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Abstract

The ability to extract meaningful fragments from an ontology is essen-
tial for ontology re-use. We propose a definition of a module that guarantees
to completely capture the meaning of a given set of terms, i.e., to include
all axioms relevant to the meaning of these terms, and study the problem of
extracting minimally sized modules. We show that the problem of determin-
ing whether a subset of an ontology is a module for a given vocabulary is
undecidable even for rather restricted sub-languages of OWL DL. Hence we
propose two “approximations”, i.e., alternative definitions of modules for a
vocabulary that still provide the above guarantee, but that are possibly too
strict, and that may thus result in larger modules: the first approximation is
semantic and can be checked using existing DL reasoners; the second is syn-
tactic, and can be computed in polynomial time. Finally, we report on an
empirical evaluation of our syntactic approximation that demonstrates that
the modules we extract are surprisingly small.
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1 Introduction

The design, maintenance, reuse, and integration of ontologies are highly com-
plex tasks—especially for ontologies formulated in a logic-based language such
as OWL. Like software engineers, “ontology engineers” need to be supported by
tools and methodologies that help them to minimise the introduction of errors, i.e.,
to ensure that ontologies have appropriate consequences. In order to develop this
support, important notions from software engineering, such asmodule, black-box
behavior, andcontrolled interaction, need to be adapted so as to take into account
the fact that an OWL ontology is, in essence, a logical theory; due to the expressive
power of OWL, this turns out to be difficult.

In earlier work [4], we have studied modularity in the context ofcollaborative
ontology developmentandcontrolled integration, and defined what it means for
an ontology we are developing to be safely integrated with a “foreign” ontology;
roughly speaking, such an integration is safe if it does not change the meaning of
the terms in the foreign ontology.

In this paper, we focus on the use of modularity to support thepartial reuse
of ontologies: continuing with the above integration scenario, as a next step, we
would like to extract, from the foreign ontology, a small fragment that captures
the meaning of the terms we use in our ontology. For example, when building an
ontology describing research projects, we may use terms such asCystic Fibrosis
andGenetic Disorder in our descriptions of medical research projects. In order
to improve the precision of our ontology, we may want to add more detail about
the meaning of these terms; for reasons of cost and accuracy, we would prefer
to do this by reusing information from a medical ontology. Such ontologies are,
however, typically very large, and importing the whole ontology would make the
consequences of the additional information costly to compute and difficult for our
ontology engineers (who are not medical experts) to understand. Thus, in practice,
we need to extract a module that includes just the relevant information. Ideally,
this module should beas small as possiblewhile still guaranteeingto capture the
meaning of the terms used; that is, when answering arbitrary queries against our
projects ontology, importing the module would give usexactly the same answersas
if we had imported the whole medical ontology. In this case, importing the module
instead of the whole ontology will have no observable effect on our ontology—
apart from allowing for more efficient reasoning.

Concerning the efficiency of reasoning, the time needed to process an ontology
is often too high for ontology engineering, where fast response under changes in
the ontology is required, or for deployment in applications, where fast response to
queries is required. The ability to extract modules in the sense described above
would address both these problems: it would allow us to identify a (hopefully

2



small) part of the ontology that is affected by a given change or that is sufficient
to answer a given query—and then to reason over this part only without losing any
consequences.

The contributions of this paper are as follows:

1. We propose a definition of amoduleQ1 within a given ontologyQ for a
given vocabularyS.

2. We take the above definition as a starting point, and investigate the problem
of computing minimal modules. We show that none of the reasonable vari-
ants of this problem is solvable in general already for rather restricted sub-
languages of OWL DL. In fact, it is even not possible to determine whether
a subsetQ1 of an ontologyQ is a module inQ for S.

3. Given these negative results, we propose two “approximations”, i.e., alter-
native definitions of a module that still guarantee to completely capture the
meaning of the terms inS, but that are possibly too strict, and that may thus
result in larger modules; these approximations are based on the notion of
locality of an ontology with respect to a vocabulary, as first introduced in
[4]. The first approximation is semantic, and can be computed using existing
OWL reasoners; the second one is a restriction of the first one which can be
computed in polynomial time. We propose an algorithm for computing the
smallest module for each of these approximations.

4. Finally, we describe our implementation and present our experimental results
on a set of real-world ontologies of varying size and complexity. We show
that, using our syntactic approximation, we obtain modules that are much
smaller than the ones computed using existing techniques, but still sufficient
to capture the meaning of the specified vocabulary.

2 Preliminaries

In this section we introduce description logics (DLs) [2] which underly modern
ontology languages, such as OWL DL. A hierarchy of commonly used description
logics is summarized in Table 1. Thesyntaxof a description logicL is given by
a signature and a set of constructors. Asignature(or vocabulary) S of a DL is
the (disjoint) union of a setC of atomic concepts(A,B, . . . ) representing sets of
elements, a setR of atomic roles(r, s, . . . ) representing binary relations between
elements, and a setI of individuals(a, b, c, . . . ) representing elements. Every DL
providesconstructorsfor defining the setRol(S) of (general)roles (R, S, . . . ),
the setCon(S) of (general)concepts(C,D, . . . ), and the setAx(S) of axioms
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DLs
Constructors Axioms [ Ax(S) ]

Rol(S) Con(S) RBox TBox ABox

EL r ⊥, C1 u C2

A, ∃R.C
A ≡ C

C1 v C2

a :C
r(a, b)

ALC –pp– ¬C –pp– –pp–
S –pp– –pp– Trans(r) –pp– –pp–

+ I r−

+ H R1 v R2

+ F Funct(R)
+ N (>n S)
+ Q (>n S.C)
+ O {a}

Here r ∈ R, A ∈ C, a, b ∈ I, R(i) ∈ Rol(S), C(i) ∈ Con(S), n ≥ 1 and
S ∈ Rol(S) is a simple role (see [9]).

Table 1: The hierarchy of standard description logics

(α, β, . . . ) for a signatureS which is a union ofrole axioms(RBox),terminological
axioms(TBox) andassertions(ABox).
EL [1] is a simple description logic which allows one to construct complex

concepts usingconjunctionC1 uC2 andexistential restriction∃R.C starting from
atomic conceptsA, rolesR and thebottom concept⊥. EL provides no role con-
structors and no role axioms; thus, every roleR in EL is atomic. The TBox axioms
of EL can be eitherconcept definitionsA ≡ C or general concept inclusion ax-
ioms (GCIs) C1 v C2. EL assertions are eitherconcept assertionsa :C or role
assertionsr(a, b).

Thebasic description logicALC [17] is obtained fromEL by addingcomple-
ment of concepts¬C. We introduce some additional constructors as abbreviations:
thetop concept> is a shortcut for¬⊥, thedisjunction of conceptsC1 tC2 stands
for ¬(¬C1 u ¬C2), and thevalue restriction∀R.C stands for¬(∃R.¬C).
S is an extension ofALC where, additionally, some atomic roles can be de-

clared to betransitiveusing a role axiomTrans(r).
Further extensions of description logics includeinverse rolesr− (indicated

by appending a letterI), role inclusion axioms(RIs) also calledrole hierarchies
R1 v R2 (+H), functional rolesFunct(R) (+F), number restrictions(>n S)
(+N ), qualified number restrictions(>n S.C)1 (+Q), andnominals{a} (+O).
Nominals make it possible to construct a concept representing a singleton set{a}

1we consider the dual qualified number restrictions(6 n S) and(6 n S.C) as abbreviations for
¬(> n S.¬C) and¬(> n S.¬C), respectively
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(a nominalconcept) from an individuala. These extensions can be used in dif-
ferent combinations, for exampleALCO is an extension ofALC with nominals;
SHIQ is an extension ofS with role hierarchies, inverse roles and qualified num-
ber restrictions; andSHOIQ is the DL that uses all the constructors and axiom
types we have presented.

Modern ontology languages, such as OWL [15], are based on description logics
and, to a certain extent, are syntactic variants thereof. In particular, OWL DL
corresponds toSHOIN [8]. In this paper, we assume anontologyO based on a
description logicL to be a set of axioms inL. Thesignature of an ontologyO
(of an axiomα) is the setSig(O) (Sig(α)) of atomic concepts, atomic roles and
individuals that occur inO (respectively inα).

The main reasoning task for ontologies isquery answering: given an ontology
O and an axiomα, check ifO impliesα.

The logical entailment|= is defined using theusual Tarski-style set-theoretic
semanticsfor description logics as follows. Given a signatureS = R ∪ C ∪ I,
an S-interpretation(or an interpretation based onS) I is a pairI = (∆I , ·I),
where∆I is a non-empty set, called thedomainof the interpretation, and·I is the
interpretation functionthat assigns: to everyA ∈ C a subsetAI ⊆ ∆I , to every
r ∈ R a binary relationrI ⊆ ∆I ×∆I , and to everya ∈ I an elementaI ∈ ∆I .

The interpretation function·I is extended to complex roles and concepts via
DL-constructors as follows:

(⊥)I = ∅
(C uD)I = CI ∩DI

(∃R.C)I = {x ∈ ∆I | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
(¬C)I = ∆I \ CI

(r−)I = {〈x, y〉 | 〈y, x〉 ∈ rI}
(>n R)I = {x ∈ ∆I | ]{y ∈ ∆I | 〈x, y〉 ∈ RI} ≥ n }

(>n R.C)I = {x ∈ ∆I | ]{y ∈ ∆I | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n }
{a}I = {aI}

The satisfactionrelationI |= α between an interpretationI and a DL axiomα
(read asI satisfiesα) is defined as follows:

I |= (A ≡ C) iff AI = CI ; I |= a : C iff aI ∈ CI ;

I |= (C1 v C2) iff CI
1 ⊆ CI

2 ; I |= r(a, b) iff 〈aI , bI〉 ∈ rI ;

I |= Trans(r) iff ∀xyz ∈ ∆I [ 〈x, y〉 ∈ rI ∧ 〈y, z〉 ∈ rI ⇒ 〈x, z〉 ∈ rI ];
I |= Funct(R) iff ∀xyz ∈ ∆I [ 〈x, y〉 ∈ RI ∧ 〈x, z〉 ∈ RI ⇒ y = z ];
I |= R1 v R2 iff RI

1 ⊆ RI
2 ;
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Ontology of medical research projectsP:

P1 Genetic Disorder Project ≡ Project u ∃has Focus.Genetic Disorder

P2 Cystic Fibrosis EUProject ≡ EUProject u ∃has Focus.Cystic Fibrosis

P3 EUProject v Project

Ontology of medical termsQ:

M1 Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u
u ∃has Origin.Genetic Origin

M2 Genetic Fibrosis ≡ Fibrosis u ∃has Origin.Genetic Origin

M3 Fibrosis u ∃located In.Pancreas v Genetic Fibrosis

M4 Genetic Fibrosis v Genetic Disorder

M5 DEFBI Gene v Immuno Protein Gene u
u ∃associated With.Cystic Fibrosis

Figure 1: Reusing medical terminology in an ontology on research projects

An interpretationI is amodelof an ontologyO if I satisfies all axioms inO. An
ontologyO impliesan axiomα (writtenO |= α) if I |= α for every modelI of
O. An axiomα is atautologyif it is implied by the empty ontology.

LetS1,S be signatures such thatS1 ⊆ S. Therestriction of anS-interpretation
I = (∆I , ·I) to S1 is an interpretationI|S1 = (∆I1 , ·I1) overS1 such that∆I1 =
∆I andXI1 = XI for everyX ∈ S1. An expansion of anS1-interpretation
I1 to S is anS-interpretationI such thatI|S1 = I1. A trivial expansion of an
S1-interpretationI1 to S is an expansion ofI1 to S such thatXI = ∅ for every
atomic concept and atomic roleX ∈ S \ S1.

3 Modules for Knowledge Reuse

For exposition, suppose that an ontology engineer wants to build an ontology about
research projects. The ontology defines different types of projects according to the
research topics they focus on. Suppose that the ontology engineer defines two con-
ceptsGenetic Disorder Project andCystic Fibrosis EUProject in his ontologyP.
The first one describes projects about genetic disorders; the second one describes
European projects about cystic fibrosis, as given by the axioms P1 and P2 in Fig-
ure 1.

The ontology engineer is supposed to be an expert on research projects: he
knows, for example, that aEUProject is aProject (axiom P3). He is unfamiliar,
however, with most of the topics the projects cover and, in particular, with the
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termsCystic Fibrosis andGenetic Disorder mentioned in P1 and P2. In this case,
he decides to reuse the knowledge about these subjects from a well-established and
widely-used medical ontology

The most straightforward way to reuse these concepts is to import the medical
ontology. This may be, however, a large ontology, which deals with other matters
in which the ontology engineer is not interested, such as genes, anatomy, surgical
techniques, etc. Ideally, one would like to extract a (hopefully small) fragment
of the medical ontology—amodule—that describes in detail the concepts we are
reusing in our ontology. Intuitively, importing the moduleQ1 intoP instead of the
full ontologyQ should have no impact on the modeling of the ontologyP.

Continuing with the example, suppose that the conceptsCystic Fibrosis and
Genetic Disorder are described in an ontologyQ containing axioms M1-M5 in
Figure 1. If we include in the moduleQ1 just the axioms that mention either
Cystic Fibrosis or Genetic Disorder, namely M1, M4 and M5, we lose the follow-
ing dependency:

Cystic Fibrosis v Genetic Disorder (1)

The dependenciesCystic Fibrosis v Genetic Fibrosis v Genetic Disorder
follow from axioms M1-M5, but not from M1, M4, M5, since the dependency
Cystic Fibrosis v Genetic Fibrosis does not hold after removing M2 and M3. The
dependency (1), however, is crucial for our ontologyP as it (together with axiom
P3) implies the following axiom:

Cystic Fibrosis EUProject v Genetic Disorder Project (2)

This means, in particular, that all the projects annotated with the concept name
Cystic Fibrosis EUProject must be included in the answer for a query on the con-
cept nameGenetic Disorder Project. Consequently, importing a part ofQ con-
taining only axioms that mention the terms used inP instead ofQ results in an
underspecified ontology. We stress that the ontology engineer might be unaware of
dependency (2), even though it concerns the concepts of his primary scope.

The example above suggests that the central requirement for a moduleQ1 ⊆
Q to be reused in our ontologyP is thatP ∪ Q1 should yield thesamelogical
consequences in the vocabulary ofP asP ∪ Q does. Note that, as seen in the
example, this requirement does not force us to include inQ1 all the axioms inQ
that mention the vocabulary to be reused, nor does it imply that the axioms inQ
that do not mention this vocabulary should be omitted.

Based on the discussion above, we formalize our first notion of amoduleas
follows:

Definition 1 (Module). LetQ1 ⊆ Q be two ontologies andS a signature. We say
thatQ1 is anS-module inQ w.r.t. a languageL, if for every ontologyP and every
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axiomα expressed inL with Sig(P ∪{α})∩ Sig(Q) ⊆ S, we haveP ∪Q |= α iff
P ∪Q1 |= α. ♦

In Definition 1 the signatureS acts as theinterfacesignature betweenP and
Q in the sense that it contains the symbols thatP andα may share withQ. It is
also important to realize that there are two free parameters in Definition 1, namely
the ontologyP and the axiomα. BothP andα are formulated in some ontology
languageL, which might not necessarily be a sub-language of OWL DL.

Fixing the languageL in whichP andα can be expressed is essential in Def-
inition 1 since it may well be the case thatQ1 is a module inQ w.r.t. a language
L1, but not w.r.t.L2. Fixing L, however, is not always reasonable. IfQ1 is an
S-module inQ, it should always be possible to replaceQ with Q1 regardless of
the particular language in whichP andα are expressed. In fact, we may extend
our ontologyP with a set of Horn rules, or extend our query language to support
arbitrary conjunctive queries. In any case, extending the ontology language forP
and the query language forα should not preventQ1 from being a module inQ.

It is therefore convenient to formulate a more general notion of a module which
abstracts from the particular language under consideration; that is, we say thatQ1

is anS-module inQ iff it is an S-module inQ, according to Definition 1 forevery
languageL with Tarski-style set-theoretic semantics. The modules we obtain in
this paper will be modules in precisely this stronger sense.

In the last few years, numerous techniques for extracting fragments of ontolo-
gies for knowledge reuse purposes have been developed. Most of these techniques
rely on syntactically traversing the axioms in the ontology and employ various
heuristics for determining which axioms are relevant and which are not.

An example of such a procedure is the algorithm implemented in the PROMPT-
FACTOR tool [14]. Given a signatureS and an ontologyQ, the algorithm retrieves
a fragmentQ1 ⊆ Q as follows: first, the axioms inQ that mention any of the
symbols inS are added toQ1; second,S is expanded with the symbols inSig(Q1).
These steps are repeated until a fixpoint is reached.

For our example, whenS = {Cystic Fibrosis,Genetic Disorder}, andQ con-
sists of axioms M1–M5 from Figure 1, the algorithm first retrieves axioms M1,
M4 and M5 containing these terms, then expandsS with the symbols mentioned
in these axioms, which makesS to contain all the symbols ofQ. After this step,
all the remaining axioms ofQ are retrieved. Hence the fragment extracted by the
PROMPT-FACTOR algorithm consists of the axioms M1-M5.

Another example is the algorithm in [18], which was used for segmentation
of the medical ontology GALEN [16]. Given a signatureS and an ontologyQ,
the algorithm adds toQ1 all definitionsA ≡ C for symbols inS, expandsS with
symbols inSig(Q1), and then repeats these steps again until a fixpoint is reached.

8



The main idea of this algorithm is to prune irrelevant axioms by traversing the class
hierarchy only “upwards” and “across existential restrictions”.

In our example, for theS andQ above, the algorithm first processes the de-
finition M1 for Cystic Fibrosis ∈ S and extendsS with the symbolsFibrosis,
located In, Pancreas, has Origin, Genetic Origin. Next, the algorithm terminates
since there are no definitions mentioning any of these symbols on the left-hand-
side. Thus, the fragment of our ontology extracted by the segmentation procedure
from [18] consists of the single axiom M1.

Therefore, none of these algorithms is appropriate for extracting modules ac-
cording to Definition 1. On the one hand, the PROMPT-FACTOR algorithm ex-
tracts many unnecessary axioms (such as M5 in our case) whereas, on the other
hand, the segmentation algorithm from [18] misses essential axioms (like M2, M3
and M4).

In our example, the PROMPT-FACTOR algorithm would extract a module
(though not a minimal one). In general, however, this is also not the case. For
example, consider an ontologyQ = {A ≡ ¬A, B v C} andα = (C v B).
The ontologyQ is inconsistent due to the axiomA ≡ ¬A: any axiom (andα in
particular) is thus a logical consequence ofQ. GivenS = {B,C}, the PROMPT-
FACTOR algorithm extractsQ2 = {B v C}; however,Q2 6|= α, and soQ2 is
not a module inQ. In general, the PROMPT-FACTOR algorithm may fail even
if Q is consistent. For example, consider an ontologyQ = {> v {a}, A v B},
α = (A v ∀r.A), andS = {A}. It is easy to see thatQ is consistent, admits only
for single element models, andα is satisfied in every such a model; that is,Q |= α.
The PROMPT-FACTOR algorithm extracts in this caseQ1 = {A v B}, which
does not implyα.

The main problem with these algorithms is that they ignore the semantics of
the ontologies. As a consequence, they may, on the one hand, extract irrelevant
axioms and, on the other hand, miss essential axioms. These algorithms, however,
were not intended to extract modules in accordance to a formal collection of re-
quirements; instead, they were intended to extract “relevant parts” of ontologies
which are “likely to be related” to the given signature, and they do not guarantee
the correctness of the results. Correctness, however, is the primary requirement for
the procedures we present in this paper.

3.1 Computing Minimal Modules

Before we formalize the main tasks related to the extraction of modules, let us
outline some important properties of modules that we will exploit along this paper.

Proposition 2 [Properties of Modules]
Let Q1 ⊆ Q2 ⊆ Q3 be three ontologies and S be a signature. Then:
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1. If Q1 is an S-module in Q2 and Q2 is an S-module in Q3 then
Q1 is an S-module in Q3 (transitivity)

2. If Q1 is an S-module in Q3 then
(a) Q1 is an S-module in Q2 and (b) Q2 is an S-module in Q3 (convexity)

Proof. 1. Suppose thatQ1 is anS-module inQ2 andQ2 is anS-module inQ3.
In order to prove thatQ1 is anS-module inQ3 according to Definition 1, take
any ontologyP and an axiomα such thatSig(P ∪ {α}) ∩ Sig(Q3) ⊆ S and
P ∪Q3 |= α. We demonstrate thatP ∪Q1 |= α (?):

SinceQ2 is anS-module inQ3, Sig(P ∪ {α})∩Sig(Q3) ⊆ S andP∪Q3 |= α,
we haveP ∪Q2 |= α. SinceQ1 is anS-module inQ2, Sig(P ∪ {α})∩Sig(Q2) ⊆
Sig(P ∪ {α}) ∩ Sig(Q3) ⊆ S, andP ∪Q2 |= α, we haveP ∪Q1 |= α (?).

2.(a) Suppose thatQ1 is anS-module inQ3. In order to prove thatQ1 is anS-
module inQ2, consider any ontologyP and an axiomα such thatSig(P ∪ {α})∩
Sig(Q2) ⊆ S andP ∪Q2 |= α. We demonstrate thatP ∪Q1 |= α (]):

Without loss of generality, we can assume thatSig(P ∪ {α}) ∩ Sig(Q3) ⊆ S,
since the symbols that are inSig(P ∪ {α}) but not inSig(Q2) could be renamed
so that they are not contained inSig(Q3). SinceQ1 is anS-module inQ3 and
P ∪Q3 |= P ∪Q2 |= α, we haveP ∪Q1 |= α (]).

2.(b) Suppose thatQ1 is anS-module inQ3. In order to prove thatQ2 is anS-
module inQ3, consider any ontologyP and an axiomα such thatSig(P ∪ {α})∩
Sig(Q3) ⊆ S andP ∪Q3 |= α. We demonstrate thatP ∪Q2 |= α (†):

SinceQ1 is anS-module inQ3, Sig(P∪{α})∩Sig(Q3) ⊆ S, andP∪Q3 |= α,
we haveP ∪Q1 |= α. SinceQ1 ⊆ Q2, we haveP ∪Q2 |= α (†).

Part 2(a) of Proposition 2 says essentially that every superset of anS-module
of this ontology is also anS-module of the ontology. This means, in particular,
that it is sufficient to compute only the minimal modules of an ontology in order to
have a complete information about all the modules.

Therefore, it makes sense to focus only on minimal modules. We say thatQ1

is a minimal S-module inQ if there is noQ2 ( Q1 that is also anS-module
in Q. In our example from Figure 1, there are two minimalS-modulesQ1 =
{M1, M2, M4} andQ2 = {M1, M3, M4}: if we remove any axiom from them, the
dependency (1) will no longer hold. Hence minimal modules are not necessarily
unique. While in some cases it is reasonable to extract all minimal modules, in
others it may suffice to extract just one. Thus, givenQ andS, the following tasks
are of interest:

T1. computeall minimalS-modules inQ
T2. computesomeminimalS-module inQ (3)

10



Intuitively, task T2 should be simpler than T1. That is, any procedure which
solves the task T1, also provides a solution for task T2. Surprisingly, the converse
of this property holds as well: any procedure for T2 can be turned into a procedure
for T1. The following lemma is the key property underlying this reduction:

Lemma 3 [A Criterium for Minimal Modules]
Let Q be an ontology and S be a signature. LetM be the set of all subsets Q2 of
Q such that Q2 is a minimal (and hence is the only) S-module in Q2.

Then Q1 is a minimal S-module in Q iff (i) Q1 ∈ M, and (ii) there is no
Q2 ∈M such that Q1 ( Q2.

Proof. (⇒) SupposeQ1 is a minimalS-module inQ. We need to show that prop-
erties(i) and(ii) above hold forQ1.

(i) Suppose, to the contrary, that the property(i) does not hold forQ1, i.e.Q1

is not a minimal module inQ1. Then there exists aQ2 ( Q1 ⊆ Q such thatQ2 is
anS-module inQ1. SinceQ1 is anS-module inQ, By the part 1 of Proposition 2
(transitivity),Q2 is anS-module inQ. HenceQ1 is not a minimal module inQ
contrary to what has been assumed.

(ii) Suppose, to the contrary, that the property(ii) does not hold forQ1, that
is, there existsQ2 ∈ M such thatQ1 ( Q2 ⊆ Q. SinceQ1 is anS-module inQ,
by the part 2(a) of Proposition 2,Q1 is anS-module inQ2. HenceQ2 /∈ M by
the definition ofM (sinceQ2 is not a minimalS-module inQ2), which yields a
contradiction.

(⇐) Assume that conditions(i) and(ii) above hold forQ1, butQ1 is not a
minimalS-module inQ. There are two cases possible: (a)Q1 is not anS-module
in Q, and (b)Q1 is anS-module inQ, but not a minimalS-module.

In the case (a), there has to be a minimalS-moduleQ2 in Q such thatQ1 (
Q2 ⊆ Q. By the direction(⇒) of the lemma applied toQ2, we haveQ2 ∈ M.
But this contradicts the condition(ii), sinceQ1 ∈M andQ1 ( Q2.

In the case (b), there is a minimalS-moduleQ2 inQ such thatQ2 ( Q1 ⊆ Q.
By the property 2.(a) of Proposition 2,Q2 is anS-module inQ1, which contradicts
the condition(i) sinceQ1 is not a minimalS-module inQ1.

We use this property to show that tasks T1 and T2 are indeed inter-reducible:

Proposition 4 Tasks T1 and T2 from (3) are inter-reducible.

Proof. As it has been already pointed out, using a procedure for task T1 one can
obtain a procedure for task T2 by just returning any of the computed minimalS-
modules inQ.

Now suppose we have a procedureP2 for task T2, namely, that given a signa-
tureS and an ontologyQ returns some minimalS-moduleQ1 in Q. We construct
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a procedureP1 that returns all minimalS-modules, which is based on the criterium
for minimal S-modules formulated in Lemma 3. Note that procedureP2 satisfies
the following property:

GivenS andQ2, the procedureP2 for T2 returnsQ2 if
and only ifQ2 is the only minimalS-module inQ2.

(4)

ProcedureP1 should work as follows. GivenS andQ, P1 first computes the
setM of subsetsQ2 in Q such thatQ2 is the onlyS-module inQ2 using property
(4) of procedureP2. More precisely, in order to computeM, we enumerate all the
subsets ofQ and select those subsetsQ2 for whichP2 returnsQ2. Next,P1 returns
those sets fromM that are contained in no other set fromM. By Lemma 3,P1
returns exactly all minimalS-modules inQ.

There are other variations of the task T1 and T2 that may be of interest. For
example, instead of minimal modules, one might be interested only in modules of
thesmallest size. An S-module inQ has the smallest size iff no otherS-module in
Q has a smaller number of axioms:

T1s. computeall the smallest in sizeS-modules inQ
T2s. computesomesmallest in sizeS-module inQ (5)

Clearly, if anS-module inQ is of the smallest size, then it is a minimalS-module;
the converse, however, does not necessarily hold. It is easy to see that any proce-
dure for T1 could be turned into a procedure for T1s and T2s: given all minimal
modules, we can simply count the number of axioms they contain and retrieve the
modules with the fewest number of axioms. Conversely, any procedure for T1s or
T2s can be used for solving T2 since a module of smallest size is also a minimal
module. As a conclusion, we have:

Proposition 5 All tasks from (3) and (5) are inter-reducible.

Recall that there are two minimalS-modulesQ1 = {M1, M2, M4} andQ2 =
{M1, M3, M4} in our ontologyQ from Figure 1. That is, in a certain sense, the
axioms M1–M4 are essential for the dependency (1). In certain situations, one
can be interested in computing just the setQe of such essential axioms, instead
of computing all minimal modules. This is the case, for example, if the ontology
engineer wants to compute a module that is “safe” under removal of axioms: if
we remove M2 fromQ, thenQ′1 = Q1 \ {M2} = {M1, M4} is no longer anS-
module for the updated ontologyQ′ := Q\{M2} since the dependency (1) is lost,
butQ′e := Qe \ {M2} is still a module inQ. This example suggests the following
definition:
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Definition 6 (Essential Axiom). Given a signatureS and an ontologyQ, we say
that an axiomα ∈ Q is S-essential inQ w.r.t. L if α belongs to some minimal
S-module inQ w.r.t. L. ♦

Hence, the following task may also be of interest:

T3. computethe unionof all minimalS-modules inQ,
which is the set of allS-essential axioms inQ (6)

Obviously, task T3 is at least not harder then task T1:

Proposition 7 Task T1 is reducible to task T3, that is, any procedure for T1 can
be used for solving T3.

It is not clear, however, whether the procedure for T3 can be used to obtain a
procedure for T1. Nevertheless, as we will demonstrate Section 3.2, this issue is
not relevant since all of the tasks formulated above are algorithmically unsolvable
already for simple sub-languages of OWL DL.

3.2 Modules and Conservative Extensions

The notion of a module is closely related to the notion of a conservative extension
which has been used to characterize formal requirements in ontology integration
tasks [7, 5, 4, 11]. In the literature we can find at least two different notions of
conservative extensions in the context of ontologies [11]:

Definition 8 (Conservative Extensions).
LetQ1 ⊆ Q be two ontologies,S a signature andL a logic.
We say thatQ is a deductiveS-conservative extensionof Q1 w.r.t. L, if for

every axiomα overL with Sig(α) ⊆ S, we haveQ |= α iff Q1 |= α.
We say thatQ is amodelS-conservative extensionof Q1 if, for every model

I1 of Q1, there exists a modelI of Q such thatI|S = I1|S. ♦

Intuitively, an ontologyQ is a deductive conservative extension of an ontology
Q1 ⊆ Q for a signatureS iff every logical consequenceα of Q constructed using
only symbols fromS is already a consequence ofQ1; that is, the additional axioms
in Q do not add new logical consequences over the vocabularyS. Analogously to
modules, the notion of a deductive conservative extension depends on the ontology
languageL in whichQ andα are expressed.

In contrast, model conservative extensions are not defined in terms of logical
entailment, but using the models directly. Intuitively, an ontologyQ is a model
conservative extension ofQ1 ⊆ Q if every model ofQ1 can be expanded to a
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model ofQ by interpreting new symbols and leaving the interpretations of the old
symbols unchanged.

The notion of semantic conservative extension is strictly stronger than the syn-
tactic one [11] since it does not depend on expressivity of the ontology language.
That is, if Q is a modelS-conservative extension ofQ1, it is also a deductive
S-conservative extension ofQ1, but not necessarily vice versa.

Example 9 Let Q be the ontology consisting of axioms M1 − M5 in Figure 1.
Let S = {Cystic Fibrosis, Genetic Disorder} andQ1 = {M1, . . . , M4}. We show
thatQ is a modelS-conservative extension ofQ1 and, hence, also a deductive
conservative extension ofQ1.

Let I1 be an arbitrary model ofQ1. We demonstrate that we can always con-
struct a modelI of Q which interprets the symbols fromS in the same way asI1
does, i.e.I|S = I1|S.

Indeed, letI be asI1 except for the interpretation of the atomic concepts
DEFBI Gene andImmuno Protein Gene, and the atomic roleassociatedWith, all
of which we interpret inI as the empty set. Note that these atomic concepts and
this atomic role do not occur inQ1. Hence,I interprets the concepts inQ1 ex-
actly like I1, and soI is a model ofQ1. Furthermore,I is a model of M5 since
the concepts on the left-hand-side and the right-hand-side of this axiom are both
interpreted as the empty set. Thus,Q is a modelS-conservative extension ofQ1.

In fact, it was sufficient to take any expansionI of I1 in which DEFBI Gene
is interpreted as the empty set. HenceQ is a modelS-conservative extension of
Q1 for everyS that does not containDEFBI Gene since M5 is satisfied in every
interpretation where this concept is interpreted as the empty set.

Now, if we remove M2 and M3 fromQ1, thenQ is no longer anS-conservative
extension ofQ1 for S = {Cystic Fibrosis, Genetic Disorder}. Indeed, it is possi-
ble to find an interpretationI1 of the remaining axioms M1 and M4 fromO1, in
which Genetic Disorder is interpreted as the empty set, butCystic Fibrosis is not.
For example, consider an interpretationI1 = ({a}, ·I1) with:

Cystic FibrosisI1 = FibrosisI1 = PancreasI1 = Genetic OriginI1 = {a};
located InI1 = has OriginI1 = {(a, a)}; and
Genetic FibrosisI1 = Genetic DisorderI1 = ∅.

It is easy to see thatI1 is a model of M1 and M4, but there is no modelI of Q
such thatI|S = I1|S. Indeed, for every modelI of Q, we must haveI |= α :=
(Cystic Fibrosis v Genetic Disorder) becauseQ |= α. However, this would imply
also thatI1 |= α, sinceI|S = I1|S, but this does not hold forI1 defined above.

♦
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Although Definition 1 is close to the notion of deductive conservative exten-
sion, there are two important differences. First, in the definition of deductive con-
servative extension, the logical consequences are considered only w.r.t. the ontolo-
giesQ andQ1 of interest whereas, in our definition of module, all the possible
ontologiesP in which the module can be used are taken into account. Second, in
the definition of deductive conservative extension, the signature ofα is required to
be a subset ofS whereas, in our definition of module, only the common part of
{α} ∪ P andQ is required to be a subset ofS. Despite these differences, the two
notions of conservative extensions are related to our notion of module:

Proposition 10 [Modules vs. Conservative Extensions]
Let Q1 ⊆ Q be two ontologies. Then:

1. If Q1 is an S-module in Q w.r.t. L then Q is a deductive S-conservative
extension of Q1 w.r.t. L;

2. If Q is a model S-conservative extension of Q1 then Q1 is an S-module in
Q for every ontology language L with Tarski-style set-theoretic semantics.

Proof. 1. Letα be an axiom withSig(α) ∈ S such thatQ |= α. We have to show
thatQ1 |= α (?). TakeP := ∅ (the empty ontology). SinceQ1 is a module in
Q, Sig(P ∪ {α}) ∩ Sig(Q) ⊆ S, andP ∪ Q = Q |= α, by Definition 1, we have
Q1 = P ∪Q1 |= α.

2. Assume thatQ is a modelS-conservative extension ofQ1, butQ1 is not an
S-module inQw.r.t. some logicL. According to Definition 1, this means that there
exists an ontologyP and an axiomα overL with Sig(P∪{α})∩Sig(Q) ⊆ S, such
thatP ∪ Q |= α butP ∪ Q1 6|= α. The last implies that for some interpretation
I1, we haveI1 |= P ∪ Q1, but I1 6|= α. Let I ′1 := I1|S∪Sig(Q). Obviously,
I ′1 |= Q1. By Definition 8, sinceQ is a modelS-conservative extension ofQ1,
there exists an interpretationI ′ such thatI ′ |= Q andI ′|S = I ′1|S. Let I be
the expansion ofI ′|S∪Sig(Q) to Sig(P ∪ {α}) by settingXI := XI1 for every
X ∈ Sig(P ∪ {α}) \ S. Note that we also haveI|S = I ′|S = I ′1|S = I1|S, hence
I|Sig(P∪{α}) = I1|Sig(P∪{α}), and soI |= P andI 6|= α. SinceI|S∪Sig(Q) =
I ′|S∪Sig(Q) andI ′ |= Q, we haveI |= Q, which yields a contradiction.

Proposition 10 shows that our notion of module stays “in between” the two
notions of conservative extensions. In particular, by applying Property 2 in Propo-
sition 10 to Example 9, we can show that the axioms M1-M4 in Figure 1 constitute
a module in the ontologyQ, consisting of M1-M5. The converse of Property 1 in
Proposition 10, however, does not hold in general:
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Example 11 LetQ1 = {},Q = {> v ∃R.A} andS = {A}. The ontologyQ is a
deductiveS-conservative extension ofQ1 w.r.t.ALC. Indeed, everyALC-axiom
α = (C1 v C2) overS = {A}, is equivalent inALC to either> v >, > v ⊥,
> v A or A v ⊥, which are indistinguishable byQ1 andQ—that is, the axiom
is implied byQ1 iff it is implied by Q. Q1, however, is not anS-module inQ.
Consider anALC-ontologyP = {A v ⊥}, which is constructed overS. It is easy
to see thatP ∪Q |= > v ⊥, butP ∪Q1 6|= > v ⊥. ♦

Note that the construction in Example 11 also shows that the notion of deduc-
tive conservative extension is strictly weaker than the notion of model conservative
extension (as shown in [11]):Q is a deductive conservative extension ofQ1 but,
according to Property 2 in Proposition 10, it is not a model conservative extension.

Given the relationships between our definition of module and conservative ex-
tensions, it is worth examining the computational complexity of the associated
problems. The problem of deciding whetherQ is anS-conservative extension of
Q1 has been studied in [11], where it is proved to be 2NEXPTIME-complete for
ALCIQ (roughly OWL-Lite) and undecidable for OWL DL. For model conserv-
ative extensions, the problem is highly undecidable (non recursively enumerable),
even forALC [11].

The decidability result from [11] for deductive conservative extensions, how-
ever, does not transfer to our problem since an ontologyQ may well be anS-
deductive conservative extension ofQ1, but stillQ1 might not be anS-module in
Q. In fact, we show that our problem is already undecidable forALC ontologies
when the language allows for nominals:

Theorem 12 [Undecidability for Essential Axioms]
Given a signature S, an ALC-ontology Q and an axiom α ∈ Q, it is undecidable
whether α is S-essential in Q w.r.t. L = ALCO.

Proof. The proof is a variation of the construction for undecidability of deciding
deductive conservative extensions inALCQIO given [11], based on reduction to
domino tiling problems.

A domino system is a tripleD = (T,H, V ) whereT is a finite set oftiles and
H,V ⊆ T × T arehorizontalandvertical matching relations. A solution for a
domino systemD is a mappingt(·,·) that assigns to every pair of integersi, j ≥ 1
an elementti,j ∈ T , such that(ti,j , ti,j+1) ∈ V and(ti,j , ti+1,j) ∈ H. A periodic
solution for a domino systemD is a solutionti,j for which there exist integers
m ≥ 1 , n ≥ 1 calledperiodssuch thatti+m,j = ti,j andti,j+n = ti,j for every
i, j ≥ 1.

Let D be the collection of all domino systems,Ds be the subset ofD that
admit a solution andDps be the subset ofD that admit a periodic solution. Note
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(q1) > v At1 t · · · tAtn if T = {t1, . . . , tn}
(q2) Ati uAtj v ⊥ wheneverti 6= tj ,

(q3) Ati v ∃rH .(
⊔

(ti,tj)∈H Atj ) ti, tj ∈ T

(q4) Ati v ∃rV .(
⊔

(ti,tj)∈V Atj )

(q5) > v ∃s.[∃rH .∃rV .B u ∃rV .∃rH .¬B] =: α

Figure 2: An ontologyQ for a domino systemD

thatDps ⊆ Ds. It is well-known [3, Theorem 3.1.7] that the setsD \ Ds andDps

are recursively inseparable, that is, there is no recursive (i.e. decidable) subset
D′ ⊆ D of domino systems such thatDps ⊆ D′ ⊆ Ds.

We use this property in our reduction. For every domino systemD, we con-
struct a signatureS = S(D), an ontologyQ = Q(D) which is anALC-TBox, and
an axiomα ∈ Q such that:

(a) if D does not have a solution thenα is notS-essential inQ w.r.t. L, and

(b) if D has a periodic solution thenα is S-essential inQ.

In other words, for the setD′ of domino systemsD such thatα is S-essential
in Q = Q(D) w.r.t. L, we haveDps ⊆ D′ ⊆ Ds. SinceD \ Ds andDps are re-
cursively inseparable, this implies undecidability forD′ and hence for the problem
of checkingS-essential axioms, because otherwise one can use this problem for
deciding membership inD′.

The signatureS, ontologyQ and axiomα ∈ Q are constructed as follows.
Given a domino systemD = (T,H, V ), let S consist of fresh atomic concepts
At for everyt ∈ T and two atomic rolesrH andrV . We defineQ to consists of
axioms(q1)–(q5) from Figure 2 and setα to be the axiom(q5).

Axioms of form (q1)–(q4) express that every domain element in a model for
Q is assigned with a unique tilet ∈ T and has horizontal and vertical matching
successors. Axiom(q5) plays a special role in our reduction for excluding those
models ofQ for which the horizontal and vertical matching relations do not com-
mute. It is easy to show that all axioms fromQ are independent, i.e. none of the
axioms is a logical consequence of the remaining axioms. In the remainder, we
prove properties(a) and(b) formulated above.

In order to prove property(a), assume thatα is S-essential inQ w.r.t. L. We
demonstrate thatD has a solution in this case.

Let Qα be a minimalS-module inQ containingα. Note thatQα implies all
axioms of form(q1)–(q4) in Q, since the signature of these axioms is a subset of
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S. SinceQα containsα and all axioms ofQ are independent, this is only possible
whenQα = Q.

SinceQα = Q is a minimalS-module inQ, the setQ1 := Q \ {α} is not
anS-module inQ, and so, by the part 2 of Proposition 10,Q is not a modelS-
conservative extension ofQ1. This means that there is anS-interpretationI1 =
(∆, ·I1) that is a model of the axioms of form(q1)–(q4), but which cannot be
expanded to a model ofα by interpreting atomic roles and atomic conceptB.
We claim that this is possible only if relationsrH andrV commute inI1, that is,
wheneverrH(a, b), rV (b, c1), rV (a, d) andrH(d, c2) hold in I1, then it must be
the case thatc1 = c2. Indeed, otherwise one can expandI1 to a modelI of α by
settingsI = {(x, a) | x ∈ ∆} andBI = {c1}. SinceI satisfies all formulas of
forms (q1)–(q4) and admits commutativity property for relationsrH andrV , it is
easy to see thatD has a solution.

In order to prove property(b), assume thatD has a periodic solutionti,j with
the periodsm,n ≥ 1. We demonstrate thatα is S-essential inQ by showing that
Q1 := Q\{α} is not anS-module inQ. For this purpose we construct anALCO-
ontologyP such thatP ∪Q |= ⊥, butP ∪Q1 6|= ⊥. We defineP such that every
model ofP is a finite encoding of the periodic solutionti,j . For every pair(i, j)
with 1 ≤ i ≤ m and1 ≤ j ≤ n we introduce a fresh individualai,j and add the
following axioms toP

(p1) ai,j :Ati,j , (p4) > v
⊔

1≤i≤m, 1≤j≤n {ai,j},
(p2) rV (ai1,j , ai2,j), (p5) {ai1,j} v ∀rV .{ai2,j}, i2 = i1 + 1 mod m

(p3) rH(ai,j1 , ai,j2), (p6) {ai,j1} v ∀rH .{ai,j2}, j2 = j1 + 1 mod n

The axioms(p1)–(p4) encode the solutionti,j forD, and so, ensure that axioms
(q1)–(q4) are satisfied. The axioms(p5) and(p6) ensure that the relationsrV and
rH are defined completely, i.e. no other relations except for those specified in the
first column hold in models ofP. In particular, in every model ofP, relations
rH andrV commute, and so, axiomα is not satisfied. Consequently,P ∪ Q is
unsatisfiable, whereasP ∪ Q1 is satisfiable, and so,Q1 is not anS-module in
Q.

Corollary 13 There exists no algorithm for performing any of the tasks T1-T3,
T1s and T2s from (3), (5) and (6) for ALC-ontologies.

Proof. Theorem 12 implies directly that there is no algorithm for task T3 from
(6), because otherwise, one can check if an axiomα is S-essential inQ by simply
computing the set of all essential axioms by this algorithm for T3 and then checking
if α is contained in this set. The remaining tasks from (3) and (5) are unsolvable
since they are reducible to T3 by Proposition 7 and by Proposition 5.
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Corollary 14 Given a signature S, anALC-ontologyQ and an ontologyQ1 ⊆ Q,
it is undecidable whether Q1 is an S-module in Q w.r.t. L = ALCO.

Proof. The procedure for deciding ifQ1 is anS-module inQ can be used for
solving task T1, which is not possible by Corollary 13. Indeed, by enumerating
the subsets ofQ and checking if they are modules, one can compute all subsetsM
of Q that areS-modules inQ. The set of all minimal modules inQ can be then
computed fromM by filtering out those sets inM that are proper subsets of some
other sets inM.

Corollary 14 has a strong impact on the problem of knowledge reuse and forces
us to revisit the original problem we aim at solving. As the problem of extracting
minimal modules cannot be computationally solved for OWL DL in none of the
forms T1-T3, T1s or T2s, we propose to relax some of the requirements in these
tasks. We cannot drop the requirements that extracted fragments should be modules
since, in this case, we have no guarantee for the correctness of the result. We
can sacrifice, however, the minimality requirements for the computed modules and
consider the following weakened version of the task T2:

T2w. computesomesmall enoughS-module inQ (7)

Although it is always possible to extract anS-module inQ (one can simply return
Q which is always anS-module inQ), it still makes sense to develop, compare,
and practically apply procedures that compute reasonably small modules. In the
rest of the paper we describe two procedures of this form, based on the notions of
locality, which we first introduced in [4]. The modules we obtain might be larger
than the minimal modules and therefore we need to show that, in practice, they are
still reasonably small.

4 Modules Based on Locality

In this section, we formulate the notion of locality, first introduced in [4] which
will constitute the basis of our algorithm for extracting modules.

4.1 Locality

As a consequence of Case 2 in Proposition 10, model conservative extensions can
be used as a sufficient condition for the notion of module. It is not possible, how-
ever, to design a procedure that extracts modules based on this condition since the
problem of deciding model conservative extensions is highly undecidable [11]. The
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idea underlying this notion, however, can be used to establish sufficient conditions
for the notion of module which are decidable and can be used in practice.

Consider the first part of Example 9, where we show that the setQ of axioms
M1-M5 in Figure 1 is a modelS-conservative extension ofQ1 = {M1, . . . , M4},
for S = {Cystic Fibrosis, Genetic Disorder}. In this example, the model conser-
vative extension was shown by finding expansions ofSig(Q1)-interpretations to
models ofQ in which all concept and atomic roles not inSig(Q1) were interpreted
as the empty set. One could consider the cases where conservative extensions (and
hence modules) can be determined in this manner. This idea can be formalized
using the notion of locality:

Definition 15 (Locality [4]). Let S be a signature. We say that anaxiomα is local
w.r.t. S if every trivial expansion of anyS-interpretation toS ∪ Sig(α) is a model
of α. We denote bylocal(S) the collection of all axioms that are local w.r.t.S. An
ontologyO is local w.r.t.S if O ⊆ local(S). ♦

Intuitively, an ontologyO is local w.r.t. a signatureS if we can takeany in-
terpretation for the symbols inS and extend it to amodelof O that interprets the
additional symbols as the empty set.

Example 16 Consider axiom M5 from Figure 1. This axiom is local w.r.t.S =
{Cystic Fibrosis, Genetic Disorder}. Indeed, as shown in Example 9, for every
trivial expansionI of anS-interpretation toS ∪ Sig(α), the conceptDEFBI Gene
is interpreted as the empty set, and so,I satisfies M5.

On the other hand, M5 is not local w.r.t.S = {DEFBI Gene}. Indeed, take any
S-interpretationI1 in whichDEFBI Gene is interpreted as a non-empty set. Then,
for every trivial expansionI of I1, the concept on the left-hand-side of M5 is
always interpreted as a non-empty set, whereas the concept on the right-hand-side
is always interpreted as the empty set. SoI does not satisfyα.

In fact, this shows that axiom M5 is local w.r.t.S if and only if S does not
containDEFBI Gene. ♦

The following is a simple but useful property of locality shows that the set of
local axioms can only become smaller if the signature expands:

Lemma 17 [Anti-Monotonicity of Locality] Let S1 and S2 be signature sets.
Then S1 ⊆ S2 implies local(S2) ⊆ local(S1).

Proof. Let α ∈ local(S2). We demonstrate thatα ∈ local(S1). For this purpose,
let I1 be an arbitraryS1-interpretation. We need to show that every trivial expan-
sionI ′1 of I1 to S1 ∪ Sig(α) is a model ofα.
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Let I2 be a trivial expansion ofI1 to S2 (note thatS1 ⊆ S2). Sinceα ∈
local(S2), every trivial expansionI ′2 of I2 toS2∪Sig(α) is a model ofα. Note that
I ′2 is a trivial expansion ofI1 to S2 ∪ Sig(α), henceI ′1 = I ′2|S1∪Sig(α) |= α.

Locality can be used to formulate a sufficient condition for an ontology to be a
model conservative extension of another ontology:

Proposition 18 [Locality⇒ Model Conservativity] Let O1, O2 be two ontolo-
gies and S a signature such thatO2 is local w.r.t. S∪ Sig(O1). ThenO1 ∪O2 is an
S-model conservative extension of O1.

Proof. Let I1 be a model ofO1. We show that there exists a modelI of O1 ∪ O2

such thatI|S = I1|S.
Let I be a trivial expansion ofI1|S∪Sig(O1) to S ∪ Sig(O1) ∪ Sig(O2), thus,

in particular,I|S∪Sig(O1) = I1|S∪Sig(O1). We need to show thatI is a model of
O1∪O2. SinceO2 is local w.r.t.S∪Sig(O1), by Definition 15,I is a model ofO2.
Moreover, sinceI|Sig(O1) = I1|Sig(O1) andI1 |= O1, we haveI |= O1. Hence,
I |= O1 ∪ O2 what was required to show.

Using Proposition 18 and Property 2 of Proposition 10 we obtain:

Corollary 19 Let O1, O2 and S be as given in Proposition 18. Then O1 is an
S-module in O1 ∪ O2.

Corollary 19 suggests how one can use locality for extracting modules. Given
an ontologyQ and a signatureS, it is sufficient to partitionQ intoQ1 ∪ Q2 such
thatQ2 is local w.r.t.S ∪ Sig(Q1). In this case,Q1 is anS-module inQ.

Definition 20 (Modules based on Locality Condition).
Given an ontologyQ and a signatureS, we say thatQ1 ⊆ Q is a locality-based
S-module inQ if Q \ Q1 is local w.r.tS ∪ Sig(Q1). ♦

Remark 21 Note from Definition 20 that every locality-basedS-moduleQ1 in Q,
is also a locality-basedS ∪ Sig(Q1)-module inQ. ♦

Remark 22 Note thatQ1 is a locality-basedS-module inQ if every trivial expan-
sion of every model ofQ1 based onS ∪ Sig(Q1) to S ∪ Sig(Q), is a model forQ.

♦

Example 23 [Example 16, continued] We have seen in Example 16 that axiom M5
is local w.r.t. everyS that does not contain the atomic conceptDEFBI Gene. In
particular, forQ1 consisting of axioms M1-M4 from Figure 1, M5 is local w.r.t.
Sig(Q1). Hence, according to Definition 20,Q1 is a locality-basedS-module in
Q = {M1, . . . , M5} for everyS ⊆ Sig(Q1). ♦
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Remark 24 Note that the analog of the Part 1 in Proposition 2 does not hold for
locality-based modules since locality-based modules are not necessarily upward-
closed. For example, consider the following ontology and a signature:

Q = {(1) A1 v A2; (2) B v A1; (3) B v A2} S = {A1, A2}

It is easy to see that the setQ1 = {A1 v A2} consisting of the first axiom from
Q is a locality-basedS-module inQ, since both axioms(2) and(3) are local w.r.t.
S ∪ Sig(Q1) = {A1, A2}. However, its supersetQ′1 = {A1 v A2; B v A1} is
not a locality-based module w.r.t.S, since the axiomB v A2 inQ\Q′1 is not local
w.r.t. S ∪ Sig(Q′1) = {A1, A2, B}. Note thatQ′1 is anS-module inQ, since it is
a superset of anS-moduleQ1. ♦

We introduce a special notion to capture the modules that are supersets of the
locality-based modules:

Definition 25 (Locality-Induced Modules).
We say that a subsetQ2 ⊆ Q is a locality-inducedS-modulein Q if there exists a
locality-basedS-moduleQ1 in Q such thatQ1 ⊆ Q2. ♦

4.2 Testing Locality

As demonstrated in Example 16, for testing locality of an axiomα w.r.t. S, it is
sufficient to interpret every atomic concept and atomic role not inS with the empty
set and then check ifα is satisfied for all interpretations of the remaining symbols.
This observation suggests that locality can be tested by first simplifying the ontol-
ogy by eliminating atomic roles and concepts that are not inS, and then checking if
the resulting axioms are satisfied in every interpretation for the remaining symbols.
This idea is formalized as follows:

Proposition 26 [Testing Locality] Let O be a SHOIQ ontology and S a signa-
ture. Let OS be obtained from O by applying the transformations below, where
every A is an atomic concept, every r is an atomic role with A, r /∈ S, and every R
is a role r or r− with r /∈ S: (1) replace all concepts of form A, ∃R.C or (>n R.C)
with ⊥; (2) remove every transitivity axiom Trans(r); (3) replace every assertion
a :A and r(a, b) with the contradiction axiom > v ⊥.

Then O is local w.r.t. S iff every axiom in OS is a tautology.

Proof. It is easy to check that the transformation above preserves the satisfaction
of axioms under every trivial expansionI of everyS-interpretation toS∪ Sig(O).
Hence, the resulting ontologyOS is local w.r.t.S iff the original ontologyO was
local w.r.t.S. Moreover, it is easy to see that there are no atomic concepts and
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atomic roles outsideS left in OS after the transformation. Hence, every axiomα
fromOS is a tautology iffQ is local w.r.t.S.

Note that according to Definition 15, assertionsa :A and r(a, b) can never
be local since they can only be satisfied by interpretations that interpretA and
r as non-empty sets. Hence, assertions must be included in every locality-based
module, which is reflected in the step (3) of the transformation in Proposition 26.

Example 27 Recall that in Example 16 we have demonstrated that axiom M5 from
Figure 1 is local w.r.t.S = {Cystic Fibrosis, Genetic Disorder}. Now we demon-
strate this using Proposition 26. Indeed, according to this proposition we need to
perform the following replacements:

DEFBI Gene⇒ ⊥ (by (1) sinceDEFBI Gene 6∈ S)

Immuno Protein Gene⇒ ⊥ (by (1) sinceImmuno Protein Gene 6∈ S)

∃associated With.Cystic Fibrosis⇒ ⊥ (by (1) sinceassociated With 6∈ S)

Hence, axiom M5 will be translated to axiom⊥ v ⊥ u ⊥ which is a tautology.
♦

An important conclusion of Proposition 26 is that one can use the standard ca-
pabilities of available DL-reasoners2 such asFaCT++ [21], RACER [12], Pellet
[19] or KAON2 [13] for testing locality since these reasoners can test for DL-
tautologies. Checking for tautologies in description logics is, theoretically, a diffi-
cult problem (e.g. for DLSHOIQ is NEXPTIME-complete). There are, however,
several reasons to believe that the locality test would perform well in practice. First,
and most importantly, the size of the axioms in an ontology is usually small com-
pared to the size of the ontology. Second, DL reasoners are highly optimized for
standard reasoning tasks and behave well for most realistic ontologies.

In case this is too costly, it is possible to formulate a tractable approximation
to the locality conditions forSHOIQ:

Definition 28 (Syntactic Locality for SHOIQ). Let S be a signature. The fol-
lowing grammar recursively defines two sets of conceptsC⊥S andC>S for a signature
S:

C⊥S ::= A⊥ | (¬C>) | (C u C⊥) | (∃R⊥.C)
| (∃R.C⊥) | (>n R⊥.C) | (> n R.C⊥) .

C>S ::= (¬C⊥) | (C>
1 u C>

2 ) .

2Seehttp://www.cs.man.ac.uk/∼sattler/reasoners.html for a list of currently available
reasoners.
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whereA⊥ /∈ S is a atomic concept,R is a role, andC is a concept,C⊥ ∈ C⊥S ,
C>

(i) ∈ C
>
S , i = 1, 2, andR⊥ /∈ Rol(S) is a role.

An axiomα is syntactically local w.r.t.S if it is of one of the following forms:
(1) R⊥ v R, or (2) Trans(R⊥), or (3) C⊥ v C or (4) C v C>. We denote by
s local(S) the set of allSHOIQ-axioms that are syntactically local w.r.t.S. A
SHOIQ-ontologyO is syntactically local w.r.t.S if O ⊆ s local(S). ♦

Intuitively, every concept inC⊥S becomes equivalent to⊥ if we replace every
symbol A⊥ or R⊥ not in S with the bottom concept⊥ and the empty role re-
spectively, which are both interpreted as the empty set under every interpretation.
Similarly, the concepts fromC>S are equivalent to> under this replacement. Syn-
tactically local axioms become tautologies after these replacements.

For example, it is easy to show that the axiom M2 from Figure 1 is local w.r.t.
S = {Fibrosis, has Origin}: if we replace the remaining symbols in this axiom
with ⊥, we obtain a tautology⊥ ≡ ⊥:

⊥︷ ︸︸ ︷
Genetic Fibrosis ≡ Fibrosis u ∃has Origin.

⊥︷ ︸︸ ︷
Genetic Origin︸ ︷︷ ︸
⊥

To distinguish the original notion of locality from its syntactic approximation,
we sometimes call the first assemantic locality, as it is defined in terms of the
interpretations.

It is easy to show that the analog of Lemma 17 also holds for syntactic locality:

Lemma 29 [Anti-Monotonicity of Syntactic Locality]
Let S1 and S2 be signature sets. Then S1 ⊆ S2 implies s local(S2) ⊆ s local(S1).

Proof. It is easy to see from Definition 28 thatC⊥S2
v C⊥S1

, C>S2
v C>S1

, and hence,
s local(S2) v s local(S1).

As expected, syntactic locality is an approximation for semantic locality:

Proposition 30 Let S be a signature. Then s local(S) ⊆ local(S).

Proof. Let α be an axiom that is syntactically local w.r.t.S and letI = (∆, ·I) be
a trivial expansion of someS-interpretation toS∪Sig(α). We have to demonstrate
that I is a model ofα. By induction over the definitions ofC⊥S and C>S from
Definition 28, it is easy to show that:(i) every roleR /∈ Rol(S) and every every
concept fromC⊥S is interpreted inI with the empty set, and(ii) every concept from
C>S is interpreted inI with ∆. By checking all the possible cases for a syntactically
local axiomα in Definition 20, it is easy to see that in every of these casesI is a
model ofα.
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Algorithm 1 extractmodule(Q,S)
Input:
Q: ontology
S: signature

Output:
Q1: a locality-basedS-module inQ

1: Q1 ← ∅ Q2 ← Q
2: while not empty(Q2) do
3: α← selectaxiom(Q2)
4: if locality test( α, S ∪ Sig(Q1) ) then
5: Q2 ← Q2 \ {α} . α is processed
6: else
7: Q1 ← Q1 ∪ {α} . moveα intoQ1

8: Q2 ← Q \Q1 . resetQ2 to the complement ofQ1

9: end if
10: end while
11: return Q1

The converse of Proposition 30 does not hold in general since there are seman-
tically local axioms that are not syntactically local. For example, the axiomα =
(A v A t B) is a tautology and thus is local w.r.t. everyS. This axiom, however,
is not syntactically local w.r.t.S = {A, B} since it involves symbols inS only.
Another example, which is not a tautology, is the GCIα = (∃R.¬A v ∃R.¬B),
which is semantically local w.r.t.S = {R} (∃R.> v ∃R.> is a tautology), but
not syntactically local. Thus, the limitation of syntactic locality is its inability to
perform reasoning elements fromS.

We distinguish the notion of modules based on these two locality conditions as
semantic locality-based modulesandsyntactic locality-based modules.

Corollary 31 If Q1 is a syntactic locality-based S-module in Q, then Q1 is a
semantic locality-based S-module in Q.

For the reference and for the convenience of the reader, we illustrate in Figure 3
the relationships between the key theoretical results of this paper.

4.3 Computing Locality-Based Modules

Recall that, according to Definition 20, in order to construct a locality-basedS-
module in an ontologyQ, it suffices to partition the ontologyQ asQ = Q1 ∪ Q2

such thatQ2 is local w.r.t.S ∪ Sig(Q1). Algorithm 1 outlines a simple procedure
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Q1 is a syntactical locality-basedS-module inQ

Q1 is a locality-basedS-module inQ

Q1 contains allS-essential
axioms w.r.t.L in Q

(Proposition 37)

Q is a modelS-conservative
extension ofQ1

Q1 is anS-module in Q w.r.t. L

Q is a deductiveS-conservative extension ofQ1 w.r.t. L

(Proposition 10, part 1)

(Proposition 10, part 2)

(Proposition 18)

(Corollary 31)

(Definition 6)

Figure 3: Summary for the main theoretical results of the paper

which performs this task. Given an effective locality test localitytest(α,S) (which
uses either a reasoner or the syntactical approximation) which returns true only if
the axiomα is local w.r.t.S, the algorithm first initializes the partition to the trivial
one:Q1 = ∅ andQ2 = Q, and then repeatedly moves toQ1 those axioms from
Q2 that are not local w.r.t.S ∪ Sig(Q1) until no such axioms are left inQ2.

In Table 2 we provide a trace of Algorithm 1 for the input(Q,S), whereQ is
an ontology consisting of the axioms M1-M5 from Figure 1 andS is a signature
S = {Cystic Fibrosis, Genetic Disorder}. Each row in the table corresponds to
an iteration of the while loop in Algorithm 1. The last column of the table provides
the results of the locality test in line 4. Note that the syntactic locality condition
was sufficient in all tests: all axioms that were semantically non-local were also
syntactically non-local.

Proposition 32 [Correctness of Algorithm 1]
For every input Q and S, Algorithm 1 computes a locality-based S-module in Q.

Proof. We have to show that (1) Algorithm 1 terminates for every inputT andS,
and (2) the output extractmodule(S,Q) is a locality-basedS-module inQ.

(1) Termination of the algorithm follows from the fact that in every iteration of
the while loop either the size ofQ1 increases, or the size ofQ1 remains the same
but the size ofQ2 decreases. Note that this means that Algorithm 1 terminates in
quadratic time in the number of axioms inQ, assuming constant time locality test.

(2) It is easy to observe that every axiomα that is neither inQ1 nor inQ2 is
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Q1 Q2 New elements inS ∪ Sig(Q1) α local?

1 − M1−M5 Cystic Fibrosis, Genetic Disorder M1 No

2 M1 M2−M5 Fibrosis, located In, Pancreas,
has Origin, Genetic Origin M2 No

3 M1, M2 M3−M5 Genetic Fibrosis M3 No

4 M1−M3 M4, M5 − M4 No

5 M1−M4 M5 − M5 Yes

6 M1−M4 − − −

Table 2: A trace of Algorithm 1 for the inputQ = {M1, . . . , M5} and S =
{Cystic Fibrosis, Genetic Disorder}

local w.r.t.S ∪ Sig(Q1), since the only way such anα can appear is at the line 3
of the algorithm, andα remains inQ \ (Q1 ∪Q2) only if S ∪ Sig(Q1) does not
change.

Note that there is an implicit non-determinism in Algorithm 1, namely, in line 3
in which an axiom fromQ2 is selected. It might well be the case that several
choices forα are possible at this moment. For example, the trace in Table 3 makes
a different choice forα fromQ2 than the trace in Table 2. In the first iteration of
the while loop, we selectα = M2 fromQ2 instead of M1 as in Table 2. This has
resulted in a longer trace yet with the same resultQ1 = {M1, . . . , M4}. Note that
axioms M2 and M3 are selected several times and produce different results for the
locality tests, sinceQ1 has been modified. This demonstrates the reason why we
resetQ2 toQ \ Q2 at the line 8 of Algorithm 1, namely, not to miss axioms that
has been checked to be local w.r.t. oldQ1, but are no longer local w.r.t. newQ1.

As we have seen from the traces in Table 2 and Table 3, Algorithm 1 has pro-
duced the same output despite the fact that different choices forα has been made
inside the while loop. One might wonder if this is always the case. It turns out
that the choices forα indeed do not have any impact on the result of Algorithm 1,
provided that the locality test satisfy some rather natural requirements:

Definition 33. We say that a locality test localitytest(α,S) is anti-monotonicif for
everyS1 ⊆ S2, whenever localitytest(α,S2) succeeds then localitytest(α,S1)
succeeds as well.

We say thatlocality ofQ1 w.r.t.S inQ1 is provable using localitytest(α,S) if
for everyα ∈ Q \ Q1, we have that localitytest(α,S ∪ Sig(S1)) succeeds. ♦
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Q1 Q2 New elements inS ∪ Sig(Q1) α loc.

1 − M1−M5 Cystic Fibrosis, Genetic Disorder M2 Yes

2 − M1, M3−M5 − M3 Yes

3 − M1, M4, M5 − M1 No

4 M1 M2−M5 Fibrosis, located In, Pancreas,
has Origin, Genetic Origin M3 No

5 M1, M3 M2, M4, M5 Genetic Fibrosis M4 No

6 M1, M3, M4 M2, M5 − M5 Yes

7 M1, M3, M4 M2 − M2 No

8 M1−M4 M5 − M5 Yes

9 M1−M4 − − −

Table 3: An alternative trace of Algorithm 1 for the inputQ = {M1, . . . , M5} and
S = {Cystic Fibrosis, Genetic Disorder}

Proposition 34 [Determinism of Algorithm 1]
The output of Algorithm 1 based on anti-monotonic locality test(α,S) is the small-
est Q1 such that locality of Q1 w.r.t. S is provable using locality test(α,S).

Proof. It is easy to see (see the proof of Proposition 32) that the locality of every
outputQ1 of Algorithm 1 is provable using localitytest(α,S). It remains, thus,
to show that for every subsetQ′1 ⊆ Q such that locality ofQ′1 w.r.t. S in Q is
provable using localitytest(α,S), we haveQ1 ⊆ Q′1.

Assume, to the contrary, that for some run of the algorithm, the outputQ1 is
not a subset ofQ′1. Since the initialQ1 = ∅ was a subset ofQ′1, there is a moment
in the computation such thatQ1 was a subset ofQ′1, butQ1 ∪ {α} is no longer
a subset ofQ′1. For these particular values ofQ1 andα we have:(i) Q1 ⊆ Q′1,
(ii) α ∈ Q\Q′1, and(iii) locality test(α,S∪Sig(Q1)) fails. From(ii) by property
ofQ′1 we have localitytest(α,S∪Sig(Q′1)) succeeds, which implies using(i) and
anti-monotonicity of localitytest that localitytest(α,S∪Sig(Q1)) succeeds which
contradicts to(iii). This proves thatQ1 is indeed a subset ofQ′1.

Corollary 35 [Uniqueness of a Minimal Locality-Based Module]
Algorithm 1 using a test based on the semantic locality produces a unique minimal
locality-based S-module in Q.

Proof. By Lemma 17 the semantic locality admits anti-monotonicity.
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Corollary 36 [Uniqueness of a Minimal Syntactic Locality-Based Module]
Algorithm 1 using a test based on the syntactic locality produces a unique minimal
syntactic locality-based S-module in Q.

Proof. By Lemma 29 the syntactic locality admits anti-monotonicity.

4.4 Properties of Locality-based Modules

In this section, we outline some interesting properties of locality-based modules
which make it possible to use them for applications other than knowledge reuse.

Let Qloc
S be the smallest locality-basedS-module inQ, which is unique by

Corollary 35 and is the output of Algorithm 1 forQ andS. The first property is a
direct consequence of Corollary 35:

Proposition 37 Qloc
S contains all S-essential axioms in Q w.r.t. every language L

with Tarski-style set-theoretic semantics.

Proof. Let Q1 be a minimalS-module inQ. We need to show thatQ1 ⊆ Qloc
S .

Since(i) Q1 is a subset of a locality-basedS-module inQ (say, ofQ itself) and
(ii) there is no proper subset ofQ1 that is a locality-basedS-module inQ, we
have thatQ1 is a subset of a minimal locality-basedS-module inQ. Since such a
module is unique by Corollary 35, and it isQloc

S , we have thatQ1 ⊆ Qloc
S .

As shown in Table 2 and Table 3, the minimal locality-basedS-module ex-
tracted fromQ contains allS-essential axioms M1–M4. In our case, the module
contains only essential axioms; in general, however, locality-based modules might
contain non-essential axioms; otherwise, they would provide a solution for our task
T3 in (6).

Proposition 38 LetQ be ontology, A and B atomic concepts and S(i) a signature.
Then:

1. S1 ⊆ S2 implies Qloc
S1
⊆ Qloc

S2
(monotonicity);

2. Q |= (A v B) iff Qloc
{A} |= (A v B).

3. Q |= (A v B) implies Qloc
{B} ⊆ Q

loc
{A} or Qloc

{A} |= A v ⊥.

Proof. 1. SinceQloc
S2

is a locality-basedS2-module inQ, we haveQ\Qloc
S2

is local
w.r.t. S2 ∪ Sig(Qloc

S2
). By anti-monotonicity of locality (see Lemma 17),Q \ Qloc

S2

is local w.r.t.S1∪Sig(Qloc
S2

), henceQloc
S2

is a locality-basedS1-module inQ. Since
Qloc

S1
is contained in every locality-basedS1-module inQ by Corollary 35, we have

Qloc
S1
⊆ Qloc

S2
.
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2. The “if” part of this property is trivial sinceQloc
{A} ⊆ Q. In order to prove the

“only if” part of the property, assume thatQ |= (A v B). Let S := Sig(Qloc
{A}) ∪

{A}, and consider the following two cases:
(a) B ∈ S. Then by Remark 21,Qloc

{A} is anS-module inQ, and so,Qloc
{A} |=

(A v B) sinceSig(A v B) ⊆ S.
(b) B 6∈ S. We demonstrate thatQloc

{A} |= A v ⊥ which suffices for proving

Qloc
{A} |= A v B.

Assume, to the contrary, thatQloc
{A} 6|= A v ⊥. Then there exists anS-

interpretationI such thatI |= Qloc
{A} andAI 6= ∅. Let I ′ be a trivial expansion of

I to S ∪ Sig(Q). SinceQloc
{A} is a locality-basedS-module inQ (see Remark 21

and Remark 22), we haveI ′ |= Q. However,I ′ is not a model of(A v B)
sinceAI′ 6= ∅, but BI′

= ∅ sinceB /∈ S. This contradicts to the assumption
Q |= A v B.

3. As has been shown in the proof of property 2 above, ifQ |= (A v B),
then eitherB ∈ Sig(Qloc

{A}) or Qloc
{A} |= A v ⊥. So, it remains to show that

B ∈ Sig(Qloc
{A}) implies thatQloc

{B} ⊆ Q
loc
{A}. Indeed, by Remark 21,Qloc

{A} is a

locality-based(Sig(Qloc
{A}) ∪ {A})-module inQ. SinceB ∈ Sig(Qloc

{A}), then, in

particular,Qloc
{A} is a locality-based{B}-module inQ. SinceQloc

{B} is contained in

every locality-based{B}-module inQ, we haveQloc
{B} ⊆ Q

loc
{A} what was required

to prove.

Proposition 38 gives two interesting properties of locality-based modules. The
first one states that such modules may only grow if the input signature extends.
The second one implies that the module for a single atomic conceptA provides
complete information about all the super-classes ofA. This property can be used
for optimizing classification: in order toclassify an ontologyQ, i.e. to compute
all subsumption relationsA v B between pairsA,B of atomic concepts inQ, it
is sufficient to(1) extract all modulesQloc

{A} of Q for each atomic conceptA (2)
classify each of these modulesindependently(possiblyin parallel), and(3) merge
the results of the individual classifications. By Property 2, if the subsumption
A v B is implied by the ontologyQ then it is implied by the moduleQloc

{A} and,
hence, it will be obtained in step(2).

Finally, Property 3 in Proposition 37 can also be used to optimize classification.
The property provides a necessary condition for a subsumptionA v B to hold in an
ontology, which can be used to quickly detectnon-subsumptions: If the inclusion
Qloc
{B} ⊆ Q

loc
{A} between the minimal locality-based modules does not hold, andA

is found to be satisfiable, then a reasoner does not need to prove the subsumption
A v B w.r.t.Q, since it never holds.
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5 Related Work

The problem of extracting modular fragments of ontologies has recently been ad-
dressed in [20], [14] and [18].

In [20], the authors have proposed an algorithm for partitioning the concepts
in an ontology. The intended application is to facilitate the visualization of and
navigation through the ontology. The algorithm uses a set of heuristics for measur-
ing the degree of dependency between the concepts in the ontology and outputs a
graphical representation of these dependencies. The algorithm is intended as a vi-
sualization technique, and does not establish a correspondence between the nodes
of the graph and sets of axioms in the ontology.

The algorithms in [14] and [18], which we have briefly outlined in Section
3, use structural traversal to extract modules of ontologies for a given signature.
None of these approaches provides a characterization of the logical properties of
the extracted modules, nor do they establish a notion of correctness of the modu-
larization.

In [6], the authors propose a definition of a module and an algorithm for ex-
tracting modules based on that definition. The notion of a module in an ontology
Q for a signatureS is also based on conservative extensions: ifQ1 ⊆ Q is an
S-module inQ as in [6], then it can be shown thatQ is a modelS-conservative ex-
tension ofQ. The definition in [6], however, makes use of additional requirements
which lead, in many cases, to the extraction of modules which are larger than one
may wish. The reason is that, for every atomic conceptA ∈ S, the moduleQ1 for
A in Qmust be a module for all its sub-classes and super-classes.

It is worth pointing out that, givenQ andS, the fragment obtained using the
algorithm in [6] is anS-module according to Definition 1. This is not the case,
however, for the fragment extracted using [18], as we have illustrated in Section 3.

6 Implementation and Evaluation

Given an input ontology and an input signature, locality-based modules are not the
only possible modules we can obtain. It remains to be shown that the locality-based
modules obtained in realistic ontologies aresmall enoughto be useful in practice.

For evaluation and comparison, we have implemented the following algorithms
using Manchester’s OWL API:3

A1: The PROMPT-FACTOR algorithm, as described in [14];

A2: The algorithm for extracting modules described in [6];

3http://sourceforge.net/projects/owlapi
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(a) Modularization of NCI(a) Modularization of NCI (b) Modularization of GALEN-Small(b) Modularization of GALEN-Small

(c) Modularization of SNOMED(c) Modularization of SNOMED (d) Modularization of GALEN-Full(d) Modularization of GALEN-Full

(e) Small modules of GALEN-Full(e) Small modules of GALEN-Full (f) Large modules of GALEN-Full(f) Large modules of GALEN-Full

Figure 4: Distribution for the sizes of syntactic locality-based modules for atomic
concepts: the X-Axis gives the number of concepts in the modules and the Y-Axis
the number of modules for each size range.

33



A3: Our algorithm for extracting modules (Algorithm 1), based on syntactic lo-
cality.

As a test suite, we have collected a set of well-known ontologies available on
the Web, which can be divided into two groups:

Simple. In this group, we have included the National Cancer Institute (NCI) Ontol-
ogy,4 the SUMO Upper Ontology,5 the Gene Ontology (GO),6 and the SNOMED
Ontology7. These ontologies use a simple ontology language and are of a simple
structure; in particular, they do not contain GCIs, but only definitions.

Complex. This group contains the well-known GALEN ontology (GALEN-Full),8

the DOLCE upper ontology (DOLCE-Lite),9 and NASA’s Semantic Web for Earth
and Environmental Terminology (SWEET)10. These ontologies are complex since
they use many constructors from OWL DL and/or include a significant number of
GCIs. In the case of GALEN, we have also considered a version GALEN-Small
that has commonly been used as a benchmark for OWL reasoners. This ontology
is almost 10 times smaller than the original GALEN-Full ontology, yet similar in
structure.

For each of these ontologies, and for each atomic concept in their signature, we
have extracted the corresponding modules using algorithms A1-A3 and measured
their size. We use modules for single atomic concepts to get an idea of the typical
size of locality-based modules compared to the size of the whole ontology. Also,
modules for atomic concepts are especially interesting for optimized classification
of ontologies, as discussed in Section 4.4.

The results we have obtained are summarized in Table 4. The table provides the
size of the largest module and the average size of the modules obtained using each
of these algorithms. In the table, we can clearly see that locality-based modules are
significantly smaller than the ones obtained using the other methods; in particular,
in the case of SUMO, DOLCE, GALEN and SNOMED, the algorithms A1 and A2
retrieve the whole ontology as the module for each atomic concept. In contrast,
the modules we obtain using our algorithm are significantly smaller than the size
of the input ontology. In fact, our modules are not only smaller, but are also strict
subsets of the respective modules computed using A1 and A2.

4http://www.mindswap.org/2003/CancerOntology/nciOncology.owl
5http://ontology.teknowledge.com/
6http://www.geneontology.org
7http://www.snomed.org
8http://www.openclinical.org/prj galen.html
9http://www.loa-cnr.it/DOLCE.html

10http://sweet.jpl.nasa.gov/ontology/
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For NCI, SNOMED, GO and SUMO,we have obtained very small locality-based
modules. This can be explained by the fact that these ontologies, even if large,
are simple in structure and logical expressivity. For example, in SNOMED, the
largest locality-based module obtained is approximately 1/10000 of the size of the
ontology, and the average size of the modules is 1/10 of the size of the largest
module. In fact, most of the modules we have obtained for these ontologies contain
less than 40 atomic concepts.

For GALEN, SWEET and DOLCE,the locality-based modules are larger. Indeed,
the largest module in GALEN-Small is 1/10 of the size of the ontology, as opposed
to 1/10000 in the case of SNOMED. For DOLCE, the modules are even bigger—
1/3 of the size of the ontology—which indicates that the dependencies between the
different concepts in the ontology are very strong and complicated. The SWEET
ontology is an exception: even though the ontology uses most of the construc-
tors available in OWL, the ontology is heavily underspecified, which yields small
modules.

In Figure 4, we have presented a more detailed analysis of the modules for NCI,
SNOMED, GALEN-Small and GALEN-Full. Here, the X-axis represents the size
ranges of the obtained modules and the Y-axis the number of modules whose size
is within the given range. The plots thus give an idea of the distribution for the
sizes of the different modules.

For SNOMED, NCI and GALEN-Small, we can observe that the size of the
modules follows a smooth distribution. In contrast, for GALEN-Full, we have
obtained a large number of small modules and a significant number of very big
ones, but no medium-sized modules in-between. This abrupt distribution indicates
the presence of a big cycle of dependencies in the ontology, which involves all
the concepts with large modules. The presence of this cycle can be spotted more
clearly in Figure 4(f); the figure shows that there is a large number of modules of
size in between 6515 and 6535 concepts. This cycle does not occur in the simplified
version of GALEN and thus we have the smooth distribution for that case. In
contrast, in Figure 4(e) we can see that the distribution for the “small” modules in
GALEN-Full is smooth and much more similar to the one for the simplified version
of GALEN.

In order to explore the use of our results for ontology design and analysis,
we have integrated our algorithm for extracting modules in the ontology editor
SWOOP [10]. The user interface of SWOOP allows for the selection of an input
signature and the retrieval of the corresponding module.

As an illustration, consider in Figure 5 the locality-based module for the atomic
conceptDNA Structure in the NCI ontology, as obtained in SWOOP. Recall that,
according to Case 2 of Proposition 38, the locality-based moduleOloc

{A} for every
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(a) ConceptDNA Structure in NCI (b) Syntactic locality-based module forthe con-
ceptDNA Structure in NCI

Figure 5: The Module Extraction Functionality in Swoop

atomic conceptA ∈ Sig(O) contains all necessary axioms for, at least, all the (en-
tailed) super-concepts ofA in O. ThusOloc

{A} can be seen as the “upper ontology”
for A. In fact, Figure 5 shows that the locality-based module forDNA Structure
contains only the concepts in the “path” fromDNA Structure to the top level con-
ceptAnatomy Kind. This suggests that the knowledge in NCI about the partic-
ular conceptDNA Structure is very shallow in the sense that NCI only “knows”
that aDNA Structure is a macromolecular structure, etc. which, in the end, is an
anatomy kind.
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7 Conclusion

In this paper, we have proposed a definition of a module for a given vocabulary
within an ontology to be reused. Based on this definition, we have formulated three
reasoning problems concerning the extraction of minimal modules and shown that
none of them is algorithmically solvable, even for simple fragments of OWL DL.
We have introduced locality-based modules as an approximation to minimal mod-
ules and have empirically demonstrated that such modules are reasonably small for
many real-world ontologies.

For the future work, we would like to study other approximations which can
produce small modules in complex ontologies like GALEN, and exploit modules
for optimizing ontology reasoning.
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