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SUMMARY OF THE MAIN RESULTS

KNOWN RESULTS (SEE DL COMPLEXITY NAVIGATOR")

(Finite model) reasoning is:
m ExpTime-complete for SHZ Q
m NExpTime-complete for SHOZ Q

THEOREM (NEW RESULTS IN THIS TALK)

(Finite model) reasoning is:
m 2ExpTime-hard for SRZ Q [and even for SR]
m N2ExpTime-complete for SROZ Q [and for SROZF]

In short: H = R causes an exponential blowup!

"http://www.cs.man.ac.uk/~ezolin/dl/
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[2003] SHZQ was extended to RZ Q with

m complex RIAs of the formRo SC RandSoRC R
m required to be acyclic: S < R, otherwise it is undecidable
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[2004] RZQ was extended with more types of complex RIAs:

RoRLC R (transitivity)
R™C R (symmetry)
Sio---0S5,CR Si<Rforalll1 <i<n

B RoSjo---08,CR (left-linear) Si<Rforalll <i<n
H S o---0S,0oRCR (rightlinear) S;<Rforalll<i<n

[2005] SRZIQ extends RZQ with
m Universal role U
Negated role assertions —R(a, b)
Concept constructor JR.Self
Role axioms Sym(R), Ref (R), Asy(S), Irr(R), Disj(Si, S2)
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FROM SHZ Q 10 SROZIQ

[2003] SHZQ was extended to RZQ with
m complex RIAs of the formRo SC RandSoRC R
m required to be acyclic: S < R, otherwise it is undecidable

[2004] RZQ was extended with more types of complex RIAs:

RoRLC R (transitivity)
R™C R (symmetry)
Sio---0S5,CR Si<Rforalll1 <i<n

B RoSjo---08,CR (left-linear) Si<Rforalll <i<n
H S o---0S,0oRCR (rightlinear) S;<Rforalll<i<n

[2005] SRZIQ extends RZQ with
m Universal role U
m Negated role assertions —R(a, b)
m Concept constructor 3R.Self
m Role axioms Sym(R), Ref (R), Asy(S), Irr(R), Disj(S1, S2)
[2006] SROZIQ =8RIQ+ SHOIQ
proposed as a basis for OWL 2 (a.k.a. OWL 1.1)
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Introduction

REGULAR RIAS

= Integration of new constructions into existing tableau-based
procedures:

m U, =R(a,b), Sym(R), Ref(R), Asy(S), Irr(R), Disj(S1, S2)
— do not break the tree-model property
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Introduction

REGULAR RIAS

— do not break the tree-model property

oR,CR

.Rlo...

— break the tree-model property

m Cause undecidability when used without restrictions
m Regularity restrictions |l — H ensure decidability

REGULAR RIAS
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Introduction

REGULAR RIAS

= Integration of new constructions into existing tableau-based
procedures:

m U, =R(a,b), Sym(R), Ref(R), Asy(S), Irr(R), Disj(S1, S2)
— do not break the tree-model property

mRo---oR,CR

— break the tree-model property
m Cause undecidability when used without restrictions
m Regularity restrictions |l — H ensure decidability

REGULAR RIAS

SoRoSLCR — not regular RoRLCR
R CR
R;oR; C R;y; — regular by Sio--08, CR

WhenR0‘<Rl‘<""<Rn B RoSjo---0§5,CR
Sio---08,0RCR
S;i <R
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TABLEAU: THE EXPONENTIAL BLOWUP

m Every regular RBox R induces a regular language:
LR(R) = {S]SQ...Sn ‘ SioS0---08, E%R}
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TABLEAU: THE EXPONENTIAL BLOWUP

m Every regular RBox R induces a regular language:
LR(R) = {S]SQ...Sn ‘ SioS0---08, E%R}

m Tableau procedures for RZQ — SROZQ work with R via
the corresponding automata for Lz (R).

EXAMPLE (CONTINUED)
SoRoSCR Lg(R)={SRS |i>0} — non regular

RioR ERiy1 Lgr(Riy1) ={Riy1} ULR(R) - Lr(R;)
— regular (because finite)

= The number of different labels in the tableau ~ 2/Z11t= (R
= Unfortunately |Lz(R)| can be exponential in |R|:
by induction on i one can show that |[Lz(R;)| > 2'
m This causes an exponential blowup compared to the
procedure for SHOZ Q < Unavoidable??
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Hardness Results

EXPONENTIAL CHAINS IN ALC

= Integer counting technique: I
= A counter between 0 and 2" — 1 S EoRE NG 111
uses n concepts By, ..., B, T
) By B,-B 110
= The i-th bit of the counter T P
correspondslto'the value of B; e B:;-B, B 101
m The counter is incremented over R T
@ B3—By—B 100
27[
—B3 By B 011
T —B3 By—B 010
T —B3—B; B 001
@ —B3—By— B 000
-
n=3
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Hardness Results

, EXPONENTIAL CHAINS IN ALC

= Integer counting technique: I
= A counter between 0 and 2" — 1 T Hh L 111
uses n concepts By, ..., B, 5 B
. - 110
= The i-th bit of the counter T P
corresponds to the value of B; e B:;-B, B 101
m The counter is incremented over R T
m Expressing in ALC: - 2 BsmBrmB 100
Z=-B,M---M=B — “Zero” By B, B 011
E= B,N---MB; —“End”
@ —B3 BB 010
—E=3R.T — Successors T
—l— = (B] M \V/R—\Bl) [ (_‘Bl M \V/RBl) T —B3;—B, B 001
— The lowest bit always flips & —Bi—By—B, a0
B;_ | MMVR-B;_| = -
n=23

(B; MVYR.=B;) U (—=B; T1VR.B;)
— The bit flips if the lower bit changes from 1 to 0
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Hardness Results

DOUBLY-EXPONENTIAL CHAINS INSRZQ
]

m Encode the counter on

exponentially-long chains P o
m The value of X on i-th element of 110
the chain encodes the i-th bit X ?&‘ —X
m The chains are connected by 101
“last-to-first element” 8 % 2
100
22:1 X =X
so 011
So 010
—X —X
° 001
o—)&o 000
—X —X =X
2}’!
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Hardness Results

DOUBLY-EXPONENTIAL CHAINS INSRZQ

m Encode the counter on |
exponentially-long chains e *_f% 11
m The value of X on i-th element of . | Y i
the chain encodes the i-th bit xT Ioo=xT
m The chains are connected by ; b 101
“last-to-first element” x4 20
m Incrementing of the counter ) xT~xXt '
m Key point: connect corresponding 2 ' ' b 011
elements using complex RIAs: -x7 Iooxt
< 9% 001
6—)&0‘ > 000
X X X
2}’!
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Hardness Results

DOUBLY-EXPONENTIAL CHAINS INSRZQ

m Encode the counter on

exponentially-long chains

m The value of X on i-th element of

the chain encodes the i-th bit
m The chains are connected by

“last-to-first element”

m Incrementing of the counter
m Key point: connect corresponding

elements using complex RIAs:

m Complex RIAs connect elements

reachable over exactly 2" roles:

mRoRo---oRLCR,
—_—
k
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Hardness Results

: DOUBLY-EXPONENTIAL CHAINS INSRZQ

= Encode the counter on I
exponentially-long chains e t s SRAE
m The value of X on i-th element of | . : o
the chain encodes the i-th bit xT Ioo=xT
m The chains are connected by ' > 101
“last-to-first element” X : . 2 E
m Incrementing of the counter o X%X@ 100
m Key point: connect corresponding 2 : . : 011
elements using complex RIAs: -XT TooxT
m Complex RIAs connect elements i . b ool
reachable over exactly 2" roles: X7 IooxT
m RoRo---oRLR, iff k=2" — 54 5 000
—_— -X X X
. B

m Flipping of corresponding bits:
EC (XNVR,.—X) U (=X NVR,.X)
— the last bit always flips, . . . etc.
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Hardness Results

HARDNESS RESULT FOR SROZIQ

m The key idea is like in the NExpTime-hardness for SHOZ Q.
m In SHOZQ itis possible to express an exponential grid:

= Use two counters to encode the I
coordinates of the grid gl sg il gl gl gt

m Increment / copy the counters

; o Jow oo les lsa
over respective edges

on (1,3) (42.3) (13,3 (K4.3) ,[5.3)

o2 (4(22) ([(3.2) (K42) K(5.2)

A(1,1) (2,1) N3,1) M4, N(5,1)
21’!
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HARDNESS RESULT FOR SROZIQ

m The key idea is like in the NExpTime-hardness for SHOZ Q.

m In SHOZQ itis possible to express an exponential grid:

m Use two counters to encode the I
coordinates of the grid ghlgtil gl gl 4ot

m Increment / copy the counters
over respective edges
m Ensure that the element with the onl gaden Jon Jav s

max coordinates is unique using
a nominal oy JJoeo 62 k4 (152)

1(1,4) (2,4) JM3,4) N4.4)  N5,4)

RN (CR)IN (CRYIN (CRONIN (E))
21’!
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Hardness Results

HARDNESS RESULT FOR SROZIQ

m The key idea is like in the NExpTime-hardness for SHOZ Q.

m In SHOZQ itis possible to express an exponential grid:

m Use two counters to encode the I
coordinates of the grid ol3) 3g29) o 08) J] o(5)

m Increment / copy the counters
over respective edges
m Ensure that the element with the onl gaden Jon Yy e

max coordinates is unique using
a nominal o Jeo Jeo @ L62)

a4 (24 N34 4D (54

m Ensure that elements with
smaller coordinates are unique
using inverse functional roles 2"

LD K20 43D 4D (51
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HARDNESS RESULT FOR SROZIQ

m The key idea is like in the NExpTime-hardness for SHOZ Q.
m In SHOZQ itis possible to express an exponential grid:

m Use two counters to encode the I

coordinates of the grid  SVCIRVERIRY LRV
m Increment / copy the counters ,
Py (N XN X | T N

over respective edges

m Ensure that the element with the onl gaden Jon Yy e
max coordinates is unique using
a nominal ) e 62 @2 (L52)

m Ensure that elements with
smaller coordinates are unique
using inverse functional roles 2"

LD K20 43D 4D (51
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Hardness Results

HARDNESS RESULT FOR SROZIQ

m The key idea is like in the NExpTime-hardness for SHOZ Q.
m In SHOZQ itis possible to express an exponential grid:

m Use two counters to encode the INE———
coordinates of the grid W\}
m Increment / copy the counters
: % —H
over respective edges

m Ensure that the element with the 72"
max coordinates is unique using

a nominal

m Ensure that elements with
smaller coordinates are unique T
using inverse functional roles 92"

m For SROZQ the construction is exactly the same but using
doubly-exponential counters

Yevgeny Kazakov (presented by Birte Glimm) SRZIQ and SROZIQ are Harder than S’



Hardness Results

HARDNESS RESULT FOR SROZIQ

m The key idea is like in the NExpTime-hardness for SHOZ Q.
m In SHOZQ itis possible to express an exponential grid:

THEOREM ‘?\Wf\%f\},
(Finite model) reasoning in
B

SROIQ is N2ExpTime-hard. The
result holds already for inverse
functional roles and nominals.

2%

R e e
2%

m For SROZQ the construction is exactly the same but using
doubly-exponential counters
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Hardness Results

HARDNESS RESULT FOR SRZQ

By reduction from the word problem for an exponential-space

alternating Turing machine:

m Configurations are encoded on T T T
exponential chains i S T I O s
= Corresponding cells of successive sos b oo tod
configurations are connected by R, N IS S M
m Easy to simulate the computation Ol INE N S Y
= [A [T =%

S8—0—9

O e | |

NS RN
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Hardness Results

HARDNESS RESULT FOR SRZQ

By reduction from the word problem for an exponential-space

alternating Turing machine:

m Configurations are encoded on T T T T
exponential chains il S I s

= Corresponding cells of successive sos b oo tod
configurations are connected by R, L s I

m Easy to simulate the computation Ol INE N S Y

_ . FROY TR

m Since AExpSpace = 2ExpTime we T
have: %\ \%\ % % \%

& & s & N4

(Finite model) reasoning in SRIQ is T [T
2ExpTime-hard. The result holds already Tl [ el
without inverses and counting. i B B N Nt
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Membership Results

THE MEMBERSHIP RESULT FOR SROZIQ

The matching N2ExpTime upper bound for SROZQ is obtained
by an exponential translation into C?:

Summary: Axiom First-Order Translation

L 1 ACVrB Vx.(A(x) = Vy.[r(x,y) — BOY)])

Simplify ontology to-— -, " = () —3705509) £ B))
contain only axioms 3 AC<nsB  Vx(A(x) —35.[s(x,y) A BO)])
of forms 1-10 4 A=3s.Self Vx.(A(x) < s(x,x))

71 Eliminate axioms of 5 Ac={a}  FTYAL)

. f m 10 in NFA 6 |—| A; EU Bj Vx(\/ ﬁA,‘()C) \/v Bj(x))
0 using 7 Disj(s1,52)  Vay.(si(x,y) A s2(x,y) — L)

Translate the other 8 s1iCs Vxy.(s1(x,y) — s2(x,¥))
axioms into C? ? siE s~ Vaxy.(s1(x,y) = 2(9,%))

0 rpo---or, Cv, n>1, visnon-simple
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Membership Results

THE MEMBERSHIP RESULT FOR SROZIQ

The matching N2ExpTime upper bound for SROZQ is obtained
by an exponential translation into C?:

Summary: Axiom First-Order Translation

i lif | ACVrB Vx. (A( )—>Vy.[r(x,y) — B(y)])
comtain oy s 2 A€ 2138 Y803 le) A B0)
ot forms 1210 AT <nsB  Va(A(W)— Iy s(x.y) A BG))

A = 3s.Self Vax. ( (x) < s(x,x))
Eliminate axioms of Ao={a}  FTyA)
form 10 using NFA MACLE  va(V -Alx) VV Bi(x)
g Disj(s1,52)  Vay.(s1(x,y) A s2(x,y) — L)
Translate the other 51 Cs Vxy.(s1(x,y) — s2(x,¥))
axioms into C>

s1 s Vay.(s1(x,y) = s2(y,%))

=0 0 9O Lt AW —

0 rnmo---or,Cy, n>1, yisnon-simple

KEY PROPERTY FOR STEP 2

Axioms of form 10 can interact only with axioms of form 1, since
other axioms contain only simple roles s;
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Membership Results

ELIMINATION OF COMPLEX RIAS

THE MAIN IDEA

“Absorb” regular RIAs into axioms of the form A C Vr.B

m For each A C Vr.B, complex RIAs induce properties:
ACVrio---or,.B, whenry...r, € Lr(r)
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m For each A C Vr.B, complex RIAs induce properties:
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m These properties can be expressed alternatively using the
regularity of Lz (r):
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“Absorb” regular RIAs into axioms of the form A C Vr.B

m For each A C Vr.B, complex RIAs induce properties:
ACVrio---or,.B, whenry...r, € Lr(r)
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m Take any NFA for Lz (r) with the set of states 0, and the
transition relation §
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ELIMINATION OF COMPLEX RIAS

THE MAIN IDEA

“Absorb” regular RIAs into axioms of the form A C Vr.B

m For each A C Vr.B, complex RIAs induce properties:
ACVrio---or,.B, whenry...r, € Lr(r)
m These properties can be expressed alternatively using the
regularity of Lz (r):
m Take any NFA for Lz (r) with the set of states 0, and the
transition relation 9§, and add new axioms for A C Vr.B:
m A, CVsA,, when(p,s,q)€o

m ACA,, whenpisthe initial state

m A, C B, when g is the accepting state
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ELIMINATION OF COMPLEX RIAS

THE MAIN IDEA

“Absorb” regular RIAs into axioms of the form A C Vr.B

m For each A C Vr.B, complex RIAs induce properties:
ACVrio---or,.B, whenry...r, € Lr(r)
m These properties can be expressed alternatively using the
regularity of Lz (r):
m Take any NFA for Lz (r) with the set of states 0, and the
transition relation 9§, and add new axioms for A C Vr.B:
m A, CVsA,, when(p,s,q)€o

m ACA,, whenpisthe initial state

m A, C B, when g is the accepting state

m It is easy to see that these axioms imply
ACVYrio---or,.B iff ri...r, € Lr(r)
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Membership Results

ELIMINATION OF COMPLEX RIAS

THE MAIN IDEA

“Absorb” regular RIAs into axioms of the form A C Vr.B

m For each A C Vr.B, complex RIAs induce properties:
ACVrio---or,.B, whenry...r, € Lr(r)
m These properties can be expressed alternatively using the
regularity of Lz (r):
m Take any NFA for Lz (r) with the set of states 0, and the
transition relation 9§, and add new axioms for A C Vr.B:
m A, CVsA,, when(p,s,q)€o

m ACA,, whenpisthe initial state

m A, C B, when g is the accepting state
m It is easy to see that these axioms imply
ACVYrio---or,.B iff ri...r, € Lr(r)
m Note that |Q| can be exponential in |R|!
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Membership Results

THE MEMBERSHIP RESULT FOR SROZIQ

The matching N2ExpTime upper bound for SROZQ is obtained
by an exponential translation into C?:

Summary: Axiom First-Order Translation
: : 1 ACVr.B Vax.(A(x) = Vy.[r(x,y) — B(y)])
Slmpl.lfy OﬂtOlOgy to 2 AC >ns.B  Yx.(A(x)—3Z"y.[s(x,y) A B()])
contain only axioms of 5 , -, (p V. (A(x) — 3" [s(x, ) A BO)])
forms 1-10 (polynom.) 4 A=3s.5elf  Vx.(A(x) < s(x,x))
A Eliminate axioms of S Ac={a}  FvA)
" form 10 using NFA 6 [1A CUB  vx(V ~Ailx) VV B(2))
>INg 7 Disj(s1, 52) ny (s1(x,) A 2(x,y) — L)
(exponential step!) 8 51 C s xy.(s1(x,y) — 52(x, 7))
Translate the other 9 s1Es” V"y (510, y) = 52(y, %))
10 rpo---or, Cv, n>1,visnon-simple

axioms into C?
(NExpTime-complete)
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Membership Results

THE MEMBERSHIP RESULT FOR SROZIQ

The matching N2ExpTime upper bound for SROZQ is obtained
by an exponential translation into C?:

Summary: Axiom First-Order Translation
oo 1 ACVYr.B Vx.(A(x) — Vy.[r(x,y) — B()])
SlmpI!fy ontology to 2 AC >ns.B  Yx.(A(x)—3Z"y.[s(x,y) A B()])
contain only axioms of 5 , -, (p V. (A(x) — 3" [s(x, ) A BO)])
forms 1-10 (polynom.) 4 A =3s.5elf  Vx.(A(x) <= s(x,x))
A Eliminate axioms of S Ac={a}  FvA)
" form 10 using NFA 6 [AELE  ¥x(V ~Ailx) VV B(x))
>INg 7 Disj(s1, 52) ny (s1(x,) A 2(x,y) — L)
(exponential step!) 8 51 C s xy.(s1(x,y) — 52(x, 7))
Translate the other 9 s1Es” V"y (510, y) = 52(y, %))
10 rpo---or, Cv, n>1,visnon-simple

axioms into C?
(NExpTime-complete)

THEOREM (UPPER COMPLEXITY FOR SROZQ)

(Finite model) reasoning in SROZQ is N2ExpTime
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Discussion

SUMMARY

m We have identified exact computational complexity of
SROZIQ to be N2ExpTime; SRZQ is 2ExpTime-hard.

m Complexity blowup is due to complex RIAs Ry o --- o R, C R,

in particular because they can chain a fixed exponential
number of roles

m Explains the exponential blowup in the tableau procedures
for SRZQ and SROZIQ
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Discussion

SUMMARY

m We have identified exact computational complexity of
SROZIQ to be N2ExpTime; SRZQ is 2ExpTime-hard.

m Complexity blowup is due to complex RIAs Ry o --- o R, C R,

in particular because they can chain a fixed exponential
number of roles
m Explains the exponential blowup in the tableau procedures
for SRZQ and SROZIQ
m Open problems:
Upper bound for SRZQ? Conjecture: 2ExpTime
Upper & Lower bounds for RZQ? Conjecture: 2ExpTime

RZQ allows only for restricted complex RIAs of the form
Ro SC Rand S o RC R which cannot be used in our
constructions
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Discussion

AVOIDING THE EXPONENTIAL BLOWUP

= The exponential blowup occurs in rather exotic cases,
unlikely to occur often in practice
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Discussion

AVOIDING THE EXPONENTIAL BLOWUP

= The exponential blowup occurs in rather exotic cases,
unlikely to occur often in practice

m Some further restrictions on complex RIAs are known to
prevent an exponential blowup
(e.g. when every sequence Ry <R, < --- < R, has a
bounded length)

Yevgeny Kazakov (presented by Birte Glimm) SRZIQ and SROZIQ are Harder than SHOZ Q



Discussion

AVOIDING THE EXPONENTIAL BLOWUP

= The exponential blowup occurs in rather exotic cases,
unlikely to occur often in practice

m Some further restrictions on complex RIAs are known to
prevent an exponential blowup

(e.g. when every sequence Ry <R, < --- < R, has a
bounded length)

m Only the size of the RBox has a high complexity impact:

SH[O]ZQ SR[O]ZQ
ABox | TBox | RBox ABox | TBox | RBox
NP ? NP ?
[N]JExpTime [N]ExpTime
[N]ExpTime 2[N]JExpTime
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Discussion

, QUESTIONS?

m Please send difficult questions to

YEVGENY KAZAKOV

yevgeny.kazakov@comlab.ox.ac.uk

m Our contribution:

SROIQ [SROIF]is N2ExpTime-complete
SRIQ [SR]is 2ExpTime-hard

m Thank you for your attention!
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