

Quantum

WHO

4 Faculty

Jon Barrett

Aleks Kissinger

Matty Hoban

Sergii Strelchuk

- + 1 URF Fellow
 Sathya Subramanian
- 5 postdocs
- 11 PhD

Quantum

WHAT

Jonathan Barrett	 Quantum information theory Foundations of quantum theory Causality and quantum causal structures 	Aleks Kissinger	 Quantum compilation Fault-tolerant quantum computing Classical simulation and verification of QC (Quantum) causal inference
Matty Hoban	 Quantum information and foundations Quantum non-locality Quantum verification and device-independence 	Sergii Strelchuk	 Quantum algorithms and applications (esp. bioinformatics) Classical simulation for QC Quantum complexity theory, and quantum learning theory.

- ERC/UKRI DeQS project + EPSRC RoarQ
- Wellcome Leap Q4Bio challenge
- Quantum Software Alliance
- Quantum Informatics CDT
- participation in MQTech masters & Oxford Quantum Institute
- open-source quantum compiler development
- Industrial collaborations with Quantinuum, IBM, Cleveland, Foxconn, IONQ, ...

Quantum

WHERE ...Research challenges

Foundational

Quantum foundations & quantum causal structures

Q: What can quantum computing tell us about fundamental physics?

Quantum complexity theory & q. advantage

Q: What kinds of tasks are easy, hard, or impossible with classical or quantum computers?

Practical

Fault-tolerant quantum computing

Q: How do we scale up quantum computers and make them robust to noise?

Quantum algorithms for chemistry & genomics

Q: What are the most important applications for quantum computing in the future?

Al for Quantum

Q: Can AI help us overcome difficult problems in design of quantum hardware and software?