Quantum ## WHO 4 Faculty Jon Barrett Aleks Kissinger Matty Hoban Sergii Strelchuk - + 1 URF Fellow Sathya Subramanian - 5 postdocs - 11 PhD ## Quantum ### WHAT | Jonathan
Barrett | Quantum information theory Foundations of quantum theory Causality and quantum causal structures | Aleks
Kissinger | Quantum compilation Fault-tolerant quantum computing Classical simulation and verification of QC (Quantum) causal inference | |---------------------|---|---------------------|---| | Matty Hoban | Quantum information and foundations Quantum non-locality Quantum verification and device-independence | Sergii
Strelchuk | Quantum algorithms and applications (esp. bioinformatics) Classical simulation for QC Quantum complexity theory, and quantum learning theory. | - ERC/UKRI DeQS project + EPSRC RoarQ - Wellcome Leap Q4Bio challenge - Quantum Software Alliance - Quantum Informatics CDT - participation in MQTech masters & Oxford Quantum Institute - open-source quantum compiler development - Industrial collaborations with Quantinuum, IBM, Cleveland, Foxconn, IONQ, ... ## Quantum # WHERE ...Research challenges ### Foundational #### Quantum foundations & quantum causal structures Q: What can quantum computing tell us about fundamental physics? #### Quantum complexity theory & q. advantage Q: What kinds of tasks are easy, hard, or impossible with classical or quantum computers? ### Practical #### Fault-tolerant quantum computing Q: How do we scale up quantum computers and make them robust to noise? #### Quantum algorithms for chemistry & genomics Q: What are the most important applications for quantum computing in the future? #### Al for Quantum Q: Can AI help us overcome difficult problems in design of quantum hardware and software?