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Abstract

Modularity is a key requirement for collaborative
ontology engineering and for distributed ontology
reuse on the Web. Modern ontology languages,
such as OWL, are logic-based, and thus a useful
notion of modularity needs to take the semantics of
ontologies and their implications into account. We
propose a logic-based notion of modularity that al-
lows the modeler to specify thexternalsignature

of their ontology, whose symbols are assumed to
be defined in some other ontology. We define two
restrictions on the usage of the external signature,
a syntactic and a slightly less restrictive, seman-
tic one, each of which is decidable and guarantees
a certain kind of “black-box” behavior, which en-
ables the controlled merging of ontologies. Analy-
sis of real-world ontologies suggests that these re-
strictions are not too onerous.

Motivation

ontology itself by possibly reusing the meaning of external
symbols. Hence by merging an ontology with external on-
tologies we import the meaning of its external symbols to de-
fine the meaning of its local symbols.

To make this idea work, we need to impose certain con-
straints on the usage of the external signature: in particular,
merging ontologies should be “safe” in the sense that they
do not produce unexpected results such as new inconsisten-
cies or subsumptions between imported symbols. To achieve
this kind of safety, we use the notion obnservative exten-
sionsto define modularity of ontologies, and then prove that
a property of some ontologies, calléatality, can be used
to achieve modularity. More precisely, we define two no-
tions of locality forSHZQ TBoxes: (i) a tractable syntac-
tic one which can be used to provide guidance in ontology
editing tools, and (ii) a more general semantic one which can
be checked using a DL-reasoner. Additionally, we present an
extension of locality to the more expressive log#tOZQ
[Horrocks and Sattler, 2005 Finally, we analyse existing
ontologies and conclude that our restrictions to local TBoxes
are quite natural.

When integrating independently developed ontologies, we

Modularity is a key requirement for many tasks concerningoften have to identify different symbols in the ontologies hav-

ontology design, maintenance and integration, such as th@ig the same intended meaning. This is a problem known as
collaborative development of ontologies and the merging obntology matching or mappingwhich we are not concerned
independently developed ontologies into a single, reconcilegyith here: we consider ontologies sharing some part of their

ontology. Modular representations are easier to understandignature, and how we can make sure that that their merge
reason with, extend and reuse. Unfortunately, in contrasfj.e. the union of their axioms) is “well-behaved”.

to other disciplines such as software engineering—in which
modularity is a well established notion—ontology engineer- PRI
ing is still lacking a useful, well-defined notion of modularity. 2 Preliminaries
Modern ontology languages, such as OWPatel- We introduce the description log&HOZ Q, which provides
Schneideet al,, 2004, are logic-based; consequently, a no- the foundation for OWL.
tion of modularity needs to take into account the semantics of A SHOZ Q-signature is the disjoint unidd = RW C w1
the ontologies and their implications. of sets ofrole namegdenoted byR, S, - - -), concept names
In this paper, we propose a logic-based framework for{denoted byA, B, - - -) andnominals(denoted by, j, k, - - - ).
modularity of ontologies in which we distinguish between A SHOZ O-role is eitherR € R or aninverse roleR~ with
externalandlocal symbols of ontologies. Intuitively, the ex- R € R. We denote byRol(S) the set ofSHOZ Q-roles for
ternal symbols of an ontology are those that are assumed tbe signatur&. The seCon(S) of SHOZ Q-conceptdor the
be defined somewhere externally in other ontologies; the resignatureS is defined by the grammar

maining, local symbols, are assumed to be defined within the .
Con(S) = A|j|(~C) | (CiNCy) | (3R.C) | (>nS.C)
*This work is supported by the EU Project TONES (Thinking
ONtologiES) ref: IST-007603 and by the EPSRC Project REOL  The website http://www.ontologymatching.org
(Reasoning in Expressive Ontology Languages) ref: EP/C537211/Trovides extensive information about this area.



whered € C, j €1, C(;) € Con(S), R, S € Rol(S), with S

In order to formulate our notion of modularity, we will dis-

asimplerole? andn a positive integer. We use the following tinguish between the local and external symbols of an ontol-

abbreviationsC'U D stands for-(-C'M—-D); T and_L stand
for AL —A and A M —A, respectivelyVR.C and<n S.C
stand for-3R.-~C and—(>n+15.C), respectively.

A SHOZQ-TBox 7, or ontology, is a finite set able in-
clusion axiomgRIs) R; C R, with R; € Rol(S), transitivity
axiomsTrans(R) with R € R andgeneral concept inclusion
axioms(GCls)C; C Cs with C; € Con(S). We used = C
as an abbreviation for the two GCl C C andC C A.
The signatureSig(«) (respectivelySig(7)) of an axioma
(respectively of a TBo¥) is the set of symbols occurring in
a (respectively in7). A SHZQ-TBox is aSHOZ Q-TBox
that does not contain nominals.

Given a signatur® = R w C W I, an S-interpretationZ
is a pairZ = (AZ,.7), whereAZ is a non-empty set, called
the domainof the interpretation, and' is theinterpretation
functionthat assigns to eacR € R a binary relation?? C
AT x AT, to eachA € C a setA? C A, and to every
j € Tasingleton sef? C AZ. The interpretation function is
extended to complex roles and concepts as follows:

(Rf)i = {Agc,y) | (v:z) € R*}
ChDE Z oD
(AR.C)t = {x € AT | Jy.(x,y) € RT Ay € CT}
(znR.O)T = {z € AT

H{y e AT | (z,y) e RE Ay e CT} > n}

ThesatisfactionrelationZ = « between an interpretation
7 and aSHOZ Q-axiom « (read as/ satisfiesw) is defined
as follows:Z = (R; C Ry) iff R C R%; T |= Trans(R)
iff RZ is transitive;Z = (C C D) iff CZ C D%. Aninter-
pretationZ is amodelof a TBox7 if Z satisfies all axioms in
7. ATBox 7T impliesan axioma (written7 | o) if Z = «
for every modelZ of 7. An axiom« is atautologyif it is
satisfied in every interpretation.

An S-interpretationZ = (AZ,.7) is anexpansionof an
S'-interpretationz’ = (AZ,-Z)if S 2 8/, AT = AT, and
XZ = X7 for everyX e S’. Thetrivial expansion of’ to
S is an expansioff = (AZ',.7) of 7’ such thatX” = & for
everyX € S\ S'.

3 Modularity of Ontologies

ogy. We assume that the signatuig(7) of a TBox 7 is
partitioned into two parts: thiocal signatureLoc(7) of 7
and theexternal signatureext(7) of 7. To distinguish be-
tween the elements of these signatures, we will underline the
external signature elements whenever used within the con-
text of 7. Intuitively, Ext(7") specifies the concept and role
names that are (or can be) imported from other ontologies,
while Loc(7") specifies those that are definedZin

As a motivating example, imagine a set of bio-medical on-
tologies that is being developed collaboratively by a team of
experts. Suppose that one group of experts designs an on-
tology G about genes and another group designs an ontology
D about diseases. Now certain genes are defined in terms of
the diseases they cause. For example, the gene ErbB2 is de-
scribed inG as an Oncogene that is found in humans and is
associated with a disease called Adrenocarcirfoma

ErbB2 = Oncogene M 3dfoundin.Human

M JdassociatedWith.Adrenocarcinoma

The concepfdrenocarcinoma is described irD, which is un-
der the control of a different group of modelers. So, this con-
ceptis external fo§, whereas the remaining concept and role
names are local fag. Now one consequence of these ontolo-
gies being modularly “well-behaved” would be that the gene
experts buildingG should not change the knowledge about
diseases, even if they are using them in their axioms.

Another example is the integration offaundational(or
“upper”) ontologyl{ and adomainontology ©. Founda-
tional ontologies, such as CYC, SUMCand DOLCE, pro-
vide a structure upon which ontologies for specific subject
matters can be constructed and are assumed to be the result
of an agreement between experts. Suppose that an ontol-
ogy developer wants to reuse the generic concept of a Sub-
stance frond/ in their ontology© aboutChemicals For such
a purpose, they state that the conc®pganic_Chemical in
their chemical ontology) is more specific thabubstance
in U by using the axiom:Organic_Chemical C Substance,
whereSubstance € Ext(O). Since foundational ontologies
are well-established ontologies that one does not control and,
typically, does not have complete knowledge about, it is espe-
cially important that the merg® U U/ does not produce new
logical consequences w.it{—even ifi{ changes.

In both examples, we have argued that ontology integration
should be carried out in such a way that consequences of a

In this section, we propose a logical formalization for the no-TBox 7" are not changed when elementsZGfare reused in
tion of modularity for ontologies. In analogy to software en- another TBoxZ. This property can be formalized using the
gineering, we should be able to compose complex ontologiegotion of aconservative extensid@hilardiet al,, 2004.

from simpler (modular) ontologies in a consistent and well-Definition 1 (Conservative Extension). Let 7 and 7’ be
defined way, in particular without unintended interactions be-TBoxes. Ther? U7” is aconservative extensiaf 7 if, for

tween the component ontologies. This notion of modularevery axioma with Sig(a) C Sig(7") we haveT UT' = «
ity would be useful for both the collaborative development ofiff 77 = o O

a single ontology by different domain experts, and the inte-
gration of independently developed ontologies, including thq,I

reuse of existing third-party ontologies.

2See[Horrocks and Sattler, 200%or a precise definition of sim-
ple roles.

Thus, givenT and7”, their union7 U 7' does not yield
ew consequences in the languag& 6ff 7 U7 is a conser-

3Example from the National Cancer Institute Ontoldup:
Ilivww.mindswap.org/2003/CancerOntology
4Seehttp://ontology.teknowledge.com



vative extension off ’. A useful notion of modularity, how- As discussed in Section 3, the external names are “im-

ever, should abstract from the particulat under considera- ported” in order taeusethem in the definition of other con-

tion. In fact, the external signature should be the core notiorepts, and not to further constrain their meaning. Intuitively,

in a modular representation as opposed to its particular defirexioms of type (1) are consistent with this idea, whereas ax-

ition in a particular ontology’. This is especially important ioms of type (2) are not.

when7’ may evolve, and where this evolution is beyond our The principal difference between these two axioms is that

control—which, for example, could well be the case when us{2) forces the external concef} to containonly instances of

ing the “imports” construct provided by OWL. Consequently, the local concept namé, thus bounding theizeof possible

in order for7 to useExt(7") in amodular wayZ U7’ should interpretations of”%, once the meaning afl is established.

be a conservative extensionary 7"’ overExt(7). In contrast, (1) still (in principle) allows for interpretations
Furthermore, it is important to ensure that, whenever twoof C] of unbounded size. Note that this argument does not

independent part$;, and7; of an ontologyZ under the con-  prohibit all inclusion axioms between external concepts and

trol of different modelers are developed in a modular way,local ones. For example, in contrast to (2), the axiom

then7 remains modular as well.

These requirements can be formalized as follows: C;E-A  (local) (3)
Definition 2 (Modularity). A set M of TBoxes7 with still leaves sufficient “freedom” for the interpretation ©%,
Sig(7) = Loc(7) W Ext(T) is amodularity classf the fol-  even if the interpretation fod is fixed. In fact, this axiom is
lowing conditions hold: equivalent tod C —~C%, and thus is of type (1).

M1. If T € M, then7 U 7" is a conservative extension of  Our choice of the types of simple axioms to disallow can be
every7’ such thaSig(7") N Loc(7) = @; generalized to more complex axioms; for example, all axioms

M2. If 77, Tz € M, thenT = T; UT, € M with Loc(T) = below should be forbidden for the reasons given above:
Loc(71) U Loc(73). O  ¢lcAUA, and A=C,U3R.B (non-local) (4)

Please note that our framework is independent of the DL S o
under consideration. Also, Definition 2 does not define alhe Iast_aX|om IS disallowed becaqs_e it _|mpl|es (2).
modularity class uniquely, but just states conditions for be- Even if an axiom does not explicitly involve the external
ing one. When the modularity class is clear from the contextSymbols, it may still constrain their meaning. In fact, cer-
we will call its elementsnodular ontologies tain GCls have a global effect and impose constraints on all
In the next section, we focus our attention on the logicelements of the models of an ontology, and thereby on the in-
SHTO, and show that it is possible to define a reasonablderpretation of external concepts. For example, it is easy to
modularity class such that (1) checking its membership cagee that the axioms
be done using standard reasoning tools, (2) it has an inex- )
pensive syntactic approximation that can be used to guide the TEA and ~4;C A, (non-local) ()
modeling of ontologies in a modular way, and (3) our analy-imply (2) and the first axiom in (4) respectivélyThese ob-
sis of existing ontologies shows that they seem to confornservations lead to the following definition:

naturally” with its restrictions. Definition 3 (Locality). LetS be aSHZ Q-signature and let
. . E C S be theexternal signature The following grammar

4 MOdUI_amy of ‘SHZ Q OntOIOgleS ) defines the two se@,‘g andCg of positivelyandnegatively
In this section we define a particular modularity class, theocal concepts w.r.tE:
class oflocal ontologies which captures many practical ex-
amples of modularly developed ontologies. We first give a Cg, ::= A | (=C~) | (C11C*) | (3RT.C) | (3R.CY) |
syntactic definition of local ontologies and then generalize it | (=nR*.C)| (=nR.C").
to a semantic one. Finally, we prove that our semantic defini- -— .._ _ ~+\ [ (o- o~
tion leads to anaximalclass of modular TBoxes. B = )G 2):

Definition 2 excludes already mayH7Z Q-TBoxes. Prop- where A is a concept name froi \ E, R € Rol(S), C €
erty M1, in particular, implies that no modular TBa@xcan  Con(S), C+ € Cff, Ch €Cgri=1,2, andR* ¢ Rol(E).5

ntain the two axiom low at the same time: : ; ; ;
contain the two axioms below at t A role inclusion axiomR* = R or a transitivity axiom

ACC;  (local) (1) Trans(R*) is local w.rt. E. A GCl is local w.rt. E if it is

CLC A (non-local) (2) either of the formC*™ C C or C C C—, whereC*t € Cg,
whereA is a local concept name arief, C} are constructed C~ € Cg andC € Con(S). A SHZQ-TBox 7 is local if
usingExt(7). These axioms imply%, = C}, which indeed every axiom fron is local w.r.t.Ext(7). O
changes the meaning of the external concefjts At this Intuitively, the positively local concepts are those whose

point, we are faced with a fundamental choice as to the type ferpretation is bounded (i.e. its size is limited) when the
axioms to disallow. Each choice leads to a different modularinterpretation of the local symbols is fixed. In this respect,

ity class. We argue that, analogously to software engineering,

where refinement is the main application of modularity, ax- °-4; C A4, impliesT C A; LA, whichimpliesC’ T A,UA,.

ioms of type (1) fit better with ontology integration scenarios, °Recall thatVR.C, (< n R.C) andC; L C; are expressed using
such as those sketched in Section 3, than axioms of type (2)the other constructors, so they can be used in local concepts as well.



they behave similarly to local concept names. Negatively lo- Lemma 5 tells us that, in Example % U F does not
cal concepts are essentially negations of positively local conentail new information about foodnly. Even if F evolves,

cepts. Please, note that, givEnC S, a concept written over
S may be neither i€, nor inCyg..
Definition 3 can be used to formulate guidelines for con

say by adding the axioiealParmesan C Jdproducedin.ltaly
using a third ontologyC of countries, W will not inter-
-fere with 7. On the other hand, using the imported con-

structing modular ontologies, as illustrated by the followingcepts fromF allows us to derive some non-trivial proper-
example. Moreover, Definition 3 can be used in ontology ediies involving the local and mixed signature ¥, such as
itors to detect and warn the user of an a priori “dangerousChardonnay = RedWine andRioja C DeliciousProduct.

usage of the external signature—without the need to perfor
any kind of reasoning.

Example 4 Suppose we are developiiyg, an ontology about
wines, and we want to reuse some concepts and rolesfom
an independently developed ontology about food.

F: VealParmesan C MeatDish M JhasIngredient.Veal
DeliciousProduct J Jhaslngredient.DeliciousProduct
Trans(haslngredient)

W: Chardonnay C Wine M JservedWith.VealParmesan
Rioja C Wine M Jhaslngredient. Tempranillo
RedWine 3 Wine M dservedWith.MeatDish
Tempranillo C DeliciousProduct

Here Ext(W) =  {hasIngredient, DeliciousProduct,
VealParmesan, MeatDish} andW is local. O

The following Lemma shows that our notion of locality sat-
isfies the desired properties from Definition 2.

Lemma 5 [Locality Implies Modularity]
The set of local SHZ Q TBoxes is a modularity class.

To prove Lemma 5, we use the following property:

Lemma 6 Let T be a local SHZQ TBox with E = Ext(7T),
and let I’ be an E-interpretation. Then the trivial expansion
T of I’ to Sig(7T) is a model of T .

Proof. We need to show thaf = « for everya € 7.
According to Definition 3, everyx € 7 has one of the
forms: R* C R, Trans(R*), C* C C orC C C—, where
R* ¢ Rol(E), C* € Cf; andC~ € Cg. To proveZ |= a

it is then suffices to show thaz*)? = @, (C*) = @ and
(C—)% = AT for each such axiom. The first property holds
since7 is the trivial expansion of aR-interpretatioriZ’. The
remaining two properties can be easily shown by inductio
over the definitions ofg, andCy, from Definition 3.

Proof of Lemma 5Let M be a set of TBoxeq;, each of
which is local w.r.t.Ext(7;). Property M2 from Definition 2
follows from Definition 3 since every axiom that is local
w.r.t. E is also local w.r.t. everf’ with (E’ N Sig(a)) C E.

In order to prove Property M1, Ief be a localSHZ Q-
TBox. Assume£) 7' U7 E « for some TBox7’ and an
axioma with Sig(a) C Sig(7’) andSig(7’) N Loc(7T) = @.
We have to show thaf’ = a.

Assume to the contrary th&t’ |~ «. Then, there exists
a modelZ’ of 7’ such thatZ’ [~£ «. LetZ be the trivial
expansion ofZ’ to Sig(7). ThenZ |= 7’ andZ  « since
Sig(a) C Sig(7’). Additionally, by Lemma 67 = 7. So
T UT' |~ o, which contradicts our assumpti¢r). O

m As we have seen, our notion of locality from Definition 3
yields a modularity class. This class, however, is not the most
general one we can achieve. In particular, there are axioms
that are not local, but obviously unproblematic. For example,
the axiomA’ C A’ LI ¢’ is a tautology, but is disallowed by
Definition 3 since it involves external symbols only; another
example is the GCH; LI B’ C A, LI B’ which is implied by
the (syntactically) local axiomd; C A,. The limitation of
our syntactic notion of locality is its inability to “compare”
concepts from the external signature.

A natural question is whether we can generalize Defini-
tion 3 to overcome this limitation. Obviously, such general-
ization cannot be given in terms of syntax only since check-
ing for tautologies in the external signature necessarily in-
volves reasoning. Since our proof of Lemma 5 relies mainly
on Lemma 6, we generalize our notion of locality as follows:

Definition 7 (Semantic Locality). LetE C S. A SHZQ-
axiom a with Sig(a) C S is semantically local w.r.tE if
the trivial expansiorf of everyE-interpretatioriZ’ to S is a
model ofa. A SHZQ-TBox 7 is semantically local if every
axiom in7 is semantically local w.r.Ext(7). O

Lemma 6 essentially implies that every syntactically local
TBox is semantically local. Interestingly, both notions coin-
cide whenE = @ or whena is a non-trivial role inclusion
axiom (not of the formR’ C R’) or a transitivity axiom. It
is easy to check that the conditions for a modularity class in
Definition 2 hold for semantic locality as well. The following
proposition provides an effective way of checking whether a
GCl satisfies Definition 7:

Proposition 8 Leta bea GCland E C S. Let o’ be obtained

from « by replacing every subconcept of the form 3R.C,

>n R.C, and every concept name A in « with 1, where

R ¢ Rol(E) and A ¢ E. Then « is semantically local w.r.t.
iff o is a tautology.

"Proof. The subconcepts of the formR.C, >n R.C, and

A are interpreted by in every trivial expansion of every
E-interpretation, hence they are indistinguishable frorm

the context of Definition 7. Replacing all these subconcepts
in « with L yields o’ with Sig(a’) C E, and thus Defini-
tion 7 implies thatn is semantically local iff even s H7Z Q-
interpretation satisfies’. O

As mentioned above, deciding semantic locality involves
reasoning; in fact, this problem is PSPACE-complete in the
size of the axiond,as opposed to checking syntactic locality,
which can be done in polynomial time. We expect the test

"This is precisely the complexity of checking subsumption be-
tweenSHZ Q-concepts w.r.t. the empty TBox and without role in-
clusions and transitivity axiomJobies, 2001



from Proposition 8 to perform well in practice since the sizeover it. Under this assumption, Definitions 3 and 7 can be

of axioms in a TBox is typically small w.r.t. the size of the
TBox, and would like to point out that it can be performed
using any existing DL reasoner.

It is worth noting that both notions of locality provide the
“black-box” behavior we are aiming at, and both involve only
the ontology7 and its external signature. Finally, a nat-

reused forSHOZ Q. Such notions of locality still allow for
non-trivial uses of nominals iff. For example, the following
axiom is semantically local w.r.E = {elvis}, even ifelvis
is used as a nominal:

ElvisLover = MusicFan M dlikes. elvis

ural question arising is whether semantic locality can be furindeed, the trivial expansion of eveBtInterpretation t& =

ther generalized while preserving modularity. The following
lemma answers this question negatively.

Lemma 9 [Semantic Locality is Maximal]

IfaSHIZ Q-TBox 7Ty is not semantically local, then there exist
SHIQ-TBoxes T3 and T’ such that T3 is local, Loc(73) C
Loc(71), Loc(71) NSig(7T’) = @, and T, U T, U T’ is not a
conservative extension of T'.

Proof. Let7; be not semantically local, and defiigand7”’
as follows: 75 consists of the axioms of the forsh C L and
JR.T C L foreveryA, R € Loc(7Ty); 7' consists of axioms
of the form 1l C A’ and L C JR'.T for every A", R’ €
Ext(771). Note that(i) 75 is local, (i7) for every modelZ of
7>, we haveA? = @ andR? = & foreveryA, R € Loc(T,)
and (izi) every Ext(7;)-interpretation is a model df’, and
(iv) 7' uses all symbols frorixt(7;).

In order to show tha’; U 75 U 7" is not a conservative
extension of7”’, we construct an axiom’ over the signature
of 7' such that7’ £ o but7; U, U7’ E «o'. Since
7, is not semantically local, there exists an axiame 7;
which is not semantically local w.r.Ext(7;), and which we
use to define\’. If « is a role axiom of the forna. = (R’ C
R), we seta/ = (T C VR'.1); if a = (R C ') with
R # S" ora = Trans(R’), we seta/ = «a; and ifa is a
GCl, we definex’ from « as in Proposition 8. As a result;
usesExt(7;) = Sig(7’) only, and7’ |~ ' sinced’ is not a
tautology (for the last case this follows from Proposition 8).
Since7; containsa and because of the propertié) above
for 7;, we havel; UT; = o/, and sol; U, UT =o', O

{ElvisLover, MusicFan, likes} is a model of this axiom.

Definition 11 (Locality for SHOZ Q). A SHOZQ-TBoxT
with Sig(7) = RWCwI is syntactically (semantically) local
w.rt. E if 7 is syntactically (semantically) local w.rE U1
as in Definition 3 (Definition 7). %

Lemma 12 [Semantic Locality Implies Modularity] The
set of semantically local SHOZQ TBoxes is a modularity
class for E.

The proof is analogous to the one of Lemma 5. Unfortu-
nately, an important use of nominals in DLs, namely ABox
assertions, is non-local according to our definition. For ex-
ample, the assertionlvis T Singer (typically written as
elvis:Singer) is not local sinceelvis is treated as an exter-
nal element. In fact, it is not possible to extend the definition
of locality to capture assertions and retain modularity:

Proposition 13 [Assertions Cannot be Local]
For every assertion o = (i © A) there exists a syntactically
local TBox T such that T U {«} is inconsistent.

Proof. TakeT = {AC 1}. O

Proposition 13 implies that no TBgk, containing an as-
sertiona can be declared as local without braking either prop-
erty M1 or M2 of modularity from Definition 2. Indeed, by
taking7 as in the proof of Proposition 13, we obtain an in-
consistent merg&; U 7 which should be local according to
M2 if 77 is local. However, no inconsistent TBox can be local
since it implies all axioms and hence violates condition M1.

Even if the merge of a TBox and a set of assertions is con-
sistent, new subsumptions over the external signature may

Lemma 9 shows that semantic locality cannot be generalstill be entailed. For example, consider the TBBxonsist-

ized without violating the properties in Definition 2. Indeed,
condition M2 implies that the unigh of two local TBoxesr;
and7; is a local TBox, and condition M2 implies th@tu 7’
is conservative over every’ with Sig(7’) N Loc(T) = @.

ing of the axiom:
Frog C JhasColor.green M VhasColor.Dark

which is local w.r.tE = {green, Dark}. If we add the asser-

The results in Lemma 5 and Lemma 9 are summarized in th@on kermit C Frog to 7, then we obtain that green is a dark

following theorem:

Theorem 10 A set of semantically local SHZ Q TBoxes is a
maximal class of modular TBoxes.

5 Modularity of SHOZQ ontologies

color (green C Dark), as a new logical consequence.

To sum up, we have shown that locality can be extended
to SHOZQ, but not in the presence of assertions. An open
question is whether semantic locality f86(HOZQ is maxi-
mal in the sense of Lemma 9.

When trying to extend the results in the previous section t@§ Fjeld Study

the more expressive log&HOZ Q, we soon encounter diffi-
culties. Nominals are interpreted as singleton sets and, thus

straightforward extension of Definition 7 fails since nominals

cannot be interpreted by the empty set.
A notion of modularity, however, can still be achieved if

Ig order to test the adequacy of our conditions in practice,

we have implemented a (syntactic) locality checker and run

it over ontologies from a library of 300 ontologies of various
sizes and complexity some of which import each ofl@ar-

. 8 o
all nominalsin a TBoXI” are treated as external concepts; thedlneret al, 2004.° Since OWL does not allow to declare

intuitive reason for this is that the interpretation of nominals

8The library is available ahttp://www.cs.man.ac.uk/

is already very constrained, and hence we have little controthorrocks/testing/



symbols as local or external, we have used the following “in-the external signature: instead of considering a pair of ontolo-
formed guess work”: for an ontolog¥, we define the set gies7,7’, our approach takes an ontolo@ywith specified
Loc(7) as the set of symbols i that do not occur in the sets of local and external symbols, and provides guarantees
signature of the ontologies imported (directly or indirectly) for the merge ofl” with anyontology7” which does not use
using theowl:imports construct by7, and definingext(7) local symbols. In contrast, the approach describefGini-
to be the complement dfoc(7) in Sig(7). Theowl:imports lardi et al,, 2006 considers the problem of whether, for two
construct allows to include, in an ontology, the axioms of  given ALC TBoxes7,7’, their mergeZ U 7" is conserv-
another ontology’’ published on the Web by reference. The ative over7’. It turns out that this problem is decidable in
usage ofowl:imports 7’ in 7 produces the (logicaljinion  2EXPTIME in the size off U 7”7, and thus it is significantly
TUT'. harder than standard reasoning tasks (such as deciding on-
It turned out that 96 of the 300 ontologies used thetology consistency). A solution to the latter problem can be
owl:imports construct, and that all but 11 of these 96 ontolo-used to decide whethef and 7’ can be safely merged—
gies are syntactically local (and hence also semantically lowhich can be the case without any of them being local. If
cal). From the 11 non-local ontologies, 7 are written in theZ or 7’ are changed, however, then this test would need to
OWL-Full species of OWL to which our framework does not be repeated—which is not the case in the approach presented
yet apply. The remaining 4 non-localities are due to the preshere (see the above discussion of its black box behavior). As
ence of so-callechapping axiomsf the formA = B’, where  a consequence, these two approaches can be used in different
A € Loc(T) and B’ € Ext(7), which are not even seman- scenarios: ours can be used to provide guidelines for ontology
tically local. We were able to fix these non-localities as fol- engineers who want to design modular ontologies that show
lows: we replace every occurrence 4fin 7 with B’ and  black box behavior, whereas the one describd¢inilardiet
then remove this axiom frof. After this transformation, all  al., 2006 can be used to check safe integrability for a given,
4 non-local ontologies turned out to be local. fixed set of TBoxes.

Summing up, we have proposed a logic-based framework
7 Discussion and Related Work for modularity, which we have instantiated in a plausible and
practically applicable way fo§HZ Q, and in a preliminary
way for SHOZ Q. We believe that our results will be useful
as the foundations of tools that support both the collabora-
tive development of complex ontologies and the integration
of independently developed ontologies on the Semantic Web.

In the last few years, a rapidly growing body of work has
been developed under the namegQwitology Mapping and
Alignment Ontology MergingandOntology Integrationsee
[Kalfoglou and M.Schorlemmer, 2003; Noy, 2QGér sur-
veys. This field is rather diverse, has originated from differ-
ent communities, and is concerned with two different prob-
lems: (i) how to (semi-automatically) detect correspondencegeferences

between terms in the signatures of the ontologies to be infGardineret al, 2004 T. Gardiner, 1. Horrocks, and
tegrated (e.glnstructor corresponds t&rofessor), and, (ii) D. Tsarkov. Automated benchmarking of description
how to assess and predict the (logical) consequences of the logic reasoners. IRroc. of DL, 2006.

merging. Typically, when integrating ontologies, one first{gpijardiet al, 200§ S. Ghilardi, C. Lutz, and F. Wolter.

solves (i) and then (ii). _ _ _ Did | damage my ontology? a case for conservative ex-
Although (i) has been the focus of intensive research in  iansions in description logics. Proc. of KR-062006.
the last few yeargKalfoglou and M.Schorlemmer, 2003

and tools for ontology mapping are available, to the best ofGrauetal, 2008 B. Cuenca Grau, I. Horrocks, O. Kutz,
our knowledge, the problem of predicting and controling &nd U. Sattler. Will my ontologies fit together? foc.
the consequences of ontology integration has been addressed®f DL, 2006.

only very recently ifGhilardiet al, 2004 and[Grauet al,  [Horrocks and Sattler, 2003. Horrocks and U. Sattler. A
2004. In [Ghilardi et al, 2004, the authors point out the  tableaux decision procedure f6§(OZQ. In Proc. of 13-
importance of the notion of a conservative extension for on- CAl, 2005.

tology evolution and merging, and provide decidability and[KaIfogIou and M.Schorlemmer, 2003, Kalfoglou and
complexity results for the problem of deciding conservative” \1 5chorlemmer Ontology m1apping' The state of the art
extensions in the basic DULC. In [Grauet al, 2004, the The Knowledge.Engineering RevielB:1-31, 2003 '
authors identify two basic ontology integration scenarios. For - o '
each of them, the authors established a set of semantic propéMoy. 2004 N. Noy. Semantic integration: A survey on
ties (including being conservative extensions) to be satisfied ©ntology-based approacheSlGMOD Record2004.
by the integrated ontology, and presented a set of syntacti®atel-Schneidest al, 2004 P.F. Patel-Schneider, P. Hayes,
constraints on the component ontologies to ensure the preser- and I. Horrocks. OWL web ontology language semantics
vation of the desired semantic properties. and abstract syntax. W3C Recommendation, 2004.

The results in this paper generalize those fritBrau et [Tobies, 2001 S. Tobies. Complexity Results and Practical

al., 2004, since the integration scenarios presented there are Algorithms for Logics in Knowledge RepresentatieD
particular cases of Definition 3. Also, in contrast to both thesis. RWTH Aachen. 2001

[Ghilardi et al, 2004, and[Grauet al., 2006, our notion
of modularity implies a “black box” behavior with respect to



