DEPARTMENT OF Proarams + Queries Dan Olteanu & Sebastiaan J. van Schaik
COMPUTER - ENFrame = =%
oei SCIENCE LogicBlox Probabilistic Data Big Uncertain Data (BUDA), June 2014
ENFrame
ENFrame at a glance ll
e Users write code in a subset of Python + relational queries. roorams || — el [
: o e | |+ |—)
e User code is oblivious to the probabilistic nature of the data:) ke
ENFrame interprets the code and runs it on p.robablllstlc data. 3 cvent Network rob. Computation Engine
o We already tested ENFrame on several algorithms, e.g., 52 | [reser e
k-medoids clustering and k-nearest neighbour classification : R Q= —
applied to probabilistic data representing query results. S
user programs Probabilistic | '
& queries database —
Key Technical Features of ENFrame I

e Language to express probabilistic events that capture arbitrary
correlations in the input data and in the output as induced by

Exact and Approximate Probability Computation

program.traces. | | e ENFrame can compute, e.g., the probability that two objects
e Sequential and parallel algorithms for exact and approximate are in the same cluster (k-medoids), or that an object is
prObab”iStiC COmpUtatiOn of user programs. assigned to a class (k-NN)
e Quality metric for probabilistic computation using, e.g., e Main idea: exhaustive/partial structural decomposition of an
ENFrame, naive and sampling-based methods. entire event network.
e Outcome equivalent to clustering in every possible world.
Event Language, Event Programs, and Event Network e Multiple pruning strategies for approximate probabllity
computation with error guarantees.
e Event program: e Efficient parallel computation on multi-cores.

e ENFrame’s probabilistic interpretation of the user program is

captured by events. Experimental Evaluation

e Event language:

e Event = random variables, conditioned values, Boolean Comparison of approximation algorithms for k-medoids (k = 3),
formulas over events, arithmetic operations over events. input data with positive correlations and varying number of
e Variables of type T from user program become discrete variables (v). Further experiments in [vSOF14].
random variables with pdfs over values in T. bositive correlations (lineags size | — B, absolute error o = 0.1)
* c-values: values (numbers/vectors) conditioned on events. } e
® Foranumber v and variable ¢: v 102 e 78 o/?———f___—,,::@::.:::__—__:_g_ii.T.:_T..T.T..T.@ =
c-value & ® v evaluates to v if ¢ is true, or 0 otherwise. : T - 8 = T i S 5!
e c-values can be summed and compared: P % S-S e =1
P1R@Vi+...+Pp@V, < Vi@w+...+Vy® Wy 0| ALt
e Application example: sum of distances between objects. : 18:2 =% . hiiﬁfdr_.'_ EP SRR
g 10% 20% 30% 40% 50% 60 % 70% 80% 90% 100%

e Event Network: Joint representation of interconnected events.

Fraction of points from complete IPEC data set (100% = 1300)

Example: User Program and Event Program for k-medoids Clustering

#Initialisation phase: Select k cluster medoids (centres)

1: (O, n) = loadbata/() # list and number of objects Viin0.n—1:0 = (D(oi) R 5,-
. ' = ' ' 0 — = : Cppk—1 — =
2 (k, %tér) loadParams () # rllurlnbér C.)f clustérs and 1terations M_1 — (b(Ow(O)) R O7r(0) M_1 — ¢(Ow(k—1)) X Ow(k—1)
3: M = init () # initialise medoids
4. for it in range (0, iter): # clustering iterations Vitin O..iter — 1 -

#Assignment phase: assign objects to closest medoid

5: InCl = [None] =* k . _
6: for 1 in range (0,k) : \V/I\V’I/nr(])()kn— 1 1
- I N — 1
7 InCl[1] = [None] * n . , .
il AKk=1T4: / j : / Ji
8 : for 1 in range(0,n): InClit — /\jzo [dISt(O) Iwit_1) < dISt(O) /Wit_1)]
9: InCl[1i][1l] = reduce and
10: [(dist (O[1l],M[1]) <= dist(O[1l],M[J])) for 7 1n range(0,k)])
11: InCl = breakTiesZ2 (InCl) # each object is in exactly one cluster # Encoding of breakTies?2 omitted
#Update phase: Select new cluster medoids
12: DistSum = [None] * k Viin 0. k—=1-:
13: for 1 in range(0,k): v/ in0.n—1-:
14: DistSum/[i] = [None] * n . L/:; n—1 i.p : / fo
15: for 1 in range(0,n) : DistSum,;’ = ZpZOInCIit ® dist(O', OP)
lo: DistSum/[i] [1l] = reduce_ sum/(
17: [dist (O[1l],O[p]) for p 1n range(0,n) 1f InCl[i][p]l])
18: Centre = [None] * k Viin 0. k—1-:
19: for i in range(0,k): v/in0.n—1-:
20: Centreli] = [None] » n Centrel' = A" [DistSum”’ < DistSumi’p]
21 for 1 in range(0,n): it — /\p=0 it — it
22 Centre[1][1l] = reduce_ and
23 [DistSum[i] [1] <= DistSuml[i] [p] for p in range(0,n)])
24: Centre = breakTiesl (Centre) # enforce one Centre per cluster # Encoding of breakTies?2 omitted
2o: M= [None] » & Viin 0.k —1:
20: for 1 1n range (0,k): ; n1 Iy |
27 : M[1i] = reduce_sum([O[1l] for 1 in range(0,n) if Centre[i][1l]]) Iwit _— Z/:o Centreit’ A O

Challenges Currently under Microscope

o Which additional event language constructs are needed to capture further data analysis tasks?
e Trade-off: functionality (event-based result explanation, sensitivity analysis) vs. performance (coarse events compiled to C++ code)?

[vSOF14] Sebastiaan J. van Schaik, Dan Olteanu, and Robert Fink. ENFrame: A Platform for Processing Probabilistic Data (in: EDBT 2014)

