Consequence-Driven Reasoning for Horn-SHIQ Ontologies

Yevgeny Kazakov

Oxford University Computing Laboratory

July 29, 2009

OUTLINE

1 Introduction

2 Consequence-Based Procedures

RESULTS OVERVIEW

Classification times for some well-known large ontologies:

	GO	NCI	Galen v.0	Galen v.7	SNOMED
Concepts:	20465	27652	2748	23136	389472
FACT++	15.24	6.05	465.35	_	650.37
HERMIT	199.52	169.47	45.72		
PELLET	72.02	26.47			
CEL	1.84	5.76	_		1185.70

RESULTS OVERVIEW

Classification times for some well-known large ontologies:

	GO	NCI	Galen v.0	Galen v.7	SNOMED
Concepts:	20465	27652	2748	23136	389472
FACT++	15.24	6.05	465.35	_	650.37
HERMIT	199.52	169.47	45.72		
PELLET	72.02	26.47			
CEL	1.84	5.76			1185.70
СВ	1.17	3.57	0.32	9.58	49.44
Speed-Up:	1.57X	1.61X	143X	∞	13.15X

 The improvement is obtained using a new consequence-based reasoning procedure

available at:

cb-reasoner.googlecode.com

■ Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.

- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)

- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:

- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - **1** Enumerating all unknown subsumptions $A \sqsubseteq B$

- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - **1** Enumerating all unknown subsumptions $A \sqsubseteq B$
 - **2** Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - **1** Enumerating all unknown subsumptions $A \sqsubseteq B$
 - **2** Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

```
ONTOLOGY

H ≡ MO □ ∃isPartOf.CS

MO ≡ O □ ∃isPartOf.MS

MS ⊑ BS

CS ⊑ BS

?-MS ⊑ BS
```


- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - **1** Enumerating all unknown subsumptions $A \sqsubseteq B$
 - **2** Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

```
ONTOLOGY

H ≡ MO □ ∃isPartOf.CS

MO ≡ O □ ∃isPartOf.MS

➤ MS ⊑ BS

CS ⊑ BS

?- MS ⊑ BS

Yes
```


Model-Building Procedures

- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - 1 Enumerating all unknown subsumptions $A \sqsubseteq B$
 - 2 Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

```
ONTOLOGY

H ≡ MO □ ∃isPartOf.CS

MO ≡ O □ ∃isPartOf.MS

MS ⊑ BS

CS ⊑ BS

?-MS □ O
```


- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - 1 Enumerating all unknown subsumptions $A \sqsubseteq B$
 - 2 Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

```
ONTOLOGY

H ≡ MO □ ∃isPartOf.CS

MO ≡ O □ ∃isPartOf.MS

MS ⊑ BS

CS ⊑ BS

?-MS ⊑ O No
```


- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - **1** Enumerating all unknown subsumptions $A \sqsubseteq B$
 - **2** Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

```
ONTOLOGY

H ≡ MO □ ∃isPartOf.CS

MO ≡ O □ ∃isPartOf.MS

MS ⊑ BS

CS ⊑ BS

?-H □ O
```


Model-Building Procedures

- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - **1** Enumerating all unknown subsumptions $A \sqsubseteq B$
 - **2** Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

ONTOLOGY ► H ≡ MO □ ∃isPartOf.CS ► MO ≡ O □ ∃isPartOf.MS MS ⊑ BS CS ⊑ BS ?-H ⊑ O Yes

- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - **1** Enumerating all unknown subsumptions $A \sqsubseteq B$
 - **2** Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

```
ONTOLOGY

H ≡ MO □ ∃isPartOf.CS

MO ≡ O □ ∃isPartOf.MS

MS ⊑ BS

CS ⊑ BS

?-H ⊑ CS
```


- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - 1 Enumerating all unknown subsumptions $A \sqsubseteq B$
 - **2** Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

```
ONTOLOGY

H ≡ MO □ ∃isPartOf.CS

MO ≡ O □ ∃isPartOf.MS

MS □ BS

CS □ BS

?-H □ CS No
```


- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - **1** Enumerating all unknown subsumptions $A \sqsubseteq B$
 - **2** Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

ONTOLOGY H ≡ MO □ ∃isPartOf.CS MO ≡ O □ ∃isPartOf.MS MS ⊑ BS CS ⊑ BS

- Implemented in most of the reasoners including FACT++, HERMIT, PELLET, RACER.
- Use tableau (hyper-tableau) calculus which construct a model (model representation)
- Perform classification by:
 - 1 Enumerating all unknown subsumptions $A \sqsubseteq B$
 - **2** Trying to build a model for $A \sqcap \neg B$ (a countermodel for $A \sqsubseteq B$)

ONTOLOGY H ≡ MO □ ∃isPartOf.CS MO ≡ O □ ∃isPartOf.MS MS ⊑ BS CS ⊑ BS

PROBLEMS

- Classification requires enumeration:
 - Every subsumption $A \sqsubseteq B$ has to be checked separately
 - Typically > 99% of subsumptions do not hold

PROBLEMS

- Classification requires enumeration:
 - Every subsumption $A \sqsubseteq B$ has to be checked separately
 - \blacksquare Typically >99% of subsumptions do not hold
- 2 Excessive non-determinism:
 - Axioms $C \sqsubseteq D$ in general result in a disjunction $\top \sqsubseteq \neg C \sqcup D$
 - Non-determinism can be reduced using absorbtion and hyper-tableaux rules.

PROBLEMS

- Classification requires enumeration:
 - Every subsumption $A \sqsubseteq B$ has to be checked separately
 - lacktriangleq Typically >99% of subsumptions do not hold
- Excessive non-determinism:
 - Axioms $C \sqsubseteq D$ in general result in a disjunction $\top \sqsubseteq \neg C \sqcup D$
 - Non-determinism can be reduced using absorbtion and hyper-tableaux rules.
- 3 Large and highly cyclic models caused by existential dependencies $C \sqsubseteq \exists R.D$ (especially apparent for Galen)

ONTOLOGY

```
Heart ☐ ∃isPartOf.CirculatorySystem
CirculatorySystem ☐ ∃hasPart.LeftLung
LeftLung ☐ ∃isPartOf.RespiratorySystem
RespiratorySystem ☐ ∃hasPart.Trachea
and so on....
```


OUTLINE

1 INTRODUCTION

2 Consequence-Based Procedures

\mathcal{EL} Family of DLs

- ££ [Baader et al.,IJCAI 2003,2005] is a lightweight DL:
 - concepts are constructing using \top , $C \sqcap D$, and $\exists R.C$
 - axioms are $C \sqsubseteq D$ and $C \equiv D$
 - \mathcal{EL}^{++} adds \bot , $R_1 \cdots R_n \sqsubseteq R$, nominals, safe datatypes

EL FAMILY OF DLS

- ££ [Baader et al.,IJCAI 2003,2005] is a lightweight DL:
 - concepts are constructing using \top , $C \sqcap D$, and $\exists R.C$
 - axioms are $C \sqsubseteq D$ and $C \equiv D$
 - \mathcal{EL}^{++} adds \perp , $R_1 \cdots R_n \sqsubseteq R$, nominals, safe datatypes
- Interesting due to its polynomial-time complexity

\mathcal{EL} Family of DLs

- ££ [Baader et al.,IJCAI 2003,2005] is a lightweight DL:
 - concepts are constructing using \top , $C \sqcap D$, and $\exists R.C$
 - axioms are $C \sqsubseteq D$ and $C \equiv D$
 - \mathcal{EL}^{++} adds \bot , $R_1 \cdots R_n \sqsubseteq R$, nominals, safe datatypes
- Interesting due to its polynomial-time complexity
- Surprisingly useful:

GO	NCI	Galen v.0	Galen v.7	SNOMED
√	1	×	×	✓

EL FAMILY OF DLS

- ££ [Baader et al.,IJCAI 2003,2005] is a lightweight DL:
 - concepts are constructing using \top , $C \sqcap D$, and $\exists R.C$
 - axioms are $C \sqsubseteq D$ and $C \equiv D$
 - \mathcal{EL}^{++} adds \bot , $R_1 \cdots R_n \sqsubseteq R$, nominals, safe datatypes
- Interesting due to its polynomial-time complexity
- Surprisingly useful:

GO	NCI	Galen v.0	Galen v.7	SNOMED
√	1	×	×	√

lacktriangle Most of the axioms in Galen are expressed in \mathcal{ELH}

EXAMPLE

 $KidneyExamination \equiv ClinicalAct \sqcap$

∃hasSubprocess.(ExaminingProcess □ ∃involves.Kidney)

Normalization to simple axioms of the forms:

 $A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$

Normalization to simple axioms of the forms:

$$A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$$

$$A \sqsubseteq \exists R.(B \sqcap C) \quad \leadsto$$

Normalization to simple axioms of the forms:

$$A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$$

$$A \sqsubseteq \exists R.(B \sqcap C) \quad \leadsto \quad A \sqsubseteq \exists R.\underline{D} \quad \underline{D} \sqsubseteq B \sqcap C$$

Normalization to simple axioms of the forms:

$$A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$$

$$A \sqsubseteq \exists R.(B \sqcap C) \quad \leadsto \quad A \sqsubseteq \exists R.D \quad D \sqsubseteq \underline{B \sqcap C}$$

Normalization to simple axioms of the forms:

$$A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$$

$$A \sqsubseteq \exists R.(B \sqcap C) \quad \leadsto \quad A \sqsubseteq \exists R.D \quad D \sqsubseteq B \quad D \sqsubseteq C$$

Normalization to simple axioms of the forms:

$$A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$$

EXAMPLE

$$A \sqsubseteq \exists R.(B \sqcap C) \quad \leadsto \quad A \sqsubseteq \exists R.D \quad D \sqsubseteq B \quad D \sqsubseteq C$$

Normalization to simple axioms of the forms:

$$A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$$

EXAMPLE

$$A \sqsubseteq \exists R.(B \sqcap C) \quad \leadsto \quad A \sqsubseteq \exists R.D \quad D \sqsubseteq B \quad D \sqsubseteq C$$

$$\mathsf{IR1} \ \ \overline{A \sqsubseteq A} \qquad \qquad \mathsf{IR2} \ \overline{A \sqsubseteq \top}$$

Normalization to simple axioms of the forms:

$$A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$$

EXAMPLE

$$A \sqsubseteq \exists R.(B \sqcap C) \quad \leadsto \quad A \sqsubseteq \exists R.D \quad D \sqsubseteq B \quad D \sqsubseteq C$$

$$\mathsf{IR1} \ \ \overline{A \sqsubseteq A} \qquad \qquad \mathsf{IR2} \ \overline{A \sqsubseteq \top}$$

$$\operatorname{CR1} \frac{A \sqsubseteq B}{A \sqsubseteq C} : B \sqsubseteq C \in \mathcal{O} \qquad \operatorname{CR2} \frac{A \sqsubseteq B \quad A \sqsubseteq C}{A \sqsubseteq D} : B \sqcap C \sqsubseteq D \in \mathcal{O}$$

Normalization to simple axioms of the forms:

$$A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$$

EXAMPLE

$$A \sqsubseteq \exists R.(B \sqcap C) \quad \leadsto \quad A \sqsubseteq \exists R.D \quad D \sqsubseteq B \quad D \sqsubseteq C$$

$$\mathsf{IR1} \ \ \overline{A \sqsubseteq A} \qquad \qquad \mathsf{IR2} \ \overline{A \sqsubseteq \top}$$

$$\operatorname{CR1} \frac{A \sqsubseteq B}{A \sqsubseteq C} : B \sqsubseteq C \in \mathcal{O} \qquad \operatorname{CR2} \frac{A \sqsubseteq B \quad A \sqsubseteq C}{A \sqsubseteq D} : B \sqcap C \sqsubseteq D \in \mathcal{O}$$

$$\operatorname{CR3} \frac{A \sqsubseteq B}{A \sqsubseteq \exists r.C} : B \sqsubseteq \exists r.C \in \mathcal{O} \qquad \operatorname{CR4} \frac{A \sqsubseteq \exists r.B}{A \sqsubseteq \exists s.B} : r \sqsubseteq s \in \mathcal{O}$$

EL CLASSIFICATION PROCEDURE

Normalization to simple axioms of the forms:

$$A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$$

EXAMPLE

$$A \sqsubseteq \exists R.(B \sqcap C) \quad \leadsto \quad A \sqsubseteq \exists R.D \quad D \sqsubseteq B \quad D \sqsubseteq C$$

Deriving consequences using the rules [Brandt, ECAI 2004]:

$$\mathsf{IR1} \ \ \overline{A \sqsubseteq A} \qquad \qquad \mathsf{IR2} \ \overline{A \sqsubseteq \top}$$

$$\operatorname{CR1} \frac{A \sqsubseteq B}{A \sqsubseteq C} : B \sqsubseteq C \in \mathcal{O} \qquad \operatorname{CR2} \frac{A \sqsubseteq B \quad A \sqsubseteq C}{A \sqsubseteq D} : B \sqcap C \sqsubseteq D \in \mathcal{O}$$

$$\operatorname{CR3} \frac{A \sqsubseteq B}{A \sqsubseteq \exists r.C} : B \sqsubseteq \exists r.C \in \mathcal{O} \qquad \operatorname{CR4} \frac{A \sqsubseteq \exists r.B}{A \sqsubseteq \exists s.B} : r \sqsubseteq s \in \mathcal{O}$$

$$\frac{A \sqsubseteq \exists r.B \quad B \sqsubseteq C}{A \sqsubseteq D} : \exists r.C \sqsubseteq D \in \mathcal{O} \qquad \text{(language = } \mathcal{ELH}\text{)}$$

- Performs the full classification "in one pass"
- $lue{}$ Derives only subsumptions that are implied (< 1% of all)
- No non-determinism, no backtracking
- Computationally optimal (polynomial)
- Existential dependencies $C \sqsubseteq \exists R.D$ alone do not trigger any inferences
- Easy to make incremental / parallel / distributed, add explanations, progress bar...

- Performs the full classification "in one pass"
- Derives only subsumptions that are implied (< 1% of all)</p>
- No non-determinism, no backtracking
- Computationally optimal (polynomial)
- Existential dependencies $C \sqsubseteq \exists R.D$ alone do not trigger any inferences
- Easy to make incremental / parallel / distributed, add explanations, progress bar...

- Performs the full classification "in one pass"
- $lue{}$ Derives only subsumptions that are implied (< 1% of all)
- No non-determinism, no backtracking
- Computationally optimal (polynomial)
- Existential dependencies $C \sqsubseteq \exists R.D$ alone do not trigger any inferences
- Easy to make incremental / parallel / distributed, add explanations, progress bar...

- Performs the full classification "in one pass"
- \blacksquare Derives only subsumptions that are implied (< 1% of all)
- No non-determinism, no backtracking
- Computationally optimal (polynomial)
- Existential dependencies $C \sqsubseteq \exists R.D$ alone do not trigger any inferences
- Easy to make incremental / parallel / distributed, add explanations, progress bar...

- Performs the full classification "in one pass"
- \blacksquare Derives only subsumptions that are implied (< 1% of all)
- No non-determinism, no backtracking
- Computationally optimal (polynomial)
- Existential dependencies $C \sqsubseteq \exists R.D$ alone do not trigger any inferences
- Easy to make incremental / parallel / distributed, add explanations, progress bar...

- Performs the full classification "in one pass"
- \blacksquare Derives only subsumptions that are implied (< 1% of all)
- No non-determinism, no backtracking
- Computationally optimal (polynomial)
- Existential dependencies $C \sqsubseteq \exists R.D$ alone do not trigger any inferences
- Easy to make incremental / parallel / distributed, add explanations, progress bar...

- Performs the full classification "in one pass"
- $lue{}$ Derives only subsumptions that are implied (< 1% of all)
- No non-determinism, no backtracking
- Computationally optimal (polynomial)
- Existential dependencies $C \sqsubseteq \exists R.D$ alone do not trigger any inferences
- Easy to make incremental / parallel / distributed, add explanations, progress bar...

The "only" disadvantage:

 the language may be too restricted (tractable reasoning is the primary focus)

GALEN

■ Galen uses two constructors that are outside of ££++: inverse roles and role functionality:

EXAMPLE (GALEN)

BasilarArtery <u>□</u> ∃isBranchOf.VertebalArtery VertebalArtery <u>□</u> ∃hasBranch.BasilarArtery

- isBranchOf ≡ hasBranch⁻
 - ➤ *Fun*(isBranchOf)

GALEN

Galen uses two constructors that are outside of ££⁺⁺: inverse roles and role functionality:

EXAMPLE (GALEN)

BasilarArtery <u>□</u> ∃isBranchOf.VertebalArtery VertebalArtery <u>□</u> ∃hasBranch.BasilarArtery

- isBranchOf ≡ hasBranch⁻
 - ➤ *Fun*(isBranchOf)

 Adding any of these constructors to ELH results in complexity increase from PTime to ExpTime [Baader, Brandt, Lutz 2005; 2008]

GALEN

Galen uses two constructors that are outside of ££++: inverse roles and role functionality:

EXAMPLE (GALEN)

BasilarArtery ☐ ∃isBranchOf.VertebalArtery VertebalArtery ☐ ∃hasBranch.BasilarArtery

- isBranchOf ≡ hasBranch⁻
 - ➤ *Fun*(isBranchOf)

- Adding any of these constructors to ELH results in complexity increase from PTime to ExpTime [Baader, Brandt, Lutz 2005; 2008]
- We are not scared of the high complexity!

 \blacksquare A fragment of $\mathcal{SHIQ} \leftrightsquigarrow$ Horn fragment of first-order logic

- \blacksquare A fragment of $\mathcal{SHIQ} \leftrightsquigarrow$ Horn fragment of first-order logic
- Interesting due to its tractable data complexity [Hustadt, Motik, Sattler 2005; 2007]

- \blacksquare A fragment of $\mathcal{SHIQ} \leftrightsquigarrow$ Horn fragment of first-order logic
- Interesting due to its tractable data complexity [Hustadt, Motik, Sattler 2005; 2007]
- \blacksquare = \mathcal{ELH} + many new constructors:

- \blacksquare A fragment of $\mathcal{SHIQ} \leftrightsquigarrow$ Horn fragment of first-order logic
- Interesting due to its tractable data complexity [Hustadt, Motik, Sattler 2005; 2007]
- \blacksquare = \mathcal{ELH} + many new constructors:

	positive	negative
universal restriction:	$A \sqsubseteq \forall R.B$	_

- \blacksquare A fragment of $\mathcal{SHIQ} \leftrightsquigarrow$ Horn fragment of first-order logic
- Interesting due to its tractable data complexity [Hustadt, Motik, Sattler 2005; 2007]
- \blacksquare = \mathcal{ELH} + many new constructors:

	positive	negative
universal restriction:	$A \sqsubseteq \forall R.B$	_
functionality restriction:	$A \sqsubseteq \leq 1 R.B$	_

- \blacksquare A fragment of $\mathcal{SHIQ} \leftrightsquigarrow$ Horn fragment of first-order logic
- Interesting due to its tractable data complexity [Hustadt, Motik, Sattler 2005; 2007]
- \blacksquare = \mathcal{ELH} + many new constructors:

	positive	negative
universal restriction:	$A \sqsubseteq \forall R.B$	_
functionality restriction:	$A \sqsubseteq \leq 1 R.B$	_
at least restriction:	$A \sqsubseteq \geqslant n R.B$	$\geqslant 1 R.B \sqsubseteq A$

- \blacksquare A fragment of $\mathcal{SHIQ} \leftrightsquigarrow$ Horn fragment of first-order logic
- Interesting due to its tractable data complexity [Hustadt, Motik, Sattler 2005; 2007]
- \blacksquare = \mathcal{ELH} + many new constructors:

	positive	negative
universal restriction:	$A \sqsubseteq \forall R.B$	_
functionality restriction:	$A \sqsubseteq \leqslant 1 R.B$	_
at least restriction:	$A \sqsubseteq \geqslant n R.B$	$\geqslant 1 R.B \sqsubseteq A$
inverse roles:	$S \equiv R^-$	

- \blacksquare A fragment of $\mathcal{SHIQ} \leftrightsquigarrow$ Horn fragment of first-order logic
- Interesting due to its tractable data complexity [Hustadt, Motik, Sattler 2005; 2007]
- \blacksquare = \mathcal{ELH} + many new constructors:

	positive	negative	
universal restriction:	$A \sqsubseteq \forall R.B$	_	
functionality restriction:	$A \sqsubseteq \leq 1 R.B$	_	
at least restriction:	$A \sqsubseteq \geqslant n R.B$	$\geqslant 1 R.B \sqsubseteq A$	
inverse roles:	$S \equiv R^-$		
functional roles:	Fun(R)		

- A fragment of SHIQ Horn fragment of first-order logic
- Interesting due to its tractable data complexity [Hustadt, Motik, Sattler 2005; 2007]
- \blacksquare = \mathcal{ELH} + many new constructors:

	positive	negative
universal restriction:	$A \sqsubseteq \forall R.B$	_
functionality restriction:	$A \sqsubseteq \leq 1 R.B$	_
at least restriction:	$A \sqsubseteq \geqslant n R.B$	$\geqslant 1 R.B \sqsubseteq A$
inverse roles:	$S \equiv$	R^-
functional roles:	Fun(R)	

EXAMPLE

■ $A \sqsubseteq \forall R.(\neg B)$ $\exists R^-.A \sqsubseteq \leqslant 1 R.(B \sqcup C)$ are OK ■ $A \sqsubseteq B \sqcup C$ $\forall R.A \sqsubseteq B$ $A \sqsubseteq \leqslant 2 R.B$ are not OK

Interactions between existential and universal restrictions:

Interactions between existential and universal restrictions:

Interactions between existential and universal restrictions:

Similar interactions for functional restrictions:

$$\frac{A \sqsubseteq \exists R.B \quad B \sqsubseteq \exists R^{-}.C \quad B \sqsubseteq \leqslant 1 R^{-}.\top}{A \sqsubseteq C}$$

Interactions between existential and universal restrictions:

Similar interactions for functional restrictions:

$$\begin{array}{ccc}
A \sqsubseteq \exists R.B & B \sqsubseteq \exists R^{-}.C & B \sqsubseteq \leqslant 1 R^{-}.\top \\
& A \sqsubseteq C
\end{array}$$

$$2 \qquad \frac{A \sqsubseteq \exists R.B \quad C \sqsubseteq \exists R.D \quad A \sqsubseteq \leqslant 1 \, S.\top}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D)}$$

Interactions between existential and universal restrictions:

$$2 \qquad \frac{A \sqsubseteq \exists R.B \quad C \sqsubseteq \forall R.D}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D)} \qquad \Longleftrightarrow \quad \text{no analogue in } \mathcal{ELH}.$$

Similar interactions for functional restrictions:

$$\begin{array}{ccc}
A \sqsubseteq \exists R.B & B \sqsubseteq \exists R^{-}.C & B \sqsubseteq \leqslant 1 R^{-}.\top \\
& A \sqsubseteq C
\end{array}$$

$$2 \qquad \frac{A \sqsubseteq \exists R.B \quad C \sqsubseteq \exists R.D \quad A \sqsubseteq \leqslant 1 \, S.\top}{A \sqcap C \sqsubseteq \exists R.(B \sqcap D)}$$

■ The general form of derived axioms:

exponentially-many in worst case (which is optimal)

RESULTS

- lacksquare A novel classification procedure for Horn \mathcal{SHIQ} ontologies
- Key advantages over model-building procedures:
 - deterministic
 - full classification in one pass
 - 3 no problems with existential dependencies $C \sqsubseteq \exists R.D$
 - ${\color{red} 4}$ optimal for Horn- ${\color{blue} {\cal SHIQ}}$ and ${\color{blue} {\cal ELH}}$ (pay-as-you-go).
- The implementation exhibits a significant speedup:

	GO	NCI	Galen v.0	Galen v.7	SNOMED
FACT++	15.24	6.05	465.35	_	650.37
HERMIT	199.52	169.47	45.72	_	_
PELLET	72.02	26.47			
CEL	1.84	5.76	_	_	1185.70
CB	1.17	3.57	0.32	9.58	49.44
Speed-Up:	1.57X	1.61X	143X	∞	13.15X

available at:

cb-reasoner.googlecode.com

THE INFERENCE RULES FOR HORN \mathcal{SHIQ}

$$\overline{M \sqcap A \sqcap A}$$

$$\overline{M} \sqsubseteq \top$$

$$\frac{M \sqsubseteq \exists R.N \quad N \sqsubseteq \bot}{M \sqsubseteq \bot}$$

$$\frac{M \sqsubseteq A_1 \dots M \sqsubseteq A_n}{M \sqsubseteq C} : \bigcap_{i=1}^n A_i \sqsubseteq C \in \mathcal{O}$$

$$\frac{M \sqsubseteq \exists R_1.N \quad M \sqsubseteq \forall R_2.A}{M \sqsubseteq \exists R_1.(N \sqcap A)} : R_1 \sqsubseteq_{\mathcal{O}} R_2$$

$$\frac{M \sqsubseteq \exists R_1.N \quad N \sqsubseteq \forall R_2.A}{M \sqsubseteq A} : R_1 \sqsubseteq_{\mathcal{O}} R_2^-$$

$$M \sqsubseteq \exists R_1.N_1 \quad N_1 \sqsubseteq B$$

$$M \sqsubseteq \exists R_2.N_2 \quad N_2 \sqsubseteq B$$

$$M \sqsubseteq \leqslant 1 S.B \qquad \vdots \quad R_1 \sqsubseteq_{\mathcal{O}} S$$

$$M \sqsubseteq \exists R_1.(N_1 \sqcap N_2) \quad \vdots \quad R_2 \sqsubseteq_{\mathcal{O}} S$$

$$M \sqsubseteq \exists R_1.N_1 \quad M \sqsubseteq B$$

$$N_1 \sqsubseteq \exists R_2.(N_2 \sqcap A)$$

$$N_1 \sqsubseteq \leqslant 1 S.B \quad N_2 \sqcap A$$

$$\frac{M \sqsubseteq \leqslant 1 \, S.B}{M \sqsubseteq \exists R_1 . (N_1 \sqcap N_2)} : \frac{R_1 \sqsubseteq_{\mathcal{O}} S}{R_2 \sqsubseteq_{\mathcal{O}} S} \quad \frac{N_1 \sqsubseteq \leqslant 1 \, S.B}{M \sqsubseteq A} \quad \frac{N_2 \sqcap A \sqsubseteq B}{M \sqsubseteq \exists R_2^- . N_1} : \frac{R_1 \sqsubseteq_{\mathcal{O}} S^-}{R_2 \sqsubseteq_{\mathcal{O}} S}$$

Where
$$M, N = \bigcap A_i$$

