
Semantic Technologies for Data Analysis in Health Care

Robert Piro†, Yavor Nenov†, Boris Motik†, Ian Horrocks†,
Peter Hendler‡, Scott Kimberly‡, and Michael Rossman‡

University of Oxford† and Kaiser Permanente‡

Abstract. A fruitful application of Semantic Technologies in the field of health-
care data analysis has emerged from the collaboration between Oxford and Kaiser
Permanente a US healthcare provider (HMO). US HMOs have to annually de-
liver measurement results on their quality of care to US authorities. One of these
sets of measurements is defined in a specification called HEDIS which is infa-
mous amongst data analysts for its complexity. Traditional solutions with either
SAS-programs or SQL-queries lead to involved solutions whose maintenance and
validation is difficult and binds considerable amount of resources. In this paper
we present the project in which we have applied Semantic Technologies to com-
pute the most difficult part of the HEDIS measures. We show that we arrive at
a clean, structured and legible encoding of HEDIS in the rule language of the
RDF-triple store RDFox. We use RDFox’s reasoning capabilities and SPARQL
queries to compute and extract the results. The results of a whole Kaiser Per-
manente regional branch could be computed in competitive time by RDFox on
readily available commodity hardware. Further development and deployment of
the project results are envisaged in Kaiser Permanente.

1 Introduction

Modern healthcare critically depends on data analysis, particularly in the context of
quality assurance. In the US, the National Committee for Quality Assurance (NCQA)1

specifies a wide range of quality measures; these include, e.g., the proportion of diabetic
patients having regular eye examinations, because diabetes can cause retinal damage
and eventually blindness. Health Maintenance Organisations (HMOs) are required to
demonstrate satisfactory performance w.r.t. NCQA measures if they wish to participate
in government funded healthcare schemes such as Medicare that cover more than 48
million patients in the US and represent a substantial share of the healthcare market.

Relevant quality measures can depend on many factors, and their computation may
require complex analysis of the data. Moreover, data may be derived from multiple
sources and have heterogeneous structure. Currently, a combination of SAS programs
and SQL queries is used to compute quality measures. The resulting software systems
are complex, inefficient, and difficult to validate and maintain—a critical issue given
that quality measures are regularly revised and augmented.

Semantic technologies offer a possible solution to this problem: RDF can be used to
integrate data from heterogeneous sources, ontologies can provide flexible and adapt-
able schemas, and declarative rules can be used to capture relevant quality measures.

1 http://ncqa.org/

A triple store could then be used to apply the rules to the data, with SPARQL queries2

being used to return the results.
To test this hypothesis, the Knowledge Representation and Reasoning (KRR) group

at the University of Oxford, together with the US HMO Kaiser Permanente3 (KP),
undertook a joint project in which they used declarative rules to capture a particularly
complex set of quality measures relating to diabetes care, and used these rules with
the RDFox [5] triple store in order to compute the corresponding quality measures for
the 466,000 patients in KP’s Georgia region. The results were extremely encouraging:
firstly, only 174 rules were required, compared to the roughly 3,000 lines of complex
and hard to maintain SQL code of their previously used solution, which has since been
replaced by a vendor product. Secondly, RDFox was easily able to handle the relevant
patient data (which amounted to approximately 1.6 billion triples), and computed the
quality measures via application of the rules in approximately 30 minutes. The KP
data analyst in charge of quality assurance confirmed that this was fast in comparison to
their existing solution, and was also impressed with the small number of iteration cycles
needed to check the correctness of our results—a consequence of the relative legibility
of the declarative rules.

2 Motivation

The NCQA maintains and publishes the Healthcare Effectiveness Data and Information
Set (HEDIS)4, which uses (relatively) precise natural language to define sets of mea-
sures concerning the performance of HMOs in areas such as cancer screening, immuni-
sation and Comprehensive Diabetes Care (CDC). The measures are usually expressed
as a percentage of a population of interest and are designed to facilitate performance
comparisons across multiple HMOs. In the case of CDC, the quality measures concern
diabetic patients in the age range of 18 to 75; one measure, for example, is the percent-
age of the patients who received an eye exam during the relevant reporting period.

To compute the quality measures, the data first needs to be aggregated from vari-
ous patient data systems. This typically involves the invention of one or more ad hoc
schemas into which the data is cast. Such schemas are designed to facilitate analysis
rather than to accurately model the domain, and so they are difficult to maintain and are
prone to inconsistent interpretation by the members of the data analysis team.

Computation of NCQA measures over the aggregated data is typically done via
SAS-programs or a sequence of SQL-queries. This process is also complex and er-
ror prone; for example, as already mentioned, computation of the CDC measures uses
roughly 3,000 lines of SQL code. As a result, existing systems are costly, unreliable,
and difficult to maintain.

2.1 Overview of Project

The aim of the project with Kaiser Permanente was to evaluate the effectiveness of
Semantic Technologies for computing NCQA quality measures. The power of Semantic

2 http://www.w3.org/TR/sparql11-query/
3 http://www.kaiserpermanente.org
4 http://www.ncqa.org/HEDISQualityMeasurement.aspx

Technologies lies in the clearly defined declarative formalisms with which complex
relationships can be expressed. One such formalism are Datalog-like rule languages
that are supported by many triple stores and that can be used, e.g., to perform OWL 2
RL reasoning [4]. Rules can express relationships via intuitive if-then-statements such
as
[?Pat, aux:countedFor, aux:measureEyeExam] :-

[?Pat, rdf:type, aux:diabeticPatient], [?Pat, aux:has, aux:EyeExam] .

which says that ‘if the patient has diabetes and an eye exam, then the patient is to be
counted for the measure Eye Exam’. These statements are succinct and relatively close
to natural language.

In this project we used the RDFox triple store with its RDFox-Datalog rule lan-
guage. Our goal was to investigate whether RDFox-Datalog is expressive enough to
encode HEDIS specifications, if RDFox could handle datasets of the necessary size and
provide competitive performance w.r.t. existing solutions, and if the resulting seman-
tic technology solution could overcome some of the shortcomings of existing solutions.
We decided to implement HEDIS CDC, as its variety of logical connexions between the
data is rich, and it is particularly difficult to implement with traditional methods such as
SQL and SAS; HEDIS CDC therefore makes an impressive use case for data analysts
who conduct HEDIS measurements in HMOs.

The project is split into three tasks. The first task is to create a coherent and ex-
tensible data model into which the relevant patient data can be transformed. We used
a data model that is close to human conceptualisation as this makes the data easier to
understand. The data model makes it also easier to develop and maintain the rules that
capture HEDIS measures (see Section 3). The second task is the development of such
rules. We implemented the HEDIS CDC specification as a Datalog ontology (rule set),
but had to augment the rules with SPARQL-queries to fully compute the measures (see
Section 4). Finally, the approach was evaluated on data provided by the Kaiser Perma-
nente Georgia region. We translated this data into RDF-triples according to our data
model, computed the HEDIS CDC measures using RDFox, and compared our results
with those computed using existing systems (see Section 5).

3 Healthcare Data Modelling in OWL

In this section we describe the conceptual model that we developed to describe the
clinical and administrative data in KP. When designing our model we tried to satisfy
the following three requirements. Firstly, the model had to be as close as possible to
domain expert conceptualisation so as to facilitate the faithful representation of domain
knowledge. Secondly, the model had to be sufficiently flexible to uniformly capture the
diverse business processes that take place in a typical healthcare organisation. Thirdly,
the model had to be readily amenable to Semantic Web technologies. We identified
a healthcare data modelling standard from the field of healthcare informatics, called
HL7 RIM, that satisfies the first two requirements. To satisfy the third requirement, we
used the methodology behind the HL7 RIM to build a conceptual model in OWL. In
the following two sections we give a short overview of the HL7 RIM standard and a
description of how it was used to build an OWL ontology describing our data.

Entity Role Participation Act
hasRole hasPart hasAct

Fig. 1. Core concepts in the RIM, using the standard RIM colour scheme: Act: red, Participation:
blue, Role: yellow, Entity: green

3.1 The HMO Data Model

Healthcare data modelling is an important topic in the field of healthcare informatics,
and a number of standards have been developed to facilitate the exchange of clinical and
administrative data between HMOs and other third party organisations. One such stan-
dard is the Reference Information Model (RIM)5, which is issued by the international
organisation for standardisation Health Level Seven International (HL7)6.

The RIM standard models a wide range of healthcare business processes, including
clinical processes, such as clinical visits and laboratory tests, as well as administra-
tive processes of HMOs, such as patient enrolment and insurance plan authoring. All
business processes in the RIM are uniformly represented using the notions entity, role,
participation, and act. Each act is characterised by the participation of entities each of
which fulfils a particular role (see Fig. 1). Acts are used to represent business processes,
and participations are used to describe the different parties involved in an act, such as
the performer of an act and the subject of an act. Entities are used to describe physical
things, such as persons and organisations, while roles describe the different competen-
cies of entities, such as employee and patient, in the case of a person, and insurer, in the
case of an organisation. For further details on the RIM standard, please refer to [2, 9].

The scope of the RIM data model far exceeds the needs of this project, so we used its
underlying design principles to build a simplified data model that better suits our needs.
We modelled the different types of entities, roles, participations and acts as OWL classes
that are specialisations of the classes Entity, Role, Participation, and Act, respectively.
Similarly, we modelled the relationships between these notions as object properties
whose domains and ranges are as specified in Fig. 1.

Person Patient Subject

ClinicalVisit

Person Provider Performer

kp:hasRole kp:hasPart
kp:hasAct

kp:hasRole kp:hasPart
kp:ha

sAct

Fig. 2. The model of a clinical visit

Consider for example the part of our conceptual model depicted in Fig. 2, which
describes the clinical visits of a patient to their health care provider. The clinical visit

5 http://www.hl7.org/implement/standards/rim.cfm
6 http://www.hl7.org/

is modelled as the class ClinicalVisit, which is a subclass of Act. Similarly, the two
entities involved in a clinical visit are modelled as members of the class Person, which
is a subclass of Entity. One person in the role of a Provider participates in the clinical
visit as a Performer, while the other person in the role of a Patient participates in the
clinical visit as a Subject.

Our model also describes properties relevant to clinical visits, such as diagnoses and
clinical procedures. In healthcare informatics these concepts are represented by codes
from standard vocabularies such as ICD-9 [7], which describes diagnosis, CPT, which
describes clinical procedures, and SNOMED-CT, which describes clinical terms in gen-
eral. For example, ICD-9 assigns the code 250.60 to the diagnosis ‘diabetes with neuro-
logical manifestations’, and the code 250.70 to the diagnosis ‘diabetes with peripheral
circulatory disorders’. We model the ICD-9 concepts using the class ICD9Term, and
we connect its instances to the ClinicalVisits in which they occur using the object prop-
erty kp:hasDiag (see Fig. 3). In healthcare informatics, broader clinical concepts are
often modelled as collections of codes, which are commonly referred to as value sets.
For example, HEDIS defines the term ‘Diabetes Diagnosis’ as a value set that contains
amongst others the ICD-9 codes 250.60 and 250.70. We model value sets using the
class ValueSet, and the associations between codes and value sets are realised using the
object property kp:hasValueSet. Hence, in our model, the instance of ICD9Term repre-
senting the ICD-9 code 250.60 is connected via the object property kp:hasValueSet to
the instance of ValueSet that represents ‘Diabetes Diagnosis’.

Finally, for each class in the model we introduce datatype properties that are used to
specify relevant values. For example, every Person has a specified name, sex, and date
of birth, every Patient has a member number with the HMO, every ClinicalVisit has a
date, every ICD-9 term has a code, a version and a description, and every value set has
a name (see Fig. 3).

Person
kp:name : xsd:string
kp:sex : IRI
kp:DoB : xsd:date

Subject ClinicalVisit
kp:date : xsd:date

Patient
kp:memberNo : IRI

ValueSet
kp:name : xsd:string

ICD9Term
kp:code : xsd:string
kp:version : xsd:string
kp:descriptor : xsd:string

k
p
:
h
a
s
R
o
l
e

kp
:h
as
Pa
rt

kp:hasAct

k
p
:
h
a
s
D
i
a
g

kp:hasValueSet

Fig. 3. Extended upper row of Fig. 2 showing how we capture health record data according to the
developed schema

3.2 Translating KP Data into RDF

We shall refer to the data provided by the Kaiser Permanente regional branch as raw
data. This is the same data that serves as input to the NCQA approved vendor product,
so it was already appropriately aggregated and curated. The data is obtained from KP’s

internal relational database and consists of delimited text files each of which represents
a relational table. For example the file that stores clinical visits looks as follows.

VID MBR SERV-DT · · · DIAG-1 · · · DIAG-22 PROVNBR
101 M4711 2013-09-10 250.70 NULL P8736

Each line in this file specifies the visit ID as primary key, the patient’s member number,
the service date, up to twenty two ICD-9 diagnosis codes, and finally a provider number.

Before translating KP’s raw data into RDF-triples, we first had to establish a naming
scheme that assigns IRIs to the different objects participating in our model. We chose
a naming scheme that allows us to easily map IRIs to the objects in the raw data that
they represent. To this end we used IRIs that capture both the types and the identities of
the encoded object. This was particularly important when we had to correct formatting
errors in our translation, and in the recapitulation stage of the project in which we had
to justify our results with the raw data.

For most types of objects the assignment of IRIs was relatively straightforward.
For example, we encoded the patient with member number ‘M4711’ using the IRI
<http://www.kp.org/Patient/M4711> and the provider with provider number ‘P8736’ us-
ing the IRI <http://www.kp.org/Provider/P8736>. Similarly, we encoded the ICD-9 code
‘250.70’ using the IRI <http://www.kp.org/ICD9Term/250.70>. Note that, as mentioned
above, each IRI captures both the type and the identity of the encoded object.

The assignment of IRIs to clinical visits was slightly more involved. In the initial
translation we assumed that each clinical visit is described in a single database record,
and thus we used the primary key VID of the record to identify each visit. In the re-
capitulation stage of the project, however, it became clear that this assumption was
wrong, as clinical visit may reside in multiple database records. The data analyst in
KP clarified that the identity of a visit is uniquely determined by the date of the visit,
the member number of patient, and the provider number. To correct the translation, we
therefore encoded a clinical visit using IRIs of the form <http://www.kp.org/Visit/UID>,
where UID encodes the slash-separated values of the date, the member number, and
the provider number. So, for example, for the clinical visit listed in the record above,
UID is equal to 2013-09-10/M4711/P8736. Finally, since there is a one-to-one correspon-
dence between a visit and its subject and a visit and its performer, we use a visit’s UID
in the IRIs of its subject and performer. Hence, the subject and the performer of the
visit in our example are encoded using the IRIs <http://www.kp.org/Subject/UID> and
<http://www.kp.org/Performer/UID>, respectively.

Having assigned IRIs to the different objects, we can now easily translate each
record of a clinical visit into RDF-triples by simply referring to the data model de-
scribed in Fig. 3. Some of the triples encoding the clinical visit record in the previous
example are given below.

<http://www.kp.org/Patient/M4711> rdf:type <http://www.kp.org/Patient>.
<http://www.kp.org/Patient/M4711> kp:hasPart <http://www.kp.org/Subject/UID>.
<http://www.kp.org/Subject/UID> kp:hasAct <http://www.kp.org/Visit/UID>.
<http://www.kp.org/Visit/UID> kp:date "2013-09-10"ˆ̂ xsd:date.
<http://www.kp.org/ICD9Term/250.70> rdf:type <http://www.kp.org/ICD9Term>.
<http://www.kp.org/Visit/UID> kp:hasDiag <http://www.kp.org/ICD9Term/250.70>.

...

Since the translation of each clinical visit for a given patient uses the same patient IRI,
the patient’s entire medical history is connected in a contiguous RDF-graph.

Note that our choice of naming scheme allows us to translate each database record
independently of other records. As a result, in addition to being relatively simple, the
translation could also be easily executed concurrently, as it maintains no global state.
Observe, however, that the record-by-record translation results in repetition of triples.
For example, the triple asserting that <http://www.kp.org/Patient/M4711> is a member of
the class <http://www.kp.org/Patient> will be generated once for every database record
that mentions that patient. Similarly, there may be repetitions involving each provider
and each diagnosis. As we will see in Section 5, this redundancy increases the number
of triples by a factor of 5.5.

Finally, we also had to add to our RDF-graph triples related to the HEDIS specifi-
cation. Firstly, as discussed in the previous section, the HEDIS specification defines a
number of value sets. The membership of codes to value sets is naturally encoded using
assertions for the object property kp:hasValueSet. Additionally, the HEDIS specification
refers to the begin and end dates of the current measurement year, which in our case
is the year 2013, as well as to the measurement period, which in our case consists of
the years 2012 and 2013. Instead of explicitly referring to these dates and years in our
rules, we exploit the following triple encoding of the relevant information.

kp:HEDIS kp:measuredPeriod 2012. kp:HEDIS kp:beginDate "2013-01-01"ˆ̂ xsd:date.
kp:HEDIS kp:measuredPeriod 2013. kp:HEDIS kp:endDate "2013-12-31"ˆ̂ xsd:date.

4 Encoding HEDIS CDC and its Challenges

This section describes how we encoded the HEDIS specification in RDFox-Datalog.
The resulting RDFox-Datalog ontology defines the different patient classes stipulated
by the HEDIS specification, e.g. ‘patient with eye exam’; we then use RDFox to com-
pute class membership for all patients. Simple SPARQL counting queries determine the
number of patients in each class. These numbers are used to calculate the percentage of
the population of interest, which is then reported to the NCQA.

As we show in the following, capturing the HEDIS specification involved the use of
recursive datalog rules, and hence went beyond what could be achieved via SPARQL
query answering alone. We also needed value manipulation, stratified negation, and
stratified aggregation, which are not commonly supported reasoning features. In stan-
dard materialisation-based triple stores, these features can be simulated by iteratively
answering full SPARQL queries, adding the query results to the store, and applying
the rules with respect to the enriched data. Since RDFox supports BIND and FILTER
constructs in rule bodies, we had to simulate only stratified negation and aggregation.

4.1 Encoding basic concepts

HEDIS CDC is specified using natural language. The following extract (which we will
refer to as extract 1) is drawn from the chapter that defines which patients are diabetic.

[Diabetics are those patients] who met any of the following criteria during the measure-
ment year [2013] or the year prior to the measurement year [2012] (count services that
occur over both years):

– At least two outpatient visits (Outpatient Value Set), observation visits (Obser-
vation Value Set) or nonacute inpatient visits (Nonacute Inpatient Value Set) on
different dates of service, with a diagnosis of diabetes (Diabetes Value Set). Visit
types need not be the same for the two visits.

– . . .

We first encode some basic concepts, starting with the notion of a diabetes diagno-
sis. Extract 1 specifies that a clinical visit has a diabetes diagnosis if it has a code in the
value set named “Diabetes”. The following rule classifies such clinical visits by deriv-
ing a triple of the form [?CV, rdf:type, aux:diabetesDiagnosis] where ?CV is an instance of
ClinicalVisit and the prefix aux indicates a derived property or class.

[?CV, rdf:type, aux:diabetesDiagnosis] :-[?CV, kp:hasDiag, ?ICD9],
[?ICD9, kp:hasValueSet, ?VS],[?VS, kp:name, "Diabetes"] .

We add similar rules to classify outpatient visits, observation visits and non-acute inpa-
tient visits, which derive triples of the form [?CV, rdf:type, aux:outpatient], etc.

We can now associate each patient with their “admissible visits” using triples of the
form [?Pat, aux:admissibleVisit, ?CV]. According to Extract 1, a patient’s visit counts as
admissible if it has a diabetes diagnosis and is also either an outpatient, a non-acute
inpatient, or an observation visit. For outpatient visits we thus use the following rule:

[?Pat, aux:admissibleVisit, ?CV] :-[?Pat, aux:patientHasAct, ?CV],
[?CV, rdf:type, aux:outpatient], [?CV, rdf:type, aux:diabetesDiagnosis] .

For non-acute inpatient visits and the observation visits we use analogous rules.
Abstractions such as aux:admissibleVisit help to keep subsequent rules shorter and

more easily legible. The declarative nature of Datalog allows to introduce such ab-
stractions without the explicit creation of tables. The flexible RDF-schema is simply
extended and no data needs to be copied into the new schema.

Finally, we need to ensure that there are at least two admissible visits on different
dates in the relevant measurement period. We achieve this with SPARQL BIND and
FILTER constructs which RDFox supports in rules bodies. Note that these features can
also be simulated by interrupting the reasoning process and computing the relevant
values using SPARQL queries, as in the case of stratified negation (see Section 4.3).

[?Pat, rdf:type, aux:diabeticPatient]:-
[?Pat, aux:admissibleVisit, ?CV0],[?Pat, aux:admissibleVisit, ?CV1],
[?CV0, kp:date, ?date0], [?CV1, kp:date, ?date1],
BIND(YEAR(?date0) AS ?y0), BIND(YEAR(?date1) AS ?y1),
[kp:HEDIS, kp:measurePeriod, ?y0],[kp:HEDIS, kp:measurePeriod, ?y1]
FILTER (?date0 != ?date1) .

This rule says that a patient is a diabetic patient if they had two admissible visits in the
years ?y0 and ?y1 (computed using BIND), each of which is either the measurement
year or the year prior to that, and that the visits occurred on different dates (established
using FILTER). The measurement year and the year prior to that are retrieved from
the dataset as described in Section 3.2. Note that this rule is also non-treeshaped, and
cannot be expressed in OWL 2 or its fragments. The non-treeshapedness is unavoidable
since we need to compare for each patient the dates of each pair of admissible visits.

4.2 Recursion

We were able to encode all notions discussed so far by using only non-recursive Datalog
rules, which means that we could also compute these notions using (large and complex)
SPARQL queries. However, as we show next, HEDIS CDC also contains notions that
require genuine recursion, and thus cannot be computed using SPARQL queries alone.

A period in which a patient is insured with a HMO is called an enrolment. Patients
often have multiple consecutive enrolments within the measurement year, which is due
to changes in circumstances such as retirement, change of workplace or switching be-
tween health plan packages. A patient may also have gaps in their enrolment history,
because they switched HMOs or were uninsured. However, the NCQA requirements on
HMOs apply only to patients who have a continuous enrolment with the HMO which,
according to the HEDIS CDC specification, is when they have:

no more than one gap in enrolment of up to 45 days during the measurement year.
[. . . Patients must be insured with the HMO on] December 31 of the measurement year.

To determine whether a patient has a continuous enrolment we proceed as follows.
First, we identify as connected all enrolment acts that are connected to the end date of
the measurement period via a sequence of enrolment acts without any gaps. Second,
we identify as gap-connected all enrolment acts that are connected to the end date of a
measurement period via a sequence of enrolment acts with one gap. Finally, we identify
that a patient has a continuous enrolment if they have a (gap-)connected enrolment act
containing the begin date of the measurement period.

The notion of connected enrolment act has the following recursive definition. An
enrolment act is connected 1) if its period contains the end date of the measurement
year, or 2) if it is directly succeeded by a connected enrolment. Case 1 of the definition
is handled by the following rule.

[?Enr, rdf:type, aux:connEnr] :-
[kp:HEDIS, kp:endDate, ?anchor],[?Pat, aux:hasEnr, ?Enr],
[?Enr, kp:beginDT, ?dateB], [?Enr, kp:endDT, ?dateE],
FILTER (?dateB <= ?anchor && ?dateE >= ?anchor) .

For the recursive case 2, we need to identify the connecting successor. This involves date
manipulation because we have to compute the date of the previous day. Unfortunately,
SPARQL BIND does not provide arithmetic on the data type xsd:date and instead we
had to compute the previous day during data translation which was stored using the data
value property kp:beginDT-1.

[?Enr, rdf:type, aux:connEnr]:-
[?Pat, aux:hasEnr, ?Enr], [?Pat, aux:hasEnr, ?SuccEnr],
[?Enr, kp:beginDT, ?dateB],[?SuccEnr, rdf:type, aux:connEnr],
[?Enr, kp:endDT, ?dateE], [?SuccEnr, kp:beginDT-1, ?prev],
FILTER (?dateB <= ?prev && ?dateE >= ?prev) .

The notion of gap-connected enrolment can again be defined recursively. An enrol-
ment act is gap-connected 1) if it has a gap of at most 45 days to a connected enrolment
act, or 2) if it is directly succeeded by a gap-connected enrolment. Similarly to before,
during our translation we precomputed the date that is 46 days earlier than the start date
of an enrolment act and stored it using the data property kp:beginDT-46.

Note that we compare all pairs of enrolments of each patient, which is quadratic in
the number of patient’s enrolments. To reduce the workload, we restricted aux:connEnr
to enrolments whose period intersects the measurement year. We measured the outde-
gree of aux:connEnr, which was maximally 6 and thus manageable.

Finally, we determine if a patient was continuously enrolled using two simple rules
that identify all patients having a connected or a gap-connected enrolment act whose
period contains the begin date of the measurement period. We are thus able to encode
this HEDIS section using just 6 recursive Datalog rules. This compares to 500 lines of
heavily commented and involved SQL-code previously used by the Kaiser Permanente.

4.3 Stratified Negation

Stratified negation is a feature that is not commonly supported by RDF-triple stores but
that can be very useful when conclusions need to be drawn based on the lack of some
information. We next give an example of a HEDIS CDC measure whose computation
requires negation, and we describe how it was computed before RDFox was extended
to handle stratified negation.

HbA1c is a special type of haemoglobin, whose level is used as an indicator for
average blood glucose levels over three months and whose healthy level is below 7%.
HMOs are required to pursue good levels of HbA1c, but only in patients without se-
vere health issues, such as by-pass operations, etc. Concretely, the measure for HbA1c
control is computed as #patients in HbA1c denom. with HbA1c <%7

#patients in the HbA1c denominator , where the HbA1c denomina-
tor contains those patients in the population of interest that have no exclusions. For
example, HEDIS CDC states in the definition of the HbA1c denominator:

Exclude members [from the pop. of interest] who meet any of the following criteria:
– IVD [Ischemic Vascular Disease]. Members who met at least one of the following

criteria during both the measurement year and the year prior to the measurement
year. Criteria need not be the same across both years.
• At least one outpatient visit (Outpatient Value Set) with an IVD diagnosis

(IVD Value Set).
• At least one acute inpatient encounter (Acute Inpatient Value Set) with an IVD

diagnosis (IVD Value Set).

From what we have seen earlier, it is not difficult to imagine how to write rules which
identify patients with IVD and with other excluded properties. All final rules computing
the excluded patients have the head [?Pat, rdf:type, aux:HasExclusion] and thus mark a
patient excluded from the HbA1c denominator for the respective reporting year. Yet,
computing the HbA1c denominator requires selecting all patients from the population
of interest who do not have an exclusion and thus it requires negation.

Stratified negation [1, 6] is a well established extension of recursive Datalog and is
sufficient for our purposes. However, RDFox did not support stratified negation at the
time, so we applied a well-known work-around [8, 3] that uses the FILTER NOT EXISTS
construct in SPARQL. After populating the class aux:Denominator with the population
of interest and the class aux:HasExclusion with the part of the population that needs to
be excluded, we halt RDFox’s reasoning process and execute the following query.

SELECT ?Pat rdf:type aux:HbA1cDenom WHERE {
?Pat rdf:type aux:Denominator .
FILTER NOT EXISTS { ?Pat rdf:type aux:HasExclusion }.}

We save the answers as triples into a file, which we then load back into RDFox.
This solution, however, is not optimal in a setting where transparency and proximity

to the natural language specification is a major selling point. RDFox has since been ex-
tended to support stratified negation. The query can now be expressed as the following
rule that can be listed and evaluated together with the other axioms:

[?Pat, rdf:type, aux:HbA1cDenom]:-
[?Pat, rdf:type, aux:Denominator], not [?Pat, rdf:type, aux:HasExclusion].

4.4 Aggregates

Aggregate functions collapse multiple inputs into one single value, like ‘max’, ‘count’,
‘average’ but also ‘list’ or ‘set’. The HEDIS CDC specification requires for measure-
ment results always the latest and ‘best’ reading, if more than one measurement was
taken on the same date. For example HEDIS CDC requires to

[. . .] identify the most recent BP reading taken during an outpatient visit (Outpatient
Value Set) or a non-acute inpatient encounter (Nonacute Inpatient Value Set) during the
measurement year. The member is numerator compliant if the BP is <140/80 mmHg.
The member is not compliant if [. . .] the systolic or diastolic level is missing. If there
are multiple BPs on the same date of service, use the lowest systolic and lowest diastolic
BP on that date as the representative BP.

We first use a rule to classify a clinical visits which has both systolic and diastolic
measurements as instances of aux:HasCompleteBP. Amongst these the latest, i.e. the
date maximal, measurement has to be determined. Since RDFox had no support for
aggregate functions at the time, we used a workaround which incidentally shows the
connexion between aggregates such as max, min etc. and negation: We first mark all
those visits which have a later visit using the rule

[?CV0, rdf:type, aux:HasLaterVisit]:-
[?Pat, aux:patientHasAct, ?CV0], [?Pat, aux:patientHasAct, ?CV1],
[?CV0, rdf:type, aux:HasCompleteBP],[?CV1, rdf:type, aux:HasCompleteBP],
[?CV0, kp:date, ?date0], [?CV1, kp:date, ?date1],
FILTER (?date0 < ?date1).

and we use, as done in Section 4.3, a SPARQL query to determine all those clinical
visits that do not have a later visit:
SELECT ?CV rdf:type aux:latestBP WHERE {

?CV rdf:type aux:completeBP .
FILTER NOT EXISTS {?CV rdf:type aux:HasLaterVisit}.}

The answers of the this query are added to the running store in RDFox. We can then
populate the class aux:latestBP-140-80 with clinical visits from the class aux:latestBP.
Note that our work-around computes aux:hasLaterVisit using quadratically many rule
instantiations in the number of the blood pressure measurements per patient per year,
and that a native implementation of the aggregate function max can achieve the same
in linear time by iterating through all measurements and retaining the binding with the
latest date.

Content Records Size Content Records Size RDF-Graph
Providers 113k 6.8MB Prescriptions 8.9M 892MB Total triples: 1.6G triples
Members 466k 84MB Labs 28.3M 1.4GB Unique triples: 293M triples
Enrollment 3.3M 332MB Visits 54M 8.6GB Translation time: 45min (8 CPUs)

Table 1. Files provided by Kaiser Permanente regional branch in Georgia

5 Performance and Evaluation

We evaluated our approach on a commodity server provided by the Kaiser Permanente
data centre. The server was security compliant according to the sensitive nature of the
data. All tests were performed on this server and none of the provided data has been
transferred outside of the security compliant infrastructure. The server runs Linux Red-
Hat, has 8 Intel Xenon E5-2680 CPUs, clocked at 2.7GHz and has 64GB RAM. In what
follows we shall first discuss data translation then the computation of HEDIS CDC us-
ing RDFox and finally the reconciliation of the results.

5.1 Data Translation

Kaiser Permanente provided the data in several files listed in Table 1. A multi-threaded
Scala application translated the data into an RDF-graph. As discussed in Section 3.2,
the application produced many duplicate RDF-triples expanding the number of triples
by a factor of 5.5 from 293M triples to 1.6G triples. The translation took 47min and
produced 8 GZip files amounting to 8.8GB.

5.2 Computing HEDIS CDC

RDFox imported the 1.6G RDF-triples in 11min using 8 threads (Table 2, first row),
which, due to duplicate elimination, resulted in a store containing 293M unique triples.
RDFox’s importation process comprises reading, parsing, resolving the IRIs in an inter-
nal dictionary, eliminating duplicates and populating the store and its index structures.

The Datalog encoding of the HEDIS CDC specification consists of 174 rules of
which approximately 65% can be expressed in OWL 2 RL. Many of the OWL 2 RL
expressible rules contain at most two body atoms whilst longer rules tend to be not
tree-shaped and are thus not OWL 2 RL expressible, as the examples in Section 4 show.

The evaluation of larger rules, such as those for computing continuous enrolments,
incur a high work-load, which leads to unacceptable computation times when applied to
the whole RDF-graph. We therefore apply the full HEDIS Datalog ontology on a much
smaller subgraph, which we compute using Datalog reasoning, and which contains all
the data for the population of interest. To this end, we first identify the patients defined
in extract 1 by evaluating the relevant rules on the full RDF-graph. These are simple
rules, which RDFox can evaluate efficiently. Next, we use rules to mark all relevant
triples connected to the identified patients. Finally, using a SPARQL query, we load the
marked triples into a new store, on which we evaluate the full HEDIS Datalog ontology.

This strategy considerably reduces total computation time from 1h45m to 30m (sum
of times in Table 2). Computing and extracting the subgraph on the full RDF-graph
takes 13min (795s) using all 8 CPUs (Table 2, second row). Just before the subgraph

patients RDF-triples RAM % of 64GB Time
Import 466k 1.6G (293M) 17.8GB 28% 661s
Extract 1 and extraction 466k 367M 18.1GB 28% 795s
Import subgraph 14k 23.4M 1.6GB 2.5% 32.4s
CDC numerators/counting 14k 32.0M 1.6GB 2.5% 258s

Table 2. Computing HEDIS CDC with RDFox

extraction, the memory consumption peaks at 28% at which RDFox uses 53 Bytes per
RDF-triple. In dropping the store that contains the full RDF-graph, we release 18.1GB
of RAM. RDFox imports the subgraph in 32.4s and consumes 2.5% of the available
RAM (Table 2, third row). The subgraph contains 14,000 patients of which almost all
belong to the population of interest. This effectively reduces the original RDF-graph
from 293M triples to 23.4M triples or to 8% of its original size. Evaluating the full
HEDIS Datalog ontology on the subgraph as well as running the counting queries then
takes 4.5min (258s) on 8 CPUs (Figure 2, fourth row). We could not properly compare
our performance to the vendor product’s performance. The vendor product not only
computes HEDIS CDC but all HEDIS measure sets in approximately 8h. The vendor
product generally acts as black box and it is not possible to separate all different stages
of computation from outside. Loading and initialising the database takes the vendor
product 1h. Then it executes a 4h long pre-processing step which also includes the
computation of the expensive continuous enrolment. The following stage contains an
18min phase wich can be associated with HEDIS CDC. Lastly the computation times
of the vendor product were achieved on the more powerful licensed production server
which has 16 CPUs but was not at our disposal.

5.3 Reconciliation of Results

For each category, we compared the membership numbers output by RDFox with those
output by the vendor soultion, and we found differences. The results are reported in Ta-
ble 3. The row ‘RDFox’ reports the number of patients computed by RDFox. ‘RDFox +’
reports the number of excess patients which were not included in the results of the ven-
dor solution. Analogously ‘Vendor +’ shows the number of patients computed by the
vendor that were not included in the RDFox results. ‘CDC denominator’ reports the
population of interest, whilst each other category is a subset of the CDC denomina-
tor. The RDFox excess of 4 reported for the CDC denominator propagates through all
other categories. We therefore indicate with the second summand for each category,
how many of the excess patient were contained in the excess of the CDC denominator.

All results that were computed by RDFox were approved by the HEDIS data an-
alyst. We shall shortly explain why discrepancies still remain. For each derived triple,
RDFox can provide a proof tree that shows the rule instances and the RDF-triples in the
RDF input graph which contributed to its derivation. Using these RDFox explanations
and the information encoded in the IRIs (see Section 3.2), we can easily look up the
records in the raw data and find the diagnosis codes in question. We can thus argue the
correctness of RDFox’s deviation directly. We showed, for instance, that RDFox’s CDC
denominator excess is actually correct and should also be output by the vendor solution.
It is however much more difficult to argue why an excess in the Vendor product occurs.

Results CDC LDL-C BP Eye Neph HbA1c HbA1c <7%
Denom Lab <100mg/dl <140/80 <140/90 Exam Attent Lab <8% >9% Denom Lab

RDFox 14402 13217 7952 8963 11442 5430 13204 13474 9465 3132 8939 3702
RDFox + 0+4 0+3 0+2 3+3 0+4 0 2+3 0+3 0+3 0+1 1+3 0+2
Vendor + 0 0 0 0 0 1692 230 0 0 0 13 5

Table 3. Computed numbers by RDFox and Deviations

The vendor product only gives hints as to why it counts a patient into a certain category.
For example it prints out the relevant visit date which is meant to help looking up the
triggering visit. However in the case of Nephrological Attention, these visit dates of
patients in the vendor excess could not be found in the raw data and it was not possible
to explain the origin of these dates. The lack of explanations is a clear and typical short
coming of traditional solutions.

Since the HbA1c <7% denominator uses negative information, the roles were re-
versed. We could show using RDFox explanations that all 13 patients in the vendor
product’s excess had an explicit exclusion and should not be counted. This excess prop-
agates into HbA1c <7% Lab. The minor RDFox excess in BP 140/80 could be traced
to us interpreting a rule in a different way, which was subsequently approved by the
HEDIS help-desk. The large discrepancy in Eye Exam was due to data that was not
delivered by Georgia region.

6 Lessons Learnt

The project was very successful and we have learnt useful lessons in particular with
regards to encoding and representing the data. However, the project also revealed some
limitations of Semantic Technologies and suggested several ways in which they could
be adapted to better fit data analysis applications of this kind.

Expressivity of the Ontology Language. The project revealed that OWL 2 alone is
insufficient to compute the HEDIS measures. As we saw in Section 4.1, non-treeshaped
expressions are necessary to determine the diabetic population. However, OWL 2, and
consequently its tractable fragment OWL 2 RL, prohibits such expressions in order to
ensure decidability. Furthermore, OWL 2 supports neither stratified negation nor strat-
ified aggregation. As witnessed in Sections 4.3 and 4.4 the absence of such constructs
necessitates the introduction of non-declarative workarounds that make the behaviour
of the system as a whole more difficult to understand. Finally, as we saw in Section 4.2,
value manipulation during reasoning is an important language feature for data analy-
sis applications. Although unrestricted value manipulation endangers the termination,
non-recursive value manipulation preserves the termination guarantee and, and as seen
in this project, is sufficient to encode the HEDIS specification.

Use of RDF as Data Format. RDF restricts the user to triples which correspond to
unary and binary predicates. Hence rule bodies feature a large number of atoms, as n-ary
relations have to be reified. Within rules this amounts to a named parameter perspec-
tive, since predicate names appear as constant in every rule body atom. It is therefore
helpful to have meaningful predicate names which also indicate whether or not a triple
is derived, as this makes rules legible and comprehensible. We also applied naming
conventions that indicate which class of the data model an individual instantiates and
from which data it originates. Both allowed us to debug and judge the correctness of

the HEDIS encoding much faster. The resulting large number of joins that need to be
performed in order to evaluate rules with many body atoms is not prohibitive in practi-
cal applications as RDF-triple stores are optimised for computing these large numbers
of joins.

Due to the flexible schema of RDF, the data has a fully normalised representation.
In particular, our data does not contain any null values and, for example in the case of
clinical visits allows a variable number of diagnosis per clinical visit. The flexibility of
RDF also helped us in the recapitulation stage of the project, in which, as discussed in
Section 3.2, it became apparent that the data pertaining to a given clinical visit might be
spread over multiple records in the raw data. This led to the misclassification of certain
patients. The solution was simply to modify the assignment of IRIs to clinical visits in
the data translation phase, which effectively merged database records referring to the
same visit. Due to the flexibility of RDF, we did not have to change the conceptual
schema or the way in which we compute the HEDIS measures.

The RIM modelling standard. Successful deployment of (semantic) technology
also requires addressing ‘soft’ issues such as user expectations and familiarity. In this
project it was crucial to win the support of the domain experts, who are the future users.
This can be achieved by exploiting modelling standards in the respective field as we did
with HL7 RIM. Following these conceptualisations makes it easier to argue clarity and
intuitiveness of Semantic Technologies which are their major selling points.

We also used the RIM modelling standard to structure the types of clinical processes
that occur in our project, which allowed us to uniformly represent healthcare data re-
gardless of whether it describes visits, prescriptions or lab results. Due to the uniformity,
the data model could be more easily memorised which facilitated rule authoring as it
was not necessary to frequently refer to the data model documentation

7 Conclusion

In this paper we described the project conducted in collaboration with Kaiser Perma-
nente to investigate the benefits of using Semantic Technologies in data analysis. Using
the RIM modelling standard, we developed a schema ontology that mirrors how domain
experts conceptualise business processes in healthcare, and we translated the raw data
into an RDF-graph following this schema. With this data model in hand we encoded
in RDFox-Datalog the HEDIS CDC specification which is renowned for its complex-
ity. The declarative nature of RDFox-Datalog allowed us to succinctly express HEDIS
CDC in a rule ontology which is close to the language of the specification. During the
development of the rule ontology RDF proved to be a flexible data format that keeps
the vocabulary explicit and thus confers its legibility to the rules.

The process of evaluating the rules on the patients and reconciling the results ex-
ceeded our and the HEDIS data analyst’s expectations. The data of 466 000 patients fit
easily into memory and the results were computed on modest resources within 30min
using the highly efficient triple store RDFox. Due to RDFox’s good scalability we are
confident that we could significantly reduce this time on a machine with more threads
such as the vendor licensed production server.

The HEDIS data analyst noted that we had very few discrepancies from the outset
and appreciated the ease with which changes and amendments could be done, not least
because the data model and the rules provided comprehensible context. The explanation
facilities in RDFox allowed us to easily trace discrepancies into the raw data. This
reduced the number of development cycles of our application and we even discovered
problems with the vendor solution. All results computed by our solution using RDFox
were approved by the HEDIS analyst.

With this project we have successfully demonstrated the advantages of Semantic
Technologies over traditional solutions in the context of data analysis in healthcare, and
we are planning a further project with Kaiser Permanente in which the approach will
be extended to all of HEDIS and all of their regions. The project also shows a possible
avenue for applications of Semantic Technologies in encoding regulatory corpora in
the field of data analysis in general, and demonstrates that it has the potential to cut
development and maintenance costs in business settings.

Acknowledgements The project was funded by the DBOnto Platform Grant, the MaSI3 Fellow-
ship, and Kaiser Permanente. Thanks are particularly due to Alan Abilla, Andy Amster, Patrick
Courneya, Paul Glenn, Peter Hendler, Joseph Jentzsch, Scott Kimberly, and Mike Sutten, without
whom this project would not have been possible.

References

1. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Founda-
tions of Deductive Databases and Logic Programming. pp. 89–148 (1988)

2. Benson, T.: Principles of health interoperability HL7 and SNOMED. Springer, New York
London (2010)

3. Chaussecourte, P., Glimm, B., Horrocks, I., Motik, B., Pierre, L.: The energy management
adviser at EDF. In: Proc. ISWC 2013, Sydney, NSW, Australia. pp. 49–64 (2013), http:
//dx.doi.org/10.1007/978-3-642-41338-4_4

4. Krötzsch, M.: OWL 2 profiles: An introduction to lightweight ontology languages. In: Reason-
ing Web. Semantic Technologies for Advanced Query Answering - 8th International Summer
School 2012, Vienna, Austria, Proceedings. pp. 112–183 (2012), http://dx.doi.org/
10.1007/978-3-642-33158-9_4

5. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: A highly-scalable
RDF store. In: Proc. of ISWC Conference 2015, Bethlehem, PA, USA. pp. 3–20 (2015)

6. Ross, K.A.: Modular stratification and magic sets for datalog programs with negation. In:
Proc. of the ACM Symposium on Principles of Database Systems. pp. 161–171 (1990)

7. Slee, V.N.: The International Classification of Diseases: Ninth Revision (ICD-9). An-
nals of Internal Medicine 88(3), 424–426 (1978), +http://dx.doi.org/10.7326/
0003-4819-88-3-424

8. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In: Proc. of the 24th
AAAI Conference, AAAI 2010, Atlanta, GA, USA (2010), http://www.aaai.org/
ocs/index.php/AAAI/AAAI10/paper/view/1931

9. Vizenor, L., Smith, B.: Speech Acts and Medical Records: The Ontological Nexus. In: Proc.
of the Intern. Joint Meeting EuroMISE 2004 (EuroMISE, Prague, CZ) (2004)

