
Pay-as-you-go OWL Query Answering Using a Triple Store

Yujiao Zhou and Yavor Nenov and Bernardo Cuenca Grau and Ian Horrocks
Department of Computer Science, University of Oxford, UK

Abstract

We present an enhanced hybrid approach to OWL query an-
swering that combines an RDF triple-store with an OWL
reasoner in order to provide scalable pay-as-you-go perfor-
mance. The enhancements presented here include an exten-
sion to deal with arbitrary OWL ontologies, and optimisations
that significantly improve scalability. We have implemented
these techniques in a prototype system, a preliminary evalua-
tion of which has produced very encouraging results.

1 Introduction
The use of RDF (Manola, Miller, and McBride 2004) and
SPARQL (SPARQL 1.1 Overview 2013) to store and access
semi-structured data is increasingly widespread. In many
cases, an OWL ontology is used to formally specify the
meaning of data (Motik et al. 2009b), as well as to enhance
query answers with tuples that are only entailed by the com-
bination of the ontology and data.

Unfortunately, computing such answers is of high worst
case complexity, and although heavily optimised, existing
systems for query answering w.r.t. RDF data and an unre-
stricted OWL 2 ontology can process only small to medium
size datasets (Möller et al. 2013; Wandelt, Möller, and Wes-
sel 2010; Kollia and Glimm 2013). This has led to the devel-
opment of query answering procedures that are more scal-
able, but that can (fully) process only fragments of OWL 2,
and several prominent fragments have now been standard-
ised as OWL 2 profiles (Motik et al. 2009a). Such systems
have been shown to be (potentially) highly scalable (Ur-
bani et al. 2012; Bishop et al. 2011; Urbani et al. 2011;
Wu et al. 2008), but if the ontology falls outside the rele-
vant profile, then the answers computed by such a system
may be incomplete: if it returns an answer, then all tuples
in the answer are (usually) valid, but some valid tuples may
be missing from the answer. When used with out-of-profile
ontologies, a query answer computed by such a system can
thus be understood as providing a lower-bound on the cor-
rect answer; however, they cannot in general provide any
upper bound or even any indication as to how complete the
computed answer is (Cuenca Grau et al. 2012).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

More recently, a hybrid approach has been proposed that
addresses some of these issues. This approach uses a triple
store with OWL 2 RL reasoning capabilities to compute not
only the usual lower bound answer, but also an upper bound
answer, in the latter case by rewriting the input ontology into
a strictly stronger OWL 2 RL ontology (Zhou et al. 2013b).
If lower and upper bound answers coincide, they obviously
provide a sound and complete answer. Otherwise, relevant
fragments of the ontology and data can be extracted that are
guaranteed to be sufficient to test the validity of tuples in the
“gap” between the two answers; these fragments are typi-
cally much smaller than the input ontology and data, and
may thus allow for checking the gap tuples using an OWL
2 reasoner such as HermiT (Motik, Shearer, and Horrocks
2009) or Pellet (Sirin et al. 2007). This extraction and check-
ing step was, however, only proven to be correct for Horn on-
tologies, and also suffered from scalability issues both w.r.t.
the extraction itself and the subsequent checking.

In this paper, we present several important enhancements
to this hybrid approach. First, we show how the lower bound
can be tightened by integrating scalable reasoning tech-
niques for other OWL 2 profiles. Second, we show how to
extend the relevant fragment extraction procedure so that it
is correct for arbitrary OWL 2 ontologies, and how to use
the triple store itself to compute these fragments. Finally, we
show how summarisation techniques inspired by the SHER
system (Dolby et al. 2007; 2009) can be used to tighten the
upper bound on query answers, thus further reducing the re-
quirement for fully-fledged OWL 2 reasoning.

We have implemented our procedure in a prototypical sys-
tem using RDFox as triple store (Motik et al. 2014) and we
present a preliminary evaluation over both benchmark and
realistic data which suggests that the system can provide
scalable pay-as-you-go query answering for a wide range
of OWL 2 ontologies, RDF data and queries. In almost all
cases, the system is able to completely answer queries with-
out resorting to fully-fledged OWL 2 reasoning, and even
when this is not the case, relevant fragment extraction and
summarisation are effective in reducing the size of the prob-
lem to manageable proportions. This paper is accompanied
with an appendix containing all proofs.

2 Preliminaries
We adopt standard first order logic notions, such as vari-
ables, constants, atoms, formulas, clauses, substitutions, sat-
isfiability, and entailment (Bachmair and Ganzinger 2001).
We also assume basic familarity with OWL 2 (Motik et al.
2009b) and its profiles (Motik et al. 2009a).

Datalog Languages Extended datalog languages are well-
known KR formalisms based on rules, and they have many
connections with OWL 2. A generalised rule (or just a rule)
is a function-free first order sentence of the form

∀x (

n∧
j=0

Bj(x)→
m∨
i=0

∃yi ϕi(x,yi))

where Bj(x) are body atoms and ϕi are conjunctions of
head atoms. The universal quantifiers are left implicit from
now on. A rule is Horn if m ≤ 1, and it is datalog if it is
Horn and does not contain existential quantifiers. A fact is a
ground atom and a dataset is a finite set of facts. A knowl-
edge base K consists of a finite set of rules and a dataset.
We treat equality (≈) in knowledge bases as an ordinary
predicate, but assume that every knowledge base in which
equality occurs contains the axioms of equality for its sig-
nature. Each OWL 2 ontology can be normalised as one
such knowledge base using the correspondence of OWL and
first order logic and a variant of the structural transforma-
tion (see (Motik, Shearer, and Horrocks 2009) for detais);
furthermore, each OWL 2 RL ontology corresponds to a dat-
alog knowledge base. From now on, we interchangeably use
ontologies and the knowledge bases they correspond to; in
particular, we use OWL 2 RL and datalog interchangeably.

Queries We focus on conjunctive query answering as the
key reasoning problem. A query is a formula of the form
q(x) = ∃yϕ(x,y) with ϕ(x,y) a conjunction of atoms.
Usually, we omit the distinguished variables x of queries
and write just q. The query is atomic if ϕ(x,y) is a single
atom. A tuple of individuals a is a (certain) answer to q w.r.t.
a set of sentences F iff F |= q(a). The set of all answers to
q(x) w.r.t. F is denoted by cert(q,F).

Datalog Reasoning There are two main techniques for
query answering over a datalog knowledge base K. Forward
chaining computes the set Mat(K) of facts entailed by K,
called the materialisation of K. A query q over K can be an-
swered directly over the materialisation. Backward chaining
treats a query as a conjunction of atoms (a goal). An SLD
(Selective Linear Definite) resolvent of a goal A ∧ ψ with a
datalog rule ϕ → C1 ∧ · · · ∧ Cn is a goal ψθ ∧ ϕθ, with
θ the MGU (Most General Unifier) of A and Cj , for some
1 ≤ j ≤ n. An SLD proof of a goalG0 inK is a sequence of
goals (G0, . . . , Gn) with Gn the empty goal (�), and each
Gi+1 a resolvent of Gi and a rule in K.

3 Overview
Background Our approach to query answering extends
(Zhou et al. 2013a; 2013b). The main idea is to exploit
a datalog-based triple store to compute both lower bound
(sound but possibly incomplete) and upper bound (complete

Foreman(x)→ Manag(x) (T1)
Superv(x)→ Manag(x) (T2)

Manag(x)→ Superv(x) ∨ ∃y.(boss(x, y) ∧Manag(y)) (T3)
Superv(x) ∧ boss(x, y)→Workman(y) (T4)

TeamLead(x) ∧ boss(x, y) ∧Manag(y)→ (T5)
Manag(x)→ ∃y.(boss(x, y)) (T6)

Manag(Sue) (D1)
Superv(Dan) (D2)
Superv(Rob) (D3)

boss(Dan,Ben) (D4)
Manag(Jo) (D5)

TeamLead(Jo) (D6)
boss(Jane,Rob) (D7)

Figure 1: Example knowledge base Kex.

but possibly unsound) query answers. Given a knowledge
base K and a query q, this is achieved by computing data-
log knowledge bases L(K) and U(K) s.t. cert(q,L(K)) ⊆
cert(q,K) ⊆ cert(q,U(K)). In (Zhou et al. 2013a), L(K)
was simply the subset of datalog rules in K and hence
K |= L(K). In turn, U(K) is the result of consecutively
applying the transformations Σ, Ξ and Ψ defined next. Σ
renders a knowledge base into a set of clauses via standard
Skolemisation. Ξ transforms a set of clauses into a satisfi-
able set of Horn clauses, by first adding a nullary atom ⊥
to each negative clause, and then splitting each non-Horn
clause into several clauses (one for each positive literal). Fi-
nally, Ψ transforms the output of Ξ by replacing each func-
tional term by a fresh constant and replacing clauses by their
equivalent datalog rules. Both, L(K) and U(K) are indepen-
dent from query and data (they depend on the rules in K).

We demonstrate these basic ideas using the knowledge
base Kex in Figure 1, which we use as a running example.
The query qex asks for individuals that manage a workman.

qex(x) = ∃y(boss(x, y) ∧Workman(y))

We have that cert(qex,Kex) = {Dan,Rob, Jo}. The lower
bound knowledge base L(Kex) consists of facts D1-D7 and
the following datalog rules.

Foreman(x)→ Manag(x) (L1)
Superv(x)→ Manag(x) (L2)

Superv(x) ∧ boss(x, y)→Workman(y) (L4)
TeamLead(x) ∧ boss(x, y) ∧Manag(y)→ (L5)

The upper bound U(Kex) extends L(Kex) with the rules
given next, where c1 and c2 are fresh constants:

Manag(x)→ Superv(x) (U1
3)

Manag(x)→ boss(x, c1) (U2
3)

Manag(x)→ Manag(c1) (U3
3)

Manag(x)→ boss(x, c2) (U6)

It is easy to verify that cert(qex,L(Kex)) = {Dan} and
that cert(qex,U(Kex)) = {Sue,Dan,Rob, Jo}.

For a knowledge base K like the one above, for which
cert(q,L(K)) (cert(q,U(K)), we check for each “gap”

tuple a ∈ cert(q,U(K)) \ cert(q,L(K)) whether a ∈
cert(q,K). This could be achieved simply by using a fully-
fledged OWL 2 reasoner to check if K |= q(a), but this is
typically not feasible for large datasets (Zhou et al. 2013a).
In order to address this issue, (Zhou et al. 2013b) use back-
wards chaining reasoning over U(K) to extract a (typically
small) relevant subset Kf of the original knowledge base K
such that a ∈ cert(q,K) iff a ∈ cert(q,Kf); a fully-fledged
OWL 2 reasoner is then used to compute cert(q,Kf). Un-
fortunately, the fragment extraction technique is only an-
swer preserving for Horn ontologies, thus the technique as
a whole can only guarantee to compute sound and complete
answers whenK is Horn. Moreover, the extraction technique
used in (Zhou et al. 2013a) can lead to memory exhaustion in
practice, and even when successful, computing cert(q,Kf)
can still be challenging for fully-fledged OWL 2 reasoners.

Our Contribution In the following sections we show how
this technique can be extended so as to deal with arbitrary
ontologies, and to improve the quality and scalability of
lower and upper bound computations. In Section 4, we show
how the lower bound answer can be tightened by addition-
ally applying other scalable query answering procedures that
also rely on datalog reasoning. In Section 5, we show how
the fragment extraction technique in (Zhou et al. 2013b) can
be extended to deal with non-Horn ontologies, and how the
datalog engine itself can be used to perform the extraction.
Finally, in Section 6, we show how a summarisation tech-
nique inspired by the SHER system can be used to tighten
the upper bound by ruling out “obvious” non-answers, and
how we can further exploit this idea to reduce the number of
calls to the fully-fledged OWL 2 reasoner.

Our approach is pay-as-you-go in the sense that the bulk
of the computation is delegated to a highly scalable datalog
engine. Although our main goal is to answer queries over
OWL 2 ontologies efficiently, our technical results are very
general and hence our approach is not restricted to OWL.
More precisely, given a first-order KR language L that can
be captured by generalised rules and over which we want
to answer conjunctive queries, our only assumption is the
availability of a fully-fledged reasoner for L and a datalog
reasoner, which are both used as a “black box”.

Related techniques. The SCREECH system (Tserendorj et
al. 2008) first exploits the KAON2 reasoner (Hustadt, Motik,
and Sattler 2007) to rewrite a SHIQ ontology into dis-
junctive datalog while preserving atomic queries, and then
transforms ∨ into ∧; the resulting over-approximation can
be used to compute upper bound query answers. However,
this technique is restricted to SHIQ ontologies and atomic
queries; furthermore, the set of rules obtained from KAON2
can be expensive to compute, as well as of exponential size.
Both the QUILL system (Pan, Thomas, and Zhao 2009)
and the work of (Wandelt, Möller, and Wessel 2010) under-
approximate the ontology into OWL 2 QL; however, neither
approximation is independent of both query and data, and
using OWL 2 QL increases the chances that the approxi-
mated ontology will be unsatisfiable.

The SHER system uses summarisation (see Section 6 for
details) to efficiently compute an upper bound answer, with

exact answers then being computed via successive relax-
ations (Dolby et al. 2007; 2009). The technique has been
shown to be scalable in practice, but it is only known to be
applicable to SHIN and atomic queries, and is less mod-
ular than our approach. In contrast, our approach can prof-
itably exploit the summarisation technique, and could even
improve scalability for the hardest queries by replacing Her-
miT with SHER when the extracted fragment is SHIN .

4 Tightening Lower Bounds
A direct way to compute lower bound answers given K and
q is to select the datalog fragment L(K) of K and compute
cert(q,L(K)) using the datalog engine. If K is an OWL 2
knowledge base, however, it is possible to further exploit
the datalog engine to compute a larger set of lower bound
answers. To this end, of particular interest is the combined
approach introduced to handle query answering in ELHOr⊥
(Stefanoni, Motik, and Horrocks 2013)—a logic that cap-
tures most of OWL 2 EL. Given an ELHOr⊥ knowledge
baseK′ and a query q, the combined approach first computes
the upper bound datalog program U(K′) and the correspond-
ing answers cert(q,U(K′)). A subsequent filtering step Φ,
which is efficiently implementable, guarantees to eliminate
all spurious tuples; the resulting answer Φ(cert(q,U(K′)))
is thus sound and complete w.r.t. q and K′.

The combined approach is clearly compatible with ours.
Given an OWL 2 knowledge base K and query q, the pro-
cedure we use consists of the following steps. First, simi-
larly to (Zhou et al. 2013a), we select the datalog fragment
K1 = L(K), and compute the materialisation Mat(K1) us-
ing the datalog engine. Second, we select the subsetK2 ofK
corresponding to ELHOr⊥ axioms and Skolemise existential
quantifiers to constants to obtain U(K2). Then, we further
compute the answers cert(q,U(K2) ∪ Mat(K1)). Finally,
we apply the aforementioned filtering step Φ to obtain the
final set of lower bound answers. Note that K1 and K2 are
neither disjoint nor contained within each other.

The ELHOr⊥ fragment for our running exampleKex con-
sists of axioms T1, T2, T4 and T6, and the resulting new
lower bound answer of qex is the set {Dan,Rob}.

5 Computing Relevant Fragments
If lower and upper bound answers coincide, and U(K) does
not entail the nullary atom ⊥, then we have fully answered
the query q. Otherwise, we consider the remaining candidate
answers S and compute a (hopefully small) fragment of K
that is sufficient to determine whether K is satisfiable, as
well as whether each tuple in S is indeed an answer to q.

The Horn Case (Zhou et al. 2013b) propose an algorithm
for computing such a fragment for the specific case whereK
is Horn. The algorithm proceeds in two steps. First, if U(K)
is found to entail ⊥, the algorithm computes a fragment K⊥
of K. If K is found satisfiable, then the algorithm computes
K[q,S] for the relevant candidate answers S and checks each
of them using the fully-fledged reasoner. The relevant frag-
ment extraction is done by an inspection of all SLD proofs
in U(K) of ⊥ (for the first step) and each answer in S (for
the second step). The two fragments are defined as follows.

Table 1: An SLD proof of qex(Rob) in U(Kex)

b(R, y) ∧W (y)
M(R) ∧W (y) by U6

S(R) ∧W (c1) by U3
3

W (c1) by D2

S(x) ∧m(x, c1) by L4

b(R, c2) by D2

M(R) by U6

S(R) by L2

� by D2

Definition 1. Let K be a knowledge base, q(x) be a query,
and S be a set of tuples. Then K⊥ (resp. K[q,S]) is the set of
all α ∈ K for which there exists β ∈ U(α) involved in an
SLD proof of ⊥ (resp. Q(a), for some a ∈ S) in U(K).

Consider the SLD proof of qex(Rob) in U(Kex) presented
in Table 1, where predicates and constants are abbreviated
to their first letters. By Definition 1, T2, T4, T6, and D2 are
included inKex[qex,{Rob}], which will entail qex(Rob). Note
that, in general we need to consider all proofs of qex(Rob)
in U(Kex), since U(Kex) overapproximates Kex.

This technique is, however, only complete for Horn
knowledge bases. Indeed, recall that Jo ∈ cert(qex,Kex),
and note that every fragment of Kex that entails qex(Jo)
must include rule T5. According to Definition 1, K[q,{Jo}]
will include T5 if and only if L5 is used in an SLD proof of
qex(Jo) in U(Kex). However, no such proof will involveL5,
since the goal qex(Jo) does not involve ⊥, and there is no
way of eliminating ⊥ from a goal using the rules in U(Kex)
since they do not contain ⊥ in their bodies.

The General Case We show that this technique can be ex-
tended to the general case by taking into account the inter-
action between non-Horn rules and rules with⊥ in the head.
In particular, we show that extending K[q,S] with K⊥ when
checking candidate answers suffices to ensure completeness.

Theorem 1. LetK be a knowledge base, q(x) a conjunctive
query, and S a set of tuples. Then, K is satisfiable iff K⊥ is
satisfiable; furthermore, if K is satisfiable, then,

K |= q(a) iff K[q,S] ∪ K⊥ |= q(a) for each a ∈ S.

Consider the proofs of ⊥ and qex(Jo) presented in Ta-
ble 2. According to Definition 1, {T3, . . . , T6, D5, D6} is a
subset ofK⊥∪K[qex,{Jo}], and, hence, one can readily check
that qex(Jo) is entailed by K⊥ ∪ K[qex,{Jo}].

The proof of Theorem 1 is involved, and details are de-
ferred to our online appendix. Nonetheless, we sketch the ar-
guments behind the proof. A first observation is that, w.l.o.g.
we can restrict ourselves to the case where q is atomic.

Lemma 1. Let K be a knowledge base, q(x) = ∃yϕ(x,y)
be a conjunctive query, S be a set of tuples, Q be a fresh
predicate, and let K′ = K[q,S] ∪ K⊥, then

K′ |= q(a) iff K′ ∪ {ϕ(x,y)→ Q(x)} |= Q(a)

Table 2: SLD proofs in U(Kex) of ⊥ and qex(Jo)

⊥ b(J, y) ∧W (y)
T (x) ∧ b(x, y) ∧M(y) by L5 M(J) ∧W (c2) by U6

b(J, y) ∧M(y) by D6 W (c2) by D5

M(J) ∧M(c2) by U6 S(x) ∧m(x, c2) by L4

M(c2) by D5 M(x) ∧m(x, c2) by U1
3

M(x) by U3
3 b(J, c2) by D5

� by D5 M(J) by U6

� by D5

The crux of the proof relies on the following properties of
the transformation Ξ (the step in the definition of U which
splits each non-Horn clause C into different Horn clauses).
Lemma 2. Let N be a set of first-order clauses. Then:

• if C ∈ N participates in a refutation in N , then every
C ′ ∈ Ξ(C) is part of an SLD proof of ⊥ in Ξ(N);

• if C ∈ N participates in a resolution proof in N of an
atomic query Q(a), then each C ′ ∈ Ξ(C) participates in
an SLD proof of ⊥ or Q(a) in Ξ(N).

Thus, by Lemma 2, each resolution proof in a set of
clauses N can be mapped to SLD proofs in Ξ(N) that
“preserve” the participating clauses. The following lemma,
which recapitulates results shown in (Zhou et al. 2013a), al-
lows us to restate Lemma 2 for Ψ ◦ Ξ instead of Ξ.
Lemma 3. LetH be a set of first-order Horn clauses, Q(x)
be an atomic query, and a be a tuple of constants. If a clause
C participates in an SLD proof of Q(a) in H, then Ψ(C)
participates in an SLD proof of Q(a) in Ψ(H).

With these Lemmas in hand, we can exploit refutational
completeness of resolution and the entailment preservation
properties of Skolemisation to show Theorem 1.

Fragment Computation The computation of the relevant
fragments requires a scalable algorithm for “tracking” all
rules and facts involved in SLD proofs for datalog programs.
We present a novel technique that delegates this task to the
datalog engine itself. The main idea is to extend the data-
log program with additional rules that are responsible for the
tracking; in this way, relevant rules and facts can be obtained
directly from the materialisation of the modified program.
Definition 2. Let K be a datalog knowledge base and let F
be a set of facts in Mat(K). Then, ∆(K, F) is the datalog
program containing the rules and facts given next:

• each rule and fact in K;
• a fact P̄ (a) for each fact P (~a) in F ;
• the following rules for each rule r ∈ K of the form
B1(x1), . . . , Bm(xm)→ H(x), and every 1 ≤ i ≤ m:

H̄(x) ∧B1(x1) ∧ . . . , Bm(xm)→ S(cr) (1)

H̄(x) ∧B1(x1), . . . ∧Bm(xm)→ B̄i(xi) (2)

where cr is a fresh constant for each rule r, and S is a
globally fresh predicate.

The auxiliary predicates P̄ are used to record facts in-
volved in proofs; in particular, if P̄ (~c) is contained in

Mat(∆(K, F)), we can conclude that P (~c) participates in
an SLD proof in K of a fact in F . Furthermore, each rule
r ∈ K is represented by a fresh constant cr, and S is a fresh
predicate that is used to record rules ofK involved in proofs.
In particular, if S(cr) is contained in Mat(∆(K, F)), we
can conclude that rule r participates in an SLD proof in K
of a fact in F . The additional rules (1) and (2) are responsi-
ble for the tracking and make sure that the materialisation of
∆(K, F) contains the required information. Indeed, if there
is an instantiationB1(a1)∧ . . .∧Bm(am)→ H(a) of a rule
r ∈ ∆, then, by virtue of (1), cr will be added to S, and, by
virtue of (2), each B̄i(ai), for 1 ≤ i ≤ m, will be derived.
Correctness is established as follows.
Theorem 2. Let K be a datalog knowledge base and let F
be a set of facts in Mat(K). Then, a fact P (a) (resp. a rule
r) in K participates in an SLD proof of some fact in F iff
P̄ (a) (resp. S(cr)) is in Mat(∆(K, F)).

6 Summarisation and Answer Dependencies
Once the relevant fragment has been computed, we still need
to check, using the fully-fledged reasoner, whether it entails
each candidate answer. This can be computationally expen-
sive if either the fragment is large and complex, or there are
many candidate answers to verify.

Data Summarisation To address these issues, we first ex-
ploit summarisation techniques (Dolby et al. 2007) to effi-
ciently prune candidate answers. The main idea behind sum-
marisation is to “shrink” the data in a knowledge base by
merging all constants that instantiate the same unary pred-
icates. Since summarisation is equivalent to extending the
knowledge base with equality assertions between constants,
the summarised knowledge base entails the original one by
the monotonicity of first-order logic.
Definition 3. Let K be a knowledge base. A type T is a set
of unary predicates; for a constant a in K, we say that T =
{A | A(a) ∈ K} is the type for a. Furthermore, for each type
T , let cT be a globally fresh constant uniquely associated
with T . The summary function over K is the substitution σ
mapping each constant a in K to cT , where T is the type for
a. Finally, the knowledge base σ(K) obtained by replacing
each constant a in K with σ(a) is called the summary of K.

By summarising a knowledge base in this way, we thus
overestimate the answers to queries (Dolby et al. 2007).
Proposition 3. Let K be a knowledge base, and let σ be the
summary function overK. Then, for every conjunctive query
q we have σ(cert(q,K)) ⊆ cert(σ(q), σ(K)).

Summarisation can be exploited to detect spurious an-
swers in S: if a candidate answer is not in cert(σ(q), σ(K)),
then it is not in cert(q,K). Since summarisation can signif-
icantly reduce the size of a knowledge base, we can effi-
ciently detect non-answers even if checking each of them
over the summary requires calling the OWL reasoner.
Corollary 1. Let K be a knowledge base, let q be a query,
let S be a set of tuples, and let K′ = K[q,S] ∪ K⊥. Fur-
thermore, let σ be the summary function over K′. Then,
σ(K′) 6|= σ(q(a)) implies K 6|= q(a) for each a ∈ S.

Data DL Axioms Facts
LUBM(n) SHI 93 105n

UOBM−(n) SHIN 314 2× 105n
FLY SRI 144,407 6,308

DBPedia+ SHOIN 1,757 12,119,662
NPD SHIF 819 3,817,079

Table 3: Statistics for test data

Strategy Solved |Univ| tavg.
RL Bounds 14 1000 10.7

+ EL Lower Bound 22 1000 7.0
+ Sum, Dep 24 100 41.9

Table 4: Result for LUBM

Exploiting dependencies between answers In this last
step, we try to further reduce the calls to the fully-fledged
reasoner by exploiting dependencies between the candidate
answers in S. Consider tuples a and b in S and the datasetD
in the relevant fragment K[q,S] ∪ K⊥; furthermore, suppose
we can find an endomorphism h of D in which h(a) = b.
If we can determine (by calling the fully-fledged reasoner)
that b is a spurious answer, then so must be a; as a result,
we no longer need to call the reasoner to check a. We exploit
this idea to compute a dependency graph having candidate
answer tuples as nodes and an edge (a,b) whenever an en-
domorphism in D exists mapping a to b. Computing endo-
morphisms is, however, a computationally hard problem, so
we have implemented a sound (but incomplete) greedy algo-
rithm that allows us to approximate the dependency graph.

7 Evaluation
We have implemented a prototype based on RDFox and Her-
miT (v. 1.3.8). In our experiments we used the LUBM and
UOBM benchmarks, as well as the Fly Anatomy ontology,
DBPedia and NPD FactPages (their features are summarised
in Table 3). Data, ontologies, and queries are available on-
line.1 We compared our system with Pellet (v. 2.3.1) and
TrOWL (Thomas, Pan, and Ren 2010) on all datasets. While
Pellet is sound and complete for OWL 2, TrOWL relies
on approximate reasoning and does not provide correctness
guarantees. Tests were performed on a 16 core 3.30GHz In-
tel Xeon E5-2643 with 125GB of RAM, and running Linux
2.6.32. For each test, we measured materialisation times for
upper and lower bound, the time to answer each query, and
the number of queries that can be answered using different
techniques. All times are in seconds.

LUBM Materialisation is fast on LUBM (Guo, Pan, and
Heflin 2005): it takes 274s (286s) to materialise the basic
lower (upper) bound entailments for LUBM(1000). These
bounds match for all 14 standard LUBM queries, and we
have used 10 additional queries for which this is not the
case; we tested our system on all 24 queries (see Table 4
for a summary of the results). The refined lower bound was

1http://www.cs.ox.ac.uk/isg/people/yujiao.zhou/#resources

Strategy Solved |Univ| tavg.
RL Bounds 9 500 5.8

+ EL Lower Bound 12 500 9.7
+ Summarisation 14 60 40.2
+ Dependencies 15 1 2.7

Table 5: Result for UOBM−

materialised in 307s, and it matches the upper bound for 8
of the 10 additional queries; thus, our system could answer
22 of the 24 queries over LUBM(1000) efficiently in 11s
on average.2 For the remaining 2 queries, we could scale to
LUBM(100) in reasonable time. On LUBM(100) the gaps
contain 29 and 14 tuples respectively, none of which were
eliminated by summarisation; however, exploiting depen-
dencies between gap tuples reduced the calls to HermiT to
only 3 and 1 respectively, with the majority of time taken
in extraction (avg. 86s) and HermiT calls (avg. 384.7s). On
LUBM(1000), Pellet ran out of memory. For LUBM(100), it
took on average 8.2s to answer the standard queries with an
initialisation overhead of 388s. TrOWL timed out after 1h
on LUBM(100).

UOBM UOBM is an extension of LUBM (Ma et al. 2006).
Query answering over UOBM requires equality reasoning
(e.g., to deal with cardinality constraints), which is not na-
tively supported by RDFox,3 so we have used a slightly
weakened ontology UOBM− for which equality is not re-
quired. Materialisation is still fast on UOBM−(500): it takes
305s (356s) to materialise the basic lower (upper) bound en-
tailments. We have tested the 15 standard queries (see Table
5). The basic lower and upper bounds match for 9 queries,
and this increases to 12 when using our refined lower bound
(the latter took 312s to materialise); our system is efficient
for these queries, with an avg. query answering time of less
than 10s over UOBM−(500). For 2 of the remaining queries,
summarisation prunes all candidate answers. Avg. times for
these queries were under 40s for UOBM−(60). For the one
remaining query, summarisation rules out 6245 among 6509
answers in the gap, and the dependency analysis groups all
the remaining individuals. HermiT, however, takes 20s to
check the representative answer for UOBM−(1), and 2000s
for UOBM−(10). Pellet times out even on UOBM−(1).
TrOWL took 237s on average to answer 14 out of the 15
queries over UOBM−(60).4 A comparison with our system
reveals that TrOWL answers may be neither sound nor com-
plete for most test queries.

Fly Anatomy Ontology Fly Anatomy is a complex ontol-
ogy, rich in existential axioms, and including a dataset with
over 6,000 facts. We tested it with five queries provided by
the developers the ontology. It took 1.7s (5.9s) to materialise
lower (upper) bound entailments. The basic lower bounds
for all queries are empty, whereas the refined lower bounds
(which take 5.7s to materialise) match with the upper bound

2Avg. query answering times measured after materialisation.
3RDFox axiomatises equality as a congruence relation.
4An exception is reported for the remaining query.

in all cases; as a result, we can answer the queries in 0.1s on
average. Pellet fails to answer queries given a 1h timeout,
and TrOWL returns only empty answers.

DBPedia+ In contrast to Fly, the DBPedia dataset is rel-
atively large, but the ontology is simple. To provide a more
challenging test, we have used the LogMap ontology match-
ing system (Jiménez-Ruiz et al. 2012) to extend DBPedia
with the tourism ontology which contains both disjunctive
and existential axioms. Since the tested systems report errors
on datatypes, we have removed all axioms and facts involv-
ing datatypes. It takes 37.2s (40.7s) to materialise the basic
lower (upper) bound entailments. The upper bound was un-
satisfiable and it took 55.2s to check satisfiability of the K⊥
fragment. We queried for instances of all 441 atomic con-
cepts. Bounds matched in 439 cases (using the refined lower
bound), and these queries were answered in 0.3s on aver-
age. Summarisation filtered out all gap tuples for the other
2 queries; the answer time for these was 58s. Pellet takes
280.9s to initialise and answers each query in an average
time of 16.2s. TrOWL times out after 1h.

NPD FactPages The NPD FactPages ontology describes
petroleum activities on the Norwegian continental shelf. The
ontology is not Horn, and it includes existential axioms.
As in the case of DBPedia, we removed axioms involving
datatypes. Its dataset has about 4 million triples; it takes 8s
(10s) to materialise the lower (upper) bound entailments.
The upper bound is unsatisfiable, and it took 60s to check
satisfiability of K⊥. We queried for the instances of the 329
atomic concepts, and could answer all queries using a com-
bination of lower and upper bounds and summarisation in 5s
on average. Queries with matching bounds (294 out of 329)
could be answered within 0.035s. Pellet took 127s to ini-
tialise, and average query answering time was 3s. TrOWL
took 1.3s to answer queries on average; answers were com-
plete for 320 out of the 329 queries.

8 Discussion
We have proposed an enhanced hybrid approach for query
answering over arbitrary OWL 2 ontologies. The approach
integrates scalable and complete reasoners to provide pay-
as-you-go performance: 772 of the 814 test queries could
be answered using highly scalable lower and upper bound
computations, 39 of the remaining 42 queries yielded to
scalable extraction and summarisation techniques, and even
for the remaining 3 queries our fragment extraction and de-
pendency techniques greatly improved scalability. Our ap-
proach is complementary to other optimisation efforts, and
could immediately benefit from alternative techniques for
efficiently computing lower bounds and/or a more efficient
OWL reasoner. Furthermore, our technical results are very
general, and hold for any language L captured by gener-
alised rules and over which we want to answer queries; our
only assumption is the availability of a fully-fledged query
engine for L and one for datalog, both used as a “black box”.

There are still many possibilities for future work. For the
immediate future, our main focus will be improving the frag-
ment extraction and checking techniques so as to improve
scalability for the hardest queries.

Acknowledgements
This work was supported by the Royal Society, the EPSRC
projects Score!, Exoda, and MaSI3, and the FP7 project
OPTIQUE.

References
Bachmair, L., and Ganzinger, H. 2001. Resolution theorem
proving. In Handbook of Automated Reasoning. Elsevier.
19–99.
Bishop, B.; Kiryakov, A.; Ognyanoff, D.; Peikov, I.; Tashev,
Z.; and Velkov, R. 2011. OWLim: A family of scalable
semantic repositories. J. of Web Semantics 2(1):33–42.
Cuenca Grau, B.; Motik, B.; Stoilos, G.; and Horrocks, I.
2012. Completeness guarantees for incomplete ontology
reasoners: Theory and practice. J. of Artificial Intelligence
Research 43(1):419–476.
Dolby, J.; Fokoue, A.; Kalyanpur, A.; Kershenbaum, A.;
Schonberg, E.; Srinivas, K.; and Ma, L. 2007. Scalable se-
mantic retrieval through summarization and refinement. In
Proc. of the 22nd International Joint Conference on Artifi-
cial Intelligence.
Dolby, J.; Fokoue, A.; Kalyanpur, A.; Schonberg, E.; and
Srinivas, K. 2009. Scalable highly expressive reasoner
(SHER). J. of Web Semantics 7(4):357 – 361.
Gallier, J. H. 1985. Logic for computer science: foundations
of automatic theorem proving. Harper & Row Publishers,
Inc.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: A benchmark
for OWL knowledge base systems. J. of Web Semantics 3(2-
3):158–182.
Hustadt, U.; Motik, B.; and Sattler, U. 2007. Reasoning in
description logics by a reduction to disjunctive Datalog. J.
of Automated Reasoning 39(3):351–384.
Jiménez-Ruiz, E.; Cuenca Grau, B.; Zhou, Y.; and Horrocks,
I. 2012. Large-scale interactive ontology matching: Algo-
rithms and implementation. In Proc. of 20th European Con-
ference on Artificial Intelligence.
Kollia, I., and Glimm, B. 2013. Optimizing SPARQL query
answering over ontologies. J. of Artificial Intelligence Re-
search 48:253–303.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G.; Pan, Y.; and Liu, S. 2006.
Towards a complete OWL ontology benchmark. The Seman-
tic Web: Research and Applications 125–139.
Manola, F.; Miller, E.; and McBride, B. 2004. RDF Primer.
W3C recommendation 10:1–107.
Möller, R.; Neuenstadt, C.; Özgür L. Özçep; and Wandelt,
S. 2013. Advances in accessing big data with expressive on-
tologies. In Proc. of the Joint German/Austrian Conference
on Artificial Intelligence, 118–129.
Motik, B.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; Fokoue,
A.; and Lutz, C. 2009a. OWL 2 Web Ontology Language
Profiles. W3C Recommendation.
Motik, B.; Patel-Schneider, P. F.; Parsia, B.; Bock, C.; Fok-
oue, A.; Haase, P.; Hoekstra, R.; Horrocks, I.; Ruttenberg,
A.; Sattler, U.; et al. 2009b. OWL 2 web ontology language:

Structural specification and functional-style syntax. W3C
recommendation 27:17.
Motik, B.; Nenov, Y.; Piro, R.; Horrocks, I.; and Olteanu,
D. 2014. Parallel materialisation of datalog programs in
centralised, main-memory RDF systems. In Proc. of the 28th
AAAI Conference on Artificial Intelligence.
Motik, B.; Shearer, R.; and Horrocks, I. 2009. Hypertableau
reasoning for description logics. J. of Artificial Intelligence
Research 36(1):165–228.
Pan, J.; Thomas, E.; and Zhao, Y. 2009. Completeness guar-
anteed approximations for OWL-DL query answering. J. of
Description Logic 477.
Sirin, E.; Parsia, B.; Cuenca Grau, B.; Kalyanpur, A.; and
Katz, Y. 2007. Pellet: A practical OWL-DL reasoner. J. of
Web Semantics 5(2):51–53.
2013. SPARQL 1.1 Overview. W3C Recom-
mendation. Available at http://www.w3.org/TR/
sparql11-overview/.
Stefanoni, G.; Motik, B.; and Horrocks, I. 2013. Introduc-
ing nominals to the combined query answering approaches
for EL. In Proc. of the 27th AAAI Conference on Artificial
Intelligence.
Thomas, E.; Pan, J. Z.; and Ren, Y. 2010. TrOWL: Tractable
owl 2 reasoning infrastructure. In Proc. of the 7th Extended
Semantic Web Conference.
Tserendorj, T.; Rudolph, S.; Krötzsch, M.; and Hitzler, P.
2008. Approximate OWL-reasoning with Screech. In Proc-
cedings of the 2nd International Conference on Web Rea-
soning and Rule Systems.
Urbani, J.; Van Harmelen, F.; Schlobach, S.; and Bal, H.
2011. QueryPIE: Backward reasoning for OWL Horst over
very large knowledge bases. In Proc. of the 10th Interna-
tional Semantic Web Conference.
Urbani, J.; Kotoulas, S.; Maassen, J.; van Harmelen, F.; and
Bal, H. 2012. WebPIE: A web-scale parallel inference en-
gine using MapReduce. J. of Web Semantics 10(1).
Wandelt, S.; Möller, R.; and Wessel, M. 2010. Towards
scalable instance retrieval over ontologies. Int. J. Software
and Informatics 4(3):201–218.
Wu, Z.; Eadon, G.; Das, S.; Chong, E. I.; Kolovski, V.; An-
namalai, M.; and Srinivasan, J. 2008. Implementing an in-
ference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In Proc. of the 24th International Confer-
ence on Data Engineering.
Zhou, Y.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; and Baner-
jee, J. 2013a. Making the most of your triple store: Query
answering in OWL 2 using an RL reasoner. In Proc. of the
22nd International World Wide Web Conference.
Zhou, Y.; Nenov, Y.; Cuenca Grau, B.; and Horrocks, I.
2013b. Complete query answering over horn ontologies us-
ing a triple store. In Proc. of the 12th International Semantic
Web Conference.

A Correctness of Fragment Extraction
We will now show that the relevant subsets extraction is in fact sound and complete for any OWL 2 ontologies by proving that
Theorem 1 is correct. We first look at several definitions that we will used later on.

Definition 4. With B we denote a resolution calculus, consisting of the following rules:

C ∨A D ∨ ¬B
Cσ ∨Dσ

(Resolution)

where σ = MGU(A,B), the clauses C ∨A and D ∨ ¬B are called the premises, and Cσ ∨Dσ is the called the conclusion of
the resolution step.

C ∨A ∨B
Cσ ∨Aσ

(Factoring)

where σ = MGU(A,B) and the clause Cσ ∨Aσ is called the conclusion of the factoring step.

Definition 5. Let Γ be a set of first-order clauses. A resolution derivation of a goal clause G in Γ is a sequence of clauses
H1, . . . ,Hl that satisfies the following conditions.

1. Hl = G.
2. For each 1 ≤ i ≤ l, Hi is the conclusion of an inference by B from premises in Γ ∪ {H1, . . . ,Hi−1}. If a premise is
Hp ∈ {H1, . . . ,Hi−1}, Hi is called a successor of Hp.

3. Every Hi has at least one successor in the derivation for each i < l.

Particularly, a refutation is a derivation with the empty clause in the end. The support of a derivation sup(G1, . . . , Gl) is
defined as the set of clauses in Γ that have been used to derive a clause Gi, for some 1 ≤ i ≤ l.
Definition 6. Let Γ be a set of first-order clauses, an SLD proof of a goal G in Γ is a sequence of clauses

G0 = ¬G C1 G1 . . . Gl−1
Cl Gl

where Gl is the empty clause and Ci ∈ Γ and each Gi+1 is the conclusion of a resolution step from Gi and Ci+1.

Obviously, there is a one to one correspondence between the SLD proofs and the SLD proofs defined in the preliminaries,
where Ci is from the clauses that corresponds to the datalog rules and each goal clause here is a negation of the goal there. We
will use the new definition in the appendix.

From Lemma 1 it follows that we only need to show theorem in case of atomic queries. So we restrict ourselves to atomic
queries from now on.

Theorem 1. Let K be a knowledge base, q(x) a conjunctive query, and S a set of tuples. Then, K is satisfiable iff K⊥ is
satisfiable; furthermore, if K is satisfiable, then,

K |= q(a) iff K[q,S] ∪ K⊥ |= q(a) for each a ∈ S.

Proof. The “if” direction for the above two claims is trivial due to monotonicity of first-order logic. Hence, we only need to
show the “only if” direction. We then prove the two claims separately.

• If K is unsatisfiable, then KΣ = Σ(K) is also unsatisfiable since Skolemisation is satisfiability-preserving. So there is a
refutation inKΣ. LetG1, . . . , Gl be a refutation inKΣ. By applying Lemma 2 and Lemma 3, for each C ∈ sup(G1, . . . , Gl),
we have that every C ′ ∈ Ψ ◦Ξ(C) is in the support of an SLD proof of ⊥ in Ψ ◦Ξ(KΣ). So sup(G1, . . . , Gl) ⊆ Σ(K⊥) and
hence Σ(K⊥) is unsatisfiable, which is equisatisfiable with K⊥.

• If K is satisfiable, then KΣ = Σ(K) is satisfiable. For each a ∈ S s.t. K |= q(a), we also have KΣ |= q(a). Then q(a) is
derivable by B in KΣ. Assume G1, . . . , Gl is a resolution derivation of q(a) in KΣ. Similarly, by applying Lemma 2 and
Lemma 3, for every C ∈ sup(G1, . . . , Gl), we have that C ′ ∈ Ψ ◦ Ξ(C) is in the support of an SLD proof of ⊥ or q(a)
in Ψ ◦ Ξ(C). So sup(G1, . . . , Gl) ⊆ Σ(K[q,S] ∪ K⊥). Then Σ(K[q,S] ∪ K⊥) |= q(a), i.e. Σ(K[q,S] ∪ K⊥ ∪ {¬q(a)}) is
unsatisfiable. So K[q,S] ∪ K⊥ ∪ {¬q(a)} is unsatisfiable, and hence K[q,S] ∪ K⊥ |= q(a).

In the following proof we will use Lemma 4, which was shown in (Gallier 1985).

Lemma 4. Let KH be a set of first-order Horn clauses. If there is a resolution derivation N1, . . . , Nl of a fact G in KH , then
there is an SLD proof of G in KH of the form G0 = ¬G C1 G1 . . . Gl−1

Cl Gl s.t. sup(N1, . . . , Nl) = {C1, . . . , Cl}.
Lemma 2. Let N be a set of first-order clauses. Then:

• if C ∈ N participates in a refutation in N , then every C ′ ∈ Ξ(C) is part of an SLD proof of ⊥ in Ξ(N);

• if C ∈ N participates in a resolution proof in N of an atomic query Q(a), then each C ′ ∈ Ξ(C) participates in an SLD
proof of ⊥ or Q(a) in Ξ(N).

Proof. According to Lemma 4, it suffices to prove the following two claims.

(C1) if C ∈ N participates in a refutation in N , then every C ′ ∈ Ξ(C) is part of a resolution derivation of ⊥ in Ξ(N);
(C2) if C ∈ N participates in a resolution proof in N of an atomic query Q(a), then each C ′ ∈ Ξ(C) participates in a
resolution derivation of ⊥ or Q(a) in Ξ(N).

We next prove (C1). Let G1, . . . , Gl be a refutation inN . We construct H1, . . . ,Hl a sequence of sets of clauses as follows.

• If Gi is the conclusion of a resolution step from two clauses C,D with the substitution σ on the literal L in C and the literal
¬L in D, then we define Si(X) as follows for X = C or X = D.

Si(X) ,

{
Ξ(X) X ∈ N
Hj X = Gj for some 1 ≤ j < i

Assume that Si(C) = {C1, . . . , Cs, Cs+1, . . . , Cs′} and Si(D) = {D1, . . . , Dt, Dt+1, . . . , Dt′} with C1σ, . . . , Csσ con-
taining L and D1σ, . . . ,Dtσ containing ¬L.

Hi , {conclusion(Ciσ,Djσ) | 1 ≤ i ≤ s, 1 ≤ j ≤ t} ∪ {Cs+1σ, . . . , Cs′σ,Dt+1σ, . . . ,Dt′σ}

• If Gi is the conclusion of a factoring step from the clause C with a substitution σ, Hi , Si(C)σ.

We further define S− to be the result of removing all ⊥s in the set of clauses S.

Property (Aggregation Property). For each 1 ≤ i ≤ l that:

(A1) Gi =
∨
H−i ;

(A2) X =
∨

(Si(X))− for a premise X .

Proof. We proof the case by induction on the index i.

• Base case: i = 1.
In this case, all premises come fromN , and hence S1(C) = Ξ(C) for any premise C. So (A2) holds due to the definition of
Ξ(·). We consider the following cases for (A1).
– If G1 is the conclusion of a resolution step from two clauses C,D from N , S1(C) = Ξ(C) and S1(D) = Ξ(D). Let L′

be a literal from C or D.
∗ If L′ = L or L′ = ¬L, L′ doesn’t appear in G1 because G1 is the conclusion by a resolution step on L′. According to

the definition of H1, it doesn’t appear in H1 or H−1 either.
∗ Otherwise, L′ remains in G1 and H−1 .

In addition, ⊥ doesn’t appear in G1 or H−1 . So G1 and H−1 contains exactly the same set of literals.
– If G1 is the conclusion of a factoring step from a clause C in N ,

∨
H−1 =

∨
(S1(C))−σ = Cσ = G1.

• Inductive case: for each j < i, Gi =
∨
H−i and X =

∨
(Si(X))−.

Property (A2) holds because of the definition of Ξ(·) and the induction hypothesis on (A1). For (A1) we consider the
following cases.
– If Gi is the conclusion of a resolution step from two clauses C,D with the substitution σ on the literal L in C and the

literal ¬L in D. Let L′ be a literal from Cσ or Dσ. According to (A2), L′ appears in some clauses in Si(C)σ or Si(D)σ.
∗ L′ = L or L′ = ¬L, L′ doesn’t appear in Gi because Gi is the conclusion by a resolution step on L′. According to the

definition of Hi and H−i , it doesn’t appear in Hi or H−i either.
∗ Otherwise, L′ remains in Gi and H−i .
In addition, ⊥ doesn’t appear in Gi or H−i . So Gi and H−i contains exactly the same set of literals, and thus Gi =

∨
H−i .

– If Gi is the conclusion of a factoring step from C with the substitution σ, we have that Gi = Cσ and Hi = Si(C)σ. Then
we have Gi =

∨
H−i according to (A2).

Based on the aggregation property (A1) and the fact that Gl is the empty clause, we have Hl contains only ⊥.

Property (Successor Property). For each 1 ≤ i ≤ l that every clause in Hi has at least one successor or appears in Hl.

Proof. We proceed by induction on the index i.

• Base case: i = l. The property holds trivially.
• Inductive case: for each j > i, every clause in Hj has at least one successor or appears in Hl.

If i < l, Gi has a successor Gk whose existence is guaranteed by Definition 5 for some k > i.
– Gk is the conclusion of a resolution step from Gi and C with the substitution σ on the literal L in Gi and the literal ¬L

in C. Let Hi be {D1, . . . , Dt, Dt+1, . . . , Dt′} with each clause in {D1σ, . . . ,Dtσ} contains the literal L and each in
{Dt+1, . . . , Dt′} doesn’t. According to the side aggregation property, we have Cσ =

∨
(Si(C))−σ. Since Cσ contains

¬L, so does (Si(C))−. Therefore, every clause in {D1, . . . , Dt} is able to be resolved with a clause in Si(C). So each
of them is a premise of a clause in Hk and hence they have a successor. Since Dt+1, . . . , Dt′ are copied to Hk, then the
property holds for them due to the induction hypothesis.

– If Gk is the conclusion of a factoring step from Gi with the substitution σ, Hk = Hiσ. So every clause in Hi has a success
in Hk. So the property also holds in this case.

Let C ∈ sup(G1, . . . , Gl), then it is a premise of Gk for some 1 ≤ k ≤ l. One can show as in the proof of the successor
property that every clause C ′ in Ξ(C) is either copied into Hk or has a conclusion in Hk. The successor property guarantees
that we can extract a weakened resolution derivation N1, . . . , Nl s.t. Ni ∈ Hi for each 1 ≤ i ≤ l and C ′ is a premise of Nk.
A weakened derivation means each Ni can be either a conclusion as in Definition 5 or be copied from Nj for j < i. Every
weakened derivation can be trivially rewritten into a resolution derivation by eliminating repeating clauses. Since Nl = ⊥,
N1, . . . , Nl is in fact a weakened proof of ⊥. So C ′ is in the support of a proof of ⊥ in Ξ(N). We have hence proved (C1).

Claim (C2) can be proved analogously. LetG1, . . . , Gl be a resolution derivation ofQ(a) inN . We can constructH1, . . . ,Hl

in the same way as described above. But in this case, the aggregation property implies that Hl is either Q(a) or ⊥. Let
C ∈ sup(G1, . . . , Gl), then it is a premise of Gk from N for some 1 ≤ k ≤ l. For each C ′ ∈ Ξ(C), there is a weakened
resolution derivation N1, . . . , Nl s.t. Ni ∈ Hi for each 1 ≤ i ≤ l and C ′ is a premise of Nk. So C ′ is in the support of a
refutation or a derivation of Q(a) in Ξ(N).

B Datalog-based Approach
Theorem 2. Let K be a datalog knowledge base and let F be a set of facts in Mat(K). Then, a fact P (a) (resp. a rule r) in K
participates in an SLD proof of some fact in F iff P̄ (a) (resp. S(cr)) is in Mat(∆(K, F)).

By slightly abuse of notations, for an atom A = P (t), we define Ā = P̄ (t) in the following proof.

Proof of Theorem 2. We first prove the “only if” direction. Assume that a fact P (a) (a rule r) participates in the following SLD
proof of a fact Q(c) ∈ F .

G0 = ¬Q(c)
C1,θ1 G1 . . .

Cl,θl Gl

Let θ = θ1 . . . θl. W.o.l.g. we can assume that θiθ = θ for each 1 ≤ i ≤ l. This can be obtained by renaming variables.

Property (Entailment Property). For each 1 ≤ i ≤ l, K |= (A1 ∧ . . . ∧An)θ where Gi = ¬A1 ∨ . . . ∨ ¬An.

Proof. We prove the property by induction on the index i.

• Base case: If i = l, it holds trivially.
• Inductive case: Assume the following conditions.

Gi−1 = ¬A1 ∨ . . . ∨ ¬An (3)
Ci = ¬B1(x1) ∨ . . . ∨ ¬Bm(xm) ∨H(x) (4)
θi = MGU(Ak, H(x)) (5)

Then Gi is the following clause

(¬A1 ∨ . . . ∨ ¬Ak−1 ∨ ¬B1(x1) ∨ . . .¬Bm(xm) ∨ ¬Ak+1 ∨ ¬An)θi (6)

The induction hypothesis of i ensures that K |= Giθ, we then prove that the property holds for i− 1 as well.
Note that θiθ = θ, then K |= (A1 ∧ . . . Ak−1 ∧ Ak+1 ∧ . . . ∧ An)θ and K |= (B1(x1) ∧ . . . ∧ Bm(xm))θ. Since K |= Ci,
then K |= H(x)θ. Because Akθi = H(x)θi, then K |= (A1 ∧ . . . ∧An)θ. So the property holds for i− 1 as well.

Property (Derivable Property). For each 1 ≤ i ≤ l, ∆(K, F) |= (Ā1 ∧ . . . ∧ Ān)θ where Gi = ¬A1 ∨ . . . ∨ ¬An.

Proof. We prove the property by induction on the index i.

• Base case: If i = 0, Q̄(c) ∈ ∆(K, F) and then ∆(K, F) |= Q̄(c). So the property holds.
• Inductive case: Assume we have (3), (4) and (5) hold, then Gi+1 is the clause shown in (6).

The induction hypothesis of i− 1 ensures that ∆(K, F) |= (Ā1 ∧ . . . ∧ Ān)θ, we then prove the property also holds i.
It is trivial that (¬A1 ∨ . . . ∨ ¬Ak−1 ∨ ¬B1(x1) ∨ . . .¬Bm(ym) ∨ ¬Ak+1 ∨ ¬An)θ is an instance of Gi, because θiθ = θ.
According to the induction hypothesis, we have ∆(K, F) |= (Ā1 ∧ . . . ∧ Ān)θ. So it suffices to prove that ∆(K, F) |=
(B̄1(x1) ∧ . . . ∧ B̄m(xm))θ.
The entailment property implies that K |= (B1(x1)∧ . . .∧Bm(xm))θ. So does ∆(K, F). In addition, ∆(K, F) |= Ākθ (i.e.
∆(K, F) |= H̄(x)θ). Together with the rules H̄(x) ∧B1(x1) ∧ . . . ∧Bm(xm)→ B̄j(xj) for each 1 ≤ j ≤ m in ∆(K, F),
we have ∆(K, F) |= (B̄1(x1) ∧ . . . ∧ B̄m(xm))θ.

If P (a) participates in the above SLD proof, there is a 1 ≤ i ≤ n, s.t. Ci = P (a). ThenGi−1 contains ¬E withEθi = P (a).
So the derivable property entails that ∆(K, F) |= P̄ (a), and hence P̄ (a) ∈Mat(∆(K, F)).

If a rule r participates in the above SLD proof. Assume that Ci is the corresponding clause of r of the form (4) and Gi−1

is in the form of (3). Then Gi is the clause presented in (6). Because K |= (B1(x1) ∧ . . . ∧ Bm(xm))θ, so does ∆(K, F).
In addition, the derivable property guarantees that ∆(K, F) |= Ākθ (i.e. ∆(K, F) |= H̄(x)θ). Together with the rule H̄(x) ∧
B1(x1) ∧ . . . ∧Bm(xm)→ S(cr) in ∆(K, F), we have ∆(K, F) |= S(cr), and hence S(cr) ∈Mat(∆(K, F)).

The other direction can show that if a fact P̄ (a) (a rule S(cr)) is in Mat(∆(K, F)), then there exists a hyper-resolution of
a fact Q(c) in F that involves P (a) (or r). Every such proof corresponds to a resolution proof using the same rules and facts,
and can hence be transformed using Lemma 4 into an SLD proof of q(c).

Finally, it is clear that Mat(∆(K, F)) can be computed in polynomial time because datalog evaluation is polynomial to the
size of data, and the arity of predicates in the knowledge base K is bounded.

