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Abstract

This thesis presents two new approaches to two topics in quantum foun-
dations: Part I: The study of causal structures and higher order processes,
i.e., transformations of processes. Part II: The study of non-locality and
contextuality using effect algebras.

In Part I we give a categorical semantics for higher order causal pro-
cesses. The ‘usual’ framework of compact closed symmetric monoidal
categories is insufficient for describing higher order causality as every-
thing collapses to first order. We give a construction on a class of compact
closed categories, which we call precausal, such that the resulting category
is endowed with a type theory describing causal relations between the in-
puts and outputs of processes. The axioms of a precausal category then
make sure these causal types also correspond to higher order causality.
This way the resulting category can be seen as a category of higher order
causal processes. Since the categories used for quantum theory and prob-
ability theory are precausal, we obtain categories of higher order quan-
tum processes and higher order stochastic processes. These resulting cate-
gories have the structure of a *-autonomous category and the connectives
in such a category have natural interpretations in the causal type theory.
We use this framework to describe no-signalling and one-way signalling
processes, their multipartite generalizations such as n-combs and more
generally causal orders given by directed acyclic graphs, as well as their
duals. Some special attention is given to those processes which exhibit in-
definite causal order such as the quantum switch, the OCB W-matrix and the
classical example by Baumeler and Wolf.

In Part II we show how effect algebras can be used as a way to study
and reason about non-locality and contextuality. The standard framework
of probability theory cannot explain certain measurement results arising in
quantum mechanics as marginals of a joint probability distribution. This is
called a paradox. We give two generalizations of probability theory, using
partial monoids (in particular effect algebras) and using presheaves. The
advantage of using effect algebras is that the interval of probabilities, [0, 1],
is itself an effect algebra, which allows us to stay inside the category of ef-
fect algebras. When going to the probabilistic case (Hardy) we can still use
a partial monoid as outcome space. The paradoxes can then be described
as a non-factorization through objects corresponding to classical probabil-
ity theory (Boolean algebras and representable functors). Effect algebras
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embed in a category of presheaves and this allows us to make a connec-
tion between the two approaches using adjunctions. In particular, we are
able to relate our effect algebraic framework to the established presheaf
approach of Abramsky and Brandenburger. In a similar fashion we relate
effect algebras to test spaces. We describe explicitly the examples of Bell,
Kochen-Specker, Hardy and GHZ.
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6 CONTENTS

0.1 Introduction

Categorical quantum mechanics (CQM) is the study of quantum theory
using category theory. Interest is less focussed on aspects of single (quan-
tum) systems, but more on logical, structural and compositional questions.
This thesis does precisely this in two parts. The first part fits the approach
initiated by Abramsky and Coecke ([3] [4], [62]). We study causality, in par-
ticular higher order causality, using symmetric monoidal categories. The
second part of this thesis fits what I hope to be called the Nijmegen ap-
proach. Partial monoids and effect algebras in particular are used to de-
scribe non-locality and contextuality.

Symmetric monoidal categories (SMCs) describe process theories. Ob-
jects and morphisms describe systems and their transformations, seen as
processes. The tensor product is a way to combine systems into one. In
particular, we start with a compact closed SMC with a preferred discard-
ing effect ( ) for every object. This allows us to say when a processes is
causal; namely when it preserves the discarding process.

Φ =

This notion of causality then allows us to make precise a notion of causal
ordering for processes (Definition 1.1.1) by considering which systems can
influence which other systems. This is done via describing operational be-
haviour of processes using diagrammatic reasoning. In the special case
of one-way signalling processes, where one output system is in the causal
past of another input system, such a process can be used as a transforma-
tion of processes, rather than of systems (see Section 2.2). This strongly im-
plies that a good understanding of to the theory of higher order processes
or supermaps is needed ([25] [24]). Moreover, such processes for example
play a big role in quantum communication protocols ([47]). The standard
framework of compact closed categories allows one to easily obtain higher
order processes, however, in general these will not preserve causality (see
Section 1.2 and Example 3.1.7). This calls for a better understanding of
higher order causality. In Part I of this thesis we solve this problem by
giving a construction which turns a certain type of compact closed cat-
egory, called precausal (Definition 3.1.1), into a category of higher order
causal processes. This new category can be seen as a refinement of the old
one, by endowing objects with sets of states which we think of as general-
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ized causal states. Since the original category is compact closed, the Choi-
Jamiołkowski isomorphism (also known as process-state duality, see Sec-
tion 2.1.5) allows for sets of processes to be seen as a generalization of the
set of causal states. This way we obtain objects representing, among others,
causal processes, one-way signalling processes or no-signalling processes.
These objects can then be seen as types in a causal type theory. A process
has a certain type if and only if it is compatible with a certain causal or-
dering. Categorically, this category of higher order causal processes is ISO-
mix *-autonomous (Theorem 3.3.16). Consequently we have two monoidal
products, ⊗ and �. These coincide when we consider first order systems,
which are objects where the set of generalized causal states is precisely the
set of all causal states (see Section 4.1). However, when we consider joint
systems we find interesting results linking the connectives to causal orders.
For example:

(A( A′)⊗ (B(B′) ← no-signalling processes

(A( A′)� (B(B′) ← all causal processes

We then classify the one-way signalling processes, which lie in between
no-signalling and all causal processes. From this we turn to the abstract
characterisation of a family of higher-order processes called combs, which
have previously been studied in quantum information and foundations
([47], [24]). We give two classifications of these combs (Section 4.3). The
first is inductive, combs are processes which send combs to other combs.
The second operational, discarding the last output of a comb splits the pro-
cess into a smaller comb and a discard effect. As such, combs correspond
to processes with linear causal order. Using a pullback construction we can
then give types for all causal orders described by directed acyclic graphs
using the types of combs (Section 4.4). Interestingly enough, it has been
shown relatively recently that there exist (dual) processes which do not
conform to any predefined causal order between the input processes ([73],
[23]). Moreover, these processes allow for computational speed up ([21]
[81]). While originally formulated as a theory of quantum mechanics with
no fixed causal background, such processes even occur in the classical case
([13]). Using simple diagrammatic arguments, we show in Section 4.5 that
all these processes are instances of second order causal processes and hence
fit our framework. We use this to show that every process with indefinite
causal order is an affine combination of processes which have a fixed causal
order.

Part I is structured as follows: in Chapter 1 give an introduction to
causality, causal orders and higher order processes and discuss their phys-
ical meaning. In Chapter 2 we present the needed mathematical back-
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ground of processes theories (i.e., symmetric monoidal categories), includ-
ing *-autonomous categories. We also show how the string diagrammatic
language makes life a lot easier. Furthermore, we make precise the notion
of signalling needed to describe causal orders and show that the usual no-
tion of compact closed categories is not sufficient for our goal of talking
about higher order causality. Then in Chapter 3 we define our notion of a
precausal category (Definition 3.1.1). We show that the leading examples
of categories for quantum theory, CPM, and probability theory Mat(R+),
are indeed precausal. In the last past of this chapter we give the construc-
tion of turning a precausal category into a category of higher order causal
processes and it is shown this category is *-autonomous. Chapter 4 shows
how the newly constructed types relate to causal orders. We explicitly con-
sider linear causal orders, which correspond to combs and show how to
obtain more general causal orders via a pullback construction. We end this
chapter with a discussion on indefinite causal orders. Finally we give a
conclusion and consider some future work.

The work in this part is mostly based on the paper A categorical seman-
tics for causal structure and its extended journal version ([64], [66]), written
together with Aleks Kissinger. In turn, this is based on the work by Paulo
Perinotti [17] who gave a uniform description of higher-order quantum op-
erations in terms of generalised Choi operators. However, rather than rely-
ing on the linear structure of spaces of operators, we work purely in terms
of the *-autonomous structure and the precausal axioms, which concern
the compositional behaviour of discarding processes.

Part II concerns non-locality and causality. Incompatibility of certain
measurements can give rise to outcomes or probability distributions over
outcomes which cannot arise from a joint distribution. We call this a para-
dox. This incompatibility naturally gives rise to partial structures. Partial
monoids, in particular effect algebras, can be used to give a generaliza-
tion of probability theory which can account for this partial structure. We
consider a simple Bell scenario where two observers each have two mea-
surement settings with two possible outcomes. In this setting we can de-
fine an effect algebra E for each observer such that a morphism E → [0, 1]
describes a family of probability distributions over jointly measurable set-
tings. Taking the tensor product over these algebras we can precisely de-
scribe joint distributions with no-signalling (Proposition 8.2.2). The ‘clas-
sical’ situation where all measurements are compatible is described by a
Boolean algebra. The paradox is now formulated as a non-factorization of
a generalized probability distribution through Boolean algebras (Proposi-
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tion 8.3.7):

EA ⊗ EB

i %%

t // [0, 1]

BA ⊗ BB

/

::
(1)

Effect algebras embed fully and faithfully in a category of presheaves over
natural numbers by taking tests (Section 7.5). This leads to a new gen-
eralization of probability theory using presheaves and allows us to refor-
mulate the paradox in terms of a non-factorization of certain presheaves
through a representable presheaf. In particular, we make a connection to
the presheaf framework of Abramsky and Brandenburger ([2]) via a chain
of adjunctions which allow us to transport the paradox between effect al-
gebras and a presheaf category over measurements (Section 8.6). Replac-
ing the interval [0, 1] with other (partial) monoids allows us generalize
probabilities. Specifically, it allows us to consider possibilities as in the
Hardy paradox (Section 9.1). We give an effect algebraic formulation of
the Kochen-Specker theorem as the non-existence of a certain morphism.
Again using a chain of adjunctions to transport this paradox, this time be-
tween effect algebras and a presheaf category over commutative subalge-
bras of the bounded operators on a Hilbert space, we link this formulation
to the presheaf formulation of Hamilton, Isham and Butterfield ([48], Sec-
tion 9.1.2). Finally, we consider an adjunction between effect algebras and
test spaces ([44],[45]). We use this adjunction to transport the Bell paradox
and the GHZ paradox.

As the nature of non-locality and contextuality is still very mysterious
and quantum mechanics is notoriously counter intuitive, it is important
to have good mathematical tools to do reasoning with, especially since
non-locality and contextuality give rise to computational speed-ups ([51],
[16]). Effect algebras provide such a tool. The adjunctions between effect
algebras and other categories ensure that non-factorization results can be
transported between these categories (Lemma 8.29). At the same time, the
algebraic nature of effect algebras gives a clear conceptual interpretation
of what is going on. A further advantage comes from cohomology. Simply
stated, presheaves deal with ‘glueing together’ local pieces of information.
The paradoxes now arise from local pieces of information which cannot be
glued together globally. Cohomology tries to find obstructions to explain
why this global gluing is impossible. This is used to study non-locality
and contextuality in the presheaf framework ([1], [5]). However, in this
approach it is possible to obtain ‘false positives’. There is a sufficient con-
dition for contextuality, however, it is not necessary ([5])). While this can be
solved ([20]), cohomology for effect algebras, developed by Frank Roumen
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in his PhD thesis [79], does not have such false positives.

Part II is structured as follows: Chapter 6 gives a quick overview of
non-locality and contextuality on the hand of the Bell and Kochen-Specker
theorems. In Chapter 7 we give the needed mathematical background on
partial monoids, particularly effect algebras, and presheaves. We show
that effect algebras embed in a presheaf category and use this to give two
generalizations of probability theory. In Chapter 8 we show how prob-
ability tables as in Bell scenarios arise as effect algebra morphisms on a
tensor product and discuss how tables can be realized. We rephrase the
paradox in terms of presheaves and link the effect algebraic formulation
to the Abramsky Brandenburger approach using adjunctions to transport
the paradox. Chapter 9 shows how other paradoxes have an effect alge-
braic formulation and link them to existing formulations. We do this for
the Hardy paradox, Kochen-Specker theorem and GHZ scenario. The lat-
ter is linked to the test spaces approach via an adjunction. Finally we give
a conclusion and consider some future work.

The work in this second part is mostly based on the paper Effect Al-
gebras, Presheaves, Non-locality and Contextuality and its extended journal
version ([87], [86]), written together with Sam Staton.

0.2 Prerequisites

Throughout this thesis we will assume a basic working knowledge of cate-
gory theory (see for example [10] or [71]). This includes a basic understand-
ing of (co)limits, in particular (co)products and pullbacks. We also assume
a basic understanding of adjunctions, but not much more than that. In
particular, mathematical background on monoidal categories and their di-
agrammatic interpretation (Chapter 2), including *-autonomous categories
(Section 2.4), partial monoids, including effect algebras (Chapter 7), and
some presheaf theory (Section 7.4) is given.

As the two topics addressed in this thesis find their origin in quantum
theory, some understanding of this goes a long way in appreciating the re-
sults, but is by no means necessary. The standard framework for quantum
theory has been formalized by von Neumann ([93]). For a more mathemat-
ical background we point to the classics [61], [89] and the more recent [68].
A more physics oriented story can be found, for example, in [43] and [80].
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Chapter 1

Casual causality: an
introduction to causal orders

Correlation does not imply causation. Indeed, over the past, say, 200 years,
the average temperature on Earth has gone up while the number of pi-
rates has gone down, yet there is no reason that pirates should slow down
global warming.1 Similarly, it would be dubious to conclude that fire-
men/women cause burn damage, even though there is a strong correlation
between the number of fire fighters and the damage caused by a fire. Even
worse, by just considering correlations we might not be able to distinguish
between cause and effect: the sun shines because I get sunburned, the wind
blows harder because windmills turn faster.

The fact that correlation does not imply causation of course does not
imply that correlation implies no causation. Strong winds do let windmills
turn faster and strong sun does inflict sunburn. However, there might also
be other causal relations between events which explain the correlations.
The correlation between pirates and global warming could just be a co-
incidence, or maybe there is an increase in wealth which diminished the
pirate population as well as warmed up the Earth (both effects which are
themselves again not necessarily directly causally related).

A description of such events is given by Bayesian networks and a treat-
ment especially related to causality can be found in the work of Pearl ([75])
or Spirtes et al. ([85]). There the main ingredient to describe a causal struc-
ture is a directed acyclic graph (DAG), which, as the name suggests, is a

1Or is tharrr?

13



14 CHAPTER 1. AN INTRODUCTION TO CAUSAL ORDERS

graph where the edges are directed and in which there are no cyclic paths.
So for example

A

D

B C

is a valid DAG, but

A

D

B C

is not as it contains path from A to itself. Because of this acyclicity, from
now on, we will leave out explicit directions on the edges and read DAGs
from bottom-to-top. The first DAG above will thus be drawn as

A

B C

D

(1.1)

Before discussing the interpretation of a DAG, it is good to have some
terminology.

Definition 1.0.1. Let A be an event (i.e., vertex) in a DAG G and denote the
set of events of G by evt(G). The parents of A are those events from which
there is an edge to A:

Par(A) = {B ∈ evt(G)|There exists an edge from B to A}

The ancestors of A are those events B from which there is a path (of any
length) from B to A:

Anc(A) = {B ∈ evt(G)|There exists a path from B to A}

So the ancestors of an event A can be viewed as what happens in the
past of A and the parents are those events which can directly influence A.
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Note that any event is not a parent of itself, but since paths of lentgh 0 are
allowed in the definition of Anc(A), it is an ancestor of itself. This can also
be thought of in terms of posets. A DAG is related to a partial order via
the above ancestry relation: for vertices A, B we have A ≤ B in the partial
order if and only if A is an ancestor of B in the DAG. So the ancestors of
an event A is the set Anc(A) = {B ∈ evt(G)|B ≤ A)}. Because we are
dealing with causal relations, we will use the terms ‘ancestors’ and ‘past’
synonymously.

In the Bayesian network framework a DAG can be interpreted as giv-
ing the possible causal influences between the vertices. In particular, the
absence of an arrow between events means there is no influence between
these events. For example, there will be an arrow from the event the sun is
shining to I got a sunburn, even though I do not get a sunburn every time the
sun shines. Likewise, me getting a sunburn has no influence on the sun, so
there is no arrow in the other direction. If we wish to say that a DAG de-
scribes a causal order, then any event should only be causally influenced
by its parents. This is made precise as follows: an event, such as the sun
shines, has values, such as ‘true’ or ‘false’ and we can consider probability
distributions over these values. For each vertex Ai in a DAG we can con-
sider a value of that event, xi, and consider the probability that every event
is in some specific value: P(x1, . . . , xn).

Definition 1.0.2. A probability function P is compatible with a DAG G
(also called P is Markov relative to G or P represents G), if P admits a factor-
ization of the form

P(x1, . . . , xn) = ∏
i

P(xi|Par(Ai)) (1.2)

So for example, a probability function is compatible with the DAG
(1.1) if it factors as P(xA, xB, xC, xD) = P(xD|xB, xC) · P(xC|xA) · P(xB|xA) ·
P(xA)

Now let us apply this causality framework to the following (quantum)
setting: A bipartite state ρ is shared between everyone’s favourite scien-
tists, Alice and Bob, who also obtain some input bit, bA, bB, respectively.
Based on the value of this input bit, Alice (Bob) performs one or another
measurement on her (his) part of the state ρ and obtains an outcome oA
(oB). This setup is called the Bell scenario and we will consider this in great
detail in Part II of this thesis, but for now we just notice that the causal
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structure would be the following

bA bB

oA oB

ρ (1.3)

where we need to take special care of ρ as it is unobserved and hence we
need to sum over all its values. For the corresponding probability functions
we then expect a factorization of the form

P(oA, oB|bA, bB) = ∑
λ

P(λ)P(oA|bA, λ)P(oB|bB, λ) (1.4)

However, any probability distribution that satisfies this factorization
must satisfy certain constrains on the correlations of the outcomes of mea-
surements w.r.t. the different settings, known as the Bell inequalities ([15]
and we consider this in more detail in Part II). Yet quantum mechanics pre-
dicts, and experiment verifies, that these Bell inequalities are not always
satisfied. This shows that classical probabilistic causal reasoning can be
problematic for quantum theory. Therefore, in order to study causal orders,
it is important to understand how causation and correlation are related in
a quantum mechanical setting. This is done, for example, in [7] where the
correlations related to a common cause are explored and in [31] where a
framework for quantum causal modelling is developed.

Here, in this part of the thesis, we wish to explore causal structures
from a process theoretic point of view. We make this precise in Chapter 2.
The basic idea is the following. We consider processes , which are like (non-
deterministic) functions, from input systems to output systems

. . .

. . .

A′2

A2 An

A′nA′1

A1

Φ (1.5)

Such a diagram is to be read as if time goes from bottom to top, wires rep-
resent systems and when one or more wires enter a box, a process happens
on those systems and some new systems are put out.

We are then interested in the causal structure of such a process. That is
to say, what are the causal relations between the inputs and outputs of the
process. Which inputs influence which outputs and which outputs could
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be used as an input to the process. For example, suppose that our process
is of the following form:

ΦA

ΦB

B

B′

A

A′
(1.6)

Here some process ΦA acts on a system A and outputs a system A′ as well
as some other system which then serves, together with some input system
B, as an input to a second process ΦB which outputs a system B′. Just by
looking at the diagram in (1.6) we can immediately suspect three things:

1. The output A′ can only depend on the input A.

2. The output B′ can depend on the input B as well as the input A and
the process ΦA.

3. It might be possible to take the output system A′, perform on it some
operation Ψ of which the output is B and use this as input for the
process ΦB, like so:

ΦA

ΦB

B

B′

A

Ψ

(1.7)

These statements imply a possibility of signalling from ΦA to ΦB, or more
precisely, the impossibility of signalling from ΦB to ΦA. As such, ignoring
some technicalities which we address next, we call a process such as the
one in diagram (1.6) a one-way signalling process (see Definition 2.2.2 in the
next chapter).

So what are these technicalities that we need in order to make the above
statements precise? It turns out that the main ingredient is a way to ‘forget
about’ or ‘get rid of’ a system. This is done by introducing a discard effect
(see Section 2.1.6). In particular, especially in the quantum setting, per-
forming a (demolition) measurement and forgetting about the outcome, or
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performing a measurement with only a single outcome discards the sys-
tem. We draw the discard effect on a system A by using a ‘ground sym-
bol’: A. Using the discard effect allows us to distinguish a particular set
of processes, namely the causal ones: We say a process Φ is causal if

Φ = (1.8)

That is

A process is causal if discarding its output is the same as discarding its input,
i.e., as if the process never happened.

Consider again the situation in diagram (1.6) and suppose that ΦB is
causal. We focus purely on the output of system A′, meaning that we ig-
nore the other outputs, for example because the process ΦB is in the future
of ΦA or because ΦB is so far away from ΦA that it is not possible to send
information to ΦA (see Section 1.4). That is, we are in the situation where
we discard the system B′, so that

ΦA

ΦB

ΦA

= (1.9)

It follows that it is as if the process ΦB never happened and therefore in-
deed cannot influence the outcome of ΦA. This shows, under the condition
that ΦB is causal, part (1) from the list of suspected properties of the pro-
cess (1.6), but more importantly, it shows a general approach to find which
systems can influence the outcomes of a process by discarding the other
output systems. Indeed, given a process as a black box as in (1.5), we fo-
cus on an output system A′i by discarding all other output systems and
then see which input systems can still influence the resulting process. This
approach is explored further in Section 1.1. Finally, statement (2) is im-
mediately clear once one can ‘read diagrams’ (Chapter 2) while (3) is a bit
more subtle, so we address it in Section 1.4.
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1.1 Causal inference

Our goal is to say something about the causal structure of a process. But
what exactly do we mean by this? When a diagram is given in the form
of, for example, (1.6), it is easy to see what the causal order of this pro-
cess is: process ΦA (associated with systems A and A′) takes place in
the past of ΦB (associated with systems B and B′). However, for a gen-
eral process we usually do not have such a factorization at hand. What
we can do is consider pairs of input/output systems, which we think of
the input and output of some local laboratory where some process takes
place. We call an input/output pair an event and a causal order is then
given by a DAG with the events as vertices. Note that events are not
uniquely related to a process. For example, we may consider a process
Φ : A ⊗ B → A′ ⊗ B′ as having the ‘obvious’ events (A, A′) and (B, B′),
but also as having events (A, I), (B, I), (I, A′) and (I, B′), or the rather
trivial single event (A ⊗ B, A′ ⊗ B′). Since these have different numbers
of events, they need to be described by different DAGs. In what follows,
however, we will always assume that such a partition in events has already
been given in the ‘obvious’ way.

Recall the Definition of ancestors for a vertex in a DAG (Definition
1.0.1). It is straightforward to extend this from a single vertex to a set of
vertices, E , by taking the union of the ancestors of vertices in E . If the ver-
tices of the DAG now correspond to events of input/output pairs related
to some process, we write past(E) for the set of all events which are the
ancestors of the events in E . Recall in particular that E ⊂ past(E). Write π1
and π2 for the projections of the inputs and outputs of the events, respec-
tively. We can then say what it means for a process to satisfy some causal
order:

Definition 1.1.1. A process Φ : A1⊗ . . .⊗ An → A′1⊗ . . .⊗ A′n is consistent
with a causal ordering G (written Φ � G) if for all subsets of events E ⊆ G,
the outputs of E only depend on the inputs of the ancestors of E . That is,
there exists a process Φ′ such that:

π1(past(E))

π2(E)

Φ

... ...

... ...

=

...

π1(past(E))

π2(E)

...

...

Φ′ (1.10)
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Let us consider two examples. First, an easy example as a sanity check.

Example 1.1.2. Consider our example of the process (1.6). Since there exist
Φ′ and Φ′′ such that

Φ′

BA

=Φ

A′

B

B′ A′

A

and
A

=Φ

A′

B

B′

B

Φ′′

B′

A

we indeed see that this process is compatible with the causal order of the
event A := (A, A′) before B := (B, B′):

Φ |=
A

B

but generally not with the order B before A.

Second, a more general example.

Example 1.1.3. Consider the following process with 5 inputs and outputs:

Φ

A B C D

D′C′A′ B′

E

E′

and the following causal ordering on input/output pairs of Φ:

G :=

 A C

B D

E

 where



A := (A, A′)

B := (B, B′)

C := (C, C′)

D := (D, D′)

E := (E, E′)

where the ordering is depicted from bottom-to-top, e.g., A � B. Then,
Φ � G if for all E ⊆ G, (1.10) is satisfied. For example, taking E := {B}, we
have past({B}) = {A, B, C}. So, condition (1.10) requires that there exists
Φ′ : A⊗ B⊗ C → B′ such that:
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Φ

A B C D

B′

E

=

D EB

B′

A

Φ′

C

The fact that we could guess the causal order of the process (1.6) is an
instance of something more general, which is closely related to causality
as in Equation (1.8). It is shown in [63], that in a process theory every
output of a process can only be influenced by the inputs in its past if and
only if every process in that theory is terminal. It follows from this that
any process whose diagram is given in the form of a DAG build up from
causal processes satisfies the associated causal order given by that DAG.
For instance, the process

Φ2

Φ4

Φ3

Φ5

Φ1

B

B′

A′

A

C′

C

D′

D

E′

E

(1.11)

satisfies the DAG

A

CB

D E

where e.g., A = (A, A′), if and only if the processes Φ1, . . . , Φ5 are causal.

1.2 Higher order processes

In the third statement about process (1.6) we noted the possibility of using
a one-way signalling process as something to ‘plug in’ some other process.
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As such, one-way signalling processes play a double role. Both as regular
processes from two input systems to two output systems, and as ‘transfor-
mations’ of processes with a single input and output system. This leads
to a new kind of process theory where we can have higher order processes,
sometimes also called supermaps, where the inputs and outputs can them-
selves be processes. We will develop idea formally in Section 2.3.

To accentuate the fact that the one-way signalling process (1.6) can take
a process from A′ to B as an input, we will draw it as a ‘box with a hole’:

ΦA

ΦB

B

B′

A

A′
=:

B

A′

B′

A

(1.12)

The result of inputting a process Ψ (the exact meaning of this composition
is given in diagram (2.18)) is then a process from A to B′

ΦA

ΦB

B′

A

=:

B′

A

Ψ Ψ (1.13)

Moreover, for causal processes ΦA and ΦB, the resulting process of
(1.13) is causal whenever the input Ψ is causal. This follows easily by dis-
carding the output B′ and using the properties of the discard effect (Section
2.1.6). In contrast, suppose we have a way to ‘bend’ a wire to make a feed-
back loop, that is, suppose we could use an output of a process as an input
of itself. Then we could have taken any bipartite process Φ and used it to
transform some process Ψ as such:

Φ

Ψ

(1.14)
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Thinking of the wires as information flow, it is as if we are sending infor-
mation back in time. This should raise some alarms regarding causality.
Indeed, the resulting process in (1.14) is generally not causal even if the
processes Ψ and Φ are. We show this explicitly in Example 3.1.7. The rea-
son is that a bent a wire, now seen as an effect, is not causal (see Lemma
2.1.21). Mathematically, bending wires corresponds to a property of cate-
gories called compact closedness, explained in Section 2.1.4. So we see that
we not only have higher order processes, but also a notion of higher order
causality , i.e., maps which are causal when the inputs are also causal pro-
cesses (Definition 2.3.1). Our main goal is to develop a semantics for these
higher order causal processes and this is done in Chapters 3 and 4. For
now, let us consider an example and look at some relations between higher
order processes and causal structures.

Example 1.2.1. In a general measurement scenario we start with some state
ρ, possible perform some process Φ on it and then perform a measurement.

ρ

Φ

Technically we should keep track of which outcome occurs and to do this
we should consider the discard effect as a collection of effects representing
these outcomes (see [62]), we will gloss over this here. If we now take the
starting state and the measurement fixed, but allow for different processes
in between, we are left with a map which sends processes to probability
distributions:

ρ

(1.15)

If the process that is used as input now is causal, the resulting probability
distribution is normalized. We may therefore say that the process (1.15) is
normalized on causal processes.

So far, we have seen higher order causal processes which take in a single
causal process and whose output is again a causal process or a normalized
probability distribution, which is a special case of a causal process with no
input or output. Of course, we can also consider higher order processes
where the inputs are multiple processes or processes with multiple inputs
and outputs. For example, for two input/output pairs a general picture of
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a higher order causal map with no final input/output system can be drawn
as an ‘I-shaped beam’:

(1.16)

where we can, for example, input processes ΦA and ΦB

ΦA ΦB (1.17)

We can still consider multipartite measurement scenarios

ρ

(1.18)

however, the situation here is the same as before. We just consider the two
systems as a single joint system.

ρ ρ

=

We now consider an example which shows that higher order processes
are closely related to causal orders.

Example 1.2.2. Consider the following processes:

and (1.19)

For the process on the left side, if we input processes ΦA and ΦB the result
is their composition:
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ΦA ΦB

ΦB

ΦA

=

whereas taking the process on the right hand side would result in the con-
verse composition ΦA ◦ΦB. So depending on whether we take the left or
the right process in (1.19), either ΦA happens first or ΦB happens first. We
come back to a modified version of these examples in Section 1.3.

Instead of inputting two single processes in the diagrams in (1.19), we
can also consider what happens when we input a single bipartite process.
Plugging the one-way signalling process of diagram (1.6) in the left hand
side of (1.19) results in a causal process - and thus in normalized probability
distributions after measurement - whereas plugging it in the right hand
side does not! So in terms of higher order causality, some higher order
processes are compatible with processes satisfying a certain causal order
and others are not. In the semantics we will develop in the next chapters,
we will attach types to processes. Such a type holds information about the
causal structure of the process. For instance, a causal process from A to A′

will be assigned type A( A′, indicating that normalized states of type A
are sent to normalized states of type A′. A one-way signalling process will
be of type

A((A′( B)( B′

which tells us that it can take in a normalized state of system A, a causal
map from A′ to B and the final output is a normalized state of type B (The-
orem 4.3.1). In contrast, just any causal bipartite map will be of type

(A⊗ B)((A′ ⊗ B′)

which indicates an input of the joint system A⊗ B and an output of A′⊗ B′

(Theorem 4.2.7). Of course, any one-way signalling process is also a causal
process, so we expect that one-way signalling processes also satisfy the the
type of any causal process. Indeed, it can be shown (Proposition 4.3.2)
that the type of one-way signalling processes embeds in the type of causal
processes.

The type system also applies to higher order processes and give infor-
mation about which kind of processes can be used as inputs and what kind
of process the output is. A map that sends causal processes to causal pro-
cesses will be of type

(A( A′)((B( B′)
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which can be shown to be isomorphic to the type of one-way signalling
processes (via equation (2.35)). A map such as the left hand side of (1.19),
which sends one-way signalling processes to a causal process can be as-
signed type

[A((A′( B)( B′]((C(C′).

In general, maps sending processes of type X to processes of type Y are
of from X(Y. In the special case, such as in diagram (1.18), where there
is no final input/output system, or more precisely, the final input/output
system is trivial, we obtain a dual type: X( I =: X∗. Here, I is the tensor
unit representing the trivial system introduced in Section 2.1.1.

Dual types also allow us to obtain information about the causal struc-
ture of processes. Indeed, if Ψ is a process and for every (dual) process w
of type X∗ we have that the composition of Ψ with w is normalized, then
Ψ is itself of type X. Reversing this argument, suppose we wish to show
that some process Φ is not of type X. Then it suffices to find a process w of
type X∗ such that the composition of Ψ and w is not normalized. In fact,
this is what we (informally) did when we considered one-way signalling
processes and the processes in (1.19).

So the type system gives a lot of information about the causal structure
of processes, however, it does not give all information. In the next section
we will discuss processes which give rise to probability distributions which
cannot arise in (quantum) theories with a fixed causal background.

1.3 Indefinite causal structures

Following a slight simplification of [73] we consider a game where two
players, Alice and Bob, each have a lab and are given a random bit. They
then get a system coming into their lab, possibly perform some process and
send the system out again. Their task is then to guess the value of the bit of
the other person. In a fixed causal background where, say, Alice is before
Bob, that is, Alice first gets the system and then Bob gets the transformed
system, she can send the value of her bit to Bob encoded in the system.
Bob will then always guess the right answer for Alice, whereas Alice has a
50/50 chance of getting Bob’s bit right. It is then shown that this success
rate is optimal, even if the causal order between Alice and Bob is allowed
to change every time we do a run of this game. However, when we drop
the assumption of a global fixed causal order, there are processes which
can break this bound.
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So what is meant by ‘a global fixed causal order’? In Section 4.3 we will
define a class of processes called combs. These processes are essentially
circuits of systems and channels with possibly holes in them. As we will
see, such a comb is compatible with a total causal order where for any two
events we can say which one comes before the other. The process used
in the above game in order to obtain probabilities from processes is more
general than what we can obtain from even probabilistic combinations of
these combs. Therefore we say this process is not compatible with a fixed
causal order, or say it has indefinite causal order. Let us consider another
example of a process which also cannot be realised using circuits, where
the link with causal orders is nicely visible.

Example 1.3.1 (quantum switch). Consider a process where the input is a
state, ρ, of a qubit and two causal processes, f and g, with the same input
and output system. Then, if the qubit is in state given by the density matrix
|0〉 〈0|, the output is the composition g ◦ f , whereas when the qubit is in
state |1〉 〈1| the output is the composition f ◦ g. We can draw the switch as
follows

s

X

A

A′

B

B′

C

C′

Recalling Example 1.2.2 we than have

s

0

= and s

1

=

(1.20)

This process is called the quantum switch, introduced in [23]. The reason
that it is not compatible with a particular causal order can easily be visu-
alized using the diagrams in equation (1.20). Indeed, consider the input
qubit to be in the mixed state ρ = 1

2 |0〉 〈0|+
1
2 |1〉 〈1|. Then the output is
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the convex combination of causal orders

1
2 + 1

2 (1.21)

which is clearly not compatible with a single causal structure. However, in
this scenario, every time we perform a run of this switch experiment, one
of the causal orders occurs with probability one half, so it is compatible
with a convex combination of causal structures.

It is at this point where we should note that the conditions defining the
switch do not fully specify it. Indeed, the density matrices corresponding
to 0 and 1 are not a basis for the four dimensional state-space of the qubit.
In this sense, whenever we mention the switch map, we rather mean a class
of switch maps. Still, we find some intuition for the indefinite causal order
of the switch. Suppose we input a qubit in the pure state |+〉 〈+|, where
|+〉 = 1√

2
(|0〉+ |1〉). Then, the final process again contains the terms in di-

agram (1.21), so we can think of this as a coherent superposition of causal
orders. Heuristically, the idea is that if we perform no ‘measurement’ on
the global causal structure, it can be in such a superposition in the same
way that the outcome of an observable is not well defined before the mea-
surement. We will come back to the concept of indefinite causal structures
in Section 4.5 where we will also consider the switch in different categories.

As the ‘bit guessing game’ at the beginning of this section shows, indef-
inite causal structures can lead to computational advantages. The switch
also leads to computational advantage. In [21] it is shown that the switch
can perfectly discriminate between no-signalling channels whereas this
cannot be done by any circuit with fixed causal order and in [81] it is shown
that even when the inputs to the switch are completely depolarising, it is
still possible to send quantum information with a non-zero probability. We
might expect that these advantages are due to the quantum nature of these
examples, however, in [13] it is shown that a game similar to the bit guess-
ing game can even be won in a setting which is locally probabilistic if there
are at least three parties involved, showing that ‘quantum weirdness’ is
not necessary and the gain really comes from the indefinite causal order.
These occurrences in both quantum theory and probability theory ask for
a general overarching approach to indefinite causal structures and more
generally higher order processes. In this part of the theses we provide this
setting and develop semantics regarding these higher order processes, but
before we do that, we first make some relations to physics and relativity
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theory in particular.

1.4 Relations with relativity

We have been considering all processes now as purely mathematical enti-
ties. When we wish to implement such processes this happens in a space-
time arena and is therefore subject to the rules of the game: physics and
relativity theory in particular. The theory of relativity, introduced by Ein-
stein in 1905, describes how different observers observe space-time. One
of the starting points of this theory is that the speed of light is the same for
every observer. A consequence is then that it is not possible to send infor-
mation with a speed exceeding the speed of light. As such, for every point
A in space-time there is a future light-cone of coordinates which can be in-
fluenced from this point and a past light-cone of points which can influence
this point.

Whenever two space-time points are not in each others light-cones, they
are called space-like separated and there can be no information transfer
between them. If influence between two space-like separated points was
possible, then it would be as if we could send information to the past. To
see this, consider two events at space-time point A and B such that for
some observer B is in the future of A, but not in the light-cone of A. Then
we can always find other observers, related with Lorentz boosts, i.e., the
transformations which relate the different space-time coordinates for dif-
ferent observers, such that, depending on the observer, A happens before
B, A and B happen simultaneously, or B happens before A:



30 CHAPTER 1. AN INTRODUCTION TO CAUSAL ORDERS

Now consider the following process:

Example 1.4.1. The two systems of some bipartite state ρ are sent to two
far apart (space-like separated) laboratories managed by Alice and Bob.
After the systems arrive at their respective labs, some processes ΨA and
ΨB are performed on these systems and some local inputs and the resulting
system is sent out again. The overall process then looks like this:

Φ =

ΨA ΨB

ρ

(1.22)

Now, since these labs are space-like separated, there can be no signalling
between the events related to ΨA and ΨB. We can show this by explicitly
making the process one-way signalling as in diagram (1.6).

ρ

ΨB

ΨA ΨB

ΨA

ρ

(1.23)

Processes of this form have been called strongly no-signalling in [65] and
localizable in [14]. They play an important part in the Bell theorem which
we address in Part II of this thesis.
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We now wish to use this process as a higher order process by taking
one of the outputs, applying a process and using the output of this pro-
cess as local input again, similar to diagram (1.7). While this is completely
fine from a mathematical point of view (we just calculate the composition
of the processes), physically we cannot implement this because it implies
signalling between space-like separated points. A way to implement this
restriction is to not allow non-trivial processes between space-like sepa-
rated points, an idea introduced in [30]. Throughout this theses, however,
we will not care about this restriction and only consider the processes on
their own, not caring about any particular implementation or space-time
positioning. That said, we do note that one can also inverse the above ar-
gument. Instead of letting light-cones define which events can influence
which other events, we can also construct a ‘generalized light-cone struc-
ture’ by considering which events can influence each other.

Finally, we consider the switch map of Example 1.3.1 again. Since su-
perpositions are a quantum phenomenon and causal orders are more re-
lated to relativity, having a super position of causal orders is right on the
intersection of quantum theory and relativity. While there currently is no
theory that describes both quantum and relativity, we do know from the
theory of general relativity that clocks tick slower in the presence of grav-
itation. That is, time slows down when large masses are around. We can
then image we have a superposition of the position of such a large mass,
like a planet or a black hole. Consequently, we have a superposition of
slowing down time in different space-time areas. In [96] this idea is used
to build a switch map which can achieve computational advantages by
breaking certain bounds that cannot otherwise be broken.



Chapter 2

Categorical quantum
mechanics

2.1 Process theories

It is a remarkable feature of science that in order to understand something,
it is often useful to take a step back and look at the subject from a more
abstract point of view. Not disturbed by specifics, one can better study the
underlying, more general, principles of the theory. For quantum mechan-
ics, it has proven to be extremely fruitful to consider it as a process theory
as has been done first in [4]. In process theories, we consider systems and
transformations, or processes, between these systems. This simple setup
describes a very wide variety of theories, among which finite dimensional
quantum mechanics, finite probability theory and even cooking (a potato
is a system and peeling it is a process [62]).

2.1.1 Monoidal categories

The mathematical framework of process theories is that of monoidal cate-
gories ([71, 60]). Our goal in this section is to give the basics of this theory
and in particular develop a diagrammatic notation (Section 2.1.2) to work
with such categories [62]. We start with basic monoidal categories and
gradually add more structure, such as symmetry 2.1.3, compact closure
2.1.4 and discarding 2.1.6.

32
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A process theory is a monoidal category together with an interpretation of objects
as systems and morphisms as processes.

Monoidal categories are essentially categories where, in addition to the
usual sequential composition, there is an additional parallel composition
of objects and morphisms via the tensor, ⊗. This is subject to some canoni-
cal coherence conditions, related to the associative structure ((A⊗ B)⊗ C ∼=
A⊗ (B⊗ C)) and the unit object (A⊗ I ∼= A ∼= I ⊗ A). As the name sug-
gests, the coherence conditions between these isomorphisms ensure that
basically everything works as expected. Since writing these isomorphisms
everywhere is a tiresome job, we will not do so and take them to be the
identity. Such categories are called strict. By a theorem of MacLane [71],
every monoidal category is equivalent to a strict one, so we lose no gener-
ality in doing this.

Definition 2.1.1. A strict monoidal category consists of a triple (C,⊗, I) where
C is a category, ⊗ : C × C → C is an associative bifunctor called tensor and
I is an object of C, called the tensor unit, satisfying

I ⊗ A = A = A⊗ I, (2.1)

for any object A of C.

Instead of writing the triple (C,⊗, I), we usually only write C.

Throughout this part of the thesis, we consider two main examples re-
lated to quantum theory and probability theory.

Example 2.1.2 (Quantum theory). Finite dimensional quantum theory is
an example of a process theory. Systems represent operator algebras asso-
ciated to the physical systems in consideration. Processes are those maps
which send states to states and are therefore given by completely positive
maps. From this we obtain the following category [83]:

Definition 2.1.3. The monoidal category CPM has objects finite dimen-
sional Hilbert spaces H, K, . . .. A morphism between objects H, K is a com-
pletely positive maps φ : B(H) → B(K) between the corresponding op-
erator algebras of bounded operators on the Hilbert spaces. That is, both
φ : B(H) → B(K) and φ⊗ idB(L) : B(H)⊗ B(L) → B(K)⊗ B(L) are posi-
tive, where idB(L) is the identity on B(L).

The monoidal product is the Hilbert space tensor product. In terms of
the algebras we have B(H) ⊗ B(K) ∼= B(H ⊗ K). The tensor unit is the
complex numbers I := C ∼= B(C).
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Equivalently we could have defined the objects of CPM to be the op-
erator algebras themselves, or, since Hilbert spaces of the same dimension
are isomorphic, by natural numbers. Each of these choices would lead to
an equivalent category. Strictly speaking, the category is only strict when
the objects are natural numbers, where n ⊗ m = n · m, but we gloss over
this and keep to the more original definition from [83].

Example 2.1.4 (Probability theory). Our second main example is that of
finite probability theory. The relevant monoidal category is the following:

Definition 2.1.5. The category Mat(R+) has as objects natural numbers
n, m, . . .. A morphisms n → m is a m × n matrix with non-negative en-
tries and composition is matrix multiplication. The monoidal product is
multiplication, n⊗m = n ·m, and the tensor unit is the number 1.

The interpretation of an object n in Mat(R+) is of course a finite set
with n points. Maps from such a finite set to R+ can be seen as ‘vectors’ in
(R+)n, which we interpret as (possibly non-normalized) probability distri-
butions. Using the discard effect from Section 2.1.6, we can then restrict to
normalized probability distributions. Morphisms then act as matrices on
these vectors, sending distributions to distributions.

2.1.2 Diagrams

Monoidal categories have a particularly nice presentation in the form of
diagrams [62] and throughout this work we will use a mixture of diagram-
matic and analytical notions at our convenience. This is allowed because
diagrammatic reasoning is sound and complete, see [83]. We start with a
diagrammatic notation for monoidal categories, which corresponds to pla-
nar graphs. Processes are vertices and systems are non-intersecting edges.
In the following, whenever we add new structure to our monoidal cat-
egories, we will see that we also obtain new diagrammatic notation. A
survey of this can be found in [84].

We draw a system, or rather, the identity on this system, as a wire:

systems: A := idA = A

Processes between systems are drawn as boxes between their wires:

processes: f : A→ B := f

B

A
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Whenever it is clear which systems are involved, we will not label the
wires.

The tensor product of systems is given by parallel wires and the tensor
product of processes is given by parallel boxes. We call this parallel compo-
sition.

A⊗ B A B= f ⊗ g := gf

The tensor unit is given by no wire:

1I := idI =

Equation (2.1) now becomes a diagrammatic tautology

A = A = A

There are special maps out of and into the tensor unit:

states := ρ effects := π

A morphism I → I is both a state and an effect and is called a scalar.
These are diagrams with no inputs and no outputs and will often be written
as a number: λ, µ, . . .

We now consider what states and effects are in our main examples CPM
and Mat(R+):

Example 2.1.6. In CPM, a state on B(H) is a completely positive map ρ :
C → B(H), which we identify with the (unnormalized) density matrix
ρ(1). An effect in CPM is a completely positive map σ : B(H)→ C. Such a
map is always of the form σ(a) = tr(ρσa) where tr is the trace on B(H) and
ρσ is some operator corresponding to σ. Scalars are positive maps from C

to C and thus correspond to the non-negative reals.

Example 2.1.7. In Mat(R+), a state on n is a 1 × n matrix with positive
entries. Hence a state is either the zero-vector or it is an (unnormalized)
probability distribution. Effects in Mat(R+) are n× 1 matrices with posi-
tive entries, which we regard as row vectors. If ρ is a state and σ is an effect
in Mat(R+), then the scalar σ ◦ ρ is the inner product of the corresponding
vectors, σ ◦ ρ = ∑i σiρi. Scalars are therefore the positive reals R+.
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If f : A → B and g : B → C are processes, then their composition
g ◦ f : A→ C is the process:

g ◦ f :=
g

f

We call this sequential composition.

As a further example of the advantage of the diagrammatic method,
consider four processes: f : A → A′, f ′ : A′ → A′′ and g : B → B′,
g′ : B′ → B′′. We can either do parallel composition followed by sequential
composition, or we first compose sequential and then parallel. It is then
easy, yet non-trivial, to show these are the same.

( f ′ ⊗ g′) ◦ ( f ⊗ g) = ( f ′ ◦ f )⊗ (g′ ◦ g)

However, in diagrammatic language this equation is a tautology:

f ′

f g

g′
=

f g

f ′ g′

Whenever we introduce a new concept, we will also consider the di-
agrammatic aspects. At first, we will be rather pedantic in working with
diagrams, but as we go on, we will see all that matters is the connectivity of
diagrams. If two diagrams can be deformed into each other without chang-
ing which inputs and outputs are connected, the processes represented by
these diagrams are the same. For example, we may may ‘slide’ morphisms
over wires.

f

g
f g= =

g

f

corresponding to the identities

( f ⊗ 1) ◦ (1⊗ g) = ( f ⊗ g) = (1⊗ g) ◦ ( f ⊗ f )
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2.1.3 Symmetry

If we think of parallel composition as taking joint systems, we expect to
find a relation between A ⊗ B and B ⊗ A, as both are a joint system of
systems A and B. This relation is expressed as an isomorphism between
the two joint systems.

Definition 2.1.8. We call a monoidal category C a symmetric monoidal cate-
gory (SMC) if there is a natural ‘swap’ isomorphism σA,B : A⊗ B ∼= B⊗ A
for all objects A, B in C, satisfying

σB,A ◦ σA,B = idA⊗B. (2.2)

and
σA,B⊗C = idB ⊗ σA,C ◦ σA,B ⊗ idC (2.3)

We draw the swap map as

swap: σA,B :=
A B

B A

Naturality means we can slide morphisms over swap:

f g

g f
= (2.4)

and equation (2.2) says that swapping twice is the identity:

= (2.2’)

Finally, equation (2.3) gives the interaction of swap with the tensor:

=

A B⊗ C
A B C

(2.3’)

Equation (2.3), or equivalently (2.3’), is called the hexagon identity, since tak-
ing the coherence conditions explicitly into account would lead to a com-
mutative diagram involving six morphisms.
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Swapping around three systems can essentially be done in two ways. It
follows from naturality, (2.8), and the hexagon identity (2.3’) that these are
the same:

(σ⊗ 1) ◦ (1⊗ σ) ◦ (σ⊗ 1) = (1⊗ σ) ◦ (σ⊗ 1) ◦ (1⊗ σ)

or in diagrammatic terms:

=

A B C

ABC

A B C

ABC

(2.5)

This equality is also known as the Yang-Baxter equation and we will need
it in the next section.

Example 2.1.9. In both CPM and Mat(R+), swap is given by linear exten-
sion of a⊗ b 7→ b⊗ a.

Diagrams in a SMC correspond to acyclic graphs. Clearly the swap
allows us to cross wires. In the next section we introduce a way to bend
wires, allowing us to write diagrams corresponding to any kind of graph.

2.1.4 Compact closure

Compact closure introduces duals in a category. These can be thought of
as generalizations of duals of finite dimensional vector spaces, in the sense
that states of such a dual space corresponds to effects of the original space.
Here we focus on the basic property of compact closed categories and see
how compact closure works diagrammatically.

Definition 2.1.10. A symmetric monoidal category C is called compact closed
if for every object A there exists a dual object A∗. That is, for every A there
exists morphisms ηA : I → A∗ ⊗ A and εA : A⊗ A∗ → I, satisfying:

(εA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A (1A∗ ⊗ εA) ◦ (ηA ⊗ 1A∗) = 1A∗ (2.6)

Diagrammatically, the compact closed structure is given by a cup and
cap, respectively:

ηA := AA∗ εA :=
A A∗
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and the equations (2.6) become

= A

A

A

A∗ and = A∗

A∗

A∗

A (2.7)

We call these the yanking equations as they represent the wires being yanked
to a straight line. The advantage of equation (2.7) over (2.6) is that we
can visualize wires representing a dual space as representing the original
space, but going from top to bottom.

A priori, cup is a map I → A∗ ⊗ A and we need to be mindful of the
order of A and its dual A∗. However, swap allows us to define new maps
η′A := σA∗ ,A ◦ ηA : I → A⊗ A∗ and ε′A := εA ◦ σA,A∗ : A∗ ⊗ A→ I.

Lemma 2.1.11. If η and ε form a cup/cap pair, i.e., satisfy the equations of
(2.7), then η′ = σ ◦ η and ε′ = ε ◦ σ also form a cup/cap pair.

Proof. By naturality of swap with respect to η and the identity, we have

= (2.8)

Similar horizontally and vertically reflected equations are obtained by in-
terchanging the identity and η and considering naturality w.r.t. ε. Then:

(2.8)
=

(2.5)
=

(2.2)
=

(2.8)
=

(2.7)
=

A similar calculation shows that we always have canonical isomor-
phisms A ∼= A∗∗ and we we can always choose cup/cap pairs such that
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this relation is strict:
A = A∗∗ (2.9)

In the following we wish to ‘bend’ wires by applying cups and caps. The
above results show that we do not need to be careful about which cups and
caps we use and with a little bit of abuse of notation, we for example write

Φ Φ=
B A∗

A

A∗ B

A

Here we not only relax our cups and caps, we even neglect the order of the
systems, thus really conforming to the mantra that

Only connectivity matters.

As the name suggests, compact closed categories are closed. That is, the
functor (−)⊗ B has a right adjoint given B∗ ⊗ (−). Perhaps more familiar,
defining for now A⇒ B := A∗⊗ B, as the ‘internal hom’, there is a natural
isomorphism

Hom(A⊗ B, C) ∼= Hom(A, B⇒ C) (2.10)

given by

f

B

C

A

7→

A

CB∗

f
=: g

A

CB∗

whose inverse is:

g

A

CB∗

7→ g

A

C

B

= f

B

C

A

In particular we have

Hom(A, B) ∼= Hom(I, A∗ ⊗ B) (2.11)

so maps from A to B correspond to states on A∗ ⊗ B, which justifies the
term internal hom. We take a closer look at this remarkable property now.
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2.1.5 Process-state duality

As we just saw, compact closure gives a way to view maps f : A → B as
states ρ f on the joint system A∗ ⊗ B by ‘bending the wire’:

f

B

A

7→ f ρ f

A∗ B

(2.12)

This correspondence is known in the literature as the Choi-Jamiołkowski
isomorphism [70] or as process-state duality.

Considering the adjunction (2.11) where B = A, we find a chain of
isomorphisms

Hom(A⊗ A∗, I) ∼= Hom(A, A) ∼= Hom(I, A∗ ⊗ A) (2.13)

Applying this to the the identity, idA : A → A, we find cup and cap as the
unit and counit of the adjunction (2.11), respectively.

↔ ↔ (2.14)

In general, process-state duality allows us to consider any diagram as
a state ρ on some space X by bending all inputs to outputs. We will often
use the abbreviation ρ : X to mean ρ : I → X is a state on X.

Before we consider cup/cap pairs in CPM and Mat(R+), we consider
the relation between dual and tensor.

Lemma 2.1.12. In a compact closed category we can always choose cups
and caps in such a way that the dual distributes strictly over the tensor:

(A⊗ B)∗ = A∗ ⊗ B∗ (2.15)

Proof. First we use the isomorphism (2.10) twice to show that (A⊗ B)∗ and
A∗ ⊗ B∗ are always isomorphic:

Hom(C, (A⊗ B)∗) ∼= Hom(C⊗ A⊗ B, I)
∼= Hom(C⊗ A, B∗)
∼= Hom(C, A∗ ⊗ B∗)
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Hence by the Yoneda lemma (A⊗ B)∗ ∼= A∗ ⊗ B∗.

Now for given cups on A and B, define a cup on A⊗ B as

B∗ BA∗ A:=
A⊗ B(A⊗ B)∗

Defining cap in a similar way, the new cup/cap pair satisfies yanking be-
cause the cup/cap pairs on A and B do. Hence, under this choice we have
(A⊗ B)∗ = A∗ ⊗ B∗

Example 2.1.13. We consider the compact closed structure of Mat(R+).
Let n be an object in Mat(R+), which we identify with Rn

+. Write |i〉 for
the i’th standard basis vector. We identify n∗ with (Rn

+)
∗, the space of row

vectors, and write 〈i| to be the i’th dual basis vector, i.e., 〈i| |j〉 = δi,j. Then

id = ∑
i
|i〉 〈i|

cup = ∑
j
|j〉 |j〉

cap = ∑
k
〈k| 〈k|

The yanking equations (2.7) now become(
∑
k
〈k| 〈k| ⊗∑

l
|l〉 〈l|

)
◦
(

∑
i
|i〉 〈i| ⊗ |j〉 |j〉

)
= ∑

ijkl
δk,iδk,jδl,j |l〉 〈i|

= ∑
i
|i〉 〈i|

= id

and similarly for the other yanking equation.

Example 2.1.14. For CPM we note that any operator a ∈ B(H) can be
written as a = ∑i,j 〈i| a |j〉 |i〉 〈j|, where {|i〉} is some orthonormal basis for
H. From this we find B(H) ∼= H∗ ⊗ H via the almost tautology |i〉 〈j| ↔
|i〉 〈j| [70]. Furthermore, any Hilbert space is self dual [94], H ∼= H∗, via
|i〉 ↔ 〈i|.
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Therefore we have B(H) ∼= H ⊗ H ∼= B(H)∗. We now define

id = ∑
i,j
|ij〉 〈ij|

cup = ∑
k,l
|kl〉 |kl〉

cap = ∑
m,n
〈mn| 〈mn|

The yanking equations are then similar to those of Mat(R+).

There is another way to consider the compact closure of CPM which
is more related to the Choi-Jamiołkowski isomorphism as often encoun-
tered in the literature. We define a cup as a map η as η = |Φ+〉 〈Φ+| :
C → B(H ⊗ H), where |Φ+〉 = ∑i |ii〉 ∈ H ⊗ H. The image η(1) is an
operator |Φ+〉 〈Φ+| = ∑i,j |ii〉 〈jj| in B(H ⊗ H). We then define cap as
ε(ρ) = tr(ρ |Φ+〉 〈Φ+|), for ρ ∈ B(H ⊗ H).

Then for an operator ρ = ∑i,j 〈i| ρ |j〉 |i〉 〈j| ∈ B(H), we have

(ε⊗ id) ◦ (id⊗ η)(ρ) = (ε⊗ id) ◦ (ρ⊗∑
k,l
|kk〉 〈ll|)

= ∑
k,l

tr(ρ⊗ |k〉 〈l| |Φ+〉 〈Φ+|) |k〉 〈l|

= ∑
k,l,i,j

tr(|ik〉 〈jl| |Φ+〉 〈Φ+|) 〈i| ρ |j〉 |k〉 〈l|

= ∑
k,l,i,j

δi,kδj,l 〈i| ρ |j〉 |k〉 〈l|

= ∑
i,j
〈i| ρ |j〉 |i〉 〈j|

= ρ

We now see that equation (2.12) corresponds precisely to the map

f 7→ (id⊗ f ) ◦
(
|Φ+〉 〈Φ+|

)
which is, up to a transpose of f , the Choi-Jamiołkowski isomorphism in
for example [25]. This transpose is then compensated for in the inverse iso-
morphism, which in diagrammatic notation is just bending the wire back
down.
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2.1.6 Discarding

In Chapter 1 we noted that we needed a way to disregard a system. There-
fore our main interest will be SMCs with discarding. That is, for every object
A, there exists a special effect A : A → I which are together compatible
with the monoidal structure, i.e., they satisfy

A⊗B = A B and I = idI := 1

We think of discarding a system as forgetting about it, ‘throwing the
system away’, marginalising or having no access to the system. When
we only forget one part of a composite system, we obtain the notion of
marginal.

Definition 2.1.15. Let ρ : A ⊗ B be a bipartite state on A and B. The
marginal state of ρ at B, or just marginal when the context is clear, is the
state on B that arises from discarding A:

ρ

B
A

Given a state ρ : A on A = A⊗ I, we can calculate the marginal of ρ at
the monoidal unit I.

Definition 2.1.16. A state ρ : A is normalized or normal if its marginal at I
equals 1 = idI :

ρ

= 1

That is, discarding the state gives 1.

Making use of process-state duality, we find an (unnormalized) state
corresponding to discarding:

:=
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This state is called the maximally mixed state. Discarding the maximally
mixed state gives the following:

Definition 2.1.17. The dimension dA of a system A is the scalar defined by

=:=dA

Suppose that the dimension dA of a system A is invertible, then we
obtain a normalized version of the maximally mixed state:

=:1
dA

In Section 2.2 we will show the importance of discarding in the study
of causal structures.

Example 2.1.18. The discard effect in CPM on a system B(H) is given by
taking the trace: = tr(−). Hence a state ρ is normalized if and only if
tr(ρ) = 1.

In Mat(R+), discarding is given by the effect (1, 1, . . . , 1) = ∑i 〈i|. A
state ρ = ∑i ρi |i〉 is therefore normalized if ∑i ρi = 1.

The causality condition (1.8) can now be made explicit in Mat(R+) and
CPM:

Proposition 2.1.19. In Mat(R+), processes satisfying equation (1.8) are
stochastic matrices.

Proof. Indeed, the causality condition for a process Φ : n→ m reads

m︷ ︸︸ ︷
(1 1 . . . 1) ◦Φ =

n︷ ︸︸ ︷
(1 1 . . . 1)

This tells us precisely that every column sums up to 1 and since by defini-
tion the entries of Φ are positive, the results follows.

Proposition 2.1.20. In CPM, processes satisfying equation (1.8) are trace
preserving maps.
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Proof. For an operator a in B(H), the causality condition for a map Φ :
B(H)→ B(K) reads

tr(Φ(a)) = tr(a)

So Φ preserves the trace.

Since a state ρ on a system A is a process ρ : I → A, and discard on I is
idI , we find that causal states are normal states. Considering causal effects
we find the following:

Lemma 2.1.21. An effect π is causal if and only if it is the discard effect.

Proof. Suppose π is causal, then

π =

Hence discard is the unique causal effect.

Finally, some care is needed when considering causal processes when
process-state duality is involved. Indeed, if a process f : A → B is causal,
i.e., it preserves discard, then its corresponding state is in general not causal:

f

A∗ B

A

=
A∗

A = dA

which in general does not equal 1.

2.2 Signalling

The causal discovery scheme in Chapter 1 relied on the fact that when
we discard certain outputs of a process, the process splits into a new pro-
cess and some discard effects on the other input systems (Definition 1.1.1).
These discarded inputs systems are then disconnected from the remaining
process and hence cannot influence it. It is this influencing, or signalling,
or rather, no-signalling, that we wish to make precise here. We start with
the causality equation (1.8)
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Definition 2.2.1. A process Ψ : A→ B is causal if B ◦Ψ = A:

Ψ =

To understand what the implication is of a process being causal, it is
most instructive to understand what happens when a process is not causal.
So suppose some process Φ is not causal. Then, when we discard its out-
put, we are left with some effect

Φ

Now in the type of category we will consider in the next chapter, for such
an effect there always exists some state ρ such that

Φ

ρ

6= 1

This means that if the process Φ is applied to ρ, it induces an overall non-
unit factor, which then influences all other measurements. Because of this
and the reasoning around equation (1.9), causality is also called no sig-
nalling from the future.

We now consider signalling properties of bipartite processes. In light of
Definition 1.1.1 the following should not come as a surprise

Definition 2.2.2. Let Φ : A⊗ B→ A′ ⊗ B′ be a causal process:

Φ

B

B′A′

A

Then Φ is one-way signalling with (A, A′) before (B, B′) (written with a
small abbreviation as A � B) if there exists a causal map Φ′ : A → A′
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such that (idA ⊗ B′) ◦Φ = Φ′ ⊗ B. That is, discarding B′ splits Φ into
a causal process on A and discard on B:

Φ = Φ′ (2.16)

Similarly we say Φ is one-way signalling with B � A if there exists a
causal Φ′′ : B→ B′ such that

Φ = Φ′′ (2.17)

One-way signalling processes are thus those processes satisfying a causal
order given by

Φ |=
A

B

and in particular, by Example 1.1.2, processes of the form

ΦA

ΦB

B

B′

A

A′

which we already called one-way signalling in Chapter 1 are indeed one-
way signalling. Moreover, we can view these kind of processes as a canoni-
cal version of one-way signalling processes. Indeed, in the type of category
we will consider in the next chapter (Definition 3.1.1) every one-way sig-
nalling process will be of this form (Proposition 3.1.4).

In Example 1.4.1 we considered a process which we called strongly non-
signalling. As we showed, such a process has both factorizations related
to one-way signalling processes, so in particular is one-way signalling in
both ways.
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Definition 2.2.3. If Φ is one-way signalling with both A � B and B � A, we
call Φ no-signalling.

An interesting question is now whether every no-signalling process is
strongly no-signalling. This turns out not to be the case and an example
can be found in [14].

Up to now we have only considered bipartite processes. The general-
ization to multiple inputs and outputs is straightforward, but for sake of
completeness we still present it now.

Let Φ : A1 ⊗ . . .⊗ An → A′1 ⊗ . . .⊗ A′n be a causal process.

. . .

. . .

A′2

A2 An

A′nA′1

A1

Φ

Then Φ is no-signalling if discarding some A′m for some m results in
discard on Am and some process Φ′ on the left over systems.

... ...
A′1 A′n

Φ′

AmA1 An

......
A1 Am

...

A′1 ... A′n

An

Φ
...

...A′m
A′m−1 A′m+1

=

It is one-way signalling with A1 � . . . � An−1 � An if discarding A′n results
in a one-way signalling process Φ′ with A1 � . . . � An−1 and discard on
An.

When we say Φ is one-way signalling without specifying a specific or-
der, we mean that the inputs and outputs of Φ can be permuted with swaps
in order to obtain the order A1 � . . . � An.

We end this section with a slightly different view on causal processes,
related to marginals as in Definition 2.1.15

Definition 2.2.4. A process Ψ : A → A′ is called marginal preserving if for
all ρ : A⊗ B we have
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ρ

B
A

B

ρ
A

=

Ψ
A′

Preserving the marginal can also be interpreted as a type of no signalling
from the future condition. Indeed, suppose Alice and Bob each get their
share of the bipartite state ρ and Bob wants to perform some experiment
on his system. Then, if Alice could perform some process which did not
preserve the marginal, she would not only be able to influence the outcome
of Bob’s experiment from a distance, which is in contrast with special rel-
ativity, but she could even do so after Bob has done his experiment, in
contrast with causality.

So both preservation of the marginal (equation (2.2.4)) and the causality
condition (equation (1.8)) can be interpreted as no signalling from the fu-
ture. Obviously, any causal map is marginal preserving. For the converse:

Lemma 2.2.5. If a SMC is compact closed then marginal preserving implies
causal.

Proof. Let Ψ be a marginal preserving process. Then letting ρ : A∗ ⊗ A be
the cup we have

=
Ψ

The result now follows from bending the wire down.

2.3 Higher order processes

By now we have introduced SMCs with discarding and considered sig-
nalling properties of processes. In this section we will consider higher or-
der processes.

Heuristically, higher order processes are maps between processes. Just
as processes Φ : B→ C take states on B to states on C:
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ρ

Φ

higher order processes, or supermaps, will take processes to processes.

If Φ : B → C is a process, we can construct a new process by applying
a higher order process w to Φ. We draw w suggestively as

w C

D

B

A

Then this map acts on Φ as

w : Φ 7→
Φ

w

D

A

The result is a process from A to D. We make this precise now. Using
process-state duality we can represent all processes as states. The process
Φ : B → C becomes a state on B∗ ⊗ C and the supermap w is a state on
A∗ ⊗ B⊗ C∗ ⊗ D.

A

B

C

D

:=
w

A∗ B C∗ D
w ,

CB∗

Φ
Φ :=

B

C
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The action of w on Φ is just applying the appropriate caps:

Φ

B

A

D

C

:=

DA∗

w
C∗B CB∗

Φ
w (2.18)

Not only do we want these second order processes to be causal maps
(i.e., discarding B and D results in discard on A and C), we also want these
maps to preserve the causality of the input. Hence we come to the the
concept of second order causality:

Definition 2.3.1. A process w : A⊗ C → B⊗D is called second order causal
if for all causal processes Φ : B → C the resulting process of ’plugging Φ
into w’ is a causal map. That is:

∀Φ s.t. Φ = , Φ
w

=

2.3.1 Higher order systems in a compact closed category

As easy as compact closure is to work with, it turns out that categories
which are compact closed do not have the right structure to study higher
order processes. As an intermediate notation, let us denote by

A⇒ B := A∗ ⊗ B,

the object representing maps from system A to B. 1 That is, the internal
hom as the right adjoint to the tensor, as in (2.10). We can then consider
the space of maps from this system A⇒ B to some system C. These are in
some sense the simplest higher order maps one can consider. However, for

1We note that our ⇒ is not equal to the one that occurs in linear logic literature. There
one often defines A ⇒ B := (!A)( B, which has the interpretation of ‘B is caused by some
iteration of A’ [39].
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these maps we have the following:

(A⇒ B)⇒ C ∼= (A∗ ⊗ B)∗ ⊗ C
∼= A⊗ B∗ ⊗ C
∼= B∗ ⊗ A⊗ C
∼= B⇒ (A⊗ C) (2.19)

That is, this space of higher order processes is a space of regular first
order processes. Hence we lose the ability to distinguish higher order pro-
cesses from ordinary ones and the next example shows these processes are
genuinely different.

Example 2.3.2. Taking C = I in equation (2.19) implies that (A ⇒ B)∗ ∼=
B ⇒ A. Now consider the process which is the identity from the future to
the past: It is causal, but not second order causal as can be seen by plugging
in the identity.

A = 6= 1satisfies yet

We come back to this example in Theorem 3.1.6

To remedy this problem of all processes collapsing to first order, we
will need to drop the requirement that the dual distributes over the tensor.
In Theorem 3.3.16 we will see that the type of category we then obtain is
what is called ∗-autonomous. A short introduction to these categories will
be given in the next section.

2.4 *-Autonomous categories

∗-Autonomous categories were originally introduced by Michael Barr ([11])
in 1979 when studying topological vector spaces. Their name stems from
the somewhat outdated term of autonomous category to mean a symmet-
ric closed monoidal category. A *-autonomous category is then an au-
tonomous category with a distinguished star functor, which gives duals
in an appropriate sense.
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Definition 2.4.1. A *-autonomous category is a symmetric monoidal closed
category, (C,⊗, I,(), with a full and faithful functor (−)∗ : C → Cop such
that

C(A⊗ B, C∗) ∼= C(A, (B⊗ C)∗) (2.20)

We recall the difference between ‘internal’ and ‘external’ homsets, as
is standard with closed categories. We use C(A, B) (a.k.a. HomC(A, B))
to mean the set of morphisms from A to B in C. This is the homset as
seen from outside the category, i.e., external. In contrast, the internal hom,
A( B, given by the monoidal closure

C(A⊗ B, C) ∼= C(A, B(C) (2.21)

is an object in the category C. Their relation is given by

C(A, B) ∼= C(I, A( B) (2.22)

cf. (2.10) and (2.11).

Comparing the monoidal closure( to the *-autonomous equation (2.20),
we immediately find

B(C∗ ∼= (B⊗ C)∗ (2.23)

and we shall take this to be the definition of the closure. In particular we
find

A( I∗ ∼= A∗ (2.24)

Furthermore, since the star is full and faithful, we have

C(A, B) ∼= Cop(A∗, B∗)
∼= C(B∗, A∗) (2.25)

It also follows from equation (2.20), and using the swap, that

C(B, A∗) ∼= C(A⊗ B, I∗) ∼= C(A, B∗) (2.26)

Combining these we obtain

C(A, B) ∼= C(B∗, A∗) ∼= C(A, B∗∗) (2.27)

and thus, by a corollary of the Yoneda lemma (see Corollary 7.4.3 in Part
II) we have

B ∼= B∗∗ (2.28)

and we shall also take this to be strict. We can now rewrite the *-autonomous
equation (2.20), using equation (2.28), in a way that might be more familair
to some:

C(A⊗ B, C) ∼= C(A, (B⊗ C∗)∗) (2.29)

and this relates to the closure( again via (2.23).
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Example 2.4.2. Any compact closed category is *-autonomous. Indeed,
with the monoidal closure given by A( B = A∗ ⊗ B we have by Lemma
2.1.12

C(A⊗ B, C∗) ∼= C(A, B∗ ⊗ C∗) ∼= C(A, (B⊗ C)∗) (2.30)

Crucial in this example is the distribution of the star over the tensor.
And this was precisely what we used in the derivation of (2.19) to show
that higher order processes collapse to first order in a compact closed cat-
egory. In a *-autonomous category, this distribution does not hold in gen-
eral. This allows us to define a new monoidal product, called par, as a de
Morgan dual of the tensor:

A� B := (A∗ ⊗ B∗)∗ (2.31)

Associativity and commutativity of par follow directly from those of the
tensor:

A� B ∼= B� A (A� B)� C = A� (B� C) (2.32)

Moreover, since I is the unit for ⊗, it follows that I∗ is the unit for �:

A� I∗ = (A∗ ⊗ I∗∗)∗

∼= (A∗ ⊗ I)∗

∼= A∗∗

∼= A (2.33)

Hence we find a second monoidal structure (C,�, I∗).

Example 2.4.3. A compact closed category is a degenerate *-autonomous
category in the sense that the two monoidal products coincide, ⊗ = �,
and that I ∼= I∗. Indeed, A� B = (A∗ ⊗ B∗)∗ = A⊗ B and I = I � I∗ =
I ⊗ I∗ = I∗.

The internal hom, or linear implication, sometimes called ’lolly’, (, is
obviously not symmetric or associative, however, we do have the following
for any object X:

C(X, A( (B( C)) ∼= C(X⊗ A, B( C)
∼= C(X⊗ A⊗ B, C)
∼= C(X, (A⊗ B)( C)

Hence
A( (B( C) ∼= (A⊗ B)( C (2.34)
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Symmetry of tensor then implies

A( (B( C) ∼= B( (A( C) (2.35)

It will be good to have the relations between ⊗, � and( spelled out.
We list them in this table:

⊗ � (

⊗ A⊗ B ∼= (A∗ � B∗)∗ A⊗ B ∼= (A( B∗)∗

� A� B := (A∗ ⊗ B∗)∗ A� B ∼= A∗( B
( A( B = (A⊗ B∗)∗ A( B ∼= A∗ � B

Next we consider the relation between the monoidal structures (C,⊗, I)
and (C,�, I∗) a bit more.

Proposition 2.4.4. Let C be a *-autonomous category. Then there is a canon-
ical ‘distribution’ morphism

δ : A⊗ (B� C)→ (A⊗ B)� C (2.36)

Proof. We have the following isomorphisms:

C(A( B∗, A( B∗) ∼= C((A( B∗)⊗ A, B∗)
∼= C(A⊗ (A( B∗), B∗) (2.37)

and

C(B∗(C, B∗(C) ∼= C(B∗ ⊗ (B∗( c), C)
∼= C(B∗, (B∗(C)(C) (2.38)

Starting from the identity in both cases we end up with maps

A⊗ (A( B∗)→ B∗ → (B∗(C)(C

Then using that

C(A⊗ X, Y(C) ∼= C(A⊗Y, X(C)

we obtain the desired map

A⊗ (B∗(C)→ (A⊗ B)∗(C (2.39)
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Categorically, this means that *-autonomous categories are a special
case of linear distributive category2 (See [28], particularly Theorem 4.5). We
interpret the left hand side of equation (2.36) as the system A together with
maps from B∗ to C, whereas we interpret the right hand side as maps from
(A⊗ B)∗ to C. In this sense, in the r.h.s., the system A can ‘influence’ sys-
tem C, whereas in the l.h.s. it can not.

In Theorem 3.3.16 we will see that the type of category we construct has
the property that I ∼= I∗, just as with compact closed categories (Example
2.4.3). However, in general, there is no clear relation between the monoidal
units I and I∗.

Definition 2.4.5 ([27]). A *-autonomous category C is called MIX if there
is a mix map m : I∗ → I making the following diagram, made up from
coherence maps and m, commute:

A⊗ B

∼=
��

∼= // A⊗ (I∗ � B) m′′ // A⊗ (I � B)

δ
��

(A� I∗)⊗ B

δ′

��

(A⊗ I)� B

∼=
��

A� (I∗ ⊗ B) m′ // A� (I ⊗ B)
∼= // A� B

(2.40)

Here δ′ is the map coming from δ and the appropriate swaps and m′ and
m′′ are the obvious maps induced by the mix map m. The resulting map

mxA,B : A⊗ B→ A� B (2.41)

is called a mixor ([29]).

The category is called isoMIX if m : I∗ → I is an isomorphism.

It was shown in 1989 by Robert Seely ([82]) that ∗-autonomous cate-
gories are a semantics for classical multiplicative linear logic (MLL). This
is a fragment of linear logic, introduced by Jean-Yves Girard ([40]), and
deals with logic for systems which are resource sensitive. This is often ex-
plained in terms of cooking. One can use a beer in a stew or drink it, but
not both. This is reminiscent of the no cloning theorem [95] in quantum
theory and hence it should not be a big surprise that these categories pop
up in categorical quantum research. They are for example also related to
entanglement in Hilbert spaces [32]. The intuition is that ⊗ behaves like

2A slightly outdated term for linearly distributive is weakly distributive.
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‘and’ and (−)∗ is a negation. It than follows that � behaves like ‘or’ (not
(not a and not b) = a or b) and( behaves like implication (not a or b = a
implies b). The main difference is that instead of distribution (a and (b or
c) = (a and b) or (a and c)) we have the linearized version equation (2.36).

From now on we will adopt the convention that ⊗ has precedence over
( and that( associates to the right:

A⊗ B(C := (A⊗ B)(C (2.42)

A( B(C := A((B(C) (2.43)

We end with a small preview of what is to come. In the next chapter we
start with a compact closed category C. By process state duality (Section
2.1.5) we can therefore consider processes and higher order processes as
states on some system. From this we construct a category whoso objects
are related to sets of causal states in this generalized sense. Theorem 3.3.16
shows that this category is isoMIX *-autonomous and in Section 3.3 we
see how the two monoidal products are different ways to combine two of
these sets. The system A ⊗ B is a joint state-space of A and B, whereas
A� B should be seen as a map from A∗ to B. These are the same for a class
of systems called first order (Section 4.1), but differ in general and allow us
to capture different signalling properties of processes in Chapter 4.



Chapter 3

Precausal categories and
Caus[C]

In this chapter we will use the framework built up in the previous chap-
ter to define a class of categories which we call precausal (Definition 3.1.1).
Such precausal categories will serve as a kind of ‘base’ category to which
we will assign a new category (Section 3.3) whose objects represent higher
order causal types (Chapter 4).

3.1 Precausal categories

In order to construct a theory for higher order processes, we need to start
with the right kind of ‘base’ category. These base categories will be certain
compact closed SMCs together with some natural additional requirements
that ensure a well behaved construction of a type system describing higher
order systems. We will first introduce these base categories, called precausal
categories, here. After that we will introduce the construction to define a
category with a refined type system.

Recall that second order causal processes are those morphisms which
send causal processes to causal processes (Definition 2.3.1). We now define
the class of categories in which all process will take place.

Definition 3.1.1. A precausal category is a symmetric monoidal category C,
which is compact closed and satisfies the following four properties:

59
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(C1) C has discarding.

(C2) For every non-zero system A, the dimension of A (cf. Definition
2.1.17)

dA = A

is an invertible scalar.

(C3) C has enough causal states:∀ρ causal .

ρ

f = g

ρ

 =⇒ f = g

(C4) Second-order causal processes factorise:

∀Φ causal .

Φ =w

 =⇒



∃Φ1, Φ2 causal .

=

Φ1

Φ2

w


For the rest of this section we will investigate properties of precausal

categories.

Since causality is defined in terms of discarding (1.8), condition (C1)
will be no surprise. Condition (C2) gives us information about the scalars,
I := Hom(I, I), in a precausal category C. It says that for every object
A, which is not the categorical zero object, the scalars dA and d−1

A are ele-
ments of I and hence their products are as well. This implies that we can
always normalize the maximally mixed state for every non-zero system A
(cf. equation (2.1.6))

= 1
dA

(3.1)

This condition shows us that there always exists at least one normalized
state on any (non-zero) object. We will need this to make sense of Defini-
tion 4.1.1 when we consider causal types.

At first glance, the enough causal states axiom (C3) might seem like a
triviality: if two functions give the same output on all inputs, they must
be the same. However, in general there are theories where two processes
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Ψ and Φ can agree on all states, but still are not equal as there exists some
additional system and a bipartite state ρ such that

Ψ Φ
6=

ρ ρ

An example of such a theory is real quantum theory (see for example [22]).
In a nutshell, real quantum theory is quantum theory, but with real Hilbert
spaces and algebras. In particular, when we consider a qubit, the Pauli
matrix σy, related to the spin in the y-direction, has complex entries and is
therefore not part of real quantum theory. However, this operator tensored
with itself, σy ⊗ σy, is real. Recall that that Pauli matrices, together with
the identity, form a basis for the self adjoint elements for a qubit. Consider
now two processes Ψ and Φ on a single qubit which act different on this σy
component, but the same on all other components. Now consider a bipar-
tite state ρ with a σy ⊗ σy component, then the non-equality (3.1) holds, but
Ψ and Φ do act the same on all single qubit states.

In Lemma 2.2.5 we saw that compact closedness is a sufficient condition
to relate preservation of the marginal to causality. We now see that having
enough causal states is also sufficient.

Proposition 3.1.2. Let C be a SMC with discarding and enough causal
states, then preserving the marginal (equation (2.2.4)) is equivalent to the
causality condition (equation (1.8)).

Proof. We have already noted that causality trivially implies preservation
of the marginal. The other way around, since preservation of the marginal
must hold for all states ρ : A⊗ B, we may take B to be trivial. Then

=

ρρ

Φ

and by enough causal states the result now follows.

In the formulation of Axiom (C3) we consider all causal states on some
system. Of course that system could be some composite system. It turns
out that in this case we need not consider all causal states, but it suffices to
consider only the product states.
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Lemma 3.1.3. Let C be a compact closed SMC with enough causal states.
Then

ρ1 ρ2 ρn
. . .

. . .

Φ
. . .

Φ′

ρ1 ρn

. . .

=

ρ2

⇒
. . .

. . .

Φ
. . .

Φ′

. . .

=

Proof. In the bipartite case we have that if

ρ1 ρ2

Φ Φ′

ρ1

=

ρ2

then by compact closure

ρ2

Φ = Φ′

ρ2

ρ1 ρ1

Using the fact that there are enough states once allows us to get rid of ρ2.

Φ

ρ1

=

ρ1

Φ′

Repeating this process by bending the other wires shows Φ = Φ′. The
general case then can then be found via induction.

The last axiom (C4) states that all second order causal processes are
channels with memory (also see [25]). This condition can be broken down
into two easier conditions.



3.1. PRECAUSAL CATEGORIES 63

Proposition 3.1.4. For a compact closed SMC C satisfying (C1), (C2), and
(C3), condition (C4) is equivalent to the following two conditions:

(C4′) Causal one-way signalling processes factorise:


∃ Φ′ causal .

Φ = Φ′

 =⇒


∃ Φ1, Φ2 causal .

Φ =
Φ1

Φ2


(C5′) Second order causal effects factorise. That is, for all w : A ⊗ B∗ there

exists some causal state ρ such that:
∀Φ causal .

w Φ = 1

 =⇒


∃ρ causal .

w =

ρ



Proof. First suppose (C4) holds and let Φ be a causal one-way signalling
map as in the premise of (C4′). Then, for any causal Ψ

Φ

Ψ

=

Ψ

Φ′

Φ′

Ψ
= =

Hence, by (C4) there exist causal Φ′1, Φ2 such that:

Φ
=

Φ2

Φ1
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Deforming then gives the factorisation in (C4′).

To get to (C5′) from (C4), we take the input and output systems of w
trivial. Then because discarding is the unique causal effect, Φ2 has to be
the discarding effect and we get:

=

Φ1

Φ2

w

Φ1

= =:
ρ

Causality of ρ follows directly from the fact that Φ1 is causal.

The other way around, assume that (C4′) and (C5′) hold and suppose
that w is second order causal. Then for any causal state ρ we have that for
any causal map Φ the following holds:

w

ρ

Φ = 1

Hence by (C5′) we have that

=

ρ′

w

ρ

(3.2)

Recall the normalized version of the maximally mixed state (3.1). Then
since non-zero dimensions are invertible, we obtain an expression for ρ′:

=

ρ′

w

ρ

=

ρ′

Substituting this result for ρ′ back into the equality (3.2), we find
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w =

ρ ρ

w

As this holds for all causal states ρ, we have by enough causal states, (C3),
that

w = w =:

w′

Hence w is one-way signalling as in (C4′), with Φ := w and Φ′ := w′. From
this the factorization as in (C4) follows from the factorization of (C4′) by
diagram deformation:

Φ1

Φ2

=w

The proof of Proposition 3.1.4 reveals an interesting fact which is worth
mentioning explicitly:

Lemma 3.1.5. For any w : A⊗ B∗:∃ρ . w =

ρ

 ⇐⇒

 = ww
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In Example 1.1.2 we showed that the factorization in condition (C4′)
was sufficient to be one-way signalling. By definition, in a precausal cat-
egory all one-way signalling processes are of this form. This of course
spawns the question whether there are categories which have one-way sig-
nalling processes which do not factor in this way. Unfortunately, to the
knowledge of the author, this is not known. See Example 3.2.4 for a possi-
ble candidate.

Before looking at some examples of precausal categories in the next sec-
tion, we end this section by showing that precausal categories do not admit
feedback loops, a property which me might think of as no time-travelling.

Theorem 3.1.6 (No time travel). No non-trivial system A in a precausal
category C admits time travel. That is, if there exist systems B and C such
that for all processes Φ : A⊗ B→ A⊗ C we have:

Φ

A B

CA

causal =⇒ ΦA

B

C

causal (3.3)

then A ∼= I.

Proof. For any causal process Ψ : A→ A, we can define:

Φ

A B

CA

:= Ψ

A

A

C

B

which is also a causal process. Then implication (3.3) gives:

ΦA

B

C
= B = 1=A Ψ

Applying (C5′), we have:

A =

ρ
A

A
=⇒ A =

ρ
A

A

for some causal state ρ : I → A. That is, ρ ◦ = 1A, and by definition of
causality for ρ, ◦ ρ = 1I , so A ∼= I.
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Note that a special case of Theorem 3.1.6 implies that if for all causal
processes Φ : A→ A we have

ΦA = 1

then A ∼= I.

We can now also explicitly show that the diagram (1.14) cannot be causal
for any process Φ.

Example 3.1.7. Take Φ to be the swap map in (1.14), then

Ψ

= Ψ

which by the no time-travel theorem is only causal for all Ψ if its input and
output are trivial.

3.2 Examples of precausal categories

It should come as no surprise that the categories Mat(R+) and CPM are
precausal. We show this explicitly.

Theorem 3.2.1. Mat(R+) is a precausal category.

Proof. (C1) was given in Example 2.1.18. (C2) is immediate, and (C3) fol-
lows from the fact that one can always construct a basis for a vector space
out of probability distributions, e.g., by taking the point distributions. To
show (C4), we will decompose it into (C4′) and (C5′) via Proposition 3.1.4.
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We start with (C4′):


∃ Φ′ causal .

Φ = Φ′

 =⇒


∃ Φ1, Φ2 causal .

Φ =
Φ1

Φ2


Write P(B1B2|A1 A2) for the probability of obtaining outcomes B1 and B2,
given inputs A1 and A2. In terms of a conditional probability distribution,
the premise above amounts to the usual no-signalling condition:

P(B1|A1, A2) := ∑
B2

P(A1, A2|B1, B2) = P(B1|A1)

Hence the conclusion follows from the product rule:

P(B1, B2|A1, A2) = P(B1|A1, A2)P(B2|B1, A1, A2)

= P(B1|A1)P(B2|B1, A1, A2)

More precisely, suppose Φkl
ij is a stochastic matrix such that there exists

another stochastic matrix (Φ′)k
i where:

∑
l

Φkl
ij = (Φ′)k

i

Then, let:

(Φ1)
ki′k′
i = (Φ′)k

i δii′δkk′

(Φ2)
l
i′k′ j =

{
δ0l if (Φ′)k′

i = 0
Φk′ l

ij /(Φ′)k′
i otherwise

where δij is the Kronecker delta. One can straightforwardly verify that
these are both stochastic matrices. Let Ψkl

ij be the result of plugging outputs
i′, k′ of Φ1 into those inputs for Φ2, i.e.

Ψkl
ij := ∑

i′k′
(Φ1)

ki′k′
i (Φ2)

l
i′k′ j = (Φ′)k

i (Φ2)
l
ikj

If (Φ′)k
i = 0, then both Φkl

ij and Ψkl
ij are 0 for all j, l. So, suppose (Φ′)k

i 6= 0.
Then:

Ψkl
ij = (Φ′)k

i (Φ
kl
ij /(Φ′)k

i ) = Φkl
ij

For (C5′), let wi
j be the matrix of a second-order causal effect w : A⊗ B∗.

Then for all stochastic matrices Φj
i , we have:

∑
ij

wi
jΦ

j
i = 1
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For some fixed column m, and fixed rows n 6= n′, the following matrix:

Φj
i =


p i = m, j = n
1− p i = m, j = n′

0 i = m, j 6= n, j 6= n′

δ
j
i i 6= m

defines a stochastic map for any p ∈ [0, 1]. Then:

∑
ij

wi
jΦ

j
i = pwm

n + (1− p)wm
n′ + K = 1

where K doesn’t depend on p. Since we can freely vary p between 0 and 1,
the only way to preserve normalisation is if wm

n = wm
n′ . Hence, for all j, we

have wi
j = wi

0. Defining ρi := wi
0 gives the factorisation (C5′).

Theorem 3.2.2. The category CPM is a precausal category.

Proof. Discard is given by the trace (Example 2.1.18). For (C2), dB(H) =
dim(H), which is invertible whenever dim(H) 6= 0. (C3) follows from the
fact that density operators span B(H).

For (C4), we shall show (C4′) and (C5′). Condition (C4′) states that

trB′(Φ) = Φ′ =⇒ Φ = (1A′ ⊗Φ2) ◦ (Φ1 ⊗ 1B)

This is precisely the result of [34] and is based on the fact that minimal
Stinespring dilations are related by a unitary.

For (C5′), a causal map Φ : A → B in CPM is a completely positive
trace preserving map which we may consider as a state in A∗ ⊗ B. Recall
that there exists a basis of A∗ and of B which contain the identity and are
orthogonal w.r.t. the trace. We can then write

Φ
j

i
= +∑i 6=0,j

1
dB

ri,j

Now if any second order causal effect w does not split as in (C5′), we can
always change the value of some of the ri,j such that Φ is still positive, but
w(Φ) 6= 1.
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As we will now see, the category REL of sets and relations does not
satisfy axiom (C5′) and hence not (C4), but it does satisfy all other axioms.

Example 3.2.3. Let REL be the category whose objects are sets and whose
morphisms Hom(A, B) are relations R ⊂ A× B. It is convenient to think
of a relation R as a matrix over the Booleans, where Rb,a = 1 if a ∈ A and
b ∈ B are in relation to each other and Rb,a = 0 otherwise. This category
is compact closed as we see below. The monoidal product on objects is
the direct product and on morphisms it is the Kronecker product. The
tensor unit I is a singleton set {∗}. Composition then just becomes matrix
multiplication over the Booleans.

Hence a state ρ : I → A can be thought of as a column-vector of length
|A| and an effect σ : B → I as a row-vector of width |B|. The entries of
these vectors are either 1 or 0 depending on whether the corresponding
element is in relation to ∗ or not. Discard is given by the row-vector with
all 1’s as entries and any state which has at least one 1 as an entry is causal.
Indeed,

(
1 1 . . . 1

)


ρ1
ρ2
...

ρ|A|

 = ρ1 ∨ ρ2 ∨ . . . ∨ ρ|A|

which equals 1 if at least one of the ρi equals 1. Note that we by no means
mean that A is countable. This is just notation. By a similar argument, a
morphism in REL is causal if and only if every column of its matrix repre-
sentation contains at least one 1.

The compact closed structure is as follows: Let A∗ = A as set. Cup is
the relation R ⊂ {∗} × (A× A) which relates ∗ to all elements of the form
(a, a). Cap is the relation which relates all elements of the form (a, a) to ∗.

In order to investigate what a second order causal effect is in REL, we
first write any process as a sum of tensor products of states and effects. Let
ea be the state on A which relates ∗ to a ∈ A and nothing else. Similarly, let
ea be the effect on A which relates a ∈ A to ∗ and nothing else. Now any
matrix, and hence any relation, R can be decomposed in rows or columns.
That is, we can find states ρb on B or effects σa on A such that

R = ∑
b∈B

ρb ⊗ eb = ∑
a∈A

ea ⊗ σa

In order for R to correspond to a causal map now, we need that all ρb are
causal states, or similarly, that all σa contain at least one 1.
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Now suppose w is a second order causal effect, so for all maps f

w Φ
A BB∗ A∗

= 1 (3.4)

Write w = ∑a∈A σa ⊗ ea and write f = ∑a′∈A ea′ ⊗ ρa′ . Calculating the the
caps in diagram (3.4) is now very easy as it can be done component wise.
First doing the cap over system A will only contribute if a = a′. Hence
the resulting cap over system B can be calculated as ∑a∈A〈σa, ρa〉, where
〈·, ·〉 > is the inner product between states and effects. As this has to be
equal to 1 for every choice of causal ρa, we conclude that there exists ã ∈ A
such that σã = (1 1 . . . 1) = B. In contrast, any element of the form ρ⊗
as in (C5′) must have all columns equal.

We know Mat(R+) is a precausal category. An interesting question is
what happens when we drop positivity.

Example 3.2.4. Just like Mat(R+), let Mat(R) be the category whose ob-
jects are natural numbers, but whose morphisms are matrices over the re-
als. Then by the same arguments as for Mat(R+), Mat(R) satisfies (C1),
(C2), (C3), and (C5′). However, (C4′) does not carry over since we explic-
itly used positivity in deducing that both Φkl

ij and Ψkl
ij are zero when (Φ′)k

i
is.

As such, Mat(R) could be an example of a category where one-way sig-
nalling processes do not factor. Whether this is the case or not is unknown.

3.3 The construction Caus[C]

In the previous section we introduced a type of ‘well behaved’ SMCs. In
this section we will take such a category and built from it a new category
of which we consider the objects to be higher order causal types. This con-
struction will go via sets of generalized causal states, so we will begin by
considering properties of causal or normalized states.

Given a precausal category C we can consider for every object A the set
of normalized states of A:

C =

ρ : A

∣∣∣∣∣∣∣ ρ

= 1

 (3.5)
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Causal processes, or more specifically first order causal processes, are
precisely those maps which preserve this set:

Lemma 3.3.1. A map f : A → B in a precausal category is causal if and
only if for all causal states ρ in A, f ◦ ρ is causal in B.

Proof. If f is causal, then obviously f ◦ ρ is causal whenever ρ is. Now
suppose ρ ◦ f is causal for every causal ρ:

ρ
ρ

f = 1 =

Then by enough causal states (C3) f is causal.

This characterization leads us to consider sets of generalized causal
states for the objects of C and then consider processes which preserve these
sets.

Definition 3.3.2. Let X be any set of states on an object A in a precausal
category. The dual set of X, written X∗, is the set of effects which normalize
X:

X∗ = {π : A∗ | ∀x ∈ X : π ◦ x = 1}

Since we identify A with its double dual A∗∗, the double dual of a set
X is again a set of states on A. We now have the following results:

Lemma 3.3.3. For any set of states X on a system A the following hold:

(i) X ⊂ X∗∗,

(ii) If X ⊂ Y, then Y∗ ⊂ X∗,

(iii) X∗ = X∗∗∗,

(iv) Taking the double dual is a closure operation, i.e., X∗∗ = X∗∗∗∗.

Proof. For (i), we have that if x ∈ X, then for all π ∈ X∗ we have π ◦ x = 1,
hence x ∈ X∗∗. Now if π ∈ Y∗ normalizes Y it certainly normalizes X
whenever X ⊂ Y, which shows (ii). To show (iii), we note that by (i),
X∗ ⊂ X∗∗∗. Also by (i), X ⊂ X∗∗ so by (ii), X∗∗∗ ⊂ X∗. Finally, (iv) follows
directly from (iii).
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Consider again the set C of causal states on a system A (3.5). Using
duals, we can rewrite this set to

C = {ρ : A | ρ ∈ { A}∗} (3.6)

Indeed, causal states are exactly those states which are normalized by the
discard effect.

Now consider the dual of C, C∗. Obviously A ∈ C∗. Now suppose
there was some other effect σ such that σ normalizes all elements in C, then
by enough causal states we have σ = A. We have thus proven:

Lemma 3.3.4. Let A be an object in a precausal category. The dual of the
set C in (3.6) is the set

C∗ = { A}

It then follows:

Corollary 3.3.5. The set (3.6) satisfies C = C∗∗.

Furthermore, since
1

dA
A = 1,

we have that the normalized maximally mixed state is an element of C and
the discard effect is an element of C∗.

This leads us to the following:

Definition 3.3.6. A set of states c on an object A in a precausal category C
is called

• Closed if c∗∗ = c,

• Flat if there exist scalars λ, µ such that λ ∈ c and µ ∈ c∗.

The reason that we allow the maximally mixed state and the discard
effect up to a scalar becomes clear when we consider the space of causal
maps from A to B seen as states on A∗ ⊗ B. Discarding such a state coming
from a map Φ, by applying A∗ B gives dA∗ which equals dA.

Φ
dA=A∗ B A∗

A

=
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So 1
dA A∗ B is in C∗ and 1

dB A∗ B is in C.

Lemma 3.3.7. The scalars λ, µ from Definition 3.3.6 are invertible.

Proof. Since µ A is in the dual of λ , it follows that

1 = µ A ◦ λ = λµ A = λµdA

Hence λ and µ are invertible.

We are now ready to present the construction of the category of higher
order causal types from a precausal category C. We denote this higher
order causal category by Caus[C].

Definition 3.3.8. Given a precausal category C, the category Caus[C] is the
category where

• Objects are pairs A := (A, cA) where A is an object of C and cA is a
set of states which is flat and closed,

• Morphisms f : (A, cA) → (B, cB) in Caus[C] corresponds to mor-
phisms f : A→ B in C such that

ρ ∈ cA ⇒ f ◦ ρ ∈ cB.

We will use bold letters to denote objects in Caus[C]. That is, A :=
(A, cA). It should be noted here that cA can be any set of states, as long
as it is closed and flat. In particular, there could be multiple objects which
have the same underlying space, but different sets of ‘generalized causal
states’: A = (A, cA) and A′ = (A, cA′). We will give the objects unique
names and attach this name in subscript to the set c to distinguish these
different sets.

The condition on morphisms in the definition of Caus[C] is given in
terms of states, but from the definition of duals we can express it in terms
of effects or scalars as well.

Lemma 3.3.9. Let A = (A, cA) and B = (B, cB) be objects in Caus[C] and
let f : A→ B be a map in C. Then the following are equivalent:

(i) ρ ∈ cA =⇒ f ◦ ρ ∈ cB,
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(ii) π ∈ c∗B =⇒ π ◦ f ∈ c∗A,

(iii) ρ ∈ cA, π ∈ c∗B =⇒ π ◦ f ◦ ρ = 1.

Proof. Assume (i) and let π ∈ c∗B. Then π ◦ f ∈ c∗A if for every ρ ∈ cA we
have (π ◦ f ) ◦ ρ = 1, but this is the case because f ◦ ρ ∈ cB.
Now assume (ii) and let ρ ∈ cA, π ∈ c∗B. Then π ◦ f ◦ ρ = 1 by definition of
(−)∗.
Finally assume (iii) and let ρ ∈ cA. For π ∈ c∗B we have π ◦ f ◦ ρ = 1 and
hence f ◦ ρ ∈ c∗∗B = cB.

We are now going to show that the resulting category Caus[C] is ∗-
autonomous. To this end we first show it is an SMC. For this we will first
need to define the tensor. Given objects A = (A, cA) and B = (B, cB), let
cA ⊗ cB be the set of product states of cA and cB. That is:

cA ⊗ cB := {ρA ⊗ ρB | ρA ∈ cA, ρB ∈ cB}

Definition 3.3.10. For objects A = (A, cA) and B = (B, cB), their tensor
product A⊗ B is the object

A⊗ B = (A⊗ B, cA⊗B)

where the set of states cA⊗B is the closure of the set of product states:

cA⊗B = (cA ⊗ cB)
∗∗

Note that we do not actually know if this tensor is a valid object of
Caus[C]. We show this in Lemma 3.3.12, but first we need the following
result which shows that effects that normalize all product states automati-
cally normalize all states.

Lemma 3.3.11. For any effect π : A∗ ⊗ B∗ in C:
∀ ρ ∈ cA⊗B .

ρ

π
= 1

 ⇐⇒


∀ ρ1 ∈ cA, ρ2 ∈ cB .

ρ1

π

ρ2

= 1

 (3.7)

Proof. The LHS of (3.7) states that

π ∈ c∗A⊗B := ((cA ⊗ cB)
∗∗)∗ = (cA ⊗ cB)

∗∗∗

whereas the RHS states that π ∈ (cA ⊗ cB)
∗. Hence, (3.7) follows from

Lemma 3.3.3.
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With this we can now show that indeed the tensor is an object in Caus[C].

Lemma 3.3.12. Let (A, cA) and (B, cB) be objects in Caus[C]. Then the set
cA⊗B is closed and flat.

Proof. By Lemma 3.3.3, cA⊗B is obviously closed. Since cA and cB are flat,
we have that for some λ, λ′:

λ ∈ cA, λ′ ∈ cB

hence:
λλ′ ∈ cA ⊗ cB ⊆ cA⊗B

Similarly, for some µ, µ′:

µ ∈ c∗A, µ′ ∈ c∗B

So, for all ρ ∈ cA, ρ′ ∈ cB, we have:

µµ′ ρ ρ′ = 1

which implies, by Lemma 3.3.11:

µµ′ ∈ (cA ⊗ cB)
∗ = (cA ⊗ cB)

∗∗∗ = c∗A⊗B

In order to show that Caus[C] is indeed an SMC, we need to check a lot
of details. We do this in the following theorem.

Theorem 3.3.13. Let C be a precausal category. Then Caus[C] is a symmet-
ric monoidal category where

A⊗ B = (A⊗ B, cA⊗B)

and
I = (I, {1})

Proof. First we show that A⊗B and I are indeed objects in Caus[C], namely
the cA⊗B and cI are flat and closed. For cA⊗B this is Lemma 3.3.12 and for
cI we just have to note that Hom(I, I) are the states on I as well as the

effects on I and that I = 1 = .
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Next, we show associativity and unit laws for ⊗. For any object A, the
unit laws A⊗ I = A = I ⊗ A follow from the closure of cA.

For associativity, we will show that c∗(A⊗B)⊗C = c∗A⊗(B⊗C). Applying
Lemma 3.3.11 twice to an effect π ∈ c∗(A⊗B)⊗C gives:


∀ Ψ ∈ c(A⊗B)⊗C .

Ψ

π
= 1

 ⇐⇒


∀ Ψ′ ∈ cA⊗B, ξ ∈ cC .

Ψ′

π

ξ

= 1



⇐⇒


∀ ψ ∈ cA, φ ∈ cB, ξ ∈ cC .

π

ξψ φ

= 1


Similarly, for π ∈ c∗A⊗(B⊗C)

∀ Ψ ∈ cA⊗(B⊗C) .

Ψ

π
= 1

 ⇐⇒


∀ ψ ∈ cA, Φ ∈ cB⊗C .

Φ

π

ψ

= 1



⇐⇒


∀ ψ ∈ cA, φ ∈ cB, ξ ∈ cC .

π

ξψ φ

= 1


Hence c∗(A⊗B)⊗C = c∗A⊗(B⊗C) and so c(A⊗B)⊗C = cA⊗(B⊗C).

Next we show that ⊗ is well-defined on morphisms. For morphisms
f : A → A′, g : B → B′, and an effect π ∈ c∗A′⊗B′ , we have by Lemma
3.3.11: 

∀ Ψ ∈ cA⊗B .

Ψ

π

f g = 1

 ⇐⇒


∀ ψ ∈ cA, φ ∈ cB .

π

f g

ψ φ

= 1


The RHS holds since f ◦ ψ ∈ cA′ and g ◦ φ ∈ cB′ . From the LHS above, we
can conclude that f ⊗ g : A⊗ B→ A′ ⊗ B′ is a morphism in Caus[C].



78 CHAPTER 3. PRECAUSAL CATEGORIES AND CAUS[C]

Finally, it remains to show that swap is a morphism in Caus[C]. By
Lemma 3.3.9, this is the case when, for all π ∈ c∗B⊗A, we have:

π

B A

A B

∈ c∗A⊗B

This again follows by relying on Lemma 3.3.11.

We now focus on the involution, (−)∗. Since C is compact closed, we
have duals in C. Furthermore, we have duals on sets of states. This leads
us to consider the involution on Caus[C] as

A∗ = (A, cA)
∗ := (A∗, c∗A)

Lemma 3.3.14. The transposition functor (−)∗ : Cop → C:

A 7→ A∗ f ∗
A∗

B∗
:= f

A∗

B∗

B

7→f

A

(3.8)

lifts to a full and faithful functor (−)∗ : Caus[C]op → Caus[C], where A∗ :=
(A∗, cA∗ := c∗A).

Proof. Since c∗B = cB∗ , by definition, and cA = c∗∗A = (cA∗)
∗, we have, for

f : A→ B that:

∀ ρ ∈ cA, π ∈ c∗B .

π

ρ

f = 1


⇐⇒



∀ π ∈ cB∗ , ρ ∈ (cA∗ )
∗ .

f

π

ρ

= 1


so f ∗ : B∗ → A∗ is a morphism in Caus[C]. Just as with the functor (−)∗ in
C, ((−)∗)∗ = IdCaus[C], so fullness and faithfulness is immediate.

Consider a map f : A→ I in Caus[C]. That is, f : A→ I in C and for all
ρ ∈ cA we have f ◦ ρ = 1. From this we see that A∗ can be identified with
the space of maps from A to I. We make this precise. Recall that in a ∗-
autonomous category the object A( B is defined by (A⊗ B∗)∗ (equation
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(2.23)). While we do not yet know Caus[C] is ∗-autonomous, we do have
enough structure to define

A( B := (A⊗ B∗)∗ (3.9)

Explicitly we have:

Lemma 3.3.15. For objects A, B ∈ Caus[C]:

cA(B =

 f : A∗ ⊗ B
∣∣∣∣ ∀ρ ∈ cA, π ∈ c∗B .

π

ρ

f = 1


Proof. This follows by simplifying:

c(A⊗B∗)∗ = c∗(A⊗B∗) = (cA ⊗ cB∗)
∗∗∗ = (cA ⊗ c∗B)

∗

and noting that f ∈ (cA ⊗ c∗B)
∗ is precisely the statement given in the

lemma.

We now show that Caus[C] always has the structure of an isoMIX ∗-
autonomous category, i.e., it satisfies I = I∗ ([26]).

Theorem 3.3.16. For any precausal category C, the category Caus[C] is ∗-
autonomous category with the additional property that I = I∗.

Proof. We have already shown that Caus[C] is an SMC (Theorem 3.3.13)
with a full and faithful functor (−)∗ : Caus[C]op → Caus[C] (Lemma 3.3.14).
Consider objects A, B, C in Caus[C]. The underlying object of B(C is:

(B⊗ C∗)∗ = B∗ ⊗ C∗∗ = B∗ ⊗ C

Recall that since C is compact closed, there is a natural isomorphism:

C(A⊗ B, C) ∼= C(A, B∗ ⊗ C)

obtained from bending a wire, which we saw in (2.10). Thus, it suffices to
show that:

f ∈ Caus[C](A⊗ B, C) ⇐⇒ g ∈ Caus[C](A, B(C)
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This follows from Lemma (3.3.11):

f ∈ Caus[C](A⊗ B, C) ⇐⇒



∀ρ ∈ cA⊗B, π ∈ c∗C .

f

π

ρ

= 1



⇐⇒



∀ρ1 ∈ cA, ρ2 ∈ cB, π ∈ c∗C .

f

ρ1 ρ2

π

= 1



⇐⇒



∀ρ1 ∈ cA, ρ2 ∈ c∗B∗ , π ∈ c∗C .

f

ρ1

πρ2

= 1


⇐⇒ g ∈ Caus[C](A, B(C)

Finally, I = I∗ follows from the fact that I = I∗ and

c∗I = {λ | 1λ = 1} = {1} = cI

Now that we know Caus[C] is ∗-autonomous, we explicitly consider
the second monoidal structure, �. Recall that A� B := (A∗ ⊗ B∗)∗. That
is, A� B = (A⊗ B, cA�B), where

cA�B =

ρ : A⊗ B
∣∣∣∣ ∀π ∈ c∗A, ξ ∈ c∗B .

π

ρ

ξ
= 1

 (3.10)

Hence A � B is the object whose ‘causal states’ are precisely those states
which are normalized by all product effects. Since the causal states of the
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tensor product are those states normalized by all effects, we have the fol-
lowing embedding:

A⊗ B ↪→ A� B (3.11)

The way Caus[C] is defined, it comes with a natural type theory which
is finer than that of C itself. We say a state ρ has type X, written ρ : X,
if ρ ∈ cX . Now the notation ρ : X is used in two ways. Once as the
abbreviation that ρ is a state on X and once to note that ρ has type X.
However, it turns out this actually means the same!

Lemma 3.3.17. For an object X in Caus[C] and a state ρ on X we have

ρ : X ⇔ ρ ∈ cX

That is, a state on a system X has type X.

Proof. Per definition, a state ρ is a morphism ρ : I → X. Since I = (I, {1})
we must, by definition of morphism in Caus[C], have that ρ = ρ ◦ 1 ∈
cX .

In the next chapter we will relate certain types to (higher order) causal
orders. If we then have some diagram Φ in C, we can always consider it
as a state ρΦ by bending the input wires. We can then consider the objects
A such that ρΦ ∈ cA. If any of these types correspond to ones which we
related to some causal order, we know that Φ satisfies this order.

In the next section we consider our leading examples Mat(R+) and
CPM and show that they are indeed precausal, so that the constructions
Caus[Mat(R+) ] and Caus[CPM ] give valid categories of ‘higher order
probability theory’ and ‘higher order quantum theory’, respectively.

For now, we end this section with some remarks.

The type of a system is in general not unique. If cX ⊂ cX ′ are sets of
states which are both flat and closed, and ρ : X then ρ : X ′. In fact, for
every invertible scalar λ, there is a poset of flat and closed sets of states

with corresponding normalization, under inclusion. The set {λ } is the
bottom element and {µ }∗ is the top element.

Related to the previous fact is this: the category Caus[C] is constructed
from C and it is often good to think about the objects of Caus[C] as refine-
ments of the objects of C. Given a state ρ in C, there is not just a single
system in Caus[C] to which it belongs. There could be many objects Xi in
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Caus[C] such that ρ : Xi. Some of these types are related to certain causal
structures as we will see in the next section.

Whenever we draw a diagram, we consider this diagram to be in the
precausal category C. We then say whether or not this diagram, seen as a
state, satisfies some type in Caus[C]. In particular, whenever we draw par-
allel wires, we always mean that this is the tensor of the systems involved,
as this is the only monoidal structure in C.

For a SMC, in particular a precausal category, C, the homset of mor-
phisms from the tensor unit to itself form a monoid I = C(I, I). LetM⊂ I
be a submonoid of this monoid. We can then define a dual with respect to
this submonoid. For a set of states X on an system A,

X∗ = {π : A→ I | ∀x ∈ X, π ◦ x ∈ M}

We then recover our original definition of dual by pickingM = {1}, but
other choices are possible. For example, if C has a zero-object we might
consider M = {0, 1} or in the examples of CPM or Mat(R+) one could
takeM = [0, 1].

The construction of Caus[C] from a precausal category C is, upto the
flatness condition (Definition 3.3.6), an example of what is called double
glueing [52]. In their language, we start with the double glued category
glued along the Hom-functors C(I,−) : C → Set and C(−, I) seen as a
functor C → Setop. Objects of this category are triples (A, X, Y) with A an
object in C, X ⊂ C(I, A) and Y ⊂ C(A, I) ∼= C(I, A∗). We then define an
orthogonality, ⊥, on maps I → A and maps A → I, where we say ρ ⊥ σ
precisely when σ ◦ ρ = 1. Note that this is opposed to the ‘usual’ notion of
orthogonality where we would say ρ ⊥ σ if σ ◦ ρ = 0. For a set X ⊂ C(I, A)
we then define its orthogonal Xo as the set

Xo = {σ ∈ C(I, A)|∀ρ ∈ X : σ ⊥ ρ} (3.12)

And similarly we obtain an orthogonal for effects. The tight orthogonal sub-
category of this double glued category is then the full subcategory for which
the objects satisfy Xo = Y and Yo = X. This is precisely our closedness
condition (Definition 3.3.6) where Xo := X∗. Relating to the previous com-
ment, we obtain an orthogonality by taking a set F ⊂ C(I, I) by setting
ρ ⊥ σ when σ ◦ ρ ∈ F. This orthogonality is called focussed with focus F.
In our case we therefore obtain a focussed tight orthogonality subcategory
with focus {1}.

This double glueing construction gives rise to a nice possible appli-
cation. Since our construction starts with a precausal category, which is
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compact closed, and gives a *-autonomous category which is not compact
closed, we technically cannot iterate this construction. However, the dou-
ble gluing construction can be iterated. Heuristically, this would give some
doubly fine grained causal category whose objects are now triples (A, c, c′)
where (A, c) is an object in Caus[C] and c′ ⊂ c is another set of states. Mor-
phisms (A, c, c′) → (B, d, d′) would then be morphisms f : A → B such
that not only f (c) ⊂ d, but also f (c′) ⊂ d′. The details and exact applica-
tions of this are left as future research.



Chapter 4

Higher order processes and
causal orders

In the previous chapters we introduced the concept of a precausal category
(Definition 3.1.1): a category which behaves well with regard to defining
causal structures. We have seen how to turn a precausal category into a
category of higher order processes in Section 3.3. Here we are going to
study some actual causal structure and see how the type theory gives us
information about this causal structure. We will identify several interesting
types and relate them to causal orders.

4.1 First order systems

Let A be an object in a precausal category C. Then the dual of the discard

effect, { A}∗, is closed by Lemma 3.3.3 and flat because 1
dA

∈ { A}∗.
Hence (A, { A}∗) is an object of Caus[C]. This leads us to the following:

Definition 4.1.1. An object A is first order if it is of the form (A, { A}∗).

First order systems are thus precisely those systems whose set of gen-
eralized causal states are the actual causal states. We think of first order
systems as the canonical systems which come from the original precausal
category. We make this precise now. Let Cc be the category whose objects
are the (non-zero) objects of a precausal category C, but whose morphisms

84
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are those morphisms of C that preserve discarding, i.e., the causal mor-
phisms, so Cc is the causal subcategory of C. Note that if C has a zero object
0, then id0 is not causal, so 0 is not an object of Cc. Then there is an identity-
on-morphisms embedding Cc ↪→ Caus[C] given by

A 7→ (A, { A}∗)

Indeed:

Proposition 4.1.2. Let A = (A, { A}∗) and B = { B}∗) be first order
systems in Caus[C]. Then a morphism f : A→ B is a morphism in Caus[C]
if and only if f : A→ B in C is causal.

Proof. Suppose f is a morphism in Caus[C]. By definition this means that
ρ ∈ { A}∗ ⇒ f ◦ ρ ∈ { B}∗ and hence f is causal by Lemma 3.3.1. The
other way around, suppose f is causal, then it preserves the causal states
and hence is a morphism A→ B in Caus[C].

So the ‘causal part’ of a precausal C category embeds in the category
of higher order causal processes Caus[C]. The following shows that this
embedding is monoidal.

Proposition 4.1.3. Let A and B be first order systems. Then A⊗ B is again
first order. That is

A⊗ B = (A⊗ B, { A B}∗)

Proof. By definition, cA⊗B is the set of states ρ : A⊗ B which are normal-
ized for all effects π that normalize all product states on A⊗ B:

ρA ρBρ

π

= 1 = 1Whenever

π

By Lemma 3.1.3 this implies that π = A⊗B = A B.

The above results can be summarized in the following:

Proposition 4.1.4. There exists a full, faithful and monoidal embedding of
the category Cc of causal processes into Caus[C] given by

A 7→ (A, { A}∗) f 7→ f
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Corollary 4.1.5. For first order systems A and B we have

A⊗ B = A� B

Proof. This follows from a simple calculation

cA�B = (c∗A ⊗ c∗B)
∗ = { A B}∗ = cA⊗B

Up to now we have not seen any difference between the two monoidal
products⊗ and�. Only when we will consider higher order systems in the
next section this difference will become apparent. First order systems are
just state spaces and behave the expected way in Caus[C]. The fact that first
order systems are closed under tensor product should therefore not come
as a surprise. The joint space of two state spaces is just a state space again.
The fact that tensor and par are equal on first order spaces is somewhat
more of a surprise, but it does explain why the par has not shown up that
much in research regarding causality or state spaces before.

4.2 Higher order systems

In this section we will use the connectives ⊗,� and(, as well as the dual
operation (−)∗, to construct some types in Caus[C] which represent causal
orders. Notably, we will therefore also show that Caus[C] really contains
more than just the first order segment.

We begin with some simple types.

Lemma 4.2.1. Let A be a first order system. Then A∗ is the system

A∗ = (A∗, { A})

where we see A : A→ I as a state A : I → A∗.

Proof. Let π ∈ cA∗ = c∗A. Then for every ρ ∈ { A}∗ we have

ρ ρ

π

== 1
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So by (C3) we have π = A.

Using Corollary 4.1.5, it follows that combining A∗ and B∗ for first or-
der A, B using tensor or par gives the same result.

Corollary 4.2.2. For first order A and B we have

A∗ ⊗ B∗ = A∗ � B∗ = (A⊗ B)∗ = (A� B)∗

So starting from two first order systems A and B we have seen that
A ⊗ B = A� B and this is again a first order system. Invoking the dual
there are two ways of combining A∗ with B. We have already seen that
for first order systems A and B states on the system A ( B corresponds
bijectively to morphisms from A to B in Caus[C]. Furthermore, we know
A( B = A∗ � B. Finally we can look at A∗ ⊗ B. We then have

A∗ ⊗ B = (A� B∗)∗ = (B( A)∗

We therefore wish to know what the dual of a space of maps is. By (C4)
we know this splits into a state and discard.

We can generalize this result.

Lemma 4.2.3. Let X be any system and let B be first order. Then for any
process w : (X ( B)∗ there exists a state ρ : X such that

w =

ρ
X

B B

X
(4.1)

Proof. As cX is flat, there is some invertible scalar µ such that µ X ∈ c∗X .
Then for any causal map Φ : X → B in C we have B ◦ µΦ = µ X ∈ c∗X .
Hence µΦ : X ( B. This implies that for w : (X ( B)∗ we have

w = 1Φµ

In other words, µw sends all causal maps to 1 and hence splits as some
state ρ′ and discard:
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w =

ρ′
X

B B

X
µ

Now take ρ = µ−1ρ′ to conclude the proof.

Recall that discarding the (normalized) maximal mixed state gives 1.
Then we can give an explicit characterization of the state ρ in Lemma
4.2.3 just as in Lemma 3.1.5. The difference is that we are now working
in Caus[C] instead of C. Any w : (X( A)∗ splits as

= ww (4.2)

We summarize the results so far in the following table:

System States Interpretation
A { A}∗ State space
A∗ { A} Discard effect
A⊗ B = A� B { A⊗B}∗ = { A B}∗ Joint state space
A∗ ⊗ B∗ = A∗ � B∗ { A⊗B} = { A B} Joint discard effect
A∗ � B = A( B { f : A→ B | B ◦ f = A} Causal maps
A∗ ⊗ B = (B( A)∗ {ρB A} State and discard

Admittedly, these types are not very interesting. They show nothing
about internal structure of processes or causal ordering. The reason for
this is of course that there are not enough systems involved to even con-
sider causal orders between the inputs and outputs. Throughout the rest of
this section we will consider some interesting causal orders for multipar-
tite systems, but first we give an example of an object where there is only
one system involved which is not first order.

Example 4.2.4. Consider the object (C2, {|0〉 〈0| , 1
2 }∗∗) in Caus[CPM].

The generalized set of causal states of this object is, by construction, the
smallest closed and flat set containing the state |0〉 〈0|. Explicit calculation

shows that {|0〉 〈0| , }∗∗) is the set of convex combinations p |0〉 〈0| +

(1− p) |1〉 〈1|. Indeed, the dual of {|0〉 〈0| , } is the set containing the
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discard effect, the effects related to the vector |0〉+ eiθ |1〉, and convex com-
binations of these. As such, this dual may be identified with the plane
through the equator on the Bloch ball and contains more than just the dis-
card effect, so our object is not first order.

As promised, we now consider how to combine two spaces of func-
tions. For A, A′, B and B′ first order, we can combine A ( A′ and B (
B′ in (at least) two different ways; using tensor and using par. We will
show that these ways of combining the function spaces lead to causal non-
signalling processes and causal processes, respectively.

Theorem 4.2.5. For first-order systems A, A′, B, B′, a process Φ is of type
(A( A′)⊗ (B(B′) if and only if it is causal and no-signalling.

Proof. First assume that Φ : (A( A′)⊗ (B(B′). Then, since discarding
B′ is causal, we can regard it as a morphism B′ : B′ → I. Hence by
functoriality of ⊗ and(, we have:

Φ

A B

B′A′

: (A( A′)⊗ (B( I)

Then we can transform to an equivalent type as follows:

(A( A′)⊗ (B( I) ∼= (A( A′)⊗ B∗

∼= ((A( A′)∗ � B)∗

∼= ((A( A′)(B)∗

Hence, by Lemma 3.1.5, Φ splits as B : B and Φ′ : A( A′. This gives
exactly the first no-signalling equation:

Φ′

BA

=Φ

A′

B

B′ A′

A

The second equation is shown similarly, by plugging in A′ .

Conversely, suppose that Φ is causal and no-signalling. Then it satisfies
the two no-signalling equations in Definition 2.2.2. Hence by (C4′), it can
be factored in two ways:
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Φ
Φ1

Φ2 Ψ2

Ψ1

= =

for causal processes Φi, Ψi.

Now, take any effect w : ((A ( A′) ⊗ (B ( B′))∗ ∼= (B ( B′) (
(A( A′)∗. For any causal state ρ,

ρ

Φ2 : B(B′

Plugging this into one side of w gives:

w
Φ2

ρ
: (A( A′)∗

Applying equation (4.2) gives:

w
Φ2

ρ
=

Φ2
ρ

w

Hence by enough causal states we have

w
Φ2 =

Φ2

w

It then follows that

w

Φ =
Φ2

w

Φ1

=
Φ2

w

Φ1
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= =

w

Φ Ψ1

w

1=

Therefore Φ : ((A( A′)⊗ (B( B′))∗∗ = (A( A′)⊗ (B( B′).

Recalling when a multipartite system is no-signalling from Section 2.2,
we can extend this theorem to multipartite systems:

Corollary 4.2.6. For first order systems Ai, A′i, i = 1, . . . , n, a process Φ :
A1 ⊗ . . .⊗ An → A′1 ⊗ . . .⊗ A′n is causal and no-signalling if and only if it
is of type (A1 ( A′1)⊗ . . .⊗ (An ( A′n).

Theorem 4.2.7. For first-order systems A, A′, B, B′, a process Φ is of type
(A( A′)� (B(B′) if and only if it is causal. That is:

(A( A′)� (B(B′) ∼= A⊗ B( A⊗ B′

Proof. We rely on the relationship between( and �:

(A( A′)� (B(B′) ∼= A∗ � A′ � B∗ � B′

∼= A∗ � B∗ � A′ � B′

∼= (A∗ � B∗)∗( A′ � B′

∼= A⊗ B( A′ � B′

Then, since A′ and B′ are first-order, A′ � B′ ∼= A′ ⊗ B′, which completes
the proof.

Extending to multipartite maps we find:

Corollary 4.2.8. For first order systems Ai, A′i, i = 1, . . . , n, a process Φ :
A1 ⊗ . . .⊗ An → A′1 ⊗ . . .⊗ A′n is causal if and only if it is of type (A1 (
A′1)� . . .� (An ( A′n).

So the tensor of two function spaces correspond to all no-signalling
causal maps whereas the par of these spaces contain all causal maps. We
thus see tensor and par as the extremes to combine two systems. We either
have no signalling between the subsystems or we impose no no-signalling
conditions whatsoever.
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In the next section we will consider a type in between signalling and
no-signalling: the one-way signalling processes. We will find the type cor-
responding to one-way signalling processes and their extension to multi-
partite systems, thereby developing the type theory for quantum combs.

4.3 One-way signalling and combs

From a physical point of view, one-way signalling is a notion which is in
between no-signalling and any kind of signalling. Any process that is no-
signalling definitely cannot signal in a particular direction and is thus one-
way signalling, and any one-way signalling process is certainly a process.
Diagrammatically we easily obtain the same conclusion. Indeed, the no-
signalling condition is defined via one-way signalling conditions. One of
the main goals of this section is to show that the type theoretic framework
developed here gives us these inclusions for free.

The first thing we will do now is find the type of one-way signalling
processes.

Theorem 4.3.1. For first order systems A, A′, B, B′, a process w is one-way
signalling (A � B) if and only if:

w

A B

B′A′

: A( (A′( B)( B′

Proof. Suppose w is one-way signalling with A � B. First, for our conve-
nience, we deform w in order to put the two A-labelled systems below the
two B-labelled systems:

w

A B

B′A′

7→

A

B

B′

A′
w

The one-way signalling equation (2.16) then becomes:

A

B

B′

A′
w =

w′
A′
B

A

(4.3)
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Now let Φ : A′ ( B be any causal map. It then follows directly from
equation (4.3) that w is second order causal:

w =

w′
Φ Φ = w′ =

So maps of type A′ ( B are sent to maps of type A ( B′. That is, w :
(A′(B)( A(B′. Finally, by (2.35) we have:

(A′(B)( A(B′ ∼= A((A′(B)(B′

Conversely, if w is of type A ( (A′ ( B) ( B′, it sends causal pro-
cesses to causal processes. Therefore it factorises as in (C4) and we thus
find the one-way signalling equation (4.3) via:

w =

Φ2

Φ1 Φ1

=

where w′ = ( ⊗ id) ◦Φ1.

Before we go on to multipartite one-way signalling processes, we sum-
marize the results for bipartite processes in the following table:

Signalling conditions Type
Causal no-signalling (A( A′)⊗ (B( B′)

Causal one-way signalling A( (A′( B)( B′

Causal (A( A′)� (B( B′)

Of course as expected, these types embed into each other and we can
show this on the type theoretic level. To this end we make use of the lin-
ear distributivity property of ∗-autonomous categories (Proposition 2.4.4
and [28]). That is, in any ∗-autonomous category, there exists a canonical
mapping:

(A� B)⊗ C → A� (B⊗ C) (4.4)
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Proposition 4.3.2. There exists embeddings of no-signalling process into
one-way signalling processes into causal processes:

(A( A′)⊗ (B(B′)↪→

A((A′(B)(B′↪→

(A( A′)� (B(B′)

Proof. For the embedding of no-signalling processes into one-way signalling
processes we make use of the linear distributivity (4.4):

(A( A′)⊗ (B(B′) ∼= (A∗ � A′)⊗ (B∗ � B′)

→ A∗ � (A′ ⊗ (B∗ � B′))

→ A∗ � (A′ ⊗ B∗)� B′

∼= A((A′(B)(B′

For the embedding of one-way signalling processes into causal pro-
cesses we use the embedding of tensor into par:

A((A′(B)(B′ ∼= A∗ � (SA′∗ � B)∗ � B′

∼= A∗ � (A′ ⊗ B∗)� B′

↪→ A∗ � A′ � B∗ � B′

∼= (A( A′)� (B(B′)

Just as we transformed one-way signalling processes to processes with
holes in them, we do the same in the multipartite case, which leads to a
class of processes called n-combs, introduced in [24]. One-way signalling
processes are such that a regular causal process can be plugged in. We now
extend this idea to processes which take in (n− 1)-combs and send them
to causal processes. Hence we obtain the following inductive definition.

Definition 4.3.3. The n-combs Cn are defined by

• C0 = I,

• Ci+1 = B−i ( Ci ( Bi+1.

where all Bi are first order systems.
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Note that our indexing of systems goes negative for 2-combs and higher
order combs. There is no special meaning to this. It is just convenient to use
the integers over the naturals in order to maintain the left-to-right ordering
of indices. Because of the inductive nature of the definition of n-combs, we
have also changed the names of the systems. This is again highly conve-
nient since at every stage of n-combs, the inputs become outputs and vice
versa. If need be, we can always switch back to the Ai and A′i systems by
renaming Ai := B2i−n−1 and A′i := B2i−n.

A 1-comb has type B0( I(B1
∼= B0 ( B1, so it is just a causal pro-

cess. A 2-comb has type B−1 ( (B0 ( B1)( B2, which we recognize as
a one way signalling process, so viewing combs as generalization of one-
way signalling processes makes sense. As an example of a new type, a
3-comb has type:

B−2

B−1

B0

B1

B2

B3

w : B−2((B−1((B0(B1)(B2)(B3

Or rewritten in terms of the original system names:

A1((A′1((A2( A′2)( A3)( A′3

We see that something of this type sends one way signalling processes to
causal maps, which was indeed the reason for the definition.

Combs are important in the context of communication protocols [47].
We can think of an (n + 1)-comb as a protocol of a party with n + 1 in-
put/output steps. An n-comb is then an n step communication protocol for
another party. Let Alice and Bob be two parties having access to an (n+ 1)-
comb wA and and n-comb wB, respectively. Plugging them together

...
...

wA wB

A0

A′n

: A0( A′n
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gives a causal map from A0 to A′n. This resulting map, acting on a state
on A0 first sends it to a new state on A′0 and this new state serves as the
input for the comb of Bob. He transforms it again to state which serves as
the input of the second stage Alice’s comb. This goes on until eventually
the end is reached and Alice outputs a state of type A′n. The whole process
was then an n-step communication protocol between Alice and Bob.

We introduced combs as a multipartite generalization of one-way sig-
nalling processes. However, the only justification for this, up to now, is
that 2-combs are one-way signalling processes. The following results will
show that combs are indeed one-way signalling processes.

Lemma 4.3.4. Let w : Cn be an n-comb. Discarding the output A′n separates
w as follows:

w = w′
... ...

(4.5)

for some w′:

Proof. Plugging any causal state into the first input of w and discarding the
last output yields:

w

ρ

...
: Cn−1( I

We then calculate:

Cn−1( I ∼= C∗n−1
∼= (B−(n−2)(Cn−2(Bn−1)

∗

∼= (B−(n−2) ⊗ Cn−2(Bn−1)
∗

Hence by Lemma 4.2.3, in particular equation (4.2), we obtain:
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w

ρ

...

=

ρ

...

w

The result then follows from enough causal states.

Note that we haven’t actually said that w′ is itself an (n− 1)-comb. The
following theorem will take care of this.

Theorem 4.3.5. A process w is an n-comb, i.e. w : Cn, if and only if it
separates as in equation (4.5) for some (n− 1)-comb w′ : Cn−1.

Proof. By induction. For n = 1 the theorem is true because a 0-comb is
always I by construction. Suppose the theorem is true for n. Let w be
an (n + 1)-comb. We need to show that w′ is an n-comb. So let y be any
(n− 1)-comb. Then, if we form the process:

...
y (4.6)

then clearly discarding the top output results in an (n− 1) comb (namely
y) and a discard on the top input. So by the induction hypotheses, (4.6) is
an n-comb. Therefore we have

...
...

w y
= ...

w′ y...
= = ... yw′ ...

(∗) (∗∗)
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where (∗) follows from the definition of (n + 1)-comb and (∗∗) is Lemma
4.3.4. Hence w′ sends any (n− 1)-comb to a causal map, so w′ is itself an
n-comb.

Conversely, let w′ in equation (4.5) be an n-comb, and take any n-comb
y. Then by the induction hypothesis, discarding the top output of y sepa-
rates as discarding and an (n− 1)-comb y′. Hence:

...
...w y =

...w′ ...
y

...
w′ ...

y′= =

so w is an (n + 1)-comb.

Hence, n-combs can be characterised inductively in exactly the same
way as n-party one-way signalling processes. Since 1-combs are just causal
processes, the following is immediate.

Corollary 4.3.6. For first order systems A1, A′1, . . . , An, A′n, a map w : A1 ⊗
. . . ⊗ An → A′1 ⊗ . . . ⊗ A′n is one-way signalling (A1 � . . . � An) if and
only if it is of type A1 ( (A′1 ( (. . .) ( An) ( A′n. That is, it is an
n-comb.

We know that in precausal categories, bipartite one-way signalling pro-
cesses factor as causal processes with memory. Indeed, this is axiom (C4′).
Hence the same holds for 2-combs. We now show that any multipartite
one-way signalling process, and hence any n-comb, factors in a similar
way, which can be seen as yet another characterization of combs or one-
way signalling processes.

Proposition 4.3.7. Let Φ be one-way signalling with A1 � . . . � An, then
there exists Φ1, . . . , Φn such that
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Φ1

Φ2

Φn

. . .
=

. . .

. . .

Φ

Proof. For n = 2, this is just (C4′). Suppose the proposition is true for n− 1.
Then because

=

. . .
Φ′

. . .. . .

. . .
Φ

for some one way signalling process Φ′ with A1 � . . . � An−1, we have by
(C4′) that there exists Φ′n−1 and Φn such that

=

. . .

. . .
. . .

Φ
. . .

Φ′n−1

C

Φn

It follows that Φ′ equals Φ′n−1 with the C system discarded, so that Φ′n−1 :
A1 ⊗ . . .⊗ An−1 → A′1 ⊗ . . .⊗ (A′n−1 ⊗ C) is again one-way signalling. By
assumption Φ′n−1 now factors and hence so does Φ.

So we have three characterizations of one-way signalling processes.

1. Operational: discarding the last output splits the process in a smaller
process and a discard.

2. Combs: inductively defined by sending smaller combs to causal pro-
cesses.

3. Processes with memory: a sequence of processes where the first process
has both an output and a channel to the next process.

In this section we have shown that in a precausal category these three char-
acterizations coincide. In particular, combs are given by channels with
memory:
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w

...

=

Φn

Φn−1

Φ1

. . .

4.4 Causal orders given by DAGs

In Chapter 1 we introduced the notion of processes being compatible with
a causal order given by a directed acyclic graph (DAG, Definition 1.1.1). In
the previous section, we considered combs, which can be represented as
channels with memory. As such, they represent a linear causal order.

w

|=...

A1

A′1

An−1

A′n−1

A′n

A′2

A2

An

A1

A2

. . .

An−1

An

In this section we wish to extend the type theory from combs to DAGs. We
will do this by considering totalizations of the DAG and then intersecting
the types corresponding to these linear orders (Theorem 4.4.8). A crucial
point to extending the type theory to DAGs is being able to ‘refine’ a partial
order to a total order.

Definition 4.4.1. Let G be a DAG. A DAG G ′ is called a totalization of G if
G and G ′ have the same vertices, G ′ is a total order (meaning that for any
vertices e, e′ in G ′, either e ≤ e′ or e′ ≤ e) and e ≤ e′ in G implies e ≤ e′ in
G ′.

Example 4.4.2. As a simple example, consider the DAG where A is before
B and C, but B and C have no causal relation.
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A

CB

A totalization for this DAG is given by either putting B before C or vice
versa. In either case, A comes before both B and C just as in the original
DAG.

A

CB

 

A

B

C

and

B

C

A

This example also shows that a totalization is not unique.

Now consider some process Φ and suppose it is consistent with a causal
order G. Then it is not hard to see that Φ is also consistent with any total-
ization of G.

Lemma 4.4.3. For a process Φ, a causal ordering G, and a totalization G ′ of
G, we have Φ � G =⇒ Φ � G ′.

Proof. Assume Φ � G. Then, for any subset E ⊆ G, there exists a process
Φ′ such that:

π1(pastG(E))

π2(E)

Φ

... ...

... ...

=

...

π1(pastG(E))

π2(E)

...

...

Φ′ (4.7)

where π1, π2 are the projections on the input/output systems, respectively
and pastG(E) are the ancestors of E with respect to the DAG G. But now,
since e �G e′ =⇒ e �G ′ e′, we have pastG(E) ⊆ pastG ′(E). Hence (4.7)
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implies that Φ factors as required by Definition 1.1.1:

π1(pastG ′(E))

π2(E)

Φ

... ...

... ...

=

...

π1(pastG ′(E))

π2(E)

...

...

Φ′
...

Therefore Φ � G ′.

The following theorem shows that the converse also holds and we can
therefore describe causal orders given by DAGs by a collection of linear
orders, namely the totalizations of the DAG.

Theorem 4.4.4. For a process Φ and a causal ordering G, Φ � G if and only
if, for every totalization G ′ of G, Φ � G ′.

Proof. (⇒) follows immediately from Lemma 4.4.3. For (⇐), let E ⊆ G be
any subset. Split G into two parts, G1 := pastG(E) and G2 := G\pastG(E).
Define a total ordering G ′ on G1 ∪ G2 by requiring that every element in G1
is below every element in G2 and taking any totalization on G1 and G2. This
order refines G because pastG(E) is downward-closed, and by construction
pastG(E) = pastG ′(E). Hence Φ � G ′ implies:

π1(pastG(E))

π2(E)

Φ

... ...

... ...

=

...

π1(pastG(E))

π2(E)

...

...

Φ′

Since we can find a suitable totalization to give the equation above for any
subset E ⊆ G, we have Φ � G.

So causal orders given by DAGs can equivalently be described as given
by a collection of linear orders and we know from Section 4.3 what the type
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a of comb is. For example combs that satisfy the linear orders in Example
4.4.2 have the types

X := A((A′((B(B′)(C)(C′ (4.8)

and
X ′ := A((A′((C(C′)(B)(B′, (4.9)

respectively.

Now since types correspond to sets of states, having multiple types
should correspond to the intersection of these sets of states. This leads us to
consider intersection types (also see [17]) such as X ∩X ′ := (X, cX ∩ cX ′) We
make this precise by describing intersection types as pullbacks in Theorem
4.4.8.

We first need to take care of the fact that technically the different types
of combs have different carriers, related by rearranging the systems with
swaps. Since we can express the lolly,(, in terms of� and dual, it suffices
to show the following lemma.

Lemma 4.4.5. Any object X which is built inductively from first order sys-
tems B1, . . . , Bn and duals of first order systems A∗1 , . . . , A∗m, using ⊗ and
� has a canonical embedding of the form:

e : X → (A1 ⊗ . . .⊗ Am(B1 ⊗ . . .⊗ Bn)

whose underlying C-morphism is just a permutation of systems.

Proof. The proof is a straightforward application of the embedding A ⊗
B ↪→ A�B (equation (3.11)) and the special property of first order systems
that A⊗ B ∼= A� B (Corollary 4.1.5).

Given X built inductively from first-order types via the ∗-autonomous
structure, ⊗, �, and dual, we can push the (−)∗ inside as far as possible
via application of the following isomorphisms from left-to-right:

(A⊗ B)∗ ∼= A∗ � B∗ (A� B)∗ ∼= A∗ ⊗ B∗

We can then apply A∗∗ ∼= A to reduce X to an expression consisting of
either first-order types or their duals, combined with ⊗ and �.

We can then use the embedding A⊗ B ↪→ A� B to change all ⊗’s into
�’s and use commutativity to permute all dual systems to the left. This
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gives the embedding

X ↪→ A∗1 � . . .� A∗m � B1 � . . .� Bn
∼= (A1 ⊗ . . .⊗ Am)

∗
� (B1 � . . .� Bn)

∼= (A1 ⊗ . . .⊗ Am)((B1 � . . .� Bn)
∼= (A1 ⊗ . . .⊗ Am)((B1 ⊗ . . .⊗ Bn) (4.10)

We end by noting that all isomorphisms and embeddings arise from the
identity morphism in C. The only step that did not come from the identity
were the permutations.

In practice, one will often encounter a type X built up from first order
systems Ai, where it is not a priori clear which systems are duals and which
are not. Therefore it is helpful to consider an example.

Example 4.4.6. Consider the type X := A1((A′1( A2)( A′2. Getting
rid of the lollies,(, pushing the dual inwards and using A∗∗ ∼= A we find

X := A1((A′1( A2)( A′2
∼= A∗1 � ((A′1)

∗
� A2)

∗
� A′2

∼= A∗1 � ((A′1)
∗∗ ⊗ A∗2)� A′2

∼= A∗1 � (A′1 ⊗ A∗2)� A′2

We can then use the embedding A⊗ B ↪→ A� B and permute the systems.

X ∼= A∗1 � (A′1 ⊗ A∗2)� A′2
↪→ A∗1 � A′1 � A∗2 � A′2
∼=A∗1 � A∗2 � A′1 � A′2

Finally we bring the expression to its canonical form in the same way in
(4.10).

We will now construct X ∩ X ′ essentially in terms of a set-theoretic in-
tersection of their associated states cX and cX ′ . The next lemma shows that
this intersection of states is itself again flat and closed.

Lemma 4.4.7. Let c and d be sets of states for the same object A which are
flat, closed, and furthermore satisfy the property that λ ∈ c and λ ∈ d
for a fixed scalar λ. Then c ∩ d is also flat and closed.

Proof. For both properties, we rely on the fact that (−)∗ is order-reversing.
That is, a ⊆ b ⇒ b∗ ⊆ a∗. For flatness, we have by assumption that
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λ ∈ c ∩ d. Since c ∩ d ⊆ c, we have c∗ ⊆ (c ∩ d)∗. So by flatness of c,
µ ∈ c∗ for some µ. Hence µ ∈ (c ∩ d)∗ and c ∩ d is flat.

For closure, first note that any set of states is contained in its double
dual, so we have c ∩ d ⊆ (c ∩ d)∗∗. For the converse, c ∩ d ⊆ c implies
c∗ ⊆ (c ∩ d)∗ and similarly d∗ ⊆ (c ∩ d)∗. Hence, c∗ ∪ d∗ ⊆ (c ∩ d)∗, so
(c ∩ d)∗∗ ⊆ (c∗ ∪ d∗)∗. It therefore suffices to show that (c∗ ∪ d∗)∗ ⊆ c ∩ d.
This follows from the fact that c∗ ⊆ c∗ ∪ d∗, so (c∗ ∪ d∗)∗ ⊆ c∗∗ = c and
similarly (c∗ ∪ d∗)∗ ⊆ d∗∗ = d.

The next theorem shows that we can obtain the intersection as a pull-
back.

Theorem 4.4.8. Let X, X ′ be objects with canonical embeddings e, f into a
fixed system Y := A1⊗ . . .⊗ Am( A′1⊗ . . .⊗ A′n, as in Lemma 4.4.5. Then
there exists an object X ∩ X ′ and morphisms p1, p2 in Caus[C] making the
following pullback:

X ∩ X ′

p2
��

p1 // X

e
��

X ′
f // Y

(4.11)

Proof. Let Y := (Y, cY ) and define the following two sets of states for Y :

cX := {e ◦ ρ | ρ ∈ cX}
cX ′ := { f ◦ ρ | ρ ∈ cX ′}

Since e and f are just permutations of systems, it is straightforward to show
that both of these sets are flat, closed, and both contain λ for some fixed
λ. Hence, applying Lemma 4.4.7, we have that cX ∩ cX ′ is flat and closed.
Then, let X ∩ X ′ := (Y, cX ∩ cX ′), p1 := e−1 and p2 := f−1. It is straight-
forward to check that p1, p2 are indeed Caus[C]-morphisms and diagram
(4.11) clearly commutes.

It only remains to show that, for any g : Z → X and h : Z → X ′ such
that e ◦ g = f ◦ h, there is a unique mediating morphism z : Z → X ∩ X ′:

Z
g

))
h

��

z
##

X ∩ X ′

f−1

��

e−1
// X

e
��

X ′
f // Y
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Since e and f are isomorphisms, the only possibility is z := e ◦ g = f ◦ h.
So, it suffices to show that z is a morphism in Caus[C]. For any ρ ∈ cZ,
g ◦ ρ ∈ cX , so z ◦ ρ = e ◦ g ◦ ρ ∈ cX . Similarly, z ◦ ρ = f ◦ h ◦ ρ ∈ cX ′ . Hence
z ◦ ρ ∈ cX ∩ cX ′ , which completes the proof.

Since combs embed into all causal processes, it immediately follows
that we can take intersections of combs via pullback. A process satisfying
the types (4.8) and (4.9) related to Example 4.4.2 can thus equivalently be
given the type

Φ

A B C

C′A′ B′

:

(A((A′((B(B′)(C)(C′) ∩ (A((A′((C(C′)(B)(B′)

and this generalises in the obvious way to any causal ordering given by
a DAG. In particular, consider the following DAG related to no-signalling
processes:

A B

where there are no arrows between events A and B. The totalizations of
this DAG:

and
B

A

A

B

are precisely those of one way signalling processes. Hence we have

Proposition 4.4.9. The intersection of the types of one-way signalling pro-
cesses (A � B) and (B � A) is the type of no-signalling processes.

A((A′(B)(B′ ∩B((B′( A)( A′ ∼= (A( A′)⊗ (B(B′) (4.12)

Finally, we note a categorical consequence. The fact that ∩ arises as
a pullback also gives us some properties of intersections ‘for free’. For
instance, any functor with a left adjoint necessarily preserves limits. By the
definition of ∗-autonomous categories, (B(−) has a left adjoint given by
(−⊗ B), so the following is immediate:

Corollary 4.4.10. For objects A, A′ and B in Caus[C] we have

B( (A ∩ A′) ∼= (B( A) ∩ (B( A′)
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4.5 Indefinite causal orders

In the previous section we considered combs, which represent linear causal
orders. In particular, a process built up from causal maps in the form of a
DAG, i.e., a circuit with holes, such as in (1.11), can be presented as a comb.
In contrast, the quantum switch of Example 1.3.1 could not be given as a
comb, or a linear combination thereof, and was said to have an indefinite
causal structure. This leads us to consider what are called process matrices,
introduced in [73], which are introduced as processes which take in two
causal processes as input and output a new causal process.

Definition 4.5.1. A process w : (A∗ ⊗ A′)⊗ (B∗ ⊗ B′) → C∗ ⊗ C is called
bipartite second-order causal (SOC2) if for all causal ΦA, ΦB the following
map is causal:

w ΦBΦA

Such processes were called bipartite second-order causal in [65]. So
SOC2 maps send products of causal processes to a causal process. The
following shows that SOC2 processes are actually normalized on all non-
signalling maps, not just product maps.

Theorem 4.5.2. For first order systems A, A′, B, B′, C, C′, a process w is
SOC2 if and only if it is of type (A( A′)⊗ (B( B′)( (C( C′).

Proof. Since products of causal processes are no-signalling, they have type
(A ( A′)⊗ (B ( B′), so any process sending no-signalling processes to
causal processes is certainly SOC2.

For the converse, let π be an effect of type (C( C′)∗ (which by Lemma
4.2.3 is a state on C and discard on C′). Then π ◦ w is an effect on products
of causal processes. Now Lemma 3.3.11 states that π ◦ w yields 1 for prod-
uct states if and only if it yields 1 for any state in the tensor product. Hence
it is an effect for (A ( A′)⊗ (B ( B′), i.e., the no-signalling maps. By
Lemma 3.3.9 this means w : (A( A′)⊗ (B( B′)( (C( C′).

This represents a significant strengthening of the result in [65], where
it was shown that SOC2 extends to strongly no-signalling processes, i.e.,
processes of the form (1.22).
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Theorem 4.5.2 also extends naturally to a characterisation of n-partite
second-order causal processes (SOCn) via:

(A1( A′1)⊗ . . .⊗ (An( A′n)((C(C′)

It is easy to see, either by using Theorem 4.5.2 or by an embedding
as in Proposition 4.3.2, that the 3-combs, which arise from fixing a causal
ordering between A and B are SOC2:

C((A((A′(B)(B′)(C′

C((B((B′( A)( A′)(C′

However, the most interesting SOC2 processes are those which do not arise
from combs.

Definition 4.5.3. A process is said to have definite causal order, or to be
causally separable, if it can be obtained as a convex combination of combs.
Otherwise, we say it has indefinite causal order.

Note that in order to consider convex combinations, we need to assume
that the interval [0, 1] is contained in Hom(I, I) and that we can take sums,
as is the case in our examples Mat(R+) and CPM. As such, throughout
this section we will assume this is the case.

Let us now consider what the type theory developed here can tell us
about these orders. We should start with a confession: while causal types
are very useful to understand the signalling properties of processes, they
do not distinguish between definite and indefinite causal orders. This
might not come as a surprise, similar as to how we cannot distinguish
strongly no-signalling processes from other no-signalling processes. That
said, there are still some interesting observations to be made.

As a bit of shorthand notation, we introduce

A � B := A((A′(B)(B′

B � A := B((B′( A)( A′

to denote the types of one-way signalling processes. We also consider their
duals. For example, for the dual of A � B, we have by equation (2.34)

[A � B]∗ = [A((A′(B)(B′]∗ (4.13)
∼= [A⊗ (A′(B)(B′]∗ (4.14)

Now by Lemma 4.2.3, every state related to such this object splits into a
state of type A⊗ (A′(B) and discard on B′.
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We can then characterize states of type A ⊗ (A′(B), by noting that
by Proposition 4.2.5, these correspond precisely to no-signalling processes
(X( A)⊗ (A′(B) with trivial input system X = I. Hence by (C4) these
processes are of the form

ρ

Φ

for some causal state ρ and causal process Φ. We thus find that the process
matrices compatible with the fixed causal order where Alice is before Bob
are of the form

ρ

Φ = Φ

ρ

where we explicitly drew the higher order process to indicate that one
party is before the other. This should come as no surprise as these are
precisely 3-combs with trivial input and output. We find a similar expres-
sion for the dual of one-way signalling processes B ≤ A where Bob is
before Alice. The union of these sets of states are then all process matri-
ces which are compatible with either causal order, however, this set is not
closed. We can close it by taking the double dual and obtain the object
(A∗ ⊗ A′ ⊗ B∗ ⊗ B′, [c(B≤A)∗ ∪ c(B≤A)∗ ]

∗∗).

Recall that by Proposition 4.4.9 the type of no-signalling processes is
the intersection (A � B)∩ (B � A). As a shorthand notation we will write
NS for the type of no-signalling processes.

Theorem 4.5.4. The closure of the union of the duals of one-way signalling
processes with either causal ordering equals the dual of the no-signalling
processes. That is (with some abuse of notation):

[(A � B)∗ ∪ (B � A)∗]∗∗ = NS∗

Proof. For any closed sets of states c, d we have c∗ ⊂ (c∗ ∪ d∗). Since duals
are order reversing, i.e., a ⊂ b ⇒ b∗ ⊂ a∗, we have (c∗ ∪ d∗)∗ ⊂ c and
(c∗ ∪ d∗)∗ ⊂ d. Hence (c∗ ∪ d∗)∗ ⊂ c ∩ d.
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Applying this to c = A � B, d = B � A and taking the dual on both
sides gives

NS∗ ⊂ [(A � B)∗ ∪ (B � A)∗]∗∗

For the converse inclusion, it suffices to show that

NS ⊂ [(A � B)∗ ∪ (B � A)∗]∗

Again for any closed sets c, d we have c ∩ d ⊂ c, so c∗ ⊂ (c ∩ d)∗.
Similarly d∗ ⊂ (c ∩ d)∗, so c∗ ∪ d∗ ⊂ (c ∩ d)∗. Taking duals again we find
c ∩ d ⊂ (c∗ ∪ d∗)∗. Again taking c = A � B and d = B � A, we find the
desired result.

In other words, the smallest closed set which contains the process ma-
trices which are compatible with either causal order is precisely the set
of all process matrices. In the case of (finite dimensional) quantum theory,
where the closure corresponds to affine combinations ([17]), this shows that
any process matrix is an affine combination of process matrices which are
compatible with a fixed causal structure. In particular, this contains the
process matrices which are a convex combination of causal orders, i.e., the
causally separable process matrices, but also contains more, such as the
OCB W-matrix from [73] (Example 4.5.8), related to the guess your neigh-
bours input game of Section 1.3. This situation is reminiscent of the differ-
ence between general combinations of product states opposed to convex
combinations of product states, leading to the difference between entan-
gled and disentangled states. This leads us to informally say:

definite
indefinite

' separable
entangled

This correspondence is taken a step further in [13] where a tripartite higher
order process inspired by the W-state is given which also breaks a causal
bound. We consider this process in Example 4.5.9. Furthermore, just as
there are witnesses for entanglement, there are also witnesses for indefi-
nite causal order ([8]). These witnesses can be thought of to ‘pick out’ the
negative component in the decomposition in combs It should be noted that
these witnesses are general hermitian operators, so one needs to go outside
of the category CPM.

Let us consider some examples of processes with indefinite causal or-
der. To start, we come back to the switch of Example 1.3.1. There we con-
sidered it as a higher order quantum process, here we consider it more
general and give the switch in both Mat(R+) as a higher order stochastic
map and in CPM as higher order quantum channel.
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Definition 4.5.5. For first-order systems X and A = A′ = B = B′ = C =
C′, a switch is a process of type:

s

X

A

A′

B

B′

C

C′

: X ⊗ C((A( A′)⊗ (B(B′)(C′ (4.15)

in Caus[C], such that for distinct states ρ0, ρ1 : X, we have:

s

ρ0

= s

ρ1

= (4.16)

Example 4.5.6. For C = Mat(R+), the classical switch process is uniquely
fixed by (4.16) if we let X = 2 and:

ρ0 :=
(

1
0

)
ρ1 :=

(
0
1

)
Indeed, s is given by:

ρ′0

+

ρ′1

(4.17)

where ρ′i := ρT
i . Then, since ρ′0 + ρ′1 = , we have:

ρ′0

+

ρ′1

Φ1 Φ2 Φ2Φ1=s Φ2Φ1

+ ρ′1= ρ′0 =ρ′0

)(
ρ′1+=
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Hence s has the correct type shown in (4.15).

Example 4.5.7. For C = CPM, a switch can be defined similar to (4.17),
by letting X = L(C2), the (bounded) linear transformations on C2, and
replacing ρi and ρT

i with the appropriate qubit projections and their asso-
ciated quantum effects:

ρi := |i〉〈i| ρ′i(−) := Tr(|i〉〈i| −)

This is precisely the Z superoperator defined in [23], which defines a (de-
coherent) switch for quantum channels. As noted in Section 1.3, the quan-
tum switch is not fully specified by (4.16), since ρ0, ρ1 do not form a basis
for L(C2).

One can also define a coherent quantum switch which also satisfies (4.16),
but where inputting the state |+〉〈+| into X yields a quantum superposi-
tion of causal orderings. See [23] for details.

Next we will take a look at the process leading to violation of the clas-
sical bound in the guess your neighbours input game.

Example 4.5.8. The OCB process is defined as follows:

+ 1
4
√

2


σz

σz

+

σz σx

σz


where σx, σz are Pauli matrices and associated effects. While the individual
summands are not positive, the result is, thus yielding a process in CPM.
The fact that it is an SOC2 process in Caus[CPM] follows straightforwardly
from the fact that the Pauli matrices are trace-free.

It is shown in [73] that this process indeed breaks a causal bound. In
a nutshell, the idea is that one of the parties can, as it were, can choose
a causal ordering between the parties a posteriori by a choice of quantum
measurement.

Finally, we consider a probabilistic higher order process without defi-
nite causal structure.

Example 4.5.9. Not all processes exhibiting indefinite causal order are quan-
tum. Indeed the following process:
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+1
8




− −

− − − −

−

−

+ +

−

− −−

is an SOC3 process in Caus[Mat(R+)], where the ‘−’ labelled states and
effects are column vectors and row vectors with values (1,−1) , respec-
tively. It was shown in [13] that this process, as well as a generalisation
to an SOCn process for odd n, is incompatible with any pre-defined causal
order.

We end with two remarks linking our framework to recent research
regarding causality. First, we consider transformations of process matrices.
General relativity tells us that time slows down near massive bodies (e.g.,
a black hole). In a theory of quantum gravity ([50]), such a massive body
could be in a superposition of positions. A clock following a path near
these positions would therefore undergo a superposition of time dilation.
We then have something similar to the switch, depending on the state of a
system, there is a different causal background. If the mass distribution now
also changes over time, the process induced by this mass distribution also
changes. This leads one to consider transformations of process matrices
([36]). In the case where there is no input or output, such a transformation
is of type

[(A( A′)⊗ (B(B′)]∗([(C(C′)⊗ (D(D′)]∗ (4.18)

But then it is clear, using (X∗(Y∗) ∼= (Y(X), that such transformations
are equally described by processes of type

(C(C′)⊗ (D(D′)((A( A′)⊗ (B(B′)

Hence this simple application of the type theory tells us that transforma-
tions of process matrices are just transformations of the no-signalling maps
on which they act.

Second, consider a process matrix and think of the inputs as labs for
Alice and Bob. Once they choose which process they use as input, the
result is a causal process from the overall input to the overall output. We
can then wonder what Alice and Bob themselves see. If Alice chooses some
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process ΦA, then Bob sees the following process:

ΦA

w

(4.19)

Now w is of type [(A( A′) ⊗ (B(B′)]((C(C′) and ΦA : A( A′.
Hence the result for Bob is of type (B(B′)((C(C′), i.e., a one way
signalling processes, which factors as in Axiom (C4) of a precausal cate-
gory. See [72] for a more detailed description.



Chapter 5

Conclusion and future work

In order to solve the problem that compact closed categories are insufficient
to study higher order causality, we have given a categorical construction
which takes a precausal category, C, to a category of higher order causal
processes, Caus[C]. This new category has enough fine-grained structure
that its objects form a type theory describing causal types. We have shown,
using the *-autonomous structure of Caus[C], how types for causal struc-
tures given by directed acyclic graphs can be obtained in this type theory.
This includes causal processes, one-way signalling and no-signalling pro-
cesses. As a special case we have been able to give two characterizations
of combs, inductive and operational. Finally, we considered processes ex-
hibiting indefinite causal order.

All types related to causal orders have been built up from first order
systems, the *-autonomous structure and taking pullbacks. However, there
are objects with closed and flat sets of generalized causal states, which are
not of this form (Example 4.2.4). It is an interesting question to what extent
these objects have a physical or causal meaning. For example, a map from
an object X into the object of Example 4.2.4 sends every state in cX to a
state that is a convex combination of |0〉 〈0| and |1〉 〈1|, which can be seen
as a probability distribution on two points. Also interesting is the relation
with multiplicative linear logic. The category Caus[C] is *-autonomous and
*-autonomous categories are a model of multiplicative linear logic (MLL).
Hence the logic of higher order causal categories is given by MLL. This
opens up a toolbox, including automation with linear logic provers such
as llprover ([90]). Such a prover allows for easy automatic checks of for
example whether two types are equal or whether one type is contained in
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an other. Furthermore, we have shown in Theorem 4.5.4 that if a type con-
tains duals of one way signalling processes, it automatically contains all
duals of no-signalling processes. This means that there are no types which
explicitly capture indefinite causal order. Nevertheless, using the frame-
work of causal types, we can say when a process has a particular definite
causal type, or is the dual thereof. Hence we can show that a process is
not of a certain causal order if it does not have the corresponding type.
This way we can at least rule out certain processes having indefinite causal
order. We may say that types can impose definite causal order, but not
indefinite causal order. Hopefully the causal framework in this thesis can
shed some more light on the nature of indefinite causal structures.

As a further topic, we mention the study of the category of precausal
categories and higher order causal categories as well as the relation be-
tween them. An open question in this area is the precise relation to the
double glueing construction we mentioned at the end of Section 3.3. As
mentioned there, closedness comes very natural, but flatness needs to be
additionally imposed. Considering the other axioms for a precausal cate-
gory, it is also interesting to mention enough causal states ((C3)) when it
comes to iterating the Caus construction. Indeed, a precausal category has
enough causal states, but in the category of higher order processes this is
not the case any more. We can see this by considering second order effects
as in (C5′). For every causal maps Φ, we have that for causal states ρ1 and
ρ2, that

ρ1 ρ2

Φ Φ= = 1

Hence the states on A(B cannot distinguish between different maps of
type A(B → I. Even more elementary, since the only causal process
from a first order object A to I is the discard effect, there are already not
enough causal states in this simple scenario.

Further questions are, for example, how functors between precausal
categories relate to functors between the higher order categories. Given
precausal categories X and Y there are embeddings of the causal subcate-
gories of X and Y into Caus[X] and Caus[Y], respectively (Section 4.1). A
functor F : X→ Y now restricts to a functor between these causal subcate-
gories. We can then wonder whether this restricted functor lifts to a functor
between Caus[X] and Caus[Y]. Similarly, the question arises whether ev-
ery functor between Caus[X] and Caus[Y] comes from a functor between
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the underlying precausal categories X and Y. A third question, also in a
similar vain, is which isoMIX *-autonomous categories can be obtained via
the Caus construction, starting with a precausal category. A possible first
step here, as well as interest in its own right, lies in finding more examples
of precausal categories and their higher order equivalents. For example,
what about Mat(R) (Example 3.2.4)?

Finally we mention the question whether a category of higher order
causal processes can have a non-trivial core ([18]). That is, the core of a
*-autonomous category are those objects A for which A ⊗ − ∼= A � −.
It is clear that in the case of a category Caus[C], the unit I is in the core.
The question is then whether there can be other objects in the core. We
know that for first order objects A, B we have A⊗ B ∼= A� B (Corollary
4.1.5), however, this is not enough for A to be in the core as this should
hold for all objects B, not just first order objects. As a necessary condition
for such an object to be in the core we note that that we must then have
(A( A)∗ ∼= A⊗ A∗ ∼= A� A∗ ∼= (A( A).



Part II

Non locality and
contextuality
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Chapter 6

Introduction: non-locality
and contextuality

When measuring a quantum observable on a state which is not in an eigen-
state of that observable, the outcome of this measurement cannot be pre-
dicted with certainty by quantum theory. All we can do is find the proba-
bilities with which the possible outcomes occur. A natural question which
then arises is whether this is an artifact of the theory or a fact of life. Indeed,
it is easy to imagine that quantum mechanics is at its core an incomplete
theory and that there is some underlying theory which is able to predict
all outcomes of all measurements. Perhaps a theory where we replace the
quantum mechanical states (wave-functions or density matrices) by some
other object which carries all the information of a system, including out-
comes of measurements. We call such an object a hidden variable and the
idea that the outcomes of all measurements can be predicted realism. An
immediate question is then whether, or to what extent, a realist quantum
theory is possible. Over the past decades there have been several no-go re-
sults which put severe boundaries on such realist theories. Our goal in this
chapter is to consider the two most influential no-go theorems - by Bell and
Kochen-Specker - and see how they are related. In a sentence, we may say
that the heart of these no-go theorems is some ‘paradox’ regarding the non-
existence of a joint distribution of outcomes of measurements whereas the
partial distributions do exist. We then use this general point of view to de-
velop an algebraic framework to describe these paradoxes and relate this
method to other methods using adjunctions.
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6.1 Bell’s theorem and locality

Consider two parties, Alice and Bob, each in their own lab, sharing a bi-
partite state as in Chapter 1. They are each given a measurement device
which has two settings; a0, a1 for Alice and b0, b1 for Bob. When they get
their part of the bipartite state, say an entangled qubit pair, they can each
perform one and only one of these measurements on their system and each
then obtains some outcome, say 0 or 1. This situation is precisely the situ-
ation depicted in diagram (1.22), where the local inputs are used to decide
the measurement settings and the outputs are the classical outcomes. Re-
peating this experiment many times and recording the outcomes given the
settings gives rise to some probability distributions over the measurement
settings and outcomes of Alice and Bob. These statistics can be put into a
table which might look like this:

a0:0 a0:1 a1:0 a1:1
b0:0 1/2 0 3/8 1/8

b0:1 0 1/2 1/8 3/8

b1:0 3/8 1/8 1/8 3/8

b1:1 1/8 3/8 3/8 1/8

(6.1)

where for example a0:1 stands for ‘Alice chose setting a0 and got outcome
1. Equivalently, we might set the outcomes out against the measurement
settings:

0, 0 0, 1 1, 0 1, 1
a0b0 1/2 0 0 1/2

a0b1 3/8 1/8 1/8 3/8

a1b0 3/8 1/8 1/8 3/8

a1b1 1/8 3/8 3/8 1/8

(6.2)

Note that the rows of this table add to one, as they should since they form
probability distributions. In fact, this particular table can actually be ob-
tained by doing measurements on qubits (see Definition 8.3.1). This result
is well known, but for completeness, we will show how to obtain it.

Proposition 6.1.1. The probabilities of table (6.2) can be obtained by per-
forming measurements on a quantum system. That is, there exist a state
and POVMs such that the corresponding probabilities make up table (6.2).

Proof. Consider the bipartite maximally entangled state 1√
2
(|00〉+ |11〉) in

C2 ⊗C2. The corresponding density matrix is, up to normalization and or-
der of subsystems, the cup from Example 2.1.14. The probability that Alice
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and Bob get some particular joint outcome can then be found by applying
the POVMs corresponding to:

a0 = {|0〉 〈0| , |π〉 〈π|},
a1 = {|π/3〉 〈π/3| , |4π/3〉 〈4π/3|},
b0 = {|0〉 〈0| , |π〉 〈π|},
b1 = {|− π/3〉 〈− π/3| , |2π/3〉 〈2π/3|}

where |θ〉 = cos(θ/2) |0〉+ sin(θ/2) |1〉 (so that by some mixture of notation
|0〉 = |0〉 and |π〉 = |1〉) and where the first effect corresponds to outcome
0 and the second to outcome 1.

Using the diagrammatic notation, we can now calculate the probability
of a particular joint outcome as

φA φB

1
2

= 1
2

φA

φB

where the factor 1
2 is the normalisation of the cup. This expressions comes

down to

1
2
(〈θA| |θB〉)2 =

1
2
(cos(φA/2) cos(φB/2) + sin(φA/2) sin(φB/2))2

=
1
2

cos2(
φA − φB

2
)

Plugging in the angles then gives the above table.

Now suppose that, in contrast to the situation above, we would be able
to know the outcome of all measurements at the same time. That is, sup-
pose some realist point of view. Then we would consider a state space SA
for Alice consisting of maps {a0, a1} → {0, 1} mapping settings to out-
comes and a similar state space SB for Bob. The product space SA × SB
is then the space of all outcomes for these measurements. Let us now fix
some notation: if Alice chooses setting ai and obtains outcome j, we denote
this by ai :j. Similarly, we have bk :l if Bob chooses setting k and obtains out-
come l. We denote the occurrence of both events as ai :j ∧ bk :l. A hidden
variable in this case can then be seen as the occurrence of the four events
at once and we denote these by a0:i ∧ a1:j ∧ b0:k ∧ b1:l.

Now suppose that in a particular run of the experiment Alice chose
setting a0 and obtained outcome 0, whereas Bob chose b1 and got 1. That
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is, they find a0:0∧ b1:1. Then, if we assume that these outcomes come from
an underlying hidden variable, we know that it must have been one of the
following ones: a0:1∧ a1:j ∧ b0:k ∧ b1:l for some j, k ∈ {0, 1}. However, we
do not exactly know which one. Likewise, suppose that just as in the Bell
table the situation a0:0 ∧ b0:1 never occurs. Then all the hidden variables
a0:0∧ a1:j ∧ b0:1∧ b1:k for any j, k ∈ {0, 1}, must have probably 0.

We can then wonder if there is some probability distribution over all
hidden variables, such that we recover the measurement statistics related
to some given table. Moreover, we want this probability distribution not
to depend on the actual settings Alice and Bob choose to measure. This is
because we assume that Alice and Bob can choose their settings at the very
last moment. If the hidden variable is to depend on the settings, it should
either know these settings beforehand, which implies some sort of super
determinism, or information about the settings should be able to travel in-
stantaneously, in contrast with special relativity and causality as in Section
1.4. Not only must the hidden variables not depend on the measurement
settings, the outcomes of Alice and Bob must also be independent of the
other’s settings for the same reason.

Let us spell out what this independence of choice of measurements
means here. Suppose that Alice chooses her setting a0. Then the probabil-
ity that she obtains some outcome should be the same regardless of Bob’s
choice of measurement. That is, marginalizing over Bob’s outcomes must
be independent of Bob’s settings:

P(a0:0 | b0:0) + P(a0:0 | b0:1) = P(a0:0 | b1:0) + P(a0:0 | b1:1) (6.3)

P(a0:1 | b0:0) + P(a0:1 | b0:1) = P(a0:1 | b1:0) + P(a0:1 | b1:1) (6.4)

And similar equations hold for the other settings of Alice and Bob. This
no-signalling principle is also often called locality. Let us consider what
happens when these equations are not satisfied.

Example 6.1.2. Suppose that the following table describes some measure-
ment statistics:

0, 0 0, 1 1, 0 1, 1
a0b0 1/2 0 1/2 0
a0b1 1/2 0 1/2 0
a1b0 0 1/2 0 1/2

a1b1 0 1/2 0 1/2

(6.5)

If Alice now chooses setting a0, Bob will always get the outcome 0, whereas
if Alice chooses a1, Bob will get outcome 1 with certainty. This means that
Alice can instantaneously send a bit of information to Bob by choosing a
measurement setting.
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This brings us back to the situation of the causal diagram (1.3); a proba-
bility distribution over some local hidden variables in the common past the
measurements of Alice and Bob. In Proposition 8.3.7 we will see that the
above Bell table indeed cannot be obtained by a probability distribution
over the hidden variables, thus showing that:

A local hidden variable theory cannot explain the measurement statistics
of quantum mechanics!

This result was first discovered by John Bell, and is often called Bell’s the-
orem [15]. For completeness we note that Bell’s theorem is not a statement
about hidden variables. It is a statement about local hidden variables. In-
deed, if we allow non-local hidden variables, we may just take the quan-
tum state to be the hidden variable, in which case we obviously obtain
the statistics of any quantum measurements. Another option is Bohmian
mechanics, where the initial state of a system may be seen as a non-local
hidden variable (See for example [74]).

6.2 The Kochen-Specker theorem and contextu-
ality

Bell’s theorem is a no-go theorem, showing that realism comes at a price.
However, it is probabilistic, in the sense that it deals with the measurement
statistics and not with the measurement outcomes in a particular run of
an experiment. The Kochen-Specker theorem [67] is another no-go theorem
against realism, involving only one party and no statistics.

Recall that a massive spin 1 particle has 3 degrees of freedom and is
therefore described by a quantum system (Hilbert space) of dimension 3.
This is also called a qutrit. If we now choose a direction in space, call it
x, and measure the spin of this particle in this direction, Sx, we obtain as
outcome either −1, 0, or 1. Pick two other directions y and z such that
the three directions form an orthogonal basis. Then quantum mechanics
tells us that Sx, Sy and Sz cannot be simultaneously measured (they do not
commute), however, their squares can be simultaneously measured and
satisfy

S2
x + S2

y + S2
z = 2 (6.6)

Replacing S2
i with 1− S2

i , these new operators add to 1. Moreover, since Si
has outcomes in {−1, 0, 1}, their squares can only take the value 0 or 1. We
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conclude that if we measure 1− S2
i in three pairwise orthogonal directions,

we always obtain 0, 0, 1 as the outcomes in some order.

Now imagine we have a non-contextual realist theory of quantum me-
chanics. This means that the outcome in a direction x does not depend
on its context. That is, it does not matter whether we consider the mea-
surements in the basis {x, y, z} or some other basis {x, y′, z′}. This the-
ory would then, for every direction, assign either 0 or 1, such that every
orthonormal basis is assigned 0, 0, 1 in some order. The Kochen-Specker
theorem shows this is impossible by finding a finite number of directions
such that, no matter which choices we make for the values, we obtain a
contradiction.

A few words on the proof of the Kochen-Specker theorem based on
work done together with Bas Westerbaan in [92]. The original proof con-
structed a set of 117 directions to come to a contradiction [67]. There is a
very nice proof with high symmetry, found independently by Penrose and
Peres, using 33 directions [76]. The current proof with the smallest number
of directions comes from Conway and uses 31 directions [77]. Instead of
finding smaller proofs of the Kochen-Specker theorem, one can also go the
other way around and show that some number of directions can not lead
to a contradiction. This is originally done in [9] where it was shown that
a proof of the Kochen-Specker theorem in 3 dimensions needs at least 18
vectors. This lower bound was then raised in [92], where it was shown that
one needs at least 22 directions. What happens between 23 and 31 is still
unknown. When we consider Hilbert spaces of dimension at least 4, there
are smaller proofs and the smallest uses 18 [19].

Hence the Kochen-Specker theorem tells us that either certain quantum
mechanical measurements have no predefined outcomes before the actual
measurement happens, or the outcome of the measurements is dependant
on the context in which it happens. We will come back to the Kochen-
Specker theorem in Section 9.1.1.

6.3 A general perspective

Bell’s theorem showed us that we cannot reproduce the statistics of quan-
tum mechanics in a realist way such that the outcomes of one party are
independent of the settings of the other party. The Kochen-Specker theo-
rem showed us that we cannot assign values to all measurements in such
a way that these values are independent of the other settings.
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In both scenarios we consider specific measurements, (ai, bj) in the Bell
scenario and 1− S2

i in the Kochen-Specker scenario, which are jointly mea-
surable, or compatible, with some other measurements, but incompatible
with others. For Bell, ai is compatible with bj, but a0 and a1, for example,
are incompatible. For Kochen-Specker, any two such operators are com-
patible if their directions are orthogonal and incompatible otherwise. We
call a maximal set of compatible operators a context. The no-go theorems,
often called paradoxes, now have to do with the fact that for every context
we can find well defined outcomes, or probability distributions thereof,
but these are not consistent over the different contexts. In this sense, the
non-locality of Bell’s theorem is a special case of the contextuality of the
Kochen-Specker theorem and this opens up the possibilities of describing
these phenomenons in a unified manner.

In [2], Abramsky and Brandenburger have done this by using a sheaf-
theoretic setting, which we explain in Section 8.6. In the next chapter we
will develop the theory of effect algebras for this purpose, which also capture
the concept of incompatibility of contexts. Then, in Chapters 8 we will
consider these paradoxes again in an effect algebraic setting. To this end we
will generalize the concept of probability distribution in two ways; using
effect algebras and using functors. These generalizations are related by an
adjunction and we use this to link the sheaf theoretic approach to our effect
algebraic approach.



Chapter 7

Effect algebras

In this chapter we introduce the basics of the theory of partial monoids
and in particular effect algebras as a special class. Effect algebras were intro-
duced by D. Foulis and M. Bennett ([38]) as an abstraction of effects on a
Hilbert space. They also occur naturally in categorical treatments of quan-
tum logic as the space of predicates; maps from some object to 1+ 1, seen as
the truth values true and false (see for example [55]). For a comprehensive
treatment of effect algebras, we refer to [33].

7.1 Boolean algebras

In classical propositional logic, we have a set of propositions where we
can take the conjunction or disjunction of every pair of propositions, we
have special true and a false propositions, and for every proposition there
is a negated proposition. This structure is captured by that of a Boolean
algebra.

Definition 7.1.1. A Boolean algebra is a distributive lattice with top and bot-
tom and where every element has a complement. In detail: a Boolean
algebra (B,∧,∨,¬, 0, 1) consists of a set B together with two associative,
commutative binary operations ∨,∧ (meet, join), a unary operation ¬ (not),
and two special elements 0, 1 (bottom, top) which are the units for ∨ and ∧,
respectively, satisfying for all a, b, c ∈ B:

• a ∧ (a ∨ b) = a,
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• a ∨ (a ∧ b) = a,

• a ∨ ¬a = 1,

• a ∧ ¬a = 0,

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

A morphism of Boolean algebras is a map of the underlying sets which pre-
serves ∨, ∧, 0 and 1. The resulting category of Boolean algebras is denoted
BA and the subcategory of finite Boolean algebras is denoted FinBA.

It is a well known result by M.H. Stone ([88]) that every Boolean al-
gebra is isomorphic to some subset of the powerset P(X) of some set X,
where 1 = X, 0 = ∅, ∧ = ∩, ∨ = ∪, and ¬ is the set-theoretic com-
plement. See for example [41] for a proof. Moreover, any finite Boolean
algebra is isomorphic to the powerset of some finite set (see Lemma 7.3.1).
Now consider again the Bell scenario. The propositions a1:0 and a0:0 are
valid propositions, but their conjunction a1:0 ∧ a0:0 doesn’t seem to make
sense as it would imply some hidden variable for Alice. This leads us to
consider partial structures where certain operations are not defined for all
elements.

7.2 Partial monoids and effect algebras

We start with a very general partial structure of which effect algebras will
be a special instance. For most quantum paradoxes it suffices to consider
just effect algebras, however, when we will consider the Hardy paradox
(Section 9.1, [49]), we will see that we need a bit more generality and have
to resort to this more general structure.

Definition 7.2.1. A pointed partial commutative monoid (or PPCM) is a quadru-
ple (E, >, 0, 1), where E is a set, 0, 1 ∈ E and > : E × E → E is a partial
function satisfying for all x, y, z ∈ E:

• If x > y is defined, then y > x is defined and x > y = y > x,

• If x > (y > z) is defined, then (x > y)> z is defined and x > (y > z) =
(x > y)> z,
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• x > 0 is always defined and x > 0 = x.

We write x ⊥ y if x > y is defined and we call x > y the sum of x and y. This
is sometimes called ‘x is perpendicular to y’ in the literature.

For A and E PPCMs, a function f : A→ E is a morphism of PPCMs if

• f (0) = 0,

• If a1 ⊥ a2 in A, then f (a1) ⊥ f (a2) in E and f (a1 > a2) = f (a1) >
f (a2),

• f (1) = 1.

The resulting category of pointed partial commutative monoids and their
morphisms will be denoted PPCM.

Note that the point 1 in a PPCM has no special properties. It is just their
to make a pointed version of partial commutative monoids. In particular,
it need not be a top element for some order on the PPCM, as is the case
with 1 as effect on a Hilbert space or true in a Boolean algebra. Usually
we will omit writing x ⊥ y and tacitly assume this is the case whenever
we write x > y. Instead of writing out (E, >, 0, 1) we will also usually just
write E. We now consider a special class of PPCMs in which 1 does play
a special role. This is motivated by the fact that when we consider effects
related to Hilbert spaces (Example 7.2.5), the effect 1 corresponds to the sin-
gle outcome measurement, which is given by the trace, which is precisely
the unique causal effect of Lemma 2.1.21.

Definition 7.2.2 (effect algebra). An effect algebra (E, >, 0, 1) is a PPCM such
that

• For every x ∈ E there exists a unique x⊥ ∈ E such that x ⊥ x⊥ and
x > x⊥ = 1,

• x ⊥ 1 implies x = 0.

A morphism of effect algebras is a morphism of the underlying PPCMs.

The category of effect algebras will be denoted EA.

The element x⊥ is called the orthocomplement of x. While it is not an
explicit requirement for orthocomplements to be preserved by morphisms,
this is still the case.
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Lemma 7.2.3. Let A and E be effect algebras. A morphism f : A → E
satisfies

f (a⊥) = f (a)⊥

for all a ∈ A.

Proof. We have

1 = f (1)

= f (a > a⊥)

= f (a)> f (a⊥)

Hence by uniqueness of the orthocomplement we have f (a⊥) = f (a)⊥.

We consider some simple examples:

Example 7.2.4. • Obviously every effect algebra is a PPCM.

• The two element set {0, 1}, where 0 > 0 = 0, 0 > 1 = 1 > 0 = 1 and
1 > 1 is undefined, is an effect algebra. It is the initial effect algebra
and initial PPCM.

• The two element set, but now with 1 > 1 = 1 is a PPCM, but not an
effect algebra.

• The one element set {0} with 0 > 0 = 0 is the final effect algebra and
final PPCM. Note that in this case 0 = 1.

• The interval [0, 1] is an effect algebra if we set x ⊥ y if and only if
x + y ≤ 1 in which case x > y = x + y. The orthocomplement is
given by x⊥ = 1− x.

In effect algebras, the partial sum gives rise to a partial order given by

x ≤ y⇔ ∃ z such that x > z = y.

Since for any element x in an effect algebra E we have 0 ≤ x ≤ 1, the
bottom of this order is 0 and 1 is the top. This order cannot be defined for
general PPCMs. Indeed, consider the PPCM {0, 1} with 1 > 1 = 0 (i.e., the
2-element group). Then 0 ≤ 1 and 1 ≤ 0, yet 0 6= 1.

Example 7.2.5. The following examples will show how effect algebras are
indeed a generalization of well known concepts.
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• Every Boolean algebra (B,∨,∧,¬, 0, 1) can be understood as an effect
algebra if we set x ⊥ y if and only of x ∧ y = 0. In that case, x > y =
x ∨ y and x⊥ = ¬x.

• Let H be a Hilbert space and B(H) the bounded operators on H.
There is a canonical ordering on the positive elements of B(H) given
by a ≤ b if a − b is positive. Let [0, 1]B(H) ⊂ B(H) be the subset of
effects, i.e., the positive elements below 1. Then [0, 1]B(H) is an effect
algebra where a ⊥ b if a + b ≤ 1 and a⊥ = 1− a.

• Likewise, let Proj(H) be the projections on H, then Proj(H) is an effect
algebra in a similar way as the effects, where for projections p, q we
have p + q ≤ 1 if the ranges of p and q are orthogonal.

Finally, we consider some categorical properties of effect algebras.

Proposition 7.2.6. Let E and A be effect algebras. Then the product and
coproduct of E and A exist.

Proof. We give the relevant constructions. A detailed proof can be found in
[56].

• For the product, let

E× A = {(e, a) | e ∈ E, a ∈ A}.

Let 0 = (0, 0) and 1 = (1, 1). Set (e1, a1) ⊥ (e2, a2) if e1 ⊥ e2 and a1 ⊥
a2, in this case (e1, a1) > (e2, a2) = (e1 > e2, a1 > a2). The projections
are the obvious ones: (e, a) 7→ e and (e, a) 7→ a.

• For the coproduct, also called horizontal sum in [33], assume E and A
are not the final effect algebra. Let

E⊕ A = (E\{0, 1}) ∪ (A\{0, 1}) ∪ {0, 1}.

Orthogonality is given by x ⊥ y if x or y equals 0, x ⊥ y in E or x ⊥ y
in A. If E or A is final, then E⊕ A is also final. The injections are the
obvious ones.

In fact, we have the following stronger result:
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Proposition 7.2.7. The category of effect algebras is complete and cocom-
plete.

Proof. See [56].

7.3 Functors and tests

Effect algebras are a generalization of Boolean algebras and every finite
Boolean algebra is isomorphic to the powerset of some finite set. In this
section we make two more useful generalizations. First we consider how
effect algebras give rise to probability distributions and then we consider
how effect algebras themselves further embed in a functor category. Con-
sidering probability distributions in an effect algebraic setting allow us to
treat non-locality and contextuality using effect algebras as we will see in
the next chapter. The embedding in a functor category allows us to then
compare the effect algebraic approach to the existing presheaf approach
as in [2] in Section 8.6. Both these generalizations rely on the concept of
tests on an effect algebra (Definition 7.3.3), but before we do this, we first
consider the relation between finite sets and Boolean algebras.

Let FinSet be the category of finite sets and functions between them.
In order not to deal with isomorphic finite sets, let F be the skeleton of

FinSet. That is, the objects of F are the sets n := {0, 1, . . . , n − 1} and
morphisms are functions between these sets. The relation between finite
sets and Boolean algebras can now be states as follows:

Lemma 7.3.1. The contravariant powerset functor, P , induces an equiva-
lence between the opposite of F and finite Boolean algebras:

P : Fop ' FinBA (7.1)

Proof. This follows from [41]. We show what happens with morphisms.
Let f : n → m be a function. Then we obtain a morphism of Boolean
algebras P( f ) : P(m)→ P(n), given by

P( f )(X) = f−1(X) = {i ∈ n | f (i) ∈ X}

Conversely, if g : P(m) → P(n) is a morphism of Boolean algebras, such
that g({i}) = X, then we obtain a map n→ m where j 7→ i if j ∈ X.
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Now finite Boolean algebras embed in Boolean algebras which in turn
embed in effect algebras and PPCMs.

FinBA ↪→ BA ↪→ EA ↪→ PPCM

Hence we can view the powerset functor either as P : Fop → FinBA,
P : Fop → BA, P : Fop → EA or as P : Fop → PPCM. Whenever we
write P , it will be clear from context which (possibly multiple) of these
is meant. Since P : Fop → FinBA is an equivalence, it is in particular
full and faithful. Furthermore, since any PPCM morphism between P(n)
and P(m) is fixed once the images of the singletons are known, any PPCM
morphism between P(n) and P(m) is also a Boolean algebra morphism.
Hence we find

Corollary 7.3.2. The powerset functor, P , is full and faithful.

We now introduce the concept of a test, which can be seen as a general-
ization of a PVM or POVM.

Definition 7.3.3 (n-test). Let E be an effect algebra (or more generally any
PPCM). An ordered list of elements (e1, . . . , en), ei ∈ E is called an n-test if
e1 > . . . > en = 1. The set of all n-tests on E is denoted T(E)(n). A test is an
n-test for some n.

Example 7.3.4. • An n-test of P(X) is precisely an ordered partition of
X, where the empty set can occur multiple times.

• For the initial effect algebra we have T({0, 1})(n) ∼= n; a test consist
out of exactly one 1, which can be in any of the n entries in a list.

• An n-test in Proj(H) corresponds to a von Neumann measurement
(PVM) whereas an n-test in the interval [0, 1]B(H) corresponds to a
general measurement (POVM).

• For the interval [0, 1], an n-test is a collection of numbers (λ1, . . . , λn)
such that λi ∈ [0, 1] and ∑i λi = 1. That is, an n-test in [0, 1] is a
probability distribution on an n element set and can therefore also be
identified with an n-simplex.

This last example shows that finite probability distributions are ob-
tained as tests on an effect algebra. Normally, to consider (finite) proba-
bility distributions, one introduces (finite) measure spaces.

Definition 7.3.5. Let X be a finite set with powerset P(X) and let Ω be
a sub-Boolean algebra of P(X), i.e., Ω ⊂ P(X) is a Boolean algebra and
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∅, X ∈ Ω. A probability distribution on (X, Ω) is a function p : Ω → [0, 1]
such that p(X) = 1 and p(X1 ∪ . . .∪Xn) = p(X1) + . . .+ p(Xn) for disjoint
subsets X1, . . . , Xn ⊂ X.

When we consider this definition, we find that the surrounding space
X actually does not play any significant role. The relevant information is
whether or not two subsets in Ω are disjoint or not. We can capture this by
noting that (Ω,], ∅, X) is an effect algebra. A morphism from (Ω,], ∅, X)
to ([0, 1],+≤1, 0, 1) is now precisely a probability distribution. This leads
us to consider the following (see also [35]):

A ’generalized probability space’ is given by an effect algebra E and a
’generalized probability distribution’ is a morphism E→ [0, 1].

We now consider the second generalization of embedding effect alge-
bras in a functor category, or category of presheaves. We recall some theory.

7.4 Intermezzo: presheaves

Let C be a small category, meaning that the collection of objects and mor-
phisms both are sets. Let [Cop, Set] (or SetC

op
) be the presheaf category over C,

i.e., the category of functors from the opposite of C to Set and whose mor-
phisms are natural transformations between these functors. The Yoneda
embedding y : C → [Cop, Set] sends an object A to the representable presheaf
Representable presheaf Hom(−, A) and a morphism f to the natural trans-
formation f ◦ −. The following is a classical result in this setting:

Lemma 7.4.1 (Yoneda lemma). Let F : Cop → Set be a functor, then there
is a natural isomorphism between natural transformations from a repre-
sentable presheaf y(A) to F and the set F(A)

[Cop, Set](y(A), F) ∼= F(A) (7.2)

Proof. The idea is that a natural transformation η : y(A)→ F is completely
determined by the value of ηA(idA) ∈ F(A) and vice versa. Indeed, by
naturality we have for any f : B→ A that ηB( f ) = F( f )(ηA(idA)). Details
can be found in any book on category theory, for example [10] or [71].

Some consequences:
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Corollary 7.4.2. The Yoneda embedding is full and faithful.

[Cop, Set](y(A), y(B)) ∼= y(B)(A) = Hom(A, B) (7.3)

Corollary 7.4.3. If for every C ∈ C we have Hom(C, A) ∼= Hom(C, B) then
A ∼= B:

y(A) ∼= y(B)⇔ A ∼= B (7.4)

The next statement is often called the co-Yoneda lemma.

Corollary 7.4.4. Any presheaf F ∈ [Cop, Set] is a canonical colimit of repre-
sentable presheaves.

Proof. The proof follows from considering ElF, the category of elements of
F. That is, objects of ElF are pairs (C, x ∈ F(C)) and morphisms (C, x) →
(C′, y) are morphisms f : C → C′ such that F( f )(y) = x. Composing
the forgetful functor, (C, x) 7→ C, with the Yoneda embedding then gives
a diagram of the category of elements in [Cop, Set]. The colimit over this
diagram is then isomorphic to F. See [71] or [69] for details.

So C embeds fully faithful into its category of presheaves and every ob-
ject there is a colimit of these representable functors. If fact, [Cop, Set] is the
free cocompletion of C. This means that any functor F : C → D into a co-
complete category D factors though the Yoneda embedding as F ∼= LF ◦ y.
By the above, it is clear what this functor LF should do on objects. On rep-
resentable functors y(c) since we must have LF(y(c)) = F(c). Then since
any functor is a colimit of representable functors, we get LF(colimy(c)) =
colimF(c).

On morphisms we must have LF(y( f ) : y(c) → y(d)) = F( f ). Then if
µ : P→ Q is a morphism (i.e., natural transformation) between presheaves,
we know that both P and Q are colimits of a diagram of representables,
so we know how these diagrams are mapped into D. For a colimit injec-
tion ic : y(c) → P we define LF(ic) to be the colimit injection of F(c) in
LFP = colimF(c).

Let (c, x) be an object in the category of elements of P, ElP, then x ∈
P(c) ∼= Hom(y(c), P). We may therefore write µ ◦ x to be a map from y(c)
to Q and hence (c, µ ◦ x) is an object in ElQ. This extends to a functor
from ElP to ElQ which is the identity on the underlying objects y(c). So for
(c, x) ∈ ElP we obtain a colimit injection y(c)→ Q. This then means that in
D LFQ is a cone for the diagram over LFP, so by the universal property of
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the colimit we obtain a morphism LFP→ LFQ which we take as the image
of µ under LF.

We now consider this setting from another point of view. Let D be a
locally small category, meaning that for any objects A, B the collection of
morphisms Hom(A, B) is a set. A functor F : C → D induces a functor
D → [Cop, Set] called the nerve functor:

Definition 7.4.5. The nerve functor N : D → [Cop, Set] is given by

N(d) := D(F(−), d) (7.5)

and the obvious action on morphisms.

C

F
��

y // [Cop, Set]

D
N

::
(7.6)

Starting from an object c ∈ C we have y(c) = Hom(−, c), whereas going
via the bottom gives c 7→ F(c) 7→ Hom(F(−), F(c)). Hence we see:

Lemma 7.4.6. Diagram 7.6 commutes if and only if F is fully faithful.

We now have two functors N : D � [Cop, Set] : LF. We now have the
following:

Proposition 7.4.7. The functors LF a N form an adjoint pair.

Proof. We give a small calculation, leaving the details.

Hom(LFG, d) ∼= Hom(LF(colim(y(C))), d)
∼= limHom(LFy(c), d)
∼= limHom(F(c), d)
∼= limHom(y(c), Hom(F(−), d))
∼= limHom(G, N(d))

The full picture is now as follows:

C

F
��

y // [Cop, Set]

LFuuD

N 77
`

(7.7)
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The left adjoint is also known as the Yoneda extension of F, which is the
left Kan extension of F along y. We refer to [71], [69] and [59] for details
and more.

7.5 The effect algebraic situation

In our situation, we have F : C → D = P : Fop → EA. The Yoneda em-
bedding then becomes y : Fop → [F, Set], mapping n 7→ HomFop(−, n) ∼=
HomF(n,−). The nerve functor takes an effect algebra E to the presheaf
Hom(P(−), E), which takes n to Hom(P(n), E). A function in this Hom-
set sends singletons {i} ∈ P(n) to elements ei ∈ E such that >i ei = 1.
That is, such a function is precisely an n-test and every n-test gives rise to
a function in this way. Because of this we call the nerve functor the test
functor, lifting Definition 7.3.3 to a functor:

Definition 7.5.1 (Test functor). The test functor T : EA → [F, Set] is the
functor E 7→ T(E) where

T(E)(n) = {n-tests on E} (7.8)
∼= Hom(P(n), E) (7.9)

and for f : n→ m

T(E)( f ) : (e1, . . . , en) 7→ ( >
j∈ f−1(i)

ej)i=1,...m (7.10)

For an effect algebra morphism φ : E → A, we obtain a natural trans-
formation T(φ) : T(E)→ T(A) which is defined with components

T(φ)n : (e1, . . . , en) 7→ ( f (e1), . . . , f (en)) (7.11)

By Corollary 7.3.2 the powerset functor is fully faithful, Hence by Lemma
7.4.6 the diagram

Fop

P
��

y // [F, Set]

EA
T

;;
(7.12)

is commutative up to isomorphism.

Since EA is cocomplete ([56]), we obtain a left adjoint to the test functor
as the Yoneda extension of the powerset functor.
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Theorem 7.5.2. The test functor T : EA→ [F, Set] has a left adjoint.

Fop

P
��

y // [F, Set]

LuuEA

T 77
`

(7.13)

We next show that the test functor is fully faithful. Hence effect algebras
form a reflective subcategory of the presheaf category. In fact, we may even
be a bit more general. While the test functor is defined on effect algebras,
Definition 7.3.3 shows that tests can also be defined for PPCMs. This also
extends to a functor and the next theorem should be seen in that setting.

Theorem 7.5.3. Let A and B be PPCMs. If A is an effect algebra, the in-
duced functor TA,B : PPCM(A, B)→ [F, Set](TA, TB) is a bijection.

Proof. We start by introducing some notation. Denote functions from n
to m as lines from n nodes above to m nodes below. For example, ( ) :
{1, 2, 3} → {1, 2} is the map 1 7→ 1 and 2, 3 7→ 2. We will also use this
notation for the image of this function under a functor.

Now if A is an effect algebra, every element a ∈ A is part of a 2-test
(a, a⊥). It is then clear that TA,B is injective.

To show surjectivity, suppose that µ : T(A) → T(B) is some natural
transformation. We need to find a PPCM morphism ψµ : A → B such that
T(ψµ) = µ. To this end, for a ∈ A, consider the 2-test (a, a⊥) and define
ψµ(a) = x, where (x, x′) = µ2(a, a⊥). Note that x′ is a complement of x, but
not necessarily unique. We show that ψµ is indeed a PPCM morphism. Let
a ⊥ b in A and let c = (a > b)⊥, so that (a, b, c) is a 3-test. Let µ3(a, b, c) =
(x, y, z), then we immediately see x ⊥ y in B. Furthermore, by naturality
of µ we have

µ2(a, a⊥) = µ2 ( ) (a, b, c)

= ( ) µ3(a, b, c)

= (x, y > z)

Therefore ψµ(a) = x and similarly ψµ(b) = y. We then calculate

µ2(a > b, c) = µ2 ( ) (a, b, c)

= ( ) µ3(a, b, c)

= (x > y, z)
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which shows that ψµ(a > b) = x > y = .ψµ(a)> ψµ(b).

To show ψµ preserves 1 we calculate

µ2(1A, 0A) = µ2 ( ) (1A)

= ( ) µ1(1A)

= ( ) 1B

= (1B, 0B)

Similarly ψµ preserves 0. By construction we now indeed have TA,B(ψµ) =
µ, so TA,B is indeed a bijection.

Corollary 7.5.4. The restriction to effect algebras, T : EA→ [F, Set], is full
and faithful.

In particular:

Proposition 7.5.5. For an effect algebra E we have LT(E) ∼= E.

Proof. Let A be any effect algebra. Then since L is a left adjoint and T is full
and faithful, we have Hom(LT(E), A) ∼= Hom(T(E), T(A)) ∼= Hom(E, A).
Hence by the Lemma 7.4.3 we have LT(E) ∼= E.

We can rephrase this as ‘the counit of the adjunction L a T is an isomor-
phism at effect algebras’.

Before giving our second generalization of probability theory, we note
the following. Because of the equivalence of finite Boolean algebras and
Fop (Lemma 7.3.1), we may see [F, Set] as the free cocompletion of finite
Boolean algebras. The test functor is now an embedding of effect algebras
in this free cocompletion. Using the general theory above, we then find
that every effect algebra is a canonical colimit of Boolean algebras (this
inspired part of the work in [58]). This can be stated as ‘finite Boolean al-
gebras are dense in effect algebras’. Moreover, we remark that our category
F is equivalent to finite Hausdorff spaces, which yields a connection to a
related result: compact Hausdorff spaces are dense in piecewise C∗-algebras (see
[37, Thm 4.5]).

7.6 A second generalization of probability theory

We now present a further generalization of probability spaces and distri-
butions based on functors. Consider again the distributions on a finite set
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n. This is the set

D(n) = {(λ0, . . . , λn−1)|λi ∈ [0, 1], ∑
i

λi = 1} (7.14)

∼= {d : n→ [0, 1]|∑
i

d(i) = 1}

It is well known that D : F → Set extends to the distribution functor: if
f : n→ m is a function, then

D( f )(λ0, . . . , λn−1) = ( ∑
j∈ f−1(i)

λj)i=0,...,m−1

Hence we see that the distribution functor equals the test functor on [0, 1]
as functors in [F, Set]:

D = T([0, 1]) (7.15)

Considering a probability distribution on n points a map n → [0, 1] we
can extend it to an effect algebra morphism P(n) → [0, 1] via its action
on singletons. Taking tests then gives a morphism from TP(n) ∼= y(n) →
D = T([0, 1]) (cf. (7.12)). By the Yoneda lemma we now have

D(n) ∼= [F, Set](y(n), D) (7.16)

That is, probability distributions on n correspond to natural transforma-
tions between the Yoneda embedding of n and the distribution functor.
This leads us to consider the following generalization:

A ‘generalized probability space’ is a functor Q : F→ Set and a
’generalized probability distribution’ is a natural transformation

Q→ D = T([0, 1]), to the distribution functor.

We now have two generalizations of probability theory. Via effect al-
gebras and via presheaves. We know effect algebras embed in presheaves.
A natural question is then whether we can characterize the image of this
embedding. It turns out this is possible as done in [54] and [53]. This might
not come a surprise. Indeed, since every element e in an effect algebra E
has a unique orthocomplement, e⊥, the correspondence e↔ (e, e⊥) gives a
bijection T(E)(2) ∼= E as sets. Furthermore, if a ⊥ b in E, then there exists
an element (a, b, c) of T(E)(3), i.e., a 3-test in E. Hence T(E) also contains
all information about the partial structure, >, of E. We leave the details to
[54] and [53].



Chapter 8

Back to Bell

Here we use the effect algebraic framework developed in the previous
chapter to consider the Bell paradox again. We will construct an effect al-
gebra which takes into account the impossibility of measuring the different
settings simultaneously and consider probability distributions on this alge-
bra. We start by considering the simple Bell scenario with two observers,
who each have two measurement settings which each have two outcomes,
but we will generalize this to more general cases in Section 8.4. The main
goal here is not to consider non-locality and contextuality in different sys-
tems, but rather to give a general framework to study them. We will then
relate this effect algebraic framework to other approaches in Section 8.6.

8.1 Tables

Recall that in the Bell scenario Alice and Bob each perform one of two mea-
surements, a0, a1 for Alice and b0, b1 for Bob. Each of them then obtains
some outcome in an outcome set, which we for simplicity take to be the
set {0, 1}. Furthermore, recall the notations ai :j to mean that Alice chooses
some setting and gets some outcome and ai :j∧ bk :l to mean that both Alice
and Bob choose some setting and both obtain some outcome.

As an example of a possible probability distribution over the joint set-
tings and outcomes we gave the standard Bell table (6.2). In general, we
are interested in probability distributions which are normalized and non-
signalling. This leads us to consider the following:

141
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Definition 8.1.1. A function

τ : {a0:0, a0:1, a1:0, a1:1} × {b0:0, b0:1, b1:0, b1:1} → [0, 1]

is called a probability table, or just a table, if:

• each experiment certainly has an outcome:
for i, j ∈ {0, 1},

∑
o,o′∈{0,1}

τ(ai :o, bj:o′) = 1,

• it has marginalization, that is, it is non signalling: for all i, j, o ∈ {0, 1},

τ(ai :o, b0:0) + τ(ai :o, b0:1) = τ(ai :o, b1:0) + τ(ai :o, b1:1),

τ(a0:0, bj:o) + τ(a0:1, bj:o) = τ(a1:0, bj:o) + τ(a1:1, bj:o).

More generally, we can replace the effect algebra [0, 1] with any PPCM
X. This will allow us to consider for example possibilities instead of proba-
bilities by replacing [0, 1] by the PPCM {0, 1} where 1 > 1 = 1 (see Section
9.1). We call such a general table an X-table. A table as in Definition 8.1.1 is
then just an X-table for X = [0, 1].

Tables thus give us information about the likelihood that the observed
events occur. One might then be interested to understand how these like-
lihoods arise. More specifically, we are interested in understanding if a
given table can be obtained in a quantum mechanical setting and whether
there is a realist explanation for the table. To this end, let us define some
algebras for Alice and Bob.

EA,0
def
= P({a0:0, a0:1}) EA,1

def
= P({a1:0, a1:1}) (8.1)

EB,0
def
= P({b0:0, b0:1}) EB,1

def
= P({b1:0, b1:1}) (8.2)

For clarity, we consider the algebra EA,0 in detail. This is the Boolean
algebra {0, a0:0, a0:1, 1} where a0:0 ∧ a0:1 = 0 and a0:0 ∨ a0:1 = 1. This
accounts for the fact that 0 and 1 are the only outcomes for the setting a0
and that they cannot occur at the same time. As such, the algebra EA,0 is
also an effect algebra. A probability distribution p : EA,0 → [0, 1] then
gives the probability of each of the outcomes 0, 1 occurring.

We now consider these algebras from a different point of view. Any
Boolean algebra or effect algebra has an underlying set of elements. This
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induces the forgetful functors UB : BA → Set and UE : EA → Set which
send an algebra to this underlying set and a morphism to its underlying
function. In many categories such a forgetful functor has a left adjoint and
the resulting objects of this functor are usually called free. Let us consider
this for effect algebras and Boolean algebras.

Definition 8.1.2. Let X be a set.

• The free Boolean algebra, FBX, on the set X is the Boolean algebra such
that for all Boolean algebras B we have

Hom(X, UBB) ∼= HomBA(FBX, B)

• The free effect algebra, FEX, on the set X is the effect algebra such that
for all effect algebras A we have

Hom(X, UE A) ∼= HomEA(FEX, A)

So for every function f : X → B, there is a unique algebra morphism
f̂ : FX → B such that f factors via the injection of X in FX.

FX
f̂ // B

X
f

>>

i

OO (8.3)

We now consider these algebras in the special case where X is finite as
this is sufficient for our purposes.

Proposition 8.1.3. Let X be a finite set.

• The free Boolean algebra FBX is isomorphic to the double powerset
PPX ∼= 22X

.

• The free effect algebra FEX is isomorphic to the effect algebra X ∪
X⊥ ∪ {0, 1}, where X⊥ is the set {x⊥|x ∈ X} and the only non-trivial
sums are x > x⊥ = 1.

Proof. • In the Boolean case, note that for Y ∈ PX we can define an
element aY =

∧
x∈Y x ∧ ∧x∈X\Y ¬x. These elements are the atoms

of PPX. Then for Z = {Y1, . . . , Yn} ∈ PPX we obtain an element∨
Yi∈Z aYi . The bottom line is that every element is a join over meets
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of elements of X and X can be embedded X ↪→ PPX by taking the
join of all elements corresponding to sets {Y ∈ PX|x ∈ Y}.
Now for any map f : X → UBB we obtain a morphism f̃ : PPX →
B which acts on atoms as f̃ (

∧
x∈Y x ∧ ∧x∈X\Y ¬x) =

∧
x∈Y f (x) ∧∧

x∈X\Y ¬ f (x). Conversely any g : FX → B restricts to a map g̃ :
X → UBB.

• In the effect algebra case, there is an canonical embedding X ↪→ FEX,
from which the rest follows.

Remark: the above proposition does not hold for Boolean algebras when
X is infinite, as in this case we cannot take infinite meets and joins. For ex-
ample, if X = N, the free algebra FBN consists of all finite joins of all
finite meets of the elements of N and their complements. Therefore it has
cardinality equal to that of the natural numbers themselves.

From the characterizations of the free Boolean and effect algebras, we
see that EA,0 is the free Boolean algebra generated by the element a0:0,
where we identify ¬a0:0 = a0:1. It is also the free effect algebra generated
by {a0:0} under the identification (a0:0)⊥ = a0:1.

To continue, we need to take into account that both Alice and Bob each
have two incompatible settings. For this we take the sum of their effect
algebras, i.e., the coproduct from Proposition 7.2.6 . Hence we define:

EA = EA,0 ⊕ EA,1 (8.4)

EB = EB,0 ⊕ EB,1 (8.5)

Again in detail, the algebra EA has {0, a0:0, a0:1, a1:0, a1:1, 1} as its un-
derlying set and the only non-trivial sums are a0:0 > a0:1 = 1 and a1:0 >
a1:1 = 1. In contrast to the single setting algebras EA,i, these algebras are
not Boolean. As such, probability distributions p : EA → [0, 1] do not oc-
cur in classical probability theory. That being said, by the universal prop-
erty of the sum, such a distribution corresponds to a pair of distributions
p0 : EA,0 → [0, 1] and p1 : EA,1 → [0, 1], each of which is just a classical
distribution.

While EA and EB are not Boolean, they can be embedded in Boolean
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algebras. Let

BA = P({a0:0∧ a1:0, a0:0∧ a1:1, a0:1∧ a1:0, a0:1∧ a1:1}) (8.6)

BB = P({b0:0∧ b1:0, b0:0∧ b1:1, b0:1∧ b1:0, b0:1∧ b1:1}) (8.7)

as Boolean algebras. Then the embedding iA : EA ↪→ BA is given by

ai :j 7→ (ai :j ∧ a¬i :0) ∨ (ai :j ∧ a¬i :1)

where ¬i = 1 if i = 0 and ¬i = 0 if i = 1.

We can again consider these algebras as free algebras.

Lemma 8.1.4. The algebras BA and EA are the free Boolean algebra and free
effect algebra on {a0:0, a1:0}, respectively.

Proof. Since taking the free algebra is a left adjoint to the forgetful functor,
it preserves colimits. In particular, it preserves the coproduct, which in Set
is disjoint union. It follows that for the effect algebras and Boolean algebras
for Alice and Bob we have

BA = BA,0 ⊕ BA,1 = FB{a0:0} ⊕ FB{a1:0} ∼= FB{a0:0, a1:0} (8.8)

EA = EA,0 ⊕ EA,1 = FE{a0:0} ⊕ FE{a1:0} ∼= FE{a0:0, a1:0} (8.9)

The relation between BA and EA is that BA is the free completion of
EA to a Boolean algebra. This means that EA ⊂ BA and that every map
EA → B, for a Boolean algebra B, factors through BA. This is a general
occurrence:

Lemma 8.1.5. Let X = {x1, . . . , xn} be a finite set and let FEX and FBX
be the free effect algebra and free Boolean algebra on this set, respectively.
Let B be a Boolean algebra and suppose f : FEX → B is an effect algebra
morphism. Then f factors uniquely via the embedding i of FEX in FBX.
That is, there exists a unique f̂ : FB → B such that f = f̂ ◦ i.

FEX

i
��

f // B

FBX
f̂

88

Moreover, the correspondence between f and f̂ is a bijection.
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Proof. An atom of FBX is of the form xφ(1) ∧ . . . ∧ xφ(i) ∧ ¬xφ(i+1) ∧ . . . ∧
¬xφ(n), where φ is some permutation of n. Define f̂ : FBX → B as f̂ (xφ(1) ∧
. . .∧ xφ(i) ∧¬xφ(i+1) ∧ . . .∧¬xφ(n)) = f (xφ(1))∧ . . .∧ f (xφ(i))∧ f (x⊥

φ(i+1))∧
. . . ∧ f (x⊥

φ(n)). It is then clear that f = f̂ ◦ i and f̂ is unique precisely be-
cause its values are fixed on the elements xi and FBX is freely generated by
these elements.

Finally, since UEB = UBB =: UB, we have

HomEA(FEX, A) ∼= HomSet(X, UA) ∼= HomBA(FBX, A)

so the correspondence is indeed a bijection.

8.2 Bimorphisms

In Section 6.1 we gave the statistics of a certain measurement as a table.
In the previous section we made clear what exactly we meant by a table
(Definition 8.1.1). We also introduced algebras for Alice and Bob which
describe their measurements. Now of course to describe a table, we need
to combine the measurements (and hence the algebras) of Alice and Bob.
For this we introduce bimorphisms, which in turn will be related to tensor
products.

Definition 8.2.1. Let A, B and C be PPCMs. A bimorphism A, B → C is a
function f : A× B→ C such that for all a, a1, a2 ∈ A and b, b1, b2 ∈ B with
a1 ⊥ a2 and b1 ⊥ b2 we have

f (a, b1 > b2) = f (a, b1)> f (a, b2) f (a1 > a2, b) = f (a1, b)> f (a2, b)
f (a, 0) = f (0, b) = 0 f (1, 1) = 1

So in particular both f (−, 1) and f (1,−) are morphisms of PPCMs (or
effect algebras if A, B and C are effect algebras). A bimorphism then con-
tains information of these two morphisms at the same time, but also as-
signs values to combinations of elements from the different algebras, while
still taking into account the partial structure of these algebras. This relates
them to tables. Indeed, a bimorphism t : EA, EB → [0, 1] restricts to a func-
tion

τ : {a0:0, a0:1, a1:0, a1:1} × {b0:0, b0:1, b1:0, b1:1} → [0, 1]

We now show that this function is indeed a table and that this correspon-
dence is even a bijection. In fact, we can show this for general X-tables (see
below Definition 8.1.1):
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Proposition 8.2.2. Let X be a PPCM (e.g. X = [0, 1]). A function

τ : {a0:0, a0:1, a1:0, a1:1} × {b0:0, b0:1, b1:0, b1:1} → X

arises as the restriction of a bimorphism EA, EB → X if and only if it is an
X-table.

Proof. First we show that the restriction of a bimorphism is an X-table. So
let t : EA, EB → X be a bimorphism and τ its restriction. In particular, for
i, j, k, l ∈ {0, 1} we have t(ai :k, bj:l) = τ(ai :k, bj:l). Then by the properties
of bimorphisms it follows that

τ(ai :0, bj:0)> τ(ai :0, bj:1)> τ(ai :1, bj:0)> τ(ai :1, bj:1) =

t(ai :0, bj:0)> t(ai :0, bj:1)> t(ai :1, bj:0)> t(ai :1, bj:1) =

t(ai :0 > ai :1, bj:0)> t(ai :0 > ai :1, bj:1) =

t(1, bj:0 > bj:1) =

t(1, 1) = 1

The marginalization requirement follows similarly. Indeed, notice that
for any bimorphism t : EA, EB → X we have, for instance,

t(a0:0, b0:0)> t(a0:0, b0:1) = t(a0:0, 1) = t(a0:0, b1:0)> t(a0:0, b1:1)

since b0:0 > b0:1 = 1 = b1:0 > b1:1.

Second, suppose τ is a table satisfying the two conditions of Definition
8.1.1. We extend it to a bimorphism t : EA, EB → X as follows:

t(ai :k, bj:l) = τ(ai :k, bj:l) t(ai :k, 1) = τ(ai :k, b0:0)> τ(ai :k, b0:1)

t(x, 0) = 0 t(1, bj:l) = τ(a0:0, bj:l)> τ(a0:1, bj:l)

t(0, y) = 0 t(1, 1) = 1

For i, j, k, l ∈ {0, 1}, x ∈ EA and y ∈ EB.

It thus follows that the Bell table (6.2) extends to a bimorphism

EA, EB → [0, 1]

Now bimorphisms are not morphisms of effect algebras and therefore do
not exist within the category of effect algebras. We can remedy this by in-
troducing tensor products. These allow us to consider bimorphisms A, B→
X as actual morphisms A⊗ B→ X. In particular, a table t : EA, EB → [0, 1],
and more specifically, the Bell table, can be considered as a morphism
EA ⊗ EB → [0, 1].
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Definition 8.2.3. A tensor product of two PPCMs E, E′ is given by a PPCM
E ⊗ E′ and a bimorphism i : E, E′ → E ⊗ E′, such that for every bimor-
phism f : E, E′ → X there is a unique morphism g : E⊗ E′ → X such that
f = g ◦ i.

E, E′

i
��

f // X

E⊗ E′
g

77

So tensor products give a bijective correspondence between morphisms
E ⊗ E′ → F and bimorphisms E, E′ → F. In fact, all tensor products of
effect algebras exist:

Proposition 8.2.4. Let E, E′ be effect algebras. The tensor product E ⊗ E′

exists and is itself an effect algebra.

Proof. For the proof, see [56].

It should be noted that in general, the tensor product of two effect alge-
bras can be trivial, i.e., the algebra where 0 = 1. An example of this occur-
rence is given in [46]. Note that there it is claimed that the tensor product
need not always exist, however, these authors do not take the trivial effect
algebra to be an effect algebra.

We now give concrete descriptions of the algebras BA⊗ BB and EA⊗EB.

Proposition 8.2.5. • The tensor product of Boolean algebras, BA ⊗ BB,
is the free Boolean algebra on the four elements {a0:0, a1:0, b0 : 0, b1:0}.

• The tensor product of effect algebras, EA ⊗ EB, is the effect algebra
with 16 atoms of the form ai :k ∧ bj:l for i, j, k, l ∈ {0, 1}. The tests in
which all elements are atoms are of the form

(a ∧ b, a ∧ b⊥, a⊥ ∧ b̃, a⊥ ∧ b̃⊥) (8.10)

or
(a ∧ b, a⊥ ∧ b, ã ∧ b⊥, ã⊥ ∧ b⊥) (8.11)

where a, ã and b, b̃ are atoms in EA and EB, respectively. This then
also gives all non-trivial sums in EA ⊗ EB.
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Proof. In the Boolean case it is a general result that for finite Boolean alge-
bras the tensor product is equal to the coproduct of Boolean algebras:

2n ⊗ 2m ∼= 2n×m ∼= 2n ⊕ 2m (8.12)

Indeed, for Boolean algebras, a pair of morphisms ( f , g) corresponds to a
bimorphism t f ,g, defined by t f ,g(a, b) = f (a) ∧ g(b), so that the universal
property of the tensor product is precisely that of the coproduct.

For the second statement. Let E be the effect algebra as in the propo-
sition. First we note that for any effect algebra X, any elements a, ã ∈ EA
b, b̃ ∈ EB, and bimorphism f : EA, EB → X, we have

1 = f (1, 1)

= f (a > a⊥, 1)

= f (a, 1)> f (a⊥, 1)

= f (a, b)> f (a, b⊥)> f (a⊥, b̃)> f (a⊥, b̃⊥) (8.13)

and similarly

1 = f (1, 1)

= f (1, b > b⊥)

= f (1, b)> f (1, b⊥)

= f (a, b)> f (a⊥, b)> f (ã, b⊥)> f (ã⊥, b⊥) (8.14)

Now let g : EA, EB → X be a bimorphism. We define g̃ : E → X
by extension of g̃(ai :k ∧ bj:l) = g(ai :k, bj:l). We then need to show that
g̃(a ∧ b) ⊥ g̃(a′ ∧ b′) whenever a ∧ b ⊥ a′ ∧ b′. This follows from (8.13).
The map g 7→ g̃ is invertible. Indeed, given g̃, define g(a, b) = g̃(a∧ b). We
conclude the proof by noting that we now have bijections:

E→ X effect algebra morphism
EA, EB → X bimorphism

EA ⊗ EB → X effect algebra morphism

Hence E is a tensor product and by Corollary 7.4.3 that we also have E ∼=
EA ⊗ EB. we have E ∼= EA ⊗ EB.

Note that each of the tests in (8.10) and (8.11) describe eight tests, how-
ever, four of these overlap, so the tensor product EA ⊗ EB has 12 tests with
only atoms. A nice graphical representation of this algebra is given in Sec-
tion 9.5 when we discuss test spaces.
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8.3 Realizations

So far we have seen that tables describe no-signalling probability distribu-
tions over outcomes of joint measurement settings. Furthermore, such a
table arises as a bimorphism, or morphism of the tensor product, of cer-
tain algebras describing these settings and outcomes. We also saw that the
statistics in the Bell table can be obtained by performing quantum mea-
surements, but we claimed that these statistics cannot be obtained from a
local hidden variable.

In contrast, it is easy to see that a table such as

0, 0 0, 1 1, 0 1, 1
a0b0 1 0 0 0
a0b1 0 1 0 0
a1b0 0 0 1 0
a1b1 0 0 0 1

(8.15)

can be realized both classically and quantum mechanically. It is also known
that the following table, known as the PR box [12], cannot be realized either
way.

0, 0 0, 1 1, 0 1, 1
a0b0 1/2 0 0 1/2

a0b1 1/2 0 0 1/2

a1b0 1/2 0 0 1/2

a1b1 0 1/2 1/2 0

(8.16)

Classically, this can be seen in the same was as in the Bell table, which we
show in Proposition 8.3.6. Quantum mechanically this follows from the
fact that the PR box violates Tsirelson’s bound [91]. In this section we will
consider how general no-signalling tables of this kind might be realized.
We consider quantum realizations and classical realizations. Quantum re-
alizable tables are those tables which can occur by performing measure-
ments on a quantum system whereas classical realizable tables are those
tables which we can explain in a realistic setting.

We first consider quantum realizations. From a quantum theoretical
point of view, one is interested whether a general table can be obtained as
measurements on some quantum system. Such a system is modelled by a
Hilbert space H and the bounded operators, B(H), on this space. A yes-no
question such as ‘is the outcome of measuring a0 equal to 1’ is given by a
projection on this Hilbert space and these projections form the effect alge-
bra Proj(H) (Example 7.2.5). Therefore we are interested in factorizations
via the projections on some Hilbert space. Furthermore, since by locality
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the measuements of Alice cannot be influenced by Bob and vice versa, we
ask for a factorization through a Hilbert space for each party.

Definition 8.3.1. A quantum realization for a distribution on joint measure-
ments, i.e., a table t : EA, EB → [0, 1], is given by finite dimensional Hilbert
spaces HA, HB, two PPCM maps rA : EA → Proj(HA) and rB : EB →
Proj(HB), and a bimorphism p : Proj(HA), Proj(HB) → [0, 1], such that for
all a ∈ EA and b ∈ EB we have p(rA(a), rB(b)) = t(a, b).

Of course by the correspondence between bimorphisms and morphisms
from the tensor product, we can rephrase this in in terms of tensors. De-
note by a⊗ b the element i(a, b), where i is the bimorphism from Definition
8.2.3.

Definition 8.3.2. A quantum realization for a distribution on joint measure-
ments, i.e., a table t : EA ⊗ EB → [0, 1], is given by finite dimensional
Hilbert spaces HA, HB, two PPCM maps rA : EA → Proj(HA) and rB : EB →
Proj(HB), and an effect algebra morphism p : Proj(HA)⊗Proj(HB)→ [0, 1],
such that for all a ∈ EA and b ∈ EB we have p(rA(a)⊗ rB(b)) = t(a, b).

EA

rA

��

EB

rB

��

EA ⊗ EB

rA⊗rB ''

t // [0, 1]

Proj(HA) Proj(HB) Proj(HA)⊗ Proj(HB)

p

88

(8.17)

Note that the map rA, rB in the bimorphism formulation is itself not a
bimorphism. As such, we cannot take an arbitrary embedding EA ⊗ EB →
Proj(HA)⊗ Proj(HB) in the effect algebra formulation.

The Bell table (6.1) has a quantum realization, with HA = HB = C2 as
shown in Proposition 6.1.1.

As an aside, the relation between (mixed) states and this notion of quan-
tum realization is as follows. Let H ⊗ H′ be the tensor product of Hilbert
spaces. By Gleason’s theorem [57] there is a bijection between morphisms
Proj(H ⊗ H′) → [0, 1] and density matrices on H ⊗ H′ if dim(H ⊗ H′) >
3, which is certainly the case for H = H′ = C2. The canonical map
Proj(H), Proj(H′) → Proj(H ⊗ H′) given by p, q 7→ p⊗ q, where p⊗ q(h⊗
h′) = p(h)⊗ q(h′), is a bimorphism. Therefore, any density matrix gives
rise to a bimorphism Proj(H), Proj(H′)→ [0, 1].

Next we consider classical realizations. As mentioned in Chapter 6,
classically we consider outcomes for all measurement settings, i.e., sample
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spaces, and then consider probability distributions over these spaces to
account for the fact that we might not know in which hidden variable the
system is in. In the case of the Bell scenario, this sample space is the space
of maps {0, 1}{a0,a1,b0,b1}. Let us again denote a map in this sample space
as a0:i ∧ a1:j ∧ b0:k ∧ b1:l, with i, j, k, l ∈ {0, 1}. A probability distribution
over this sample space

p : {0, 1}{a0,a1,b0,b1} → [0, 1]

is now interesting because it induces a table by marginalization.

Proposition 8.3.3. Any probability distribution on the set {0, 1}{a0,a1,b0,b1} ∼=
{0, 1}4, induces a table by summing over the settings that are not tested.
For instance, the value of the table at a0:i, b0:k is

t(a0:i, b0:k) = ∑
j,l

p(a0:i ∧ a1:j ∧ b0:k ∧ b1:l) (8.18)

Proof. Normalization is immediate, for example:

∑
i,k

t(a0:i, b0:k) = ∑
i,j,k,l

p(a0:i ∧ a1:j ∧ b0:k ∧ b1:l) = 1

Marginalization is similar, for example:

t(a0:i, b0:0) + t(a0:i, b0:1) = ∑
j,k,l

p(a0:i ∧ a1:j ∧ b0:k ∧ b1:l)

= t(a0:i, b1:0) + t(a0:i, b1:1)

This leads us to classical realizable tables:

Definition 8.3.4. A table (or X-table) t is classically realizable if there is a
function p : {0, 1}4 → [0, 1] (or X) such that

• ∑s∈{0,1}4 p(s) = 1,

• t(a0:i, b0:k) = ∑j,l p(a0:i ∧ a1:j ∧ b0:k ∧ b1:l).

and similar equations for the other settings.

It will be no surprise that classically realizable tables are related to
Boolean algebras in the same way as general tables are related to effect
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algebras. Indeed, by Proposition 8.2.5, the elements a0:i ∧ a1:j ∧ b0:k ∧ b1:l
are precisely the atoms of BA ⊗ BB. As such, a probability distribution
p : {0, 1}4 extends to the full Boolean algebra BA⊗ BB

∼= P({0, 1}4). More-
over, the second condition in Definition 8.3.4 corresponds precisely to the
way to obtain the element a0:i∧ b0:k from the atoms a0:i∧ a1:j∧ b0:k∧ b1:l,
if we understand the sum as taking the join. This leads us to an equiv-
alent definition of classically realizable tables. Since tables correspond to
bimorphisms and hence to morphisms from the tensor product, we have
the following two results:

Proposition 8.3.5. A classical realization for a bimorphism t : EA, EB → [0, 1]
is given by a factorization of t though BA, BB. That is, there are two ef-
fect algebra morphisms rA : EA → BA, rB : EB → BB and a bimor-
phism p : BA, BB → [0, 1] such that for all a ∈ EA and b ∈ EB we have
p(rA(a), rB(b)) = t(a, b).

To phrase this in terms of effect algebras we again note that the map
rA, rB is not a bimorphism and as such, we cannot take an arbitrary em-
bedding EA ⊗ EB → BA ⊗ BB.

Proposition 8.3.6. A classical realization for a morphism t : EA⊗ EB → [0, 1]
is given by two effect algebra morphisms rA : EA → BA, rB : EB → BB and
a morphism p : BA ⊗ BB → [0, 1] such that for all a ∈ EA and b ∈ EB we
have p(rA(a)⊗ rB(b)) = t(a⊗ b).

EA

rA

��

EB

rB

��

EA ⊗ EB

rA⊗rB ##

t // [0, 1]

BA BB BA ⊗ BB

p

==
(8.19)

By Lemma 8.1.5, it follows that whenever there is a factorization through
any Boolean algebras B and B′, there automatically also is a factorization
through BA and BB, since they are the free completions of EA and EB, re-
spectively.

Proposition 8.3.3 shows that classical probability distributions give rise
to tables. Interestingly enough, not all (no-signalling) tables arise from
such a construction .

Proposition 8.3.7. The Bell table (6.2), t : EA ⊗ EB → [0, 1], does not factor
through the canonical embedding i : EA⊗ EB → BA⊗ BB. That is, it has no
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classical realization.

EA ⊗ EB

i %%

t // [0, 1]

BA ⊗ BB

|

::
(8.20)

This proposition is well known and there are multiple proofs. See [2] for
an example. Here we will give a similar proof, but in an algebraic setting,
based on factorizations of morphisms.

Proof. Under the embedding EA ⊗ EB ↪→ BA ⊗ BB, we view EA ⊗ EB as a
subset of BA ⊗ BB. We can thus write:

a0:0∧ b0:0 =(a0:0∧ a1:0∧ b0:0∧ b1:0) ∨ (a0:0∧ a1:1∧ b0:0∧ b1:0)

∨(a0:0∧ a1:0∧ b0:0∧ b1:1) ∨ (a0:0∧ a1:1∧ b0:0∧ b1:1) (?)

a0:0∧ b1:1 =(a0:0∧ a1:0∧ b0:0∧ b1:1) ∨ (a0:0∧ a1:1∧ b0:0∧ b1:1)

∨(a0:0∧ a1:0∧ b0:1∧ b1:1) ∨ (a0:0∧ a1:1∧ b0:1∧ b1:1)

a1:1∧ b0:0 =(a0:0∧ a1:1∧ b0:0∧ b1:0) ∨ (a0:1∧ a1:1∧ b0:0∧ b1:0)

∨(a0:0∧ a1:1∧ b0:0∧ b1:1) ∨ (a0:1∧ a1:1∧ b0:0∧ b1:1)

a1:0∧ b1:0 =(a0:0∧ a1:0∧ b0:0∧ b1:0) ∨ (a0:1∧ a1:0∧ b0:0∧ b1:0)

∨(a0:0∧ a1:0∧ b0:1∧ b1:0) ∨ (a0:1∧ a1:0∧ b0:1∧ b1:0)

Now suppose there is a classical realization and let φ : BA⊗ BB → [0, 1]
be the supposed probability distribution on BA⊗ BB. If we apply φ to both
sides of the above equations we find in the Bell table (6.2), that the sum of
the right hand sides must add up to 1

2 , 1
8 , 1

8 , 1
8 , respectively.

However, adding the last three equations we obtain

3
8
=φ(a0:0∧ a1:0∧ b0:0∧ b1:0)

+φ(a0:0∧ a1:1∧ b0:0∧ b1:0)

+φ(a0:0∧ a1:0∧ b0:0∧ b1:1)

+φ(a0:0∧ a1:1∧ b0:0∧ b1:1)

+φ(other terms),
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but the first four terms already add up to 1
2 by the first equation (?) above,

and since φ takes values in [0, 1], this cannot be.

This proof reveals more. Suppose we wish to know whether a table
on EA ⊗ EB factors through some finite Boolean algebra B. Then, since the
injection of the atoms in EA⊗ EB can be written as a join of atoms in B, and
the table dictates the value on this injection, the question of factorization
reduces to a system of linear equations. The corresponding matrix to these
equations is what is known as the incidence matrix in [2].

8.4 Generalization of the Bell 2,2,2 type

Finally, we wish to give some insight into more general settings than the
Bell (2, 2, 2) scenario where we have two observers, each with two mea-
surement settings, which each have two outcomes. More generally we
consider Bell (k, l, m) settings where we have k observers, called A1, . . . , Ak

(Alice is common name among scientists). Each Ai has l measurement set-
tings ai

j, j = 1, . . . , l and each of these settings has m outcomes ai
j:o, o =

1, . . . m. The assumptions that every observer has an equal amount of mea-
surement settings is for notational convenience. The assumption on out-
comes can always be fulfilled by adding outcomes which never occur. This
way we can, without loss of generality, consider a fixed outcome set O. For
each setting, the powerset P(O) is now an algebra describing that setting.
For X ⊂ O we obtain elements ai

j:X :=
∨

x∈X ai
j:x, which we can think of as

course grained outcomes. The coproduct over these algebras gives an alge-
bra for Ai, EAi :=

⊕P(O). By the property of the coproduct, a morphism
EAi → [0, 1] is equivalent to a probability distribution for each measure-
ment setting. The tensor product over the algebras E :=

⊗
i EAi then gives

us our desired algebra.

An atom in this algebra is of the form a1
α:o1

α ∧ . . . ak
ζ :ok

ζ and we have
an embedding into the boolean tensor product of the free Boolean com-
pletions of the EAi as before, giving classical realizations for a probability
distribution E→ [0, 1].
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8.5 Sheaf theoretic characterization

In the previous sections we have developed an effect algebraic framework
to study scenarios in non-locality and contextuality. In Section 7.3 we
showed that effect algebras embed in the presheaf category [F, Set]. More-
over, in a paper by Abramsky and Brandenburger ([2]) a framework for
non-locality and contextuality based on presheaves over measurements is
developed. Here we describe our effect algebraic framework in terms of
presheaves. Then in Section 8.6 we will investigate the relation between
these two approaches. To this end, we first introduce some categorical no-
tions related to presheaves, which are best described in covariant form for
our purposes.

Definition 8.5.1. Let c be an object of a category C. A sieve on c is a set of
morphisms with common domain, S ⊆ { f | f : c→ d} that is closed under
post-composition, i.e., f ∈ S =⇒ g f ∈ S.

Definition 8.5.2. Let S be a sieve on an object c ∈ C and let F : C → Set
be a functor. A collection of elements (x f ) f∈S, with x f ∈ F(d) whenever
f : c → d, is called a matching family for S in F if for f , f ′ ∈ S and g, g′

morphisms such that g ◦ f = g′ ◦ f ′, we have F(g)(x f ) = F(g′)(x f ′). That
is, if

d
g

��
c

f ′ ��

f
??

e

d′
g′

??

commutes, then

F(d) 3 x f
�

F(g)

))
F(e) 3 F(g)(x f ) = F(g′)(x f ′)

F(d′) 3 x f ′

* F(g′)

55

An amalgamation for a matching family (x f ) f∈S is an element x ∈ F(c)
such that x f = F( f )(x).
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Sieves can equivalently be described as subfunctors of the Hom-functor.
For a sieve S on an object c ∈ C, define the functor S : C → Set as fol-
lows: for an object d, let S(d) := { f : c → d | f ∈ S} ⊂ Hom(c, d),
be the subset of morphisms which are in the sieve S and for a morphism
g : a → b, let S(g) : S(a) → S(b) be the map which post-composes with g,
i.e., S(g)(h) = g ◦ h, which indeed is in S(b) because S is a sieve. In a sim-
ilar vain, compatible families are natural transformations S → F. Indeed,
the maps S(d) 3 f 7→ x f ∈ F(d) are the components of this transformation.
For a morphisms g : d→ e we then have F(g)x f = xg f , so that if g f = g′ f ′

we F(g)x f = xg f = xg′ f ′ = F(g′)x f ′ . Finally, a matching family has an
amalgamation if the corresponding natural transformation factorizes via
the Hom functor S ↪→ Hom(c,−). The amalgamation is then the element
corresponding to the identity on c.

Now any set of morphisms { fi}i∈I with common domain c generates
a sieve S by closure under post-composition. This allows us to make a
connection between tables and matching families. Indeed, consider the
family of functions πi,j : {0, 1}4 → {0, 1}2, where i, j ∈ {0, 1}, given by

πi,j(oa0 , oa1 , ob0 , ob1) = (oai , obj
) (8.21)

We show that there is a correspondence between matching families for
the sieve generated by (8.21) in T(X) and X-tables. In particular, when
X = [0, 1], we find that tables correspond to matching families in the dis-
tribution functor.

Proposition 8.5.3. Let X be a PPCM (e.g., [0, 1]) and let T(X) : F → Set
be the presheaf of tests on X. Then there is a bijective correspondence
between X-tables τ and matching families (di,j)i,j∈{0,1} in T(X)({0, 1}2) for
{πi,j | i, j ∈ {0, 1}}, given by τ(ai :o, bj:o′) = di,j(o, o′).

Moreover, an X-table has a classical realization if and only if the corre-
sponding matching family has an amalgamation.

Proof. Let di,j be such a matching family and let τ(ai :o, bj:o′) = di,j(o, o′).
Then, because di,j is a test we have

∑
o,o′

τ(ai :o, bj:o′) = ∑
o,o′

di,j(o, o′) = 1

To show no-signalling, we first consider π0,0 and π0,1. Define maps
g0,0, g0,1 : {0, 1}2 → {0, 1} by

g0,0 = g0,1 :

{
(0, 0), (0, 1) 7→ 0
(1, 0), (1, 1) 7→ 1
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Then g0,0 ◦ π0,0 = g0,1 ◦ π0,1, so compatibility of the matching family im-
plies

T(X)(g0,0)(d0,0) = T(X)(g0,1)(d0,1)

Writing out these terms gives

T(X)(g0,0)(d0,0) =

 >
(o,o′)∈g0,0

−1(i)

d0,0(o, o′)


i=0,1

(8.22)

= (d0,0(0, 0) + d0,0(0, 1), d0,0(1, 0) + d0,0(1, 1))

and

T(X)(g0,1)(d0,1) =

 >
(o,o′)∈g0,1

−1(i)

d0,1(o, o′)


i=0,1

= (d0,1(0, 0) + d0,1(0, 1), d0,1(1, 0) + d0,1(1, 1))

Equality of the first entries of these tests then gives

τ(a0:0, b0:0) + τ(a0:0, b0:1) = d0,0(0, 0) + d0,0(0, 1)

= d0,1(0, 0) + d0,1(0, 1)

= τ(a0:0, b1:0) + τ(a0:0, b1:1)

The other no-signalling conditions follow similarly.

For the converse, let τ be an X-table and define di,j ∈ T(X)({0, 1}4)

via di,j(o, o′) = τ(ai :o, bj:o′). Let g, g′ : {0, 1}2 → n be functions such that
g ◦ πi,j = g′ ◦ πk,l .

(oai , obk
)

�

g
((

(oa0 , oa1 , ob0 , ob1)
�πi,joo � πk,l // (oak , obl

)-

g′
vv

=

(8.23)

where = is the corresponding image in n.

We can then deduce, for example for π0,0 and π0,1, that

g(0, 0) = g ◦ π0,0(0, 0, 0, 1) = g′ ◦ π0,1(0, 0, 0, 1) = g′(0, 1)

Doing the same for (0, 0, 0, 0) gives g(0, 0) = g′(0, 0) and starting from
(0, 0, 1, 0) we find that g(0, 1) = g′(0, 0). This means that if (0, 0) ∈ g−1(i),
then also (0, 1) ∈ g−1(i). Similarly we find g(1, 0) = g(1, 1) = g′(1, 0) =
g′(1, 1).
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We wish to show that T(X)(g)(d0,0) = T(X)(g′)(d0,1), but this is clear
since the terms in these expressions always come two-by-two and by a
calculation similar to (8.22) are precisely the no-signalling conditions that
hold for τ. This works for every pair (i, j), (k, l) where either i = k or j = l.
If (i, j) = (k, l) the result is trivial and if i 6= k and j 6= l the result follows
from the fact that if h ◦ πi,j = h′ ◦ πk,l then h and h′ are constant.

Finally, note that a distribution on the classical sample space {0, 1}4 is
an element of (T(X))({0, 1}4), so an amalgamation of a matching family
corresponds to a classical realization.

Relating to the Bell table (6.2), we find it induces a matching family
for the sieve Sπ generated by the morphisms (πi,j)i,j in the distributions
functor D = T[0, 1], which does not have an amalgamation.

Sπ

%%

τ // D

F({0, 1}4,−)

|

99 (8.24)

We can relate this non-factorization result to the result of Proposition
8.3.7. Applying the test functor T : EA → [F, Set], which is full and faith-
ful from effect algebras (Corollary 7.5.4), to diagram (8.20), we obtain the
following non-factoring diagram

T(EA ⊗ EB)

''

Tτ // T([0, 1])

T(BA ⊗ BB)

|

88
(8.25)

We then find that in fact diagrams (8.24) and (8.25) are isomorphic. In-
deed, T([0, 1]) ∼= D and T(BA ⊗ BB) ∼= T(P({0, 1}4)) ∼= F({0, 1}4,−) by
commutation of diagram (7.12). It remains to show that T(EA ⊗ EB) is iso-
morphic to the sieve Sπ generated by the maps (πi,j)i,j. For this, we identify
{0, 1}4 with the atoms of BA ⊗ BB. The maps πi,j can then be seen as ways
to make atoms of EA ⊗ EB from those of BA ⊗ BB. A morphism in Sπ(n) is
a composite g ◦ πi,j for some g : {0, 1}2 → n and hence corresponds to a
test in T(EA ⊗ EB)(n).
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8.6 Relation to the work of Abramsky and Bran-
denburger

Abramsky and Brandenburger [2] phrase Bell’s paradox in terms of com-
patible local sections which have no global section. In order to relate our
statement with theirs, we start by recalling their framework and some gen-
eral notation.

Fix a set X, and consider the presheaf category [P(X)op, Set], where
P(X)op is ordered by reverse inclusion, i.e., there is a (unique) morphism
U → V if and only if V ⊂ U.

Definition 8.6.1. For a presheaf F : P(X)op → Set, an element s ∈ F(U) is
called a section for F over U. A section over X is called a global section.

If s ∈ F(U) is a section and V ⊂ U, we obtain a section by restriction:

s|V := F(V ⊂ U)s (8.26)

Two section s1 over U1 and s2 over U2 are compatible if they coincide on
their overlap, that is, when

s1|U1∩U2 = s2|u1∩U2 (8.27)

We say that a compatible family of sections si over Ui has a global section
if there exists a global section s which restricts to si for all inclusions of the
ui in X.

Abramsky and Brandenburger work over the set X of measurements.
They also fix a set O of outcomes and a familyM of subsets of X, called a
measurement cover, subject to the following conditions:

• M covers X, i.e., for all x ∈ X, there exists C ∈ M with x ∈ C.

• M is an anti-chain, i.e., for C, C′ ∈ M, if C ⊂ C′ then C = C′.

The measurement cover represents the set of maximal compatible mea-
surements. For example, in the Bell scenario we have X = {a0, a1, b0, b1},
O = {0, 1} andM = {{ai, bj} | i, j ∈ {0, 1}}.

Now if U ⊂ X is a set of measurements, then an event is an assignment
of outcomes to the measurements in U. That is, an elements s ∈ OU . Such
an element is therefore a section of the event presheaf O(−) : P(X)op → Set,
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U 7→ OU . Interest now lies in distributions over these sections, so consider
the presheaf D(O(−)). While compatible sections over the event presheaf
always have global section, Bell’s paradox says we can find compatible
local sections sC over C ∈ M for the distributions over events, D(O(−)),
which do not have a global section.

The first step in relating this framework to our framework is to rephrase
the sheaf theoretic analysis of Abramsky and Brandenburger in terms of
a non-factorization in the presheaf category [P(X)op, Set]. The inclusion
of the measurement cover M in X gives a set of morphisms X → C in
P(X)op, which generate a sieve SM. A matching family for SM in D(O(−))
then corresponds to a compatible family of sections of distributions over
M and the existence of a global section corresponds to the existence of an
amalgamation.

Following the discussion below Definition 8.5.2, we obtain a preseaf for
the measurement cover SM, which satisfies SM(U) = {∗} if U ⊂ C ∈ M
and SM(U) = ∅ otherwise. It is a subfunctor of 1 := HomP(X)op(X,−),
satisfying 1(U) = {∗} for all subsets U ⊂ X. Here {∗} is a one element set
representing the unique morphism corresponding to an inclusion. More-
over, the matching family, or compatible sections, becomes a natural trans-
formation SM → D(O(−)). Hence we may represent the non-existence of
a global section as the non-factorization of the following diagram:

SM

��

// D(O(−))

1

|

;;
(8.28)

8.6.1 Transferring the paradox to other categories via ad-
junctions

We now have several non-factoring diagrams in different categories, which
describe some local behaviour which is incompatible from a global point
of view. Our next step is to relate these diagrams. Adjunctions allow us
to transport non-factoring diagrams to other categories (Lemma 8.6.2). We
construct an adjunction between EA and [P(X)op, Set] which will link the
diagrams (8.28) and (8.20).

Lemma 8.6.2. Let C and D be categories and let R : D → C be a functor
with a left adjoint L : C → D. Let j : X → Y be a morphism in C, and
let f : L(X) → A be a morphism in D and denote by f ] : X → R(A) the
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transpose of f . Then f factors through L(j) if and only if f ] factors through
j.

L(X)

L(j) &&

f // A

L(Y)

|
:: ⇔ X

j ##

f ] // R(A)

Y
|
99

(8.29)

Proof. First suppose that there exists g : L(Y) → A such that f factors
through L(j), i.e., f = g ◦ L(j). Then by naturality of the isomorphism
Hom(L(Y), A) ∼= Hom(Y, R(A)), we have (g ◦ L(j))] = g] ◦ j. So then
f ] = (g ◦ L(j))] = g] ◦ j, so f ] factors though j.

Conversely, suppose h : Y → R(A) is such that f ] = h ◦ j. Then, again
by naturality, (h ◦ j)] = h] ◦ L(j), where (−)] is the inverse of (−)]. So now
f = f ]] = (h ◦ j)] = h] ◦ L(j).

A special case of this lemma, applied to R = T, the test functor, with
its left adjoint L (Theorem 7.5.2), allows us to transfers the Bell paradox be-
tween effect algebras and the presheaf category [F, Set]. Using Proposition
7.5.5, we may rewrite diagram (8.20) and use the transportation result:

LT(EA ⊗ EB)

LT(i)
��

LTt // [0, 1]

LT(BA ⊗ BB)

|

66 ⇔ T(EA ⊗ EB)

Ti
��

(LTt)] // T([0, 1])

T(BA ⊗ BB)

|

55

(8.30)

To fully relate the effect algebraic framework to that of Abramsky and
Brandenberger, we continue by creating an adjunction between the presheaf
categories [F, Set] and [P(X)op, Set]. For this, we consider the slice cate-
gory:

Definition 8.6.3. Let Y be an object of a category C, then the slice category
C/Y has as objects pairs (C, f ) where C is an object of C and f : C → Y is a
morphism in C. A morphism h : (C, f ) → (D, g) is a morphism h : C → D
in C such that f = g ◦ h.

We recall the following facts about slice categories:
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Lemma 8.6.4. • The slice category C/Y always has a terminal object,
(Y, idY).

• If C has products, then the projection map ΣY : C/Y → C, with
ΣY(C, f ) = C, has a right adjoint ∆Y : C → C/Y with ∆Y(C) =
(C×Y, π2 : C×Y → Y).

Proof. Explicitly, the isomorphism Hom(Σ(C, f ), D) ∼= Hom((C, f ), ∆D) is
given by g : C → D corresponds to 〈g, f 〉 : (C, f ) → (D× Y, π2). The rest
is straightforward.

Now suppose some measurement scenario (X, O,M) is given. Using
the adjunction ΣHomF(OX ,−) a ∆HomF(OX ,−) we can rewrite diagram (8.25)
in the slice category [F, Set]/Hom(OX ,−) as:

(T(EA ⊗ EB), Ti)
,,

〈Tt,Ti〉 // (D× Hom(OX ,−), π2)

(Hom(OX ,−), id)
| 22

(8.31)
Since (Hom(OX ,−), id) is terminal, we can phrase Bell’s paradox as “the
local sections 〈Tt, Ti〉 : (T(EA ⊗ EB), Ti) → (D × Hom(OX ,−), π2) have no
global section”.

The following is a general result about slices by representable presheaves,
i.e., Hom-functors:

Lemma 8.6.5. Let C be a category and c an object in C. Then there is an
equivalence [Cop, Set]/HomC(−, d) ' [(C/d)op, Set].

Proof. See for example [59, Prop. A.1.1.7, Lemma C2.2.17]

In particular, this implies an equivalence

[F, Set]/Hom(OX ,−) ' [(Fop/OX)op, Set] (8.32)

We complete the chain of adjunctions by defining a final adjunction
between [F, Set] and [P(X)op, Set] by the following general result:

Lemma 8.6.6. Let F : C → D be a functor between small categories. Then
composition with F defines a functor F∗ : [D, Set]→ [C, Set]. Furthermore,
F∗ has a left adjoint F!.



164 CHAPTER 8. BACK TO BELL

Proof. See Example A.4.1.4 in [59]. The idea is that F is equivalently given
by a functor Fop : Cop → Dop. The composite y ◦ Fop : Cop → [D, Set]
is now a functor into a cocomplete category, so F! given by the left Kan
extension as in Section 7.4.

In our case, we obtain an adjoint pair I! a I∗, where the functor I∗ :
[(Fop/OX)op, Set] → [P(X)op, Set] is induced by precomposing with the
functor I : P(X) → Fop/OX . This functor I takes a subset U ⊆ X to
the pair (OU , OiU : OX → OU) where iU : U → X is the set inclusion
function. We can now relate diagram (8.28) to our diagram (8.20) by using
an adjunction between EA and SetP(X)op

. We construct this adjunction as
the following composite:

EA
T
>
//
[F, Set]

L
oo

∆Hom(OX ,−)

>
//
[F, Set]/Hom(OX ,−)

ΣHom(OX ,−)

oo

' [(Fop/OX)op, Set]
I∗

>
//
[P(X)op, Set]

I!

oo (8.33)

Proposition 8.6.7. The right adjoint in (8.33) takes the effect algebra [0, 1]
to the presheaf D(O(−)) : SetP(X)op

. The left adjoint in (8.33) takes the
measurement cover SM ⊂ 1 to the effect algebra EA ⊗ EB ⊂ BA ⊗ BB.

Proof. Denote the left adjoint of the chain of adjunctions by L and the right
adjoint by R. Reading the chain of adjunctions from left to right, starting
with an effect algebra A gives the presheaf RA = T(A)(O(−)) : P(X)op →
Set. A special case gives R[0, 1] = D(O(−)).

For any effect algebra X, we then have

EA(LSM, X) ∼= SetP(X)op
(SM, RX) = SetP(X)op

(SM, T(X)(O(−)))

If we can now show SetP(X)op
(SM, T(X)(O(−))) ∼= SetP(X)op

(EA ⊗ EB, X),
natural in X, we can conclude that LSM ∼= EA ⊗ EB, by uniqueness of left
adjoints.

By Proposition 8.2.2, it suffices to show that SetP(X)op
(SM, T(X)(O(−)))

is in natural bijection with X-tables. In other words, it suffices that a match-
ing family (dai ,bj

)i,j for SM in (T(X))(O(−)) is the same thing as an X-table.
This follows from expanding the definition of matching family. Note that
each dai ,bj

is by definition a four-tuple (xai :0,bj :0, xai :0,bj :1, xai :1,bj :0, xai :1,bj :1)
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such that >o,o′ xai :o,bj :o′ = 1. We define a table by t(ai :o, bj:o′) = (xai :o,bj :o′).
The first condition on tables amounts to requiring that each 4-tuple is a test,
and the second condition on tables amounts to the compatibility condition
for matching families.

Corollary 8.6.8. The adjunction (8.33) relates the effect algebra formulation
of Bell’s paradox (diagram (8.20)), with the formulation of Abramsky and
Brandenburger (8.28).



Chapter 9

Other paradoxes

We have extensively covered the Bell paradox in effect algebras and the
relation to formulations in other frameworks. We now see how other para-
doxes in contextuality can be explained by effect algebras and study the
relation to other frameworks.

9.1 Different values in tables: paradoxes of pos-
sibility

In this section we move from probability to possibility. This originated
from [42]. Let n be a finite set, considered as a sample space; a possibil-
ity distribution on n is a non-empty subset S of n. The elements of S are
the events of n which are ‘possible’. Equivalently, a possibility distribu-
tion is a function p : n → {0, 1} such that at least one of the values is
assigned 1, meaning that it is possible. We can move away from the clas-
sical situation by replacing the set n by an effect algebra E. We say that
a possibility distribution on an effect algebra E is a morphism of PPCMs
p : E→ ({0, 1},∨, 0, 1) into the pointed monoid (Definition 7.2.1).

Just as in the probabilistic case, we can make a second generalization
(Section 7.6) by using the Yoneda lemma to conclude that a possibility dis-
tribution on n is a natural transformation F(n,−)→ P+, where P+ : F→
Set is the non-empty powerset functor. We can therefore say that a pos-
sibility distribution on a functor F : F → Set is a natural transformation

166
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F → P+. These two approaches are again related by the test funcor (Defi-
nition 7.5.1) because T({0, 1},∨, 0, 1) ∼= P+.

Possibilities are related to probabilities by the PPCM morphism s :
([0, 1],+, 0, 1) → ({0, 1},∨, 0, 1) given by s(0) = 0, s(x) = 1 for x 6= 0.
This takes a probability distribution to its support, and by composing this
with a probability distribution we get a possibility distribution.

Following the work of Hardy [49], we consider the following possibilis-
tic table

τ : {a0:0, a0:1, a1:0, a1:1} × {b0:0, b0:1, b1:0, b1:1} → ({0, 1},∨, 0, 1)

0, 0 0, 1 1, 0 1, 1
a0b0 1 1 1 1
a0b1 0 1 1 1
a1b0 0 1 1 1
a1b1 1 1 1 0

(9.1)

This has a quantum realization but no classical realization. A quan-
tum realization is found by letting a0, b0 be measurements in the |+〉 , |−〉
basis and letting a1, b1 be measurements in the |0〉 , |1〉 basis on the state
|ψ〉 = 1√

3
(|01〉+ |10〉+ |00〉). The non-existence of a classical realization

follows form the fact that a0:0∧ b0:0 is possible. Then since a0:0∧ b1:0 and
a1:0 ∧ b:1 are impossible, it must follow that a1: ∧ b1:1 is possible, which
is a contradiction. That is to say, the Boolean atoms comprising a0:0 ∧ b0:0
are all contained in the ones of the impossible events.

We can again relate our effect algebraic formulation of this paradox
with the analysis of Abramsky and Brandenburger [2], by using the chain
of adjunctions in (8.33).

Corollary 9.1.1. The right adjoint of the composite adjunction (8.33) takes
the effect algebra ({0, 1},∨, 0, 1) to the presheafP+(O(−)) : P(X)op → Set.
Thus the adjunction (8.33) relates the effect algebra formulation of Hardy’s
paradox with the formulation of Abramsky and Brandenburger.

9.1.1 The Kochen-Specker theorem

In Section 6.2 we explained the Kochen-Specker theorem by showing there
are measurements which contradict a non-contextual deterministic theory
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of quantum mechanics. Here we will see how this statement can be put in
an effect algebraic framework and how it can be related to a sheaf theoretic
approach by Hamilton, Isham and Butterfield [48].

Recall first that the projections, Proj(H), on a Hilbert space H form an
effect algebra (Example 7.2.5). The operators Pi := 1− S2

i from Section 6.2
are projections in Proj(C3) which add to unity for any basis. That is, for any
basis x, y, z the set {Px, Py, Pz} is a test. Now any effect algebra morphism
from Proj(C3) to the effect algebra ({0, 1}, >, 0, 1) would, by restriction,
precisely give an assignment as in the Kochen-Specker theorem and thus
does not exist. Hence we find:

There is no effect algebra morphism Proj(C3)→ {0, 1}.

From this we can obtain the full statement of the Kochen-Specker theo-
rem, using effect algebras:

Corollary 9.1.2 (Kochen-Specker). There is no effect algebra morphism
Proj(H)→ {0, 1} if dim H ≥ 3.

Proof. Let H be any Hilbert space with dim H ≥ 3 and suppose there is a
morphism v : Proj(H) → {0, 1}. Let p be a 1-dimensional projection with
v(p) = 1. Consider two 1-dimensional projections q, q′ such that p + q + q′

is the identity on some 3-dimensional subspace H′. Now let p1, p2, p3 be
any set of pairwise orthogonal projections in H′. Then v(p1) + v(p2) +
v(p3) = v(p1 + p2 + p3) = v(1H′) = 1, so one of p1, p2, p3 is assigned
value 1. Hence v restricts to a morphism Proj(H′) → {0, 1} which is a
contradiction.

A Kochen-Specker system such as in [92] can then be given as a sub-effect
algebra E of Proj(H), such that there is no effect algebra morphism E →
{0, 1}.

We now consider the Kochen-Specker theorem in another light, in terms
of presheaves on the poset C(B(H)) of commutative sub-algebras of B(H)
[48]. For this, we first need some background on operator algebras. Let
CC∗f be the category of finite dimensional commutative C∗-algebras and
∗-homomorphisms. The spectrum of a an algebra A ∈ CC∗f is the space of
non-zero ∗-homomorphisms A→ C, also called characters. That is

Spec(A) := {φ ∈ Hom(A, C) | φ 6= 0} (9.2)
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Usually, the spectrum of an algebra comes equipped with a topology, how-
ever, in the finite dimensional case it is discrete, so we consider the spec-
trum as a set. Moreover, when A ∼= Cn, Spec(A) ∼= n. The characters are
then precisely the point valuations φi(a1, . . . , an) 7→ ai. We extend Spec to
a functor Spec : CC∗f → Fop, by Spec( f : A → B)(φ ∈ Spec(B)) = φ ◦ f ∈
Spec(A). This functor has a left adjoint C(−) a Spec which sends a finite
set n to the space of functions on n, Cn := {φ : n → C}. For a a map
f : n → m we obtain the ∗-homomorphism C f : Cm → Cn sending φ to
φ ◦ f . By restricted Gelfand duality we have:

Proposition 9.1.3. The functors C(−) a Spec form an adjunction and con-
stitute an equivalence of categories CC∗f ' Fop.

Now let B(H) be the (non-commutative) C∗-algebra of bounded opera-
tors on a finite dimensional Hilbert space H, it generally has many commu-
tative sub-algebras. Let C(B(H)) be the set of commutative sub-algebras
of A. This becomes a poset, and therefore a category, under inclusion.
We consider the the spectrum of each commutative sub-algebra of B(H).
Whenever A ⊂ B are commutative sub-algebras of B(H), and φ a character
on B, we obtain a character φ|A on A by restriction. Hence we obtain the
spectral presheaf, which we also call Spec ∈ [C(B(H))op, Set],

Now if p is a projection in some commutative sub-algebra A of B(H)
and φ is a character in Spec(A), we have φ(p) = φ(pp) = φ(p)φ(p). Hence
any projection is assigned a value in {0, 1} by a character.

A natural transformation 1→ Spec, from the terminal presheaf 1, which
assigns a singleton set to every commutative sub-algebra, to the spectral
presheaf then assigns to every commutative sub-algebra a particular char-
acter. Moreover, naturality implies this assignment is independent of the
surrounding sub-algebra. Hence a natural transformation 1 → Spec is a
global assignment of outcomes for projections, which therefore does not
exist.

We can thus phrase the Kochen-Specker theorem as follows ([48]):

Theorem 9.1.4. There is no natural transformation 1→ Spec in C(B(H)) if
dim H ≥ 3.

9.1.2 Transporting the paradox to different categories

As with the Bell paradox, we can use adjunctions to transport the state-
ment of the Kochen-Specker theorem to other categories. First of all, by
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Corollary 7.5.4, we can write the Kochen-Specker theorem in the presheaf
category [F, Set] as:

There is no natural transformation T(Proj(H))→ T({0, 1}) if dim H ≥ 3.

By Gelfand duality (Proposition 9.1.3), we obtain an functor Spec∗ :
[F, Set] → [CC∗f

op, Set]. Now an n-test in the effect algebra Proj(H) can
be identified with a ∗-homomorphism Cn → B(H). Indeed, the elements
χi : n→ C, χi(j) = δi,j are projections and sum to unity, hence their image
under a ∗-homomorphism is a test in Proj(H). Similarly, if (p1, . . . , pn) is
an n-test, define a map φ as extension of φ(χi) = pi. We thus find

Lemma 9.1.5. T(Proj(H)) ∼= C∗(C−, B(H)).

On the other hand, T({0, 1})(n) ∼= n. Under the equivalence of Propo-
sition 9.1.3 we have presheaves T(Proj(H)), T({0, 1}) ∈ SetCC∗f

op
with

T(Proj(H))(A) = C∗(A, B(H)) T({0, 1})(A) = Spec(A)

Thus the Kochen-Specker paradox can be stated as:

There is no natural transformation C∗(−, B(H))→ Spec in SetCC∗f
op

.
(9.3)

(See also [78], Theorem 1.2.)

If a functor R : SetCC∗f
op
→ C has a left adjoint L : C → SetCC∗f

op
and

L(X) = C∗(−, B(H)) then the paradox says there is no morphism X →
R(Spec) in C. We transport this using the following composite adjunction,
similar to (8.33).

SetCC∗f
op

∆C∗(−,B(H))

>
//

SetCC∗f
op

/C∗(−, B(H))
ΣC∗(−,B(H))

oo

' Set(CC∗f ↓B(H))op
J∗

>
//
SetC(B(H))op

J!

oo (9.4)

The first adjunction between slice categories is as in Section 8.6.1. The
middle equivalence is standard (e.g. [59, Prop. A.1.1.7]); here (CC∗f ↓ B(H))
is the category whose objects are pairs (A, f : A→ B(H)) where A is a
finite-dimensional commutative C*-algebra and f is a *-homomorphism.
The adjunction J! a J∗ is induced by the evident embedding J : C(B(H))→
(CC∗f ↓ B(H)), where a commutative C∗-sub-algebra A of B(H) is mapped
to (A ↪→ B(H)). We then have
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Proposition 9.1.6. The right adjoint of (9.4) takes the spectral presheaf on
CC∗f to the spectral presheaf on C(B(H)). The left adjoint of the compos-
ite (9.4) takes the terminal presheaf on C(B(H)) to the presheaf C∗(−, B(H))
on CC∗f .

Proof. Let K : C(B(H)) → CC∗f be the inclusion functor. Reading the ad-
junction from left to right sends a presheaf F on CC∗f to F ◦ K on C(B(H)).
In particular, the spectral presheaf gets mapped to the spectral presheaf.

To show the second half of the statement we show, similar to Proposi-
tion 8.6.7, that natural transformations σ : 1 → G ◦ K are in natural corre-
spondence to natural transformations α : C∗(−, B(H))→ G. This bijection
is given as follows: given σ : 1 → G ◦ K, define α : C∗(−, B(H)) → G as
αA( f ) = σf (A)(∗) and given α : C∗(−, B(H))→ G, define σ : 1→ G ◦ K as
σA(∗) = αA(iA) where iA : A ↪→ B(H).

Corollary 9.1.7. The paradox (9.3) is equivalent to the statement of [48]:
the spectral presheaf has no global section.

9.2 Test spaces

In this section we want to consider another approach to non-locality and
contextuality via test spaces. However, test spaces come in different guises
in the literature. Here we want to present a small overview of these differ-
ent approaches to test spaces and make a link with effect algebras. Cur-
rently, the following definition, which comes from [35], is probably the
most common.

Definition 9.2.1 (Test space). A test space (X, Σ) consists of a set X together
with a set of subsets Σ ⊂ 2X such that the members of Σ cover X, i.e.,⋃

T∈Σ T = X. A probability measure on a test space (X, Σ) is a function
µ : X → R≥0 such that ∑x∈T µ(x) = 1 for every test T ∈ Σ.

More details about these test spaces can be found in [35]. The version
of test spaces we will use is more general in the sense that tests can include
multiple instances of the same element. This will be comparable to how
it might be possible to add an element in an effect algebra to itself. The
following definitions are from [44] and [45].

Definition 9.2.2. An effect test space (X, T ) consists of a set X and a collec-
tion T ⊂NX such that
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• For any x ∈ X there exists some t ∈ T such that t(x) 6= 0.

• If s, t ∈ T with s(x) ≤ t(x) for all x ∈ X, then s = t.

An important notion in the theory of test spaces is that of perspectivity.

Definition 9.2.3. Given an effect test space (X, T ), any function f ≤ t ∈ T
is called an event. Two events f , g are orthogonal if f + g is again an event
and complementary if f + g ∈ T . Two events f , g are perspective if there
exists an event h such that f , h and g, h are complementary. We write f ≈ g
if f and g are perspective.

Definition 9.2.4. An effect test space (X, T ) is algebraic if every t ∈ T has
finite support and if for events f , g, h, if f ≈ g and h + f ∈ T then h +
g ∈ T . That is to say, if two events share a complement, they share all
complements.

Let (X, T ) and (Y,S) be algebraic effect test spaces. Any (partial) func-
tion ψ : X → Y defines a function ψ̂ : { f ∈ NX | f has finite support} →
NY by ψ̂( f )(y) = ∑{ f (x) | φ(x) = y}. We understand the empty sum
to be zero. In particular, if 1x is the characteristic function of x ∈ X, then
ψ̂(1x)(y) = ∑{1x(x′) | ψ(x′) = y}, which is 1 only if x′ = x, that is,
y = ψ(x), so ψ̂(1x) = 1ψ(x).

We obtain a category AEtest of algebraic effect test spaces whose mor-
phisms (X, T )→ (Y,S) are partial functions ψ : X → Y such that ψ̂(t) ∈ S
if t ∈ T . The reason to consider partial functions becomes clear when we
consider E = 0, the terminal effect algebra, in the adjunction below.

Example 9.2.5. Let I =
(
(0, 1], { f : (0, 1]→N | supp( f ) is finite, ∑x( f (x)) ·

x = 1}
)
. Then I is an algebraic effect test space describing the unit inter-

val. Here (0, 1] is the half-open unit interval, which we need because of
the second point of Definition 9.2.2. Let (X, T ) be any algebraic effect test
space. A morphism µ : (X, T ) → I corresponds to a probability measure
µ̃ on X, where µ̃(x) = 0 if µ(x) is undefined.

By slight modification of the ideas in [45] we now distil an adjunction
between algebraic effect test spaces and effect algebras, which will allow us
to transpose paradoxes. (We note that Jacobs and Mandemaker [56, §3] also
extracted a similar adjunction from [45], but for a modified notion of test
space called ‘test perspective’; we contend that our use of bona fide effect
test spaces and partial maps stands more closely to test space literature.)
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Let f be an event in an algebraic effect space (X, T ). Denote by π( f )
the set π( f ) = {g | g ≈ f } and let Π(X) = {π( f ) | f an event}. In [45]
it is shown that that Π(X) can be given the structure of an effect algebra
in a straightforward way. That is, π( f ) > π(g) = π( f + g) whenever this
makes sense and π( f )⊥ = π(h) if h is a complement of f . We extend Π to
a functor Π : AEtest→ EA by Π(ψ)( f ) = π(ψ̂( f )).
There is also a functor in the other direction, which we denote by S. Let E
be an effect algebra. We obtain an algebraic test space S(E) = (X, T ) where
X = E\{0} and T = { f : X → N | supp( f ) is finite,>x( f (x)) · x = 1}. If
ϕ : E → A is an effect algebra morphism, we obtain an AEtest morphism
S(ϕ) by restricting to E\{0}. Note that I = S([0, 1]) from Example 9.2.5.

Lemma 9.2.6. Let E be an effect algebra. The map φ : E → ΠS(E), e 7→
π(1e) is an isomorphism.

Proof. An inverse to φ is given as follows: let f be an event in ΠS(E), then
f = ∑e f (e)1e. Now φ−1(π( f )) = >e f (e)e. See [45] for details.

Proposition 9.2.7. The functors Π : AEtest → EA and S : EA → AEtest
form an adjoint pair Π a S. The map φ−1 is the counit of this adjunction.

Proof. We want to show Hom(Π(X, T ), E) ∼= Hom((X, T ), S(E)). Given
ϕ : Π(X, T ) → E, define ϕ̄ : (X, T ) → S(E) by ϕ̄(x) = ϕ(π(1x)). Given
ψ : (X, T ) → S(E) define ψ̄ : Π(X, T ) → E by ψ̄(π( f )) = φ−1(π(ψ̂( f ))).
Notice that any event f : X →N can be written as f = ∑x f (x)1x. We then
have

¯̄ϕ(π( f )) = φ−1(π( ˆ̄ϕ( f )))

= φ−1(π( ˆ̄ϕ(∑
x

f (x)1x)))

= φ−1(π(∑
x

f (x)1ϕ̄(x)))

= ∑
x

f (x)ϕ̄(x)

= ∑
x

f (x)ϕ(π(1x))

= ϕ(π( f )),
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and

¯̄ψ(x) = ψ̄(π(1x))

= φ−1(π(ψ̂(1x)))

= φ−1(π(1ψ(x)))

= ψ(x).

In order to show the relation between test spaces and effect algebras,
we take a look at two non-locality scenarios.

9.2.1 Bell scenario

We shall take a look on how to transfer the Bell paradox to test spaces.
It follows from Lemma 9.2.6 and Proposition 9.2.7 that S is fully faithful.
Hence we can easily transfer the Bell paradox by applying S to the non-
factoring triangle as follows:

S(EA ⊗ EB)

''

// S([0, 1])

S(BA ⊗ BB)

|

88

In fact, whenever we have a morphism φ : (X, T ) → (Y,S) such that
Π(φ) : Π(X, T ) → Π(Y,S) is the inclusion i : EA ⊗ EB → BA ⊗ BB, the
method of diagram (8.29) allows us to transfer the paradox to AETest. This
might be relevant as the space S(EA ⊗ EB) is quite involved and we could
find a smaller space.

Example 9.2.8. Consider figure (9.5) below. This is also depicted in [6, Fig.
7], where it is called a hyper-graph, but we understand it as a test space by
identifying vertices and hyper-edges of a graph with points and tests of a
test space. Let Z be the set of points in it and for every line or circle define
a function from Z to N, which sends the points on this line or circle to 1
and the rest to 0. We call the set of these functions Q. Then (Z,Q) is an
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algebraic effect test space.

a1:1∧ b0:0

a1:0∧ b0:0

a0:0∧ b0:1

a0:1∧ b0:1

a1:1∧ b0:1

a1:0∧ b0:1

a0:0∧ b0:0

a0:1∧ b0:0

a1:0∧ b1:1

a1:1∧ b1:1

a0:1∧ b1:0

a0:0∧ b1:0

a1:0∧ b1:0

a1:1∧ b1:0

a0:0∧ b1:1

a0:1∧ b1:1

(9.5)

We have conveniently labelled the points of this space. In the terminology
of non-locality, the circles correspond to fixed measurement settings and
the lines correspond to the no-signalling conditions. Hence we see that
applying the functor Π to this test space gives an effect algebra isomorphic
to EA ⊗ EB. The Bell table thus describes a distribution (Z,Q) → I which
does not factor though the canonical map (Z,Q)→ S(BA ⊗ BB).

N.B. Since the functor Π is not full, we cannot just take any test space
(X, T ) for which Π(X, T ) ∼= BA⊗ BB in order to find a non-factorization of
the Bell scenario. In particular there is no map (Z,Q) → (16, { f }) where
16 is a 16 element set and f : 16→N is the map f (i) = 1 ∀i ∈ 16.

9.2.2 GHZ scenario

The second example we will look at is the GHZ scenario [42]. We will
use the adjunction to explore the scenario from the perspective of both test
spaces and effect algebras. Like the Bell scenario, the GHZ scenario in-
volves separate observers, each with measurement settings and possible
outcomes. But like the Kochen-Specker scenario the ‘paradox’ here is ab-
solute and not probabilistic.
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There are three separate observers, Alice, Bob and Charlie, each with
two measurement settings (x and y) and two possible outcomes (−1 and
+1). The quantum realization of the scenario is as follows. Alice, Bob and
Charlie share a quantum state of the form ΨGHZ = 1√

2
(|↑↑↑> − |↓↓↓>).

They each have the choice to perform the Pauli-x operator, σx, which sends
↑ to ↓ and ↓ to ↑ or Pauli-y operator, σy, which sends ↑ to i· ↓ and ↓ to
−i· ↑. The crux is that certain combinations of Pauli operators have the
GHZ state as an eigenvector. Indeed,

σxσxσxΨGHZ = −ΨGHZ, (9.6)

σxσyσyΨGHZ = ΨGHZ, (9.7)

σyσxσyΨGHZ = ΨGHZ, (9.8)

σyσyσxΨGHZ = ΨGHZ. (9.9)

Now in a local non-contextual setting we should be able to assign eigen-
values, +1 or −1 to the Pauli operators in such a way that it respects the
above products, but this is impossible as we can see from a parity argu-
ment: every Pauli operator occurs twice on the left hand sides, hence the
total product is +1, while the product of the right hand side is −1. By
the methods of [6] we can write down a test space, (XGHZ, TGHZ), for this
scenario (figure (9.10)). The vertices on the circles correspond to the out-
come of measurements whose settings are written inside the circle. The
remaining lines correspond to tests coming from no-signalling.

−+−

+++

+−+

−−−

−−+

+−−

++−

−++

−−+

+−−

−+−

+++

−+−

+++

−−+

+−−

XXX

YYXYXY

XYY

(9.10)
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The statement of the paradox is now that there are no AETest morphisms
from (XGHZ, TGHZ) to the test space ({∗}, {!}) with one point and one test
! : ∗ 7→ 1. Translated to effect algebras this statement becomes: there
is no effect algebra map Π(XGHZ, TGHZ) to ({0, 1}, >), which is exactly a
Kochen-Specker type theorem.



Chapter 10

Conclusion and future work

We have shown how effect algebras give a natural setting to study non-
locality and contextuality. We used this setting to consider the paradoxes
of Bell, Kochen-Specker, GHZ and Hardy. The latter involves possibili-
ties instead of probabilities and requires a more general notion of partial
monoids. Using an embedding of effect algebras in a presheaf category,
we gave two generalizations of probability theory. Using chains of adjunc-
tions we linked our effect algebraic approach to the established presheaf
approach and test space approach.

There are still many open questions regarding non-locality and causal-
ity, varying from how it can be applied to obtain computational speed up
([51], [16]) to fundamental questions as to why quantum mechanics allows
for violations of the Bell inequalities, but not as much as they could be
violated ([91]). Hopefully, this effect algebraic approach can shine some
light on these questions. More explicitly related to this work it is possible
to consider more examples of non-locality and contextuality using effect
algebras, although this will probably be more of a fun little exercise than
give fundamental new insight. A more interesting line would be to con-
sider which effect algebras give rise to contextuality scenarios. While we
took effect algebras as generalized probability spaces, it is fair to say this
category is too large. A direct restriction would be to consider only effect
algebras with a ⊥ a ⇒ a = 0, as it does not make much sense for a mea-
surement setting to be in a context with itself. Likewise, it is interesting to
consider which generalizations of the interval [0, 1] can be used as general-
izations of probabilities. Another interesting line is to consider further the
relation of effect algebraic cohomology with the presheaf cohomology.
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Lekensamenvatting

Wetenschap wordt over het algemeen (terecht) betaald uit publieke gelden.
Daar hoort dan ook tegenover te staan dat de behaalde resultaten voor
datzelfde publiek toegankelijk moeten zijn. Vandaar wil ik hier graag een
kleine samenvatting van het werk in deze thesis geven. Deze thesis bestaat
uit twee delen waar we in ieder deel een aspect binnen de quantumtheorie
bekijken met behulp van categorietheorie. Dit is een deel van de wiskunde
waar we niet zo zeer geı̈nteresseerd zijn in een specifiek wiskundig object
(zoals een groep, verzameling of algebra), maar meer in hoe deze objecten
met elkaar samenhangen. Een categorie bestaat dan ook uit een collec-
tie objecten met voor ieder paar objecten een collectie pijlen (morfismen)
tussen deze objecten die we kunnen samenstellen. Over het algemeen zien
we een object als een systeem wat we voor handen hebben en een morfisme
als een transformatie van dit systeem in een (mogelijk) ander systeem.

Causaliteit

Het eerste deel van deze thesis gaat over causaliteit. Dit is het gegeven dat
een oorzaak voorafgaat aan een gevolg. Iets wat in de toekomst plaatsvind
kan geen invloed hebben op wat in het verleden is gebeurd. We willen dit
bekijken in proces theorieën, bepaalde categorieën (symmetrisch monoidi-
ale) waar we ook systemen kunnen samenstellen om zo composiete syste-
men te bestuderen. Helemaal mooi is dat we deze compositionele struc-
tuur grafisch kunnen weergeven. We tekenen in CQM een systeem A als
een lijn

systeem: A := idA = A
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en een proces als een box tussen dit soort lijnen

proces: f : A→ B := f

B

A

Composiete systemen kunnen we weergeven door lijnen naast elkaar te
tekenen. Het blijkt dat als we nu causaliteit willen vangen in deze cat-
egorische taal, we een manier moeten hebben om een systeem ’weg te
gooien’, of te vergeten. We geven dit aan met dit ’discard’ symbool: . We
zeggen dan dat een proces causaal is als het weggooien van de uitkomst
van een dergelijk proces gelijk is aan het weggooien van de input:

Φ =

Dus als we de directe invloed van een causaal proces vergeten, is het alsof
het proces nooit heeft plaatsgevonden en kan het dus ook geen invloed op
het verleden hebben.

De volgende stap is om te kijken naar processen die als input andere
processen hebben, zogenaamde hogere orde processen. In onderstaand plaatje
is w zo’n proces. Het neemt een (eerste order) afbeelding Φ en maakt er
een nieuwe afbeelding van, die mogelijk tussen andere systeem werkt. We
kunnen dit grafisch als volgt weergeven:

w : Φ 7→
Φ

w

D

A

Zo kunnen we ook kijken naar hogere orde afbeeldingen waar de input
bestaat uit meerdere processen. Dit is belangrijk als we een (quantum)
protocol willen uitvoeren. Een ander belangrijk voorbeeld hier is de quan-
tum switch. Deze neemt als input twee processen Φ en Ψ en een qubit en
geeft als output de samenstelling waar Ψ voor Φ gebeurd of waar Φ voor
Ψ gebeurd, afhankelijk van of de qubit de waarde 0 of 1 heeft. Omdat
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een qubit ook een combinatie van deze waarden kan hebben, kan ook de
uitkomst een mix van de twee causale ordeningen zijn. Dit heeft weer in-
teressante informatietheoretische consequenties.

We willen dat deze hogere order afbeeldingen causaliteit bewaren en
dit blijkt niet het geval wanneer we de ’voordehandliggende’ aanpak ge-
bruiken. In deze thesis lossen we dit probleem op door te beginnen we
met een klasse van categorieën, die we precausaal noemen, waarin hogere
orde processen op een bepaalde manier factoriseren. Zowel de categorie
die gebruikt wordt voor quantum berekeningen als de categorie die ge-
bruikt wordt voor kansrekening zijn precausaal. Er wordt dan een con-
structie gegeven die van een precausale categorie een nieuwe categorie
maakt waar de objecten extra informatie dragen over de causale verbanden
tussen de inputs en outputs van processen. Hierdoor kunnen we bepaalde
klassen van processen classificeren, inclusief de hogere order processen die
causaliteit bewaren.

Contextualiteit

In het tweede deel van deze thesis gebruiken we de categorie van effect al-
gebras om contextualiteit te beschrijven. Op een (quantum) systeem kun-
nen we vaak verschillende metingen doen. Sommige van deze metingen
kunnen we gelijktijdig uitvoeren (ze zijn compatibel) en andere metingen
zijn dat niet. Een maximale verzameling compatibele metingen noemen
we een context. Contextualiteit - of beter gezegd niet-contextualiteit - is
nou de vraag of we meetuitkomsten, of kansverdelingen daarover, kunnen
verklaren zonder dat deze afhangen van de context waarin zo’n meting
plaatsvind. Ter illustratie bekijken we het Bell scenario. Twee observatoren,
Alice en Bob, hebben ieder een meetapparaat met twee standen. A1, A2
voor Alice en B1, B2 voor Bob. Zij kunnen ieder een meting doen aan een
deel van een samengesteld systeem (zoals een verstrengeld deeltjespaar),
maar kunnen slechts een van hun metingen kiezen. De contexten zijn dus
{A1, B1}, {A1, B2}, {A2, B1} en {A2, B2}. Wanneer Alice en Bob een meet-
stand kiezen en een meting doen krijgen ze, met een bepaalde kans, een
uitkomst. Dit levert voor iedere context een kansverdeling over de uitkom-
sten op. Het scenario is nu contextueel als er geen kansverdeling over alle
metingen bestaat die marginaliseert tot de gevonden kansverdelingen over
de contexten. Interessant genoeg komen dit soort kansverdelingen daad-
werkelijk voor in quantum mechanica en dit is de grondslag voor de zoge-
naamde Bell ongelijkheden.
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Effect algebras zijn een bepaald soort algebra waar de optelling partieel
is. Dat wil zeggen dat we niet altijd twee elementen kunnen optellen. Bek-
ijk bijvoorbeeld het interval [0, 1]. We kunnen twee elementen hier alleen
optellen als hun som niet groter is dan 1. Het feit dat sommige metin-
gen wel en andere niet compatibel zijn blijkt precies door deze partiële
structuur gevangen te worden. Dit maakt effect algebras zeer nuttig om
dit soort scenario’s te beschrijven. Bovendien blijken de kansverdelingen
over contexten precies gevangen te worden door effect algebra morfismen
naar het interval. We kunnen contextualiteit dan precies vangen als het
niet bestaan van bepaalde factorisaties van morfismen. We werken dit uit
en bekijken expliciet een aantal belangrijke voorbeelden uit de literatuur.
Tenslotte laten we zien dat we de effect algebra aanpak als het ware kunnen
vertalen naar andere aanpakken door middel van de categorische techniek
van adjuncties.
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