
ENFrame = Programs + Queries
Probabilistic Data

Dan Olteanu & Sebastiaan J. van Schaik

Big Uncertain Data (BUDA), June 2014

ENFrame at a glance
• Users write code in a subset of Python + relational queries.
• User code is oblivious to the probabilistic nature of the data:

ENFrame interprets the code and runs it on probabilistic data.
• We already tested ENFrame on several algorithms, e.g.,

k -medoids clustering and k -nearest neighbour classification
applied to probabilistic data representing query results.

Key Technical Features of ENFrame

• Language to express probabilistic events that capture arbitrary
correlations in the input data and in the output as induced by
program traces.
• Sequential and parallel algorithms for exact and approximate

probabilistic computation of user programs.
• Quality metric for probabilistic computation using, e.g.,

ENFrame, naı̈ve and sampling-based methods.

Event Language, Event Programs, and Event Network

• Event program:
• ENFrame’s probabilistic interpretation of the user program is

captured by events.
• Event language:
• Event = random variables, conditioned values, Boolean

formulas over events, arithmetic operations over events.
• Variables of type T from user program become discrete

random variables with pdfs over values in T .
• c-values: values (numbers/vectors) conditioned on events.
• For a number v and variable Φ:

c-value Φ⊗ v evaluates to v if Φ is true, or 0 otherwise.
• c-values can be summed and compared:

Φ1 ⊗ v1 + . . . + Φn ⊗ vn ≤ Ψ1 ⊗ w1 + . . . + Ψm ⊗ wm
• Application example: sum of distances between objects.

• Event Network: Joint representation of interconnected events.

event
programs

x0 x1 x2 x3

φ [o0] : ∨ φ [o1] φ [o2] φ [o3] : ∧

M0 : Σ M1 : Σ

InCl0,0 : ∧ InCl1,3 : ∧InCl1,0 : ∧

Event Network Prob. Computation Engine

user programs
& queries

Probabilistic

database

+

ENFrame

in
te

rp
re

t
pr

ob
ab

ili
st

ic
al

ly

store probabilistic output
present results

Exact and Approximate Probability Computation

• ENFrame can compute, e.g., the probability that two objects
are in the same cluster (k -medoids), or that an object is
assigned to a class (k -NN).
• Main idea: exhaustive/partial structural decomposition of an

entire event network.
• Outcome equivalent to clustering in every possible world.
• Multiple pruning strategies for approximate probability

computation with error guarantees.
• Efficient parallel computation on multi-cores.

Experimental Evaluation

Comparison of approximation algorithms for k -medoids (k = 3),
input data with positive correlations and varying number of
variables (v). Further experiments in [vSOF14].

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10−3

10−2

10−1

100

101

102

103
timeout = 3600 sec.

Fraction of points from complete IPEC data set (100% = 1300)

W
a
ll
-c

lo
c
k

t
im

e
in

s
e
c
.

(
lo

g
)

Performance of lazy, eager, and hybrid approximations;
positive correlations (lineage size l = 8, absolute error ε = 0.1)

v = 10 v = 30 v = 50
lazy

eager
hybrid

Example: User Program and Event Program for k -medoids Clustering
#Initialisation phase: Select k cluster medoids (centres)

1: (O, n) = loadData() # list and number of objects
2: (k, iter) = loadParams() # number of clusters and iterations
3: M = init() # initialise medoids

4: for it in range(0,iter): # clustering iterations
#Assignment phase: assign objects to closest medoid

5: InCl = [None] * k
6: for i in range(0,k):
7: InCl[i] = [None] * n
8: for l in range(0,n):
9: InCl[i][l] = reduce_and(
10: [(dist(O[l],M[i]) <= dist(O[l],M[j])) for j in range(0,k)])
11: InCl = breakTies2(InCl) # each object is in exactly one cluster

#Update phase: Select new cluster medoids
12: DistSum = [None] * k
13: for i in range(0,k):
14: DistSum[i] = [None] * n
15: for l in range(0,n):
16: DistSum[i][l] = reduce_sum(
17: [dist(O[l],O[p]) for p in range(0,n) if InCl[i][p]])

18: Centre = [None] * k
19: for i in range(0,k):
20: Centre[i] = [None] * n
21: for l in range(0,n):
22: Centre[i][l] = reduce_and(
23: [DistSum[i][l] <= DistSum[i][p] for p in range(0,n)])
24: Centre = breakTies1(Centre) # enforce one Centre per cluster

25: M = [None] * k
26: for i in range(0,k):
27: M[i] = reduce_sum([O[l] for l in range(0,n) if Centre[i][l]])

∀i in 0..n − 1 : O i ≡ Φ(oi)⊗ ~oi
M0
−1 ≡ Φ(oπ(0))⊗ ~oπ(0); . . . ; Mk−1

−1 ≡ Φ(oπ(k−1))⊗ ~oπ(k−1)

∀it in 0..iter− 1 :

∀i in 0..k − 1 :
∀l in 0..n − 1 :

InCli ,lit ≡
∧k−1

j=0

[
dist(O l,M i

it−1) ≤ dist(O l,M j
it−1)

]
Encoding of breakTies2 omitted

∀i in 0..k − 1 :
∀l in 0..n − 1 :

DistSumi ,l
it ≡

∑n−1
p=0 InCli ,pit ⊗ dist(O l,Op)

∀i in 0..k − 1 :
∀l in 0..n − 1 :

Centrei ,l
it ≡

∧n−1
p=0

[
DistSumi ,l

it ≤ DistSumi ,p
it

]
Encoding of breakTies2 omitted

∀i in 0..k − 1 :

M i
it =

∑n−1
l=0 Centrei ,l

it ∧O l

Challenges Currently under Microscope

• Which additional event language constructs are needed to capture further data analysis tasks?
• Trade-off: functionality (event-based result explanation, sensitivity analysis) vs. performance (coarse events compiled to C++ code)?

[vSOF14] Sebastiaan J. van Schaik, Dan Olteanu, and Robert Fink. ENFrame: A Platform for Processing Probabilistic Data (in: EDBT 2014)

