered incon-
sistent. Evolution strategies (see [19]) are used to customize the
evolution process according to user’s preferences.

5.2 Dependent Ontology Evolution
In this subsection we extend the single ontology evolution ap-

proach to take into account the inclusion relationships between
ontologies within one node. An ontology that includes ontolo-
gies is called the dependent ontology. As the included ontology
is changed, the consistency of the dependent ontology may be in-
validated.

Definition 2. [Dependent Ontology Consistency] A dependent
ontology is consistent if the ontology itself and all its included on-
tologies, observed alone and independently of the ontologies in
which they are reused, are single ontology consistent.

Returning to the example of Figure 3, if the SPORTS UTILITY
concept from SO is deleted, the ontology BO, and through transi-
tivity of inclusion the ICO as well, will be inconsistent, since the
BICYCLE and CATALOG ITEM concepts will have a parent con-
cept and a child concept respectively, that are not defined. More-
over, it is important to notice that applying the deletion of the
SPORTS UTILITY concept to the outer-most ontology (ICO) only
is not sufficient. In ICO the USED IN property has two domain con-
cepts, so removing one of them will not trigger the removal of the
property. Therefore, if SO is considered independently, it is incon-
sistent, since the USED IN property will not have a domain concept
in this ontology. The list of changes generated in this case through
the single ontology evolution process is shown in Figure 5, which
is quite different from the changes shown in Figure 4.

This example shows that maintaining consistency of a single on-
tology is not sufficient; dependent ontology consistency must be
taken into account as well. This may be achieved by propagating



Figure 5: Generated Changes in ICO

changes from the changed ontology to all ontologies that include it.
There are two ways of doing that [2]:

• Push-based approach: Changes from the changed ontology
are propagated to dependent ontologies as they happen.

• Pull-based approach: Changes from the changed ontology
are propagated to dependent ontologies only at their explicit
request.

The pull-based approach is better suited for less stringent consis-
tency requirements. Using this approach dependent ontologies may
be temporarily inconsistent. This makes recovering of the consis-
tency of dependent ontologies difficult, as the information about the
original state of the changed ontology is lost. For example, when
the concept SPORTS UTILITY is deleted, its position in the concept
hierarchy is lost and is not available for resolution of inconsisten-
cies of the BICYCLE concept in BO.

The push-based approach is suitable when strict dependent on-
tology consistency is required, since the information about the orig-
inal state of the changed ontology is available for the evolution of
the dependent ontology. For example, the removal of the concept
SPORTS UTILITY requires previous resolution of the consistency
of the BICYCLE concept in BO. We choose to take this approach,
since in our target applications the permanent consistency of on-
tologies within one node is of paramount importance.

By adopting the push-based approach, there are three different
strategies for choosing the moment when changes are propagated
[18]. Using the periodic delivery, changes are propagated at reg-
ular intervals. Using ad-hoc delivery, changes are not propagated
according to a previously defined plan. Both of these strategies are
unacceptable for dependent ontology evolution, since they cause
temporal inconsistencies of dependent ontologies. Therefore, we
propagate changes immediately, as they occur.

We incorporate the push-based approach by extending the change
propagation and change capturing phases of the single ontology
evolution process as shown in Figure 6.

Semantics

of change

Semantics

of change
RepresentationRepresentation ValidationValidationImplementationImplementation

PropagationPropagation

Ontology Propagation Order

Change Filtering

PropagationPropagation

Ontology Propagation Order

Change Filtering

CapturingCapturing

Change Ordering

CapturingCapturing

Change Ordering

Figure 6: Dependent Ontology Evolution Process

The role of the Ontology Propagation Order component is to de-
termine to which dependent ontologies the changes should be prop-
agated, and in which order this should be done. The role of the
Change Filtering component is to determine which changes must
be propagated to which ontologies. The Change Ordering compo-
nent determines the order in which changes must be received by
each ontology.

Ontology Propagation Order. When propagating changes to de-
pendent ontologies on a single node, the following three aspects
relating to the ontology propagation order must be considered:

• As changes occur in an ontology, they must be pushed to
all ontologies that either directly or indirectly (through other
ontologies) include the changed ontology.

• In order to propagate a change to an ontology, the change
must previously be processed by all ontologies on the path
between the source and target ontology. Therefore, all on-
tologies on a single node are topologically sorted6 according
to their inclusion relationship. The topological order orga-
nizes the dependent ontologies in such a way that for each
O1 and O2, if O1 includes O2 directly or indirectly, then O2
occurs before O1 in a linear ordering.

• Since all ontologies at a node are topologically ordered, when
changes are propagated to dependent ontologies, only those
ontologies that include the changed ontology and that follow
the changed ontology in the topological order must be vis-
ited. Note that if cyclical inclusions of OI-models were al-
lowed, the propagation order would contain cycles and would
be extremely hard to manage.

Returning to the example in Figure 3, changes in SO must be
propagated to BO, CO and ICO (since ICO includes SO indirectly
though BO and CO). Further, several different topological orders
may exist (e.g. SO, BO, CO, ICO or SO, CO, BO, ICO), since
some ontologies are independent on each other (BO and CO). The
propagation of changes must be performed in either one of these
orders. On the other hand, assuming the first topological order (SO,
BO, CO and ICO) a change in BO is propagated only to ICO –
although CO is after BO in the topological sort, it doesn’t include
BO so it doesn’t receive BO’s changes.

Change Filtering. As a change from the source ontology S is prop-
agated to a dependent ontology D, in order to maintain the consis-
tency of D, additional changes will be generated as explained in
subsection 5.1. These changes must also be propagated further up
the ontology inclusion topological order. However, only induced
changes should be forwarded. If original changes were propagated
as well, then ontologies that include D would receive the same
change multiple times: directly from S and indirectly from all on-
tologies on any inclusion path between D and S. This would result
in an invalid ontology evolution process, since the same change
cannot be processed twice. In order to prevent that, propagated
changes are filtered.

As shown in Figure 5, deletion of the SPORTS UTILITY concept
in SO is propagated to BO resulting in new changes: the removal
of the BICYCLE concept as the subconcept of the SPORTS UTILITY
concept and the removal of the BICYCLE concept itself (if the evo-
lution strategy [19] requires the removal of the orphaned concepts).
Only these two changes are propagated to ICO. Removal of the
concept SPORTS UTILITY is propagated to ICO from SO directly
and must not be propagated from BO. Notice that change filtering
is not done for the sake of performance: if SPORTS UTILITY were
propagated to ICO from BO as well, then ICO would receive the
same change twice, and the second change would fail, since the
concept has already been deleted.

Change Ordering. The order of processing changes in each on-
tology is important. Let’s assume that S is the ontology being
changed, I is some ontology that directly includes S and D is some
ontology that directly includes I. It is important that D processes
changes generated by I before changes generated by S. Otherwise,
if D receives changes from S before changes from I, S’s changes
will generate additional changes in D that include those that will
later be received from I. This in turn will also lead to processing
the same change twice. This approach is recursively applied when
D and S are connected with paths of length greater than two.
6The topological order of a directed graph is an ordering of graph’s
nodes where each node occurs after all of its predecessors.



Returning to the example in Figure 3, ICO should process the
removal of the SPORTS UTILITY concept after processing the re-
moval of the subconcept BICYCLE from BO. If this were not the
case, processing removal of SPORTS UTILITY in ICO would gen-
erate removal of the subconcept BICYCLE in ICO, which will then
be later received from BO.

The algorithm for evolution between dependent ontologies within
one node is presented in Algorithm 1. It processes all changes that
are requested by the user through the procedure PROCESSCHANGE
(cf. 2–4). This procedure resolves a change by generating the addi-
tional changes needed to keep the consistency of the ontology o for
which the method was called (cf. 7–9). Only changes generated in
o are propagated (cf. 11) to the all ontologies including o accord-
ing to the topological order of all ontologies within the node (cf.
13–14). The recursive call (cf. 16) of the PROCESSCHANGE pro-
cedure for the filtered change and topological order of dependent
ontologies guarantees that the receiving ontologies will process the
changes from the directly included ontologies before changes from
the indirectly included ontologies. Finally, the change is applied to
the ontology o (cf. 21).

Algorithm 1 Dependent Ontology Evolution Algorithm

EVOLVEONTOLOGIES(LC, o)
Require: LC - list of changes, o - ontology being changed
1: T S = topological sort of ontologies at the node
2: for all c ∈ LC do
3: PROCESSCHANGE(c, o)
4: end for

PROCESSCHANGE(c, o)
Require: c - change to process, o - ontology being changed
5: es = evolution strategy for o
6: /*Semantics of Change*/
7: while generated change gc by es for c in o do
8: processChange(gc, o)
9: end while

10: /*Change Filtering*/
11: if c is generated in o then
12: /*Ontology Propagation Order*/
13: for all ontology d after o in T S do
14: if ontology d includes o then
15: /*Change Ordering*/
16: processChange(c, d)
17: end if
18: end for
19: end if
20: /*Change Implementation*/
21: change ontology o according to c

5.3 Distributed Ontology Evolution
A distributed dependent ontology is an ontology that depends

on an ontology residing at a different node on the network. The
physical distribution of ontologies is very important, since it creates
additional problems that are not encountered when the ontologies
are collocated. This additional complexity stems from the fact that
reusing distributed ontologies is achieved through replication (see
section 4). Since the original ontology is updated autonomously
and independently of replicas, this in turn introduces an additional
type of ontology consistency.

Definition 3. [Replication Ontology Consistency] An ontology
is replication consistent if it is equivalent to its original and all its

included ontologies (directly and indirectly) are replication consis-
tent.

To explain this notion we assume a distributed system of repli-
cated ontologies as shown in Figure 1. Ontology SO at service
provider B is replication inconsistent if it hasn’t been updated ac-
cording to changes in its original at the service provider A. This
implies the replication inconsistency of BO at provider B (since
BO includes SO which is replication inconsistent). Finally, this
implies the replication inconsistency of ICO at the service provider
C in the same way.

To resolve replication inconsistencies between ontologies, first
a way of synchronizing distributed ontologies is needed. Table
2 discusses the pros and cons of two well-known approaches [2]
for synchronizing distributed systems. Although seemingly sim-
ilar, there is significant difference to the approaches described in
subsection 5.2, as here we address the fact that we are dealing with
a distributed system.

Push Pull
Dependency Information centralized local
Complexity of management high medium
Type of consistency strict loose
Communication overhead high optimized

Table 2: Push vs. Pull Synchronization of Ontologies

Under push synchronization the changes of originals are prop-
agated to ontologies including replicas immediately. We identify
several drawbacks of using this approach for realistic scenarios on
the Web. First, to propagate changes, for each ontology informa-
tion about ontologies that reuse it should be available. Thus, an
additional centralized component managing inclusion dependen-
cies between ontologies is needed. Second, with the increase in
the number of ontologies and of subjects reusing them, the number
of dependencies will grow dramatically. Managing them centrally
will be too expensive and impractical as the problem of evolving
dependencies is raised. Third, forcing all ontologies to be “strictly”
consistent at all times reduces the possibility to express diversities
in a huge space such as the Web. Subjects on the Web may not be
ready to update their dependent ontologies immediately and may
opt to keep the older version deliberately. Finally, the changes are
propagated one-by-one, thus introducing significant communica-
tion overhead. Grouping changes and sending them on demand
will perform better.

Therefore, in the distributed environment we advocate using the
pull synchronization. Under this approach information about in-
cluded ontologies is stored in the dependent ontology, thus elim-
inating the need for central dependency management. Original
ontologies are checked periodically to detect changes and collect
deltas. During this process, it may be possible to analyze changes
and to reject them if they don’t match the current needs. Thus,
we propose a “loosely” consistent system, since replication consis-
tencies are enforced at request. Permitting temporary inconsisten-
cies is a common method of increasing performance in distributed
systems [17]. Hence, we use the pull approach for synchronizing
originals and replicas, whereas we use the push approach for main-
taining consistency of ontologies within one node. Thus, our so-
lution employs a hybrid synchronization strategy combining their
favorable features while avoiding their disadvantages.

Regardless of the synchronization approach, a question about
how to resolve replication inconsistencies remains open. We note
that replication inconsistencies cannot be resolved by simply re-
placing the replica with the new version of the original. This will
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Figure 7: Distributed Ontology Evolution Process

cause inconsistencies of the dependent ontologies, as discussed in
subsection 5.2. Instead, replication and dependency inconsistency
must be resolved together in one step. This can be achieved by
applying dependent evolution algorithms on deltas – changes that
have been applied to the original since the last synchronization of
the replica. By using the pull synchronization strategy and by ap-
plying the dependent evolution process from Figure 6 to deltas, we
derive the distributed ontology evolution process through three ex-
tensions. This process, shown in Figure 7, is responsible for propa-
gating changes from originals to replicas. We extend the implemen-
tation phase by introducing the evolution log for keeping informa-
tion about performed changes. Further, we extend the change cap-
turing phase by three components. During identification of changed
originals we identify which original ontologies have changed. In
extraction of deltas we identify the changes performed at the orig-
inal and not at the replica by reading the evolution log. Finally,
during merging of deltas we generate a cumulative list of changes
that must be performed at the replica.

5.3.1 Logging Changes
In order to resolve replication inconsistencies, two known ways

of identifying deltas between originals and replicas are known [17]:
(1) the full content of the original ontology may be compared to
the replica; (2) the history of changes to the original may be kept
explicit. The first solutions requires extracting changes from differ-
ences between the original and the replica which is a complicated
and time-consuming process. Further, to compare ontologies the
current version of the original must be copied temporarily to the
replica’s node. This may incur unnecessary communication over-
head. For example, the WordNet ontology described in section 3 is
very large. If a concept is added to it, it is better to transfer only the
information about this addition, instead of transferring the whole
ontology.

To avoid these drawbacks, we follow for the second option. For
each distributed ontology an instance of a special evolution log on-
tology is created, which tracks the history of changes to the ontol-
ogy. Apart from the distributed evolution, the evolution log is also
used to provide the following additional capabilities:

• Users may often want to undo the changes to the ontology.
For each elementary change a sequence of inverse changes
may be derived that completely undo the original changes.
Hence, by applying inverse changes in reverse order any pre-
vious state of an ontology may be reconstructed [19].

• With each change additional meta-information may be as-
sociated. This information can serve as a source for differ-
ent knowledge discovery methods, e.g. mining about change
trends.

The evolution log ontology, shown in Figure 8, models what
changes, why, when, by whom and how are performed in an ontol-
ogy. Each change is represented as an instance of one of the sub-
concepts of the CHANGE concept. The structure of the hierarchy of
change types reflects the underlying ontology model by including
all possible types of changes (e.g. ADDENTITY, REMOVEENTITY,
etc.). Additional information, such as the date and time of change,
as well as the identity of the change initiator may be associated

through appropriate properties. Information supporting decision-
making, such as cost, priority, textual description of the reason for
change etc. may also be included. Entities from the ontology being
changed are related to instances of the CHANGE concept through
HAS REFERENCEENTITY property. As described previously, ele-
mentary changes may cause new changes to be introduced by the
evolution strategy in order to keep the ontology consistent – such
dependencies may be represented using the CAUSECHANGE prop-
erty. Groups of changes of one request are maintained in a linked
list using the HAS PREVIOUSCHANGE property.

Figure 8: A part of the evolution ontology

5.3.2 Resolving Replication Inconsistencies
As shown in Figure 7, resolving replication inconsistencies is

performed through three additional components. Resolving repli-
cation inconsistencies is initiated by specifying an original whose
included replicas should be updated and is performed as follows.

Identification of Changed Originals. This step first checks whe-
ther resolution of replication inconsistency can be performed at all.
If for some directly included replica the original has replication
inconsistency, then the process is aborted. Otherwise, a list of di-
rectly included replicas having pending replication inconsistency
(but whose original is replication consistent) is determined. Since
the dependent ontology consistency for the ontologies on the same
node is required, this approach is recursively applied on the all on-
tologies that include the ontology whose replication inconsistency
is resolved.

Let’s assume that the service provider C from Figure 1 wants to
resolve the replication inconsistency of ICO. Its directly included
replicas, namely BO and CO are examined. For each of them the
replication consistency of the original is checked. If BO at the ser-
vice provider B has replication inconsistency (due to changes from
A in SO which haven’t been applied at B’s replica of SO), then
the process is aborted. If BO at the service provider B is replica-
tion consistent, but BO at service provider C is not (since BO at B
has been changed), then BO is scheduled for further analysis. The
consistency of the BO’s original is required since ICO will obtain
changes from SO through BO’s and CO’s evolution log.

In order to optimize this step, the set of directly included on-
tologies to be taken into account may be reduced by eliminating all
directly included ontologies that are available through some other
paths. In the case that the ontology ICO directly includes the on-
tology SO, the ontology SO would be eliminated from the further
consideration, since it can be obtained through BO and CO.

Replication consistency is performed by determining the equiva-
lence of the ontology with its original and by recursively determin-
ing the replication consistency of included ontologies. The follow-
ing information is needed to perform that:



• Each ontology contains a physical URI of its original.
• Each ontology contains a physical URI of its evolution log.
• Each ontology has a version number associated with it that is

incremented each time when an ontology is changed. Thus
checking the equivalence of the replica and the original can
be done by simple comparison of that number.

Extraction of Deltas. After determining directly included replicas
to be updated, the evolution log for these ontologies is accessed.
The location of the evolution log is specified within each ontology
and is copied to replicas. For each log the extracted deltas con-
tain all changes that have been applied to the original after the last
update of the replica, as determined by the version numbers.

Merging Deltas. Deltas extracted from evolution logs in the previ-
ous step are merged into a unified list of changes. Since an ontol-
ogy can be included in many other ontologies, its changes will be
included into evolution logs of all of these ontologies. Hence, the
merge process must eliminate duplicates. Also, changes from dif-
ferent deltas caused by the same change from a common included
ontology should be grouped together.

For example, if the ontology SO is changed, the evolution logs
of the BO and CO will contain these changes, as well as their own
extensions. Hence, when changes from BO’s and CO’s logs are
merged in order to update ICO, the changes to SO will be men-
tioned twice. Thus, only one change to SO should be kept while
discarding all others. However, changes in BO and CO caused by
a change in SO must be grouped together.

These three steps result in an integrated list of changes that must
be processed at the target node using the dependent ontology evo-
lution process as discussed in subsection 5.2.

6. IMPLEMENTATION
The presented infrastructure is implemented within KAON - an

ontology management infrastructure developed at FZI and AIFB at
the University of Karlsruhe. We consider reusing existing ontolo-
gies as an integral part of ontology engineering. Thus, interaction
with the registry should be an integral part of the engineering en-
vironment. Because of that, we decided against a more common
approach of providing a Web-based interface to the registry. In-
stead, we integrated the registry with OI-modeler – a stand-alone
application for modular ontology engineering. To support usage of
our application in the Web we provided a Java WebStart interface
for OI-modeler7. A snapshot of registry usage is given in Figure 9.
On the left-hand side there is OI-modeler with the SO being edited
in it. On the right-hand side registration information about SO is
presented.

The central component of KAON is the KAON API providing
programmatic access to ontologies and is described in [15]. Briefly,
the API decouples the applications from the persistent storage. It
provides API implementations for accessing RDF(S) files and for
storing OI-models in relational databases. The inclusion facilities
described in section 4 have been implemented within the API. On-
tology evolution is also implemented within the API and is de-
scribed in more detail in [19]. This implementation has been ex-
tended for dependent and distributed ontology evolution.

7. RELATED WORK
An excellent comparison of existing ontology libraries is given

in [4]. Many of these systems (WebOnto, Ontolingua, SHOE and
7http://wim.fzi.de:8080/kaon/kaon workbench.jnlp

Figure 9: Ontology Management and Registry Screenshot

Ontology Server) combine the storage, searching and management
facilities and provide means for editing ontologies and reasoning
with them. Our infrastructure is different in that our approach en-
visages many servers containing only several ontologies. On top of
that we provide centralized registries for searching ontologies and
distributed evolution algorithms for ontology management.

Our ontology registry may be compared to the DAML Ontol-
ogy Library, (Onto)2Agent [1] and DCMI Registry [9]. These
systems don’t provide means for ontology storage, but only con-
tain pointers to actual ontologies. DAML Ontology Library and
DCMI Registry provide the means for searching ontologies based
on the ontology contents. However, the search is based on lexical
matching of element names. Our approach establishes links be-
tween concepts in different ontologies by matching each ontology
against WordNet, thus providing more intuitive searching.

Reusing ontologies in the Semantic Web is hindered by the fact
that RDF(S) doesn’t provide means for including elements from
other ontologies. Within RDF(S) there is no notion of the model
representing a subset of the statement on the Web. Instead, each
RDF fragment can freely refer to any resource defined anywhere
on the Web. This presents serious problems to tool implementors,
since it is not possible to reason over the entire Web. Recogniz-
ing this shortcomings, many ontology languages, e.g. OIL [8],
DAML+OIL [3] and OWL [5], to mention just a few of them, pro-
vide means for declarative inclusion of other models.

However, most tools simply use these declarations for reading
several files at the beginning and then create an integrated model.
OilEd – a tool for editing OIL and DAML+OIL ontologies devel-
oped at the University of Manchester – does exactly that: importing
an ontology actually inserts a copy of the original ontology into the
current ontology. As mentioned before in this paper, this has draw-
backs related to ontology evolution. On the other hand, tools such
as Ontolingua [6], offer support even for cyclical ontology inclu-
sion. However, to the best of authors’ knowledge, these tools don’t
provide evolution of included ontologies. Protege-2000 [16] – a
widely used tool for ontology editing developed at Stanford – pro-
vides the best support for ontology inclusion so far. In Protege it
is possible to reuse definitions from a project by including an en-
tire project. However, the implemented inclusion mechanism is too
crude, as it doesn’t allow extension of included entities. For exam-
ple, it is not possible to re-classify or add a slot to a class in the in-
cluding model. Further, only the outermost model may be changed,
thus making the evolution of dependent ontologies impossible.



Although evolution over time is an essential requirement for suc-
cessful application of ontologies, methods and tools to support this
complex task completely are missing. There are very few approaches
investigating that problem. In [10] it is pointed out that ontologies
on the Web will need to evolve and a new formal definition of on-
tologies for the use in dynamic, distributed environments is pro-
vided. While multiple version of ontologies and ontology reuse is
supported, the change propagation between distributed and depen-
dent ontologies is not treated. In [11] the authors describe a system
that provides support for the versioning of ontologies. In contrast
to that approach, which detects changes by comparing ontologies,
we track information about all performed changes, since the change
detection is a complicated and a time-consuming process. Further,
it is impossible to determine the cause and the consequences of a
change, which is a crucial requirement for the consistency of the
dependent ontologies. Moreover, research in distributed ontology
evolution can also benefit from the research in distributed systems
[17]. In [2] the authors describe techniques that combine push and
pull synchronization in an intelligent and adaptive manner while
offering good resiliency and scalability. We extend this approach
by taking into account not only the coherency maintenance of the
cached data but the maintenance of the dependent and replication
consistency as well.

8. CONCLUSION
In this paper we have discussed an infrastructure for searching,

reusing and evolving ontologies in a distributed environment. We
see registering and searching existing ontologies as key to enabling
wide-spread ontology reuse. Our approach focuses on ontology
inclusion going beyond the simple cut-and-paste inclusion. Dis-
tributed ontology reuse is supported through controlled ontology
replication, which is necessary under present technological con-
straints, such as available bandwidth. Evolving ontologies that
reuse other ontologies is a complex problem. We first considered
evolving dependent ontologies within one node. Further, we ex-
tended this solution to the distributed case. We advocate the pull
synchronization mechanism, in order to keep the autonomy of each
node in the system. Finally, we presented an approach for evolution
of distributed ontologies, which is based on keeping change infor-
mation available in form of evolution logs. The overall approach
has been implemented within KAON.

Our future work will be directed towards relaxing the constraint
that only entire ontologies may be reused. Lifting these constraints
will have significant impact on the evolution of dependent ontolo-
gies. Furthermore, we will focus on various problems of integrating
semantically heterogeneous ontologies.
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