An introduction to Globular

Aleks Kissinger¹ and Jamie Vicary²

¹iCIS, Radboud University Nijmegen ²Department of Computer Science, Oxford

Formal Structures in Computation and Deduction 2016 Porto, Portugal 22 June 2016

Introduction

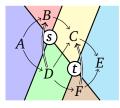
Globular is a web-based proof assistant for higher category theory.

It has many features making it practically useful:

- ► It's a webpage; nothing to download.
- Graphical point-and-click interface.
- Graphical presentation of morphisms/proofs using string diagrams.
- ► Fully formal; it won't let you make a mistake.
- Download images for inclusion in your paper.
- ► Link from your paper directly to the formal online proof.
- ► Share projects privately with collaborators.
- Use existing proofs as lemmas in new proofs.

It's available now at http://globular.science.

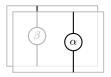
Higher categories


Higher-dimensional categories have morphisms between morphisms.

Examples: categories, functors, and natural transformations; points, paths, and homotopies; algebraic/coalgebraic theories; freely presented (*n*-)categories; ...

Graphical notation

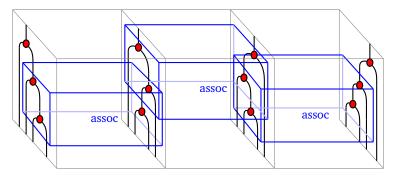
Here is a diagram in the 2d graphical notation:


0-morphisms (objects): regions1-morphisms: wires2-morphisms: nodes

It is dual to the traditional 'pasting diagram' notation.

Subsumes string diagram notation for monoidal categories (1 object case).

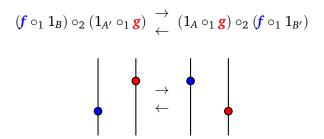
Graphical notation


Extends to higher dimensions, e.g. in 3d:

0-morphisms (objects): volumes1-morphisms: regions2-morphisms: wires3-morphisms: nodes

Paradigm: proofs-as-diagrams

Proofs about *n*-morphisms are diagrams of n + 1 morphisms:

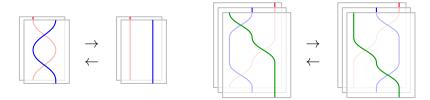

Benefit: Proofs can be viewed and transformed (e.g. refactored, simplified) just like any other diagram!

Formalism: semistrict categories

The *n*-categories we use are *semistrict*. This means:

$$(f \circ g) \circ h = f \circ (g \circ h)$$
 $f \circ 1 = f = 1 \circ f$

but:



Geometry of interchangers

One dimension higher, interchangers look like crossings:

...and coherence (e.g. invertibility, naturality) makes them *act* like crossings:

Time to get Globulizing!

Thanks!

These guys did most of the hard stuff... :)

Jamie Vicary

Krzysztof Bar

Caspar Wylie

http://globular.science