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Abstract

In this paper, we present a novel formalism of hybrid MKNF knowl-
edge bases, which allows us to seamlessly integrate an arbitrary decid-
able description logic with logic programming rules. We thus obtain
a powerful hybrid formalism that combines the best features of both
description logics, such as the ability to model taxonomic knowledge,
and logic programming, such as the ability to perform nonmonotonic
reasoning. Extending DLs with unrestricted rules makes reasoning un-
decidable. To obtain decidability, we apply the well-known DL-safety
restriction that makes the rules applicable only to explicitly named in-
dividuals, and thus trade some expressivity for decidability. We present
several reasoning algorithms for different fragments of our logic, as
well as the corresponding complexity results. Our results show that,
in many cases, the data complexity of reasoning with hybrid MKNF
knowledge bases is not higher than the data complexity of reasoning
in the corresponding fragment of logic programming.
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1 Introduction

In the past couple of years, a significant body of Semantic Web research was
devoted to defining a suitable language for ontology modeling. In 2004, this
endeavor resulted in the Web Ontology Language (OWL). OWL is based
on Description Logics (DLs) [2]—a family of knowledge representation for-
malisms based on first-order logic and exhibiting well-understood computa-
tional properties.

The experience gained by building practical applications has revealed
several shortcomings of OWL. For example, OWL does not allow defin-
ing integrity constraints or closed-world reasoning. Rule-based formalisms
grounded in logic programming have repeatedly been proposed as a possible
solution, so adding a rule layer on top of OWL is nowadays seen as the most
important task in the development of the Semantic Web language stack.

The logic of minimal knowledge and negation as failure (MKNF) [25]
is an expressive formalism that allows to integrate open- and closed-world
reasoning in a unifying framework. It generalizes several important non-
monotonic formalisms, such as logic programming under stable model se-
mantics [16], and default logic with fixed universe [24] (note that this version
of default logic is different from the original version by Reiter [30]).

Using MKNF as the unifying framework, in this paper we present a
novel formalism of hybrid MKNF knowledge bases that allows to extend
an arbitrary decidable first-order fragment with rules in the style of logic
programming. Our formalism generalizes existing known approaches for
extending DLs with first-order rules, such as the Semantic Web Rule Lan-
guage (SWRL) [18]. Since combinations of DLs and rules are known to be
undecidable even for very inexpressive DLs [23], to achieve decidability we
apply the well-known concept of DL-safety [27] and thus trade some ex-
pressivity for decidability. Furthermore, we employ a special approach to
dealing with the uniqueness of individuals, thus bridging the gap between
logic programs, which usually assume unique name assumption (UNA), and
DLs, which usually do not assume it. Thus, our approach is fully compatible
with logic programming on the one hand and DLs on the other hand.

We present several algorithms for checking entailment for different classes
of MKNF knowledge bases. Apart from the algorithm for the full formal-
ism, we additionally consider the cases when the rules are positive, positive
nondisjunctive, stratified nondisjunctive, and nonstratified nondisjunctive.
We also analyze the data complexity of our algorithms and show that a com-
bination of a DL with disjunctive datalog rules has the same data complexity
as disjunctive datalog, even if entailment checking in DL is data complete
for coNP (this is the case for most expressive DLs, such as SHIQ [20]).

Since most variants of our algorithm are intractable with respect to
data complexity, implementing them requires advanced heuristic techniques.
Similar techniques have already been developed for reasoning with Quanti-
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fied Boolean Formulae (QBF) and have been implemented in several QBF
solvers. To enable reusing these techniques, for the case of the DL SHIQ,
we present a way to encode our algorithms into a quantified Boolean formula.
This encoding reuses the known technique for reducing a SHIQ knowledge
base to a positive disjunctive datalog program [19].

2 Preliminaries

2.1 Minimal Knowledge and Negation as Failure

The logic of minimal knowledge and negation as failure (MKNF) [25] is
an extension of first-order logic with modal operators K and not, and it
is strongly related to the logic of minimal belief and negation as failure
(MBNF) [26]. The syntax of MKNF formulae is defined by the following
grammar, where ti are first-order terms and P is a predicate:

ϕ← P (t1, . . . , tn) | ¬ϕ |ϕ1 ∧ ϕ2 | ∃x : ϕ | Kϕ | notϕ

As usual, P (t1, . . . , tn) is a first-order atom; furthermore, ϕ1 ∨ ϕ2, ∀x : ϕ,
ϕ1 ⊃ ϕ2, ϕ1 ≡ ϕ2, true, and false are shortcuts for ¬(¬ϕ1∧¬ϕ2), ¬(∃x : ¬ϕ),
¬ϕ1∨ϕ2, (ϕ1 ⊃ ϕ2)∧ (ϕ2 ⊃ ϕ1), a∨¬a, and a∧¬a, respectively. A formula
of the form Kϕ is called a modal K-atom, and a formula of the form notϕ
is called a modal not-atom; collectively, modal K- and not-atoms are called
modal atoms. An occurrence of a modal atom in an MKNF formula is
strict if the atom does not occur in scope of a modal operator. An MKNF
formula ϕ is a sentence if it has no free variables; ϕ is ground if it does
not contain variables; ϕ is modally closed if all modal operators are applied
in ϕ only to sentences; ϕ is subjective if all first-order atoms of ϕ occur
within the scope of a modal operator; ϕ is flat if all occurrences of modal
atoms in ϕ are strict and ϕ is subjective; ϕ is positive if it does not contain
occurrences of not; ϕ is objective if it does not contain modal operators.
With ϕ[t1/x1, . . . , tn/xn] we denote the formula obtained by simultaneously
replacing in ϕ all free variables xi with the terms ti, and with |ϕ| we denote
the number of symbols needed to encode ϕ.

We call an MKNF formula of the following form a rule, as it generalizes
the notion of a rule in disjunctive logic programs interpreted under stable
model semantics [25]:

KH1 ∨ . . . ∨KHk ⊂ KB+
1 ∧ . . . ∧KB+

n ∧ notB−1 ∧ . . . ∧ notB−m(1)

The set of modal atoms head(r) = {KHi | 1 ≤ i ≤ k} is called the rule head,
the set of modal atoms body+(r) = {KB+

i | 1 ≤ i ≤ n} is the positive body,
and the set of modal atoms body−(r) = {notB−i | 1 ≤ i ≤ m} is called the
negative body. If k = 1, we say that the rule is nondisjunctive; to simplify
the notation, we then denote KH1 with KH and we set head(r) = KH
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(i.e., head(r) returns the head atom and not a singleton set). Note that the
common case of rules with no atoms in the head is captured by a nondis-
junctive rule with the head atom K false. If n = 0 and m = 0, we call the
rule a fact. A rule is safe if each variable in it occurs in a K-atom in the
body. A flat modally closed MKNF formula σ of the form

∧
ri, where ri are

rules, is called an MKNF program. By an analogy to logic programming, we
often identify σ with a set of rules {ri}, and we write r ∈ σ to denote that
r is a conjunct or σ. An MKNF program is nondisjunctive (safe) if all its
rules are nondisjunctive (safe).

Following [8], we employ standard names in the semantics of MKNF: we
assume that, apart from the constants occurring in the formulae, the signa-
ture contains a countably infinite supply of constants not occurring in the
formulae. With 4 we denote the Herbrand universe of such a signature and
call it the domain set. An MKNF structure is a triple (I,M,N), where I is
a Herbrand first-order interpretation over 4, and M and N are nonempty
sets of Herbrand first-order interpretations over 4 satisfying the following
property: the equality predicate ≈ is interpreted in I and in each inter-
pretation from M and N as a congruence relation—that is, it is reflexive,
symmetric, transitive, and it allows one to replace equals by equals (see [15,
Chapter 9] for an in-depth discussion about these issues). Satisfiability of
MKNF sentences in an MKNF structure (I,M,N) is defined as follows:

(I,M,N) |= P (t1, . . . , tn) iff P (t1, . . . , tn) is true in I
(I,M,N) |= ¬ϕ iff (I,M,N) 6|= ϕ
(I,M,N) |= ϕ1 ∧ ϕ2 iff (I,M,N) |= ϕ1 and (I,M,N) |= ϕ2

(I,M,N) |= ∃x : ϕ iff (I,M,N) |= ϕ[α/x] for some α ∈ 4
(I,M,N) |= Kϕ iff (J,M,N) |= ϕ for all J ∈M
(I,M,N) |= notϕ iff (J,M,N) 6|= ϕ for some J ∈ N

An MKNF interpretation M is a nonempty set of Herbrand first-order
interpretations over 4. M is an S5 model of a closed MKNF formula ϕ,
written M |= ϕ, if (I,M,M) |= ϕ for each I ∈M . As its name suggests, S5
models of ϕ are obtained by interpreting ϕ as a first-order modal formula
in the modal logic S5 (while taking not to be a shortcut for ¬K).

The S5 semantics is monotonic, and a nonmonotonic semantics of MKNF
is obtained by introducing a preference relation on S5 models. In particular,
an MKNF interpretation M is an MKNF model of ϕ if (i) M is an S5 model
of ϕ, and (ii) for each MKNF interpretation M ′ such that M ′ ⊃M , we have
(I ′,M ′,M) 6|= ϕ for some I ′ ∈M ′.

An MKNF formula ϕ is valid if (I,M,N) |= ϕ for any MKNF structure
(I,M,N); ϕ is MKNF satisfiable if an MKNF model of ϕ exists; otherwise, it
is MKNF unsatisfiable. MKNF formulae ϕ and ψ are MKNF equisatisfiable
if ϕ is MKNF satisfiable if and only if ψ is MKNF satisfiable. Furthermore,
ϕ MKNF entails ψ, written ϕ |=MKNF ψ, if (I,M,M) |= ψ for each MKNF
model M of ϕ and I ∈ M . The S5 (un)satisfiability, equisatisfiability, and
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entailment (written ϕ |=S5 ψ), are defined analogously by considering only
S5 instead of MKNF models. Since validity is not defined with respect to a
theory, it does not make sense to distinguish the S5 and the MKNF cases.

A couple of comments regarding these definitions are in order.

Differences to the Definition of MKNF by Litschitz. In our ap-
proach, all MKNF models are defined with respect to the same countably
infinite domain set 4. In contrast, in the approach by Lifschitz [25], the
domain set 4 can be any (not necessarily infinite) set that corresponds one-
to-one with a special set of constants called names. These constants are
not indented for use by the modeler, but are introduced only to define the
semantics of quantifiers.1 All interpretations from an MKNF model M are
still defined with respect to the same domain set 4,2 but different MKNF
models can now have different domain sets. Another difference is that ≈
is in our approach interpreted as a congruence relation, whereas Lifschitz
provides for true equality = that is interpreted as identity. We next discuss
how these differences affect the consequences of the logic.

Standard Names Assumption. Let ϕ = KA(a) and ψ = ∃x : KA(x).
Under the original semantics, ϕ 6|=MKNF ψ: consider an MKNF interpreta-
tion M containing a first-order interpretation I1 such that I1 |= A(α1) and a
is interpreted as some name α1, and a first-order interpretation I2 such that
I2 |= A(α2) and a is interpreted as some name α2 different from α1. Since ϕ
does not contain quantifiers, obviously M |= ϕ. On the contrary, to satisfy
ψ, the variable x must be replaced with some name α and A(α) must hold
in all first-order models in M . Clearly, M 6|= KA(α1) and M 6|= KA(α2),
so ϕ 6|=MKNF ψ. This can be corrected if we make a a rigid designator by
including ∃x : K(x = a) into ϕ: now a is interpreted in all first-order inter-
pretations in M as the same name α, so ϕ |=MKNF ψ. In data management
applications, all constants are typically assumed to be rigid [31], so we in-
corporate rigidity directly into the semantics of MKNF by identifying names
with the elements of the Herbrand universe.

Finite vs. Infinite Models. We can consider only Herbrand models for
first-order formulae as long as we ensure that the Herbrand universe is “large
enough.” For finite formulae, it suffices to make the set of constants of the
signature countably infinite. This has an important side-effect: we now
consider only infinite models, whereas in ordinary first-order logic and in

1Similar approaches were employed in [22] and [31], where the new constants are called
parameters. Unlike names, parameters are actually intended to be used by the modeler.

2In both approaches, the interpretations in M are defined over the same domain set
4, because we could otherwise not satisfy the preference semantics of MKNF: we could
always extend M with a new first-order interpretation having a new domain set but that
is otherwise isomorphic to some existing interpretation J from M .
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the version of MKNF by Lifschitz we should also consider finite models.
Note, however, that this does not affect the first-order formulae without
equality: an equality-free first-order formula ϕ is satisfiable in an arbitrary
model if and only if it is satisfiable in a Herbrand model over a signature
with a countably infinite supply of constants not occurring in ϕ [15, Theorem
5.9.4]. (Fitting calls such models Herbrand models with parameters. Note
also that the formula ϕ need not be skolemized.) Hence, without equality,
we cannot distinguish the models over an arbitrary interpretation domain
and over 4; consequently, we cannot distinguish finite from infinite models.

Treatment of Equality. Considering only Herbrand models makes it im-
possible to interpret equality as identity, since syntactically different con-
stants are automatically interpreted as different objects—a property known
as unique names assumption (UNA). To allow for equality reasoning despite
considering only Herbrand models, we provide a special predicate ≈ which
we interpret as a congruence relation on 4. Although this interpretation of
≈ is weaker, it does not affect the consequences of first-order formulae: any
formula of first-order equality is satisfiable in a model where ≈ is interpreted
as identity if and only if it is satisfiable in a model where ≈ is interpreted
as a congruence relation [15, Theorem 9.3.9]. Hence, in first-order logic we
cannot distinguish these two types of models. Combining this with the dis-
cussion from the previous paragraph, we cannot arbitrary models with true
equality from Herbrand models with equality interpreted as a congruence
relation. We illustrate this by an example. Under standard interpretation of
equality, the formula ϕ = ∀x : (x ≈ a ∨ x ≈ b) constrains the domain to have
at most two elements. Now if we interpret ϕ in a model with the domain
4, the interpretation domain contains infinitely many elements; however,
the interpretation of ≈ partitions 4 into at most two equivalence classes.
Each object from an equivalence class can be distinguished from all other
objects from the class only by its name. Even though this does not change
the first-order consequences, one might argue that such a treatment of ≈
is too complicated and aesthetically unsatisfactory. However, as we discuss
next, such a treatment of ≈ yields intuitive nonmonotonic consequences.

Equality and Nonmonotonic Negation. In nonmonotonic reasoning,
considering non-Herbrand models often produces unintuitive consequences.
For example, let ϕ = KA(a) ∧ ¬notA(b). The formula ¬notA(b) can be
paraphrased as “we should be able to derive A(b).” Since the formula ϕ pro-
vides no evidence for this, we would intuitively expect ϕ to be unsatisfiable.
However, under the original semantics of MKNF, ϕ has an MKNF model:
if we take the domain set 4 to contain only one name α, we must inter-
pret both a and b as α, so ϕ is satisfied, and such a model clearly satisfies
the preference semantics of MKNF. Thus, under the original semantics of
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MKNF, ϕ entails a ≈ b and the fact that the interpretation domain contains
only one element. We consider this quite unintuitive: we want to interpret
¬notA(b) as a constraint without any side-effects. Similar problems occur
in other nonmonotonic formalisms such as logic programming, so such for-
malisms routinely consider only Herbrand models. We do the same in our
approach, so we do not get such unintuitive consequences: there is no explicit
evidence for a ≈ b, so ϕ is unsatisfiable under our semantics. Now consider
ψ = ϕ ∧K a ≈ b. The congruence properties of ≈ now ensure that in each
model A(b) holds, so ψ is satisfiable in an MKNF model M containing all
first-order interpretations I such that I |= A(a) ∧ a ≈ b.

Summary. Our version of MKNF is related to the original MKNF in
the same way as first-order logic with only Herbrand models is related to
ordinary first-order logic with arbitrary models. Strictly speaking, whenever
we consider a first-order formula ϕ in the rest of this paper, we should
consider only its models with the domain set 4. However, as explained
in the previous paragraphs, it does not matter if we additionally consider
ordinary first-order models of ϕ. If we need to check satisfiability of ϕ or
whether ϕ |= ψ for a first-order formula ψ, we can equivalently consider
Herbrand or arbitrary models. Therefore, in the following sections we do
not stress the difference between Herbrand and arbitrary models.

2.2 Description Logics

The MKNF rules defined in Section 4 can be combined with many fragments
of first-order logic DL. Therefore, we present only a high-level overview of
the syntax and the semantics of description logics without going into details;
for a formal definition, please refer to [2].

The building blocks of DL knowledge bases are concepts (or classes),
representing sets of objects, roles (or properties), representing relationships
between objects, and individuals, representing specific objects. Concepts
such as Person are called atomic. Using concept constructors, one can con-
struct complex concepts that describe the conditions on concept member-
ship. For example, the concept ∃hasFather .Person describes those objects
that are related through the hasFather role with an object from the con-
cept Person. Expressive DLs provide a rich set of concept constructors,
such as the Boolean connectives, existential and universal quantification,
and number restrictions.

A DL knowledge base O typically consists of a TBox T and an ABox A.
A TBox contains axioms about the general structure of all allowed worlds,
and is therefore in its purpose akin to a database schema. For example,
the TBox axiom (2) states that each instance of the concept Person must
be related by the role hasFather with an instance of the concept Person.
An ABox contains axioms describing the structure of particular worlds. For

9



example, the ABox axiom (3) states that Peter is a Person, and (4) states
that Paul is a brother of Peter .

Person v ∃hasFather .Person(2)
Person(Peter)(3)

hasBrother(Peter ,Paul)(4)

A DL knowledge base can be given semantics by translating it into first-
order logic with equality. Atomic concepts are translated into unary predi-
cates, complex concepts into formulae with one free variable, and roles into
binary predicates. For example, the axiom (2) can be represented as the
following first-order formula:

∀x : Person(x) ⊃ ∃y : [hasFather(x, y) ∧ Person(y)](5)

The basic reasoning problems for OWL are checking if an individual a
is an instance of a concept C (written O |= C(a)) or if the a concept C is
subsumed by another concept D (written O |= C v D).

Our approach is applicable to any description logic DL that fulfills these
requirements: (i) each knowledge base O ∈ DL can be translated into a
formula π(O) of function-free first-order logic with equality, (ii) DL sup-
ports ABoxes—assertions of the form P (a1, . . . , an) for P a predicate and ai
constants of DL, and (iii) checking satisfiability and checking entailments
of the form O |= α with α of the form A(a) for A an atomic concept, R(a, b),
a ≈ b and a 6≈ b are decidable.

Checking entailment of role or equality atoms has traditionally not been
considered in DL research; however, it can be reduced to checking entailment
of atomic concepts using the well-known pseudo-nominals technique, where
Pa and Pb are new concepts not occurring in K:

K |= R(a, b) iff K ∪ {Pb(b)} |= ∃R.Pb(a)
K |= a ≈ b iff K ∪ {Pa(a), Pb(b)} |= Pa ≡ Pb
K |= a 6≈ b iff K ∪ {Pa(a), Pb(b)} |= Pa u Pb v ⊥

Such inferences are supported by all DLs that support ABoxes, so our ap-
proach is applicable to a wide range of DLs.

2.3 Complexity Classes

We use standard definitions of the complexity classes [29]. For complexity
classes C and E , with EC we denote the class of problems that can be solved
in E using an oracle for problems in C. The polynomial hierarchy is then
defined inductively as follows:

∆p
0 = Σp

0 = Πp
0 = P

∆p
k+1 = PΣp

k

Σp
k+1 = NPΣp

k

Πp
k+1 = coΣp

k+1
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Table 1: Equivalences for MKNF Formulae

1. K(ϕ ∧ ψ) ≡ Kϕ ∧Kψ not(ϕ ∧ ψ) ≡ notϕ ∨ notψ
2. K(κ ∨ ϕ) ≡ κ ∨Kϕ not(κ ∨ ϕ) ≡ ¬κ ∧ notϕ
3. K(∀x : ϕ) ≡ ∀x : Kϕ not(∀x : ϕ) ≡ ∃x : notϕ
4. K true ≡ true not true ≡ false
5. K false ≡ false not false ≡ true

Note: ϕ and ψ are arbitrary MKNF formulae and
κ is a subjective MKNF formula.

2.4 Quantified Boolean Formulae

Quantified Boolean Formulae (QBF) extend propositional formulae by exis-
tential and universal quantification over propositional variables. As in first-
order logic, a quantified Boolean formula is closed if each propositional vari-
able occurs in the scope of a quantifier. The semantics of propositional con-
nectives is defined as usual. For the quantifiers, a closed formula ∃x : ϕ eval-
uates to true if and only if ϕ[false/x] ∨ ϕ[true/x] evaluates to true; similarly,
a closed formula ∀x : ϕ evaluates to true if and only if ϕ[false/x] ∧ ϕ[true/x]
evaluates to true. If a closed formula ϕ evaluates to true, it is also said to
be valid. Deciding validity of an arbitrary quantified Boolean formula ϕ is
a PSpace-complete problem; however, if the prenex normal form of ϕ has
i alterations of quantifier prefixes, then deciding validity of ϕ is in the i-th
level of the polynomial hierarchy [37]. More precisely, if the first quantifier
in the prefix is ∃, the problem is Σp

i -complete, and if the first quantifier in
the prefix is ∀, the problem is Πp

i -complete.

3 Equivalent Transformations of MKNF Formulae

In this section we present transformations that can be used to transform
certain MKNF formulae into equivalent but simpler ones. We use these
simplification rules extensively in the following sections. The results from
this section hold for general first-order MKNF formulae.

3.1 Equivalent Formulae

It is easy to see that de Morgan laws for first-order logic also hold for MKNF
formulae. The following theorem introduces the equivalences concerning the
modal operators.

Theorem 3.1. All equivalences from Table 1 are valid.

Proof. Consider an MKNF structure (I,M,N). The formula notϕ, when
evaluated in N , has the same value as ¬Kϕ when evaluated in M . Hence,
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the equivalences from the right column are dual to the ones from the left
column, and can be proved in the same way by replacing not with ¬K.
Hence, we prove just the equivalences from the left column.

(1) (I,M,N) |= K(ϕ∧ψ) implies (J,M,N) |= ϕ∧ψ for each J ∈M . This
implies (J,M,N) |= ϕ and (J,M,N) |= ψ for each J ∈ M , which implies
(I,M,N) |= Kϕ ∧Kψ. Conversely, (I,M,N) |= Kϕ ∧Kψ implies that
(J,M,N) |= ϕ for each J ∈M and (J ′,M,N) |= ϕ for each J ′ ∈M . Hence,
(J,M,N) |= ϕ ∧ ψ for each J ∈M , which implies (I,M,N) |= K(ϕ ∧ ψ).

(2) Since κ is subjective, its value in (I,M,N) does not depend on I.
Assume (I,M,N) |= K(κ ∨ ϕ). If (I,M,N) |= κ, then (I,M,N) |= κ ∨Kϕ.
Otherwise, for each J ∈M , we have (J,M,N) 6|= κ, but then (J,M,N) |= ϕ,
so (I,M,N) |= Kϕ and (I,M,N) |= κ ∨Kϕ as well. Conversely, assume
that (I,M,N) |= κ ∨Kϕ. If (I,M,N) |= κ, then (I,M,N) |= K(κ ∨ ϕ).
Otherwise, (I,M,N) |= Kϕ, which also implies (I,M,N) |= K(κ ∨ ϕ).

The equivalence (3) follows from these considerations:

(I,M,N) |= K(∀x : ϕ) iff
(J,M,N) |= ∀x : ϕ for each J ∈M iff
(J,M,N) |= ϕ{x 7→ α} for each J ∈M and each α ∈ 4 iff
(I,M,N) |= Kϕ{x 7→ α} for each α ∈ 4 iff
(I,M,N) |= ∀x : Kϕ

The validity of (4) and (5) follows trivially from the definition of K.

Note that the equivalences Kκ ≡ κ and notκ ≡ ¬κ can be derived from
the equivalence (2) by taking ϕ = true. Furthermore, dually to the equiv-
alence (3), one can show that K(∃x : κ) ≡ ∃x : Kκ is valid. We do not
consider this equivalence, because the equivalence (2) is stronger: it allows
us to actually delete the outer K.

We can replace formulae with equivalent ones without changing the set
of models of a formula.

Lemma 3.2. Let σ1 ≡ σ2 be a valid equivalence, ϕ an MKNF formula
containing σ1 as a subformula, and ϕ[σ1 → σ2] the formula obtained by
replacing in ϕ an occurrence of σ1 with σ2. Then, (I,M,N) |= ϕ if and
only if (I,M,N) |= ϕ[σ1 → σ2], for each MKNF structure (I,M,N).

Proof. The proof is by a straightforward induction on the structure of ϕ.

Using the equivalences from this subsection, it is possible to eliminate
nesting of modalities from each propositional formula. For example, the
formula K(p ∨ (r ∧ ¬K s)) is equivalent to K((p ∨ r) ∧ (p ∨ ¬K s)); this al-
lows K to be distributed over ∧, resulting in K(p ∨ r) ∧K(p ∨ ¬K s); by
applying (1) to the second conjunct, we obtain K(p ∨ r) ∧ (K p ∨ ¬K s).
Observe, however, that the above transformation requires translating the
formula under the outer K into conjunctive normal form. Translation into
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CNF can incur an exponential increase in the formula size, so this explains
the difference between the complexity in checking satisfiability of flat and
nonflat formulae reported in [32].

Finally, note that only propositional MKNF formulae can always be
reduced to the flat ones. For example, in K ∃x : [A(x) ∨ ¬KB(x)], the
outer K cannot be removed because the inner formula is not subjective;
furthermore, it cannot be distributed over the existential quantifier so the
strategy from the previous paragraph is not applicable.

3.2 Adding Modal Operators to the Theory and the Query

The following theorem shows that K can be introduced in front of a theory
without changing the models in which the theory is satisfied:

Theorem 3.3. Let σ be a closed MKNF formula and M an MKNF inter-
pretation. Then, M is an MKNF model of σ if and only if M is an MKNF
model of Kσ.

Proof. For the (⇐) direction, observe that, for I ∈ M , (I,M,M) |= Kσ
implies (I,M,M) |= σ by the definition of the semantics of K; furthermore,
for M ′ ⊃ M and I ′ ∈ M ′, (I ′,M ′,M) 6|= Kσ implies (I ′,M ′,M) 6|= σ.
Hence, M is an MKNF model of σ. The (⇒) direction is analogous.

Similarly, one can introduce K in front of a query without affecting
entailment:

Theorem 3.4. Let σ and ψ be arbitrary closed MKNF formulae. Then,
σ |=MKNF ψ if and only if σ |=MKNF Kψ.

Proof. If σ |=MKNF ψ, then (I,M,M) |= ψ for each MKNF model M of σ
and I ∈ M , so clearly (I,M,M) |= Kψ as well. The converse direction is
analogous.

3.3 Introducing Definitions

In first-order logic, it is common practice to define names for complex sub-
formulae: an axiom Q ≡ ψ makes Q equivalent to ψ, thus allowing to use Q
in other formulae instead of ψ. However, in [25] it was observed that intro-
ducing definitions in MKNF can actually change the semantics of an MKNF
theory. Consider the formula ϕ = not p ⊃ K r. Clearly, the only model of
ϕ is M = {I | I |= r}, so ϕ |=MKNF K r. By introducing a new name q for
the MKNF formula K p, we obtain the formula ϕ′ = ϕ ∧ (q ≡ K p). By an
analogy to first-order logic, one would expect that ϕ′ |=MKNF K r as well: we
do not expect the theorems of ϕ not containing the name q to be affected.
However, ϕ′ has an MKNF model M = {I | I |= p ∧ q}, so ϕ′ 6|=MKNF K r.

The equivalences from the previous subsection can help us explain this
phenomenon. Namely, by Theorem 3.3, we can transform q ≡ K p into
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K(q ≡ K p), which can be expanded to K[(¬q ∨ K p) ∧ (¬K p ∨ q)] and
further simplified to (K¬q ∨K p) ∧ (¬K p ∨K q). Now K¬q ∨K p clearly
has two minimal models: one in which ¬q holds, and one in which p holds.
Succinctly put, introducing the formula q ≡ K p introduces as a side-effect
a disjunction K¬q ∨K p.

Another way to intuitively understand this issue is to observe that the
implication q ⊂ K p is a kind of one-directional rule: it allows us to conclude
q from p; however, from ¬q we cannot conclude ¬p. Thus, q ≡ K p cannot
be understood as a definition in a first-order sense.

However, definitions can be introduced for purely first-order formulae,
as shown by the following lemma:

Lemma 3.5. Let σ be an MKNF formula, ϕ a first-order formula with
the set of free variables x, Q a predicate not occurring in σ and ϕ, and
σ′ = σ ∧ ∀x : Q(x) ≡ ϕ. Then, each MKNF model M of σ corresponds one-
to-one to an MKNF model M ′ of σ′ obtained by interpreting in each I ∈M
the atom Q(x) exactly as ϕ.

Proof. Follows from trivially from the fact that ∀x : Q(x) ≡ ϕ does not
contain modal operators.

It is now clear that Q(x) can be used as a synonym for ϕ—that is, it is
possible to replace an occurrence of ϕ in σ′ with Q(x) without changing the
set of MKNF models of σ′.

Unfortunately, new names cannot be introduced for subjective formulae.
Consider the following propositional MKNF formula σ:

σ = K p ∧K q ∧ [K p ⊃ K r ∨ (K q ∧ ¬K s)]

It is easy to verify that M = {I | I |= p ∧ q} is the only MKNF model of σ.
Let us now introduce a new name for the subformula K r ∧ ¬K s:

ψ = σ ∧K t ≡ (K q ∧ ¬K s)

M ′1 = {I | I |= p ∧ q ∧ t} and M ′2 = {I | I |= p ∧ q ∧ s} are the two MKNF
models of ψ. Whereas M can be obtained from M ′1 by projecting out the
new symbol t, M ′2 is completely unrelated to M .

3.4 Reducing Entailment to Unsatisfiability

As it is the case for most nonmonotonic formalisms, checking entailment in
MKNF cannot be reduced to satisfiability using the well-known transforma-
tion. Namely, for σ and ψ closed MKNF formulae, if σ 6|=MKNF ψ, then σ∧¬ψ
is MKNF satisfiable; however, the converse does not hold. For example, let
σ = true and ψ = ¬K p. Clearly, σ has an MKNF model M containing all
first-order interpretations over 4, so M 6|= K p and M |= ¬K p. However,
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σ ∧ ¬ψ = K p, which has an MKNF model M ′ = {I | I |= p}. Intuitively,
this problem arises because adding K p to σ makes p known, so M is not a
model of σ ∧ ¬ψ.

However, in [33] it was shown how to reduce checking entailment of
subjective MKNF formulae to MKNF satisfiability. For the sake of com-
pleteness, we include this result in this paper as well.

Theorem 3.6. Let σ be an arbitrary closed MKNF formula and ψ a sub-
jective closed MKNF formula. Then, σ |=MKNF ψ if and only if σ ∧ ¬ϕ
is MKNF unsatisfiable, where ϕ is the MKNF formula obtained from ψ by
replacing each occurrence of K with ¬not.

Proof. (⇐) Assume that σ 6|=MKNF ψ; then, there is an MKNF model M of
σ and some I ∈M such that (I,M,M) 6|= ψ. Because K and ¬not have
the same value when interpreted in the same set of interpretations, we have
(I,M,M) 6|= ϕ and (I,M,M) |= ¬ϕ, which implies (I,M,M) |= σ ∧ ¬ϕ. By
assumption, (I ′,M ′,M) 6|= σ for each M ′ ⊃ M and I ′ ∈ M ′, so we have
(I ′,M ′,M) 6|= σ ∧ ¬ϕ as well. Clearly, M is an MKNF model of σ ∧ ¬ϕ.

(⇒) Assume that σ ∧ ¬ϕ is MKNF satisfiable in an MKNF model M ;
that is, (I,M,M) |= σ ∧ ¬ϕ for each I ∈ M , and (I ′,M ′,M) 6|= σ ∧ ¬ϕ for
each M ′ ⊃M and I ′ ∈M ′. Because ϕ is subjective and it does not contain
occurrences of K, its value in (I ′,M ′,M) does not depend on M ′ and I ′, so
(I ′,M ′,M) |= ¬ϕ and (I ′,M ′,M) 6|= σ. Hence, M is an MKNF model of σ.
Furthermore, K and ¬not have the same truth value if interpreted in the
same set of interpretations and ψ is subjective, so (I,M,M) |= ¬ψ for each
I ∈M , which implies (I,M,M) 6|= ψ. But now, M is an MKNF model of σ
which does not satisfy ψ, so σ 6|=MKNF ψ.

4 Extending DLs with MKNF Rules

We now define the formalism of hybrid MKNF knowledge bases that allows
to extend any description logic DL with nonmonotonic rules. We introduce
our formalism in three steps. First, in Section 4.1, we present a definition
that generalizes most currently known proposals for combining DLs with
rules. Next, in Section 4.2, we present a syntactic restriction necessary to
make our formalism decidable. Finally, in Section 4.3, we show that, without
a loss of generality, we can consider only flat rules.

4.1 MKNF Rules

We first define the most general variant of MKNF rules.

Definition 4.1. Let DL be a description logic, and O ∈ DL a DL knowledge
base. Let Σ be a signature containing the equality predicate ≈, all atomic
concepts from O as unary predicates, all atomic roles from O as binary
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predicates, and all individuals from O as constants. A first-order function-
free atom P (t1, . . . , tn) over Σ such that P is ≈ or it occurs in O is called a
DL-atom; all other atoms are called non-DL-atoms.

Let A denote arbitrary first-order function-free atoms over the signature
Σ, let Hi denote atoms of the form A or KA, and let Bi denote atoms of
the form A, KA, or notA. Then, an MKNF rule has the following form:

H1 ∨ . . . ∨Hn ← B1, . . . , Bm

As usual, the set of atoms {Hi} is called the rule head, and the set of atoms
{Bi} is called the rule body. An MKNF rule with n = 1 in which all atoms
are modal is a nondisjunctive MKNF rule; an MKNF rule with m = 0 is
called a fact. If each variable in a rule occurs in a body K-atom, the rule is
safe. A program P is a finite set of MKNF rules.

A hybrid MKNF knowledge base K is a pair (O,P). The size of K,
written |K|, is the number of symbols needed to encode K. With OK we
denote the set of all constants occurring in K (if K does not contain any
constant, we add an arbitrary constant to OK).

As usual, we write ≈ (a, b) as a ≈ b and ¬(a ≈ b) as a 6≈ b. We now
define the semantics of K by mapping it into first-order MKNF.

Definition 4.2. Let K = (O,P) be a hybrid MKNF knowledge base, and
let π(O) be the translation of O into first-order logic with equality. For an
MKNF rule r, let x be the vector of variables occurring in the rule. We
extend π to r, P, and K as follows:

π(r) = ∀x : (H1 ∨ . . . ∨Hn ⊂ B1 ∧ . . . ∧Bm)
π(P) =

∧
r∈P π(r)

π(K) = Kπ(O) ∧ π(P)

A hybrid MKNF knowledge base K is satisfiable if and only if an MKNF
model of π(K) exists. Furthermore, K entails an MKNF formula ψ, written
K |= ψ, if and only if π(K) |=MKNF ψ.

We say that an MKNF knowledge base K is subjective (flat) if this
property holds for π(K); furthermore, K is nondisjunctive if all rules in P
are nondisjunctive.

A couple of comments about the previous definition are in order.

Compatibility with DLs. If all rules from K contain only nonmodal
atoms, then the semantics of K is essentially first-order: using the equiva-
lences from Section 3, the formula π(K) can be transformed into the formula
K[π(O) ∧ π(P)], which entails the same formulae as the first-order formula
π(O) ∧ π(P). Hence, our semantics of hybrid MKNF knowledge bases is a
conservative extension of the standard first-order semantics.
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Compatibility with Logic Programming. In [25] it was shown that
each stable model of a disjunctive logic program with rules of the form

H1 ∨ . . . ∨Hk ← B+
1 ∧ . . . ∧B

+
n ∧ notB−1 ∧ . . . ∧ notB−m

corresponds one-to-one to an MKNF model of an MKNF program obtained
by replacing each rule with a rule of the form (1). Hence, if O = ∅, the
semantics of hybrid MKNF knowledge bases corresponds to the stable model
semantics of disjunctive logic programs. Stable model semantics generalizes
the semantics of stratified and positive programs, so our approach generalizes
many well-known approaches to logic programming. Our approach currently
cannot capture the well-founded semantics [39]; we shall try to address this
restriction in our future work.

Relationship with other Rule Formalisms. Our approach general-
izes all existing approaches to extending DLs with first-order rules, such
as CARIN [23], AL-log [7], DL-safe rules [27], or the Semantic Web Rule
Language (SWRL) [18]. If P contains only nonmodal atoms, then it is equiv-
alent to a set of SWRL rules (in which multiple head atoms are interpreted
disjunctively). As we show in Section 4.4, hybrid MKNF knowledge bases
generalize a significant portion of the DL+log [34, 35, 36] family of proposals
for integrating DLs and rules. Another related formalism was presented in
[13], in which disjunctive datalog rules can contain special atoms interpreted
as queries over a DL knowledge base. The semantics of such hybrid knowl-
edge bases is defined through a generalization of the answer set semantics.
This semantics is nonstandard and it does not correspond to the standard
semantics of first-order extensions of DLs with rules even if the rules do not
contain atoms under negation-as-failure.

Relationship with other Nonmonotonic Extensions of DLs. In [8],
the authors extend the DL ALC with two modal operators K and A inter-
preted under MKNF semantics. This allows for nonmonotonic reasoning on
existentially introduced individuals; however, the usage of the modal oper-
ators must be restricted significantly to obtain a decidable logic. Further-
more, this approach does not allow for general rules. Finally, the approach
uses UNA and does not provide for equality reasoning. An extension of DLs
with default rules was presented in [3]; to achieve decidability, the authors
allow the defaults to be applied only to named individuals. Our approach
also allows to model defaults on the explicitly named individuals. The ap-
proach from [3] implements the original Reiter’s semantics of defaults [30],
whereas our approach is compatible with the default logic with fixed universe
[24]. An approach for extending DLs with circumscription was presented in
[4]. Unlike other nonmonotonic extensions of DLs, this approach allows
for nonmonotonic reasoning on unnamed individuals; however, to achieve
decidability, nonmonotonic reasoning is allowed only on unary predicates.
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4.2 DL-Safety

We now turn our attention to decidability of reasoning in hybrid MKNF
knowledge bases. Clearly, for reasoning to be decidable, the description logic
DL should be decidable. Also, it is well known that combining arbitrary
first-order rules with decidable description logics containing just the very
basic DL constructs leads to undecidability of the satisfiability problem [23].
Since nonmodal MKNF rules correspond to arbitrary first-order rules, the
result from [23] implies undecidability of checking satisfiability of an MKNF
knowledge base K for a wide range of languages DL.

Consider now the case when MKNF rules are flat. Such rules are not
semantically equivalent to first-order rules considered in [23], so the unde-
cidability result presented there does not apply directly. However, even in
this case reasoning is undecidable:

Theorem 4.3. For K a safe hybrid MKNF knowledge base and A a ground
atom, checking whether K |= A is undecidable if DL allows us to express an
axiom > v C.

Proof. We adapt the reduction of the haling problem of a Turing machine
T to the entailment problem from [23]. Without loss of generality, we can
assume that T starts execution with an empty tape. The haling problem is
undecidable [29], which implies our theorem.

For a Turing machine T , we construct a hybrid MKNF knowledge base
KT as follows. The DL knowledge base OT of KT contains only the following
DL axiom:

> v integer(6)

Furthermore, we add to the MKNF program PT of KT the following rules:

K false← K integer(x),not hasSucc(x)(7)
K hasSucc(x)← K succ(x, y)(8)

The remaining rules are constructed in the same way as in [23]. For the
sake of completeness, we repeat this construction here. In short, we use the
predicate lt(x, y) to order the elements of the integer concept, the predicate
state(x, y, z) to denote that, at time x, T is in state y with the head at
position z,3 and the predicate tape(x, y, z) to denote that, at time x, the
tape of T at position y contains the symbol z. Finally, we represent all
states qi including the initial state q0 and the halting state qh, all symbols
σi, the empty symbol t, the tape boundary symbol ., and the integer 1 as
constants. We now show the remaining rules of PT .

3The reduction from [23] uses two binary predicates to encode the state and the head
position of T . We use a single ternary predicate to make the presentation compact.
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The following rules axiomatize lt as the transitive closure of succ:

K lt(x, y)← K succ(x, y)(9)
K lt(x, y)← K succ(x, z),K succ(z, y)(10)

The following rules specify the initial configuration of T :

K integer(1)(11)
K state(1, q0, 1)(12)
K tape(1, 1, .)(13)

K tape(1, x,t)← K lt(1, x)(14)

We now encode each transition δ(q, σ) = (q′, σ′, D) with D ∈ {←,→,−}.
The first rule updates the symbol at the position of the head, the second
rule is added for D =← and moves the head to the left, the third rule is
added for D =→ and moves the head to the right, and the fourth rule is
added for D = − and does not change the head position:

K tape(x′, y, σ′)← K state(x, q, y),K tape(x, y, σ),K succ(x, x′)(15)

K state(x′, q′, y′)← K state(x, q, y),K tape(x, y, σ),K succ(x, x′),K succ(y′, y)(16)

K state(x′, q′, y′)← K state(x, q, y),K tape(x, y, σ),K succ(x, x′),K succ(y, y′)(17)

K state(x′, q′, y)← K state(x, q, y),K tape(x, y, σ),K succ(x, x′)(18)

The following two rules copy the symbols on the tape from one time
instant to the other to the left and to the right of the head:

K tape(x′, y′, w)← K state(x, v, y),K succ(x, x′),K lt(y′, y),K tape(x, y′, w)(19)

K tape(x′, y′, w)← K state(x, v, y),K succ(x, x′),K lt(y, y′),K tape(x, y′, w)(20)

Finally, the following rule detects the halting condition:

K halt ← K state(x, qh, y)(21)

We now show that KT encodes the execution of T . More formally, T
does not halt on the empty string if and only if KT 6|= K halt .

(⇒) Assume that the execution of T does not halt. Then, we construct a
model M such that, starting from 1, all elements of4 are connected through
the succ role. We use these elements to represent the time instants and the
positions on the tape. Furthermore, let M |= K state(t, s, p) if and only if
in the execution of T the state and the head position at time t are s and p,
respectively. Also, let M |= K tape(t, p,m) if and only if the tape contains
at time t the symbol m at position p. It is easy to see that M is an MKNF
model of KT and that M 6|= K halt .
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(⇐) Assume that KT has an MKNF modelM such thatM 6|= K halt . By
(6), the extension of integer is equal to 4 in each I ∈M . The rule (8) iden-
tifies those objects α for which β ∈ 4 exists such that M |= K succ(α, β),
and the rule (7) ensures that a successor exists in M for each α ∈ 4. Hence,
starting from 1, the model M contains an infinite sequence of objects con-
nected through succ. Furthermore, the rules (9)–(20) encode the movements
of T , so a run of T on the empty string can be extracted from M . Since
M 6|= K halt , this run does not halt.

Our proof essentially differs from [23] only in one aspect. There, an
infinite sequence of integers is obtained by integer v ∃succ.integer . In our
case, this would not produce the desired effect: the existentially introduced
individuals can differ in each interpretation I from an MKNF model M , so
M 6|= K succ(α, β) for any such individuals α and β. To obtain the required
sequence, we employ the following trick: we make the concept integer equiv-
alent to 4, which ensures M |= K integer(α) for each α ∈ 4. We thus make
the entire domain 4 “visible” to the rules in PT . We then employ not to
connect all individuals appropriately through succ in rules (7)–(8). The rule
(7) is safe syntactically; however, K integer(x) actually makes it applicable
to the whole domain, so it is not safe semantically.

To obtain decidability, we apply the well-known concept of DL-safety [34,
27]. Intuitively, this restriction makes the rules applicable only to individuals
known in the ABox. We discuss the practical consequences of DL-safety in
Section 5 by means of an example.

Definition 4.4. An MKNF rule r is DL-safe if every variable in r occurs in
at least one non-DL-atom KB occurring in the body of r. A hybrid MKNF
knowledge base K is DL-safe if all its rules are DL-safe.

Due to DL-safety, a hybrid MKNF knowledge base K is equisatisfiable
with a hybrid MNKF knowledge base KG obtained from K by replacing all
MKNF rules with the set of their ground instances.

Definition 4.5. Let K = (O,P) be a hybrid MKNF knowledge base. Then,
the knowledge base KG = (O,PG), where PG is obtained by replacing in each
rule of P all variables with constants from OK in all possible ways, is called
the ground instantiation of K.

Lemma 4.6. Let K be a DL-safe hybrid MKNF knowledge base, KG the
ground instantiation of K, and ψ a ground MKNF formula. Then, K |= ψ
if and only if KG |= ψ.

Proof. We prove the lemma by showing the contrapositive statement—that
is, π(K) 6|=MKNF ψ if and only if π(KG) 6|=MKNF ψ. For the (⇒) direction,
let M be an MKNF model of π(K) such that M 6|= ψ. For each ground
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non-DL-atom B containing a constant from 4 \ OK, we have M 6|= KB.
Namely, assume the contrary and consider an interpretation M ′ obtained by
adding, for each ground non-DL-atom B containing a constant from 4\OK,
an interpretation that coincides with any other interpretation from M on
all atoms but on B. Clearly, M ′ ⊂ M . Consider now each rule r ∈ P
and its ground instance rG. If rG contains only constants from OK, we
have M ′ |= rG because the values of ground non-DL-atoms containing only
constants from OK coincide in M and M ′. Otherwise, rG is DL-safe, so
it contains an atom KB containing a constant from 4 \ OK; but then,
M ′ 6|= KB, so M ′ |= rG. Hence, M ′ |= π(KB), which contradicts the
assumption that M is an MKNF model of π(K). Hence, M 6|= KB if B
contains a constant from 4 \ OK, which immediately implies that M is an
MKNF model of π(KG), so π(KG) 6|=MKNF ψ.

For the (⇐) direction, let M be an MKNF model of π(KG) such that
M 6|= ψ. Clearly, M |= Kπ(O) so, to prove M |= π(K), we just need
to show that M |= π(r) for each r ∈ P. Consider a ground instance rG
of r. If rG contains only constants from OK, then M |= rG. Otherwise,
since r is DL-safe, each constant from 4 \ OK occurs in some ground non-
DL-atom KB occurring in the body of rG. Assume that M |= KB and
consider M ′ = M ∪ {I ′} where I ′ is obtained from I ∈ M by just changing
the truth value of B in I ′. Since π(KG) does not contain a constant from
4\OK, we haveM ′ |= π(KG), which contradicts the assumption thatM is an
MKNF model of π(KG). Hence, M |= ¬KB, so M |= rG and, consequently,
M |= π(K). Furthermore, assume that an MKNF interpretation M ′′ ⊃ M
exists such that M ′′ |= π(K). Clearly, M ′′ |= π(KG), which contradicts the
assumption that M is an MKNF model of π(KG). Hence, M is an MKNF
model of π(K). Because M 6|= ψ, we have π(K) 6|=MKNF ψ.

Lemma 4.6 holds because we ground the rules with respect to the Her-
brand universe of K. In 2.2, we assume that the description logic DL corre-
sponds to a function-free fragment of first-order logic. Namely, the Herbrand
universe would become infinite if we introduced even just one function sym-
bol. This would make KG infinite, so we could not use grounding as a
preprocessing step in the reasoning algorithms from Section 7.

Strictly speaking, Definition 4.5 does not generalize the notion of first-
order DL-safety from [27], because it requires each variable in the rule to
occur in a K-atom in the rule body. We use such a definition to simplify the
presentation. Namely, first-order DL-safe rules can always be considered to
be a part of the DL knowledge base O. In this paper we are interested in
nonmonotonic reasoning, for which we need rules with modal operators in
the head and body.
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4.3 Flat vs. Nonflat Rules

Definition 4.2 allows an MKNF rule to contain both modal and nonmodal
atoms. In this way, we obtain a formalism that generalizes most known
approaches for combining DLs with rules. However, we now show that we
can consider only flat rules without loss of generality. Namely, each rule can
be written in the following form:

∀x : [
∨
Hi ∨

∨
KHj ∨ ¬

∧
Bk ∨ ¬

∧
KBm ∨ ¬

∧
notBn]

Now π(KG) is MKNF equivalent with Kπ(KG) and, since all rules are inter-
preted conjunctively, the outer occurrence of K can be distributed to each
rule. Hence, the above rule is equivalent to the following formula:

K ∀x : [
∨
Hi ∨

∨
KHj ∨ ¬

∧
Bk ∨ ¬

∧
KBm ∨ ¬

∧
notBn]

We can switch the order of K and ∀, which produces the following formula:

∀x : K[
∨
Hi ∨

∨
KHj ∨ ¬

∧
Bk ∨ ¬

∧
KBm ∨ ¬

∧
notBn]

We can extract the objective part of the formula outside the outer occurrence
of K to obtain the following formula:

∀x : [K(
∨
Hi ∨ ¬

∧
Bk) ∨

∨
KHj ∨ ¬

∧
KBm ∨ ¬

∧
notBn]

Finally, we can introduce a new name Q for
∨
Hi ∨ ¬

∧
Bk and obtain the

following flat MKNF rule and a first-order definition:

∀x : [KQ ∨
∨

KHj ∨ ¬
∧

KBm ∨ ¬
∧

notBn]
∀x : [Q ≡

∨
Hi ∨ ¬

∧
Bk]

Now the definition for Q is a first-order formula so, assuming that it is
allowed in the fragment DL, it can be added to the DL knowledge base O. In
practical cases, our rule will be DL-safe, so we can ground it; then, the for-
mula

∨
Hi∨¬

∧
Bk is ground and can be interpreted as a first-order DL-safe

rule [27]. It is well-known that first-order DL-safe rules can combined with
any description logic without losing decidability in a straightforward way.
Hence, the above transformation allows us to reduce reasoning with nonflat
DL-safe rules in description logic DL to reasoning with flat DL-safe rules
in description logic DL′ obtained by extending DL with first-order DL-safe
rules. Since a decision procedure for DL′ can be obtained in a straightfor-
ward way from a decision procedure for DL [34], this transformation allows
us to consider only flat rules in the following sections.

The presented transformation also shows why DL-safety requires each
variable to occur in a body K-atom. Namely, if some variable occurs only
in a nonmodal atom, this atom will occur in the disjunction

∨
Hi ∨ ¬

∧
Bk

which, as shown previously, can be removed from the rule.
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4.4 Relationship with DL+log

Several approaches for extending DLs with nonmonotonic rules were pre-
sented recently in [34, 35] and were generalized in [36] to a formalism called
DL+log. We now show that hybrid MKNF knowledge bases are able to
capture the semantics of DL+log knowledge bases. To make this paper self
contained, we recall first the definition of DL+log.

The signature Σ of a DL+log knowledge base is divided into a set of
concept names ΣC , role names ΣR, and datalog predicates ΣD. The predi-
cates from ΣC ∪ ΣR are called DL-predicates and the predicates from ΣD are
called non-DL-predicates. The atoms of DL+log are function-free first-order
atoms defined as usual; they are called DL-atoms or non-DL-atoms depend-
ing on the type of the predicate. A DL+log knowledge base K = (O,P) con-
sists of a description logic knowledge base O expressed in some first-order
fragment DL and a set of rules P of the following form:

P1 ∨ . . . ∨ Pn ← R1, . . . , Rm, S1, . . . , Sk,notU1, . . . ,notUh(22)

The atoms Pi are allowed to be either DL- or non-DL-atoms, the atoms Ri
and Ui are required to be non-DL-atoms, and the atoms Si are required to
be DL-atoms. DL+log generalizes known first-order extensions of DLs with
rules such as CARIN [23], so reasoning with it is trivially undecidable. To
obtain decidability, in [36] the author introduces the notion of weak safety :
a rule r of form (22) is weakly safe if every variable from some atom Pi
occurs in at least one of the non-DL-atoms Ri. To allow comparing DL+log
to hybrid MKNF knowledge bases, we also extend the definition of DL-
safety to DL+log rules: a rule r of form (22) is DL-safe if every variable
from r occurs in at least one of the non-DL-atoms Ri. Clearly, weak safety
generalizes the notion of DL-safety.

Like MKNF knowledge bases, DL+log employs the standard names as-
sumption in the definition of the semantics: the interpretation 4 corre-
sponds one-to-one with a countably infinite set of constants C of the signa-
ture. The presentation in [36] is not explicit about the treatment of equality;
however, to achieve compatibility with standard semantics of DLs, it is nec-
essary to adopt an approach similar to ours and treat ≈ as a DL-predicate
that is interpreted as a congruence in each model over 4.
DL+log comes with two types of semantics. The first-order (FOL) se-

mantics is obtained by interpreting each rule of the form (22) as the following
first-order implication, where x is the set of free variables of the rule:

∀x : P1 ∨ . . . ∨ Pn ⊂ R1 ∧ . . . ∧Rm ∧ S1 ∧ . . . ∧ Sk ∧ ¬U1 ∧ . . . ∧ ¬Uh(23)

To define the nonmonotonic (NM) semantics, the following standard def-
initions for datalog programs are needed. For PG a ground datalog program
and I an interpretation, the GL-reduct of PG with respect to I, written
GL(PG, I) is obtained by transforming each rule r ∈ PG as follows:
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• Delete r if it contains a negated atom notBi such that I |= Bi;

• Delete all negated body atoms notBi such that I 6|= Bi.

An interpretation I is a model of a ground datalog program PG without
not-atoms if it satisfies the rules of PG when these are interpreted as impli-
cations (23); I is a minimal model if no interpretation I ′ ⊂ I is a model of
PG. For a ground datalog program PG possibly containing not-atoms, an
interpretation I is a stable model if it is the minimal model of GL(PG, I).

We now define the NM semantics of DL+log. Let gr(P) be the ground
program obtained by replacing in each rule from P all variables with con-
stants from 4 in all possible ways. For I an interpretation and Σ a set of
predicates, IΣ is the interpretation obtained by restricting I to the predi-
cates in Σ; furthermore, for PG a ground program, Π(PG, I) is the projection
of PG with respect to I and Σ is equal to the set of rules obtained by trans-
forming each rule r ∈ PG as follows:

• Delete r if a head atom Hi with a predicate from Σ exists in r such
that I |= Hi;

• Delete each head atom Hi with a predicate from Σ if I 6|= Hi;

• Delete r if a body atom Bi with a predicate from Σ exists in r such
that I 6|= Bi;

• Delete each body atom Bi with a predicate from Σ if I |= Hi.

Now I is a NM model of a DL+log knowledge base K if it is a FOL model
of K and IΣD

is a stable model of Π(gr(P), IΣC∪ΣR
).

We now show that each DL+log knowledge base can be embedded into
an equisatisfiable hybrid MKNF knowledge base.

Definition 4.7. Let µ be a mapping of possibly negated DL+log atoms to
MKNF atoms as follows: ( i) for A a DL-atom, µ(A) = A; ( ii) for A a
non-DL-atom, µ(A) = KA; and ( iii) for notA a negated non-DL-atom,
µ(notA) = notA. For r a DL+log rule, µ(r) is the MKNF rule obtained
by applying µ to each atom of r. For P a set of DL+log rules, µ(P) is the
set of MKNF rules obtained by applying µ to each rule r ∈ P. Finally, for
K = (O,P) a DL+log knowledge base, µ(K) = (O, µ(P)).

Theorem 4.8. A DL+log knowledge base K = (O,P) is NM satisfiable if
and only if the MKNF knowledge base µ(K) is satisfiable.

Proof. By the definition of universal quantification in DL+log and MKNF,
our claim trivially follows from the following property (*): KG = (O,PG) is
NM satisfiable if and only if the MKNF knowledge base µ(KG) is satisfiable,

24



where PG = gr(P). We next prove (*). For a ground rule r ∈ PG, with rDL
we denote the rule obtained from r by deleting all non-DL-atoms.

(⇒) Assume that K is satisfiable in a model I. Let M be the maximal
set of first-order interpretations over 4 satisfying the following conditions:

• If I |= rDL for some r ∈ PG, then J |= rDL for each J ∈M ;

• If I 6|= rDL for some r ∈ PG, then J 6|= rDL for at least one J ∈M ;

• If I |= A for some non-DL-atom A, then J |= A for each J ∈M ;

• If I 6|= A for some non-DL-atom A, then J 6|= A for at least one J ∈M ;

• J |= O for each J ∈M .

The set M is not empty since it contains the interpretation I. Furthermore,
for each ground non-DL-atom A, we have I |= A if and only if M |= KA if
and only if M 6|= notA; similarly, for each r ∈ PG, we have M |= µ(rDL) if
and only if I |= rDL. Clearly, M |= µ(r) for each r ∈ PG. By the definition of
M , we have M |= O, so M |= µ(K). To show that M satisfies the preference
semantics of MKNF, assume that an MKNF interpretation M ′ ⊃ M exists
such that (J ′,M ′,M) |= π(O) ∧ π(µ(PG)) for some J ′ ∈M . Let J be an
interpretation that coincides with J ′ on the DL-atoms but, for each non-
DL-atom A, we have I |= A if and only if M ′ |= KA. Clearly, J |= O. Since
M ′ ⊃M , we have J ⊂ I. Furthermore, it is easy to see that J |= GL(PG, I),
which contradicts the assumption that I is an NM model of PG.

(⇒) Assume that µ(KG) is satisfiable in an MKNF model M . Let I ′

be any interpretation from M (note that M is not empty), and let I be an
interpretation that coincides with I ′ on the DL-atoms but, for each non-DL-
atom A, we have I |= A if and only if M |= KA. Similarly as in the previous
paragraph, it is easy to see that I |= r for each r ∈ PG and, by the definition
of M , we have I |= O. Assume now that an interpretation J ⊂ I exists such
that J |= GL(PG, I). In exactly the same way as this was done for M and I
in the (⇒) direction, we can construct an MKNF interpretation M ′ from J
and show that (J,M ′,M) |= µ(K). Since J ⊂ I, we have M ′ ⊃M , but this
contradicts the assumption that M is an MKNF model of µ(KG).

Hence, hybrid MKNF knowledge bases with mixed atoms in the rules
semantically generalize DL+log rules, regardless of any safety condition. If
DL+log rules are DL-safe, the corresponding MKNF rules are also DL-safe;
furthermore, as shown in Section 4.3, rules with mixed atoms can be con-
verted to rules with only modal atoms. Hence, the results from this paper
provide an alternative reasoning algorithms for DL-safe DL+log. Further-
more, we believe it is possible to extend our approach to handle weakly safe
rules are well; to work out the details will be the part of our future work.

Note that our approach has a significant advantage over DL+log: it
allows DL-atoms to occur under modalities, so nonmonotonic reasoning can

25



Table 2: A Hybrid MKNF Knowledge Base about Cities
(24) historicCity v ∃hasChurch.church Historic cities have churches.
(25) church v ∃designedBy.architect Churches are designed by architects.

(26)
K famousCitizen(x, z)←

K hasChurch(x, y),K designedBy(y, z),
KO(x),KO(y),KO(z)

Architects are famous citizens in cities
where they build their churches.

(27) ∃famousCitizen.> v interestingCity Cities with famous people are interesting.
(28) historicCity(Barcelona) Barcelona is a historic city.
(29) hasChurch(Barcelona,SagradaFamilia) The famous church in Barcelona...
(30) designedBy(SagradaFamilia,Gaudi) ...was designed by Antonio Gaudi.
(31) seasideCity v ∃hasRegion.beach Seaside cities have a beach.
(32) beach v recreational Beaches are for recreation.
(33) ∃hasRegion.recreational ≡ livableCity Livable cities provide for recreation.
(34) portCity(Barcelona) Barcelona is a city with a port.
(35) portCity(Hamburg) Hamburg is a city with a port.
(36) ¬seasideCity(Hamburg) Hamburg is not a seaside city.

(37)
KDesignOK (x)← K designedBy(x, y),

KO(x),KO(y)
Auxiliary for the following rule.

(38)← K church(x),notDesignOK (x),KO(x) Each church must have an architect.
(39) church(HolyFamily) Holy Family is a church.
(40) HolyFamily ≈ SagradaFamilia Definition of synonyms.
(41) ¬seasideCity ≡ notSC An atomic name for ¬seasideCity.

(42)
K seasideCity(x)←

K portCity(x),notnotSC (x),KO(x)
Port cities are usually at the seaside.

(43)
KSuggest(x)←

K livableCity(x),K historicCity(x)
Suggest to visit livable and historic cities.

(44) ¬livableCity ≡ notLivableCity An atomic name for ¬livable.

(45)
KConsider(x)←

notnotLivableCity(x),KO(x)
Take cities that are not known to be

unlivable into consideration as well.
Note: DL-predicates start with a lowercase, and non-DL-predicates with an uppercase
letter. There is an assertion O(α) for each object α.

be applied equally to DL- and non-DL-atoms. Thus, in DL+log one cannot
state that “all birds fly but penguins are an exception,” which is easily
possible with hybrid MKNF knowledge bases.

5 Example

At first glance, our proposal may seem to be difficult to use and understand.
However, we believe MKNF rules to be quite intuitive: just read KA as “A
is known to hold” and notA as “is it possible for A not to hold.” We
demonstrate this on the following example. Imagine a system helping us to
decide where to go on holiday using the tourism ontology K from Table 2.

The impact of DL-safety is demonstrated by axioms (24)–(27). By (24)
and (25), each historic city α has at least one church β, which has at least
one architect γ. By (26), γ is a famous citizen of α so, by (27), α is an
interesting city. Now if (26) were a normal (non-DL-safe, first-order) rule,
one might perform this inference for any individuals α, β, and γ, which
would thus imply K |= historicCity v interestingCity . However, (26) is DL-
safe—all variables occur in an atom with the predicate O. Hence, it is
applicable only to the individuals known in the ABox by name, and not to
those introduced by the existential quantifier, so we cannot conclude that
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interestingCity subsumes historicCity . Note that (26) could be stated in
SROIQ [21] (a DL that allows for certain types of role chaining and inclu-
sion axioms), and this would correctly imply the subsumption relationship.

Whereas DL-safety usually restricts the subsumption inferences, it typ-
ically has less impact on ABox query answering. Namely, (28)–(30) specify
the names of a church in Barcelona and its architect. All variables in (26) can
be bound to known individuals, so K |= famousCitizen(Barcelona,Gaudi);
by (27), we derive K |= interestingCity(Barcelona). Hence, DL-safety is a
compromise that provides for ABox query answering at the expense of some
subsumption inferences if expressivity beyond SROIQ is needed, but with-
out losing decidability. DL-safety is crucial for nonmonotonic reasoning:
without it, most nonmonotonic logics with existential quantification are not
even semidecidable.

Consider an integrity constraint requiring that an architect should be
explicitly specified for each explicitly mentioned church. One might intu-
itively write the rule ← K church(x),not designedBy(x, y),KO(x),KO(y)
(paraphrased as “it is an error to have a known church without a known
designer”). However, this rule is incorrect: all variables in rules are univer-
sally quantified, so this rule requires each church to be connected through
designedBy to each other object. To formulate the integrity constraint cor-
rectly, we introduce the auxiliary rule (37) which projects the variable y from
designedBy(x, y), and then use the result in (38) to identify the churches
without a designer.

Nonmonotonic formalisms usually assume UNA. Let us for the moment
assume that K does not contain (40). We would then intuitively expect
(38) to be violated, since the designer of HolyFamily has not been specified.
However, without UNA, K would be satisfiable in a model where HolyFamily
and SagradaFamilia are interpreted as the same object. In fact, HolyFamily
might become equal to any other object, so not could not any more be
intuitively read as “assumed not to hold.” The semantics of not without
UNA is counterintuitive, so nonmonotonic formalisms usually assume it.

In contrast, many DLs do not require UNA, but allow explicit equality
statements to define synonyms. To overcome this difference, we adopt a
special approach in defining the semantics of hybrid MKNF knowledge bases.
Roughly speaking, we assume UNA at the level of MKNF to ensure that not
has an intuitive semantics; however, at the level of DL, we consider ≈ to
be interpreted as a congruence relation. This subjects ≈ to nonmonotonic
reasoning just like any other predicate, so two individuals are assumed to be
equal only if this there is evidence for doing so. Returning to our example,
we make HolyFamily and SagradaFamilia synonyms by (40), which then
makes (38) satisfied for (30) and (39).

Rule (42) asserts the common-sense knowledge that port cities are usu-
ally at the seaside, allowing us to conclude K |= seasideCity(Barcelona).
However, (42) allows for exceptions: the atom notnotSC (x) basically says
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“if not proven not to be at the seaside.” (Axiom (41) is needed because only
atomic concepts can occur in the rules.) By (36), Hamburg is an exception (it
is located on the river Elbe), so the conclusion K |= seasideCity(Hamburg)
of (42) is suppressed, as it would lead to contradiction.

The rule (43) is intended as a query that suggests which cities to visit.
Even though the conclusion seasideCity(Barcelona) was derived by non-
monotonic reasoning, it implies further conclusions through monotonic rea-
soning. Namely, (31)–(33) imply K |= livableCity(Barcelona), which is de-
rived by standard DL reasoning involving unnamed individuals (introduced
by ∃hasRegion.Beach). Hence, K |= Suggest(Barcelona).

Finally, (45) shows how negation-as-failure of logic programming is lay-
ered over open-world semantics of description logics. Intuitively, MKNF per-
forms open- and closed-world inferences “in parallel.” For example, the con-
clusions K 6|= livableCity(Hamburg) and K 6|= ¬livableCity(Hamburg) hold
according to the usual DL semantics. By reformulating these questions with
closed-world interpretation in mind, we get K |= not livableCity(Hamburg)
(Hamburg is not known to be livable) and K |= notnotLivable(Hamburg)
(Hamburg is not known not to be livable either). Hence, (45) allows to
conclude Consider(Hamburg)—even though we do not know for sure that
Hamburg is a livable city, we do not know the opposite either, so it might
still be worth a visit. Intuitively speaking, the DL part of K is interpreted
under open-world semantics; however, K and not allow the user to put
on “closed-world glasses” and examine the nonmonotonic consequences of
the DL part. By using these consequences in rules, one can enforce new
nonmonotonic conclusions.

6 Reasoning with Modally Closed MKNF Formu-
lae

We develop algorithms for reasoning with hybrid MKNF knowledge bases in
two stages. In this section, we define general algorithms capable of handling
various types of modally closed MKNF formulae. In Section 7 we specialize
these general algorithms to the types of formulae obtained by translating
hybrid MKNF knowledge bases.

We present five different algorithms for reasoning with different types of
modally closed MKNF formulae because all these cases differ in the com-
plexity of reasoning. The first algorithm handles flat MKNF formulae, the
second one handles positive MKNF formulae, the third one handles positive
nondisjunctive MKNF formulae, the fourth one handles stratified nondis-
junctive MKNF formulae, and the fifth one handles nonstratified nondis-
junctive MKNF formulae.
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Our algorithms are closely related to the algorithms for propositional
MBNF [32] and for MBNF(K) [33]—an MBNF-based extension of multi-
modal logics for knowledge and belief.

6.1 Overview

Before presenting the algorithms, we briefly discuss the basic principles be-
hind them. Satisfiability of some formula is usually demonstrated by con-
structing a model of the formula. However, an MKNF modelM of an MKNF
formula σ is a set of first-order interpretations, and is as such infinite. For
a practical algorithm, we need an appropriate finite representation of M .

A possible solution is not to represent M directly, but to compute a first-
order formula ϕ such that M is exactly the set of first-order models of ϕ; this
is usually written as M = {I | I |= ϕ}. As shown in [8], this is not possible
in general; however, this is possible for the modally closed subset of MKNF,
which we consider in this paper. Similarly as this was done in [32, 33], we
show that ϕ is uniquely defined through a partition (P,N) of modal atoms
of σ into positive and negative ones. The formula ϕ then corresponds to the
objective knowledge, written obP , and it can be computed from the atoms
chosen to be positive in a straightforward way.

For different fragments of MKNF, we can adopt different strategies for
computing (P,N). For flat formulae, we must guess such a partition. Since
modal atoms of σ are general first-order formulae, not each partition will
make sense. For example, let σ = K[p ∧ (p ⊃ r)] ∧ [K r ⊃ K s]. Observe
that p ∧ (p ⊃ r) |= r, so assuming that K[p ∧ (p ⊃ r)] is positive and K r is
negative is inconsistent. Therefore, we eliminate guesses which lead to such
inconsistencies. Furthermore, we check whether σ is true when its modal
atoms are replaced with their values in (P,N). Finally, we need to ensure
that the model defined by the objective knowledge contained in the partition
satisfies the MKNF preference semantics. For this, we try to guess another
partition which also defines a model.

For the (stratified and nonstratified) nondisjunctive fragment of MKNF,
we show that we can construct the objective knowledge in a bottom-up
fashion, much like this is done in ordinary datalog. In this way we can
eliminate unnecessary guessing and obtain better complexity results.

6.2 The General Case

Definition 6.1. Let σ be a flat modally closed MKNF formula. The set of
K-atoms of σ, written KA(σ), is the smallest set containing ( i) all modal
atoms K ξ occurring in σ, and ( ii) an atom K ξ for each modal atom not ξ
occurring in σ.

Let P and N be disjoint sets of modal atoms. With σ[K, P,N ] we de-
note the formula obtained by replacing each strict occurrence of a modal
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atom K ξ in σ with true if K ξ ∈ P , and with false if K ξ ∈ N . Similarly,
with σ[not, P,N ] we denote the formula obtained by replacing each strict
occurrence of a modal atom not ξ in σ with true if K ξ ∈ N , and with false
if K ξ ∈ P . Finally, with σ[P,N ] we denote σ[K, P,N ][not, P,N ].

We comment on a technical difference between Definition 6.1 and similar
definitions in [32, 33]. Here, we represent the values of all modal atoms by
considering only K-atoms; that is, the value of a negative modal atom not ξ
is represented by the value of the dual positive modal atom K ξ. This makes
the presentation somewhat simpler and it eliminates obviously inconsistent
partitions (such as choosing both K a and not a to be true).

We now define the objective knowledge implicit in a set of K-atoms P :

Definition 6.2. The objective knowledge of a set P of flat modally closed
K-atoms is the following first-order formula:

obP =
∧

Kξ∈P

ξ

We now establish a link between sets of first-order interpretations and a
partition of a set of K-atoms.

Definition 6.3. A set of first-order interpretations M induces a partition
(P,N) of a set of flat modally closed K-atoms S if K ξ ∈ P implies M |= K ξ
and K ξ ∈ N implies M 6|= K ξ.

The following corollary follows immediately from Definition 6.3 and the
definition of satisfiability of an MKNF formula in an MKNF structure:

Corollary 6.4. Let σ be a flat modally closed MNKF formula, M an MKNF
interpretation, and (P,N) a partition of KA(σ) induced by M . Then, for
each I ∈M , we have (I,M,M) |= σ if and only if σ[P,N ] = true.

We now show that obP characterizes the MKNF models of σ:

Lemma 6.5. Let σ be a flat modally closed MNKF formula, M an MKNF
model of σ, and (P,N) a partition of KA(σ) induced by M . Then, M is
equal to the set of interpretations M ′ = {I | I |= obP }.

Proof. Let I be any interpretation from M . The set M induces the partition
(P,N) so, for each K ξ ∈ P , we haveM |= K ξ, which implies I |= ξ. Clearly,
I |= obP , which proves M ⊆M ′.

To show that M ′ = M , assume that M ′ \M contains an interpretation
I ′. Then, for each K ξ ∈ P , by Definition 6.2, we have (I ′,M ′,M) |= K ξ.
Furthermore, for each K ξ ∈ N , because M induces the partition (P,N), we
have M 6|= K ξ, so, because M ⊂M ′, we have (I ′,M ′,M) 6|= K ξ as well. For
each not-atom, (I ′,M ′,M) |= not ξ if and only if (I ′,M,M) |= not ξ. Since
σ is flat, its value in (I ′,M ′,M) is completely defined by the values of the
modal atoms. Hence, (I ′,M ′,M) |= σ, which contradicts the assumption
that M is an MKNF model of σ.
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We now identify the partitions of KA(σ) which are not contradictory:

Definition 6.6. A partition (P,N) of a set of flat modally closed K-atoms
S is consistent if K ξ ∈ N implies obP 6|= ξ.

The following properties follow immediately from the definition of con-
sistency:

Corollary 6.7. Let (P,N) be a consistent partition of a set of flat modally
closed K-atoms S, and let M = {I | I |= obP }. Then, K ξ ∈ P if and only
if M |= K ξ if and only if M 6|= not ξ—that is, (P,N) is the partition of S
induced by M .

Corollary 6.8. Each partition (P,N) of a set of flat modally closed K-
atoms S induced by a set of first-order interpretations M is consistent.

We now define what it means to evaluate some modally closed MKNF
formula ψ in a partition (P,N) of K-atoms. Note that the following defin-
ition allows ψ to contain nested occurrences of modal operators, as well as
modal atoms not occurring in P or N .

Definition 6.9. Let P be a set of flat modally closed K-atoms. A flat
modally closed atom K ξ evaluates to true in P if and only if obP |= ξ;
similarly, a flat modally closed atom not ξ evaluates to true in P if and
only if obP 6|= ξ. The value of nested modally closed atoms is defined by
exhaustively replacing each flat modal subatom with its value in P . The value
of a modally closed MKNF formula ψ in P , written ψ[P ], is the formula
obtained by replacing each strict modal atom of ψ with its value in P .

Lemma 6.10. Let P be a set of flat modally closed K-atoms, ψ a modally
closed MKNF formula, and M = {I | I |= obP }. Then, (I,M,M) |= ψ for
each I ∈M if and only if obP |= ψ[P,N ].

Proof. By a straightforward induction on the depth of the modal atoms in
ψ, one can show that each modal atom K ξ (not ξ) from ψ evaluates to true
if and only if M |= K ξ (M |= not ξ). Hence, for each I ∈ M , we have
(I,M,M) |= ψ if and only if (I,M,M) |= ψ[P,N ], which now immediately
implies the claim of the lemma.

The procedure not-entails(σ, ψ) for checking whether σ 6|=MKNF ψ is given
in Algorithm 1.

Theorem 6.11. For a flat modally closed MKNF formula σ and a modally
closed MKNF formula ψ, the algorithm not-entails(σ, ψ) returns true if and
only if σ 6|=MKNF ψ.
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Algorithm 1 Checking Entailment in Flat MKNF
Algorithm: not-entails(σ, ψ)
Input:
σ: a flat modally closed MKNF formula
ψ: a modally closed MKNF formula (not necessarily flat)

Output:
true if σ 6|=MKNF ψ; false otherwise

if a partition (P,N) of KA(σ) exists such that
1. σ[P,N ] evaluates to true, and

2. obP is satisfiable, and

3. ¬ξ ∧ obP is satisfiable for each K ξ ∈ N , and

4. for σ′ = σ[not, P,N ] and each partition (P ′, N ′) of P such that N ′ 6= ∅
(a) σ′[P ′, N ∪N ′] evaluates to false, or
(b) obP ′ is unsatisfiable, or
(c) ¬ξ ∧ obP ′ is unsatisfiable for some K ξ ∈ N ′

and

5. obP ∧ ¬ψ[P ] is satisfiable
then return true; otherwise return false

Proof. (⇒) If not-entails(σ, ψ) returns true, a partition (P,N) of KA(σ) sat-
isfying conditions (1)–(5) exists. We show that M = {I | I |= obP } is an
MKNF model of σ. By Condition (2), M is not empty. By Condition (3),
(P,N) is consistent, so it defines the truth of the modal atoms in σ by Corol-
lary 6.7. By Condition (1) and Corollary 6.4, (I,M,M) |= σ for each I ∈M .
To verify that M satisfies the preference semantics of MKNF, assume that
M ′ ⊃ M exists such that (I ′,M ′,M) |= σ for each I ′ ∈M ′. Then, M ′ in-
duces a partition (P ′′, N ′′) of KA(σ), which is consistent by Corollary 6.8.
Since M ′ 6= M , clearly (P ′′, N ′′) 6= (P,N). Because M ′ ⊃ M , we have that
M ′ |= K ξ impliesM |= K ξ for each modal atom K ξ, which implies P ′′ ⊂ P .
Hence, (P ′′, N ′′) can be equivalently represented by a partition (P ′, N ′) of
P with N ′ 6= ∅. By Lemma 6.5, M ′ = {I | I |= obP ′}, which, together with
Corollary 6.7, implies that (P ′, N ∪N ′) defines the truth of the modal atoms
occurring in σ′. By Corollary 6.8, (P ′, N ∪N ′) is consistent, which falsifies
Condition (c). Because M ′ 6= ∅, obP ′ is satisfiable, which falsifies Condition
(b). Furthermore, (I ′,M ′,M) |= σ for each I ′ ∈M ′, so (I ′,M ′,M) |= σ′ for
each I ′ ∈M ′ as well. By Corollary 6.4, σ′[P ′, N ∪N ′] = true, which falsifies
Condition (a). By assumption, Condition (4) is satisfied for all partitions
(P ′, N ′) of P , so such M ′ cannot exist—that is, M is an MKNF model of
σ. By Condition (5), obP 6|= ψ[P ], so, by Lemma 6.10, (I,M,M) 6|= ψ for
some I ∈M . We therefore conclude σ 6|=MKNF ψ.

(⇐) If σ 6|=MKNF ψ, then an MKNF model M of σ exists such that
M 6|= ψ, and it induces a partition (P,N) of KA(σ). By Corollary 6.8,
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(P,N) is consistent, which validates Condition (3). By Lemma 6.5, we
have M = {I | I |= obP }, which, together with Corollary 6.7, implies that
(P,N) defines the truth of the modal atoms occurring in σ. Furthermore,
(I,M,M) |= σ for each I ∈M implies σ[P,N ] = true by Corollary 6.4, which
validates Condition (1). Since M 6= ∅, obP is satisfiable, which validates
Condition (2). Since M 6|= ψ, by Lemma 6.10, obP 6|= ψ[P ], which vali-
dates Condition (5). It remains to show that Condition (4) is also vali-
dated. Assume that Condition (4) is falsified. Then, a partition (P ′, N ′)
of P with N ′ 6= ∅ exists for which conditions (a)–(c) are falsified. Let
M ′ = {I | I |= obP ′}. Since (P,N) 6= (P ′, N ∪ N ′), clearly M ′ 6= M . By
Condition (b), M ′ 6= ∅. By Condition (c), (P ′, N ∪N ′) is consistent, so it
defines the truth values of modal atoms in σ′ by Corollary 6.7. By Con-
dition (a), σ′[P ′, N ∪N ′] = true, so, by Corollary 6.4, (I ′,M ′,M) |= σ′ and
(I ′,M ′,M) |= σ for each I ′ ∈ M ′. Since P ′ ⊂ P , clearly obP ′ |= obP , so
M ′ ⊃M . Hence, M is not an MKNF model of σ, which is a contradiction.
Thus, Condition (4) is satisfied and not-entails(σ, ψ) returns true.

From the proof of Theorem 6.11 we can see that, if not-entails(σ, ψ)
returns true, then it yields a partition (P,N) such that M = {I | I |= obP }
is the MKNF model of σ invalidating ψ. We next estimate the complexity
of the algorithm.

Theorem 6.12. Assuming that the satisfiability of first-order formulae in
Algorithm 1 is decidable with complexity C, the complexity of the algorithm
not-entails(σ, ψ) is in EE , where E = NP if E ⊆ NP, and E = C otherwise.

Proof. A partition (P,N) can be guessed in time polynomial in |σ|, Con-
dition (1) can be checked in polynomial time, and Conditions (2) and (3)
can be verified by a polynomial number of calls to an oracle running in C;
hence, these actions can be performed in E . Consider now Condition (4).
A partition (P ′, N ′) can be guessed in polynomial time, Condition (a) can
be checked in polynomial type, and Conditions (b)–(c) can be falsified by a
polynomial number of calls to an oracle running in C; hence, these actions
can be performed in E . Thus, Condition (4) can be verified by an oracle run-
ning in coE . Finally, computing ψ[P ] requires |ψ| calls to an oracle running
in C, and checking Condition (5) requires another call to an oracle running
in C. Hence, the entire algorithm runs in EE .

6.3 The Positive Case

As we show next, the algorithm from the previous section can be simplified
for checking entailment of a positive modal atom from a positive MKNF
formula. Note that the following lemma holds for an arbitrary positive
MKNF formula (not necessarily flat or modally closed).
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Algorithm 2 Checking Entailment in Positive Flat MKNF
Algorithm: not-entails+(σ,Kψ)
Input:
σ: a flat modally closed MKNF formula
ψ: a closed first-order formula

Output:
true if σ 6|=MKNF Kψ; false otherwise

if a partition (P,N) of KA(σ) exists such that
1. σ[P,N ] evaluates to true, and

2. obP is satisfiable, and

3. ¬ξ ∧ obP is satisfiable for each K ξ ∈ N , and

4. obP ∧ ¬ψ is satisfiable
then return true; otherwise return false

Lemma 6.13. A positive MKNF formula σ is MKNF satisfiable if and only
if it is S5 satisfiable. Furthermore, σ |=MKNF Kψ if and only if σ |=S5 Kψ,
for a first-order formula ψ.

Proof. (Claim 1.) The (⇒) direction follows immediately from the definition
of MKNF models. For the (⇐) direction, simply observe that, for each S5
model M , a maximal interpretation M ′ ⊇ M exists such that M ′ |= σ.
Since σ is positive, M ′ is an MKNF model of σ. Hence, to check MKNF
satisfiability of σ, it suffices to find any S5 model of σ.

(Claim 2.) The (⇐) direction follows immediate from the definition of
MKNF models. For the (⇒) direction, assume that σ 6|=S5 ψ; hence, an S5
model M of σ exists such that I 6|= ψ for some I ∈M . Since σ is positive, it
has an MKNF model M ′ such that M ′ ⊇M . Clearly, I ∈M ′, so M ′ 6|= Kψ
and σ 6|=MKNF ψ.

Based on this lemma, for a flat positive modally closed MKNF formula
σ and a first-order formula ψ, we define the not-entails+(σ,Kψ) as shown
in Algorithm 2. The following claim follows immediately from Lemma 6.13:

Theorem 6.14. For a flat modally closed MKNF formula σ and a closed
first-order formula ψ, the algorithm not-entails+(σ,Kψ) returns true if and
only if σ 6|=MKNF Kψ. Assuming that the satisfiability of first-order for-
mulae in Algorithm 2 is decidable in C, the complexity of the algorithm
not-entails+(σ,Kψ) is in E, where E = NP if E ⊆ NP, and E = C otherwise.

Proof. (Claim 1.) From the proof of Theorem 6.11, one can see that Con-
dition (4) of not-entails(σ,Kψ) ensures that a model induced by a partition
(P,N) of KA(σ) satisfies the preference semantics of MKNF. By eliminat-
ing this condition, we make the algorithm not-entails+(σ,Kψ) check for
S5 satisfiability, which, by Lemma 6.13, can be used to check entailment
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σ 6|=MKNF Kψ. Note that ψ is a first-order formula, so Condition (4) is a
simplification of Condition (5) of not-entails(σ,Kψ).

(Claim 2.) A partition (P,N) can be guessed in time polynomial in |σ|,
Condition (1) can be checked in polynomial time, Conditions (2) and (3) can
be verified by a polynomial number of calls to an oracle running in C, and
Condition (4) can be verified by one call to an oracle running in C. Hence,
all conditions can be checked in E .

6.4 The Positive Nondisjunctive Case

We now turn our attention to positive nondisjunctive MKNF programs.
Namely, such programs are either MKNF unsatisfiable, or they are MKNF
satisfiable in a single MKNF model that corresponds to the least fixpoint of
a certain operator. We show that positive nondisjunctive MKNF programs
can have at most one MKNF model.

Lemma 6.15. Let σ be a positive nondisjunctive MKNF program. If M1

and M2 are sets of interpretations such that M1 |= σ and M2 |= σ, then
M1 ∪M2 |= σ as well.

Proof. Consider a rule r ∈ σ of the form (1). If M1 ∪ M2 6|= KB+
i for

some 1 ≤ i ≤ n, then clearly M1 ∪M2 |= r. Assume now that r is such
that M1 ∪M2 |= KB+

i for each 1 ≤ i ≤ n. Because M1 ⊆ M1 ∪M2 and
M2 ⊆M1∪M2, clearlyM1 |= KB+

i andM2 |= KB+
i , for each 1 ≤ i ≤ n. By

assumption that M1 |= r and M2 |= r, we get M1 |= KH and M2 |= KH.
But then, M1 ∪M2 |= KH, so M1 ∪M2 |= r as well.

The previous lemma immediately implies the following theorem:

Theorem 6.16. Each MKNF satisfiable positive nondisjunctive MKNF pro-
gram σ has exactly one MKNF model.

Proof. Assume that M1 and M2 are MKNF models of σ and that M1 6= M2.
Let M = M1 ∪M2; obviously, M1 ⊂ M and M2 ⊂ M . By Lemma 6.15,
M |= σ, which contradicts the assumption that M1 and M2 are MKNF
models of σ.

Hence, an MKNF satisfiable positive MKNF program σ has a unique
model, which, by Lemma 6.5, can be represented by a partition (P,N) of
KA(σ). We now show how to compute this partition in a deterministic way.

35



Definition 6.17. For σ a positive nondisjunctive MKNF program, let Rσ,
Dσ, and Tσ be the operators defined on the subsets of KA(σ) as follows:

Rσ(S) = S ∪ {KH | σ contains a rule of the form (1) such that
KB+

i ∈ S for each 1 ≤ i ≤ n}

Dσ(S) = {K ξ | K ξ ∈ KA(σ) and obS |= ξ}

Tσ(S) = Rσ(S) ∪Dσ(S)

Intuitively, Rσ(S) computes the immediate consequences of S with re-
spect to the rules of σ, and Dσ(S) computes the immediate consequences of
S with respect to the objective knowledge accumulated in S. We point out
a small technical difference in the definition of Rσ to the usual case. For
ordinary datalog, it suffices to define Rσ(S) as the set of head atoms of the
rules whose body atoms are satisfied in S—that is, it is not necessary to
explicitly append S to the result set. In our case, however, the operators Rσ
and Dσ interact. The operator Dσ(S) may derive facts that do not occur
in the rules, so the definition of Rσ merely ensures that these facts are not
lost by computing the consequences of the rules. This ensures S ⊆ Rσ(S),
which we use extensively in our proofs. Furthermore, S ⊆ Dσ(S) by the
definition of Dσ.

Observe that, for S a set of modal atoms such that obS is unsatisfiable,
Dσ(S) = KA(σ). The following property of Tσ is easy to prove:

Lemma 6.18. The operator Tσ(S) is monotone on the lattice of subsets of
KA(σ)—that is, S ⊆ S′ implies Tσ(S) ⊆ Tσ(S′), for each S, S′ ⊆ KA(σ).

Proof. Observe that, if KH ∈ Rσ(S), then either (i) KH ∈ S, but then
KH ∈ Rσ(S′) holds trivially, or (ii) σ contains a rule of the form (1) such
that KB+

i ∈ S for all 1 ≤ i ≤ n, but then KB+
i ∈ S′ for all 1 ≤ i ≤ n,

so KH ∈ Rσ(S′) as well. Hence, Rσ is monotone. Monotonicity of Dσ

holds trivially because obS =
∧

K ξ∈S ξ implies each of the conjuncts ξ. Now
monotonicity of Rσ and Dσ implies monotonicity of Tσ as well.

Hence, Tσ is a monotone operator on a complete lattice of the subsets
of KA(σ), so, by the well-known Knaster-Tarski’s theorem, it has a unique
least fixpoint, which we denote with Tωσ . As usual, Tωσ can be computed by
setting S0 = ∅ and computing Si = Tσ(Si−1) for i > 0; since KA(σ) is finite,
after some finite number n we shall have Sn = Sn+1 = . . . = Tωσ . We next
show the following two properties:

Lemma 6.19. Let σ be a positive nondisjunctive MKNF program with an
MKNF model M , and let (P,N) be the partition of KA(σ) induced by M .
Then, Tσ(P ) = P .
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Proof. By Corollary 6.8, the partition (P,N) is consistent, meaning that
there is no K ξ ∈ N such that obP |= ξ; in other words, Dσ(P ) = P . Fur-
thermore, P is exactly the subset of KA(σ) that is true in M so, since M
satisfies all rules from σ, we have Rσ(P ) ⊆ P . Furthermore, P ⊆ Rσ(P )
holds by the definition of Rσ, so we conclude that Rσ(P ) = P . Clearly, this
implies Tσ(P ) = P .

Lemma 6.20. Let σ be a positive nondisjunctive MKNF program, P a sub-
set of KA(σ) such that Tσ(P ) = P , and M = {I | I |= obP }. Then, M |= σ.

Proof. Tσ(P ) = P implies Rσ(P ) ⊆ P and Dσ(P ) ⊆ P . Furthermore,
P ⊆ Rσ(P ) by the definition of Rσ, so Rσ(P ) = P ; similarly, P ⊆ Dσ(P )
by the definition of Dσ, so Dσ(P ) = P . Now, Dσ(P ) = P implies that the
partition (P,KA(σ) \ P ) is consistent so, by Corollary 6.7, P is exactly the
set of modal atoms from KA(σ) that are true in M . But then, Rσ(P ) = P
implies that all rules from σ are satisfied in M , so M |= σ.

We are now ready to present the main result of this subsection:

Theorem 6.21. Let σ be a positive nondisjunctive MKNF program. Then,
the following claims hold for M = {I | I |= obTω

σ
}:

• If M 6= ∅, then M is the single MKNF model of σ.

• If σ has an MKNF model, then this model is equal to M .

Proof. (Claim 1.) Assume that M 6= ∅. Tωσ is a fixpoint of Tσ, so M |= σ
by Lemma 6.20. To show that M is an MKNF model of σ, we must show
that it satisfies the preference semantics of MKNF. Assume that a set of
interpretations M ′ exists such that M ′ ⊃M and M ′ |= σ. Then, M ′ induces
a partition (P ′, N ′) of KA(σ). By Lemma 6.19, Tσ(P ′) = P ′. Furthermore,
M ′ ⊃M implies that, for each K ξ ∈ KA(σ), if M ′ |= K ξ, then M |= K ξ as
well, so P ′ ⊂ P , which now contradicts the assumption that P = Tωσ is the
least fixpoint of Tσ. Hence, M is an MKNF model of σ, and it is unique by
Theorem 6.16.

(Claim 2.) Assume that σ has an MKNF model M ′. Then, M ′ induces
a partition (P ′, N ′) of KA(σ), for which Tσ(P ′) = P ′ by Lemma 6.19. We
now show that P ′ is the least fixpoint of Tσ. Assume that there is some
P ′′ ⊂ P ′ such that Tσ(P ′′) = P ′′, and let M ′′ = {I | I |= obP ′′}. By Lemma
6.20, M ′′ |= σ; moreover, M ′′ ⊃M ′, which now contradicts the assumption
that M ′ is an MKNF model of σ. Hence, P ′ = Tωσ . But then, M ′ = M by
Lemma 6.5.

By Lemma 6.10, it is clear that σ |=MKNF ψ for some modally closed
MKNF formula ψ if and only if obTω

σ
|= ψ[Tωσ ]. We now estimate the com-

plexity of our algorithm.
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Theorem 6.22. Let σ be a positive nondisjunctive MKNF program. Assum-
ing that the entailment of first-order formulae encountered while computing
Tωσ is decidable in C, the complexity of computing Tωσ is in PC.

Proof. The fixpoint of Tσ is reached after at most |KA(σ)| iterations: in the
worst case, exactly one new atom is appended to the set of consequences
in each iteration. Consider now the complexity of each iteration. Rσ(Si−1)
can be computed by checking, for each rule r ∈ σ, whether the body atoms
of r are contained in Si−1; obviously, this requires time polynomial in |K|.
Furthermore, computing Dσ(Si−1) requires checking whether obSi−1 |= ξ for
each K ξ ∈ KA(σ), and it can be performed by a linear number of calls to
an oracle running in C. Since the number of iterations is linear in |σ|, the
algorithm runs in PC .

6.5 The Stratified Nondisjunctive Case

We now extend the results from the previous section to include a class of
stratified nondisjunctive programs. Such programs are allowed to contain
not-atoms; however, the rules of the program can be separated in strata,
each of which can be evaluated separately. The following definition gen-
eralizes the notion of stratification of datalog programs to hybrid MKNF
knowledge bases.

Definition 6.23. Let σ be a nondisjunctive MKNF program and λ : σ → N+

a function assigning to each rule r ∈ σ a positive integer λ(r). For an integer
k and ./ ∈ {<,≤, >,≥}, let head(σ)./k = {head(r) | r ∈ σ and λ(r) ./ k}.
We say that λ is a stratification of σ if the following conditions hold for
each rule r ∈ σ:

• for each Kϕ ∈ body+(r), each P ⊆ head(σ)≤λ(r) such that obP 6|= ϕ,
and each P ′ ⊆ head(σ)>λ(r), either obP∪P ′ 6|= ϕ or obP∪P ′ is unsatis-
fiable;

• for each notϕ ∈ body−(r), each P ⊆ head(σ)<λ(r) such that obP 6|= ϕ,
and each P ′ ⊆ head(σ)≥λ(r), either obP∪P ′ 6|= ϕ or obP∪P ′ is unsatis-
fiable.

The program σ is stratified if a stratification λ of σ exists. A stratifi-
cation λ partitions σ into strata σi = {r | λ(r) = i}; the sequence of strata
σ1, . . . , σn is often identified with λ and is also called a stratification.

The conditions of Definition 6.23 ensure that, when evaluating a stratum
σi, the values of all not-atoms in σi have already been computed, and that
evaluating any subsequent stratum will not change the values of any K-
and not-atoms from any stratum σj with j ≤ i. For ordinary datalog
programs, a stratification is defined by the strongly connected components
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of the dependency graph associated with the program. However, MKNF
programs can contain arbitrary first-order formulae as atoms, which makes
checking stratification more difficult. Consider the following program σ:

K(p ∨ q) ⊂ not p(46)
K(¬q) ⊂ K(p ∨ q)(47)

The dependency graph of σ, build as usual by treating modal atoms as
being “opaque,” would suggest a stratification in which (46) comes before
(47). By evaluating the rules in this order, we get the following result: the
body of (46) is satisfied, so we derive K(p ∨ q); this satisfies the body of
(47), so we derive K(¬q) as well. Thus, the objective knowledge is now
(p ∨ q) ∧ ¬q, which is equivalent to p. However, the body of (46) is not
satisfied any more, so the model M = {I | I |= p} is not minimal. In fact,
Algorithm 1 shows that σ has no MKNF models.

Checking stratification can be difficult in general; however, it can be done
using syntactic means for certain natural classes of nondisjunctive MKNF
programs. For example, in case DL is propositional logic, σ is stratified if
it is stratified in the usual sense (by treating modal atoms to be “opaque”)
and, furthermore, each propositional letter from the head of some rule from
stratum i occurs in neither in the heads of rules from strata j > i nor in not-
atoms in the bodies of the rules from strata j ≥ i. Also, stratification can
be checked as usual when the MKNF program contains only non-DL-atoms
in the heads (if DL allows for equality, then unique name assumption is
additionally required). This is an important case because it allows defining
constraints over DL knowledge bases.

We now show that a model for a stratified MKNF program σ can be
computed by processing strata sequentially.

Definition 6.24. For a stratification σ1, . . . , σk of an MKNF program σ,
the sequence of subsets U0, . . . , Uk of KA(σ) is inductively defined as U0 = ∅
and, for 0 < i ≤ k, Ui = Tωχi

where χi = Ui−1 ∪ σ′i and σ′i is obtained from
σi by replacing each atom not ξ with its value in Ui−1. Finally, Uωσ = Uk.

We now show that the partition (Uωσ ,KA(σ) \ Uωσ ) induces the MKNF
model of a stratified program σ. Before doing so, we prove the following
auxiliary lemma, which shows that a model of a positive nondisjunctive
program can be represented only using the head atoms of the rules:

Lemma 6.25. Let σ be a satisfiable positive nondisjunctive MKNF program.
Furthermore, let M be an MKNF model of σ inducing a partition (P,N) of
KA(σ). Finally, let P ′ be the subset of the modal atoms of P that occur in
the head of a rule from σ. Then, M is equal to M ′ = {I | I |= obP ′}.

Proof. Because P ′ ⊆ P , clearly M ⊆M ′. Assume now that M ⊂M ′ and
consider a rule r ∈ σ; clearly, M |= r. If M |= K ξ for K ξ the head atom of
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r, since P ′ ⊆ P , we have M ′ |= K ξ as well, so M ′ |= r. If the head atom of
r is false in M , then there is a body atom K ξ of r such that M 6|= K ξ, but
then, M ′ 6|= K ξ as well, so M ′ |= r. Thus, we get M ′ |= σ, which contradicts
the assumption that M is an MKNF model of σ.

Theorem 6.26. Let σ be a stratified nondisjunctive MKNF program and Uωσ
be computed as specified in Definition 6.24 using any stratification. Then,
the following claims hold for M = {I | I |= obUω

σ
}:

• If M 6= ∅, then M is an MKNF model of σ.

• If σ has an MKNF model, then this model is equal to M .

Proof. Let σ1, . . . , σk be the stratification of σ used to compute Uωσ , χi as in
Definition 6.24, ζi =

⋃
j≤i σj , and Mi = {I | I |= obUi} for 0 ≤ i ≤ k. Each

χi is a positive nondisjunctive program so, by Theorem 6.16, it has at most
one MKNF model that corresponds to Mi by Theorem 6.21.

Assume that Mi 6= ∅ and consider an atom Kϕ occurring in the body
of a rule from ζi−1. Clearly, Mi−1 |= Kϕ implies Mi |= Kϕ. Assume now
that Mi−1 6|= Kϕ and Mi |= Kϕ. Let U ′i−1 be the subset of Ui−1 contain-
ing only the atoms occurring in the head of some rule in χi; by Lemma
6.25, Mi−1 = {I | I |= obU ′

i−1
}, so obU ′

i−1
6|= ϕ. Let (P,N) be the partition

of KA(σ) induced byMi, and let P ′ be the subset of P containing those atoms
that occur in a head of a rule from σ; by Lemma 6.25, Mi = {I | I |= obP ′},
so obP ′ |= ϕ. Since Mi−1 ⊆ Mi, we have U ′i−1 ⊆ P ′, so σ is not stratified,
which is a contradiction. Hence, the following property (*) holds: the value
of all K-atoms and not-atoms occurring in a rule from χi−1 is the same in
Mi−1 and Mi if Mi 6= ∅. In a similar way, one can show that the following
property (**) holds as well: the value of all not-atoms occurring in a rule
in σi is the same in Mi−1 and Mi if Mi 6= ∅. Finally, the following property
(***) is trivial: for Kϕ an atom occurring in the head of a rule from χi−1,
Mi 6|= Kϕ implies Mi−1 6|= Kϕ.

We now prove the two claims of this theorem inductively for each ζi and
its corresponding Mi. The induction basis for i = 0 is trivial, so we consider
the inductive step.

(Claim 1.) Assume that Mi 6= ∅. Clearly, Mi−1 6= ∅ as well so, by
induction assumption, Mi−1 is an MKNF model of ζi−1. By the properties
(*) and (***), Mi |= ζi−1. Furthermore, by the property (**), Mi |= σi
if and only if Mi |= σ′i. Hence, Mi |= ζi. Assume now that an MKNF
interpretation M ′′i exists such that M ′′i |= ζi and M ′′i ⊃ Mi. But then,
M ′′i |= χi, which contradicts the fact that Mi is an MKNF model of χi.
Hence, Mi is an MKNF model of ζi.

(Claim 2.) Assume that ζi has an MKNF model M ′′i . By the property
(**), M ′′i is an MKNF model of χi, but then the partition of KA(σ) induced
by M ′′i is (Ui,KA(σ) \ Ui). Hence, M ′′i = Mi.
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By Lemma 6.10, it is clear that σ |=MKNF ψ for some modally closed
MKNF formula ψ if and only if obUω

σ
|= ψ[Uωσ ]. We now estimate the

complexity of our algorithm.

Theorem 6.27. Let σ be a stratified nondisjunctive MKNF program. As-
suming that the entailment of first-order formulae encountered while com-
puting Tωσi

for each stratum σi is decidable in C, the complexity of computing
Uωσ is in PC.

Proof. For each stratum σi, the set Tωσi
can be computed in PC by Theorem

6.22. The formula σ′i can be computed by a linear number of calls to the
oracle running in C. Finally, the number of strata of σ is linear in |σ|, so Uωσ
can be computed with complexity PC .

The following lemma is useful for estimating complexity of entailment of
negative facts from stratified MKNF programs:

Lemma 6.28. Let σ be a stratified MKNF program and ψ a closed first-
order formula. Then, σ |=MKNF ¬Kψ if and only if σ is MKNF unsatisfiable
or σ 6|=MKNF Kψ.

Proof. Both directions are trivial if σ is MKNF unsatisfiable, so we as-
sume that σ has a (unique) MKNF model M . For the (⇒) direction, if
σ |=MKNF ¬Kψ, then M |= ¬Kψ, so M 6|= Kψ and σ 6|=MKNF Kψ. For the
(⇐) direction, σ 6|=MKNF Kψ implies M 6|= Kψ, which implies M |= ¬Kψ;
since M is the only model of σ, we have σ |=MKNF ¬Kψ.

6.6 The Nonstratified Nondisjunctive Case

We now consider the case when σ is a nondisjunctive program for which
a stratification cannot be found. For such programs, one still needs to
guess the partition (P,N) to determine the objective knowledge; however,
σ[not, P,N ] is a positive nondisjunctive MKNF program, which allows to
check the minimality condition as explained in Section 6.4, possibly leading
to lower complexity. This idea is reflected in Algorithm 3.

Theorem 6.29. For σ a nonstratified nondisjunctive MKNF program and
ψ a modally closed MKNF formula, nondisjunctive-not-entails(σ, ψ) returns
true if and only if σ |=MKNF ψ. Assuming that the satisfiability of first-order
formulae in Algorithm 3 is decidable in C, the complexity of the algorithm
nondisjunctive-not-entails(σ, ψ) is in EPC

, where E = NP if E ⊆ NP, and
E = C otherwise.

Proof. (Claim 1.) From the proof of Theorem 6.11, one can see that Con-
dition (4) of not-entails(σ, ψ) ensures that a model induced by a partition
(P,N) of KA(σ) satisfies the preference semantics of MKNF. Since σ is a
flat formula, this is equivalent to checking whether M = {I | I |= obP } is
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Algorithm 3 Checking Entailment in Nondisjunctive MKNF Programs
Algorithm: nondisjunctive-not-entails(σ, ψ)
Input:
σ: a nonstratified nondisjunctive modally closed MKNF formula
ψ: a modally closed MKNF formula (not necessarily flat)

Output:
true if σ 6|=MKNF ψ; false otherwise

if a partition (P,N) of KA(σ) exists such that
1. σ[P,N ] evaluates to true, and

2. obP is satisfiable, and

3. ¬ξ ∧ obP is satisfiable for each K ξ ∈ N , and

4. Tω
σ′ = P for σ′ = σ[not, P,N ] and

5. obP ∧ ¬ψ[P ] is satisfiable
then return true; otherwise return false

an MKNF model of σ′ = σ[not, P,N ]. Since σ′ is a positive nondisjunctive
program, its only model corresponds to Tωσ′ by Theorem 6.21. Thus, (P,N)
satisfies the preference semantics of MKNF if and only if Tωσ′ = P .

(Claim 2.) A partition (P,N) can be guessed in time polynomial in |σ|,
Condition (1) can be checked in polynomial time, Conditions (2) and (3)
can be verified by a polynomial number of calls to an oracle running in C,
ψ[P ] can be computed by a polynomial number of calls to an oracle running
in C, and satisfiability of obP ∧¬ψ[P ] can be computed by an additional call
to the oracle. By Theorem 6.22, Condition (4) can be checked in P C , so the
whole algorithm runs in EPC

.

7 Reasoning with Hybrid Knowledge Bases

In this section, we apply the techniques from Section 4 to obtain algorithms
for reasoning with a hybrid MKNF knowledge base K. In particular, we
show how to check various conditions of the algorithms from Section 4 using
standard DL inferences of knowledge base satisfiability and knowledge base
entailment. Thus, the results from this section show how to build a reasoner
for hybrid MKNF knowledge bases on top of any DL reasoner.

7.1 The General Case

Let K be a DL-safe flat hybrid MKNF knowledge base and ψ a formula of
the form (¬)KA with A a ground atom, for which we want to check whether
K |= ψ. The formula π(K) need not be modally closed, so we cannot ap-
ply the algorithm not-entails(π(K), ψ) directly. Therefore, we first compute
KG—the ground instantiation of K—which, since K is DL-safe, entails the
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same set of ground MKNF formulae as K by Lemma 4.6. The size of KG
can be exponentially larger than the size of K. However, this is already the
case for datalog [6] and disjunctive datalog under stable model semantics
[11], both of which are included in our logic: checking satisfiability of non-
ground (disjunctive) programs more complex than for ground (disjunctive)
programs by an exponential factor. Therefore, in the following sections, we
do not consider combined complexity, but focus on data complexity : for a
hybrid MKNF knowledge base K = (O,P), data complexity is measured in
the size of the ABox of O and the number of facts in P.

For σ = π(KG), we check whether σ |=MKNF ψ using not-entails(σ, ψ).
To satisfy Condition (1) of the algorithm, any partition (P,N) of KA(σ)
must be such that Kπ(O) ∈ P ; similarly, to falsify Condition (a), any par-
tition (P ′, N ′) must be such that Kπ(O) ∈ P ′. Hence, we can set Kπ(O)
to be true in advance and consider only partitions (P,N) of the remaining
modal atoms; we denote this set with KA(K) = KA(σ) \ {Kπ(O)}. Clearly,
KA(K) contains only ground K-atoms. The objective knowledge of a par-
tition (P,N) of KA(K) is then given by the following formula, where ξ are
positive ground atoms:

obP = π(O) ∧
∧

K ξ∈P
ξ

To simplify the notation, in the following presentation we identify PG with
π(PG); hence, by saying “PG[P,N ] evaluates to true” we actually mean
“π(PG)[P,N ] evaluates to true.”

For a set of K-atoms S, let Ŝ = {ξ | K ξ ∈ S}, and let SDL and ŜDL
denote the subset of the DL-atoms from S and Ŝ, respectively. Assuming
that DL supports ABoxes (which is the case for most practically relevant
DLs), P̂DL can be considered a DL ABox. All atoms from P̂ are positive,
so DL is not required to support negative ABox assertions. Hence, obP can
be rewritten as follows:

obP = π(O ∪ P̂DL) ∧
∧

K ξ∈P\PDL

ξ

Since
∧

K ξ∈P\PDL
ξ is a conjunction of positive non-DL-atoms, it can-

not affect the satisfiability of obP or the entailment of DL-atoms from
it. However, π(O ∪ P̂DL) can affect the entailment of non-DL-atoms from
obP : for example, if O |= a ≈ b, then a non-DL-atom Q(b) is actually
a synonym for the non-DL-atom Q(a), so a partition (P,N) such that
KQ(a) ∈ P and KQ(b) ∈ N is inconsistent. Therefore, to ensure consis-
tency of (P,N), we check whether, for each KQ(a1, . . . , an) ∈ N \NDL and
KQ(b1, . . . , bn) ∈ P \ PDL, for some 1 ≤ i ≤ n we have O ∪ P̂DL 6|= ai ≈ bi;
if this is so, then Q(a1, . . . , an) and Q(b1, . . . , bn) are not synonyms, so the
partition (P,N) is consistent.

The procedure not-entails-DL(K, ψ) is presented in Algorithm 4.
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Algorithm 4 Reasoning with General Hybrid Knowledge Bases
Algorithm: not-entails-DL(K, ψ)
Input:
K = (O,P): a DL-safe flat hybrid MKNF knowledge base
ψ : a formula of the form (¬)KA where A is a ground atom

Output:
true if K 6|= ψ; false otherwise

let KG be the ground instantiation of K w.r.t. OK
if a partition (P,N) of KA(KG) ∪ {KA} exists such that

1. PG[P,N ] evaluates to true, and

2. O ∪ P̂DL is satisfiable, and

3. O ∪ P̂DL 6|= ξ for each K ξ ∈ NDL, and

4. for each KQ(a1, . . . , an) ∈ N \ NDL and KQ(b1, . . . , bn) ∈ P \ PDL, we
have O ∪ P̂DL 6|= ai ≈ bi for some 1 ≤ i ≤ n

5. for γ = PG[not, P,N ] and each partition (P ′, N ′) of P such that N ′ 6= ∅
(a) γ[P ′, N ∪N ′] evaluates to false, or

(b) O ∪ P̂ ′
DL is unsatisfiable, or

(c) O ∪ P̂ ′
DL |= ξ for some K ξ ∈ N ′

DL, or
(d) for some KQ(a1, . . . , an) ∈ N ′\N ′

DL and KQ(b1, . . . , bn) ∈ P ′\P ′
DL,

we have O ∪ P̂ ′
DL |= ai ≈ bi for all 1 ≤ i ≤ n

and

6. one of the following conditions holds:

(i) ψ = KA and KA 6∈ P , or
(ii) ψ = ¬KA and KA ∈ P

then return true; otherwise return false
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Theorem 7.1. Let K = (O,P) be a DL-safe flat hybrid MKNF knowl-
edge base and ψ = (¬)KA for A a ground atom. Then, the algorithm
not-entails-DL(K, ψ) returns true if and only if K 6|= ψ. Furthermore, as-
suming that the entailment of ground DL-atoms in DL is decidable with data
complexity C, the data complexity of the algorithm is in EE , where E = NP
if E ⊆ NP, and E = C otherwise.

Proof. (Claim 1.) By Lemma 4.5, K 6|= ψ if and only if KG 6|= ψ. From the
discussion from this section, it is clear that Conditions (1), (2), (3)–(4), (5),
and (6) of not-entails-DL(K, ψ) correspond to Conditions (1), (2), (3), (4)
and (5) of not-entails(π(KG), ψ), respectively. Note that the partition (P,N)
determines the value of KA because it is a partition of KA(K) ∪ {KA};
hence, obP |= A if and only if KA ∈ P . The claim of this theorem now
follows from Theorem 6.11.

(Claim 2.) If the size of nonground rules in PG is bounded, KG can be
computed in polynomial time. Now the proof of the second claim of this
theorem is completely analogous to the proof of Theorem 6.12.

7.2 The Positive Case

As discussed in Section 6.3, entailment in MKNF coincides with entailment
in S5 for positive formulae, which allows the reasoning algorithm to find any
S5 model, and not necessarily a minimal one. Hence, for a positive hybrid
MKNF knowledge base K, checking whether K 6|= KA can be performed by
an algorithm not-entails-DL+(K,KA), which is the same as the algorithm
not-entails-DL(σ, ψ) without Condition (5).

Theorem 7.2. Let K = (O,P) be a positive DL-safe flat hybrid MKNF
knowledge base and A a ground atom. Then, not-entails-DL+(K,KA) re-
turns true if and only if K 6|= KA. Furthermore, assuming that the entail-
ment of ground DL-atoms in DL is decidable with data complexity C, the
data complexity of the algorithm is in E, where E = NP if E ⊆ NP, and
E = C otherwise.

Proof. Both claims follow from Theorems 6.13 and 7.1.

7.3 The Positive Nondisjunctive Case

For the case when K is a positive nondisjunctive DL-safe hybrid MKNF
knowledge base, we can apply the ideas from the previous section to the
algorithm for positive nondisjunctive MKNF programs from Section 6.4.

Definition 7.3. For K a positive nondisjunctive DL-safe hybrid MKNF
knowledge base, let RK, DK, and TK be the operators defined on the subsets
of KA(K) as follows:
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RK(S) = S ∪ {KH | KG contains a rule of the form (1) such that
KBi ∈ S for each 1 ≤ i ≤ n}

DK(S) = {K ξ | K ξ ∈ KA(K) and O ∪ ŜDL |= ξ}∪
{KQ(b1, . . . , bn) | KQ(a1, . . . , an) ∈ S \ SDL and

O ∪ ŜDL |= si ≈ bi for 1 ≤ i ≤ n}

TK(S) = RK(S) ∪DK(S)

With TωK we denote the least fixpoint of TK on KA(K).

An analogous algorithm for ordinary datalog does not require ground-
ing the rules before applying the algorithm. The same holds for the rules
component of a nondisjunctive hybrid MKNF knowledge base K—the value
of RK(S) could be computed using nonground rules exactly as this done for
ordinary datalog. Unfortunately, computing DK(S) involves examining all
atoms from KA(K), which requires at least computing all possible instan-
tiations of atoms from P. Because grounding seems inevitable, we do not
formulate RK(S) in a more general way to keep the presentation simple.

It is easy to see that TK(S) corresponds to Tσ(S) for σ = π(KG), which
leads us to the following theorem:

Theorem 7.4. Let K be a positive nondisjunctive DL-safe hybrid MKNF
knowledge base. Then, the following claims hold for M = {I | I |= O ∪ T̂ωK}:

• If M 6= ∅, then M is the single MKNF model of K.

• If K has an MKNF model, then this model is equal to M .

Assuming that the entailment of ground DL-atoms in DL is decidable
with data complexity C, the data complexity of computing TωK is in PC.

Proof. Follows immediately from Theorems 6.21 and 6.22.

Clearly, for A a ground atom, K |= KA if and only if O ∪ T̂ωK |= A, and
K |= ¬KA if and only if O ∪ T̂ωK 6|= A.

7.4 The Stratified and the Nonstratified Cases

Let K be a not necessarily positive nondisjunctive DL-safe hybrid MKNF
knowledge base. In general, checking whether K is stratified may be quite
complicated. As explained in Section 6.5, in stratified programs, deriving
a K-atom by a rule in a stratum i should not affect the values of modal
atoms in strata below i. Given a general DL knowledge base O, this might
be quite difficult. Furthermore, if DL allows for equality (e.g., by allowing
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number restrictions), such an analysis cannot be performed just by means of
concept and role names from O: it is always possible that an atom derived
by a rule in some stratum makes O derive new equalities that change the
value of the atoms from lower strata.

If K employs the unique name assumption or DL does not employ equal-
ity, and the rules from P do not contain DL-predicates in the head, then the
rules of K are “layered on top” of O, so their stratification can be checked
as usual [1]. This case is particularly important because it allows to define
constraints over DL knowledge bases.

An algorithm for computing the set of K-atoms following from a strati-
fied nondisjunctive DL-safe hybrid MKNF knowledge base K can be defined
in a straightforward way analogously to Definition 6.24, whose correctness
and complexity can be proved as in Theorem 6.26 and Lemma 6.27.

Similarly, an algorithm for computing the set of K-atoms following from
a nonstratified nondisjunctive DL-safe hybrid MKNF knowledge base K can
be defined in a straightforward way analogously to Algorithm 3, whose cor-
rectness and complexity can be proved as in Theorem 6.29.

8 Data Complexity

We now investigate the data complexity of checking entailment of ground lit-
erals for hybrid MKNF knowledge bases—that is, the complexity measured
in the size of the ABox of the DL knowledge base and the number of facts in
the MKNF program. To present a precise characterization, we must make
assumptions about the data complexity of checking entailment of ground
literals in the underlying fragment DL. In [20], it was shown that checking
entailment of ground atoms in many very expressive DLs, such as SHIQ, is
data complete for coNP; furthermore, there are expressive fragments, such
as Horn-SHIQ [20] or DL-lite [5], which are data complete for P. Therefore,
we analyze the complexity of MKNF knowledge bases for these two cases.
To estimate the impact of adding a DL knowledge base to logic programs,
we also contrast these results with the well-known results for logic programs
without a DL knowledge base.

Table 3 summarizes the results for complexity of checking K |= ψ, for
ψ = (¬)KA with A a ground atom. In some cases, the complexity differs
depending on whether ψ = KA or ψ = ¬KA, so we then present both
results. All results are completeness results. In the following sections we
prove the results from the table.

8.1 Positive Nondisjunctive Programs

For DL = ∅ and DL ∈ P, the polynomial lower bound follows from P-
hardness of ordinary datalog [6], and the upper bound follows from Theorem
7.4 and the fact that PP = P.
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Table 3: Data Complexity of Entailment Checking for Hybrid MKNF KBs

∨ not DL = ∅ DL ∈ P DL ∈ coNP
1 no no P P coNP
2 no stratified P P ∆p

2

3 no yes coNP coNP Πp
2

4 yes no coNP/Πp
2 coNP/Πp

2 coNP/Πp
2

5 yes yes Πp
2 Πp

2 Πp
2

Consider now DL ∈ coNP. The coNP lower bound of entailment is
inherited from entailment in DL. For a positive ground atom KA, the
coNP upper bound follows from Theorem 7.2. Finally, by Lemma 6.28,
K |= ¬KA if either K is unsatisfiable or K 6|= KA; by Theorem 7.2, both
checks can be performed in coNP.

8.2 Stratified Nondisjunctive Programs

For DL = ∅ and DL ∈ P, the polynomial lower bound is inherited from the
case of stratified datalog, and the upper bound follows from Theorem 6.27
and the fact that PP = P.

Consider now DL ∈ coNP. The coNP upper bound is an immediate
consequence of Theorem 6.27, and for the lower bound, we give a hardness
proof next. We consider only the case of positive atoms because, by Lemma
6.28, entailment of negative atoms can be reduced to checking entailment of
positive atoms. Furthermore, it is sufficient to consider DL to be the logic of
disjunctive datalog rules interpreted under first-order semantics: entailment
in such a logic is data complete for coNP, so any other logic DL′ in which
entailment is data complete for coNP can be polynomially reduced to DL.

Theorem 8.1. Let DL be the logic of disjunctive datalog interpreted under
first-order semantics, K a stratified nondisjunctive hybrid MKNF knowledge
base, and A a ground atom. Then, the problem of checking whether K |= KA
is ∆p

2-hard w.r.t. data complexity.

Proof. The proof is by a reduction from DAGS(SAT) [17]. An instance of
DAGS(SAT) is a triple D = 〈Var , G, ϕR〉 with the following properties:

• LVar = {v1, . . . , vn} is the set of linking variables.

• G = 〈V,E〉 is a direct acyclic graph in which the vertices are proposi-
tional formulae—that is, V = {ϕ1, . . . , ϕn}. Each ϕi is associated with
a unique linking variable vi. Furthermore, ϕi should contain the link-
ing variable vj corresponding to each ϕj such that (ϕj , ϕi) ∈ E; also,
ϕi can contain private variables not appearing in any other formula.
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• ϕR ∈ V is a distinguished result node.

Given a DAGS(SAT) instance D, a valuation ν : LVar → {true, false}
is defined inductively as follows: ν(vi) = true if and only if the propositional
formula ϕ′i, obtained by replacing in ϕ the linking variables with their values
under ν, is satisfiable (since G is a direct acyclic graph, this induction is
correctly defined). Now DAGS(SAT) is the problem of deciding whether
ν(ϕR) = true, and it is known to be ∆p

2-complete [17].
Without loss of generality, we can assume that each formula ϕi is of the

form

ϕi =
∧
j

ωi,j(48)

where ωi,j has one of the following forms:

u ≡ u1 ∧ u2(49)
u ≡ u1 ∨ u2(50)
u ≡ ¬u1(51)

Namely, a general propositional formula ϕi can be brought into the form
(48) by iteratively replacing each nonatomic subformula of ϕi with a fresh
propositional variable, and by introducing an explicit definition of the form
(49), (50), or (51) for that variable. For each formula ϕi, with uϕi we denote
a private variable corresponding to the translation of ϕi into the form (48)
and with vi we denote the linking variable corresponding to ϕi. Thus, vR
is the linking variable that corresponds to ϕR. Furthermore, with PVar we
denote the set of all private variables used in D.

For an instanceD of DAGS(SAT), we construct a hybrid MKNF knowl-
edge base KD = (OD,PD) as follows. We add to OD the following axioms:

T (x) ∨ F (x)← PVar(x)(52)
← T (x) ∧ F (x)(53)

T (x)← and(x, y, z), T (y), T (z)(54)
T (y)← and(x, y, z), T (x)(55)
T (z)← and(x, y, z), T (x)(56)
T (x)← or(x, y, z), T (y)(57)
T (x)← or(x, y, z), T (z)(58)

T (y) ∨ T (z)← or(x, y, z), T (x)(59)
F (y)← not(x, y), T (x)(60)
T (x)← not(x, y), F (y)(61)
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For each u ∈ PVar , we add to OD the following fact:

PVar(u)(62)

For each ωi,j occurring in a formula ϕi, we include into OD a fact (63) if
ωi,j is of the form (49), a fact (64) if ωi,j is of the form (50), and a fact (65)
if ωi,j is of the form (51):

and(u, u1, u2)(63)
or(u, u1, u2)(64)

not(u, u1)(65)

For each ϕi ∈ V , we add to PD a fact of the following form:

K formula(uϕi , vi)(66)

Finally, we add to PD the following rules:

KT (y)← K formula(x, y),notF (x)(67)
KF (y)← K formula(x, y),KF (x)(68)

Clearly, |KD| is linear in |D|. Furthermore, the nonground rules in KD
are fixed for any D, so the size of the ground instantiation KDG of KD
is polynomial in |D|; since KD is DL-safe, KDG |= KT (vR) if and only if
KD |= KT (vR) by Lemma 4.6. In computing the ground instantiation of
KD, it suffices to instantiate the rules (67) and (68) only for those values
x = uϕi and y = vi for which a fact (66) occurs in PD: all other instantiations
are clearly true in any model of KD. We denote such an instantiation of KD
with K′D; clearly, K′D |= KT (vR) if and only if KD |= KT (vR).

Consider now any first-order interpretation I. The axioms (52)–(53)
and (62) ensure that, for each u ∈ PVar , either I |= T (u) or I |= F (u),
but not both. Intuitively, I |= T (u) means that u is assigned the value true,
and I |= T (u) means that u is assigned the value false. The axioms (54)–
(61) ensure that the truth values for formulae of the form (49)–(51) are
propagated in I according to the standard semantics of the propositional
connectives.

Let MD be an MKNF model containing all first-order interpretations
I satisfying (52)–(62) and (66) such that I |= T (vi) if ν(vi) = true and
I |= F (vi) if ν(vi) = false. We now show that MD is an MKNF model
of K′D. Since D is acyclic, there is a sequence of formulae ϕ0, ϕ1, . . . , ϕn
such that the linking variables in each formula ϕi correspond to formulae
ϕj that precede ϕi in the sequence. Consider now the formula ϕ0 without
any linking variables.
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• If ν(v0) = true, then ϕ0 is satisfiable. MD contains a first-order in-
terpretation I for each truth assignment of private variables of ϕ0, so
I 6|= F (uϕ0) for some I ∈ MD, and MD |= notF (uϕ0). But then, the
rule (67) instantiated for x = uϕ0 and y = v0 is clearly satisfied, since
MD |= KT (v0).

• If ν(v0) = false, then ϕ0 is unsatisfiable. MD contains a first-order
interpretation I for each truth assignment of private variables of ϕ0,
so I |= F (uϕ0 for each I ∈ MD, and MD |= KF (uϕ0). But then, the
rule (68) instantiated for x = uϕ0 and y = v0 is clearly satisfied, since
MD |= KF (v0).

By inductively considering all remaining formulae ϕi in the sequence, we
can see that MD satisfies all the rules from P ′D (and it satisfies O′D by the
assumption). To show that MD is an MKNF model of K′D, consider any
M ′D ⊃MD; now such a model would necessarily invalidate either O′D, some
fact (66), the head of a ground instance of (67), or the head of a ground
instance of (68). Hence, MD is indeed an MKNF model of K′D.

In a completely analogous way one can show that MD is the only MKNF
model of K′; furthermore, the previous proof shows that K′D is stratified.
Since |K′D| is polynomial in |D|, the claim of this theorem follows.

8.3 Nonstratified Nondisjunctive Programs

For DL = ∅ and DL ∈ P, the coNP lower bound follows from coNP-hardness
of answering queries in nondisjunctive programs with nonstratified negation
under stable model semantics [6]. The upper bound follows from Theorem
6.29 and the fact that NPP

P
= NPP = NP.

For DL ∈ coNP, the Πp
2 upper bound follows immediately from Theorem

7.1. For the lower bound, we consider the case when DL is the logic of
disjunctive datalog rules interpreted under first-order semantics, which is
data complete for coNP.

Theorem 8.2. Let DL be the logic of disjunctive datalog interpreted under
first-order semantics, K a stratified nondisjunctive hybrid MKNF knowledge
base, and A a ground atom. Then, checking whether K 6|= ¬KA is Σp

2-hard
w.r.t. data complexity.

Proof. The proof is by a reduction from 2-QBF—the problem of checking
validity of a QBF ϕ = ∃x1, . . . , xn∀y1, . . . , ym : ψ for ψ a propositional
formula—which is known to be Σp

2-hard [37]. As in the proof of Theorem
8.1, without loss of generality we can assume that ψ is of the form

∧
i ωi,

where each ωi is of the form (49)–(51); with uψ we denote the propositional
variable corresponding to ψ under this encoding. With PVar we denote the
set of all propositional variables of ψ, and let XVar = {x1, . . . , xn}.
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For an arbitrary 2-QBF ϕ, we construct a hybrid MKNF knowledge base
Kϕ = (Oϕ,Pϕ) as follows. We add to Oϕ the axioms (52)–(61). For each
variable v ∈ PVar , we add to Oϕ the following axiom:

KPVar(uc)(69)

Furthermore, we encode the formula ψ into Oϕ using the axioms (63)–(65)
in the same way as in the proof of Theorem 8.1. For each variable x ∈ XVar ,
we add to Pϕ the following axiom:

KXVar(ux)(70)

Finally, we add to Pϕ the following axioms:

KT (x)← KXVar(x),notF (x)(71)
KF (x)← KXVar(x),notT (x)(72)

In computing the ground instantiation of Kϕ, it suffices to instantiate the
rules (67) and (68) only for those x = ux for which a fact (70) occurs in Pϕ:
all other instantiations are clearly true in any model of Kϕ. Let K′ϕ be the
ground instantiation of Kϕ computed in this way; clearly, Kϕ and K′ϕ entail
the same ground formulae. Furthermore, since the number of nonground
rules in Kϕ is bounded, |K′ϕ| is polynomial in |Kϕ|. Finally, observe that K′ϕ
is a nondisjunctive nonstratified MKNF knowledge base.

We now prove that ϕ is valid if and only if K′ϕ 6|= ¬KT (uψ); this implies
Σp

2-hardness of nonentailment of nonstratified MKNF knowledge bases and,
consequently, the claim of this theorem.

If ϕ is valid, then there is a valuation ν for the variables xi such that ψ
is satisfied for each valuation of the variables yi. Let Mϕ be a set of first-
order interpretations I satisfying the axioms from O′ϕ such that I |= T (uxi)
if ν(xi) = true and I |= F (uxi) if ν(xi) = false. Clearly, Mϕ satisfies all
the rules from K′ϕ; furthermore, for each M ′ϕ ⊃Mϕ, the head of either (71)
or (72) is invalidated. Hence, Mϕ is an MKNF model of K′ϕ. Since ψ is
true for each value of the variables yi and the axioms (52)–(62) encode the
semantics of Boolean connectives, Mϕ |= KT (uψ); hence, Mϕ 6|= ¬KT (uψ),
so K′ϕ 6|= ¬KT (uψ) as well.

Conversely, if K′ϕ 6|= ¬KT (uψ), then there is an MKNF model M of
K′ϕ such that M 6|= ¬KT (uψ)—that is, M |= KT (uψ). Clearly, for each
variable xi, either M |= KT (uxi) or M |= KF (uxi). Furthermore, by the
preference semantics of MKNF, M contains an interpretation I for each
valuation of the variables yi. Now M |= KT (uψ) implies that ψ is true for
each valuation of the variables yi, so ϕ is valid.

For a positive query, observe that a 2-QBF ϕ is valid if and only if the
MKNF knowledge base K+

ϕ = Kϕ ∪ {KT (uψ)} is satisfiable, which is the
case if and only if K+

ϕ 6|= ¬K true.
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8.4 Positive Programs

For any DL and a query of the form KA, the coNP lower bound follows from
coNP-hardness of answering positive queries in positive disjunctive datalog
programs, and the coNP upper bound follows from Theorem 7.2. Namely,
for positive queries and positive knowledge bases, it is sufficient to find any
model, and not necessarily the minimal one, as reflected by Theorem 6.13.

For any DL and a query of the form ¬KA, the Σp
2 lower bound follows

from Σp
2-hardness of answering negative queries in positive disjunctive dat-

alog programs, and the Σp
2 upper bound follows from Theorem 7.1. Namely,

the minimality test is required for negative queries.

8.5 General Programs

The Σp
2 lower bound follows from the Σp

2-hardness of answering positive and
negative queries in disjunctive datalog under stable model semantics [6], and
the Σp

2 upper bound follows from Theorem 7.1.

9 Reusing QBF Solvers for Reasoning in MKNF

The reasoning algorithms for the flat and the positive fragments from Sec-
tions 6 and 7, if implemented in a näıve way, are unlikely to provide good
performance in practice because they are based on a blind guess-and-check
strategy. To obtain a practical algorithm, heuristics are required in order to
structure the search space.

A lot of research has been invested into developing techniques for evalu-
ating QBF efficiently, and several efficient QBF solvers are currently avail-
able.4 To enable applying existing tools and optimizations techniques to
reasoning in MKNF, in this section we present an algorithm that reduces
checking entailment of a ground atom in a flat hybrid MKNF knowledge
base to the validity problem of quantified Boolean formulae. The reduc-
tion can trivially be modified to handle the case of a positive knowledge
base and a positive query. For nondisjunctive knowledge bases, reduction to
QBF would produce an algorithm that is not optimal, so we do not consider
such knowledge bases in this section.

Our approach was inspired by a similar idea presented in [9], where
an embedding of propositional abduction, autoepistemic logic, default logic,
disjunctive logic programming under stable models, and circumscription into
QBF was presented. These translations were implemented in the QUIP5

prototype and were shown to be useful in practice [9].
4See http://www.qbflib.org/ for an overview of available tools.
5http://www.kr.tuwien.ac.at/research/quip.html
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9.1 Obtaining a Propositional MKNF Formula

For a DL-safe hybrid MKNF knowledge base K and a formula ψ = (¬)KA
with A a ground atom, our goal is to compute a quantified Boolean formula
ϕ which is valid if and only if π(K) 6|=MKNF ψ. However, a fundamental
mismatch between ϕ and π(K) seems to exists: ϕ is a propositional formula,
whereas π(K) is a first-order formula. Hence, the first step in our algo-
rithm is to convert π(K) into a propositional MKNF formula that is MKNF
equisatisfiable with π(K).

No algorithm for embedding an arbitrary decidable first-order fragment
DL into propositional logic is currently known; however, this is possible for
a set of function-free clauses. Namely, the set of function-free clauses Γ is
equisatisfiable with the set ΓG of its ground instances; furthermore, since Γ
does not contain function symbols, ΓG is finite, so the reduction can actually
be implemented in practice. Thus, our problem becomes simpler if we can
reduce DL to the logic of function-free clauses.

In [19, 28], the authors present such a reduction for the DL SHIQ:
given a SHIQ knowledge base O, they show how to compute a disjunctive
datalog program DD(O) that is equisatisfiable with O and that entails the
set of ground facts. The properties of the transformation are summarized
in the following theorem:

Theorem 9.1 ([19, 28]). There is an algorithm that, for a SHIQ knowledge
base O, computes a positive disjunctive datalog program DD(O) with the
following properties:

• O is satisfiable if and only if DD(O) is satisfiable;

• O |= α if and only if DD(O) |= α for α a ground atom of the form
(¬)A(a), (¬)S(a, b), or (¬)a ≈ b, with A an atomic concept and S
a simple role (both |= denote standard entailment of first-order logic
with equality);

• The size of the rules in DD(O) is at most exponential in |O|;

• The number of the facts in DD(O) is at most polynomial in |O|;

• DD(O) can be computed from O in time exponential in the size of the
TBox of O, and polynomial in the size of the ABox of O.

We call the atoms α for which O |= α if and only if π(O) |= α the
preserved atoms; we call the predicates occurring in such atoms the pre-
served predicates. A positive disjunctive datalog program P does not con-
tain negation-as-failure, so it can be interpreted as a first-order formula. Let
π(P ) =

∧
r∈P ∀x : r, where x is the set of the free variables of the rule r.

We now show that we can replace π(O) with π(DD(O)) in translating a
hybrid MKNF knowledge base K into first-order MKNF without affecting
entailments of ground MKNF formulae.
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Lemma 9.2. Let K = (O,P) be a DL-safe hybrid MKNF knowledge base
containing only preserved predicates in rules, ψ a ground MKNF formula
containing only preserved atoms, and DD(K) the following MKNF formula:

DD(K) = Kπ(DD(O)) ∧ π(P)

Then, π(K) |=MKNF ψ if and only if DD(K) |=MKNF ψ.

Proof. By Lemma 4.6, K |= ψ if and only if KG |= ψ, where KG is the
grounding of K w.r.t. OK. Since K contains only preserved predicates
in rules, the ground rules in KG contain only preserved atoms. Now let
σ = π(KG) and σ′ = DD(KG). In a run of the algorithm not-entails(σ, ψ),
all first-order reasoning problems involved in checking Conditions (1)–(4)
involve either checking satisfiability of obP for obP ∧ ¬ξ for ξ a ground
atom. For Condition (5), computing ψ[P ] involves checking entailments
of the form obP |= ϕ where ϕ is a ground formula, and checking satisfia-
bility of obP ∧ ¬ψ[P ] where ψ[P ] is a ground formula. The only difference
in a run of not-entails(σ′, ψ) is that the formula obP contains π(DD(O)) in-
stead of π(O). By assumption, the rules in PG and ψ contain only preserved
atoms, so ξ and ϕ contain only such atoms as well. Hence, each condition
in not-entails(σ′, ψ) holds if and only if the corresponding condition holds in
not-entails(σ, ψ) by Theorem 9.1, so not-entails(σ, ψ) and not-entails(σ′, ψ)
return the same values.

Now π(DD(KG)) can be grounded w.r.t. the constants from OK:

Lemma 9.3. Let K = (O,P) be a DL-safe hybrid MKNF knowledge base
containing only preserved predicates in rules and let ψ be a ground MKNF
formula containing only preserved atoms, Furthermore, let gr′(K) be the
MKNF formula obtained from DD(K) by grounding π(DD(O)) and π(P)
w.r.t. OK. Finally, let gr(K) = gr′(K) ∧ KΘ where Θ is a conjunction
containing the following conjuncts:

• a ≈ a for each a ∈ OK;

• a ≈ b ⊃ b ≈ a for each a, b ∈ OK;

• a ≈ b ∧ b ≈ c ⊃ a ≈ c for each a, b, c ∈ OK; and

• P (t1, a, t2) ∧ a ≈ b ⊃ P (t1, b, t2) for each a, b ∈ OK, each vectors of
constants t1 and t2 from OK, and each predicate P from K.

The formula gr(K) is ground, so we interpret it as a propositional MKNF
formula where each ground atom corresponds to one proposition. Then,
π(K) |=MKNF ψ if and only if gr(K) |=MKNF ψ.
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Proof. By Lemma 9.2, π(K) |=MKNF ψ if and only if DD(K) |=MKNF ψ. It
is now clear that the algorithm not-entails(σ, ψ) returns the same values for
σ = DD(KG) and for σ = gr(K): the formula π(DD(K)) does not contain
existential quantifiers and is safe (each variable of an implication occurs in
the antecedent), so grounding it does not affect satisfiability or entailment
of ground facts; furthermore, Θ ensures that the congruence properties of
equality are satisfied as usual.

Grounding large knowledge bases is unlikely to yield good practical re-
sults. Current state-of-the-art answer set solvers, such as DLV [10] or Smod-
els [38], address this problem by intelligent grounding [12]—a technique that
identifies the part of the program that needs to be grounded. This enables
answer set solvers to ground only the relevant part of the program, and thus
to significantly reduce the size of the obtained ground program. Extending
these techniques to our case will be in the focus of our future research.

9.2 Reducing a Flat Propositional MKNF Formula into QBF

Let σ be a flat propositional MKNF formula and ψ a propositional for-
mula of the form (¬)K a. We now show how to compute the quantified
Boolean formula flat(σ, ψ) which is valid if and only if σ 6|=MKNF ψ. To
each K-atom K ξ, we assign two unique propositional variables aξ and bξ.
We use the following abbreviations: T is the set of all propositional vari-
ables used in all modal atoms K ξ from KA(σ), Ta = {aξ | K ξ ∈ KA(σ)},
and Tb = {bξ | ξ ∈ KA(σ)}. With σ[K, Ta] we denote the MKNF formula
obtained by replacing each modal atom K ξ in σ with aξ; with σ[not, Ta] we
denote the MKNF formula obtained by replacing each modal atom not ξ in
σ with ¬aξ; finally, σ[Ta] = σ[K, Ta][not, Ta]. We use analogous definitions
for σ[K, Tb], σ[not, Tb], and σ[Tb].

Definition 9.4. For a flat propositional MKNF formula σ and ψ a proposi-
tional formula of the form (¬)K a, the quantified Boolean formula flat(σ, ψ)
is defined as follows:
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flat(σ, ψ) = ∃Ta : [ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5] sat(ϕ) = ∃T : ϕ

ϕob =
∧

K ξ∈KA(σ)

aξ ⊃ ξ ϕ1 =σ[Ta]

ϕ2 = sat(ϕob) ϕ3 =
∧

K ξ∈KA(σ)

¬aξ ⊃ sat(ϕob ∧ ¬ξ)

ϕ4 = ∀Tb : [(Tb ≤ Ta) ∧ ¬ (Ta ≤ Tb)] ⊃ (¬ϕa ∨ ¬ϕb ∨ ¬ϕc)

Ta ≤ Tb =
∧

K ξ∈KA(σ)

aξ ⊃ bξ Tb ≤ Ta =
∧

K ξ∈KA(σ)

bξ ⊃ aξ

ϕob′ =
∧

K ξ∈KA(σ)

bξ ⊃ ξ ϕa =σ[not, Ta][Tb]

ϕb = sat(ϕob′) ϕc =
∧

K ξ∈KA(σ)

¬bξ ⊃ sat(ϕob′ ∧ ¬ξ)

ϕ5 =
{

sat(ϕob ∧ ¬a) if ψ = K a
¬sat(ϕob ∧ ¬a) if ψ = ¬K a

Theorem 9.5. Let σ be a flat propositional MKNF formula and ψ a propo-
sitional formula of the form (¬)K a. Then, σ 6|=MKNF ψ if and only if the
quantified Boolean formula flat(σ, ψ) is valid.

Proof. By Theorem 6.11, σ 6|=MKNF ψ if and only if not-entails(σ, ψ) returns
true. Note that a partition (P,N) of KA(σ) from the algorithm can be
encoded as a valuation of propositional atoms from Ta by assigning true to
those aξ for which K ξ ∈ P . A partition (P ′, N ∪N ′) can be encoded as a
valuation of propositional atoms Tb in an analogous way.

For a valuation for Ta (or, equivalently, a partition (P,N)), the formula
ϕob is equivalent to the formula obP ; similarly, for a valuation for Tb (or,
equivalently, a partition (P ′, N ∪N ′)), the formula ϕob′ is equivalent to the
formula obP ′ . Furthermore, sat(ϕ) clearly evaluates to true if and only if
the formula ϕ is satisfiable. Hence, ϕ1 encodes exactly Condition (1), ϕ2

encodes exactly Condition (2), ϕ3 encodes exactly Condition (3), ϕa encodes
exactly Condition (a), ϕb encodes exactly Condition (b), ϕc encodes exactly
Condition (c), and ϕ5 encodes exactly Condition (5) of not-entails(σ, ψ).
Finally, [(Tb ≤ Ta) ∧ ¬ (Ta ≤ Tb)] evaluates to true if and only if P ′ ⊂ P . It
is now clear that flat(σ, ψ) is valid exactly if all conditions of the algorithm
not-entails(σ, ψ) are satisfied.

Observe that, in prenex normal form, flat(σ, ψ) has the quantifier pre-
fix ∃∀, so validity of the formula can be decided in Σp

2. Hence, for DL
a description logic which is data complete for NP, reasoning with hybrid
MKNF knowledge bases by reduction to QBF gives an algorithm with opti-
mal worst-case complexity. Also, for σ = gr(K), we can somewhat simplify
flat(σ, ψ) since the propositional atoms corresponding to Θ and the ground-
ing of Kπ(DD(O)) must evaluate to true in each valuation Ta.
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10 Conclusion

Based on the logic of Minimal Knowledge and Negation as Failure by Lif-
schitz [25], in this paper we present the formalism of hybrid MKNF knowl-
edge bases that seamlessly integrates DL with logic programming. In this
way, we obtain a powerful hybrid formalism that combines the best features
of both worlds: on the one hand, it provides DL-style modeling of taxo-
nomic knowledge, and on the other hand, it provides LP-style constructs,
such as negation-as-failure. To make our formalism decidable, we apply
the well-known DL-safety restriction that makes the rules applicable only to
explicitly known individuals, thus trading some expressivity for decidability.

We present several reasoning algorithms for different fragments of our
logic. Furthermore, we analyze the data complexity of each fragment, and
show that, in many cases, reasoning with hybrid MKNF knowledge bases is
not harder than in the corresponding fragment of logic programming.

To enable reusing existing heuristics developed for reasoning with quanti-
fied Boolean formulae, we encode the entailment problem for hybrid MKNF
knowledge bases into QBF. This encoding can be applied to hybrid MKNF
knowledge bases based on the SHIQ description logic, and it is based on
the reduction of SHIQ knowledge bases into disjunctive datalog from [19].

A challenging problem for our future work is to define a well-founded
semantics [39] for our formalism. The well-founded semantics is often used
in practice because of its polynomial data complexity. Such an extension is
nontrivial, because it actually requires redefining the semantics of MKNF.
This might be feasible by building on the ideas from [14].
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