
Quantum Polynomials in the ZXW Calculus

Candidate number: 1071279

Wolfson College

University of Oxford

A thesis submitted for the degree of

Master of Science in Mathematics and the Foundations of Computer

Science

August 2023

Edwin Agnew

Edwin Agnew
Edwin Agnew

Abstract

Quantum pictorialism is an alternative approach to quantum information that re-

places matrices with diagrams that are equipped with formal rewrite rules. Quan-

tum pictorialism brings a new perspective to quantum information and emphasises

compositionality, i.e. the importance of understanding how different processes com-

pose with one another. One example of a new compositional perspective is the

discovery in 2011 that two fundamental quantum states can be used to add and

multiply numbers [1].

In this thesis, I generalise the arithmetic to addition and multiplication of poly-

nomials. More specifically, working in a newly developed diagrammatic formalism

called the ZXW calculus, I prove there is an isomorphism between a universal

class of diagrams called controlled states and the ring of multilinear polynomials.

Along the way, I prove a number of new results in the ZXW calculus, including

the existence of two rings of controlled diagrams. Finally, I apply the isomor-

phism to yield a novel algorithm for entanglement detection and find a number of

connections between quantum complexity theory and algebraic complexity theory.

Acknowledgements

To Bob, for proposing the connection between entanglement and ZXW

arithmetic.

To Aleks, for putting me on to polynomials.

To Richie, for showing me the power of SPS.

To Razin, for pointing out the connection to controlled diagrams.

To Lia, for helping me tie it all together.

To Mary, for some inspiration.

Finally, to my friends from Wolfson and MFoCS for making this year such

a wonderful one.

I thank you all immensely for your support.

1

Table of Contents

1 Introduction 1

1.1 The Way of the Diagram . 2

1.2 Outline . 4

2 Qubits 6

2.1 States . 6

2.2 Dynamics . 7

2.3 Composite Systems . 8

2.4 Measurement . 9

2.5 Quantum Circuits . 10

2.6 Entanglement . 11

2.7 Mixed States . 14

3 Diagrams 16

3.1 Processes . 16

3.1.1 Single Wires . 16

3.1.2 Parallel Wires . 18

3.1.3 Crossing Wires . 20

3.1.4 Bending Wires . 22

3.1.5 Process Theory . 24

3.2 ZXW Calculus . 26

3.2.1 Generators . 27

3.2.2 Basic Rules . 30

3.2.3 Arithmetical Rules . 34

3.2.4 Complete Rule Set . 37

3.2.5 Useful Lemmas . 40

4 Controlled Diagrams 45

2

TABLE OF CONTENTS

4.1 Definitions . 45

4.2 Copy coWs . 50

4.3 Rings . 54

5 Polynomials 61

5.1 Arithmetic in ZXW . 61

5.2 Normal Forms . 65

5.3 Substitution . 75

5.4 Isomorphism . 76

6 Applications 84

6.1 Entanglement Detection . 84

6.1.1 Separability . 84

6.1.2 Mixed States . 87

6.2 Complexity Theory . 89

6.2.1 Algebraic Complexity 91

6.2.2 Proof Complexity . 96

7 Conclusion 102

7.1 Future Directions . 103

Bibliography 108

Appendix A Algebra 114

A.1 Magmas . 114

A.2 Monoids . 115

A.3 Rings . 115

A.3.1 Polynomials . 117

A.4 Vector Spaces . 117

Appendix B Category Theory 120

B.1 Category . 120

3

TABLE OF CONTENTS

B.2 Monoidal Category . 121

B.2.1 Frobenius Algebra . 121

B.3 Symmetric Monoidal Category 122

B.4 Compact Closed Category . 123

4

1 | Introduction

“If I had asked people what they wanted, they would

have said faster horses.”
–Henry Ford

We live at the apex of the age of information. Not only have digital technolo-

gies and communication come to dominate our everyday lives over the last

50 years, the study of information has also flourished in this time. Following

Shannon’s rigourous definition of information in the 1940s [2], information

theory has seeped from mathematics into diverse disciplines from physics to

neuroscience [3] to geography [4]. Indeed, information has become so indis-

pensable in physics that there are now some who claim it to be one of the

most fundamental attributes of the universe [5]. However, taking information

seriously in physics demands some modifications from Shannon’s conception

in order to accommodate the more exotic phenomena of quantum mechanics.

While quantum information theory began as a branch of physics, it was

eventually noticed that many of the weird bugs of nature it was wrestling

with could be exploited for useful gain in computer science. One of the ear-

liest discoveries was BB84 [6] - a key distribution protocol whose security

depended only on the laws of physics. Since then, many more cryptographic

developments have been made [7], as well as discoveries of exponential speed-

ups in communication complexity [8] and several speed-ups in computational

complexity [9], mostly notably a widely believed exponential speed-up in fac-

toring [10]. Engineering progress has tried to keep pace with these theoreti-

cal developments and the past few years have seen a number of small-scale

quantum computers being built, with the promise of genuinely useful devices

being available in the coming decades.

Though there is still much conjecture and uncertainty, what is abundantly

1

1.1. THE WAY OF THE DIAGRAM

clear is that quantum information provides more than just slightly faster

Turing machines. I am confident that we have only begun to scratch the

surface of what qubits have to offer. Unfortunately, dramatic breakthroughs

have seemed to slow since the 90s. What may be hindering progress is how

unintuitive quantum information is compared to its classical counter-part.

The mathematical formalism is clunky1, the philosophical foundations are a

mess and the popular conception is that quantum = unintelligible magic.

1.1 The Way of the Diagram

At its core, quantum computation is simply matrix manipulation. Yet work-

ing directly with these matrices is unintuitive and about as tedious as work-

ing in assembly language. A notable symptom of this is that it took until

1992 - around 70 years after the birth of quantum mechanics - to discover

the quantum teleportation protocol [11]. Even having done so, it is not at

all clear from the circuit diagram (see fig 2.1) that it actually represents

teleportation.

What is missing is not better theorists, but better notation. One potential

source of higher abstraction for quantum information is graphical calculi.

The main results of this dissertation are all proven in a graphical language

called the ZXW-calculus. Other graphical calculi include the ZX, ZW and

ZH calculus, among others. I will refer to them collectively as Z∗-calculi or

simply Z∗. The ZXW-calculus is a very recent innovation but has its roots

in applied category theory [12]. Already, it has found applications quantum

chemistry [13] and quantum machine learning [14]. Other Z∗ calculi have

also found applications in circuit optimisation [15], error correction [16] and

natural language processing [17], among much more.
1Even von Neumann, one of the original proponents of Hilbert spaces, ended up de-

nouncing his own formalism.

2

1.1. THE WAY OF THE DIAGRAM

While neither the matrix formalism nor the diagrammatic formalism is strictly

more useful than the other, I believe the main advantages of working with

Z∗ calculi are that they are more intuitive and logically rigorous. Though

the diagrams are inspired by some quite heavy pure mathematics, working

inside Z∗ only requires learning a small number of rewrite rules. Moreover,

these rewrite rules are complete [18] meaning that all proofs can be done “on

the page”. Meanwhile, formally reasoning about a circuit diagram requires

translating a picture to some matrices, then multiplying these matrices, then

translating them back to a picture.

Nevertheless, one disadvantage of Z∗ is that it is very easy to lose touch

of what is physically realisable. Many of the generators are not unitary

and so have no physical meaning. Moreover, quantum computers can only

implement operations from a fixed gateset. While it is relatively trivial to

translate from a circuit to a Z∗ diagram, it turns out to be #P-hard to

extract a circuit from a generic ZX diagram [19]2.

In summary, the distinction between circuit diagrams and string diagrams is

a little like the distinction between Turing machines and the lambda calculus:

the former has a little more physical meaning, while the latter is a little

cleaner mathematically. However, both are computationally universal so it

ultimately comes down to a matter of taste and application. Each approach

provides a different perspective and the best insights always come from a

synthesis of diverse perspectives. I favour the Z∗ perspective in this work

simply because being younger, it remains more unexplored.
2If you’re not familiar with complexity theory, think of #P-hard as meaning very, very,

hard.

3

1.2. OUTLINE

1.2 Outline

I view this thesis as an attempt at diversifying our mathematical perspectives

on quantum information. In the first half, I give a relatively self-contained

introduction to quantum information. In chapter 1, I motivate this work

and give an outline. In chapter 2, I summarise the standard Dirac formalism

for qubits. In chapter 3, I lay the foundations for graphical reasoning and

introduce a diagrammatic formalism called the ZXW calculus. This is the

most extensive exposition of the ZXW calculus that I am aware of to date

and includes a number of new lemmas.

In the second half of the thesis, I focus on a beautiful connection between

ZXW diagrams and polynomials. In chapter 4, I introduce controlled dia-

grams and prove a number of results, including that controlled states form

a ring. In chapter 5, I build up to the main result of this thesis which is

an isomorphism between controlled states and the ring of multilinear poly-

nomials. This is an exciting link because polynomials are a much older and

better understood mathematical object than qubits so an isomorphism be-

tween them opens up a range of new techniques and perspectives. Though

I discovered this connection independently, I was informed after completing

an early draft of this thesis that it is in fact a known consequence of an folk

isomorphism between tensors and multilinear maps. While the connection is

used implicitly in works like [20], I have been unable to find an explicit proof

for the result, despite contacting specialists in the field. Moreover, I am un-

aware of this isomorphism ever being deployed in quantum information and

so chapter 6 discusses some speculative applications of the qubit-polynomial

isomorphism. These include a novel algorithm for entanglement detection

and some exciting connections with algebraic complexity theory. I end with

some concluding remarks in chapter 7 and offer thoughts on a number of

possible future directions.

4

1.2. OUTLINE

An anonymised code supplement for this thesis can be found at https:

//anonymous.4open.science/r/thesis_files-7C0B/.

5

https://anonymous.4open.science/r/thesis_files-7C0B/
https://anonymous.4open.science/r/thesis_files-7C0B/

2 | Qubits

This chapter gives a very brief introduction to quantum information the-

ory. For more details, see the textbook [21]. For the relevant mathematical

background see appendix A.

A bit is an abstract unit of information which intuitively corresponds to the

possibility of being in exactly two states: on or off. Bits can be physically

realised, for example in light switches, transistors or clicky biros. But from

an information-theoretic standpoint, the details of such physical implemen-

tations are irrelevant, so long as we have answered the question “can I flip

it?”

Briefly remembering physical details, it turns out that very small things are

not quite so simple. A quantum system contains information far more exotic

than bits. A qubit is the most basic unit of quantum information. Naively,

it corresponds to the possibility of being on, off, or both simultaneously.

What exactly this means and whether it is true is the source of much contro-

versy and confusion. I will mainly focus on the mathematical formalism and

ignore the question of what is actually happening inside a qubit. But it is

worth emphasising that qubits exist in nature and that scientists are getting

better at constructing and manipulating them, most excitingly in the form

of quantum computers.

2.1 States

As you probably know, bits live in B = {0, 1}. Qubits (quantum bits), on

the other hand, live in C2 (C is the set of complex numbers). It is standard

notation to write state vectors ψ in kets |ψ⟩ and their complex conjugates

6

2.2. DYNAMICS

in bras ⟨ψ| = (|ψ⟩)†. Some particularly special states are:

|0⟩ :=

1
0

 , |1⟩ :=

0
1



These states are the analogues of classical bits. Since they form a basis

(affectionately known as the computational basis), we can therefore write

an arbitrary single qubit state |ψ⟩ ∈ C2 as:

α|0⟩+ β|1⟩ =

α
β

 , α, β ∈ C

Such a linear combination of basis states is usually called a superposition

of |0⟩ and |1⟩. The coefficients α, β are called amplitudes and cannot be

thought of as probabilities since they may be negative or complex in general.

Instead, the squared modulus of an amplitude resembles a probability. So a

state is said to be normalised if ∥ψ∥2 = ⟨ψ|ψ⟩ = |α|2+|β|2 = 1. Normalised

states correspond to those that are physically realistic, i.e. that could in

theory be constructed with a quantum computer. Although many of the

states in this thesis will not be normalised, one can always imagine rescaling

them to be so, making no significant difference to their behaviour.

2.2 Dynamics

Having defined a qubit, we’d like to know what we can do with it. Natu-

rally, we manipulate vectors with linear maps, i.e. matrices. A matrix U is

physically possible if it preserves normalisation, i.e. ∥Uψ∥ = ∥ψ∥, ∀ψ. If the

input and output dimensions are the same, this is equivalent to requiring it

be unitary, i.e. UU † = U †U = I, which at the very least means it must be

7

2.3. COMPOSITE SYSTEMS

invertible. Some very important operations are

X :=

0 1

1 0

 , Z :=

1 0

0 −1

 , H :=
1√
2

1 1

1 −1



Not only are these all unitary, they are also self-adjoint and therefore invo-

lutive. The H gate sends the computational basis to the X basis, defined

as:

H|0⟩ = |+⟩ := 1√
2
(|0⟩+ |1⟩)

H|1⟩ = |−⟩ := 1√
2
(|0⟩ − |1⟩)

2.3 Composite Systems

Not a lot can be done with only a single qubit. We’d like to have lots. First,

we at least need to be able to describe a system of several qubits. Given

two qubits |ψA⟩, |ψB⟩, we can describe their composite state as |ψAψB⟩ :=

|ψA⟩ ⊗ |ψB⟩, where ⊗ is the Kronecker tensor product. For example,

|01⟩ := |0⟩ ⊗ |1⟩ =


0

1

0

0



It’s worth emphasising that an n qubit state therefore has 2n amplitudes

- an awful lot! This should offer some intuition for the difficulty of classi-

cally simulating quantum computation [22] and the conjectured speed-up for

quantum algorithms [9].

As before, unitary matrices are the allowed n-qubit operations. One of the

8

2.4. MEASUREMENT

most important 2-qubit operations is the controlled-NOT:

CNOT :=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.1)

This gate gets its name because when the first qubit is |0⟩, it does nothing

and when the first qubit is |1⟩, it flips the second, e.g. CX|10⟩ = |11⟩. The

CNOT gate is significant because it forms a universal gate set along with H

and T := 4
√
Z, i.e. any unitary can be approximated with some combination

of CNOT,H, T gates [21].

An important consequence of unitarity is that arbitrary qubits cannot be

cloned. More formally:

Theorem 2.3.1: (No Cloning [23])

There is no unitary operation C that copies all states, i.e. maps |ψ⟩⊗

|e⟩ 7→ |ψ⟩⊗|ψ⟩, for an arbitrary state |ψ⟩ and some fixed initialisation

state |e⟩.

While copying specific states in a known basis is possible, the point is there

is no single unitary that can copy all states.

2.4 Measurement

Though perhaps a little unintuitive, the story so far is quite clean: states

come from (C2)⊗n and evolve unitarily to preserve normalisation. Unfortu-

nately, when clumsy macroscopic scientists start prodding a quantum system

too much, a problematic process called measurement occurs. Measurement

irreversibly collapses a quantum state into a new one, depending on the way

9

2.5. QUANTUM CIRCUITS

in which it is measured. More formally, given a set of orthogonal projec-

tors {Pm} such that
∑

m Pm = I then a measurement on a state |ψ⟩ gives

outcome m with probability:

p(m) = ⟨ψ|Pm|ψ⟩

and leaves the system in the state:

Pm|ψ⟩√
p(m)

The two most frequent examples are:

1. Measuring in the Z (computational) basis: {|0⟩⟨0|, |1⟩⟨1|} which col-

lapses |ψ⟩ = α|0⟩ + β|1⟩ to |0⟩ with probability |α|2 and to |1⟩ with

probability |β|2.

2. Measuring in the X basis: {|+⟩⟨+|, |−⟩⟨−|} which collapses |ψ⟩ to |+⟩

with probability |α+ β|2/2 and to |−⟩ with probability |α− β|2/2.

Measurements are a nuisance but are the only way of extracting classical

information from a quantum system. The only situation in which a mea-

surement does not change a state is when it is already equal to one of the

projectors, for example measuring |0⟩ in the Z basis gives back |0⟩ determin-

istically.

2.5 Quantum Circuits

To summarise so far:

1. A qubit lives in C2. A qubit |ψ⟩ is normalised iff ⟨ψ|ψ⟩ = 1.

2. Qubits evolve according to unitary matrices.

3. The composite system of multiple qubits is described with the Kro-

10

2.6. ENTANGLEMENT

necker tensor product ⊗.

4. Measurement probabilistically collapses a state in order to extract clas-

sical information.

Quantum computation essentially boils down to preparing large states and

making measurements on them. In the quantum circuit model, all qubits

are initialised to some state (usually |0⟩), a number of gates are applied and

then measurements (typically in the Z basis) are applied at the end. Occa-

sionally, further operations are applied that are conditioned on the classical

outcomes of previous measurements. Since parsing long strings of matrix

multiplications is quite uninformative, this is often presented as a graphical

circuit. For example, the circuit for the quantum teleportation protocol is

depicted in figure 2.1.

|ψ⟩ • H •

|0⟩ •

|0⟩ H • X Z

Figure 2.1: Quantum Teleportation Protocol [11]. Two qubit gates are CNOTs and
double lines correspond to classical communication/control

2.6 Entanglement

Although we have established that arbitrary qubits cannot be cloned (theo-

rem 2.3.1), the CNOT gate seems to come quite close. Taking the first qubit

to be the control, one can see from (2.1) that

CNOT |00⟩ = |00⟩, CNOT |10⟩ = |11⟩

So when the second qubit is initialised to |0⟩, CNOT copies computational

11

2.6. ENTANGLEMENT

basis states. To see that CNOT| · 0⟩ does not copy every state consider

|Bell⟩ := CNOT |+0⟩ = CNOT (|00⟩+ |10⟩)√
2

=
|00⟩+ |11⟩√

2
(2.2)

This is not a copy of |+⟩ since |+⟩ ⊗ |+⟩ = 1
4(|00⟩ + |01⟩ + |10⟩ + |11⟩). In

fact |Bell⟩ is a very interesting state because it cannot be rewritten as the

tensor product of any states |ψ1⟩ ⊗ |ψ2⟩. Such a state is called inseparable

or entangled. Otherwise, a state that can be written as a product of states

is called separable.

Entanglement is a very important feature of quantum information. It enables

correlations between arbitrarily separated qubits that cannot be reproduced

classically, a phenomenon known as non-locality. Famously, Einstein found

this notion sufficiently spooky to consider it a bug of quantum mechanics and

sought locally realistic explanations [24]. However, local realism has since

been experimentally falsified [25] and entanglement is now considered a fun-

damental feature of quantum information. Computationally, there exists an

alternative to the circuit model where universality is achieved by preparing

a large entangled state then making a series of single qubit measurements

on it [26]. Thus entanglement is not only real, but an extremely powerful

resource.

Like electricity, money or patience, we treat entanglement as a resource

because it can be used up to perform useful tasks. For example, the telepor-

tation protocol in fig 2.1 uses a |Bell⟩ state to transmit a qubit from Alice

to Bob. The protocol also requires Alice to perform some local operations

on her qubits and to communicate two classical bits to Bob but these are

considered less interesting resources than the Bell state. More generally, in

the resource theory of entanglement, local operations and classical communi-

cation (LOCC) are considered “free” operations because they cannot be used

to generate or increase entanglement. This definition is often extended to

12

2.6. ENTANGLEMENT

stochastic local operations and classical communication (SLOCC), i.e. where

local operations need only succeed with some nonzero probability.

If a state |ψ1⟩ can be transformed into a state |ψ2⟩ using SLOCC, then we

write |ψ1⟩ ≥SLOCC |ψ2⟩. Intuitively, this means that |ψ1⟩ is at least as useful

as |ψ2⟩ because any useful task performed by |ψ2⟩ can also be performed by

|ψ1⟩ (by first using SLOCC to turn it to |ψ2⟩). If both |ψ1⟩ ≥SLOCC |ψ2⟩

and |ψ2⟩ ≥SLOCC |ψ1⟩, then we say the two states are SLOCC-equivalent.

This defines an equivalence class and is typically used to classify states by

their operational behaviour.

For 2 qubits, there are only two SLOCC classes: one containing separable

states and the other containing |Bell⟩ from before. For 3 qubits, there are

4 SLOCC classes (up to permutations of qubits). Representatives of each

class are depicted in the Hasse Diagram below.

|000⟩

|Bell⟩ ⊗ |0⟩

|GHZ⟩ |W ⟩

The SLOCC-maximal representatives, |GHZ⟩ and |W ⟩, are defined as fol-

lows:

|GHZ⟩ := 1√
2
(|000⟩+ |111⟩)

|W ⟩ := 1√
3
(|001⟩+ |010⟩+ |100⟩)

These states both generalise to n qubits: |GHZn⟩ producing a superposition

of all |0⟩’s and all |1⟩’s and |Wn⟩ producing a superposition of a single |1⟩

on all possible qubits. Unfortunately, SLOCC classification breaks down for

13

2.7. MIXED STATES

n > 3 where there becomes an infinite number of SLOCC classes [27]. More

generally, our understanding of multipartite entanglement breaks down soon

after n = 4.

2.7 Mixed States

Suppose you measured a state |ψ⟩ = α|0⟩ + β|1⟩ but forgot to look at the

result. Then rather being in a superposition, your state has “collapsed” to a

probabilistic mixture of |0⟩ and |1⟩.

The help distinguish between superpositions and ignorance, theorists make

use of the density matrix formalism, outlined as follows. Suppose a system is

in some possible state |ψi⟩ with probability pi. Then the system is described

by the density matrix:

ρ =
∑
i

pi|ψi⟩⟨ψi|

Now applying some operation U that turns ρ to ρ′ is described by conjuga-

tion:

ρ′ = UρU †

The tensor product and measurement postulates generalise naturally. When

ρ = |ψ⟩⟨ψ|, then it is called a pure state. Otherwise, it is called a mixed

state. Given some matrix ρ, it might not be obvious whether it can be

written as a probabilistic mixture of pure states. Fortunately, we have the

following characterisation: ρ is a density matrix corresponding to some col-

lection {pi, |ψi⟩} iff:

1. trace: tr(ρ) =
∑
i
⟨i|ρ|i⟩ = 1.

2. positivity: ∀|ϕ⟩, ⟨ϕ|ρ|ϕ⟩ ≥ 0

Suppose we have a system ρAB that is shared between two parties - Alice

14

2.7. MIXED STATES

and Bob. Then all measurement statistics from Alice’s perspective can be

described by the partial density operator: ρA = trB(ρ
AB), where trB is

the partial trace operation defined by:

trB(ρ
AB) =

∑
i

(IA ⊗ ⟨i|)ρAB(IA ⊗ |i⟩)

Where IA is the identity matrix on Alice’s system and the sum is over all

(computational) basis states. The partial trace can be thought of as for-

getting about Bob. An interesting property of the entangled state |Bell⟩ is

that trB(|Bell⟩⟨Bell|) = I/2, which is the known as the maximally mixed

state. Thus, forgetting about one half of a maximally entangled state leads

to complete ignorance.

15

3 | Diagrams

“It’s not the destination, it’s the journey”

– Ralph Waldo Emerson

The purpose of this chapter is to formalise the notion of plugging boxes

together in order to properly introduce the ZXW calculus. This chapter is

self-contained, though may be cross referenced with the corresponding defini-

tions from category theory in Appendix B. The equation numbers intention-

ally match up so that, for example, (3.2) is a diagrammatic representation

of (B.2). While the categorical content in the appendix is usually taught

only to graduate maths students, I believe the diagrammatic counterpart

presented in section 3.1 is sufficiently intuitive it could be taught to anyone.

This chapter is heavily inspired by the exposition in [28].

3.1 Processes

All diagrammatic reasoning in this thesis will be concerning processes - things

that do things. Processes are a manifestation of the spirit of compositional-

ity. Informally, compositionality is the idea that “things get more interesting

when they are plugged together”. We are all familiar with plugging things

together in the real world - this is something that hardly needs formalising.

Instead, the purpose of formalising processes is so that we can bring our ev-

eryday intuitions about plugging wires to help solve abstract mathematical

problems. First, we have to begin with the very basics.

3.1.1 Single Wires

A process is something that converts inputs to outputs. To aid abstraction,

we won’t be particularly interested in how this conversion is done, only in

the type of inputs a process expects to receive and the type of outputs it

16

3.1. PROCESSES

promises to produce. A process f : X → Y is depicted as a box with inputs

of type X above and outputs of type Y below:

f

X

Y

f may be doing almost anything: converting numbers to numbers, electricity

to light, coffee to writing or much more! By only imposing the type of

input/output, we leave a process waiting to do something. It is necessary

to limit inputs/outputs to a specific type, however, to prevent undefined

situations like multiplying by cheese or adding 7 to an omelette.

Since we have abstracted away the details of what happens inside f , all we

can talk about is how f relates to other boxes. Imagine we had some other

process g : Y → Z. Since the output of f is compatible with the input of

g, we might like to feed f into g. This produces the composite process

g ◦ f : X → Z (read “g after f ”), which may be considered a box in its own

right. We depict g ◦ f by vertically stacking the individual boxes:

f

g
g ◦ f
X

Z

Z

X

Y=

(3.1)

When composing three different compatible processes f, g, h, there are ac-

tually two different ways to do so: stacking (g ◦ f) on top of h or stacking

f on top of (h ◦ g) . For all processes we consider, these compositions shall

be equivalent which means we can unambiguously stack all three together at

17

3.1. PROCESSES

once:
X

f

Z

g
Y

=

W

h

X

f
Y

W

h ◦ g

X

g ◦ f
Z

W

h

=

(3.2)

Finally, as is typical whenever we want to do something in mathematics,

we require it be possible to do nothing. This “do nothing” operation is

represented by a plain wire idX :=
X

and satisfies:

f

= f =

f

Y Y

Y

X X

X (3.3)

In summary, boxes can be plugged together and wires can be stretched.

3.1.2 Parallel Wires

So far, we can only plug boxes together along a single wire. To allow multiple

wires in parallel (which is where things get interesting) we require some extra

structure. A process which takes two inputs X and Y is defined as taking a

single input of a new type X ⊗ Y . Diagrammatically, X⊗Y looks like:

X ⊗ Y

X ⊗ Y

X

X

Y

Y

=
(3.4)

The horizontal composition of processes f ⊗ g can be thought of as doing

“f while g”. So (3.4) says that doing nothing to X ⊗ Y is the same as

18

3.1. PROCESSES

doing nothing to X while doing nothing to Y . As with vertical composition,

horizontal composition is also associative:

X1

h
Y1

X2

g

Y2

X3

f
Y3

= =

X1 ⊗X2

h⊗ g
Y1 ⊗ Y2

X3

f
Y3

X1

h
Y1

X2 ⊗X3

g ⊗ f
Y2 ⊗ Y3

(3.5)

We further require that the order of vertical and horizontal composition does

not matter:

X1

g1 ◦ f1
Z1

X2

g2 ◦ f2
Z2

=
g1

Z1

f1

X1

g2
Z2

f2

X2

=

g1 ⊗ g2

f1 ⊗ f2

Z1 ⊗ Z2

X1 ⊗X2

(3.6)

(3.5) simply means there is no ambiguity when doing multiple things in

parallel while (3.6) means vertical and horizontal composition work nicely

together. Finally, now that horizontal composition gives us a new way to

do things, we need a corresponding way to do nothing. We define an empty

type called 1 and represent
1

(doing nothing to nothing) as empty space

·
· ·· ···
· ··· · . That this does nothing means:

·

· ·· ···
· ··· ·Y

f

X

·

· ·· ···
· ··· ·Y

f

X

=

Y

f

X

= (3.7)

id1 : 1 → 1 isn’t the only special process involving 1. Since 1 represents the

empty type, then a process ψ : 1 → X is considered to have no inputs. This

is called a state and drawn as a triangle. Similarly, a process π : X → 1 is

19

3.1. PROCESSES

considered to have no outputs and is known as an effect.

ψ

X

ψ

X

1

= π

X

π

1

X

=

Operationally, a state can be thought of as putting something into a system

and an effect as a test for whether something came out. So plugging a state

into an effect roughly corresponds to the probability the test succeeds on

the given state. Such a process with neither inputs nor outputs is called a

number.
ψ

π

=X λ

An important number is 0 which corresponds to an impossible process. Hori-

zontally composing anything with 0 will always give back 0 since you cannot

make the impossible possible by doing other things elsewhere.

Since the wire labellings add clutter, they will henceforth be removed unless

necessary.

3.1.3 Crossing Wires

Consider the following situation:

f

g

Imagine that we’d prefer to connect the first output of f to the second input

20

3.1. PROCESSES

g and vice-versa. Then diagrammatically this would look like:

f

g

This implicitly relies on a process that swaps its inputs. There are some

important observations to be made about the swap. Clearly, swapping twice

should do nothing (twice):

= (3.8)

While swapping with the empty type should also do nothing:

1X
=

X

(3.9)

Finally, we’d like to be able to slide boxes across swaps:

g f
gf = (3.10)

And slide swaps over identity wires:

=
(3.11)

With swaps, we can start to see how flexible these diagrams become. We

21

3.1. PROCESSES

can plug different outputs to different inputs in many different ways and

untangle as much we like. For example, one can imagine literally dragging

the triangles around in order to satisfy the equation:

f

g

ψ

π

f

g

ψ

π

=

3.1.4 Bending Wires

With swaps, we can connect any output to any input, but what if we wanted

to connect two inputs? This could produce diagrams like the following:

f

g

Though doing so appears to mess with the flow of time, there are situations

where it is possible - including qubits! Implicitly, such a wiring relies on a

state (called a cap) that transforms inputs to outputs. If we also allow

an effect (called a cup) that turns outputs to inputs, then we should

expect that turning an input to an output and back again (or vice versa)

does nothing:

= =
(3.12)

If all a cap does is turn inputs to outputs, one would expect that both of its

22

3.1. PROCESSES

wires should carry the same information. This can be expressed as:

=
(3.13)

An important consequence of introducing cups and caps is that states and

processes become interchangeable. The idea is that we can take an arbitrary

process f and turn it into a state by bending its input into an output:

f7→f

Similarly, we can take a bipartite state ψ and turn it into a process by

bending one of its outputs to an input:

ψ 7→ ψ

By (3.12), turning a process to a state and back again would give the orig-

inal process and so this gives a bijection between states and processes. In

quantum information theory, this is known as the Choi-Jamiolkowski isomor-

phism. Diagrammatically, this is known as map-state duality. Informally,

I will refer to it as bending. This equation is also the crux of the quantum

teleportation protocol from figure 2.1.

Another consequence of introducing caps and cups is that it gives us even

more flexibility to re-arrange equations. While swaps allowed us to freely

move boxes horizontally, caps and cups allow us to freely move them verti-

23

3.1. PROCESSES

cally. For example,

f

gh

=

f

g

h

Though this looks like quite a mess, the way to parse diagrams like these

is to focus on which box is connected to which and in which order. So to

see the equality holds, notice that the output of h is still connected to the

input of g, that the first output of g is still connected to the second input

of f , and so on. No matter where boxes are arranged on a page, diagrams

will be equal if all of their connections are equal. This is perhaps the most

important feature of diagrammatic reasoning. If you are to remember one

thing, it should be the slogan:

Only connectivity matters!

This is often abbreviated to OCM. Like associativity of addition, it is con-

sidered so natural that its usage will not be referenced explicitly in proofs

or equations.

3.1.5 Process Theory

A process theory is any collection of types and processes that can be

coherently plugged together. A specific process theory will interpret what

happens inside a box and give meaning to composition. The more a process

theory satisfies of equations (3.1) to (3.12), the more flexibility we have

to plug boxes together. In other words, we want wires to be as wiggly as

24

3.1. PROCESSES

possible:

= =

Here are three examples (one fun, two serious) of a process theory:

1. Lego - the types are Tiny Tim’s Lego blocks and the processes are

the different ways Tim can fit the blocks together. For example, stack

might take two square blocks and stick the first on top of the second.

Vertical composition of processes (3.1) is Tim fitting some blocks to-

gether then sticking something else onto the resulting block. Clearly,

Tim can do nothing (3.3) by not sticking anything together. This hap-

pens to be associative (3.2). Note that plugging boxes together there-

fore corresponds to combining different ways of plugging Lego blocks

together. Horizontal composition of processes is Tim sticking blocks to-

gether while his clone, Tim2, sticks some other blocks together. States

correspond to Tim taking blocks out of their storage boxes and so ef-

fects correspond to Tim returning blocks to their boxes. The swap

operation is Tim exchanging some blocks with Tim2. Finally, unless

Tim invents time travel, there are no cups or caps.

2. Rel - the process theory of relations. Types are sets X,Y, Z, ... and

processes are relations R ⊆ X×Y, S ⊆ Y ×Z, xRy is used to denote

(x, y) ∈ R. The composition of relations is defined as x(S ◦ R)z ⇐⇒

∃y, xRy ∧ ySz. It can be easily checked that S ◦ R is again a relation

and that this composition is associative and has unit idX = {(x, x) :

x ∈ X}. Horizontal composition of both types and processes is the

Cartesian product ×, with unit 1 := {∗}. States and effects are both

subsets of X. The swap operation is
X,Y

:= {(x, y), (y, x) : x ∈

X, y ∈ Y }. Rel has caps: X := {∗, (x, x) : x ∈ X} and cups:

25

3.2. ZXW CALCULUS

X := {(x, x), ∗ : x ∈ X}, satisfying (3.12). There are two numbers:

id{∗} and ∅, which intuitively correspond to possible and impossible.

It is convenient to think of Rel as a possibilistic version of quantum

mechanics.

3. FdHilb - types are finite dimensional Hilbert spaces (e.g. C2), pro-

cesses are linear transformations. Composition is the usual matrix

multiplication which is clearly closed, associative and unital. Horizon-

tal composition is the Kronecker tensor product ⊗, with unit 1 := C.

States are kets, effects are bras and numbers are complex scalars. So

plugging a state into an effect gives the inner product, as one would

hope. Swap is the usual swap matrix, e.g.

C2,C2 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



Finally, there are caps and cups, e.g. C2 :=
[
1 0 0 1

]
. All Z∗

calculi live in FdHilb, so this process theory is of particular interest.

The purpose of these examples is to illustrate how flexible the definition of

a process theory is. While the remainder of this thesis will focus on one

specific process theory, the whole point is that we are doing so within an

abstraction that cares only about how things are plugged together.

3.2 ZXW Calculus

We are now ready to properly introduce the ZXW calculus. As already men-

tioned, this means we are working in FdHilb. More specifically, since this

thesis deals with qubits, all wires will be C2. Scalars will largely be ignored

26

3.2. ZXW CALCULUS

and so equality of diagrams will, strictly speaking, usually mean equality up

to a non-zero scalar. Similarly, many diagrams will not be normalised but

could be made so by multiplying by the relevant scalar. An important, some-

what undiagrammatic, feature of FdHilb is that every type has a basis and

so every process can be expanded as a sum over its action on basis vectors.

Since a matrix is determined by what it does to a basis, one can prove equal-

ity of diagrams by plugging in combinations of |0⟩ and |1⟩ to input or output

wires. This is considered undiagrammatic because it can lead to superficial

disconnections, for example decomposing I = |0⟩⟨0| + |1⟩⟨1|. Usually, one

hopes to keep a diagram as connected as possible to help visualise the flow

of information.

3.2.1 Generators

The two main generators of the ZXW calculus are based off the |GHZ⟩ and

|W ⟩ states, the two maximally entangled 3-partite states from section 2.6.

They are depicted as a green circle and black triangle respectively.

|GHZ⟩ = , |W ⟩ =

The problem with states is that they don’t do anything, they simply are.

Specifically, we cannot vertically compose states. Things get more interesting

when we bend one of the wires to an input, producing the Z node and the

W node.

; := |00⟩⟨0|+ |11⟩⟨1| (3.14)

; := |00⟩⟨0|+ |01⟩⟨1|+ |10⟩⟨1| (3.15)

27

3.2. ZXW CALCULUS

Now there’s inputs, we can plug nodes together. We define the generalised

Z and W nodes accordingly:

. . .

:= ...
,

. . .

:= ...

The Z node is further generalised to have multiple inputs and a multiplicative

phase:

α

. . .

. . .
n

m

:= |0m⟩⟨0n|+ eiα|1m⟩⟨1n|, α ∈ C

This generalised Z is known as a spider since it is generated by a special

commutative Frobenius algebra (SCFA) and so is uniquely determined by

the number of inputs, outputs and phase due to something known as the

spider theorem (see appendix B.2.1). Finally, we draw the Hadamard gate

as a yellow box:

:=
1√
2

1 1

1 −1



Then all ZXW diagrams are built out of the following generators:

, , , ,
α

. . .

. . .
n

m

, ,

28

3.2. ZXW CALCULUS

For convenience, we will also use the following notation:

eiα

. . .

. . .
α

. . .

. . .

:= 0

. . .

. . .

. . .

. . .

:= = 1

. . .

. . .

α

. . .

. . .
α

. . .

. . .

:=

. . .

:=
· · ·

Before moving to the rules, it is worth noticing the following connections to

definitions from chapter 2:

• The Z spider gets its name from the Z gate since π = −1 = Z.

• Similarly, the red spider is sometimes called the X spider since π = X.

• Computational basis states are red: = |0⟩,
π

= |1⟩.

• Somewhat confusingly, X basis states are green: = |+⟩,
π

= |−⟩.

• Red and green cups both equal the Bell state |Bell⟩ = = = .

• The CNOT gate is simply := = . Note that a hori-

zontal wire can be interpreted as either an input or an output due to

the principle of OCM.

• T = π/4 . This suffices to show universality of ZXW diagrams since

{H,T,CNOT} is a universal gate set.

It is worth highlighting that the main generators, Z and W nodes, are built

by bending and fusing the only maximally entangled 3-partite states. Of

course, our generators should be inseparable (i.e. entangled) otherwise the

29

3.2. ZXW CALCULUS

resulting diagrams would be disconnected. But the number 3 is significant

for three reasons:

• Bending is what allows the generators to be composed in order to build

arbitrarily large diagrams. Since bending a 2-partite state results in

a straight wire, we would not get very far using generators with less

than three wires.

• As mentioned in section 2.6, SLOCC classification breaks down for

n > 3. So there would have been infinitely many options if we had

opted for 4-partite generators.

• We shall soon get a glimpse of the connection between algebra and en-

tanglement. Algebra is primarily occupied with binary operations (two

inputs, one output). Typically, larger n-ary operations are handled by

decomposing them into a series of associative binary operations. By

analogy, the ZXW calculus decomposes all diagrams into a series of

fusible generators.

So according to compositionality, three is the magic number!

3.2.2 Basic Rules

This section introduces some of the most important rules of the ZXW calcu-

lus. As rules they only need to true when interpreted as matrices, however

I also try to give some justification or commentary to prevent them all from

feeling like meaningless shapes on a page.

As the definition (3.14) suggests, the Z-spider copies computational basis

states:

=
kπ

kπ kπ , k ∈ {0, 1} (K0)

Since the Z spider copies a basis, it corresponds to an SCFA [29] and therefore

30

3.2. ZXW CALCULUS

satisfies the “fusion” equation:

=
a

b
ab

· · · · · · · · ·

· · ·

· · ·

· · ·· · · · · ·
... = ab

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

(S1)

Fusion is so fundamental that I will rarely reference its usage explicitly. The

X spider also satisfies fusion (but with addition of phases) and copies green

basis states (3.22, 3.21). In fact, any equality between diagrams containing

only red and green spiders will still hold with all the colours flipped. They

can also be vertically flipped meaning behaves like an upside down copy,

i.e. goes to zero unless its inputs are identical.

Thanks to fusion, behaves like a monoid with unit . In fact, it com-

putes XOR on red basis states ,
π

:

kπ jπ

=
(k ⊕ j)π

j, k ∈ {0, 1}

Since XOR-ing then copying is the same as copying twice then XOR-ing

twice, we have the following bialgebra rule:

= (B2)

By (3.15), the W node also copies , but behaves more like on
π

:

=

π

= π =
π

+
π (3.16)

The bending effect used in (3.15) is therefore equal to π . Plugging ⟨0|

31

3.2. ZXW CALCULUS

to the bottom of the W gives the identity:

= = (3.17)

So it has a co-unit. Plugging ⟨1| disconnects:

π

=
π

(3.18)

It turns out that the W node does not form an SCFA. In fact it forms

something called an anti-special CFA [30]. Thus there is no W spider fusion

so the W node is usually defined to have only one input. Nevertheless, it is

still associative and commutative:

= (Aso)

= (Sym)

Together these allow for a restricted version fusion between Ws, but with

only one input, which is what makes the definition of
. . .

well defined:

=
.

.

Things get most interesting when we relate two different generators. Perhaps

the most important ZXW rule, interchanging Z and W nodes, is the following

32

3.2. ZXW CALCULUS

bialgebra:

= (BZW)

To verify this, imagine plugging in red basis states at the bottom. Suppose

the bottom left wire is ⟨0|. Then

(K0)
=

(3.17)
=

(3.17)
=

The same argument applies for the bottom right wire being ⟨0|. Finally, if

both inputs are ⟨1|, then by (3.18), both sides go to zero.

Another way to interpret (BZW) is that copies the Z spider and then

entangles the Zs’ outputs with a new W to preserve the total number of

wires:

(BZW)
=

Surprisingly, under conditions like these, behaves sufficiently similarly to

that they become interchangeable:

= (TA)

This can be seen by inspecting the matrices and noticing they only differ in

the ⟨11| column. This differing behaviour will never make a difference in a

diagram like (TA) because (3.18) prevents the top left being fed ⟨11|

33

3.2. ZXW CALCULUS

and thus also the neighbouring or .

=


1 0

0 1

0 1

0 0

 ,

1 0

0 1

0 1

1 0

 =

The rules so far are largely based around plugging in red basis states, copying

and fusion. When I wish to emphasise this particular flavour of ZXW in a

proof, I will say something like “plugging red”.

3.2.3 Arithmetical Rules

Another flavour of ZXW stems from the generators’ ability to perform arith-

metic [1]. If we represent a number a ∈ C as the effect a =
[
1 a

]
, then it

turns out:

=
a+ ba b

(ADD)

=
a× ba b

(MUL)

Though (MUL) of course follows from (S1), it can be convenient to think

of this as a rule in itself to emphasise the arithmetical perspective of ZXW,

which I will signpost with phrases like “plugging green”.

Since ⟨0| = 0 , then another way of expressing (3.17) is:

∀a ∈ C,
a 0

(ADD)
=

a

=
a+ 0 a

=

34

3.2. ZXW CALCULUS

Note that π is the additive inverse since:

a ◦
π

=
[
1 a

]
Z =

[
1 −a

]
= −a

Meanwhile X = π is the multiplicative inverse since

a ◦
π

=
[
1 a

]
X =

[
a 1

]
= a

[
1 1/a

]
≈
[
1 1/a

]
= 1/a

Due to the rescaling trick
[
α β

]
≈
[
1 β/α

]
, one can treat almost any

single qubit effect as a number. The sole exception is β⟨1| =
[
0 β

]
which

is sort of like infinity.

The final thing to check to ensure

(
a , ,

)
can perform arithmetic is

distributivity. This is enabled by the rule:

=
a

a a

(Pcy)

This rule captures distributivity since:

a(b+ c)
= a

b c

=
a

b c b c

(Pcy)
= a a =

ab+ ac (3.19)

We can use distributivity and (TA) to show that the W node effectively

35

3.2. ZXW CALCULUS

copies number states in certain situations.

=

(Pcy)
=

a

a a

(TA)
=

(3.21)
=

=

a a

a a a a
a

a

(3.20)

We shall explore this copying in more detail in section 4.2. For now, it suffices

to say that whenever a W node is stuck onto the side of diagram with ’s,

then any other will copy numbers. In such a situation, we might expect

that adding then copying is the same as copying twice then adding twice.

Indeed this is the case, forming a bialgebra similar to (B2) and (BZW), but

with the extra W inserted to enable the copying behaviour:

· · ·

· · · · · ·

=
· · ·· · · · · ·

(WW)

Many ZXW diagrams can be interpreted as performing some combination of

additions and multiplications on their inputs. In which case, it is natural to

imagine plugging in a . If two diagrams can be seen to perform the same

arithmetic function on all green inputs, then they must be equal because

1 , −1 are two particular number states which form a basis.

The ability to alternate between the red and green perspectives gives us a

lot of freedom for how to interpret ZXW diagrams. Chapter 4 focuses on

controlled diagrams which are mostly based around plugging red. Chapter 5

essentially generalises [1] and so is mostly based around plugging green. This

informal distinction between the red and green perspectives is summarised

36

3.2. ZXW CALCULUS

below.

Perspective Red Green

Interpretation Copy and control Arithmetic

Time ↓ ↑

Plugging states ,
π

a

Z =
kπ

kπ kπ =
a× ba b

X
kπ

. . .

kπ

. . .

kπ
= N/A

W =

π

= π =
a+ ba b

Exemplary result Theorem 4.3.1 Proposition 5.2.5

Since the red perspective is reminiscent of the ZX calculus and the green

perspective is reminiscent of the ZW calculus, the power of the ZXW calculus

comes from its ability to unify these perspectives simultaneously. Theorem

5.4.1, the main result of this thesis, is a wonderful example of this synthesis.

3.2.4 Complete Rule Set

You have been presented a collection of rules for manipulating diagrams and

a way of interpreting these diagrams as matrices. Technically, this means

we have defined a logical system with diagrammatic rewrites as syntax and

matrix equality as semantics. Two very important properties to consider

about every logical system are:

1. Soundness: if the rules prove something to be true, then it is indeed

true.

2. Completeness: if something is true, then there is a way to prove it

using the rules.

37

3.2. ZXW CALCULUS

Soundness is quite a weak requirement and for ZXW can be easily verified

by translating each of the rules into matrices and checking the two sides are

equal. Completeness is usually more elusive and for ZXW means that any

equality of matrices can be proven diagrammatically. Fortunately, complete-

ness of the ZXW calculus was proven earlier this year [18]. This adds to a

line of Z∗ completeness results, dating back to qubit ZW completeness in

2015 [31].

The most recent result actually proves completeness for qudits of arbitrary

dimension1. However, since this thesis deals specifically with qubits, I will

present only the relevant rules. Very briefly, the proof depends on finding a

normal form such that any state can be rewritten into its normal form using

ZXW rules. Then whenever two states are equal, they can be rewritten to

the same normal form and equality can be shown by reversing half of the

rewrites. The fact that equality of states is sufficient for completeness is due

to a clever bending trick. The normal form used in the proof (which I call

the completeness normal form) is presented below:

Definition 3.2.1: Completeness Normal Form (CoNF)

The CoNF of an arbitrary n qubit state is



a0

...

ai

...

a2n−1


=

π

a0 ai a2n−1.

.

The box ai is wired according to the binary expansion of i.

For completeness, I include the complete list of rules used in the proof of
1In qubits, there are two basis states: |0⟩, |1⟩ ∈ C2. In qudits, there are d basis states:

|0⟩, |1⟩, |2⟩, ..., |d− 1⟩ ∈ Cd

38

3.2. ZXW CALCULUS

ZXW completeness below. The rules and their names have been taken di-

rectly from [18], then modified for the qubit case.

ZX Rules:

=
a

b
ab

· · · · · · · · ·

· · ·

· · ·

· · ·· · · · · ·
... = ab

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

(S1)

= = (S2)

·

· ·· ··= ·
·a ··· ·

(Ept)

= (B2)

=
kπ

kπ kπ (K0)

· · ·· · ·

=
kπ

kπ kπ

(K1)

=
a

π

π

−a

a

π

(K2)

0 = (Zer)

= (H)

Where k ∈ {0, 1}.

ZW Rules:

=
a

a a

(Pcy)

= (Sym)

= (BZW)

39

3.2. ZXW CALCULUS

=
a+ ba b

(ADD)

= (Aso)

· · ·

· · · · · ·

=
· · ·· · · · · ·

(WW)

ZXW Rules:

= (Bs0)

=

π

(Bsj)

= (TA)

=

π

1√
2

−2 (HD)

3.2.5 Useful Lemmas

To help get a better feel for diagrammatic reasoning within these rules, let’s

establish some lemmas that will be useful later.

Lemma 3.2.2

kπ

. . .

kπ

. . .

kπ
= (3.21)

Proof.

kπ

. . .

kπ

. . .

kπ
=

kπ

. . .

(H)
=

kπ

. . .

(K0)
=

kπ

. . .

kπ
=

40

3.2. ZXW CALCULUS

Lemma 3.2.3: X-spider fusion

α

β

· · · · · ·

· · · · · ·
... α + β

· · ·

· · ·

· · ·

· · ·

= (3.22)

Proof.

α

β

· · · · · ·

· · · · · ·
...

α

β

· · · · · ·

· · · · · ·
...=

α

β

· · · · · ·

· · · · · ·
...

(H)
=

(S1)
= α + β

· · ·

· · ·

· · ·

· · ·

α + β

· · ·

· · ·

· · ·

· · ·

=

Lemma 3.2.4

0

. . .

. . .

=
. . .

. . .

(3.23)

Proof.

0

. . .

. . .

=
. . .

. . .

. . .

. . .

0
(Zer)
=

. . .

. . .
(K0)
=

Lemma 3.2.5

a =
(3.24)

41

3.2. ZXW CALCULUS

Proof.

a =

a

(Zer)
=

a 0

(MUL)
=

0

(Zer)
=

Lemma 3.2.6

a b a+ b= (3.25)

Proof. This is a simple case of (BZW) in disguise:

a b

a b
=

a b

(BZW)
= a+ b

(ADD)
=

a b

=

In particular, this implies:

= 1 1 (3.25)
= 2 (3.26)

And similarly:

π = 1 −1 (3.25)
= 0

(3.23)
= (3.27)

42

3.2. ZXW CALCULUS

Moreover, (3.25) generalises straightforwardly to n coefficients:

a1 ana2 . . . (Aso)
=

a1 ana2 . . .
(3.25)
= an. . .a1 + a2

= ... = anΣn−1
i=1 ai

(3.25)
= Σni=1ai

(3.28)

With multiple outputs this becomes:

=
(BZW)
=

(3.28)
=

∑n
i=1 ai

a1 an
a1 an

.

a1 ana2 . . .
a2

. . .

a2 . . .

(3.29)

Lemma 3.2.7: Hopf Law

= (3.30)

43

3.2. ZXW CALCULUS

Proof.

= =
(B2)
=

(K0)
=

(Ept)
=

Very similarly,

Lemma 3.2.8

=

(3.31)

Proof.

= =
(TA)
=

(BZW)
=

(K0)
=

(3.16)
=

(Ept)
=

44

4 | Controlled Diagrams

“One ring to control them all, one ring to find

them, ...”
– JRR Tolkein [adapted]

It’s been known since 2011 that (a , ,) ≃ (C,+,×) [1]. It was the

ability for W to do sums that helped the first completeness proof for the

ZW calculus [31]. It was recently found that W could be used to sum entire

ZXW diagrams [13]. In this section, I extend [13] to show that W and Z give

rise to two rings: controlled states and controlled matrices.

4.1 Definitions

I take my definitions from [13]. Around the same time that paper was

written, [32] introduced an alternative definition of controlled ZX diagrams.

While both definitions enable addition and multiplication of diagrams, the

copying lemmas of section 4.2 apply only to the definitions of [13] due to the

essential role of (BZW) which is not a ZX rule.

Definition 4.1.1: Controlled Matrix (3.1 in [13])

For an arbitrary square matrix D, the controlled matrix of D is the

diagram D̃ such that

π

D̃
...

... = D
...

...

D̃
...

... = ...
...

(4.1)

Some examples of controlled matrices:

45

4.1. DEFINITIONS

• =X̃ .

• =Z̃ .

• a is a very important special case of controlled scalars ã.

Note it is crucial that D be square for it to be replaced with identity wires.

One advantage of adding an extra wire to D in this way is that it gives new

ways for diagrams to be composed diagrammatically. In particular, it gives

a very natural way of expressing the sum and product of matrices.

Proposition 4.1.2: 3.3 in [13]

Given controlled matrices M̃1, ..., M̃k, the controlled matrix Π̃iMi is

given by

M̃1
...

... M̃k
...

. . .

Proposition 4.1.3: 3.4 in [13]

Given controlled matrices M̃1, ..., M̃k and complex numbers c1, ..., ck,

the controlled matrix Σ̃iciMi is given by

M̃1
...

... M̃k
...

. . .c1 ck

Since the above definition does not apply to non-square matrices, it is natural

to provide an alternative definition for states.

46

4.1. DEFINITIONS

Definition 4.1.4: Controlled State (3.2 in [13])

For an arbitrary state ψ, the controlled state of ψ is the diagram ψ̃

such that:

. . .

ψ̃ =
. . .

π

. . .

ψ̃ =
. . .

ψ

(4.2)

Some examples of controlled states:

• W is controlled EPR: = ˜|01⟩+ |10⟩

• By (K0),
. . .

= |̃1..1⟩

Just as with matrices, we can combine two controlled states using a W node

to produce a controlled sum. To preserve the number of outputs, ’s are

appended to the bottom so that (4.2) is still satisfied.

Definition 4.1.5

Given two controlled states ψ̃, ϕ̃, the controlled state ψ̃ ⊞ ϕ̃ is given

by

. . .

ψ̃

. . .

ϕ̃

. . .

This does indeed give the controlled sum of states.

47

4.1. DEFINITIONS

Proposition 4.1.6

ψ̃ ⊞ ϕ̃ = ψ̃ + ϕ

Proof. Firstly, ψ̃ ⊞ ϕ̃ is itself a controlled state:

. . .

ψ̃

. . .

ϕ̃

=

. . .

.

. . .

=

. . .

=. . .

ψ̃

. . .

ϕ̃

. . .

Secondly, it does in fact give ψ + ϕ when plugged with a |1⟩ since:

π

. . .

ψ̃

. . .

ϕ̃

. . .

(3.16)
=

π

. . .

ψ̃

. . .

ϕ̃

. . .

. . .

ψ̃

. . .

ϕ̃

. . .

π

+

=
. . .

ψ

. . .

. . .

.

ϕ

. . .

+ =
ψ

. . .

ϕ

. . .
+

We can define ψ̃ ⊠ ϕ̃ very similarly by putting a on top rather than a

.

48

4.1. DEFINITIONS

Definition 4.1.7

Given two controlled states ψ̃, ϕ̃, the controlled state ψ̃ ⊠ ϕ̃ is given

by

. . .

ψ̃

. . .

ϕ̃

. . .

While this operation does return another controlled state, it is not obvious

what this “multiplication” of states does:

ψ̃ ϕ̃

. . .

ψ̃ ϕ̃

. . .

=

. . .

= =

. . .

(4.3)

π

ψ̃ ϕ̃

. . .

π

ψ̃ ϕ̃

. . .

=

π

ψ ϕ

. . .

= =??? (4.4)

Though the top half is just ψ ⊗ ϕ, the ’s at the bottom create some

entangled mess. The semantics of controlled state multiplication will be

elucidated further in chapter 5.

You might complain that appending ’s along the bottom is a little ad

hoc. Clearly, one important property is that is a unit. In some sense,

this is the only property that matters (plus associativity). Indeed, an X

spider could just have easily been chosen (as was done in [13]) and by (TA)

this is equivalent. We shall be seeing many more diagrams with ’s at

49

4.2. COPY COWS

the bottom. In the right context, these gadgets turn out to be extremely

powerful, as the following subsection reveals.

4.2 Copy coWs

Imagine you were promised that the top inputs to the following diagram

were restricted to {|00⟩, |01⟩, |10⟩}:

D̃
...

... D̃
...

Then you can be sure that at most one of the D̃ boxes will ever be activated.

So in a sense, there is only one D̃ box, but controlled by the sum of the

inputs. But this is just:

D̃
...

...

So it appears that copies D̃! To properly define this notion of there being

no |11⟩, our old friend W comes to the rescue.

Definition 4.2.1: Single Particle Subspace

A diagram D is said to be restricted to the single particle subspace

(SPS) if it it can be rewritten as:

D2

· · ·
D
· · ·

=

· · ·
D3D1

(4.5)

For some diagrams D1, D2, D3, where D2 should not be disconnected.

SPS diagrams can also have multiple inputs which can be bent into outputs

50

4.2. COPY COWS

in order to satisfy (4.5). The idea is that W produces at most one |1⟩ and the

Z spiders simply copy the outputs and take them elsewhere. An important

example of an SPS diagram is (TA) which effectively says that under SPS,

= .

We are now ready for a very nifty result: under SPS, copies arbitrary

controlled diagrams. The proof essentially translates the initial observation

from above into sums.

Lemma 4.2.2: Copying Lemma I

For any square matrix D,

D̃
...

...

=

D̃
...

... D̃
...

(4.6)

Proof. First of all, using (BZW) we can rewrite the LHS to

D̃
...

...D̃
...

...

(BZW)
=

Then clearly

D̃
...

... D̃
...D̃

...
...

= ...
...

=

51

4.2. COPY COWS

Meanwhile,

D̃
...

... D̃
...

π

(3.16)
=

D̃
...

... D̃
...

π

+

D̃
...

... D̃
...

π

D
...

...

π

... D
...

π

+

π

D
...

... D̃
...

...

π

=

=

(3.16)
=

Thus the two sides are equal over the Z basis and so are equal as

diagrams.

We have already seen a special case of this for controlled scalars in (3.20).

Due to its reliance on plugging and sums, this proof is regrettably rather

undiagrammatic. Typically, one can rely on completeness to guarantee that

there exists a sumless, purely diagrammatic proof of every equality of ZXW

diagrams. However, completeness does not apply in this case since D̃ is not

a concrete matrix and so this proof does not prove a specific equality, but

an entire family of equalities. It would be nice to see a more diagrammatic

proof of this lemma.

It turns out that also copies controlled states but once again appends a

layer of ’s at the bottom to preserve the number of outputs. This time,

the interpretation of the bottom layer is that it will recursively copy any

other controlled diagrams as they are plugged in.

52

4.2. COPY COWS

Lemma 4.2.3: Copying Lemma II

For any state ψ,

=

ψ̃

. . .

ψ̃ ψ̃

. . .

(4.7)

Proof. As before, plugging |0⟩ gives

ψ̃

. . .

ψ̃

. . .

=

. . .

= =

. . .

ψ̃ ψ̃

. . .

=

Meanwhile, plugging |1⟩ gives

π

ψ̃ ψ̃

. . .

=

π

ψ̃ ψ̃

. . .

ψ̃ ψ̃

. . .

π

+

=

π

ψ

. . .

π

ψ

. . .

+ =

π

ψ

. . .

=

π

ψ̃

. . .

Completing the proof

Given the no-cloning theorem (2.3.1), this is a surprising result. Of course

53

4.3. RINGS

it does not violate no-cloning since it takes place in the restricted context

of SPS and only applies to controlled states. Though the SPS restriction

appears quite strong, it appears surprisingly often and so lemma 4.2.3 is an

extremely useful result both in the remainder of this thesis and, hopefully,

beyond.

4.3 Rings

Let S̃n be the set of controlled n-partite states. In section 4.1, we defined

an addition ⊞ and a “multiplication” ⊠ on this set. In the spirit of compo-

sitionality, we’d like to know what happens when we plug them together. It

turns out that not only does ⊠ distribute over ⊞, but the operations form a

ring!

Theorem 4.3.1

(S̃n,⊞,⊠) defines a commutative ring

To form a ring, we must show that ⊞ defines an Abelian group, ⊠ defines a

commutative monoid and that ⊠ distributes over ⊞ (see appendix A.3). We

shall break each part of the proof into a separate lemma.

Lemma 4.3.2

(ψ̃1 ⊞ ψ̃2)⊞ ψ̃3 = ψ̃1 ⊞ (ψ̃2 ⊞ ψ̃3)

54

4.3. RINGS

Proof. Follows immediately from (Aso):

. . .

ψ̃1

. . .

ψ̃2 . . .

ψ̃3

. . .

. . .

. . .

ψ̃1

. . .

ψ̃2

. . .

ψ̃3

. . .

. . .

ψ̃2

. . .

ψ̃3

. . .

. . .

. . .

ψ̃1

(Aso)
=

(Aso)
=

Lemma 4.3.3

ψ̃1 ⊞ ψ̃2 = ψ̃2 ⊞ ψ̃1

Proof. Follows from (Sym):

. . .

ψ̃1

. . .

ψ̃2
(Sym)
=

. . .

ψ̃1

. . .

ψ̃2
(Sym)
=

. . .

ψ̃1

. . .

ψ̃2

Lemma 4.3.4

There is an additive identity id+ :=
. . .

Proof. It is clear that
. . .

is the controlled state 0̃.

55

4.3. RINGS

Then we have:

. . .

ψ̃1

. . .
(3.17)
=

. . .

. . .

ψ̃1

Finding inverses is a little more interesting, making use of the copying lemma

from section 4.2.

Lemma 4.3.5

For a controlled state ψ̃, its additive inverse is ψ̃ ◦ −1

Proof. ψ̃ ◦ −1 is still a controlled state since −1 does nothing to .

Then ψ̃ ◦ −1 inverts ψ̃ since:

. . .

ψ̃

. . .

. . .

ψ̃

−1

(4.7)
=

. . .

ψ̃

−1

. . .

ψ̃

(3.27)
= =

. . .

= id+

Thus we have shown that ⊞ defines an Abelian group. Showing ⊠ defines a

commutative monoid is very similar, except using (S1) for associativity and

commutativity and using
. . .

as the multiplicative identity.

The final component is distributivity. Again making use of the copying

lemma, this proof also relies on (BZW).

56

4.3. RINGS

Lemma 4.3.6

ψ̃1 ⊠ (ψ̃2 ⊞ ψ̃3) = (ψ̃1 ⊠ ψ̃2)⊞ (ψ̃1 ⊠ ψ̃3)

Proof.

ψ̃1 ⊠ (ψ̃2 ⊞ ψ̃3) = . . .

ψ̃2

. . .

ψ̃3

. . .

ψ̃1

. . .

. . .

(BZW)
= . . .

ψ̃2

. . .

ψ̃3

ψ̃1

. . .

. . .

= . . .

ψ̃2

. . .

ψ̃3

ψ̃1
. . .

. . .

(4.7)
=

. . .

ψ̃2

. . .

ψ̃3ψ̃1

. . .

. . .

ψ̃1

. . .

. . .

=
. . .

ψ̃2

. . .

ψ̃3ψ̃1

. . .

. . .

ψ̃1

. . .
= . . .

ψ̃2
. . .
ψ̃3ψ̃1

. . .

. . .

ψ̃1
. . .

.

= (ψ̃1 ⊠ ψ̃2)⊞ (ψ̃1 ⊠ ψ̃3)

This completes the proof of theorem 4.3.1.

Letting M̃n be the set of controlled 2n × 2n matrices, we also have:

57

4.3. RINGS

Theorem 4.3.7

(M̃n, ,) forms a non-commutative ring.

The additive and multiplicative units are ⊗ In and ⊗ In, respectively.

The proofs are mostly very similar to that of theorem 4.3.1, so I shall not

repeat every part. I prove the two following lemmas to give the main idea.

Lemma 4.3.8

M̃1
...

... M̃2
... M̃2

...
... M̃1

...= (4.8)

Proof. We prove by plugging red and commutativity of matrix addi-

tion. By definition of controlled matrices, plugging gives In on both

sides. Meanwhile, plugging
π

gives:

M̃1
...

... M̃2
...

π

(4.1.3)
= M1

...
...

... M2
...+

M2
...

...
... M1

...+= M̃2
...

... M̃1
...

π

(4.1.3)
=

Note that commutativity of addition does not immediately follow from (Sym)

unless M1,M2 commute. Instead, it relies on the fact that the W node can

only activate at most one of the two matrices which will of course commute

with the identity. Since the Z node can activate both matrices, commuta-

tivity of multiplication only holds when M1,M2 commute.

58

4.3. RINGS

Finally, the proof of distributivity again relies on the copying lemma and

(BZW).

Lemma 4.3.9

M̃2
...

... M̃3
...M̃1

... M̃2
...

... M̃1
...M̃1

...= M̃3
...

Proof.

M̃2
...

... M̃3
...M̃1

... M̃2
...

... M̃3
...M̃1

...
(BZW)
=

M̃2
...

... M̃3
...M̃1

...M̃1
...

(4.6)
=

M̃2
...

... M̃1
...M̃1

...
(4.8)
= M̃3

...

The remaining parts follow similarly. That both types of controlled diagrams

form a ring makes them much each easier to work with. As they were defined

to help with the diagrammatic treatment of Hamiltonians [13], I am hopeful

these results will have applications in quantum chemistry. For the purposes

59

4.3. RINGS

of this thesis, the ring of controlled states in particular will have a big part to

play in the following chapter, where we interpret a broad class of controlled

states as polynomials.

60

5 | Polynomials

“... one ring to bring them all, and in the diagrams

bind them”
– JRR Tolkein [adapted]

In this section, we look at how to represent polynomials in ZXW diagrams.

After looking at some examples and preliminary lemmas, the section ends

with a striking isomorphism. Since this chapter is based around plugging

green, diagrams should mainly be read up the page. However, I will still refer

to wires on top as inputs and wires below as outputs to remain consistent

with bra-ket notation.

5.1 Arithmetic in ZXW

After so many years of primary school algebra, we all feel a little uneasy when

encountering expressions like −(2x + 3(x + 2(1 − y))). There is something

unsettling about all these nested parentheses. To ease this discomfort, we

intuitively employ a little ring theory and hurriedly simplify it to −2x−3x−

6(1 − y) = −5x − 6 + 6y. Much better! With a sum of products, the most

normal of forms, order has been restored. I draw attention to this because

it is easy to forget how deeply we yearn for a sum of products and how

automatically we manipulate expressions to reach it. I mention it now as we

begin to explore the ways in which ZXW diagrams yearn to be written as a

sum of products of copies. We begin with a basic example. Note that some

W nodes will be drawn sideways for visual convenience.

61

5.1. ARITHMETIC IN ZXW

Lemma 5.1.1

= (5.1)

Proof.

(BZW)
= (WW)

=

(BZW)
=

(BZW)
= =

Clearly, the RHS of (5.1) is an SPS diagram and so each of the sideways W

nodes will copy numbers. So plugging green, this lemma simply states the

arithmetic identity:

a1

a2

b1

b2

a1

a2

b1

b2

(a1 + a2)× (b1 + b2)
=

a1b1 + a1b2 + a2b1 + a2b2
= =

This highlights how intricately linked (BZW) is to distributivity. To em-

phasise this further, consider the equation below which gives the arithmetic

interpretation of each individual step of the preceding proof. Note in partic-

ular that the only steps which do more than rearrange brackets are precisely

62

5.1. ARITHMETIC IN ZXW

the steps that use (BZW) in the proof.

(a1 + a2)× (b1 + b2)
(BZW)
= a1 × ((b1 + b2)) + a2 × ((b1 + b2))

(WW)
= a1 × (b1 + b2) + a2 × (b1 + b2)

(BZW)
= (a1b1 + a1b2) + a2 × (b1 × b2)

(BZW)
= a1b1 + a1b2 + (a2b1 + a2b2)

= a1b1 + a1b2 + a2b1 + a2b2

The bipartite connectivity of (5.1) naturally generalises in order to represent

(a1 + ...+ an)× (b1 + ...+ bm) = a1b1 + a1b2 + ...+ anbm−1 + anbm:

...
... =

...
...

. . .

. . . (5.2)

Of course, always plugging in numbers just leaves us with the complex field(
a , ,

)
. But things get more interesting when we leave some wires

unplugged. Consider the following diagrams. Reading bottom-up, the first

subtracts 1 from its input, while the second multiplies its input by 2 then

adds 3.

2 3−1

Rather than plugging numbers into the bottom, what if instead we added

them from the top?

63

5.1. ARITHMETIC IN ZXW

2 3−1 3 −1

(Aso)
=

=2 22

x

x

y

y

There are now two input wires at the bottom, which we interpret as variables

x and y respectively. Then the addition gives x+2y+2, i.e. (x−1)+(2y+3).

To preserve the single wire at the bottom and add over the same variable,

we’ll bring back our old friend .

2 3−1
1 3−1

(Aso)
= 2 23

(3.25)
=

x

x

This time we get 3x + 2, i.e. (x − 1) + (2x + 3). So we are able to add

polynomials! Next, see what happens when we try to multiply them:

2 3−1
(5.1)
=

−1 3

2

(Pcy)
=

−1 3

22

−1
3

2

2

(4.6)
=

−1
3

−3

−2 3

=
−3(3.31)

=
−2 3

−3

−2 3 2 =
(3.25)
= −3

1 −3

=2

x

x

This is not a success: (x − 1)(2x + 3) = 2x2 + x − 3 ̸= x − 3. In fact, it

is clear that (3.31) is directly responsible for cancelling the x2 term, which

64

5.2. NORMAL FORMS

otherwise would have picked up a coefficient of 2. Other than that, we seem

to have come very close to polynomial arithmetic!

One justification for this failure to represent quadratic terms and higher is

that it would require an operation x2
:: a 7→ a2 , ∀a. This is clearly non-

linear so cannot be performed by any matrix. However, we have also seen

that copying is non-linear and yet can still occur in the restricted context of

SPS. Moreover, qudit ZXW diagrams seems capable of encoding powers of

x up to xd−1. Another justification is that restricting to multilinear poly-

nomials leaves exactly 2n degrees of freedom, which coincides perfectly with

the number of coefficients in an n-partite (controlled) state! The following

section shows this is more than a coincidence.

5.2 Normal Forms

We have seen that certain ZXW diagrams seem to correspond to polynomials.

To help formalise this, I introduce the following definition:

Definition 5.2.1: Arithmetic Diagram

A ZXW diagram with a single input on top is arithmetic if it contains

only , wires, . . . , . . . ,
. . .

nodes and a boxes.

To interpret an arithmetic ZXW diagram as an arithmetic expression, read

as +, as ×, a as the number a, as copy and output/bottom wires

as variables x1, ..., xn numbered from left to right. While “algebraic diagram”

would have perhaps been better suited, this name has already been used for

different purposes in [33]. We’ll see in section 6.2.1 that arithmetic ZXW

diagrams can be interpreted as something called arithmetic circuits from

complexity theory.

The following are all examples of arithmetic diagrams, respectively repre-

65

5.2. NORMAL FORMS

senting:

−2, 2x1 + 3, (−1 + 2x1)(x1 + 5), 3x1 + x1x2 + 5x2

3−2

−1 52

2

3 5x1

x1

x1 x2

The following are not arithmetic diagrams. The first has more than one

input, the second contains a , the third contains a and the fourth

contains a cup.

2

3

−2

Note the definition applies only to syntactic expressions, not what they may

happen to be equal to. So an arithmetic diagram may be rewritten to a non-

arithmetic diagram or vice versa, for example by applying (TA). A basic

observation about arithmetic diagrams is that they copy and thus are a

type of controlled state.

Lemma 5.2.2

For any arithmetic diagram A,

A
. . .

=
. . .

Proof. By definition, other than wires A contains only . . . , . . . ,
. . .

,

and a . All a ’s can be removed with (Ept). Meanwhile all the spiders

copy due to (Bs0, K0, 3.17) respectively.

66

5.2. NORMAL FORMS

Formally, an arithmetic expression involving sums and products of scalars

and indeterminates is called a polynomial (see Appendix A.3.1). As men-

tioned at the beginning of this chapter, we typically represent polynomials

in normal form as a sum of products. By analogy, we define the following:

Definition 5.2.3: PNF

An n-output arithmetic diagram is said to be written in polynormal

form (PNF) if it looks like:

a0

. . .

. . .

a1 a2n−1

This normal form is very closely related to the completeness normal form

(CoNF, see Definition 3.2.1). Simply applying (TA) to the s at the bot-

tom of a PNF and fusing the number boxes gives a CoNF diagram. The

reason I introduce the definition of a PNF is that it is an arithmetic diagram

and therefore has an immediate arithmetic interpretation. The complete-

ness normal form however, originally coming from the ZW calculus [31], has

a different interpretation based on summing over red basis states. It is some-

thing of a coincidence that the normal form of an arithmetic diagram has

such striking resemblance to a normal form from almost 10 years ago.

The wiring for the coefficients ak of a PNF follows a particular pattern.

Coefficient ak will be connected to input i iff the ith bit of k’s binary ex-

pansion is 1. For example, for n = 3, a5 will be connected to x1 and x3

since 5 = 1012. The reason this convention is useful is due to the following

universality result:

67

5.2. NORMAL FORMS

Proposition 5.2.4

a0

. . .

. . .

a1 a2n−1

=


1 a0

0 a1

... ...

0 a2n−1

 (5.3)

Proof. We prove by induction on n.

For the base case, n = 0. The only PNF with no outputs is a number

so we have:
a0 =

[
1 a0

]
as desired.

For inductive hypothesis, we assume that (5.3) holds for every PNF

on n outputs. We use this hypothesis to extend it to PNFs with n+1

outputs.

Let D be an arbitrary PNF with n+ 1 outputs. Firstly, observe that

xn+1 is connected to only the odd coefficients {a2k+1} since these are

exactly the indices with 1 in the least significant bit. Thus we can

rewrite:

D

. . .

= a0

. . .

. . .

a1 a2n+1−1

x1 xn+1

68

5.2. NORMAL FORMS

=
a0

. . .
a2 a2n+1−2 a1

. . .

. . .

a3 a2n+1−1

. . .

x1 xn xn+1

(BZW)
=

a0

. . .
a2 a2n+1−2 . . .

. . .

a3 a2n+1−1a1

x1 xn

xn+1

= Deven

. . .

Dodd

. . .

. . .
x1 xn xn+1

Where Deven, Dodd are PNF diagrams. Since they are over n variables,

we can apply the inductive hypothesis and obtain:

Deven =


1 a0

0 a2

... ...

0 a2n+1−2

 , Dodd =


1 a1

0 a3

... ...

0 a2n+1−1

 (*)

69

5.2. NORMAL FORMS

Next, plugging red we observe:

D Deven

. . .

Dodd

. . .

. . .

= Deven

. . .

Dodd

. . .

. . .

(K0)
=

Deven

.

. . .

(5.2.2)
= Deven

. . .

=

. . .

Meanwhile,

D

π

Deven

. . .

Dodd

. . .

π
. . .

= Deven

. . .

Dodd

. . .

. . .

(K0)
=

π

π

. . .

Deven

. . .

Dodd

. . .

. . .

(3.18)
=

π

π

. . .

Dodd

. . .

. . .

(5.2.2)
=

π

π

Dodd

. . .

=

π

π

70

5.2. NORMAL FORMS

Summing these together,

D

. . .

D

π. . .

+D

. . .

= Dodd

. . .

π

π

π

= πDeven

. . .

+

= (Deven ⊗ |0⟩) + (Dodd|1⟩⟨1| ⊗ |1⟩)

(∗)
=


1 a0

0 a2

... ...

0 a2n+1−2

⊗ |0⟩+


0 a1

0 a3

... ...

0 a2n+1−1

⊗ |1⟩

=



1 a0

0 0

0 a2

0 0

... ...

0 a2n+1−2

0 0


+



0 0

0 a1

0 0

0 a3

... ...

0 0

0 a2n+1−1


=



1 a0

0 a1

0 a2

0 a3

... ...

0 a2n+1−2

0 a2n+1−1


Completing the inductive step.

This also shows that PNF can in fact represent any controlled state. We

could have proven this indirectly by rewriting PNF to CoNF from definition

3.2.1 using (TA). However, I chose to include this proof as the PNF has

a more immediate arithmetic interpretation. In fact, the idea behind the

induction of this proof is to use distributivity, rewriting a0 + a1x2 + a2x1 +

a3x1x2 = a0 + a2x1 + (a1 + a3x1)x2. The only reason this was not done

explicitly is because that would invoke theorem 5.4.1, whose proof relies on

71

5.2. NORMAL FORMS

the very result we were trying to show!

We have still yet to formally establish that other diagrams can actually be

rewritten into PNF. We shall now prove that PNF is a normal form for arith-

metic diagrams. The proof takes heavy inspiration from how you would intu-

itively simplify arithmetic expressions: expand brackets then collect terms.

The only difference is some additional book-keeping for copying. Since a

PNF always has 2n Z boxes, the writing process is very inefficient.

Proposition 5.2.5

All arithmetic diagrams can be written into PNF

Proof. Let A be an arithmetic diagram. If A = a , we are done.

Otherwise, A has at least one output. First, we shall rewrite A into

three layers, consisting of: (1) a single W at the top, (2) a layer of

. . . and (3) a layer of a ’s and
. . .

’s. Then we shall collect terms and

order the boxes to produce a PNF.

If the top of A is not already . . . , it must be It cannot be

a since the remaining arithmetic diagram would then have no inputs

which is impossible. It cannot be
. . .

since there is only one input and

arithmetic diagrams cannot contain . Thus we can rewrite:

(1)
0

. . .

. . .
(3.17)
=

(1) guarantees there is a W at the top. We shall now repeatedly

apply rewrites underneath the W until there are exactly three layers.

Assume that fusion is applied as much as possible between each stage

and (3.31) is applied and simplified with (K0) to remove whenever

possible. Then for as long as there are at least 4 layers, we can apply

one of the following rewrites:

72

5.2. NORMAL FORMS

(2)
... ...

(3.26)
= ... 2=

2

(3)
... ...

...

... ...
(BZW)
=

...

... ...=

...

(4)
(BZW)
=

...

=a b a b a b

(5)

... ...

...

... ...

...
(WW)
=

... ...

... ...
(BZW)
=

... ...
=

... ...

(6)

c

... ...

... ...

...

c

... ...

... ...

...(4.6)
=

c

Clearly, we can only stop applying these rules once A is a sum of

products of copies. Steps (2) and (3) ensure the top of A has such

a structure and steps (4) - (6) ensure that there is nothing beneath

the
. . .

’s . To see that this will always terminate, observe that (2)

and (3) preserve the depth of A while (4), (5), (6) all decrease it. (2)

and (3) can only be applied a finite number of times before another

simplification must be used. So repeatedly applying these rewrites

must eventually shrink the depth down to 3, as desired. Finally, to

put A in PNF we must:

73

5.2. NORMAL FORMS

(7) Collect terms: whenever there are two boxes connected to exactly

the same set of
. . .

’s, use (3.29) to fuse them together.

(8) Pad: use (3.23) to insert 0 for any connectivities that do not

exist in A.

(9) Reorder: use (Sym) to reorder coefficients into the canonical

order.

Step (7) ensures that every . . . has unique connectivity. Step (8)

ensures there are exactly 2n coefficients so that step (9) can order

them in the appropriate way.

Thus A has been written in PNF, completing the proof.

It is instructive to work though an example. The following corresponds to

an abbreviated simplification of the expression from the beginning of the

chapter: −(2x1 + 3(x1 + 2(1− x2))) = −6− 5x1 + 6x2

−1

2 3

2

1

−1

(1)
=

−1

2 3

2

1

−1

0

(3)
=

−1

2 3

2

1

−1

0

(3)
= −1

2

3

2

1

−1

0

(3)
= −1

2

3 2

1 −1

0

(6)
= −2 6−3

−6

74

5.3. SUBSTITUTION

(7)
=

6−5

−6
(8,9)
= 6 −5−6 0

Note that the algorithm outlined in the proof is very reliant on A being an

arithmetic diagram. For example, applying the same procedure to the follow-

ing non-arithmetic diagram results in an infinite loop of (BZW) expansions:

5.3 Substitution

A naive interpretation of a polynomial p ∈ C[x1, ..., xn] is as an evalua-

tion function ev : Cn → C. For example, if p(x1, x2) = 1 + 2x1x2, then

p|x1=1,x2=2 = 1+2(1)(2) = 5. That we can bind variables diagrammatically

follows immediately from (ADD, MUL):

1

2 1 2

(MUL)
=

1 4

(ADD)
=

5

However, polynomials are more general because one can also substitute vari-

ables for other polynomials. For example, plugging y − 1 into 2x + 3 gives

2(y − 1) + 3 = 2y + 1. This also holds diagrammatically.

2 3

−1

(Pcy)
=

3

2 2

−1

(Aso)
= 2

(ADD)
= 2 1

3−2

75

5.4. ISOMORPHISM

In fact, we can see that diagrammatic substitution holds in general. Let

A1, A2 be arithmetic diagrams. Imagine plugging A2 into A1. By proposition

5.2.5, A1 can be written into PNF which is a type of SPS diagram. By lemma

5.2.2, A2 is a controlled state. Thus we can apply the copying lemma and

push A2 onto every term of A1. For example, if A1 represents the expression

2+3x2−x1x2, then for any arithmetic diagram A2 over variables y1, ..., ym:

A2

· · ·

(4.7)
=

2 −1 3

A2

· · ·

2 −1 3

A2

· · ·

· · ·

x1
x1

y1 ym

y1 ym

The new ’s at the bottom ensure that the A2’s are still over the same

variables and that any further substitutions can also be copied through.

Moreover, a consequence of the next section is that multiplying each of A1’s

terms by A2 does in fact correspond to multiplication of the corresponding

arithmetic expressions.

5.4 Isomorphism

Section 5.1 suggests arithmetic diagrams have something to do with poly-

nomials. Since (3.31) ruled out quadratic and higher powers of x, we seem

to be looking at multilinear polynomials, i.e. elements of the ring Pn :=

C[x1, ..., xn]/(x21, ..., x2n). Lemma 5.2.2 shows that arithmetic diagrams are

controlled states, which we proved in section 4.3 also form a ring (S̃n,⊞,⊠).

Now for the big reveal: these rings are isomorphic!

Theorem 5.4.1: Polynomial Isomorphism Theorem

There is an isomorphism Pn ≃ S̃n

76

5.4. ISOMORPHISM

First, we shall define the map ϕ : Pn → S̃n before proving it induces an

isomorphism. ϕn is defined to map an arbitrary polynomial p(x1, ..., xn) =

a0 + a1xn + ...+ a2n−1x1x2...xn to the following PNF:

ϕn(p) =
a0

. . .

. . .

a1 a2n−1

Some important special cases are mapping scalars a ∈ C:

ϕn(a) =
a

. . .

And mapping indeterminates xi:

ϕn(x1) =
. . .

, ..., ϕn(xn) =
. . .

, ϕn(x2) =
. . .

We can now prove this yields an isomorphism.

Proof. First, we show ϕn is a homomorphism, i.e.

∀p, q ∈ Pn, ϕn(p+ q) = ϕn(p)⊞ ϕn(q)∧ ϕn(p× q) = ϕn(p)⊠ ϕn(q)

The strategy for the proof will be an induction on n.

Base case: We have not defined controlled states for n = 0, so the

base case begins with n = 1. Let p, q ∈ P1. Write as p(x1) = a0 +

a1x1, q(x1) = b0 + b1x1, where a0, a1, b0, b1 ∈ C. Then since p + q =

77

5.4. ISOMORPHISM

a0 + b0 + (a1 + b1)x1,

ϕ1(p)⊞ ϕ1(q) = a0 a1 b0 b1 = a0 a1 b0 b1 = a0 + b0
a1 b1

(3.25)
=

a0 + b0

a1 + b1

= ϕ1(p+ q)

Meanwhile, since p× q = a0a1 + (a0b1 + a1b0)x1,

ϕ1(p)⊠ ϕ1(q) =
a0 a1 b0 b1

(5.1)
=

a0 b0 b1a1

(4.6)
= a0b0 a0b0

b1a1

(Pcy)
= a0b0 a0b1a1b0 a1b1

(3.31)
= a0b0 a0b1a1b0 a1b1

(3.24)
= a0b0 a0b1a1b0

(3.25)
= a0b0

a0b1 + a1b0

= ϕ1(p× q)

78

5.4. ISOMORPHISM

Completing the base case.

Inductive step:

LetHom(n) assert than ϕn is a homomorphism. Then for the inductive

step we wish to prove that ∀n,Hom(n) =⇒ Hom(n+ 1).

The proof relies on the recursive definition of R[x1, x2] = R[x1][x2],

for any ring R, to rewrite an arbitrary polynomial p(x1, ..., xn+1) =

a0+a1xn+1+...+a2n+1−1x1x2...xn+1 ∈ Pn+1 as p(xn+1) = p0+p1xn+1,

where p0, p1 ∈ Pn. This allows the pi to be treated similarly to the

scalars in the base case. To emphasise this, they will be drawn in

green boxes. To help distinguish when an operation is covered by the

inductive hypothesis, the wires for variables x1, ..., xn will be drawn

in light blue, while the xn+1 wires will be drawn in black. Thus the

inductive hypothesis states that:

a b

. . .

=
a+ b

. . .
x1 xn x1 xn

(IH1)

a b

. . .

=
a× b

. . .

x1 xn
x1 xn

(IH2)

Let p(xn+1) = p0+p1xn+1, q(xn+1) = q0+q1xn+1, where p0, p1, q0, q1 ∈

Pn. Then for addition:

ϕn+1(p)⊞ ϕn+1(q) = p0 p1 q0 q1

. . .x1 xn xn+1

(Aso)
= p0 p1q0 q1

. . .

79

5.4. ISOMORPHISM

(IH1)
=

p0 + q0 p1 q1

. . .

(BZW)
=

p0 + q0

. . .

p1 q1

(IH1)
=

p0 + q0

. . .

p1 + q1

= ϕn+1(p0 + q0 + (p1 + q1)xn+1) = ϕn+1(p+ q)

Similarly, for multiplication:

ϕn+1(p)⊠ ϕn+1(q) =
p0 p1 q0 q1

. . .x1 xn xn+1

(5.1)
=

p0 q0 q1p1

. . .

(4.7)
=

p0 q0

q1p1

. . .

p0 q0
(IH2)
=

p0q0

q1

p1

. . .

p0

q0

(BZW)
=

p0q0

q1

p1

. . .

p0

q0
=

p0q0

q1

p1

. . .

p0

q0

80

5.4. ISOMORPHISM

(4.7)
=

p0q0

q1p1

. . .

p0

q0

p1

(IH2)
=

p0q0

q1

. . .

p0

p1q0

p1

(BZW)
=

p0q0

q1

. . .

p0

p1q0

p1

=

p0q0

q1

. . .

p0

a1q0

p1

(3.31)
=

p0q0

q1

. . .

p0

p1q0

p1

(5.2.2,3.17)
=

p0q0

q1

. . .

p0

p1q0

(IH2)
=

p0q0

. . .

p0q1

p1q0 (BZW)
=

p0q0

. . .

p0q1p1q0

(IH1)
=

p0q0

. . .

p0q1 + p1q0

= ϕn+1(p0q0 + (p0q1 + p1q0)xn+1) = ϕn+1(p× q)

This completes the inductive step, proving that ∀n > 1, ϕn is a homo-

81

5.4. ISOMORPHISM

morphism.

Finally, to see ϕn is an isomorphism, we use proposition 5.2.4 to write

an arbitrary controlled state in PNF:


1 a0

0 a1

... ..

0 a2n−1

 =
a0

. . .

. . .

a1 a2n−1

Then all we have to do is interpret it as the image of a polynomial:

a0

. . .

. . .

a1 a2n−1

=

a0 a2n−1. . .

. . .

a1

. . .

. . .

.

. . .

= ϕn(a0) + ϕn(a1xn) + ...+ ϕn(a2n−1x1x2...xn)

= ϕn(a0 + a1xn + ...+ a2n−1x1x2...xn)

A subtle detail in this proof is that the inductive step is technically ex-

tending the homomorphism ϕn : Pn → S̃n to the homomorphism ϕn+1 :

Pn[xn+1]/(x
2
n+1) → S̃n+1. Fortunately, there is a straightforward isomor-

phism

Pn[xn+1]/(x
2
n+1) ≃ Pn+1

In other words, extending and taking the quotient commute. So there is

nothing to worry about.

82

5.4. ISOMORPHISM

It has been known since 2011 that W adds numbers and Z multiplies them

[1]. So while the lifting of numbers to polynomials may not seem particu-

larly surprising in hindsight, this discovery was not a simple generalisation.

A priori, it was not obvious to me that the ZXW calculus could only rep-

resent multilinear polynomials. Nor was it obvious that these polynomials

were isomorphic (as opposed to merely homomorphic) to controlled states,

thus making them universal for quantum computation. Both of these facts

play essential roles in the proof of the isomorphism. I do not believe this dis-

covery would have been possible without the invention of the ZXW calculus

(in particular (TA) and its role in the copying of numbers (3.20)) , the defi-

nitions in [13] and the proof of completeness in [18], all of which happened

in the last year. It is exciting to see that these were sufficient to complete a

generalisation that was over a decade in the making. I am very hopeful that

the ZXW calculus will continue to bring new developments to the world of

diagrams, and beyond.

83

6 | Applications

Chapter 5 ended with a striking isomorphism between (controlled) states and

multi-linear polynomials. In this chapter, I try to demonstrate the signifi-

cance of this isomorphism by surveying some potential applications of identi-

fying qubits with their polynomials. Polynomials are extremely well-studied

mathematical objects so the purpose of this section is to show illustrate how

they may be useful for quantum information. The selection of applications

here should not be taken as comprehensive and largely reflects my own tastes

and interests.

Throughout this chapter, I will treat a state |ψ⟩, its controlled state ψ̃ and

its polynomial pψ interchangeably. If p is a polynomial over indeterminates

X = {x1, ..., xn}, I will refer to p as an X-poly.

6.1 Entanglement Detection

This section investigates entangled states based on their polynomial repre-

sentations. After characterising separability in terms of irreducible polyno-

mials, I propose a novel algorithm for entanglement detection and attempt

to generalise it to mixed states.

6.1.1 Separability

Recall from section 2.6 that a bipartite pure state |ψ⟩AB is entangled iff it

cannot be written as a product |ψ1⟩A ⊗ |ψ2⟩B. Translating separability into

polynomials gives a relatively simple algebraic characterisation of entangle-

ment.

84

6.1. ENTANGLEMENT DETECTION

Proposition 6.1.1

Let A = C2⊗n , B = C2⊗m . Let X = {x1, ..., xn}, Y = {y1, ..., ym}

be the corresponding indeterminates. Let |ψ⟩AB be a bi-partite pure

state.

Then |ψ⟩ is separable iff each of the irreducible factors of pψ (over

C[x1, ..., xn, y1, ..., ym]) is an X-poly or a Y -poly.

Proof. ⇒:

Suppose |ψ⟩AB is separable, i.e. |ψ⟩AB = |ψ1⟩A ⊗ |ψ2⟩B. Then we can

plug
π

into the respective controlled states to yield:

π

=

π π

(K0)
=

π

ψ̃1 ψ̃1 ψ̃2ψ̃2ψ̃

· · · · · · · · · · · · · · · · · ·
(6.1)

We can now interpret the RHS as a multiplication of polynomials:

π

ψ̃1 ψ̃2=

π

pψ1
× pψ2=

π

ψ̃1 ψ̃2

· · · · · ·
· · ·

· · · · · ·
· · ·

· · ·· · ·

(6.2)

Thus, pψ(x1, ..., xn, y1, ..., ym) = pψ1(x1, ..., xn)×pψ2(y1, ..., ym) and so

pψ can be factored as a product of an X-poly and a Y -poly. Regardless

of how pψ1 , pψ2 themselves can be factored, there will be no irreducible

factor of pψ containing both xi and yj variables.

⇐: Suppose pψ can be factored into a×p1× ...×pk for a ∈ C, p1, ..., pk

irreducible polynomials. Since C[x1, ..., xn, y1, ..., ym] is a unique fac-

torisation domain (UFD), this factorisation is unique up to units and

the order of the pi’s.

85

6.1. ENTANGLEMENT DETECTION

By assumption, each of the pi is either an X-poly or a Y -poly. Let pψ1

be the product of the X-polys and pψ2 be the product of the Y -polys.

Then read equations (6.2, 6.1) backwards to find that ψ separates.

That performs the tensor product of controlled states was also observed

in the proof of ZXW completeness [18]. The innovation of this proof is to

further translate this as a product of polynomials over disjoint variables. It

is extremely fortunate that this factorisation occurs in C[x1, ..., xn, y1, ..., ym]

rather than C[x1, ..., xn, y1, ..., ym]/(x21, ..., y2m). While the former is a UFD,

the latter is not. In fact, the quotient ring is not even an integral domain

since, for example, x1 × x1 = x21 = 0. This means that factorisation is

not well-defined, let alone uniquely. On the other hand, unique factorisa-

tion is well defined in C[x1, ..., xn, y1, ..., ym] and in fact there exists efficient

polynomial-time algorithms for performing it (see [34] for a survey). Thus,

proposition 6.1.1 suggests a novel algorithm for deciding whether a state ψ

is entangled, given its entire state-vector:

1. Translate ψ into its polynomial pψ .

2. Factor pψ .

3. Ensure none of the factors depend on both xi and yj for some i, j .

The bottleneck for this algorithm is the factorisation step. This can be done

in time polynomial in 2n+m - the length of ψ’s state vector. It is interesting

to consider how this factorisation could be performed with a more compact

representation of pψ . Some preliminary numerical results on the performance

of this algorithm are included in the code supplement https://anonymous.

4open.science/r/thesis_files-7C0B/entanglement_algs.ipynb. It ap-

pears this method scales slightly better than computing the Schmidt number.

However, both methods are inefficient since they rely on the entire state vec-

86

https://anonymous.4open.science/r/thesis_files-7C0B/entanglement_algs.ipynb
https://anonymous.4open.science/r/thesis_files-7C0B/entanglement_algs.ipynb

6.1. ENTANGLEMENT DETECTION

tor of ψ.

6.1.2 Mixed States

Mixed states can also be entangled. To see what the polynomials of mixed

states look like, we must first represent them diagrammatically. As outlined

in section 2.7, mixed states are typically represented using density matri-

ces. Diagrammatically, mixed states are represented using a technique called

doubling: |ψ⟩ 7→ |ψ†⟩⊗|ψ⟩, U 7→ U †⊗U [28]. The wires and boxes for dou-

bled processes are drawn as thicker versions of their undoubled counterparts.

So:

=

A doubled state ψ is called ψ̂:

ψ̂ = ψ ψ

· · · · · · · · ·

· · ·

Similarly, for f̂ = double(f):

f̂ = f f
· · · · · · · · ·

· · · · · · · · ·

· · ·

· · ·

87

6.1. ENTANGLEMENT DETECTION

Then composition is defined to respect the wiring:

f̂

ĝ
=

f f

g g

f̂ ĝ = f f g g

Though doubling preserves horizontal and vertical composition, it very cru-

cially does not preserve sums. While a doubled sum corresponds to a super-

position, a sum of doubles corresponds to a classical mixture. For example:

double

(
+

π π
)

= double
()

= =

̸= = +
π π

= double
()

+ double

(
π π

)

An important result concerning maps on mixed states is the following:

Proposition 6.1.2: (6.46 in [28])

All maps on mixed states are of the form:

f̂

For some linear map f .

Where := is called the discard effect.

Due to the presence of classical mixing, the definition of separability for

mixed states is expanded to include mixtures of product states [35]. More

88

6.2. COMPLEXITY THEORY

formally, a mixed state ρ is separable iff it can be written as:

ρ =
∑
i

piρ
(A)
i ⊗ ρ

(B)
i

For some probability distribution {pi}. As with pure states, a state that can-

not be written in a separable form is called entangled. While the algorithm

outlined in section 6.1.1 can still detect mixed product states, it is therefore

no longer sufficient for detecting separability. It is not at all obvious how

to adapt the reducibility test to account for linear combinations of product

states. It seems necessary to return to treating ψ as a vector rather than a

polynomial since vector spaces are the home of linear combinations and thus

the polynomial perspective may not be able to offer any further insights.

6.2 Complexity Theory

Computational complexity theory is concerned with the inherent difficulty of

computational problems. It classifies problems according to their consump-

tion of computational resources such as space, time, randomness and magic.

In this section, I invoke some applications of polynomials in complexity the-

ory to demonstrate the applicability of the polynomial-qubit isomorphism1.

In particular, I show how the polynomial isomorphism theorem opens up

connections between algebraic complexity theory and quantum circuits. Ide-

ally, I would have had more time and space to write this section, but I hope

this section still indicates the wealth of possibilities that are available.

I assume familiarity with basic complexity concepts such as reductions and

oracles and classes such as P,NP and BPP. For a thorough introduction, see

[36]. I define some less familiar classes here.
1Note that the use of polynomials as mathematical objects in complexity theory is

completely distinct from the assumption that efficiency corresponds to polynomial time.

89

6.2. COMPLEXITY THEORY

Definition 6.2.1: BQP [37]

L ∈ BQP iff there exists a family of quantum circuits (Qn) where for

each n, Qn is of size poly(n) on n qubits such that:

1. x ∈ L =⇒ Pr[Qn(x) = 1] ≥ 2/3

2. x /∈ L =⇒ Pr[Qn(x) = 1] ≤ 1/3

For |x| = n.

It is usually assumed that Qn is built from some fixed gateset such as

{H,T,CNOT}. The choice of gateset is usually not important since all

known universal gatesets can simulate one another with only a polynomial

overhead. BQP is considered to capture the notion of efficient quantum

computation, just as BPP is considered to capture the notion of efficient

probabilistic computation. It is easy to see that P ⊆ BQP ⊆ PSPACE. The

potential advantage of quantum computers effectively depends on the con-

jecture P ̸= BQP. Unfortunately, this seems very difficult to prove since

it would imply P ̸= PSPACE, perhaps the most glaring open problem of

complexity theory.

Definition 6.2.2: RP

A language L ∈ RP iff there exists a polynomial-time probabilistic

Turing Machine M such that:

1. x ∈ L =⇒ Pr[M(x) = 1] ≥ 1/2

2. x /∈ L =⇒ Pr[M(x) = 1] = 0

Intuitively, this corresponds to a restriction of NP where acceptance requires

at least half of the computational paths to accept. Recall that for a complex-

ity class C, the class coC := {L : L ∈ C}, where L is the set of strings not in L.

Thus coRP corresponds to always accepting correctly and rejecting correctly

with probability at least 1/2. Note that P ⊆ RP ∪ coRP ⊆ BPP ⊆ BQP.

90

6.2. COMPLEXITY THEORY

Definition 6.2.3: NQP [38]

A language L ∈ NQP iff there exists a non-deterministic polynomial

time quantum Turing Machine M such that x ∈ L iff M accepts x

with nonzero probability.

Just as P ⊆ BQP, we of course have NP ⊆ NQP. Moreover, it turns out

that NQP = coC=P, the class of counting problems where the number of

accepting paths does not equal the number of rejecting paths [39].

6.2.1 Algebraic Complexity

While researching potential applications of polynomials of complexity the-

ory, I was delighted to learn there is a whole sub-field known as algebraic

complexity theory dedicated to the study of computing with polynomials. In

algebraic complexity, polynomials are not represented as a fully expanded

sum of monomials since they might be exponentially sized in the number of

variables. Instead, they are encoded as arithmetic circuits.

Definition 6.2.4: Arithmetic Circuit [40]

An arithmetic circuit C over n variables and some field F is a directed

acyclic graph where the leaves are labelled with constants c ∈ F or

variables xi and internal nodes labelled with + or × gates. The root of

C is identified with the polynomial p ∈ F[x1, ..., xn] that is computed

by C.

An example of an arithmetic circuit computing 2x1+3x2(x2−1) is depicted

below:

2 x1 3 x2 −1

×

+

×

+

Equality of polynomials p = q means that they give the same output on

91

6.2. COMPLEXITY THEORY

all inputs. Equivalence of polynomials p ≡ q means they are syntactically

identical. For example, (x1 + 2)(x2 − 1) = x1x2 + 2x2 − x1 − 2 though they

are not equivalent. Meanwhile 1+ 2(x1 − 3) ≡ 1+ 2(x1 − 3). The maximum

number of edges leaving an internal node is called the fan-out and if C has

fan-out 1 (i.e. is a tree), then it is called an arithmetic formula.

It follows immediately from theorem 5.4.1 that arithmetic ZXW diagrams

can be interpreted as arithmetic circuits. Specifically, the generators can be

translated as follows:

. . . ;
+

. . . , . . . ;
×
. . . ,

. . .

; xi

. . .

, a ; a

When a is above a or , it translates to a fan-out of the cor-

responding arithmetic gate. Note that only multilinear arithmetic circuits

(i.e. arithmetic circuits whose corresponding polynomial is multilinear) can

be translated back into arithmetic ZXW diagrams. Identifying arithmetic

ZXW diagrams with arithmetic circuits means we can immediately access

a wealth of results from algebraic complexity theory. For example, incor-

porating a technique called depth reduction [41] means that any arithmetic

ZXW diagram of size nk can be rewritten to an arithmetic ZXW diagram

of size poly(nk) and depth O(log2 n).2 Another example is an efficient test

for arithmetic diagram equality thanks to an algorithm for the following

problem:

Definition 6.2.5: Polynomial Identity Testing (PIT) [40]

Given an arithmetic circuit C that describes a polynomial

p(x1, ..., xn) ∈ F[x1, ..., xn], the PIT problem is to decide whether

p = 0.

2This relies on the fact that multilinear polynomials can have degree at most n.

92

6.2. COMPLEXITY THEORY

Where F is some “sufficiently large” field. PIT can be used to check whether

two polynomials are equal since p = q ⇐⇒ p − q = 0. More surprising

examples of problems that reduce to PIT are bipartite perfect matching in

graphs and primality testing [40]. PIT has an efficient probabilistic algorithm

thanks to the following lemma:

Lemma 6.2.6: Schwartz-Zippel [40]

Let p ∈ F[x1, ..., xn] be a polynomial of degree d ≥ 0. Then for any

finite subset S ⊆ F:

Prr1,...,rn∈S [p(r1, ..., rn) = 0] ≤ d

|S|

Thus polynomials of low degree can only have very few roots. This is ex-

ploited in the Schwartz-Zippel algorithm for PIT which randomly evalu-

ates p with points from a finite subfield of F [40]. If p = 0, then clearly

Pr[p(r1, ..., rn) = 0] = 1 which means PIT ∈ coRP (i.e. PIT ∈ RP). We

shall return to this algorithm a little later.

Arithmetic circuits give rise to their own algebraic complexity classes. Two

of the most important are as follows.

Definition 6.2.7: VP [42]

A family of polynomials (fn) is in VP iff for every n, fn has at most

poly(n) variables and degree and there exists an arithmetic circuit

computing fn of size poly(n).

93

6.2. COMPLEXITY THEORY

Definition 6.2.8: VNP [42]

A family of polynomials (gn) is in VNP iff for every n, gn has at most

poly(n) variables and degree and there exists some family (fn) ∈ VP

such that

gn(x1, ..., xpoly(n)) =
∑

e⃗∈{0,1}poly(n)
fpoly(n)(x1, ..., xpoly(n), e1, ..., epoly(n))

As the name might suggest3, VP (the class of polynomially sized polynomials)

is considered the algebraic analogue of P. Meanwhile, VNP is considered

the algebraic analogue of NP. Informally, VNP is the class of polynomials

such that the coefficient of any given monomial can be efficiently computed.

Clearly, VP ⊆ VNP. As with the P versus NP problem, it is widely believed

but remains to be proven that VP ̸= VNP [42]. There is also a notion of

reductions for algebraic complexity classes.

Definition 6.2.9: p-projections [42]

A polynomial f ∈ F[x1, ..., xn] is a projection of g ∈ F[x1, ..., xm]

if there exists some assignment ρ ∈ ({x1, ..., xn} ∪ F)m such that

f(x1, ..., xn) ≡ g(ρ1, ..., ρm) identically as polynomials.

A family of polynomials (fn) is a p-projection of another family (gn)

if for every n, fn is a projection of gpoly(n).

Informally, a projection means that g can simulate f using a simple substi-

tution of variables and constants. For example f(x1, x2) = 2x1x2 + 4 is a

projection of g(x1, x2, x3) = x1x2x3 + 2x3 since g(x1, x2, 2) ≡ f . A land-

mark result in algebraic circuit complexity is that computing the permanent

of a matrix is VNP-complete (i.e. PERM ∈ VNP and every other prob-

lem in VNP is a p-projection of PERM) [43]. Meanwhile, computing the
3The V is after Valiant, who defined them in [43].

94

6.2. COMPLEXITY THEORY

determinant is in VP.

Since we are interpreting arithmetic ZXW diagrams as arithmetic circuits,

it is natural to relate these diagrams to the complexity classes we have just

introduced. Observe that by proposition 5.2.4, every quantum state is equiv-

alent to some arithmetic diagram (namely, its PNF). Though the PNF is

exponentially large, there are clearly a number of quantum states with much

smaller arithmetic diagrams (for example, product states). I propose the

following definition which aims to capture the algebraic analogue of BQP,

in other words the class of polynomials corresponding to polynomially sized

quantum circuits.

Definition 6.2.10: VQP

A family of polynomials (fn) is in VQP iff for every n there exists a

polynomially sized quantum circuit Qn on n qubits such that

fn = pQn|0...0⟩

Intuitively, (fn) ∈ VQP means that fn is the arithmetic diagram of some

polynomially sized quantum circuit evaluated on |0...0⟩. For example, it is

clear that (
∏n
i=1(1 + xi))n ∈ VQP since

∏n
i=1(1+ xi) corresponds to |+...+⟩

so can be prepared with n Hadamard gates. In the definition, it is neces-

sary to run the circuit on some input in order to produce a state so that an

arithmetic diagram can be found. The choice of |0...0⟩ is completely arbi-

trary. Including only states is no loss of generality due to a bending trick

demonstrated in the following subsection.

An interesting question is whether VP
?
= VQP. If so, then every quantum

state has a compact polynomial representation and every arithmetic circuit

has a short quantum circuit. This would open up an arsenal of algebraic

complexity techniques for quantum circuit complexity. Even if VP = VQP

95

6.2. COMPLEXITY THEORY

were true, however, the following section shows it is very unlikely for there to

be an efficient way of converting between arithmetic diagrams and quantum

circuits.

6.2.2 Proof Complexity

In this section, I show how the efficiency of algorithms relating to polynomials

can be used to provide lower bounds on the length of ZXW proofs. While the

bound itself is not particularly surprising, the proof demonstrates how results

from distant areas of complexity theory may relate to quantum computing.

Proof complexity is a part of complexity theory that focuses on the efficiency

of proof systems [44]. This includes questions like what are the upper and

lower bounds on the lengths of a proof from a given system, how can one

proof system reduce to another, etc. Since the ZXW calculus is a proof

system, these questions also apply.

For polynomially sized ZXW diagrams on n wires, the proof of completeness

[18] gives an exponential upper bound on the length of proofs of equality. I

summarise their technique now, except using PNF rather than CoNF.

Suppose one wishes to show that D1 = D2. First, bend D1 and D2 into

states, if necessary. Then write D1 as a stack:

D1 =

A1

A2

Ad1

· · · · · ·

· · ·
· · ·

· · ·...

· · ·

· · ·

· · ·

Where each Ai is a tensor product of ZXW generators and d1 = poly(n) is

96

6.2. COMPLEXITY THEORY

the depth of D1. Now bend the vertical stack of Ai’s into a horizontal train:

A1 A2 Ad1

· · ·

· · ·

. . .

· · ·

· · ·· · ·

Then convert each of the bent Ai’s into a PNF. Each of the generators are

mapped as follows:

=

π

1 1 1 −1 , =

π

1 a
a

· · ·
· · ·

, =

π

1 1 1

Proposition 6.1.1 outlines how taking the tensor product of PNFs can be

performed with polynomial multiplication (over distinct variables). Thus

each bent Ai (the product of n bent generators) can be converted to some

PNF Pi. So we are left with:

P1 P2 Pd1
· · ·

. . .

· · ·· · ·

= Πd1i=1Pi
· · ·· · ·

Finally, to compute the partial trace of a PNF between i and j (i.e. a cup

between i and j), remove any Z boxes which are connected to only i or only

j. On the corresponding polynomial, this means sending coefficients with

only one of xi, xj to 0 and retaining the rest. For example:

π

1 4 2 −3 =

π

1 4

Doing the same to D2, we have two PNFs that are equal iff D1 = D2.

97

6.2. COMPLEXITY THEORY

However, since the PNF is a direct representations of the state vector (see

proposition 5.2.4), both PNFs will be of size O(2n) so this process must take

exponential time. This seems unnecessary, but I shall provide evidence that

it is close to optimal.

A serious bottleneck is performing the polynomial multiplications corre-

sponding to the tensor products. So one possible idea for more efficient

proofs is to simply leave the polynomials in a more compact, unexpanded

form. More generally, one could try and rewrite D1 and D2 to their near-

est arithmetic diagram (which one hopes to be exponentially smaller than

the corresponding PNFs). Then simply use PIT to check for equality. The

problem with this is that there is no clear way of taking the partial trace of a

product of polynomials without first expanding the product. The polynomial

representation of tracing the tensor product is as follows.

Lemma 6.2.11

Let ρxi,xj (p) correspond to the partial trace between xi and xj on p.

Let pxi ∈ C[x1, ..., xi−1, xi+1, ..., xn] be the sum of all xi coefficients in

p.

For arbitrary polynomials p(x1, ..., xn), q(y1, ..., ym), taking the trace

of the product yields:

ρxi,yj (p× q) = p|xi=0 × q|yj=0 + pxi × qyj (6.3)

Proof. For visual ease, we draw the case of i = n, j = 1:

p

· · ·

q

· · ·

= p

· · ·

q

· · ·

p

· · ·

q

· · ·
+

π π

The left part of the sum is clearly equal to p|xn=0 × q|y1=0. For the

98

6.2. COMPLEXITY THEORY

right part of the sum, use the same technique as the proof of theorem

5.4.1 to write p = a0 + a1xn, q = b0 + b1y1, for a0, a1 ∈ Pn−1, b0, b1 ∈

C[y1, ..., ym−1]/(y
2
i). Then as in the proof of proposition 5.2.4, plugging

π will yield a1 = pxn and b1 = qy1 , respectively.

While evaluating p|xi=0 and q|yj=0 can be done efficiently, since π is not a

number then plugging π does not correspond to evaluation, but rather “pops

out” coefficients as seen in the proof of proposition 5.2.4. So, if p is given

in a compact form, it is not clear how to efficiently compute pxi . In fact,

one almost certainly cannot. The ability to efficiently rewrite an arbitrary

state to an arithmetic ZXW diagram would be too good to be true (even

if VP = VQP). Not only would it allow efficient simulation of quantum

circuits, it would allow a reduction from an NQP-complete problem to PIT

(which is in RP). This is highly implausible since it is generally assumed

that P ̸= NP ⊆ NQP and yet it is considered likely that PIT ∈ P [40]. The

problem to be reduced is as follows.

Definition 6.2.12: Exact non-identity problem (ENI) [45]

Let Hin be a Hilbert space and let C2⊗m be an m-qubit ancilla space.

Given a classical description x ∈ {0, 1}∗ of a quantum circuit Ux that

acts on Hin ⊗ C2⊗m, the ENI problem decides whether

∃|ψ⟩, |(⟨ψ| ⊗ ⟨0...0|U ′
x(|ψ⟩ ⊗ |0...0⟩)|2 ̸= 1

or

∀|ψ⟩, |(⟨ψ| ⊗ ⟨0...0|U ′
x(|ψ⟩ ⊗ |0...0⟩)|2 = 1

Where U ′
x is a version of Ux that uncomputes the ancilla state back

to |0⟩⊗m.

99

6.2. COMPLEXITY THEORY

Put simply, ENI decides whether Ux is not the identity on some non-ancilla

inputs. It is proven in [45] that ENI is QNP-complete. When this problem

is modified to allow a circuit to be close to the identity, it becomes QMA-

complete [46]. However, since PIT tests for exact equality we are able to

reduce the stronger ENI.

Proposition 6.2.13

If all quantum states can be rewritten to an arithmetic diagram in

polynomial time, then NQP = RP.

Proof. Suppose that every ZXW state diagram can be rewritten to an

arithmetic diagram in polynomial time. We shall use this assumption

to give a poly-time reduction from ENI to PIT .

Let x be a classical description of a quantum circuit Ux over n =

poly(|x|) qubits. We can assume Ux is built using a fixed gateset

where each gate has a constant sized ZXW diagram (for example,

H,T,CNOT). Then we can write the following as a ZXW diagram in

poly(|x|) time:

Ux
· · · · · ·

· · · · · ·
Dx

· · ·

=

Now use the assumption to rewrite Dx into an arithmetic diagram Ax.

Interpret Ax as a polynomial px with left variables x1, ..., xn and right

variables y1, ..., yn. The polynomial for the bent identity is represented

by the linear sized arithmetic circuit pn∩ :=
∏n
i=1(1+xiyn−i+1). So px =

pn∩ ⇐⇒ Ux = I which means PIT (px − pn∩) = 1 ⇐⇒ ENI(Ux) = 1.

This gives a polytime reduction from ENI to PIT . Since ENI is

NQP-complete and PIT ∈ RP, this puts NQP ⊆ RP.

100

6.2. COMPLEXITY THEORY

Note that since RP ⊆ NP ⊆ NQP, this collapse would further imply NP =

RP.

Proposition 6.2.13 demonstrates the hardness of translating descriptions of

states into arithmetic ZXW diagrams. For any proof of equality that relies

on going through arithmetic diagrams, the result gives a (conditional) ex-

ponential lower bound. Even if VQP ⊆ VP, this gives strong evidence that

arithmetic diagrams cannot be efficiently found from arbitrary circuits. If

VQP ⊈ VP, this result would not be at all surprising since there would not

be enough time to write the super-polynomially sized arithmetic diagram of

an arbitrary quantum circuit.

We might also consider whether VP ⊆ VQP. This would imply polysize

arithmetic circuits can be converted to polysize quantum circuits. While

this may be possible, it surely cannot be done efficiently due to an even

stronger hardness result. [19] shows that ZX circuit extraction (i.e. finding

a quantum circuit for an arbitrary ZX diagram, promised that it is unitary)

is #P hard. This is proved using a reduction from #SAT , the problem of

counting the number of solutions to a SAT instance. The proof finds a way

of representing NOT and AND gates as ZX diagrams and then running the

corresponding SAT instance on |+...+⟩ to count the number of solutions.

This is then used as the input of a controlled operation which guarantees

the resulting circuit is unitary. It is not difficult to find the arithmetic

ZXW representation of AND and NOT gates. Thus the proof can easily

be modified to show the #P-hardness of converting arithmetic diagrams to

quantum circuits.

Finally, what happens if VNP ⊆ VQP? Since PERM ∈ VNP this would give

polysize quantum circuits for PERM . But since PERM is also #P-hard

[47], this would mean P#P ⊆ BQP, which is highly implausible.

101

7 | Conclusion

In this thesis, I explored polynomial arithmetic in the ZXW calculus. Other

than an almost entirely self-contained introduction to the relevant prerequi-

sites, my main contributions were as follows:

• Section 3.2.5 proved a number of new lemmas for the ZXW calculus.

• Lemmas 4.2.2 and 4.2.3 showed that under natural conditions,

copies arbitrary controlled diagrams (would have also sufficed).

Theorems 4.3.1 and 4.3.7 used the copying lemmas to show that con-

trolled states and controlled matrices both form a ring. From such a

simple definition, it is quite a surprise that controlled diagrams form

such rich algebraic structures.

• Section 5.1 found that a certain fragment of ZXW diagrams could be

interpreted as arithmetic circuits. Section 5.2 proved this fragment was

in fact universal for controlled states, thanks to a coincidental connec-

tion with a pre-existing normal form. Section 5.4 used the arithmetic

interpretation to show that controlled states are in fact isomorphic to

multilinear polynomials. This is the main result of the thesis, opening

up a new perspective on the ZXW calculus and quantum information

as a whole.

• Chapter 6 discussed some applications of the polynomial isomorphism

theorem. This culminated in a novel algorithm for entanglement de-

tection, the definition of a new algebraic complexity class and some

powerful complexity theoretic reductions based on polynomial identity

testing and arithmetic circuits.

102

7.1. FUTURE DIRECTIONS

7.1 Future Directions

The bulk of this thesis was spent building up to the proof of the isomorphism

theorem. In chapter 6, I tried to convey the significance of the result by

exploring some applications. I did not have as much time to spend on this

section as I would have liked and the choice of topics was not comprehensive.

I finish by offering some thoughts on the directions I was not able to pursue.

Qudits

Diagrammatically, the most obvious future direction is qudits. In qudit ZXW

calculus, Z phases are now tuples (a1, ..., ad−1) ∈ Cd−1 which are added and

multiplied component-wise by the W and Z nodes, respectively. While many

of the ZXW rules continue to hold for qudits, (3.30) generalises to:

=d· · ·

Thus the CoNF is generalised to include up to d − 1 repeated connections,

hence requiring dn parameters which coincides with the number coefficients

in a multivariate polynomial of individual degree d− 1. So one might hope

that

S̃dn ≃ Cd−1[x1, ..., xn]/(x
d
1, ..., x

d
n)

Where S̃dn is the ring of controlled qud it states. However, as shown in the

code supplement (https://anonymous.4open.science/r/thesis_files-7C0B/

qudits.ipynb), the multiplication is slightly more complicated than killing

xd powers and higher. I am hopeful there exists some other quotient to take

care of this.

103

https://anonymous.4open.science/r/thesis_files-7C0B/qudits.ipynb
https://anonymous.4open.science/r/thesis_files-7C0B/qudits.ipynb

7.1. FUTURE DIRECTIONS

Controlled Matrices

Chapter 4 discovered two rings: controlled states and controlled matrices.

Chapter 5 only gave semantics to the former. Thus it is worth considering

whether the ring of controlled matrices is isomorphic to anything interesting.

Since the addition and multiplication operations correspond to the control

of literal matrix addition and multiplication, it is unlikely to stray too far

from the realm of matrices. One hope is that they correspond to matrix

polynomials, i.e. polynomials waiting to be evaluated on square matrices.

Matrix polynomials can be used to simulate matrix exponentials - which

are of particular importance for Hamiltonian simulation. Thus, a connec-

tion to matrix polynomials would help continue the work in [13] to give a

diagrammatic treatment of quantum chemistry.

Algebraic Complexity

Recall that the obstacle to rewriting a quantum circuit to an arithmetic

diagram was finding the partial trace of a product. One way of reinterpreting

the pxn in equation (6.3) is using partial derivatives. Since p can be written

p = p0 + pxnxn, for p0, pxn ∈ Pn−1, then ∂p/∂xn = pxn .

Fortunately, partial derivatives have been very well studied in the context of

arithmetic circuits [48] and so I am hopeful this may simplify the arithmetisa-

tion of quantum circuits somewhat. Of course, it cannot make the conversion

efficient due to proposition 6.2.13. However, I hope that it makes it possible.

In that vein, I make the following conjectures about the newly defined VQP:

1. VP = VQP. Intuitively, small arithmetic circuits should have small

quantum circuits and vice versa. Unfortunately, performing the trans-

formation in either direction is very difficult, as argued in section 6.2.2.

Nevertheless, this immediately allows for a transfer of many of the rich

arithmetic circuit lower bounds [49] to quantum circuits, for whom

104

7.1. FUTURE DIRECTIONS

lower bounds are more sparse.

2. VNP ⊈ VQP. As mentioned at the end of section 6.2.2, VNP ⊆

VQP =⇒ P#P ⊆ BQP.

Since it is known that VP ⊆ VNP, together these imply VNP ⊈ VP. As this

would resolve a long-standing open problem, I expect they’ll be quite hard

to prove!

Not only does algebraic complexity theory study algorithms for computing

polynomials, it also studies proof systems built out of polynomials them-

selves [50]. Usually, these systems use the ring axioms to show that a given

system of equations is unsatisfiable. It would therefore be very interesting

to interpret the ZXW calculus as a type of algebraic proof system and see

whether any connections can be made with more traditional algebraic proof

systems.

Circuit Optimisation

It was briefly mentioned in section 6.2.1 that depth reduction allows size s

arithmetic circuits to be rewritten to depth O(log2 n) circuits of size poly(s)

[41]. Suppose there were some non-trivial class of circuits S such that every-

thing in S could be efficiently transformed to arithmetic diagrams and back

again, approximately preserving size and depth. Then one could use depth

reduction techniques to get efficient parallel circuits for S.

One possible candidate for S could be stabilizer states. A complete set of

flow-preserving rewrite rules for stabilizer diagrams is found in [51]. Flow

preservation guarantees that all equalities are between diagrams that can

be deterministically executed on a quantum computer (in this case in the

MBQC paradigm). However, since stabilizer states are efficiently classically

simulable, this wouldn’t be a hugely useful practical result.

105

7.1. FUTURE DIRECTIONS

Another possible candidate for S would be those corresponding to arith-

metic diagrams with only O(log n) W nodes, O(log n) Z phases of non-unit

magnitude and O(log n) nodes with bounded fan-out also of O(log n).

[52] outlines how to prepare an m-output W node with only a single post-

selection. A can be prepared from a W node with O(m) cups, each

requiring two post-selections. Assuming that phases of eiθ can be prepared

efficiently, the following preparation of a for a = reiθ also uses only a single

post-selection:

a = a =

π/2

2tan−1(r)
θ

=
θ + π/2

2tan−1(r)

Finally, can be prepared as:

=

Since the only generators of an arithmetic diagram are . . . , . . . , a ,
. . .

, we

can therefore efficiently map each generator to a quantum circuit, incurring

only O(log n) post-selections. Then one can efficiently sample this circuit by

running it 2O(logn) = poly(n) times to account for the post-selections.

Entanglement

Section 6.1.1 gave an algebraic characterisation of entanglement in terms of

irreducible polynomials, which enabled an new algorithm for entanglement

detection. More generally, I believe it is worth considering what an algebraic

theory of entanglement would look like. Product states become products of

polynomials, while the two fundamental entangled states become:

|Wn⟩ =
n∑
i=1

xi, |GHZn⟩ = 1 +
n∏
i=1

xi

106

7.1. FUTURE DIRECTIONS

This characterisation nicely captures the local versus global nature of the

two entangled states. So a preliminary question would be: can interesting

entangled states be constructed as trees of , ? Of course, a W node

should be at the top to guarantee inseparability. Otherwise, one presum-

ably has complete freedom over how to choose the subsequent nodes. Of

course, the more sums in the resulting arithmetic formula, the more the

state will resemble the W state and the more products, the more the state

will resemble the GHZ state. Other than that, how do algebraic properties

of the arithmetic formula reflect on the information-theoretic properties of

the entangled state?

Another important question is how to represent local operations. Since a ,

are universal single-qubit operations, we can represent local unitaries on

some p(x1, ..., xn) as:

a

xi
:: p 7→ p(x1, ..., axi, ..., xn)

xi
:: p 7→ p(x1, ...,

1− xi
1 + xi

, ..., xn)× (1 + xi)

Imagine this can be extended to SLOCC operations. Then it would be very

interesting to examine the algebraic criteria for SLOCC equivalence, much

as the majorisation criteria shed light on entanglement classification [53].

Even better, can an equivalence relation on entangled states be defined that

doesn’t break down at n = 4?

107

Bibliography

[1] B. Coecke, A. Kissinger, A. Merry, and S. Roy, “The ghz/w-calculus

contains rational arithmetic,” arXiv preprint arXiv:1103.2812, 2011.

[2] C. E. Shannon, “A mathematical theory of communication,” The Bell

system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[3] G. Tononi, “An information integration theory of consciousness,” BMC

neuroscience, vol. 5, pp. 1–22, 2004.

[4] T. Mukerji, P. Avseth, G. Mavko, I. Takahashi, and E. F. González,

“Statistical rock physics: Combining rock physics, information theory,

and geostatistics to reduce uncertainty in seismic reservoir characteri-

zation,” The Leading Edge, vol. 20, no. 3, pp. 313–319, 2001.

[5] D. Deutsch, It from qubit. Cambridge University Press, 2004, pp. 90–

102.

[6] C. BENNET, “Quantum cryptography: Public key distribution and coin

tossing,” in Proceedings of the IEEE International Conference on Com-

puters, Systems, and Signal Processing, Bangalore, Dec. 1984, 1984, pp.

175–179.

[7] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar,

R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani et al., “Ad-

vances in quantum cryptography,” Advances in optics and photonics,

vol. 12, no. 4, pp. 1012–1236, 2020.

[8] G. Brassard, “Quantum communication complexity (a survey),” arXiv

preprint quant-ph/0101005, 2001.

[9] A. Montanaro, “Quantum algorithms: an overview,” npj Quantum In-

formation, vol. 2, no. 1, pp. 1–8, 2016.

108

BIBLIOGRAPHY

[10] P. W. Shor, “Algorithms for quantum computation: discrete logarithms

and factoring,” in Proceedings 35th annual symposium on foundations

of computer science. Ieee, 1994, pp. 124–134.

[11] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.

Wootters, “Teleporting an unknown quantum state via dual classical

and einstein-podolsky-rosen channels,” Physical review letters, vol. 70,

no. 13, p. 1895, 1993.

[12] S. Abramsky and B. Coecke, “A categorical semantics of quantum pro-

tocols,” in Proceedings of the 19th Annual IEEE Symposium on Logic

in Computer Science, 2004. IEEE, 2004, pp. 415–425.

[13] R. A. Shaikh, Q. Wang, and R. Yeung, “How to sum and exponentiate

hamiltonians in zxw calculus,” arXiv preprint arXiv:2212.04462, 2022.

[14] A. Toumi, R. Yeung, and G. de Felice, “Diagrammatic differentiation

for quantum machine learning,” arXiv preprint arXiv:2103.07960, 2021.

[15] R. Duncan, A. Kissinger, S. Perdrix, and J. Van De Wetering, “Graph-

theoretic simplification of quantum circuits with the zx-calculus,” Quan-

tum, vol. 4, p. 279, 2020.

[16] N. de Beaudrap and D. Horsman, “The zx calculus is a language for

surface code lattice surgery,” Quantum, vol. 4, p. 218, 2020.

[17] K. Meichanetzidis, S. Gogioso, G. De Felice, N. Chiappori, A. Toumi,

and B. Coecke, “Quantum natural language processing on near-term

quantum computers,” arXiv preprint arXiv:2005.04147, 2020.

[18] B. Poór, Q. Wang, R. A. Shaikh, L. Yeh, R. Yeung, and B. Coecke,

“Completeness for arbitrary finite dimensions of zxw-calculus, a unifying

calculus,” arXiv preprint arXiv:2302.12135, 2023.

109

BIBLIOGRAPHY

[19] N. de Beaudrap, A. Kissinger, and J. van de Wetering, “Circuit extrac-

tion for zx-diagrams can be# p-hard,” arXiv preprint arXiv:2202.09194,

2022.

[20] J. Alman and V. V. Williams, “A refined laser method and faster matrix

multiplication,” in Proceedings of the 2021 ACM-SIAM Symposium on

Discrete Algorithms (SODA). SIAM, 2021, pp. 522–539.

[21] M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum

information,” Phys. Today, vol. 54, no. 2, p. 60, 2001.

[22] R. Cleve, “An introduction to quantum complexity theory,” Collected

Papers on Quantum Computation and Quantum Information Theory,

pp. 103–127, 2000.

[23] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,”

Nature, vol. 299, no. 5886, pp. 802–803, 1982.

[24] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical de-

scription of physical reality be considered complete?” Physical review,

vol. 47, no. 10, p. 777, 1935.

[25] A. Aspect, P. Grangier, and G. Roger, “Experimental realization of

einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of

bell’s inequalities,” Physical review letters, vol. 49, no. 2, p. 91, 1982.

[26] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,”

Physical review letters, vol. 86, no. 22, p. 5188, 2001.

[27] W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in

two inequivalent ways,” Physical Review A, vol. 62, no. 6, p. 062314,

2000.

[28] B. Coecke and A. Kissinger, “Picturing quantum processes: A first

course on quantum theory and diagrammatic reasoning,” in Diagram-

110

BIBLIOGRAPHY

matic Representation and Inference: 10th International Conference,

Diagrams 2018, Edinburgh, UK, June 18-22, 2018, Proceedings 10.

Springer, 2018, pp. 28–31.

[29] B. Coecke, D. Pavlovic, and J. Vicary, “A new description of orthogonal

bases,” Mathematical structures in computer science, vol. 23, no. 3, pp.

555–567, 2013.

[30] B. Coecke and A. Kissinger, “The compositional structure of multipar-

tite quantum entanglement,” in International Colloquium on Automata,

Languages, and Programming. Springer, 2010, pp. 297–308.

[31] A. Hadzihasanovic, “A diagrammatic axiomatisation for qubit entangle-

ment,” in 2015 30th Annual ACM/IEEE Symposium on Logic in Com-

puter Science. IEEE, 2015, pp. 573–584.

[32] E. Jeandel, S. Perdrix, and M. Veshchezerova, “Addition and differenti-

ation of zx-diagrams,” arXiv preprint arXiv:2202.11386, 2022.

[33] D. Camps, E. Kokcu, L. Bassman Oftelie, W. A. De Jong, A. F. Kemper,

and R. Van Beeumen, “An algebraic quantum circuit compression algo-

rithm for hamiltonian simulation,” SIAM Journal on Matrix Analysis

and Applications, vol. 43, no. 3, pp. 1084–1108, 2022.

[34] M. A. Forbes and A. Shpilka, “Complexity theory column 88: Challenges

in polynomial factorization1,” ACM SIGACT News, vol. 46, no. 4, pp.

32–49, 2015.

[35] O. Gühne and G. Tóth, “Entanglement detection,” Physics Reports, vol.

474, no. 1-6, pp. 1–75, 2009.

[36] S. Aaronson, “P=\limitsˆ? np,” Open problems in mathematics, pp.

1–122, 2016.

111

BIBLIOGRAPHY

[37] E. Bernstein and U. Vazirani, “Quantum complexity theory,” in Proceed-

ings of the twenty-fifth annual ACM symposium on Theory of computing,

1993, pp. 11–20.

[38] L. M. Adleman, J. Demarrais, and M.-D. A. Huang, “Quantum com-

putability,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1524–1540,

1997.

[39] S. Fenner, F. Green, S. Homer, and R. Pruim, “Determining acceptance

possibility for a quantum computation is hard for ph,” in Proc. 6th

Italian Conference on Theoretical Computer Science. Citeseer, 1998,

pp. 241–252.

[40] N. Saxena, “Progress on polynomial identity testing.” Bull. EATCS,

vol. 99, pp. 49–79, 2009.

[41] L. G. Valiant and S. Skyum, “Fast parallel computation of polynomials

using few processors,” in Mathematical Foundations of Computer Sci-

ence 1981: Proceedings, 10th Symposium Štrbské Pleso, Czechoslovakia

August 31–September 4, 1981 10. Springer, 1981, pp. 132–139.

[42] A. Shpilka, A. Yehudayoff et al., “Arithmetic circuits: A survey of re-

cent results and open questions,” Foundations and Trends in Theoretical

Computer Science, vol. 5, no. 3–4, pp. 207–388, 2010.

[43] L. G. Valiant, “Completeness classes in algebra,” in Proceedings of the

eleventh annual ACM symposium on Theory of computing, 1979, pp.

249–261.

[44] J. Krajíček, Proof complexity. Cambridge University Press, 2019, vol.

170.

[45] Y. Tanaka, “Exact non-identity check is nqp-complete,” International

Journal of Quantum Information, vol. 8, no. 05, pp. 807–819, 2010.

112

BIBLIOGRAPHY

[46] D. Janzing, P. Wocjan, and T. Beth, “ “non-identity-check” ’ is qma-

complete,” International Journal of Quantum Information, vol. 3,

no. 03, pp. 463–473, 2005.

[47] L. G. Valiant, “The complexity of computing the permanent,” Theoret-

ical computer science, vol. 8, no. 2, pp. 189–201, 1979.

[48] X. Chen, N. Kayal, A. Wigderson et al., “Partial derivatives in arith-

metic complexity and beyond,” Foundations and Trends in Theoretical

Computer Science, vol. 6, no. 1–2, pp. 1–138, 2011.

[49] S. Saraf, “Recent progress on lower bounds for arithmetic circuits,”

in 2014 IEEE 29th Conference on Computational Complexity (CCC).

IEEE, 2014, pp. 155–160.

[50] J. A. Grochow and T. Pitassi, “Circuit complexity, proof complexity,

and polynomial identity testing: The ideal proof system,” Journal of

the ACM (JACM), vol. 65, no. 6, pp. 1–59, 2018.

[51] T. McElvanney and M. Backens, “Complete flow-preserving rewrite

rules for mbqc patterns with pauli measurements,” arXiv preprint

arXiv:2205.02009, 2022.

[52] L. Yeh, “Scaling w state circuits in the qudit clifford hierarchy,” arXiv

preprint arXiv:2304.12504, 2023.

[53] M. A. Nielsen, “Conditions for a class of entanglement transformations,”

Physical Review Letters, vol. 83, no. 2, p. 436, 1999.

[54] D. S. Dummit and R. M. Foote, Abstract algebra. Wiley Hoboken,

2004, vol. 3.

[55] C. Heunen and J. Vicary, Categories for Quantum Theory: an introduc-

tion. Oxford University Press, 2019.

113

A | Algebra

Algebra is the study of operations, i.e. mathematical ways of doing things.

This appendix briefly reviews the necessary algebra for this thesis. For a

proper treatment see [54].

A.1 Magmas

The most basic algebraic operation is a magma which is simply a set M

and a binary operation · : M ×M → M . The operation · is often called

multiplication, though all we know about · at this point is that it takes in

two elements of M and spits out another one. For convenience, ·(x, y) is

usually written as x · y.

A magma is commutative if it satisfies ∀x, y ∈ X,x · y = y · x.

Given two magmas (M1, ·), (M2, ◦), a function ϕ : M1 → M2 is called a

homomorphism if it satisfies

ϕ(x · y) = ϕ(x) ◦ ϕ(y)

In which case, ϕ is said to “preserve multiplication”. Often the operation

symbols are dropped to give ϕ(xy) = ϕ(x)ϕ(y). If ϕ is also a bijection, then

it is called an isomorphism and we write M1 ≃M2. Intuitively, isomorphic

magmas effectively do the same thing as one another except for a relabelling

of their elements.

The definition of magmas is so general that there is very little structure to

work with. Algebra mostly studies operations with additional conditions

which allow for a richer theory. I only include magmas here to give the most

general definition of commutativity and homomorphism.

114

A.2. MONOIDS

A.2 Monoids

A monoid (M, ·) is a magma which moreover satisfies:

• identity: ∃e ∈M,∀x ∈M, e · x = x = x · e

• associativity: ∀x, y, z ∈M,x · (y · z) = (x · y) · z

The identity element allows us to do nothing. One can show that the identity

element is unique. Associativity allows us to unambiguously write x · y · z.

Some useful examples of monoids (which both happen to be commutative)

are:

• (N,+), with 0 as the identity element

• For any set X, (P(X),∪) is a monoid with ∅ as the identity element

If a monoid also satisfies the inverse condition: ∀x ∈M, ∃x−1 ∈M,x ·x−1 =

e = x−1 · x, then it is called a group. Commutative groups are sometimes

called Abelian. The classic example is (Z,+).

A.3 Rings

A ring (R,+, ·) is a set R together with two binary operations such that:

• (R,+) forms an Abelian group

• (R, ·) forms a monoid

• distributivity: ∀x, y, z ∈ R, x · (y+ z) = (x · y)+ (x · z) and (x+ y) · z =

(x · z) + (y · z)

The operations are usually referred to as addition with unit 0 and multiplica-

tion with unit 1, respectively. A commutative ring is when the multiplication

is commutative. It follows from distributivity that x · 0 = 0 for any x ∈ R.

Some examples of rings are as follows:

115

A.3. RINGS

• (Q,+,×)

• (Mn,+, ◦) is a non-commutative ring, where Mn is the set of n × n

matrices.

• C[x], the set of polynomials over C. This will be discussed in more

detail shortly.

For two rings R,S, a ring homomorphism is map ϕ : R → S that preserves

both addition and multiplication.

For a commutative ring R, a non-empty subset I ⊆ R is called an ideal if it

closed under addition from the inside and multiplication from the outside,

i.e. ∀x, y ∈ I, r ∈ R,:

x+ y ∈ I, r · x ∈ I

For any x ∈ R, the smallest ideal containing x is written (x). In general,

(x1, ..., xn) is the smallest ideal containing x1, ..., xn. If an ideal contains 1

then it will contain the whole ring in order to be closed under multiplication.

Thus fields have only two ideals: (0) = {0}, (1) = R.

Given an ideal I ⊆ R, a coset is set a+ I := {a+ x : x ∈ I}. If a ∈ I, then

clearly a + I = I. It can also be seen that a ∈ (b + I) =⇒ b ∈ (a + I) so

the set of cosets partition R. In fact, this yields a ring if we define:

(a+ I) + (b+ I) := (a+ b)I, (a+ I) · (b+ I) := (a · b) + I

This is called the quotient ring and written R/I. One can think of R/I as

R, except that everything in I becomes 0.

A field is when · forms a group (i.e. every nonzero element has a multiplica-

tive inverse). This includes rings like Q and C but not Z.

116

A.4. VECTOR SPACES

A.3.1 Polynomials

For any commutative ring R, R[x] denotes the ring of polynomials over an

indeterminate x. Formally, elements p(x) ∈ R[x] are sums p(x) =
∑k

i=1 aix
i

for some coefficients (a1, ..., ak) ∈ Rk. The addition and multiplication op-

erations are inherited from R. Polynomials over several variables can be

defined recursively as R[x1, ..., xn] = R[x1, ..., xn−1][xn].

Polynomials can be evaluated on elements of R, interpreting them as func-

tions p(x) : R → R. However, often the indeterminates can be interpreted

as elements foreign to R. For example, the isomorphism R[x]/(x2 + 1) ≃ C

allows x to be interpreted as i =
√
−1.

In many polynomial rings, every p(x) ∈ R[x] can be written as r · f1 · ... · fk
for r ∈ R, f1, ..., fk ∈ R[x], where all the fi are irreducible meaning that

they cannot be factored any further themselves. Whether a polynomial is

reducible is very sensitive to which coefficients are in R. For example, x2−2

is irreducible in Z[x], but not in R[x] where it can be factored as (x+
√
2)(x−

√
2).

In a ring where every non-zero element can be uniquely factored into a prod-

uct of irreducible elements, then it is called a unique factorisation domain

(UFD). An important result in ring theory is that if R is a UFD, so is R[x].

A.4 Vector Spaces

A vector space V is always defined over some field F . The elements of V

are often called vectors and the elements of F are often called scalars. V is

equipped with an addition operation + : V × V → V and a multiplication

× : F × V → V such that:

• + forms an Abelian group.

117

A.4. VECTOR SPACES

• Scalar multiplication is compatible with the field operations:

∀v⃗ ∈ V, x, y ∈ F, a× (b× v⃗) = (a · b)× v⃗

This is often abbreviated to a(bv⃗) = (ab)v⃗.

• Scalar multiplication is compatible with F ’s multiplicative unit:

∀v⃗ ∈ V, 1v⃗ = v⃗

• Scalar multiplication distributes over vector addition:

∀v⃗, w⃗,∈ V, x ∈ F, x(v⃗ + w⃗) = xv⃗ + xw⃗

• Scalar multiplication distributes over field addition:

∀v⃗ ∈ V, x, y ∈ F, (x+ y)v⃗ = xv⃗ + yv⃗

A familiar example of a vector space is the Cartesian plane R2. Elements

v⃗ ∈ R2 are represented as vectors

x
y

, for some x, y ∈ R. The multiplicative

identity is the identity matrix I =

1 0

0 1

.

Given a set of vectors B = {v⃗1, ..., v⃗n} ⊂ V , B is said to span V if every

element of V can be written as a linear combination x1v⃗1 + ... + xnv⃗n, for

some x1, ..., xn ∈ F . If x1v⃗1 + ... + xmv⃗m = 0 =⇒ x1 = ... = xm = 0 for

any finite subset of B, then B is said to be linearly independent. This is

equivalent to saying no element of B can be written as a linear combination

of B’s remaining elements. If B simultaneously spans V and is linearly

independent, then B is called a basis. A fundamental result in the study

118

A.4. VECTOR SPACES

of vector spaces (which is usually called linear algebra) is that every vector

space has a basis. The standard basis for R2 is

{1
0

 ,
0
1

}.

A vector space homomorphism f : V →W is typically called a linear map

and must satisfy:

∀v⃗, w⃗ ∈ V, x ∈ F, f(v⃗ + w⃗) = f(v⃗) + f(w⃗), f(av⃗) = af(v⃗)

The beauty of linearity is that f ’s action on a basis B determines its action

on the entire vector space V . Thus linear maps are typically represented as

matrices, where the ith column corresponds to the image of the ith basis

vector, f(v⃗i). For example, a 90◦ rotation in R2 can be represented by the

matrix

0 −1

1 0

.

If A is an m1×n1 matrix and B is an m2×n2 matrix, then the Kronecker

product A⊗B is the m1m2 × n1n2 matrix with entries


a11B · · · a1n1B

...
. . .

...

am11B · · · am1n1B



Some vector spaces have a well-defined measure of distance between vectors.

Such a distance measure is called an inner product ⟨., .⟩ : V × V → F . An

inner product always defines a norm ||v⃗|| =
√

⟨v⃗, v⃗⟩. In a Hilbert space,

this norm must be complete meaning that every Cauchy sequence of elements

of V must converge to an element of V . The prime example is Cn, for any

n > 0.

119

B | Category Theory

This section is drawn from https://ncatlab.org/nlab/show/HomePage and

[28]. The only relevant difference is that the equation numbers align with

section 3.1.

B.1 Category

A category C consists of:

• A collection of objects X,Y, Z, ... ∈ C.

• For every two objects X,Y,∈ C, a collection of morphisms C(X,Y).

Such a morphism is often written f : X → Y . These morphisms must

satisfy the following rules:

– Composition:

∀f : X → Y, g : Y → Z,∃g ◦ f : X → Z (B.1)

– Associativity: for any compatible morphisms f, g, h,

h ◦ (g ◦ f) = (h ◦ g) ◦ f (B.2)

– Identity: for every object X ∈ C, there is an identity morphism

idX : X → X such that for any f : X → Y,

f ◦ idX = f = idY ◦ f (B.3)

If C is a category, then Cop is the category with the same objects as C but

all arrows reversed.

120

https://ncatlab.org/nlab/show/HomePage

B.2. MONOIDAL CATEGORY

B.2 Monoidal Category

A monoidal category is a category C plus:

• An operation ⊗ : C × C → C, defined both on objects and morphisms

such that:

– Identity:

idX ⊗ idY = idX⊗Y (B.4)

– Associativity:

X ⊗ (Y ⊗ Z) = (X ⊗ Y)⊗ Z

h⊗ (g ⊗ f) = (h⊗ g)⊗ f (B.5)

– Coherence:

(g1 ◦ f1)⊗ (g2 ◦ f2) = (g1 ⊗ g2) ◦ (f1 ⊗ f2) (B.6)

• A designated unit object 1 ∈ C such that:

A⊗ 1 = A = 1⊗A

id1 ⊗ f = f = f ⊗ id1 (B.7)

Bialgebra??

B.2.1 Frobenius Algebra

Within a monoidal category (C,⊗, I), a Frobenius algebra consists of the

following:

• A set of objects A

121

B.3. SYMMETRIC MONOIDAL CATEGORY

• A monoid µ : A⊗A→ A, with unit η : I → A

• A comonoid δ : A → A ⊗ A with counit ϵ : A → I. A comonoid is

simply a monoid in Cop.

• Frobenius laws: (idA ⊗ µ) ◦ (δ ⊗ idA) = δ ◦ µ = (µ⊗ idA) ◦ (idA ⊗ δ)

Diagrammatically, the Frobenius laws look like:

= =

A Frobenius algebra is commutative if µ is commutative. A Frobenius alge-

bra is special if µ ◦ δ = idA. A special commutative Frobenius algebra is

often abbreviated to SCFA.

A very important result known as the spider theorem says that any net-

work of nodes from an SCFA is uniquely determined by the number of inputs

and number of outputs. See [55] for more details.

B.3 Symmetric Monoidal Category

A symmetric monoidal category is a monoidal category (C,⊗,1) plus a mor-

phism σX,Y : X ⊗ Y → Y ⊗X for all objects X,Y such that:

σY,X ◦ σX,Y = idX⊗Y (B.8)

σX,1 = idX (B.9)

(f ⊗ g) ◦ σX1,X2 = σY1,Y2 ◦ (g ⊗ f) (B.10)

(idY ⊗ σX,Z) ◦ (σX,Y ⊗ idZ) = σX,Y⊗Z (B.11)

122

B.4. COMPACT CLOSED CATEGORY

B.4 Compact Closed Category

A compact closed category is a symmetric monoidal category (C,⊗,1) in

which for every X ∈ C, there exists another object X∗ ∈ C and morphisms

ϵX : X ⊗X∗ → 1, ηX : 1 → X∗ ⊗X such that

(ϵX ⊗ idX) ◦ (idX ⊗ ηX) = idX ,

(idX∗ ⊗ ϵX) ◦ (ηX ⊗ idX∗) = idX∗ (B.12)

When X = X∗ and

σX,X ◦ ηX = ηX (B.13)

Then X is called coherently self-dual.

123

	Introduction
	The Way of the Diagram
	Outline

	Qubits
	States
	Dynamics
	Composite Systems
	Measurement
	Quantum Circuits
	Entanglement
	Mixed States

	Diagrams
	Processes
	Single Wires
	Parallel Wires
	Crossing Wires
	Bending Wires
	Process Theory

	ZXW Calculus
	Generators
	Basic Rules
	Arithmetical Rules
	Complete Rule Set
	Useful Lemmas

	Controlled Diagrams
	Definitions
	Copy coWs
	Rings

	Polynomials
	Arithmetic in ZXW
	Normal Forms
	Substitution
	Isomorphism

	Applications
	Entanglement Detection
	Separability
	Mixed States

	Complexity Theory
	Algebraic Complexity
	Proof Complexity

	Conclusion
	Future Directions

	Bibliography
	Appendix Algebra
	Magmas
	Monoids
	Rings
	Polynomials

	Vector Spaces

	Appendix Category Theory
	Category
	Monoidal Category
	Frobenius Algebra

	Symmetric Monoidal Category
	Compact Closed Category

