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Abstract

Modularity is a key requirement for collaborative
ontology engineering and for distributed ontology
reuse on the Web. Modern ontology languages,
such as OWL, are logic-based, and thus a useful
notion of modularity needs to take the semantics of
ontologies and their implications into account. We
propose a logic-based notion of modularity that al-
lows the modeler to specify theexternalsignature
of their ontology, whose symbols are assumed to
be defined in some other ontology. We define two
restrictions on the usage of the external signature,
a syntactic and a slightly less restrictive, seman-
tic one, each of which is decidable and guarantees
a certain kind of “black-box” behavior, which en-
ables the controlled merging of ontologies. Analy-
sis of real-world ontologies suggests that these re-
strictions are not too onerous.

1 Motivation
Modularity is a key requirement for many tasks concerning
ontology design, maintenance and integration, such as the
collaborative development of ontologies and the merging of
independently developed ontologies into a single, reconciled
ontology. Modular representations are easier to understand,
reason with, extend and reuse. Unfortunately, in contrast
to other disciplines such as software engineering—in which
modularity is a well established notion—ontology engineer-
ing is still lacking a useful, well-defined notion of modularity.

Modern ontology languages, such as OWL[Patel-
Schneideret al., 2004], are logic-based; consequently, a no-
tion of modularity needs to take into account the semantics of
the ontologies and their implications.

In this paper, we propose a logic-based framework for
modularity of ontologies in which we distinguish between
externalandlocal symbols of ontologies. Intuitively, the ex-
ternal symbols of an ontology are those that are assumed to
be defined somewhere externally in other ontologies; the re-
maining, local symbols, are assumed to be defined within the
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ontology itself by possibly reusing the meaning of external
symbols. Hence by merging an ontology with external on-
tologies we import the meaning of its external symbols to de-
fine the meaning of its local symbols.

To make this idea work, we need to impose certain con-
straints on the usage of the external signature: in particular,
merging ontologies should be “safe” in the sense that they
do not produce unexpected results such as new inconsisten-
cies or subsumptions between imported symbols. To achieve
this kind of safety, we use the notion ofconservative exten-
sionsto define modularity of ontologies, and then prove that
a property of some ontologies, calledlocality, can be used
to achieve modularity. More precisely, we define two no-
tions of locality forSHIQ TBoxes: (i) a tractable syntac-
tic one which can be used to provide guidance in ontology
editing tools, and (ii) a more general semantic one which can
be checked using a DL-reasoner. Additionally, we present an
extension of locality to the more expressive logicSHOIQ
[Horrocks and Sattler, 2005]. Finally, we analyse existing
ontologies and conclude that our restrictions to local TBoxes
are quite natural.

When integrating independently developed ontologies, we
often have to identify different symbols in the ontologies hav-
ing the same intended meaning. This is a problem known as
ontology matching or mapping,1 which we are not concerned
with here: we consider ontologies sharing some part of their
signature, and how we can make sure that that their merge
(i.e. the union of their axioms) is “well-behaved”.

2 Preliminaries
We introduce the description logicSHOIQ, which provides
the foundation for OWL.

A SHOIQ-signature is the disjoint unionS = R ]C ] I
of sets ofrole names(denoted byR,S, · · · ), concept names
(denoted byA,B, · · · ) andnominals(denoted byi, j, k, · · · ).
A SHOIQ-role is eitherR ∈ R or aninverse roleR− with
R ∈ R. We denote byRol(S) the set ofSHOIQ-roles for
the signatureS. The setCon(S) of SHOIQ-conceptsfor the
signatureS is defined by the grammar

Con(S) ::= A | j | (¬C) | (C1uC2) | (∃R.C) | (>n S.C)

1The website http://www.ontologymatching.org
provides extensive information about this area.



whereA ∈ C, j ∈ I, C(i) ∈ Con(S), R,S ∈ Rol(S), with S

a simplerole,2 andn a positive integer. We use the following
abbreviations:CtD stands for¬(¬Cu¬D);> and⊥ stand
for A t ¬A andA u ¬A, respectively;∀R.C and6n S.C
stand for¬∃R.¬C and¬(>n+1 S.C), respectively.

A SHOIQ-TBox T , or ontology, is a finite set ofrole in-
clusion axioms(RIs)R1 v R2 with Ri ∈ Rol(S), transitivity
axiomsTrans(R) with R ∈ R andgeneral concept inclusion
axioms(GCIs)C1 v C2 with Ci ∈ Con(S). We useA ≡ C
as an abbreviation for the two GCIsA v C andC v A.
The signatureSig(α) (respectivelySig(T )) of an axiomα
(respectively of a TBoxT ) is the set of symbols occurring in
α (respectively inT ). A SHIQ-TBox is aSHOIQ-TBox
that does not contain nominals.

Given a signatureS = R ] C ] I, anS-interpretationI
is a pairI = (∆I , .I), where∆I is a non-empty set, called
the domainof the interpretation, and.I is the interpretation
functionthat assigns to eachR ∈ R a binary relationRI ⊆
∆I × ∆I , to eachA ∈ C a setAI ⊆ ∆I , and to every
j ∈ I a singleton setjI ⊆ ∆I . The interpretation function is
extended to complex roles and concepts as follows:

(R−)I = {〈x, y〉 | 〈y, x〉 ∈ RI}
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(∃R.C)I = {x ∈ ∆I | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
(>n R.C)I = {x ∈ ∆I |

]{y ∈ ∆I | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n}

ThesatisfactionrelationI |= α between an interpretation
I and aSHOIQ-axiomα (read asI satisfiesα) is defined
as follows:I |= (R1 v R2) iff RI

1 ⊆ RI
2 ; I |= Trans(R)

iff RI is transitive;I |= (C v D) iff CI ⊆ DI . An inter-
pretationI is amodelof a TBoxT if I satisfies all axioms in
T . A TBox T impliesan axiomα (writtenT |= α) if I |= α
for every modelI of T . An axiomα is a tautologyif it is
satisfied in every interpretation.

An S-interpretationI = (∆I , ·I) is an expansionof an
S′-interpretationI ′ = (∆I′

, ·I′
) if S ⊇ S′, ∆I = ∆I′

, and
XI = XI′

for everyX ∈ S′. Thetrivial expansion ofI ′ to
S is an expansionI = (∆I′

, ·I) of I ′ such thatXI = ∅ for
everyX ∈ S \ S′.

3 Modularity of Ontologies

In this section, we propose a logical formalization for the no-
tion of modularity for ontologies. In analogy to software en-
gineering, we should be able to compose complex ontologies
from simpler (modular) ontologies in a consistent and well-
defined way, in particular without unintended interactions be-
tween the component ontologies. This notion of modular-
ity would be useful for both the collaborative development of
a single ontology by different domain experts, and the inte-
gration of independently developed ontologies, including the
reuse of existing third-party ontologies.

2See[Horrocks and Sattler, 2005] for a precise definition of sim-
ple roles.

In order to formulate our notion of modularity, we will dis-
tinguish between the local and external symbols of an ontol-
ogy. We assume that the signatureSig(T ) of a TBox T is
partitioned into two parts: thelocal signatureLoc(T ) of T
and theexternal signatureExt(T ) of T . To distinguish be-
tween the elements of these signatures, we will underline the
external signature elements whenever used within the con-
text of T . Intuitively, Ext(T ) specifies the concept and role
names that are (or can be) imported from other ontologies,
while Loc(T ) specifies those that are defined inT .

As a motivating example, imagine a set of bio-medical on-
tologies that is being developed collaboratively by a team of
experts. Suppose that one group of experts designs an on-
tologyG about genes and another group designs an ontology
D about diseases. Now certain genes are defined in terms of
the diseases they cause. For example, the gene ErbB2 is de-
scribed inG as an Oncogene that is found in humans and is
associated with a disease called Adrenocarcinoma3

ErbB2 ≡ Oncogene u ∃foundIn.Human

u ∃associatedWith.Adrenocarcinoma

The conceptAdrenocarcinoma is described inD, which is un-
der the control of a different group of modelers. So, this con-
cept is external forG, whereas the remaining concept and role
names are local forG. Now one consequence of these ontolo-
gies being modularly “well-behaved” would be that the gene
experts buildingG should not change the knowledge about
diseases, even if they are using them in their axioms.

Another example is the integration of afoundational(or
“upper”) ontologyU and adomain ontologyO. Founda-
tional ontologies, such as CYC, SUMO,4 and DOLCE, pro-
vide a structure upon which ontologies for specific subject
matters can be constructed and are assumed to be the result
of an agreement between experts. Suppose that an ontol-
ogy developer wants to reuse the generic concept of a Sub-
stance fromU in their ontologyO aboutChemicals. For such
a purpose, they state that the conceptOrganic Chemical in
their chemical ontologyO is more specific thanSubstance
in U by using the axiom:Organic Chemical v Substance,
whereSubstance ∈ Ext(O). Since foundational ontologies
are well-established ontologies that one does not control and,
typically, does not have complete knowledge about, it is espe-
cially important that the mergeO ∪ U does not produce new
logical consequences w.r.t.U—even ifU changes.

In both examples, we have argued that ontology integration
should be carried out in such a way that consequences of a
TBox T ′ are not changed when elements ofT ′ are reused in
another TBoxT . This property can be formalized using the
notion of aconservative extension[Ghilardiet al., 2006].

Definition 1 (Conservative Extension). Let T and T ′ be
TBoxes. ThenT ∪T ′ is aconservative extensionof T ′ if, for
every axiomα with Sig(α) ⊆ Sig(T ′) we haveT ∪ T ′ |= α
iff T ′ |= α. ♦

Thus, givenT andT ′, their unionT ∪ T ′ does not yield
new consequences in the language ofT ′ if T ∪T ′ is a conser-

3Example from the National Cancer Institute Ontologyhttp:
//www.mindswap.org/2003/CancerOntology .

4Seehttp://ontology.teknowledge.com .



vative extension ofT ′. A useful notion of modularity, how-
ever, should abstract from the particularT ′ under considera-
tion. In fact, the external signature should be the core notion
in a modular representation as opposed to its particular defin-
ition in a particular ontologyT ′. This is especially important
whenT ′ may evolve, and where this evolution is beyond our
control—which, for example, could well be the case when us-
ing the “imports” construct provided by OWL. Consequently,
in order forT to useExt(T ) in a modular way,T ∪T ′ should
be a conservative extension ofanyT ′ overExt(T ).

Furthermore, it is important to ensure that, whenever two
independent partsT1 andT2 of an ontologyT under the con-
trol of different modelers are developed in a modular way,
thenT remains modular as well.

These requirements can be formalized as follows:
Definition 2 (Modularity). A set M of TBoxesT with
Sig(T ) = Loc(T ) ] Ext(T ) is amodularity classif the fol-
lowing conditions hold:
M1. If T ∈ M, thenT ∪ T ′ is a conservative extension of

everyT ′ such thatSig(T ′) ∩ Loc(T ) = ∅;

M2. If T1, T2 ∈ M, thenT = T1∪T2 ∈ M with Loc(T ) =
Loc(T1) ∪ Loc(T2). ♦

Please note that our framework is independent of the DL
under consideration. Also, Definition 2 does not define a
modularity class uniquely, but just states conditions for be-
ing one. When the modularity class is clear from the context,
we will call its elementsmodular ontologies.

In the next section, we focus our attention on the logic
SHIQ, and show that it is possible to define a reasonable
modularity class such that (1) checking its membership can
be done using standard reasoning tools, (2) it has an inex-
pensive syntactic approximation that can be used to guide the
modeling of ontologies in a modular way, and (3) our analy-
sis of existing ontologies shows that they seem to conform
“naturally” with its restrictions.

4 Modularity of SHIQ ontologies
In this section we define a particular modularity class, the
class oflocal ontologies, which captures many practical ex-
amples of modularly developed ontologies. We first give a
syntactic definition of local ontologies and then generalize it
to a semantic one. Finally, we prove that our semantic defini-
tion leads to amaximalclass of modular TBoxes.

Definition 2 excludes already manySHIQ-TBoxes. Prop-
erty M1, in particular, implies that no modular TBoxT can
contain the two axioms below at the same time:

A v C ′
1 (local) (1)

C ′
2 v A (non-local) (2)

whereA is a local concept name andC ′
1, C ′

2 are constructed
usingExt(T ). These axioms implyC ′

2 v C ′
1, which indeed

changes the meaning of the external conceptsC ′
i. At this

point, we are faced with a fundamental choice as to the type of
axioms to disallow. Each choice leads to a different modular-
ity class. We argue that, analogously to software engineering,
where refinement is the main application of modularity, ax-
ioms of type (1) fit better with ontology integration scenarios,
such as those sketched in Section 3, than axioms of type (2).

As discussed in Section 3, the external names are “im-
ported” in order toreusethem in the definition of other con-
cepts, and not to further constrain their meaning. Intuitively,
axioms of type (1) are consistent with this idea, whereas ax-
ioms of type (2) are not.

The principal difference between these two axioms is that
(2) forces the external conceptC ′

2 to containonly instances of
the local concept nameA, thus bounding thesizeof possible
interpretations ofC ′

2 once the meaning ofA is established.
In contrast, (1) still (in principle) allows for interpretations
of C ′

1 of unbounded size. Note that this argument does not
prohibit all inclusion axioms between external concepts and
local ones. For example, in contrast to (2), the axiom

C ′
2 v ¬A (local) (3)

still leaves sufficient “freedom” for the interpretation ofC ′
2,

even if the interpretation forA is fixed. In fact, this axiom is
equivalent toA v ¬C ′

2, and thus is of type (1).
Our choice of the types of simple axioms to disallow can be

generalized to more complex axioms; for example, all axioms
below should be forbidden for the reasons given above:

C ′
1 v A1 tA2 and A ≡ C ′

2 t ∃R.B (non-local) (4)

The last axiom is disallowed because it implies (2).
Even if an axiom does not explicitly involve the external

symbols, it may still constrain their meaning. In fact, cer-
tain GCIs have a global effect and impose constraints on all
elements of the models of an ontology, and thereby on the in-
terpretation of external concepts. For example, it is easy to
see that the axioms

> v A and ¬A1 v A2 (non-local) (5)

imply (2) and the first axiom in (4) respectively.5 These ob-
servations lead to the following definition:

Definition 3 (Locality). Let S be aSHIQ-signature and let
E ⊆ S be theexternal signature. The following grammar
defines the two setsC+

E andC−E of positivelyandnegatively
local concepts w.r.t.E:

C+
E ::= A | (¬C−) | (C u C+) | (∃R+.C) | (∃R.C+) |

| (>n R+.C) | (>n R.C+) .

C−E ::= (¬C+) | (C−
1 u C−

2 ) .

whereA is a concept name fromS \ E, R ∈ Rol(S), C ∈
Con(S), C+ ∈ C+

E , C−
(i) ∈ C

−
E , i = 1, 2, andR+ 6∈ Rol(E).6

A role inclusion axiomR+ v R or a transitivity axiom
Trans(R+) is local w.r.t. E. A GCI is local w.r.t. E if it is
either of the formC+ v C or C v C−, whereC+ ∈ C+

E ,
C− ∈ C−E andC ∈ Con(S). A SHIQ-TBox T is local if
every axiom fromT is local w.r.t.Ext(T ). ♦

Intuitively, the positively local concepts are those whose
interpretation is bounded (i.e. its size is limited) when the
interpretation of the local symbols is fixed. In this respect,

5¬A1 v A2 implies> v A1tA2, which impliesC′ v A1tA2.
6Recall that∀R.C, (6 n R.C) andC1 tC2 are expressed using

the other constructors, so they can be used in local concepts as well.



they behave similarly to local concept names. Negatively lo-
cal concepts are essentially negations of positively local con-
cepts. Please, note that, givenE ⊆ S, a concept written over
S may be neither inC+

E , nor inC−E .
Definition 3 can be used to formulate guidelines for con-

structing modular ontologies, as illustrated by the following
example. Moreover, Definition 3 can be used in ontology ed-
itors to detect and warn the user of an a priori “dangerous”
usage of the external signature—without the need to perform
any kind of reasoning.

Example 4 Suppose we are developingW, an ontology about
wines, and we want to reuse some concepts and roles fromF ,
an independently developed ontology about food.

F : VealParmesan v MeatDish u ∃hasIngredient.Veal

DeliciousProduct w ∃hasIngredient.DeliciousProduct

Trans(hasIngredient)

W: Chardonnay v Wine u ∃servedWith.VealParmesan

Rioja v Wine u ∃hasIngredient.Tempranillo

RedWine w Wine u ∃servedWith.MeatDish

Tempranillo v DeliciousProduct

Here Ext(W) = {hasIngredient, DeliciousProduct,
VealParmesan, MeatDish} andW is local. ♦

The following Lemma shows that our notion of locality sat-
isfies the desired properties from Definition 2.

Lemma 5 [Locality Implies Modularity]
The set of local SHIQ TBoxes is a modularity class.

To prove Lemma 5, we use the following property:

Lemma 6 Let T be a local SHIQ TBox with E = Ext(T ),
and let I ′ be an E-interpretation. Then the trivial expansion
I of I ′ to Sig(T ) is a model of T .

Proof. We need to show thatI |= α for every α ∈ T .
According to Definition 3, everyα ∈ T has one of the
forms: R+ v R, Trans(R+), C+ v C or C v C−, where
R+ /∈ Rol(E), C+ ∈ C+

E andC− ∈ C−E . To proveI |= α
it is then suffices to show that(R+)I = ∅, (C+)I = ∅ and
(C−)I = ∆I for each such axiom. The first property holds
sinceI is the trivial expansion of anE-interpretationI ′. The
remaining two properties can be easily shown by induction
over the definitions ofC+

E andC−E from Definition 3.

Proof of Lemma 5.Let M be a set of TBoxesTi, each of
which is local w.r.t.Ext(Ti). Property M2 from Definition 2
follows from Definition 3 since every axiomα that is local
w.r.t. E is also local w.r.t. everyE′ with (E′ ∩ Sig(α)) ⊆ E.

In order to prove Property M1, letT be a localSHIQ-
TBox. Assume (?) T ′ ∪ T |= α for some TBoxT ′ and an
axiomα with Sig(α) ⊆ Sig(T ′) andSig(T ′)∩ Loc(T ) = ∅.
We have to show thatT ′ |= α.

Assume to the contrary thatT ′ 6|= α. Then, there exists
a modelI ′ of T ′ such thatI ′ 6|= α. Let I be the trivial
expansion ofI ′ to Sig(T ). ThenI |= T ′ andI 6|= α since
Sig(α) ⊆ Sig(T ′). Additionally, by Lemma 6,I |= T . So
T ∪ T ′ 6|= α, which contradicts our assumption(?).

Lemma 5 tells us that, in Example 4,W ∪ F does not
entail new information about foodonly. Even ifF evolves,
say by adding the axiomVealParmesan v ∃producedIn.Italy
using a third ontologyC of countries,W will not inter-
fere with F . On the other hand, using the imported con-
cepts fromF allows us to derive some non-trivial proper-
ties involving the local and mixed signature ofW, such as
Chardonnay v RedWine andRioja v DeliciousProduct.

As we have seen, our notion of locality from Definition 3
yields a modularity class. This class, however, is not the most
general one we can achieve. In particular, there are axioms
that are not local, but obviously unproblematic. For example,
the axiomA′ v A′ t C ′ is a tautology, but is disallowed by
Definition 3 since it involves external symbols only; another
example is the GCIA1 t B′ v A2 t B′ which is implied by
the (syntactically) local axiomA1 v A2. The limitation of
our syntactic notion of locality is its inability to “compare”
concepts from the external signature.

A natural question is whether we can generalize Defini-
tion 3 to overcome this limitation. Obviously, such general-
ization cannot be given in terms of syntax only since check-
ing for tautologies in the external signature necessarily in-
volves reasoning. Since our proof of Lemma 5 relies mainly
on Lemma 6, we generalize our notion of locality as follows:

Definition 7 (Semantic Locality). Let E ⊆ S. A SHIQ-
axiom α with Sig(α) ⊆ S is semantically local w.r.t.E if
the trivial expansionI of everyE-interpretationI ′ to S is a
model ofα. A SHIQ-TBox T is semantically local if every
axiom inT is semantically local w.r.t.Ext(T ). ♦

Lemma 6 essentially implies that every syntactically local
TBox is semantically local. Interestingly, both notions coin-
cide whenE = ∅ or whenα is a non-trivial role inclusion
axiom (not of the formR′ v R′) or a transitivity axiom. It
is easy to check that the conditions for a modularity class in
Definition 2 hold for semantic locality as well. The following
proposition provides an effective way of checking whether a
GCI satisfies Definition 7:

Proposition 8 Let α be a GCI and E ⊆ S. Let α′ be obtained
from α by replacing every subconcept of the form ∃R.C,
>n R.C, and every concept name A in α with ⊥, where
R /∈ Rol(E) and A /∈ E. Then α is semantically local w.r.t.
E iff α′ is a tautology.

Proof. The subconcepts of the form∃R.C, >n R.C, and
A are interpreted by∅ in every trivial expansion of every
E-interpretation, hence they are indistinguishable from⊥ in
the context of Definition 7. Replacing all these subconcepts
in α with ⊥ yields α′ with Sig(α′) ⊆ E, and thus Defini-
tion 7 implies thatα is semantically local iff everySHIQ-
interpretation satisfiesα′.

As mentioned above, deciding semantic locality involves
reasoning; in fact, this problem is PSPACE-complete in the
size of the axiom,7 as opposed to checking syntactic locality,
which can be done in polynomial time. We expect the test

7This is precisely the complexity of checking subsumption be-
tweenSHIQ-concepts w.r.t. the empty TBox and without role in-
clusions and transitivity axioms[Tobies, 2001].



from Proposition 8 to perform well in practice since the size
of axioms in a TBox is typically small w.r.t. the size of the
TBox, and would like to point out that it can be performed
using any existing DL reasoner.

It is worth noting that both notions of locality provide the
“black-box” behavior we are aiming at, and both involve only
the ontologyT and its external signature. Finally, a nat-
ural question arising is whether semantic locality can be fur-
ther generalized while preserving modularity. The following
lemma answers this question negatively.

Lemma 9 [Semantic Locality is Maximal]
If a SHIQ-TBox T1 is not semantically local, then there exist
SHIQ-TBoxes T2 and T ′ such that T2 is local, Loc(T2) ⊆
Loc(T1), Loc(T1) ∩ Sig(T ′) = ∅, and T1 ∪ T2 ∪ T ′ is not a
conservative extension of T ′.

Proof. LetT1 be not semantically local, and defineT2 andT ′

as follows:T2 consists of the axioms of the formA v ⊥ and
∃R.> v ⊥ for everyA,R ∈ Loc(T1); T ′ consists of axioms
of the form⊥ v A′ and⊥ v ∃R′.> for every A′, R′ ∈
Ext(T1). Note that(i) T2 is local,(ii) for every modelI of
T2, we haveAI = ∅ andRI = ∅ for everyA,R ∈ Loc(T1)
and(iii) everyExt(T1)-interpretation is a model ofT ′, and
(iv) T ′ uses all symbols fromExt(T1).

In order to show thatT1 ∪ T2 ∪ T ′ is not a conservative
extension ofT ′, we construct an axiomα′ over the signature
of T ′ such thatT ′ 6|= α′ but T1 ∪ T2 ∪ T ′ |= α′. Since
T1 is not semantically local, there exists an axiomα ∈ T1

which is not semantically local w.r.t.Ext(T1), and which we
use to defineα′. If α is a role axiom of the formα = (R′ v
R), we setα′ = (> v ∀R′.⊥); if α = (R′ v S′) with
R′ 6= S′ or α = Trans(R′), we setα′ = α; and if α is a
GCI, we defineα′ from α as in Proposition 8. As a result,α′

usesExt(T1) = Sig(T ′) only, andT ′ 6|= α′ sinceα′ is not a
tautology (for the last case this follows from Proposition 8).
SinceT1 containsα and because of the property(ii) above
for T2, we haveT1 ∪T2 |= α′, and soT1 ∪T2 ∪T ′ |= α′.

Lemma 9 shows that semantic locality cannot be general-
ized without violating the properties in Definition 2. Indeed,
condition M2 implies that the unionT of two local TBoxesT1

andT2 is a local TBox, and condition M2 implies thatT ∪T ′

is conservative over everyT ′ with Sig(T ′) ∩ Loc(T ) = ∅.
The results in Lemma 5 and Lemma 9 are summarized in the
following theorem:

Theorem 10 A set of semantically local SHIQ TBoxes is a
maximal class of modular TBoxes.

5 Modularity of SHOIQ ontologies
When trying to extend the results in the previous section to
the more expressive logicSHOIQ, we soon encounter diffi-
culties. Nominals are interpreted as singleton sets and, thus, a
straightforward extension of Definition 7 fails since nominals
cannot be interpreted by the empty set.

A notion of modularity, however, can still be achieved if
all nominals in a TBoxT are treated as external concepts; the
intuitive reason for this is that the interpretation of nominals
is already very constrained, and hence we have little control

over it. Under this assumption, Definitions 3 and 7 can be
reused forSHOIQ. Such notions of locality still allow for
non-trivial uses of nominals inT . For example, the following
axiom is semantically local w.r.t.E = {elvis}, even ifelvis
is used as a nominal:

ElvisLover ≡ MusicFan u ∃likes.elvis
Indeed, the trivial expansion of everyE-Interpretation toS =
{ElvisLover,MusicFan, likes} is a model of this axiom.

Definition 11 (Locality for SHOIQ). A SHOIQ-TBoxT
with Sig(T ) = R]C]I is syntactically (semantically) local
w.r.t. E if T is syntactically (semantically) local w.r.t.E ∪ I
as in Definition 3 (Definition 7). ♦

Lemma 12 [Semantic Locality Implies Modularity] The
set of semantically local SHOIQ TBoxes is a modularity
class for E.

The proof is analogous to the one of Lemma 5. Unfortu-
nately, an important use of nominals in DLs, namely ABox
assertions, is non-local according to our definition. For ex-
ample, the assertionelvis v Singer (typically written as
elvis:Singer) is not local sinceelvis is treated as an exter-
nal element. In fact, it is not possible to extend the definition
of locality to capture assertions and retain modularity:

Proposition 13 [Assertions Cannot be Local]
For every assertion α = (i v A) there exists a syntactically

local TBox T such that T ∪ {α} is inconsistent.

Proof. TakeT = {A v ⊥}.

Proposition 13 implies that no TBoxT1 containing an as-
sertionα can be declared as local without braking either prop-
erty M1 or M2 of modularity from Definition 2. Indeed, by
takingT as in the proof of Proposition 13, we obtain an in-
consistent mergeT1 ∪ T which should be local according to
M2 if T1 is local. However, no inconsistent TBox can be local
since it implies all axioms and hence violates condition M1.

Even if the merge of a TBox and a set of assertions is con-
sistent, new subsumptions over the external signature may
still be entailed. For example, consider the TBoxT consist-
ing of the axiom:

Frog v ∃hasColor.green u ∀hasColor.Dark

which is local w.r.t.E = {green,Dark}. If we add the asser-
tion kermit v Frog to T , then we obtain that green is a dark
color (green v Dark), as a new logical consequence.

To sum up, we have shown that locality can be extended
to SHOIQ, but not in the presence of assertions. An open
question is whether semantic locality forSHOIQ is maxi-
mal in the sense of Lemma 9.

6 Field Study
In order to test the adequacy of our conditions in practice,
we have implemented a (syntactic) locality checker and run
it over ontologies from a library of 300 ontologies of various
sizes and complexity some of which import each other[Gar-
diner et al., 2006].8 Since OWL does not allow to declare

8The library is available athttp://www.cs.man.ac.uk/
∼horrocks/testing/



symbols as local or external, we have used the following “in-
formed guess work”: for an ontologyT , we define the set
Loc(T ) as the set of symbols inT that do not occur in the
signature of the ontologies imported (directly or indirectly)
using theowl:imports construct byT , and definingExt(T )
to be the complement ofLoc(T ) in Sig(T ). Theowl:imports
construct allows to include, in an ontologyT , the axioms of
another ontologyT ′ published on the Web by reference. The
usage ofowl:imports T ′ in T produces the (logical)union
T ∪ T ′.

It turned out that 96 of the 300 ontologies used the
owl:imports construct, and that all but 11 of these 96 ontolo-
gies are syntactically local (and hence also semantically lo-
cal). From the 11 non-local ontologies, 7 are written in the
OWL-Full species of OWL to which our framework does not
yet apply. The remaining 4 non-localities are due to the pres-
ence of so-calledmapping axiomsof the formA ≡ B′, where
A ∈ Loc(T ) andB′ ∈ Ext(T ), which are not even seman-
tically local. We were able to fix these non-localities as fol-
lows: we replace every occurrence ofA in T with B′ and
then remove this axiom fromT . After this transformation, all
4 non-local ontologies turned out to be local.

7 Discussion and Related Work
In the last few years, a rapidly growing body of work has
been developed under the names ofOntology Mapping and
Alignment, Ontology MergingandOntology Integration; see
[Kalfoglou and M.Schorlemmer, 2003; Noy, 2004] for sur-
veys. This field is rather diverse, has originated from differ-
ent communities, and is concerned with two different prob-
lems: (i) how to (semi-automatically) detect correspondences
between terms in the signatures of the ontologies to be in-
tegrated (e.g.Instructor corresponds toProfessor), and, (ii)
how to assess and predict the (logical) consequences of the
merging. Typically, when integrating ontologies, one first
solves (i) and then (ii).

Although (i) has been the focus of intensive research in
the last few years[Kalfoglou and M.Schorlemmer, 2003],
and tools for ontology mapping are available, to the best of
our knowledge, the problem of predicting and controlling
the consequences of ontology integration has been addressed
only very recently in[Ghilardi et al., 2006] and[Grauet al.,
2006]. In [Ghilardi et al., 2006], the authors point out the
importance of the notion of a conservative extension for on-
tology evolution and merging, and provide decidability and
complexity results for the problem of deciding conservative
extensions in the basic DLALC. In [Grauet al., 2006], the
authors identify two basic ontology integration scenarios. For
each of them, the authors established a set of semantic proper-
ties (including being conservative extensions) to be satisfied
by the integrated ontology, and presented a set of syntactic
constraints on the component ontologies to ensure the preser-
vation of the desired semantic properties.

The results in this paper generalize those from[Grau et
al., 2006], since the integration scenarios presented there are
particular cases of Definition 3. Also, in contrast to both
[Ghilardi et al., 2006], and [Grau et al., 2006], our notion
of modularity implies a “black box” behavior with respect to

the external signature: instead of considering a pair of ontolo-
giesT , T ′, our approach takes an ontologyT with specified
sets of local and external symbols, and provides guarantees
for the merge ofT with anyontologyT ′ which does not use
local symbols. In contrast, the approach described in[Ghi-
lardi et al., 2006] considers the problem of whether, for two
givenALC TBoxesT , T ′, their mergeT ∪ T ′ is conserv-
ative overT ′. It turns out that this problem is decidable in
2EXPTIME in the size ofT ∪ T ′, and thus it is significantly
harder than standard reasoning tasks (such as deciding on-
tology consistency). A solution to the latter problem can be
used to decide whetherT and T ′ can be safely merged—
which can be the case without any of them being local. If
T or T ′ are changed, however, then this test would need to
be repeated—which is not the case in the approach presented
here (see the above discussion of its black box behavior). As
a consequence, these two approaches can be used in different
scenarios: ours can be used to provide guidelines for ontology
engineers who want to design modular ontologies that show
black box behavior, whereas the one described in[Ghilardiet
al., 2006] can be used to check safe integrability for a given,
fixed set of TBoxes.

Summing up, we have proposed a logic-based framework
for modularity, which we have instantiated in a plausible and
practically applicable way forSHIQ, and in a preliminary
way forSHOIQ. We believe that our results will be useful
as the foundations of tools that support both the collabora-
tive development of complex ontologies and the integration
of independently developed ontologies on the Semantic Web.
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