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Abstract

The ability to extract meaningful fragments from an ontology is essen-
tial for ontology re-use. We propose a definition of a module that guarantees
to completely capture the meaning of a given set of terms, i.e., to include
all axioms relevant to the meaning of these terms, and study the problem of
extracting minimally sized modules. We show that the problem of determin-
ing whether a subset of an ontology is a module for a given vocabulary is
undecidable even for rather restricted sub-languages of OWL DL. Hence we
propose two “approximations”, i.e., alternative definitions of modules for a
vocabulary that still provide the above guarantee, but that are possibly too
strict, and that may thus result in larger modules: the first approximation is
semantic and can be checked using existing DL reasoners; the second is syn-
tactic, and can be computed in polynomial time. Finally, we report on an
empirical evaluation of our syntactic approximation that demonstrates that
the modules we extract are surprisingly small.



1 Introduction

The design, maintenance, reuse, and integration of ontologies are highly com-
plex tasks—especially for ontologies formulated in a logic-based language such
as OWL. Like software engineers, “ontology engineers” need to be supported by
tools and methodologies that help them to minimise the introduction of errors, i.e.,
to ensure that ontologies have appropriate consequences. In order to develop this
support, important notions from software engineering, suamadule black-box
behavior andcontrolled interactionneed to be adapted so as to take into account
the fact that an OWL ontology is, in essence, a logical theory; due to the expressive
power of OWL, this turns out to be difficult.

In earlier work [4], we have studied modularity in the contextollaborative
ontology developmerand controlled integration and defined what it means for
an ontology we are developing to be safely integrated with a “foreign” ontology;
roughly speaking, such an integration is safe if it does not change the meaning of
the terms in the foreign ontology.

In this paper, we focus on the use of modularity to supportpéutial reuse
of ontologies: continuing with the above integration scenario, as a next step, we
would like to extract from the foreign ontology, a small fragment that captures
the meaning of the terms we use in our ontology. For example, when building an
ontology describing research projects, we may use terms suClsas_Fibrosis
and Genetic_Disorder in our descriptions of medical research projects. In order
to improve the precision of our ontology, we may want to add more detail about
the meaning of these terms; for reasons of cost and accuracy, we would prefer
to do this by reusing information from a medical ontology. Such ontologies are,
however, typically very large, and importing the whole ontology would make the
consequences of the additional information costly to compute and difficult for our
ontology engineers (who are not medical experts) to understand. Thus, in practice,
we need to extract a module that includes just the relevant information. Ideally,
this module should bas small as possiblenhile still guaranteeingo capture the
meaning of the terms used; that is, when answering arbitrary queries against our
projects ontology, importing the module would giveaxactly the same answeas
if we had imported the whole medical ontology. In this case, importing the module
instead of the whole ontology will have no observable effect on our ontology—
apart from allowing for more efficient reasoning.

Concerning the efficiency of reasoning, the time needed to process an ontology
is often too high for ontology engineering, where fast response under changes in
the ontology is required, or for deployment in applications, where fast response to
gueries is required. The ability to extract modules in the sense described above
would address both these problems: it would allow us to identify a (hopefully



small) part of the ontology that is affected by a given change or that is sufficient
to answer a given query—and then to reason over this part only without losing any
consequences.

The contributions of this paper are as follows:

1. We propose a definition of emodule @, within a given ontologyQ for a
given vocabulans.

2. We take the above definition as a starting point, and investigate the problem
of computing minimal modules. We show that none of the reasonable vari-
ants of this problem is solvable in general already for rather restricted sub-
languages of OWL DL. In fact, it is even not possible to determine whether
a subset); of an ontologyQ is a module inQ for S.

3. Given these negative results, we propose two “approximations”, i.e., alter-
native definitions of a module that still guarantee to completely capture the
meaning of the terms i, but that are possibly too strict, and that may thus
result in larger modules; these approximations are based on the notion of
locality of an ontology with respect to a vocabulary, as first introduced in
[4]. The first approximation is semantic, and can be computed using existing
OWL reasoners; the second one is a restriction of the first one which can be
computed in polynomial time. We propose an algorithm for computing the
smallest module for each of these approximations.

4. Finally, we describe our implementation and present our experimental results
on a set of real-world ontologies of varying size and complexity. We show
that, using our syntactic approximation, we obtain modules that are much
smaller than the ones computed using existing techniques, but still sufficient
to capture the meaning of the specified vocabulary.

2 Preliminaries

In this section we introduce description logics (DLs) [2] which underly modern
ontology languages, such as OWL DL. A hierarchy of commonly used description
logics is summarized in Table 1. Tisgntaxof a description logid. is given by

a signature and a set of constructors.signature(or vocabulary S of a DL is

the (disjoint) union of a se of atomic concept$A, B, ...) representing sets of
elements, a sé. of atomic roles(r, s, . ..) representing binary relations between
elements, and a sétof individuals(a, b, ¢, .. .) representing elements. Every DL
providesconstructorsfor defining the seRol(S) of (general)roles (R, S,...),

the setCon(S) of (general)concepts(C, D, ...), and the sefAx(S) of axioms
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DLs Constructors Axioms [ Ax(S) ]
Rol(S) | Con(S) RBox TBox | ABox
cr r 1,CinCy A=C a:C
A, 3R.C CiCCy | r(a,b)
ALC | —— -C —i— —l—
) —i— —l— Trans(r) —i— —i—
+ 7 T
+ H R C Ry
+ F Funct(R)
+ N (=nS)
+ Q (=nS.C)
+ 0 {a}

Herer € R, A € C, a,b € I, R;) € Rol(S), C; € Con(S), n > 1 and
S € Rol(S) is a simple role (see [9]).

Table 1: The hierarchy of standard description logics

(o, 8, ...) for asignatureS which is a union ofole axiomgRBox), terminological
axioms(TBox) andassertion§ABOX).

EL [1] is a simple description logic which allows one to construct complex
concepts usingonjunctionC; M Cy andexistential restrictiord R.C' starting from
atomic conceptsi, roles R and thebottom concept.. ££ provides no role con-
structors and no role axioms; thus, every r8len £ L is atomic. The TBox axioms
of ££ can be eitheconcept definitionsl = C or general concept inclusion ax-
ioms(GCls)Cy C Cy. £L assertions are eith@oncept assertions: C' or role
assertions-(a, b).

Thebasic description logicALC [17] is obtained from€ £ by addingcomple-
ment of conceptsC. We introduce some additional constructors as abbreviations:
thetop concepfl is a shortcut for-_L, thedisjunction of concept§’; U C5 stands
for =(—=C1 M —=C%), and thevalue restrictionvR.C' stands for-(3R.—C).

S is an extension ofALC where, additionally, some atomic roles can be de-
clared to bdransitiveusing a role axionTrans(r).

Further extensions of description logics incluideerse rolesr— (indicated
by appending a letter), role inclusion axiomgRIs) also calledole hierarchies
R T Ry (+H), functional rolesFunct(R) (+F), number restrictiong>n S)
(+N), qualified number restrictions>n S.C)?* (+Q), andnominals{a} (+0O).
Nominals make it possible to construct a concept representing a singletpn}set

we consider the dual qualified number restrictiggsn S) and (< n S.C) as abbreviations for
—(=n S.=C) and—(=n S.—C), respectively



(a nominal concept) from an individuak. These extensions can be used in dif-
ferent combinations, for exampléLCO is an extension ofALC with nominals;
SHIQ is an extension of with role hierarchies, inverse roles and qualified num-
ber restrictions; andHOZQ is the DL that uses all the constructors and axiom
types we have presented.

Modern ontology languages, such as OWL [15], are based on description logics
and, to a certain extent, are syntactic variants thereof. In particular, OWL DL
corresponds t&HOZN [8]. In this paper, we assume antology© based on a
description logicL. to be a set of axioms if.. The signature of an ontology
(of an axioma) is the setSig(O) (Sig(«)) of atomic concepts, atomic roles and
individuals that occur ir©) (respectively im).

The main reasoning task for ontologiegyjisery answeringgiven an ontology
O and an axiomy, check if O impliesa.

The logical entailment= is defined using theisual Tarski-style set-theoretic
semanticdor description logics as follows. Given a signate= R U C U I,
an S-interpretation (or aninterpretation based o8) Z is a pairZ = (AZ,.1),
whereAZ is a non-empty set, called tli®mainof the interpretation, and is the
interpretation functiorthat assigns: to evengt € C a subsetd” C A7, to every
r € R abinary relation” C A7 x AT, and to every: € I an element? € AZ.

The interpretation functior? is extended to complex roles and concepts via
DL-constructors as follows:

(LE =10
(cnD)Y?f = ctnD?
(BR.C)? = {z € AT | Fy.(z,y) € RE Ay e CT}
(O = AT\ CT
() = {{z,9) [ {y.x) €T}
(nRT = {zeAT| Hye AT | (z,) € BT} > n}

(znRO)Y = {zecAl| tlyec AT |(z,y) e REAycC?} >n}
{a}? = {a’}

The satisfactionrelationZ = « between an interpretatidh and a DL axioma
(read a< satisfiesy) is defined as follows:

Tk (A=0) iff AT =C7, T kEa:C iff of € CF

Tk (CCCy) iff ¢ C CF; T = r(a,b) iff (a,bT) € r7;

T k= Trans(r) iff Voyz € AZ[(z,y) € rZ A {y,2) € T = (x,2) € rT];
T = Funct(R) iff Vayz € AZ[{x,y) € RE A (x,2) € RT = y = z];
IE=ER CRyiff RFCRL;



Ontology of medical research projectspP:

P1 Genetic_Disorder_Project = Project I dhas_Focus.Genetic_Disorder
P2 Cystic_Fibrosis_LEUProject = EUProject M dhas_Focus.Cystic_Fibrosis
P3 EUProject C Project

Ontology of medical termsQ:
M1 Cystic_Fibrosis = Fibrosis M Jlocated_In.Pancreas I
M dhas_Origin.Genetic_Origin
M2 Genetic_Fibrosis = Fibrosis M 3has_Origin.Genetic_Origin
M3 Fibrosis M dlocated_In.Pancreas T Genetic_Fibrosis
M4  Genetic_Fibrosis T Genetic_Disorder

M5 DEFBI_Gene C Immuno_Protein_Gene M
M dassociated_With.Cystic_Fibrosis

Figure 1: Reusing medical terminology in an ontology on research projects

An interpretatioriZ is amodelof an ontologyO if 7 satisfies all axioms id. An
ontology © impliesan axioma (written O |= «) if Z = « for every modelZ of
O. An axioma is atautologyif it is implied by the empty ontology.

LetS4, S be signatures such that C S. Therestriction of anS-interpretation
T = (A%, 1) toS; is an interpretatiof|g, = (A%!,-71) overS; such thata?t =
AT and X7 = X7 for every X € S;. An expansion of arB,-interpretation
7, to S is anS-interpretationZ such thatZ|s, = Z;. A trivial expansion of an
S:-interpretationZ; to S is an expansion af; to S such thatXZ = { for every
atomic concept and atomic rofé € S\ S;.

3 Modules for Knowledge Reuse

For exposition, suppose that an ontology engineer wants to build an ontology about
research projects. The ontology defines different types of projects according to the
research topics they focus on. Suppose that the ontology engineer defines two con-
ceptsGenetic_Disorder_Project and Cystic_Fibrosis_EUProject in his ontologyP.
The first one describes projects about genetic disorders; the second one describes
European projects about cystic fibrosis, as given by the axioms P1 and P2 in Fig-
ure 1.

The ontology engineer is supposed to be an expert on research projects: he
knows, for example, that BUProject is a Project (axiom B3). He is unfamiliar,
however, with most of the topics the projects cover and, in particular, with the



termsCystic_Fibrosis and Genetic_Disorder mentioned in P1 and P2. In this case,
he decides to reuse the knowledge about these subjects from a well-established and
widely-used medical ontology

The most straightforward way to reuse these concepts is to import the medical
ontology. This may be, however, a large ontology, which deals with other matters
in which the ontology engineer is not interested, such as genes, anatomy, surgical
techniques, etc. Ideally, one would like to extract a (hopefully small) fragment
of the medical ontology—anodule—that describes in detail the concepts we are
reusing in our ontology. Intuitively, importing the modulg into P instead of the
full ontology Q should have no impact on the modeling of the ontoldgy

Continuing with the example, suppose that the conc€ptsic_Fibrosis and
Genetic_Disorder are described in an ontolog® containing axioms M1-M5 in
Figure 1. If we include in the modul®; just the axioms that mention either
Cystic_Fibrosis or Genetic_Disorder, namely M1, M4 and M5, we lose the follow-
ing dependency:

Cystic_Fibrosis = Genetic_Disorder (1)

The dependencieS€ystic_Fibrosis T Genetic_Fibrosis T Genetic_Disorder
follow from axioms M1-M5, but not from M1, M4, M5, since the dependency
Cystic_Fibrosis C Genetic_Fibrosis does not hold after removing M2 and M3. The
dependency (1), however, is crucial for our ontold@ws it (together with axiom
P3) implies the following axiom:

Cystic_Fibrosis_EUProject = Genetic_Disorder_Project (2)

This means, in particular, that all the projects annotated with the concept name
Cystic_Fibrosis_EUProject must be included in the answer for a query on the con-
cept nameGenetic_Disorder_Project. Consequently, importing a part @ con-
taining only axioms that mention the terms usedPinnstead ofQ results in an
underspecified ontology. We stress that the ontology engineer might be unaware of
dependency (2), even though it concerns the concepts of his primary scope.

The example above suggests that the central requirement for a n@dule
@ to be reused in our ontolodR is that? U Q; should yield thesamelogical
consequences in the vocabulary?@fasP U Q does. Note that, as seen in the
example, this requirement does not force us to includ@irall the axioms inQ
that mention the vocabulary to be reused, nor does it imply that the axiod@ds in
that do not mention this vocabulary should be omitted.

Based on the discussion above, we formalize our first notionrabduleas
follows:

Definition 1 (Module). Let @; C O be two ontologies an8 a signature. We say
thatQ; is anS-module inQ w.r.t. a languagé,, if for every ontologyP and every

7



axioma expressed i with Sig(P U {a}) NSig(Q) C S, we haveP U Q = « iff
PUQ Ea. O

In Definition 1 the signatur® acts as thénterfacesignature betwee® and
@ in the sense that it contains the symbols tRatind o may share withQ. It is
also important to realize that there are two free parameters in Definition 1, namely
the ontologyP and the axiomx. Both P anda are formulated in some ontology
language., which might not necessarily be a sub-language of OWL DL.

Fixing the languagé. in which P anda can be expressed is essential in Def-
inition 1 since it may well be the case th@t is a module inQ w.r.t. a language
Ly, but not w.r.t.L,. Fixing L, however, is not always reasonable. df is an
S-module inQ, it should always be possible to repla@ewith Q; regardless of
the particular language in which anda are expressed. In fact, we may extend
our ontologyP with a set of Horn rules, or extend our query language to support
arbitrary conjunctive queries. In any case, extending the ontology language for
and the query language farshould not preven®; from being a module irQ.

Itis therefore convenient to formulate a more general notion of a module which
abstracts from the particular language under consideration; that is, we s& that
is anS-module inQ iff it is an S-module inQ, according to Definition 1 foevery
languageL. with Tarski-style set-theoretic semantics. The modules we obtain in
this paper will be modules in precisely this stronger sense.

In the last few years, numerous techniques for extracting fragments of ontolo-
gies for knowledge reuse purposes have been developed. Most of these techniques
rely on syntactically traversing the axioms in the ontology and employ various
heuristics for determining which axioms are relevant and which are not.

An example of such a procedure is the algorithm implemented in the PROMPT-
FACTOR tool [14]. Given a signatui®and an ontology, the algorithm retrieves
a fragmentQ; C Q as follows: first, the axioms i that mention any of the
symbols inS are added t@; ; seconds is expanded with the symbols $ig(Q1).
These steps are repeated until a fixpoint is reached.

For our example, whe = {Cystic_Fibrosis, Genetic_Disorder}, andQ con-
sists of axioms M1-M5 from Figure 1, the algorithm first retrieves axioms M1,
M4 and M5 containing these terms, then expafdsith the symbols mentioned
in these axioms, which makésto contain all the symbols of. After this step,
all the remaining axioms of) are retrieved. Hence the fragment extracted by the
PROMPT-FACTOR algorithm consists of the axioms M1-M5.

Another example is the algorithm in [18], which was used for segmentation
of the medical ontology GALEN [16]. Given a sighatu8eand an ontologyQ,
the algorithm adds t@; all definitionsA = C for symbols inS, expandsS with
symbols inSig(Q;), and then repeats these steps again until a fixpoint is reached.



The main idea of this algorithm is to prune irrelevant axioms by traversing the class
hierarchy only “upwards” and “across existential restrictions”.

In our example, for thé& and @ above, the algorithm first processes the de-
finition M1 for Cystic_Fibrosis € S and extendsS with the symbolsFibrosis,
located_In, Pancreas, has_Origin, Genetic_Origin. Next, the algorithm terminates
since there are no definitions mentioning any of these symbols on the left-hand-
side. Thus, the fragment of our ontology extracted by the segmentation procedure
from [18] consists of the single axiom M1.

Therefore, none of these algorithms is appropriate for extracting modules ac-
cording to Definition 1. On the one hand, the PROMPT-FACTOR algorithm ex-
tracts many unnecessary axioms (such as M5 in our case) whereas, on the other
hand, the segmentation algorithm from [18] misses essential axioms (like M2, M3
and M4).

In our example, the PROMPT-FACTOR algorithm would extract a module
(though not a minimal one). In general, however, this is also not the case. For
example, consider an ontolog® = {A = —-A, B C C} anda = (C C B).

The ontology@ is inconsistent due to the axiom = —A: any axiom (andx in
particular) is thus a logical consequence@fGivenS = {B, C'}, the PROMPT-
FACTOR algorithm extract®, = {B C C'}; however,Q, [~ «, and soQs is
not a module inQ. In general, the PROMPT-FACTOR algorithm may fail even
if Q is consistent. For example, consider an ontol@yy- {T C {a}, A C B},
a=(ALCVr.A),andS = {A}. Itis easy to see tha is consistent, admits only
for single element models, adis satisfied in every such a model; thatds = «.
The PROMPT-FACTOR algorithm extracts in this ca@e = {A T B}, which
does not implyo.

The main problem with these algorithms is that they ignore the semantics of
the ontologies. As a consequence, they may, on the one hand, extract irrelevant
axioms and, on the other hand, miss essential axioms. These algorithms, however,
were not intended to extract modules in accordance to a formal collection of re-
quirements; instead, they were intended to extract “relevant parts” of ontologies
which are “likely to be related” to the given signature, and they do not guarantee
the correctness of the results. Correctness, however, is the primary requirement for
the procedures we present in this paper.

3.1 Computing Minimal Modules

Before we formalize the main tasks related to the extraction of modules, let us
outline some important properties of modules that we will exploit along this paper.

Proposition 2 [Properties of Modules]
Let Q1 C Qs C Qg3 be three ontologies and S be a signature. Then:
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1. If Q1 is an S-module in Q5 and Q5 is an S-module in Q3 then
QO is an S-module in Q3 (transitivity)

2. If Q1 is an S-module in Q3 then
(a) Q1 is an S-module in Q- and (b) Qs is an S-module in Q3  (convexity)

Proof. 1. Suppose tha®; is anS-module inQ, and Q5 is anS-module in Q3.
In order to prove that), is anS-module in Q3 according to Definition 1, take
any ontology? and an axiomx such thatSig(P U {a}) N Sig(Q3) € S and
P U Q3 = a. We demonstrate th® U Q) = « (%):

SinceQ; is anS-module inQs, Sig(P U {a})NSig(Q3) C SandPuUQs = a,
we haveP U Qs = a. SinceQ; is anS-module inQs, Sig(P U {a}) NSig(Q2) C
Sig(P U {a})NSig(Qs) C S,andP U Qs = a, we haveP U Q1 = a (%).

2.(a) Suppose thad; is anS-module inQs. In order to prove tha®; is anS-
module inQ2, consider any ontolog® and an axionm such thaSig(P U {a}) N
Sig(Q2) C SandP U Qs = a. We demonstrate th& U Q; = o (8):

Without loss of generality, we can assume thig{ P U {a}) N Sig(Qs3) C S,
since the symbols that are $ig(P U {a}) but not inSig(Q2) could be renamed
so that they are not contained $ig(Qs). Since@; is anS-module inQ3 and
PU Qs ):PUQQ |:a,wehav€PUQl |:04(t;)

2.(b) Suppose thad, is anS-module inQ3. In order to prove tha®; is anS-
module inQ3, consider any ontology and an axiomy such thaSig(P U {a}) N
Sig(Q3) € SandP U Q3 = a. We demonstrate thd U Qs = o ():

SinceQ; is anS-module inQs, Sig(PU{«a})NSig(Q3) C S, andPUQs [ a,
we haveP U Q; = a. SinceQ; C Qq, we haveP U Qy = « (1). O

Part 2(a) of Proposition 2 says essentially that every superset $fmaodule
of this ontology is also a$-module of the ontology. This means, in particular,
that it is sufficient to compute only the minimal modules of an ontology in order to
have a complete information about all the modules.

Therefore, it makes sense to focus only on minimal modules. We sa@that
is a minimal S-module inQ if there is noQs C Q; that is also arS-module
in Q. In our example from Figure 1, there are two minintamodulesQ; =
{M1,M2,M4} andQy = {M1, M3, M4}: if we remove any axiom from them, the
dependency (1) will no longer hold. Hence minimal modules are not necessarily
unique. While in some cases it is reasonable to extract all minimal modules, in
others it may suffice to extract just one. Thus, gimandS, the following tasks
are of interest:

T1. computeall minimal S-modules inQ
T2. computesomeminimal S-module inQ

®3)
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Intuitively, task T2 should be simpler than T1. That is, any procedure which
solves the task T1, also provides a solution for task T2. Surprisingly, the converse
of this property holds as well: any procedure for T2 can be turned into a procedure
for T1. The following lemma is the key property underlying this reduction:

Lemma 3 [A Criterium for Minimal Modules]
Let Q be an ontology and S be a signature. Let M be the set of all subsets Q2 of
Q such that Qs is a minimal (and hence is the only) S-module in Q5.

Then Q; is a minimal S-module in @ iff (i) Q1 € M, and (ii) there is no
Qs € M such that Q1 C Q.

Proof. (=) Suppose?; is a minimalS-module inQ. We need to show that prop-
erties(z) and(ii) above hold forQ;.

(i) Suppose, to the contrary, that the propéitydoes not hold foQ;, i.e. Q;
is not a minimal module iR;. Then there exists @, C Q; C Q such thatQ, is
anS-module inQ;. SinceQ; is anS-module inQ, By the part 1 of Proposition 2
(transitivity), Qs is anS-module inQ. Hence@; is not a minimal module irQ
contrary to what has been assumed.

(i) Suppose, to the contrary, that the propéity does not hold folQ;, that
is, there exist®, € M suchthatQ; C Qs C Q. SinceQ; is anS-module inQ,
by the part 2(a) of Proposition Z); is anS-module inQ,. HenceQy ¢ M by
the definition of M (since Qs is not a minimalS-module inQ,), which yields a
contradiction.

(<) Assume that conditiong&) and (ii) above hold forQ;, but Q; is not a
minimal S-module inQ. There are two cases possible: @) is not anS-module
in Q, and (b)Q; is anS-module inQ, but not a minimaB-module.

In the case (a), there has to be a minirffiahoduleQ, in Q such thatQ; C
Qs C Q. By the direction(=-) of the lemma applied t@,, we haveQ, € M.
But this contradicts the conditiaf:), sinceQ; € M andQ; C Qs.

In the case (b), there is a minimdmoduleQ; in Q such thaQ, C Q; C Q.
By the property 2.(a) of Proposition 2, is anS-module inQ;, which contradicts
the condition(s) sinceQ; is not a minimalS-module inQ;. O

We use this property to show that tasks T1 and T2 are indeed inter-reducible:
Proposition 4 Tasks T1 and T2 from (3) are inter-reducible.

Proof. As it has been already pointed out, using a procedure for task T1 one can
obtain a procedure for task T2 by just returning any of the computed mir8mal
modules inQ.

Now suppose we have a proced@2for task T2, namely, that given a signa-
tureS and an ontology returns some minima&-moduleQ; in Q. We construct
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a proceduré1that returns all minimas-modules, which is based on the criterium
for minimal S-modules formulated in Lemma 3. Note that procedePssatisfies
the following property:

GivenS and 9., the procedureP2 for T2 returnsQ, if
and only ifQ, is the only minimaB-module inQs.

(4)

ProcedureP1 should work as follows. GiveS and Q, P1 first computes the
setM of subsetx)s in Q@ such thatQ, is the onlyS-module inQ, using property
(4) of procedurd®2. More precisely, in order to compufe!, we enumerate all the
subsets of) and select those subs&ls for which P2 returnsQs. Next,P1returns
those sets from\ that are contained in no other set from. By Lemma 3,P1
returns exactly all minimas-modules inQ. O

There are other variations of the task T1 and T2 that may be of interest. For
example, instead of minimal modules, one might be interested only in modules of
thesmallest sizeAn S-module inQ has the smallest size iff no oth8rmodule in
Q has a smaller number of axioms:

T1ls. computall the smallestin siz8-modules inQ

®)

T2s. computesomesmallest in sizé&-module inQ

Clearly, if anS-module inQ is of the smallest size, then it is a mininf&module;

the converse, however, does not necessarily hold. It is easy to see that any proce-
dure for T1 could be turned into a procedure for T1ls and T2s: given all minimal
modules, we can simply count the number of axioms they contain and retrieve the
modules with the fewest number of axioms. Conversely, any procedure for T1s or
T2s can be used for solving T2 since a module of smallest size is also a minimal
module. As a conclusion, we have:

Proposition 5 All tasks from (3) and (5) are inter-reducible.

Recall that there are two minim8kmodulesQ; = {M1,M2,M4} andQ,; =
{M1,M3,M4} in our ontologyQ from Figure 1. That s, in a certain sense, the
axioms MI-M4 are essential for the dependency (1). In certain situations, one
can be interested in computing just the gkt of such essential axioms, instead
of computing all minimal modules. This is the case, for example, if the ontology
engineer wants to compute a module that is “safe” under removal of axioms: if
we remove M2 fromQ, thenQ)| = Q; \ {M2} = {M1,M4} is no longer ar8-
module for the updated ontolo@y := Q\ {M2} since the dependency (1) is lost,
but 9. := Q. \ {M2} is still a module inQ. This example suggests the following
definition:
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Definition 6 (Essential Axiom). Given a signatur® and an ontology, we say
that an axiomn € Q@ is S-essential inQ w.r.t. L if « belongs to some minimal
S-module inQ w.r.t. L. O

Hence, the following task may also be of interest:

T3. computehe unionof all minimal S-modules inQ,
which is the set of alS-essential axioms i@

(6)

Obviously, task T3 is at least not harder then task T1:

Proposition 7 Task T1 is reducible to task T3, that is, any procedure for T1 can
be used for solving T3.

It is not clear, however, whether the procedure for T3 can be used to obtain a
procedure for T1. Nevertheless, as we will demonstrate Section 3.2, this issue is
not relevant since all of the tasks formulated above are algorithmically unsolvable
already for simple sub-languages of OWL DL.

3.2 Modules and Conservative Extensions

The notion of a module is closely related to the notion of a conservative extension
which has been used to characterize formal requirements in ontology integration
tasks [7, 5, 4, 11]. In the literature we can find at least two different notions of
conservative extensions in the context of ontologies [11]:

Definition 8 (Conservative Extensions).

Let ©; C Q be two ontologiesS a signature and a logic.

We say thatQ is a deductiveS-conservative extensioof Q; w.r.t. L, if for
every axiomu overL with Sig(«) C S, we haveQ = «a iff Q; = a.

We say thatQ is amodelS-conservative extensiaf Q; if, for every model
7, of Qy, there exists a modé&l of Q such thatZ|s = 7;|s. O

Intuitively, an ontologyQ is a deductive conservative extension of an ontology
Q; C Q for a signatures iff every logical consequence of Q constructed using
only symbols fronS is already a consequence@f; that is, the additional axioms
in @ do not add new logical consequences over the vocabSlafnalogously to
modules, the notion of a deductive conservative extension depends on the ontology
languagd. in which Q and« are expressed.

In contrast, model conservative extensions are not defined in terms of logical
entailment, but using the models directly. Intuitively, an ontol@ys a model
conservative extension @@; C Q if every model ofQ; can be expanded to a
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model of @ by interpreting new symbols and leaving the interpretations of the old
symbols unchanged.

The notion of semantic conservative extension is strictly stronger than the syn-
tactic one [11] since it does not depend on expressivity of the ontology language.
That is, if Q@ is a modelS-conservative extension a1, it is also a deductive
S-conservative extension @, but not necessarily vice versa.

Example 9 Let Q be the ontology consisting of axiomsIM- M5 in Figure 1.
Let S = {Cystic_Fibrosis, Genetic_Disorder} andQ; = {M1,...,M4}. We show
that Q is a modelS-conservative extension @&; and, hence, also a deductive
conservative extension ;.

Let Z; be an arbitrary model of;. We demonstrate that we can always con-
struct a modef of Q which interprets the symbols froiin the same way &%,
does, i.eZ|s =7;]s.

Indeed, letZ be asZ; except for the interpretation of the atomic concepts
DEFBI_Gene andlmmuno_Protein_Gene, and the atomic rolessociatedWith, all
of which we interpret irZ as the empty set. Note that these atomic concepts and
this atomic role do not occur i®;. Hence,Z interprets the concepts i@; ex-
actly like Z;, and saZ is a model of@;. FurthermoreZ is a model of M5 since
the concepts on the left-hand-side and the right-hand-side of this axiom are both
interpreted as the empty set. Thgsjs a modelS-conservative extension @;.

In fact, it was sufficient to take any expansidrof Z; in which DEFBI_Gene
is interpreted as the empty set. Heri@as a modelS-conservative extension of
Q, for everyS that does not contaiDEFBI_Gene since M is satisfied in every
interpretation where this concept is interpreted as the empty set.

Now, if we remove M2 and M3 fron®@;, thenQ is no longer ar8-conservative
extension ofQ; for S = {Cystic_Fibrosis, Genetic_Disorder}. Indeed, it is possi-
ble to find an interpretatiof; of the remaining axioms M1 and M4 frod,, in
which Genetic_Disorder is interpreted as the empty set, liytstic_Fibrosis is not.
For example, consider an interpretatibn= ({a}, 1) with:

Cystic_Fibrosis”* = Fibrosis’* = Pancreas’® = Genetic_Origin”* = {a};
located_In! = has_Origin™ = {(a,a)}; and
Genetic_Fibrosis’' = Genetic_Disorder’! = (.

It is easy to see thaf; is a model of M1 and M4, but there is no modebf Q
such thatZ|s = Z;|s. Indeed, for every modél of Q, we must hav€ = « :=
(Cystic_Fibrosis T Genetic_Disorder) becaus& = a. However, this would imply
also thatZ; | «, sinceZ|s = Z|s, but this does not hold faf; defined above.

O
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Although Definition 1 is close to the notion of deductive conservative exten-
sion, there are two important differences. First, in the definition of deductive con-
servative extension, the logical consequences are considered only w.r.t. the ontolo-
gies Q and Q; of interest whereas, in our definition of module, all the possible
ontologiesP in which the module can be used are taken into account. Second, in
the definition of deductive conservative extension, the signatuig®fequired to
be a subset 08 whereas, in our definition of module, only the common part of
{a} UP andQ is required to be a subset 8f Despite these differences, the two
notions of conservative extensions are related to our notion of module:

Proposition 10 [Modules vs. Conservative Extensions]
Let Q1 C Q be two ontologies. Then:

1. If Qp is an S-module in @ w.r.t. L then Q is a deductive S-conservative
extension of Q1 w.r.t. L;

2. If Q is a model S-conservative extension of Q1 then Q1 is an S-module in
Q for every ontology language L. with Tarski-style set-theoretic semantics.

Proof. 1. Leta be an axiom witlbig(a) € S such thatQ |= «. We have to show
that Q; = «a (x). TakeP := () (the empty ontology). Sinc€; is a module in
9, Sig(PU{a})NSig(Q) € S,andP U Q = Q = «, by Definition 1, we have
Q9 =PUQ E=a.

2. Assume thaD is a modelS-conservative extension @, but Q; is not an
S-module in@ w.r.t. some logid.. According to Definition 1, this means that there
exists an ontologP and an axiom overL with Sig(PU{«a})NSig(Q) C S, such
thatP U Q &= a butP U Q; [~ «. The last implies that for some interpretation
T;, we haveZ; = P U Qy, butZy = . LetZ] := Ti|gusigo)- Obviously,
7 & Q. By Definition 8, sinceQ is a modelS-conservative extension @,
there exists an interpretatidfi such thatZ’ = Q andZ'|s = Zj|s. LetZ be
the expansion of’|s siz(0) t0 Sig(P U {a}) by settingX” := X7 for every
X € Sig(PuU{a})\ S. Note that we also havE|s = T'|s = Z}|s = Z1|s, hence
I’Sig(PU{a}) = Il|Sig(73u{a})v and soZ ): P andZ F& Q. SinceI\Susig(Q) =
I/|SUSig(Q) andZ’ = Q, we haveZ = Q, which yields a contradiction. O

Proposition 10 shows that our notion of module stays “in between” the two
notions of conservative extensions. In particular, by applying Property 2 in Propo-
sition 10 to Example 9, we can show that the axioms M1-M4 in Figure 1 constitute
a module in the ontology, consisting of M1-M5. The converse of Property 1 in
Proposition 10, however, does not hold in general:
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Example 11 Let Q; = {}, Q = {T C 3R.A} andS = {A}. The ontologyQ is a
deductiveS-conservative extension @; w.r.t. ALC. Indeed, everydLC-axiom
a = (C1 C Cq) overS = {A}, is equivalent inALC to eitherT C T, T C L,
T C AorAC 1, which are indistinguishable b§,; and 9—that is, the axiom
is implied by Q; iff it is implied by Q. Qi, however, is not at$-module inQ.
Consider anALC-ontologyP = {A C L}, which is constructed ove. It is easy
toseethaPUQ ETLC L,butPUQy £ TL L. O

Note that the construction in Example 11 also shows that the notion of deduc-
tive conservative extension is strictly weaker than the notion of model conservative
extension (as shown in [11])X is a deductive conservative extension@f but,
according to Property 2 in Proposition 10, it is not a model conservative extension.

Given the relationships between our definition of module and conservative ex-
tensions, it is worth examining the computational complexity of the associated
problems. The problem of deciding wheth@ris anS-conservative extension of
Q; has been studied in [11], where it is proved to be 2NEXPTIME-complete for
ALCTZQ (roughly OWL-Lite) and undecidable for OWL DL. For model conserv-
ative extensions, the problem is highly undecidable (non recursively enumerable),
even forALC [11].

The decidability result from [11] for deductive conservative extensions, how-
ever, does not transfer to our problem since an ontol@gsay well be anS-
deductive conservative extension@f, but still @; might not be arS-module in
Q. In fact, we show that our problem is already undecidable4dC ontologies
when the language allows for nominals:

Theorem 12 [Undecidability for Essential Axioms]
Given a signature S, an ALC-ontology Q and an axiom o € Q, it is undecidable
whether « is S-essential in Q w.r.t. L = ALCO.

Proof. The proof is a variation of the construction for undecidability of deciding
deductive conservative extensionsACC Q7O given [11], based on reduction to
domino tiling problems.

A domino system is a tripl® = (T', H, V') whereT is a finite set otiles and
H,V C T x T arehorizontalandvertical matching relations A solutionfor a
domino systenD is a mapping,. ., that assigns to every pair of integerg > 1
an element; ; € T, such tha(t; ;,t; j+1) € V and(t; ;,t;4+1,;) € H. A periodic
solutionfor a domino systenD is a solutiont; ; for which there exist integers
m > 1,n > 1 calledperiodssuch that;,, ; = ¢;; andt; ;,, = t;; for every
i,5 > 1.

Let D be the collection of all domino system®, be the subset oD that
admit a solution and,,,; be the subset b that admit a periodic solution. Note
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(1) TLCA,U---UA, if 7= {t1,...,tn}
(@2) Ay, MA; E L whenevet; # t;,
(g3) Ay T HTH-(U(ti,tj)eH At;) tity €T

(qa) Ay, T 3ry.( U(ti,tj)ev Ar;)

(¢s) T CE3s.[Fry.Iry.BNIry.Iryg.—B =«

Figure 2: An ontologyQ for a domino systend

thatD,, C D;. Itis well-known [3, Theorem 3.1.7] that the s@ds\ Dy andD,,
arerecursively inseparablethat is, there is no recursive (i.e. decidable) subset
D’ C D of domino systems such th&,; C D’ C D;.

We use this property in our reduction. For every domino sysi&mve con-
struct a signatur8 = S(D), an ontologyQ = Q(D) which is an4LC-TBox, and
an axioma € Q such that:

(a) if D does not have a solution thenis notS-essential inQ w.r.t. L, and

(b) if D has a periodic solution thenis S-essential inQ.

In other words, for the se®’ of domino systems) such thaty is S-essential
in @ = Q(D) w.rt.L, we haveD,; C D' C D,. SinceD \ D, andD,, are re-
cursively inseparable, this implies undecidability #&rand hence for the problem
of checkingS-essential axioms, because otherwise one can use this problem for
deciding membership i®’.

The signatureS, ontology @ and axioma € Q are constructed as follows.
Given a domino systen® = (T, H,V), let S consist of fresh atomic concepts
A; for everyt € T and two atomic rolesy andry,. We defineQ to consists of
axioms(q1)—(qs) from Figure 2 and set to be the axionmgs).

Axioms of form (q;)—(q4) express that every domain element in a model for
Q is assigned with a unique tile € 7" and has horizontal and vertical matching
successors. Axiongs) plays a special role in our reduction for excluding those
models of@ for which the horizontal and vertical matching relations do not com-
mute. It is easy to show that all axioms fraghareindependenti.e. none of the
axioms is a logical consequence of the remaining axioms. In the remainder, we
prove propertiesa) and(b) formulated above.

In order to prove propertya), assume that is S-essential inQ w.r.t. L. We
demonstrate thab has a solution in this case.

Let Q% be a minimalS-module inQ containinga. Note thatQ* implies all
axioms of form(q1)—(g4) in Q, since the signature of these axioms is a subset of
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S. Since@® containse and all axioms ofQ are independent, this is only possible
whenQ® = Q.

SinceQ® = Q is a minimalS-module inQ, the setQ; := Q \ {«} is not
an S-module inQ, and so, by the part 2 of Proposition 1@,is not a modelS-
conservative extension @;. This means that there is &tinterpretationzZ; =
(A, -11) that is a model of the axioms of forrfy;)—(q4), but which cannot be
expanded to a model af by interpreting atomic role and atomic concepB.
We claim that this is possible only if relatiomg; andry commute inZy, that is,
wheneverr g (a,b), rv (b, c1), rv(a,d) andrg(d, c2) hold inZ;, then it must be
the case that; = c,. Indeed, otherwise one can expahdto a modelZ of o by
settings? = {(z,a) | z € A} andB% = {¢;}. SinceZ satisfies all formulas of
forms (¢1)—(¢q4) and admits commutativity property for relationg andry, it is
easy to see thdb has a solution.

In order to prove propertyb), assume thab has a periodic solutioty ; with
the periodsn,n > 1. We demonstrate that is S-essential inQ by showing that
Q; := 9@\ {a} is notanS-module inQ. For this purpose we construct 2LCO-
ontologyP such thatP U Q = L, butP U Q; = L. We defineP such that every
model of P is a finite encoding of the periodic solutiap;. For every pair(i, j)
with 1 <7 < mandl < 57 < n we introduce a fresh individual; ; and add the
following axioms toP

(p1) aij A (pa) TC |_|1gzgm, 1<j<n {ai;t,
(p2) Tv (@i g, Gizj)s  (p5) {ai i} E Vrv{ai, i}, i2 =i1+1 mod m
(p3) r (@i gy igs), (pe) {aij } TVradaij,}, jo=j1+1 modn

The axiomgp;)—(p4) encode the solutiof) ; for D, and so, ensure that axioms
(q1)—(qq) are satisfied. The axionis) and(ps) ensure that the relations and
ry are defined completely, i.e. no other relations except for those specified in the
first column hold in models of. In particular, in every model oP, relations
rg andry commute, and so, axiom is not satisfied. Consequentlp, U Q is
unsatisfiable, wherea® U Q; is satisfiable, and saoQ; is not anS-module in
Q. O

Corollary 13 There exists no algorithm for performing any of the tasks T1-T3,
Tls and T2s from (3), (5) and (6) for ALC-ontologies.

Proof. Theorem 12 implies directly that there is no algorithm for task T3 from
(6), because otherwise, one can check if an axioimS-essential in@ by simply
computing the set of all essential axioms by this algorithm for T3 and then checking
if a is contained in this set. The remaining tasks from (3) and (5) are unsolvable
since they are reducible to T3 by Proposition 7 and by Proposition 5. O
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Corollary 14 Given a signature S, an ALC-ontology Q and an ontology Q@ C Q,
it is undecidable whether Q1 is an S-module in Q w.r.t. L = ALCO.

Proof. The procedure for deciding i, is an S-module inQ can be used for
solving task T1, which is not possible by Corollary 13. Indeed, by enumerating
the subsets of and checking if they are modules, one can compute all sulddets

of @ that areS-modules inQ. The set of all minimal modules i@ can be then
computed fromM by filtering out those sets iM that are proper subsets of some
other sets inM. O

Corollary 14 has a strong impact on the problem of knowledge reuse and forces
us to revisit the original problem we aim at solving. As the problem of extracting
minimal modules cannot be computationally solved for OWL DL in none of the
forms T1-T3, T1ls or T2s, we propose to relax some of the requirements in these
tasks. We cannot drop the requirements that extracted fragments should be modules
since, in this case, we have no guarantee for the correctness of the result. We
can sacrifice, however, the minimality requirements for the computed modules and
consider the following weakened version of the task T2:

T2w. computesomesmall enouglS-module inQ (7)

Although it is always possible to extract &amodule inQ (one can simply return

Q which is always ar8-module inQ), it still makes sense to develop, compare,
and practically apply procedures that compute reasonably small modules. In the
rest of the paper we describe two procedures of this form, based on the notions of
locality, which we first introduced in [4]. The modules we obtain might be larger
than the minimal modules and therefore we need to show that, in practice, they are
still reasonably small.

4 Modules Based on Locality

In this section, we formulate the notion of locality, first introduced in [4] which
will constitute the basis of our algorithm for extracting modules.

4.1 Locality

As a consequence of Case 2 in Proposition 10, model conservative extensions can
be used as a sufficient condition for the notion of module. It is not possible, how-
ever, to design a procedure that extracts modules based on this condition since the
problem of deciding model conservative extensions is highly undecidable [11]. The
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idea underlying this notion, however, can be used to establish sufficient conditions
for the notion of module which are decidable and can be used in practice.

Consider the first part of Example 9, where we show that th&@seftaxioms
M1-M5 in Figure 1 is a modeB-conservative extension @; = {M1,..., M4},
for S = {Cystic_Fibrosis, Genetic_Disorder}. In this example, the model conser-
vative extension was shown by finding expansion$igf Q; )-interpretations to
models ofQ in which all concept and atomic roles notSig(Q; ) were interpreted
as the empty set. One could consider the cases where conservative extensions (and
hence modules) can be determined in this manner. This idea can be formalized
using the notion of locality:

Definition 15 (Locality [4]). LetS be a signature. We say thataxioma is local
w.r.t. S if every trivial expansion of ang-interpretation tdS U Sig(«) is a model
of . We denote byocal(S) the collection of all axioms that are local w.iS. An
ontologyQ is local w.r.t.S if O C local(S). O

Intuitively, an ontologyO is local w.r.t. a signatures if we can takeany in-
terpretation for the symbols i and extend it to anodelof O that interprets the
additional symbols as the empty set.

Example 16 Consider axiom M5 from Figure 1. This axiom is local w.Bt.=
{Cystic_Fibrosis, Genetic_Disorder}. Indeed, as shown in Example 9, for every
trivial expansioriZ of an S-interpretation td U Sig(«), the concepDEFBI_Gene

is interpreted as the empty set, andBcatisfies M5.

On the other hand, M5 is not local w.IS.= {DEFBI_Gene}. Indeed, take any
S-interpretatioriZ; in which DEFBI_Gene is interpreted as a non-empty set. Then,
for every trivial expansior¥ of Z;, the concept on the left-hand-side of M5 is
always interpreted as a non-empty set, whereas the concept on the right-hand-side
is always interpreted as the empty set.ZSdoes not satisfyr.

In fact, this shows that axiom M5 is local w.r§. if and only if S does not
containDEFBI_Gene. O

The following is a simple but useful property of locality shows that the set of
local axioms can only become smaller if the signature expands:

Lemma 17 [Anti-Monotonicity of Locality] Let S1 and So be signature sets.
Then S; C Sy implies local(S2) C local(S).

Proof. Let o € local(S2). We demonstrate that € local(S1). For this purpose,
let Z; be an arbitrarys:-interpretation. We need to show that every trivial expan-
sionZ; of Z; to S; U Sig(«) is a model ofo.
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Let 7, be a trivial expansion of; to Sy (note thatS; C S;). Sincea €
local(S2), every trivial expansioff, of 7, to S, USig(«) is a model ofx. Note that
7, is a trivial expansion of; to Sy U Sig(a), hencel] = Tjls, usiga) F o O

Locality can be used to formulate a sufficient condition for an ontology to be a
model conservative extension of another ontology:

Proposition 18 [Locality = Model Conservativity] Let O, Oy be two ontolo-
gies and S a signature such that Oy is local w.r.t. SUSig(O1). Then O1 U Oy is an
S-model conservative extension of O1.

Proof. LetZ; be a model of?,. We show that there exists a modebf O; U O,
suchthatZ|s = Z;|s.

Let 7 be a trivial expansion afi|gusig(o,) t0 S U Sig(O1) U Sig(02), thus,
in particular,Z|susig(0,) = Z1lsusig(o,)- We need to show that is a model of
0O1UQO,. SinceOs is local w.r.t.SUSig(O; ), by Definition 15,7 is a model 0f0;.
Moreover, sSiNCE& [sig(0,) = Zilsig(o,) andZy = O1, we havel = O;. Hence,
7 = 01 U Oy what was required to show. O

Using Proposition 18 and Property 2 of Proposition 10 we obtain:

Corollary 19 Let O1, O and S be as given in Proposition 18. Then O is an
S-module in O1 U Os.

Corollary 19 suggests how one can use locality for extracting modules. Given
an ontologyQ and a signatur$, it is sufficient to partition@ into Q; U Q5 such
that Qs is local w.r.t.S U Sig(Q;). In this caseQ; is anS-module inQ.

Definition 20 (Modules based on Locality Condition).
Given an ontology@ and a signatur8, we say that®; C Q is a locality-based
S-module inQ if @\ Q; is local w.r.tS U Sig(Q;). O

Remark 21 Note from Definition 20 that every locality-bas8dmoduleQ; in O,
is also a locality-basefi U Sig(Q1)-module inQ. O

Remark 22 Note thatQ; is a locality-base®-module inQ if every trivial expan-
sion of every model of; based or8 U Sig(Q;) to S U Sig(Q), is a model forQ.
¢

Example 23 [Example 16, continued] We have seen in Example 16 that axiom M5
is local w.r.t. everyS that does not contain the atomic conc&®FBI_Gene. In
particular, for@; consisting of axioms M1-M4 from Figure 1, M5 is local w.r.t.
Sig(Q1). Hence, according to Definition 2@); is a locality-base®-module in
Q = {M1,...,M5} for everyS C Sig(Q1). O
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Remark 24 Note that the analog of the Part 1 in Proposition 2 does not hold for
locality-based modules since locality-based modules are not necessarily upward-
closed. For example, consider the following ontology and a signature:

Q={(1) A1 C Ay; (2) BC Ay; (3) BL Ay} S={Ay, A}

It is easy to see that the s@; = {A; T Ay} consisting of the first axiom from
Q is a locality-base®-module inQ, since both axiom$2) and(3) are local w.r.t.
S USig(Q1) = {41, A2}. However, its supers&d] = {A; C Ay; BC A}is
not a locality-based module w.r§, since the axionB C A, in Q\ Q] is not local
w.rt. S U Sig(Q)) = {41, Az, B}. Note thatQ] is anS-module inQ, since it is
a superset of aB-moduleQ;. O

We introduce a special notion to capture the modules that are supersets of the
locality-based modules:

Definition 25 (Locality-Induced Modules).
We say that a subs€s C Q is alocality-inducedS-modulein Q if there exists a
locality-baseds-moduleQ; in @ such thatQ; C Qs. O

4.2 Testing Locality

As demonstrated in Example 16, for testing locality of an axww.r.t. S, it is
sufficient to interpret every atomic concept and atomic role nBtivith the empty

set and then check if is satisfied for all interpretations of the remaining symbols.
This observation suggests that locality can be tested by first simplifying the ontol-
ogy by eliminating atomic roles and concepts that are nSt end then checking if

the resulting axioms are satisfied in every interpretation for the remaining symbols.
This idea is formalized as follows:

Proposition 26 [Testing Locality] Let O be a SHOZQ ontology and S a signa-
ture. Let Og be obtained from O by applying the transformations below, where
every A is an atomic concept, every r is an atomic role with A,r ¢ S, and every R
isaroler orr™ withr ¢ S: (1) replace all concepts of form A, 3R.C or (=n R.C)
with L ; (2) remove every transitivity axiom Trans(r); (3) replace every assertion
a: A and r(a,b) with the contradiction axiom T C L.

Then O is local w.r.t. S iff every axiom in Og is a tautology.

Proof. It is easy to check that the transformation above preserves the satisfaction
of axioms under every trivial expansi@nof everyS-interpretation t U Sig(O).
Hence, the resulting ontolog¥s is local w.r.t.S iff the original ontology© was
local w.r.t.S. Moreover, it is easy to see that there are no atomic concepts and
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atomic roles outsid8 left in Og after the transformation. Hence, every axiom
from Og is a tautology iffQ is local w.r.t.S. O

Note that according to Definition 15, assertionsA andr(a,b) can never
be local since they can only be satisfied by interpretations that intedpeatd
r as non-empty sets. Hence, assertions must be included in every locality-based
module, which is reflected in the step (3) of the transformation in Proposition 26.

Example 27 Recall that in Example 16 we have demonstrated that axiom M5 from
Figure 1 is local w.r.tS = {Cystic_Fibrosis, Genetic_Disorder}. Now we demon-
strate this using Proposition 26. Indeed, according to this proposition we need to
perform the following replacements:

DEFBI_Gene = L (by (1) sinceDEFBI_Gene ¢ S)
Immuno_Protein_Gene = L (by (1) sincdmmuno_Protein_Gene ¢ S)
Jassociated_With.Cystic_Fibrosis = 1 (by (1) sinceassociated_With ¢ S)

Hence, axiom M5 will be translated to axiomn = 1 M L which is a tautology.
O

An important conclusion of Proposition 26 is that one can use the standard ca-
pabilities of available DL-reasonérsuch asFaCT++ [21], RACER [12], Pellet
[19] or KAON2 [13] for testing locality since these reasoners can test for DL-
tautologies. Checking for tautologies in description logics is, theoretically, a diffi-
cult problem (e.g. for DLSHOZ Q is NEXPTIME-complete). There are, however,
several reasons to believe that the locality test would perform well in practice. First,
and most importantly, the size of the axioms in an ontology is usually small com-
pared to the size of the ontology. Second, DL reasoners are highly optimized for
standard reasoning tasks and behave well for most realistic ontologies.

In case this is too costly, it is possible to formulate a tractable approximation
to the locality conditions foSHOZ Q:

Definition 28 (Syntactic Locality for SHOZ Q). Let S be a signature. The fol-
lowing grammar recursively defines two sets of concégtandCd for a signature
S:
Cg u=AL|(=CT)|(Cnch) | (3RE.0)
| GR.CH) | (=znR*.C)| (=nR.CY).
¢d w=(~CH) | (T ney).

23eehttp://www.cs.man.ac.uk/~sattler/reasoners.html for a list of currently available
reasoners.
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where A+ ¢ S is a atomic conceptR? is a role, andC' is a conceptCt € Cg,
Cpy €Cg,i=1,2,andR" ¢ Rol(S) is arole.

An axiomq is syntactically local w.r.tS if it is of one of the following forms:
(1) Rt C R, or (2) Trans(RY), or (3) C+ C Cor (4) C C CT. We denote by
s_local(S) the set of allSHOZ Q-axioms that are syntactically local w.r§. A
SHOZQ-ontologyO is syntactically local w.r.tS if O C s_local(S). O

Intuitively, every concept i becomes equivalent ta if we replace every
symbol A+ or R not in S with the bottom concept. and the empty role re-
spectively, which are both interpreted as the empty set under every interpretation.
Similarly, the concepts frorﬁsT are equivalent td" under this replacement. Syn-
tactically local axioms become tautologies after these replacements.

For example, it is easy to show that the axiom M2 from Figure 1 is local w.r.t.
S = {Fibrosis, has_Origin}: if we replace the remaining symbols in this axiom
with L, we obtain a tautology. = L:

i i
—t— —~—
Genetic_Fibrosis = Fibrosis N 3has_Origin. Genetic_Origin

1

To distinguish the original notion of locality from its syntactic approximation,
we sometimes call the first aemantic locality as it is defined in terms of the
interpretations.

Itis easy to show that the analog of Lemma 17 also holds for syntactic locality:

Lemma 29 [Anti-Monotonicity of Syntactic Locality]
Let S and So be signature sets. Then S; C Sy implies s_local(S3) C s_local(S1).

Proof. Itis easy to see from Definition 28 thég, C Cg, C, C C4 , and hence,
s_local(S2) C s_local(Sy). O

As expected, syntactic locality is an approximation for semantic locality:
Proposition 30 Let S be a signature. Then s_local(S) C local(S).

Proof. Let a be an axiom that is syntactically local w.iS.and letZ = (A, %) be

a trivial expansion of som@-interpretation t& U Sig(«). We have to demonstrate
that Z is a model ofa. By induction over the definitions afg andCg from
Definition 28, it is easy to show thati) every roleR ¢ Rol(S) and every every
concept fron€§ is interpreted ir¥ with the empty set, andi) every concept from
C4 isinterpreted irf with A. By checking all the possible cases for a syntactically
local axioma in Definition 20, it is easy to see that in every of these cdsissa
model ofa. O
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Algorithm 1 extractmodul€ Q, S)
Input:
Q: ontology
S: signature
Output:
Q1. alocality-based®-module inQ
1: Q10 Qy—Q
2: while not empty(Q2) do
a « selectaxiom(Qs)
if locality_tes{ o, S U Sig(Qy) ) then
Qo — Qo \ {a} >« is processed
else
Q1 — Q1 U{a} > movea into 9,
Qo — Q\ O > resetQs, to the complement o
9: end if
10: end while
11: return Q;

o N g A

The converse of Proposition 30 does not hold in general since there are seman-
tically local axioms that are not syntactically local. For example, the axiom
(A C AU B)is atautology and thus is local w.r.t. eve8y This axiom, however,
is not syntactically local w.r.tS = {A, B} since it involves symbols i$ only.
Another example, which is not a tautology, is the GC¥ (3R.—A C 3R.—B),
which is semantically local w.r.§ = {R} (3R.T C 3JR.T is a tautology), but
not syntactically local. Thus, the limitation of syntactic locality is its inability to
perform reasoning elements frdsn

We distinguish the notion of modules based on these two locality conditions as
semantic locality-based modulasdsyntactic locality-based modules

Corollary 31 If Q; is a syntactic locality-based S-module in Q, then Q; is a
semantic locality-based S-module in Q.

For the reference and for the convenience of the reader, we illustrate in Figure 3
the relationships between the key theoretical results of this paper.

4.3 Computing Locality-Based Modules

Recall that, according to Definition 20, in order to construct a locality-b&sed
module in an ontology, it suffices to partition the ontolog® asQ = 9Q; U Qs
such thatQ is local w.r.t.S U Sig(Q;). Algorithm 1 outlines a simple procedure
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@, is a syntactical locality-basegtmodule inQ
J(Corollary 31)
Q; is a locality-base®-module inQ

(Proposition V \(Proposition 18)

Q1 contains allS-essential Q is a modelS-conservative
axioms w.r.tLin Q extension ofQ;

(Definitior@\ /(Proposition 10, part 2)

Q; isanS-module in @ w.r.t. L
J(Proposition 10, part 1)
Q is a deductives-conservative extension @; w.r.t. L

Figure 3: Summary for the main theoretical results of the paper

which performs this task. Given an effective locality test locatég{ «, S) (which
uses either a reasoner or the syntactical approximation) which returns true only if
the axioma is local w.r.t.S, the algorithm first initializes the partition to the trivial
one: Q; = P andQ, = Q, and then repeatedly moves @& those axioms from
Q, that are not local w.r.tS U Sig( Q1) until no such axioms are left i@,.

In Table 2 we provide a trace of Algorithm 1 for the ing@, S), whereQ is
an ontology consisting of the axioms M1-M5 from Figure 1 & a signature
S = {Cystic_Fibrosis, Genetic_Disorder}. Each row in the table corresponds to
an iteration of the while loop in Algorithm 1. The last column of the table provides
the results of the locality test in line 4. Note that the syntactic locality condition
was sufficient in all tests: all axioms that were semantically non-local were also
syntactically non-local.

Proposition 32 [Correctness of Algorithm 1]
For every input Q and S, Algorithm 1 computes a locality-based S-module in Q.

Proof. We have to show that (1) Algorithm 1 terminates for every inpuandsS,
and (2) the output extrachodul€S, Q) is a locality-base®-module inQ.

(1) Termination of the algorithm follows from the fact that in every iteration of
the while loop either the size @; increases, or the size @; remains the same
but the size 0fQ, decreases. Note that this means that Algorithm 1 terminates in
quadratic time in the number of axiomsd assuming constant time locality test.

(2) It is easy to observe that every axianthat is neither inQ; nor in Q5 is
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o) Qs New elements it8 U Sig(Q;) o local?
1] - M1 — M5 | Cystic_Fibrosis, Genetic_Disorder | M1 | No
2| M1 M2 — M5 | Fibrosis, located_In, Pancreas,
has_Origin, Genetic_Origin M2 | No
3| M1,M2 M3 — M5 | Genetic_Fibrosis M3 | No
4 | M1 - M3 | M4,M5 — M4 | No
5| M1—-M4 | M5 — M5 | Yes
6| M1—M4 | — — —

Table 2: A trace of Algorithm 1 for the inpu@ = {M1,...,M5} andS =
{Cystic_Fibrosis, Genetic_Disorder}

local w.r.t.S U Sig(Q;), since the only way such am can appear is at the line 3
of the algorithm, andv remains inQ \ (Q; U Q) only if S U Sig(Q;) does not
change. O

Note that there is an implicit non-determinism in Algorithm 1, namely, in line 3
in which an axiom from@, is selected. It might well be the case that several
choices forx are possible at this moment. For example, the trace in Table 3 makes
a different choice forx from Q5 than the trace in Table 2. In the first iteration of
the while loop, we seleet = M2 from Qs instead of M as in Table 2. This has
resulted in a longer trace yet with the same regylt= {M1, ..., M4}. Note that
axioms M2 and M3 are selected several times and produce different results for the
locality tests, sinc&?; has been modified. This demonstrates the reason why we
resetQ, to Q \ Q, at the line 8 of Algorithm 1, namely, not to miss axioms that
has been checked to be local w.r.t. @g, but are no longer local w.r.t. ne@; .

As we have seen from the traces in Table 2 and Table 3, Algorithm 1 has pro-
duced the same output despite the fact that different choices fiais been made
inside the while loop. One might wonder if this is always the case. It turns out
that the choices fotr indeed do not have any impact on the result of Algorithm 1,
provided that the locality test satisfy some rather natural requirements:

Definition 33. We say that a locality test localities{ o, S) is anti-monotonidf for
everyS; C So, whenever localitytes{«, S;) succeeds then localities{a, S1)
succeeds as well.

We say thatocality of Q; w.r.t. S in Q; is provable using localityes{«, S) if
for everya € Q\ Q;, we have that localityes{«, S U Sig(S;)) succeeds. ¢
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0, 9y New elements ir8 U Sig(Q;) a |loc.
1| - M1 — M5 Cystic_Fibrosis, Genetic_Disorder | M2 | Yes
2| — M1,M3 — M5 | — M3 | Yes
3| — M1,M4,M5 | — M1 | No
4| M1 M2 — M5 Fibrosis, located_In, Pancreas,

has_Origin, Genetic_Origin M3 | No
5| M1,M3 M2, M4, M5 | Genetic_Fibrosis M4 | No
6| M1,M3,M4 | M2, M5 — M5 | Yes
7| M1,M3, M4 | M2 — M2 | No
8| M1 - M4 M5 = M5 | Yes
9| M1 - M4 — — —

Table 3: An alternative trace of Algorithm 1 for the inp@t= {M1,...,M5} and
S = {Cystic_Fibrosis, Genetic_Disorder}

Proposition 34 [Determinism of Algorithm 1]
The output of Algorithm 1 based on anti-monotonic locality_test(c, S) is the small-
est Q; such that locality of Q1 w.r.t. S is provable using locality_test(c, S).

Proof. It is easy to see (see the proof of Proposition 32) that the locality of every
output Q; of Algorithm 1 is provable using localityes{«, S). It remains, thus,
to show that for every subs&@; C Q such that locality ofd] w.r.t. Sin Q is
provable using localityes{«, S), we haveQ; C Q).

Assume, to the contrary, that for some run of the algorithm, the o@pus
not a subset 0. Since the initiald; = () was a subset o}, there is a moment
in the computation such th&; was a subset 0, but ©Q; U {a} is no longer
a subset olQ}. For these particular values ¢}, anda we have:(i) Q; C 9},
(i1) « € Q\ Q}, and(ii7) locality_tes{a, SUSig(Q1)) fails. From(ii) by property
of Q] we have localitytes{«, S U Sig(Q/)) succeeds, which implies usirig) and
anti-monotonicity of localitytest that localitytes{ o, SUSig( Q1)) succeeds which
contradicts tqiii). This proves tha®; is indeed a subset @ . O

Corollary 35 [Unigueness of a Minimal Locality-Based Module]
Algorithm 1 using a test based on the semantic locality produces a unique minimal
locality-based S-module in Q.

Proof. By Lemma 17 the semantic locality admits anti-monotonicity. O
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Corollary 36 [Unigueness of a Minimal Syntactic Locality-Based Module]
Algorithm 1 using a test based on the syntactic locality produces a unique minimal
syntactic locality-based S-module in Q.

Proof. By Lemma 29 the syntactic locality admits anti-monotonicity. O

4.4 Properties of Locality-based Modules

In this section, we outline some interesting properties of locality-based modules
which make it possible to use them for applications other than knowledge reuse.

Let Qk¢ be the smallest locality-basegtmodule in Q, which is unique by
Corollary 35 and is the output of Algorithm 1 f@ andS. The first property is a
direct consequence of Corollary 35:

Proposition 37 QK¢ contains all S-essential axioms in Q w.r.t. every language L
with Tarski-style set-theoretic semantics.

Proof. Let Q; be a minimalS-module inQ. We need to show thad; C Qg’c.
Since(i) Q; is a subset of a locality-bas&imodule inQ (say, ofQ itself) and
(77) there is no proper subset @, that is a locality-base&-module inQ, we
have thatQ; is a subset of a minimal locality-bas&dmodule inQ. Since such a
module is unique by Corollary 35, and it@Y°, we have thap; C Qk°. O

As shown in Table 2 and Table 3, the minimal locality-baSethodule ex-
tracted fromQ contains allS-essential axioms M-M4. In our case, the module
contains only essential axioms; in general, however, locality-based modules might
contain non-essential axioms; otherwise, they would provide a solution for our task
T3in (6).

Proposition 38 Let Q be ontology, A and B atomic concepts and S ;y a signature.
Then:

1. S1 € Sy implies leof - le"f (monotonicity);

2. Q= (ACB) iff Ql{fg}):(AgB).

3. QF (AC B) implies Ql{olg} C Qf{fjj} or Ql{fjg} EAC L.

Proof. 1. SinceQg* is a locality-base®;-module inQ, we haveQ \ Q¥* is local
w.r.t. Sy U Sig(Qg¢). By anti-monotonicity of locality (see Lemma 1%, \ Q&*
is local w.r.t.S; U Sig(Q’S";), hencteS"; is a locality-base®;-module inQ. Since
le"f is contained in every locality-bas&l-module inQ by Corollary 35, we have
ol < i
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2. The “if” part of this property is trivial sinc@i{og} C Q. In order to prove the

“only if” part of the property, assume th@ = (A C B). LetS := Sug(Ql{Oj})
{A}, and consider the following two cases:

(@) B € S. Then by Remark 21Ql{°j} is anS-module inQ, and so,Ql{Oj} =
(A C B) sinceSig(AC B) CS.

(b) B ¢ S. We demonstrate tha'*s, = A C L which suffices for proving

{4}
Qv5, FAC B.

Assume, to the contrary, th@f{oj} - A C L. Then there exists aB-
interpretatiorZ such thatZ = Q’{‘jg} andAZ # (). LetZ’ be a trivial expansion of
7 to S U Sig(Q). Sincle{Oj} is a locality-base®-module inQ (see Remark 21
and Remark 22), we hav€ = Q. However,Z’ is not a model of A C B)
since AT’ # (), but BT = () sinceB ¢ S. This contradicts to the assumption
QEALCB.

3. As has been shown in the proof of property 2 above® if= (A C B),
then eitherB ¢ Sig(Q!*%,) or Q¥°¢, = A C 1. So, it remains to show that

{A} {A}
B € Sig(Qf{Oj}) implies thath{Og} C Qf{‘jg}. Indeed, by Remark ZJQf{OX} is a
Iocality—basec(Sig(Q’{‘jg}) U {A4})-module inQ. SinceB € Sig(Ql{‘jg}), then, in

particular,Qf{‘ﬁ} is a locality-based 5 }-module inQ. Sincte{og} is contained in
every locality-based B}-module inQ, we havte{Og} C Ql{oj} what was required
to prove. O

Proposition 38 gives two interesting properties of locality-based modules. The
first one states that such modules may only grow if the input signature extends.
The second one implies that the module for a single atomic contqpbvides
complete information about all the super-classed ofThis property can be used
for optimizing classification: in order tolassify an ontology, i.e. to compute
all subsumption relationgl C B between pairsd, B of atomic concepts i, it
is sufficient to(1) extract all modulesgf{oj} of Q for each atomic concept (2)
classify each of these moduleslependentlypossiblyin parallel), and(3) merge
the results of the individual classifications. By Property 2, if the subsumption
A C B is implied by the ontologyQ then it is implied by the modul@f{oj} and,
hence, it will be obtained in stef2).

Finally, Property 3 in Proposition 37 can also be used to optimize classification.
The property provides a necessary condition for a subsumgtionB to hold in an
ontology, which can be used to quickly detecin-subsumptiondf the inclusion
QZOC - Q’OC between the minimal locality-based modules does not hold,/and

ITound to be satisfiable, then a reasoner does not need to prove the subsumption
A C B w.r.t. @, since it never holds.
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5 Related Work

The problem of extracting modular fragments of ontologies has recently been ad-
dressed in [20], [14] and [18].

In [20], the authors have proposed an algorithm for partitioning the concepts
in an ontology. The intended application is to facilitate the visualization of and
navigation through the ontology. The algorithm uses a set of heuristics for measur-
ing the degree of dependency between the concepts in the ontology and outputs a
graphical representation of these dependencies. The algorithm is intended as a vi-
sualization technique, and does not establish a correspondence between the nodes
of the graph and sets of axioms in the ontology.

The algorithms in [14] and [18], which we have briefly outlined in Section
3, use structural traversal to extract modules of ontologies for a given signature.
None of these approaches provides a characterization of the logical properties of
the extracted modules, nor do they establish a notion of correctness of the modu-
larization.

In [6], the authors propose a definition of a module and an algorithm for ex-
tracting modules based on that definition. The notion of a module in an ontology
Q for a signatureS is also based on conservative extensions@if C Q is an
S-module inQ as in [6], then it can be shown th&is a modelS-conservative ex-
tension ofQ. The definition in [6], however, makes use of additional requirements
which lead, in many cases, to the extraction of modules which are larger than one
may wish. The reason is that, for every atomic concépt S, the moduleQ; for
Ain @ must be a module for all its sub-classes and super-classes.

It is worth pointing out that, giver® andS, the fragment obtained using the
algorithm in [6] is anS-module according to Definition 1. This is not the case,
however, for the fragment extracted using [18], as we have illustrated in Section 3.

6 Implementation and Evaluation

Given an input ontology and an input signature, locality-based modules are not the
only possible modules we can obtain. It remains to be shown that the locality-based
modules obtained in realistic ontologies areall enougtio be useful in practice.

For evaluation and comparison, we have implemented the following algorithms
using Manchester's OWL AF:

Al: The PROMPT-FACTOR algorithm, as described in [14];

A2: The algorithm for extracting modules described in [6];

3http://sourceforge.net/projects/owlapi
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Figure 4: Distribution for the sizes of syntactic locality-based modules for atomic
concepts: the X-Axis gives the number of concepts in the modules and the Y-Axis
the number of modules for each size range.
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A3: Our algorithm for extracting modules (Algorithm 1), based on syntactic lo-
cality.

As a test suite, we have collected a set of well-known ontologies available on
the Web, which can be divided into two groups:

Simple. In this group, we have included the National Cancer Institute (NCI) Ontol-
ogy;* the SUMO Upper Ontolog¥,the Gene Ontology (G and the SNOMED
Ontology. These ontologies use a simple ontology language and are of a simple
structure; in particular, they do not contain GCls, but only definitions.

Complex. This group contains the well-known GALEN ontology (GALEN-Fl),

the DOLCE upper ontology (DOLCE-Lit&)and NASA's Semantic Web for Earth

and Environmental Terminology (SWEE®) These ontologies are complex since
they use many constructors from OWL DL and/or include a significant number of
GCls. In the case of GALEN, we have also considered a version GALEN-Small
that has commonly been used as a benchmark for OWL reasoners. This ontology
is almost 10 times smaller than the original GALEN-Full ontology, yet similar in
structure.

For each of these ontologies, and for each atomic concept in their signature, we
have extracted the corresponding modules using algorithms A1-A3 and measured
their size. We use modules for single atomic concepts to get an idea of the typical
size of locality-based modules compared to the size of the whole ontology. Also,
modules for atomic concepts are especially interesting for optimized classification
of ontologies, as discussed in Section 4.4.

The results we have obtained are summarized in Table 4. The table provides the
size of the largest module and the average size of the modules obtained using each
of these algorithms. In the table, we can clearly see that locality-based modules are
significantly smaller than the ones obtained using the other methods; in particular,
in the case of SUMO, DOLCE, GALEN and SNOMED, the algorithms Al and A2
retrieve the whole ontology as the module for each atomic concept. In contrast,
the modules we obtain using our algorithm are significantly smaller than the size
of the input ontology. In fact, our modules are not only smaller, but are also strict
subsets of the respective modules computed using Al and A2.

*http://www.mindswap.org/2003/CancerOntology/nciOncology.owl
Shttp://ontology.teknowledge.com/

Shttp://www.geneontology.org

"http://www.snomed.org
8http://www.openclinical.org/prj_galen.html
®http://www.loa-cnr.ityDOLCE.html
Ohttp://sweet.jpl.nasa.gov/ontology/
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For NCI, SNOMED, GO and SUMOwe have obtained very small locality-based
modules. This can be explained by the fact that these ontologies, even if large,
are simple in structure and logical expressivity. For example, in SNOMED, the
largest locality-based module obtained is approximately 1/10000 of the size of the
ontology, and the average size of the modules is 1/10 of the size of the largest
module. In fact, most of the modules we have obtained for these ontologies contain
less than 40 atomic concepts.

For GALEN, SWEET and DOLCREhe locality-based modules are larger. Indeed,
the largest module in GALEN-Small is 1/10 of the size of the ontology, as opposed
to 1/10000 in the case of SNOMED. For DOLCE, the modules are even bigger—
1/3 of the size of the ontology—which indicates that the dependencies between the
different concepts in the ontology are very strong and complicated. The SWEET
ontology is an exception: even though the ontology uses most of the construc-
tors available in OWL, the ontology is heavily underspecified, which yields small
modules.

In Figure 4, we have presented a more detailed analysis of the modules for NClI,
SNOMED, GALEN-Small and GALEN-Full. Here, the X-axis represents the size
ranges of the obtained modules and the Y-axis the number of modules whose size
is within the given range. The plots thus give an idea of the distribution for the
sizes of the different modules.

For SNOMED, NCI and GALEN-Small, we can observe that the size of the
modules follows a smooth distribution. In contrast, for GALEN-Full, we have
obtained a large number of small modules and a significant number of very big
ones, but no medium-sized modules in-between. This abrupt distribution indicates
the presence of a big cycle of dependencies in the ontology, which involves all
the concepts with large modules. The presence of this cycle can be spotted more
clearly in Figure 4(f); the figure shows that there is a large number of modules of
size in between 6515 and 6535 concepts. This cycle does not occur in the simplified
version of GALEN and thus we have the smooth distribution for that case. In
contrast, in Figure 4(e) we can see that the distribution for the “small” modules in
GALEN-Fullis smooth and much more similar to the one for the simplified version
of GALEN.

In order to explore the use of our results for ontology design and analysis,
we have integrated our algorithm for extracting modules in the ontology editor
SWOOP [10]. The user interface of SWOOP allows for the selection of an input
signature and the retrieval of the corresponding module.

As an illustration, consider in Figure 5 the locality-based module for the atomic
conceptDNA_Structure in the NCI ontology, as obtained in SWOOP. Recall that,
according to Case 2 of Proposition 38, the locality-based mo@%ﬂfg for every
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Figure 5: The Module Extraction Functionality in Swoop

atomic conceptl € Sig(O) contains all necessary axioms for, at least, all the (en-
tailed) super-concepts of in O. Thus(’)“’;{} can be seen as the “upper ontology”

for A. In fact, Figure 5 shows that the locality-based modulelibA_Structure
contains only the concepts in the “path” frddNA _Structure to the top level con-

ceptAnatomy_Kind. This suggests that the knowledge in NCI about the partic-
ular concepDNA Structure is very shallow in the sense that NCI only “knows”
that aDNA_Structure is a macromolecular structure, etc. which, in the end, is an

anatomy kind.
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7 Conclusion

In this paper, we have proposed a definition of a module for a given vocabulary
within an ontology to be reused. Based on this definition, we have formulated three
reasoning problems concerning the extraction of minimal modules and shown that
none of them is algorithmically solvable, even for simple fragments of OWL DL.
We have introduced locality-based modules as an approximation to minimal mod-
ules and have empirically demonstrated that such modules are reasonably small for
many real-world ontologies.

For the future work, we would like to study other approximations which can
produce small modules in complex ontologies like GALEN, and exploit modules
for optimizing ontology reasoning.

8 Acknowledgments

This work is supported by the EU Project TONES (Thinking ONtologiES) ref:
IST-007603 and by the EPSRC Project REOL (Reasoning in Expressive Ontology
Languages) ref:EP/C537211/1. The authors would like to thank Boris Motik for
his suggestions and assistance concerning this work.

References

[1] F. Baader, S. Brandt, and C. Lutz. Pushing&ieenvelope. IrProc. IJCAI-
2005 pages 364-370, 2005.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors.The Description Logic Handbook: Theory, Implemen-
tation, and ApplicationsCambridge University Press, 2003.

[3] E. Borger, E. Gadel, and Y. Gurevich.The Classical Decision Problem
Perspectives of Mathematical Logic. Springer-Verlag, 1997. Second printing
(Universitext) 2001.

[4] B.Cuenca Grau, |. Horrocks, Y. Kazakov, and U. Sattler. A logical framework
for modularity of ontologies. IfProc. IJCAI-2007 pages 298-304, 2007.

[5] B. Cuenca Grau, I. Horrocks, O. Kutz, and U. Sattler. Will my Ontologies Fit
Together? IrProc. DL-2006 2006.

[6] B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and Web
Ontologies. InProc. KR-2006pages 198—-209, 2006.

37



[7]1 S. Ghilardi, C. Lutz, and F. Wolter. Did | Damage my Ontology? A Case
for Conservative Extensions in Description LogicsPimc. KR-2006pages
187-197, 2006.

[8] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. E&tfQ and
RDF to OWL: The making of a web ontology languageof Web Semantics
1(1):7-26, 2003.

[9] I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of the IJCAIMorgan Kaufman, 2005.

[10] A. Kalyanpur, B. Parsia, E.Sirin, B. Cuenca Grau, and J. Hendler. SWOOP:
A web editing browserElsevier's Journal Of Web Semantieg2):144-153,
2006.

[11] C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive
description logics. IriProc. of IJCAI-2007 pages 453-459, 2007.

[12] R. Moller and V. Haarslev. Description logic systems. Tine Description
Logic Handbook chapter 8, pages 282-305. Cambridge University Press,
2003.

[13] B. Motik. Reasoning in Description Logics using Resolution and Deduc-
tive DatabasesPhD thesis, Univesit Karlsruhe (TH), Karlsruhe, Germany,
2006.

[14] N. Noy and M. Musen. The PROMPT suite: Interactive tools for ontology
mapping and mergindnt. Journal of Human-Computer Studj€£59), 2003.

[15] P. Patel-Schneider, P. Hayes, and I. Horrocks. Web ontology language OWL
Abstract Syntax and Semantida/3C RecommendatipR004.

[16] A. Rector and J. Rogers. Ontological issues in using a description logic to
represent medical concepts: Experience from GALEN.Piac. of IMIA
WG6 Workshop1999.

[17] M. Schmidt-Schaul? and G. Smolka. Attributive concept descriptions with
complementsArtif. Intell., 48(1):1-26, 1991.

[18] J. Seidenberg and A. Rector. Web ontology segmentation: Analysis, classifi-
cation and use. IRroc. WWW-20062006.

[19] E. Sirin and B. Parsia. Pellet system descriptionPioc. DL-2004 2004.

38



[20] H. Stuckenschmidt and M. Klein. Structure-based partitioning of large class
hierarchies. IrProc. ISWC-2004pages 289-303, 2004.

[21] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System
description. InProc. of IJCAR-2006pages 292—-297, 2006.

39



