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Abstract

Interest has grown in recent years in the construction of ‘quantum-like’ theories, toy theories
which exhibit some but not all features of quantum mechanics. Such theories are expressed
in diverse mathematical terms which may impede comparison of their properties. In this
thesis we present a unifying mathematical framework in which we can compare a variety of
‘quantum-like’ theories, based on Abramsky and Coecke’s work on applying category theory
to quantum mechanics. By doing so we hope to gain a clearer insight into the precise ways
in which these theories differ mathematically, and whether this relates to the differences in
phenomena which they predict. As an example of this kind of approach, we express Spekkens’s
toy bit theory within the categorical framework, in the process proving its consistency. The
toy bit theory reproduces many features of quantum mechanics, and this is reflected in the
fact that within the categorical framework it shares many structural features with quantum
mechanics. It differs however, in that it is, by construction, a local hidden variable theory. We
develop a categorical treatment of hidden variables, and then demonstrate that the categorical
structures which differ between quantummechanics and the toy theory are exactly those which
relate to the question of hidden variables. We extend this to a general result applying to a
wider range of theories.
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Chapter 1

Introduction

Quantum mechanics has many distinctive features which diverge from traditional classical
theories. Observable properties of systems and their measurements are treated in a radically
different way. Most states have no definite value for each observable, instead existing as
‘superpositions’. Certain pairs of observables are ‘incompatible’ and cannot be simultane-
ously measured. Composite systems can exist in ‘entangled’ states which cannot be specified
simply by describing the state of each component. Quantum states cannot be cloned. And
quantum states and processes allow information processing protocols to be performed which
are impossible with classical systems. The list goes on. The question arises to what extent
these typically ‘quantum’ features are entwined and interdependent.

This line of enquiry leads naturally to attempts to construct theories which are ‘quantum-like’,
in that they exhibit some typically quantum features, but not others, or they exhibit certain
typically quantum features but to a greater or lesser extent than does quantum mechanics
itself. Examples of the first type include Spekkens’s toy bit theory [32]. Examples of the
second type include the ‘non-local boxes’ [3] which exhibit non-local phenomena to a greater
extent than quantum mechanics.

Whilst quantum-like theories, by their nature, make similar predictions, they are expressed
in terms of diverse mathematical structures. If they could all be formulated within a single
mathematical framework it would facilitate comparison. We could identify precisely in which
aspects of this framework different theories differed. We might then hope to identify which
mathematical structures within the framework were responsible for which ‘typically quantum’
features exhibited by different theories. This would help elucidate the inter-relationships be-
tween these features: if two ‘quantum-like’ features corresponded to two independent struc-
tures within the framework, we could conclude that the two features were themselves inde-
pendent. It would also allow for a more systematic cataloguing of quantum-like theories, and
facilitate the generation of new ones. It might show that quantum mechanics is not alone
in exhibiting all of the ‘typically quantum’ features, and might point the way to alternative
theories which would still account for all of the observed ‘quantum’ phenomena.

The framework we will use in this work comes out of the work of Abramsky and Coecke
[1], in applying category theory to quantum mechanics. A category is an algebraic structure
with two kinds of elements, objects and arrows, or morphisms. The structure of a category is

1



2 CHAPTER 1. INTRODUCTION

such that, given a physical theory, the systems of a theory are very naturally represented by
the objects of a category, and the processes and transformations undergone by the systems
are naturally represented by the morphisms. In a category it is the morphisms which have
algebraic structure, the objects really just playing the role of labels, and this bias is reflected
when we analyse a physical theory in categorical terms. Within this framework we concentrate
on the ‘algebra of processes’ in a theory: how do different physical processes compose together
to form new processes? In [1] Abramsky and Coecke originally looked at the category FHilb,
whose objects and morphisms are the mathematical objects which represent systems and
transformations in standard quantum mechanics, and identified the key pieces of structure in
this category which facilitated many of the typical features of quantum mechanics. Because
of the emphasis on processes in the categorical approach, their main concentration, and that
of subsequent authors in this field [29, 13, 12, 9] , has been on the information processing
tasks made possible by quantum mechanics. However, along with the increased emphasis
of how processes combine, there is much less emphasis in this approach on how states and
transformations are represented concretely. Thus it seems natural to attempt to use this
approach as a unifying framework for different quantum-like theories.

This thesis can be seen as a proof of concept for this programme. Firstly we select an example
of a ‘quantum-like’ theory, Spekkens’s toy bit theory [32] and show how it can be re-expressed
within the categorical framework. We compare it with quantum mechanics, as expressed with
the categorical framework, and show that many of the typically quantum features exhibited by
the toy theory correspond to categorical structures which it shares with quantum mechanics.
Secondly we analyse a particular example of a typically quantum feature - in this case the
impossibility of a local hidden variable interpretation. We identify categorical structures
which determine whether or not a given theory has this feature - whether it is ‘local’ or ‘non-
local’. Finally we make the link between these two strands and show that the categorical
structure where quantum mechanics and Spekkens’s toy theory differ is exactly the structure
which determines whether or not a theory has an interpretation in terms of local hidden
variables. This is exactly what we would expect, since Spekkens’s theory is, by construction,
a local hidden variable theory.

We now give a more detailed outline of the structure of the thesis.

In chapter 2, the first background chapter, we introduce the theories which we will be working
with in their standard forms, and discuss some of their key features. We begin, in section
2.1, with a concise account of standard quantum mechanics. The postulates of the theory are
introduced, and various characteristic features are discussed, for example, super-positions,
incompatible observables, and entanglement. In section 2.2 we give a more detailed account
of the key quantum feature with which we will be concerned in this work: the impossibility
of replicating the predictions of quantum mechanics with a local hidden variable theory. We
go step by step through one of the key ‘no-go proofs’ which shows that the predictions of
quantum mechanics itself cannot be replicated by a local hidden variable theory - this is the
argument involving the GHZ state, in the form originally advanced by Mermin [24]. In section
2.3 we introduce a ‘sub-theory’ of quantum mechanics, stabiliser quantum mechanics. This
theory involves only one type of system, a qubit, and these systems exhibit a restricted class
of quantum states, the stabiliser states which we define and give several examples of. The
stabiliser theory is important in this work, because it is the fragment of quantum mechanics
most closely modelled by our key example of a quantum-like theory, Spekkens’s toy theory. As
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a result it is generally more illuminating to compare the toy theory with the stabiliser theory,
rather than with the full quantum theory. Spekkens’s toy theory [32] is finally introduced in
section 2.4. We begin by introducing the key concepts lying behind the theory, in particular
the knowledge balance principle, and then use these to derive the form of the states and
transformations for some simple systems. We discuss those ‘typically quantum’ features the
theory exhibits, and those which it is unable to replicate. A key sense in which the toy theory
is not like quantum mechanics, or stabiliser theory, is that it is, by construction, a local hidden
variable theory, and thus it will not be possible to construct ‘no-go proofs’ of the sort detailed
in section 2.2. We conclude our account of the toy theory by asking how well-defined and
consistent the theory is, in its original presentation by Spekkens. We conclude that there is
some ambiguity in the definition of the theory, and furthermore that the consistency of the
states and transformations derived in [32] with the underlying principles of the theory has
not been clearly established.

In chapter 3, the second background chapter, we introduce the categorical framework within
which we intend to compare and contrast quantum-like theories. We begin by giving the basic
definitions of categories, functors and natural transformations. We introduce the concept of
the physical category of a theory - this is the algebraic structure formed by its morphisms, for
example, the physical category of quantum mechanics is FHilb. The concept of a symmetric
monoidal category (SMC) is then introduced, and we note that the physical category of any
physical theory must be symmetric monoidal. A SMC has extra algebraic structure, allowing
both objects and morphisms to be combined, and in a physical category this is naturally
interpreted as the action of combining systems together to form a larger composite system.
In section 3.2 we go on to introduce further categorical structures which we expect the physical
category of quantum-like theories to possess, since these are the structures which give rise to
key quantum-like features in the theory. The main structure in which we are interested is
the basis structure to which we devote section 3.3. The basis structure is defined abstractly,
and we then note that in FHilb it corresponds precisely with the notion of an orthonormal
basis. Associated with any basis structure is an Abelian group, termed the phase group, and
we describe the derivation of this group from the basis structure. Lastly we note that from
the basis structure we can derive an abstract notion of GHZ state. In FHilb this notion
coincides with the standard GHZ state as introduced in section 2.2. In that section we noted
that in standard quantum mechanics the GHZ state is crucially involved in the question of
whether or not the theory can be modelled by local hidden variables, and this will turn out to
be true in the more general categorical setting as well. Finally in section 3.4 we introduce the
category Stab. We demonstrate that Stab is the physical category of the stabiliser theory,
and then go on to investigate the properties of its basis structures. In particular we note that
the phase groups of the basis structures of the simplest object are all isomorphic to Z4. This
will be crucial in our later discussion of locality.

In chapter 4, the first chapter of original work, we show how to express our key example of a
quantum-like theory, Spekkens’s toy theory, within the categorical framework. In section 4.1
we define a category Spek, a sub-category of FRel, the category whose objects are sets and
whose morphisms are relations. The definition of Spek is constructive: it is defined as the
closure under certain operations of a set of generating sets and relations. In the next section,
4.2, we derive the general form of the relations which constitute the morphisms of Spek.
In fact this derivation is very lengthy, and most of the details are relegated to appendix A.
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Section 4.2 does contain a sketch which outlines the essential structure of the proof. In section
4.3 we introduce a second category MSpek, derived from Spek. Section 4.4 we go on to
show that the morphisms of MSpek must all be contained in the physical category of the toy
theory, and furthermore, allowing for the ambiguity in definition of the toy theory, MSpek

is a good candidate to act as the physical category of the theory. As a by-product of this
analysis we establish that the states and transformations derived by Spekkens in his original
paper are indeed consistent with the knowledge balance principle, the key idea underlying
the theory. Finally in section 4.5 we investigate the basis structures of Spek. We show that
they display a very similar structure to those of Stab, but crucially, the phase groups of the
basis structures of the simplest object in this case are all isomorphic to Z2 ×Z2. Overall the
key results achieved in this section are the following:

• We deduce the physical category for Spekkens’s toy theory, thus showing how to incor-
porate a key example of a quantum-like theory into the categorical framework.

• We demonstrate the consistency of the states and transformations derived in Spekkens’s
original paper [32] with the key principles underlying that theory.

In chapter 5, the second chapter of original work, we develop a categorical treatment of the
key feature of quantum-like theories which we hope to investigate - the question of whether
or not the predictions of the theory can be reproduced by a local hidden variable theory.
To date, the principal application of the categorical approach to quantum mechanics has
been the analysis of quantum protocols and information flow in quantum systems. The
traditional pre-occupations of quantum physicists - the values of observables, and probabilities
of measurement outcomes - have been somewhat neglected. Clearly however, in the analysis
of hidden variable interpretations, the issue of the probabilities of measurement outcomes is
crucial. In sections 5.1 to 5.4 we develop the ideas necessary for a treatment of this issue.
We note that the categorical framework is very well suited for a discussion of possibilistic
theories - theories which tell us whether an outcome is possible or not, without giving the full
quantification of probabilities. The toy theory and stabiliser theory both fit quite naturally
into this framework since they allow only a very narrow range of probabilities to be exhibited in
measurements. Furthermore, the possibilistic framework is all that is necessary for a treatment
of the kind of ‘no-go theorem’ against hidden variables that we will be subsequently interested
in. Nonetheless, we show that the categorical framework is broad enough to accommodate
a wider range of notions of probability. In section 5.5 we present an abstract treatment of
hidden variables, which applies to any suitable physical category. In sections 5.6 and 5.7 we
extend this treatment, to capture the notion of local hidden variable theory. Overall the key
result of this section is:

• The development of an abstract categorical treatment of local hidden variables, which
allows us to discuss this issue in the physical categories of a wide range of theories.

In chapter 6, the third chapter of original work, we bring together the work from the previous
two chapters. In section 6.1, we note that the categorical structures of Stab and Spek are
very similar, but we pinpoint a key difference: as was noted already, the phase groups of
the basis structures on the simplest objects are both four element groups, but in Stab the
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group is Z4 and in Spek the group is Z2 × Z2. The main result of this chapter is that this
structural difference between the two physical categories is what underlies a key physical
difference between the two theories: the possibility or otherwise of a local hidden variable
interpretation. We noted earlier that a phase group is derived from a basis structure, and that
it is also possible to derive a generalised GHZ state from a basis structure. Furthermore, we
know that in standard QM, GHZ states are an important ingredient of a ‘no-go proof’ ruling
out hidden variables. In sections 6.2 to 6.4, via basis structures, we make the connection
between the phase groups and generalised GHZ states of a physical category, and go on to
show that if the phase group is Z4 then the corresponding GHZ state can be used to construct
an abstract version of the Mermin no-go argument, whilst if the phase group is Z2 ×Z2, such
an argument is not possible. In the final section we generalise this result to a larger range of
phase groups. We show, if a basis structure has one of a certain class of phase groups, it is
possible to generalise the structure of the Mermin argument. We then give an entirely group
theoretic criterion for which of these groups allow for the crucial contradiction that powers
the Mermin argument. Any physical category with a basis structure with such a phase group,
must represent a non-local theory.

The main results of this section are the following:

• A demonstration that a key structural difference between the categories Spek and Stab

- differing phase groups - precisely underlies the major physical difference between the
two corresponding theories - the possibility of an interpretation in terms of hidden
variables.

• A general result classifying a wide range of phase groups into those which facilitate an
abstract ‘no-go’ argument ruling out a hidden variable interpretation and those which
do not.

Some of the work appearing has already been published in [10], co-authored with Bob Coecke,
and [11], co-authored with Bob Coecke and Rob Spekkens. This is discussed in more detail
at the beginning of each chapter.
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Chapter 2

Background: quantum theory and

quantum-like theories

In this chapter we introduce quantum mechanics and review some of the key features of this
theory. We will particularly focus on the feature which will occupy us in the later stages of this
work - the possibility or otherwise of hidden variable interpretations of a theory. We will also
introduce a restricted version of quantum mechanics, stabiliser qubit quantum mechanics, and
investigate which of the features of full QM survive the restriction. Finally we will introduce
our key example of a quantum-like theory, Rob Spekkens’s toy bit theory.

2.1 Basic quantum mechanics

Quantum mechanics is a framework in which physical theories about microscopic objects can
be formulated. In contrast, classical physics is a framework which accommodates theories
about systems on a scale which we can observe directly. When physicists attempted to de-
vise theories describing very small systems, like atoms and molecules, they found that these
theories could not be accommodated by classical physics. The description of these small
systems required concepts quite different to the ones employed in all classical theories. Differ-
ent microscopic systems behave in wildly different ways and will require different theoretical
descriptions, but in all these descriptions the same basic quantum mechanical concepts are
employed. We will focus here on the structural features of the quantum framework, leaving
aside any details of actual physical systems and their attributes, so our account will seem
quite abstract.

2.1.1 The basic postulates of QM

1. The state of a system is described by a vector in a Hilbert space H, known as the state
space of the system.

7



8 CHAPTER 2. BACKGROUND: QUANTUM-LIKE THEORIES

In fact, multiplying a state vector by any complex number yields a vector describing the same
state. So states really correspond to one dimensional subspaces or rays of the state space. In
fact, we always choose state vectors to be normalised to have a magnitude of 1.

2. The state of a system evolves over time according to: ψ(t) = U(t, t0)ψ(t0) where U(t, t0)
is a unitary operator on the state space (i.e. U−1 = U †), and ψ(t) is the state vector of
the system at time t.

The choice of state space and unitary operator depend on the system. Constructing specific
theories of quantum systems basically comes down to determining the appropriate state space
and unitary evolution operator.

So far the postulates refer only to an abstract state vector and its evolution. They tell us
nothing interesting about the properties of the system. The next postulate fills this gap:

3. Associated with each observable property of a system is an Hermitian operator A (an
Hermitian operator satisfies A† = A. Such an operator can easily be shown to have real
eigenvalues and orthogonal eigenvectors.). If the value of this observable for a system
in state ψ is measured:

(a) The value of the observable will be equal to one of the eigenvalues of the corre-
sponding operator.

(b) The probability that a particular value a is obtained is given by |〈ua|ψ〉|2 where ua
is the eigenvector corresponding to the eigenvalue a, and 〈−|−〉 denotes the inner
product defined on H.

(c) After measuring a value a the state vector of the system instantaneously changes
from ψ to ua. This “leap” into a new state is non-unitary evolution in general.
Measurement is the only time when evolution of the state vector is non-unitary.

Two points about this third postulate are immediately surprising. First, QM offers only
probabilistic predictions about the values of a system’s observables. Second, the appearance of
“measurement” in the postulate is surprising. This seems to require an observer or measurer.
Can’t we just talk about the probabilities that the value of an observable has some value
at some time, rather than the probability that a measurement of the observable yields some
result? In fact, this is not possible. Observing a quantum system inevitably disturbs it.

4. If one quantum system has state space H1 and a second system has state space H2

then if we treat these two systems as one single compound system, its state space is the
tensor product H1 ⊗H2.

The consequences of this postulate are examined further in section 2.1.7.
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2.1.2 Dirac notation

Physicists frequently make use of Dirac notation, an alternative notation for vectors in a
Hilbert space, motivated by the fact that QM frequently employs inner products. A vector
in the state space H is denoted by a ket |ψ〉. A vector from the dual space H⋆, consisting
of linear maps H → C is denoted by a bra 〈φ|. Applying a bra to a ket yields a complex
number, equal to the inner product: 〈φ|ψ〉; Dirac called this a bra(c)ket. If A is an operator
on H, then 〈φ|A|ψ〉 means 〈φ|Aψ〉 in standard notation.

2.1.3 Projection operators

A projection operator or projector P is a linear operator on H which is both Hermitian and
idempotent (i.e. P 2 = P ). It can be shown that these properties imply that a projector
will project vectors onto a certain subspace, and that the subspaces and projectors of H are
in bijective correspondence. It can further be shown that any Hermitian operator A can be
written as A =

∑

i aiPi where the ai are real and the Pi are projectors satisfying PiPj = δijPi
and

∑

i Pi = 1. This is known as the spectral decomposition of A. In fact the ai are the
eigenvectors of A and the Pi project onto the subspaces spanned by the eigenvectors with
eigenvalue ai.

The way we phrased the third postulate of QM actually relied on that fact that the observ-
able A had no degenerate eigenvectors i.e. eigenvectors with the same eigenvalue. We can
reformulate the third postulate to cope with degeneracy using projectors:

3(b)′. The probability of obtaining measurement outcome ai when the system is in state |ψ〉
is given by 〈ψ|Pi|ψ〉.

3(c)′. Immediately after measurement the system’s state vector becomes Pi|ψ〉
||Pi|ψ〉|| .

In the case of no degeneracy these can easily be shown to reduce to the postulates as originally
stated (noting that the projector onto a one-dimensional subspace can be written as |ψ〉〈ψ|
where |ψ〉 is a normalised vector within the subspace) .

2.1.4 Superposition

The eigenvectors of an observable A are orthogonal, can be normalised, and furthermore they
span the whole space H. This means that any state vector |ψ〉 can be written in terms of the
eigenvectors of A, which we will write as |ai〉:

|ψ〉 =
∑

i

ψi|ai〉 (2.1)

where the ψi are complex numbers. Note that:

〈aj |ψ〉 =
∑

i

ψi〈aj |ai〉 =
∑

i

ψiδij = ψj (2.2)
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Thus, referring to postulate 3b we see that the probability of measuring A to have a value ai
is given by |ψi|2. The only states for which we will get a definite, predictable outcome for a
measurement of A are the eigenstates |ai〉 of A. It is only for these states that A has a definite
value. Any other states are referred to as superpositions of A eigenstates; these states do not
have definite values for A.

2.1.5 Incompatible observables and mutually unbiased observables

In general, the Hermitian operators associated with two different observables A and B will
not have the same eigenvectors.

Proposition 2.1.1 Two operators A and B will share the same eigenvectors iff AB = BA,
i.e. if they commute. Such a pair of observables is termed compatible, all other pairs of
observables being incompatible.

The eigenvectors of incompatible operators A and B both constitute bases in which a general
vector can be expanded:

|ψ〉 =
∑

i

ψAi |ai〉 =
∑

i

ψBi |bi〉 (2.3)

The different coefficients ψAi and ψBi can be squared to give the different probability distri-
butions for the outcomes of measurements of A and B.

Note that an eigenstate of A, |ai〉 will be expandable in terms of more than one eigenvector
of B:

|ai〉 =
∑

j

αj |bj〉 (2.4)

Thus for incompatible A and B, a state with a definite value of A will not have a definite
value for B, and vice versa.

It’s possible to identify pairs of observables which are, in some sense, maximally incompatible.

Definition 2.1.2 A vector |ψ〉 is unbiased with respect to a basis {|ai〉}i=1...n if for all i:

〈ai|ψ〉 =
1√
n
eiφ (2.5)

where 0 ≤ φ < 2π.

Definition 2.1.3 Two observables A and B, on an n-dimensional Hilbert space, are mutually
unbiased if the eigenstates |ai〉 of A are all unbiased with respect to the eigenstates |bj〉 of B,
and vice versa.

The interpretation of this result is that if the system is in an eigenstate of A, then a measure-
ment of B has an equal chance of yielding any of the possible outcomes of B, and vice versa.
If we have full knowledge of the value of one of the observables, we know nothing about the
value of the other.
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2.1.6 Qubits and Pauli operators

The simplest non-trivial example of a quantum system is one described by a two-dimensional
state space. Such a system is termed a qubit. There are many physical realisation of qubits, for
example the spin state of an electron, the polarization state of a photon, but as we mentioned
at the beginning of this section we are interested in the structural properties of states and
transformations shared by all qubits, rather than the details of any particular realisation.

We will be focussing heavily on qubits throughout this work for several reasons. As the
dimension of a state space grows, the number and complexity of states and transformations
also grows very quickly. Qubit systems are simpler to deal with than larger dimensional
systems, yet still exhibit all of the ‘typically quantum’ phenomena we are interested in (it
is true that in some senses the 2-dimensional case is somewhat ‘degenerate’ leading to some
phenomena specific to it, but these will not concern us in this work).

When dealing with qubits there are three observables in which we are particularly interested.
These are represented by three Hermitian operators X, Y and Z which are known as the
Pauli operators. The properties of these operators are neatly summarised by this relation:

X2 = Y 2 = Z2 = I (2.6)

where I is the identity operator, and this one:

XY = iZ, Y X = −iZ (2.7)

along with all its cyclic permutations. From these simple relationships one can derive all of
the properties of these operators (see for example [28]). The first relation for example implies
that the eigenvalues of these operators are ±1.

The eigenstates of the Z operator are conventionally denoted as |0〉 and |1〉. It is also con-
ventional to use these vectors as the ‘default’ basis for the state space of a qubit. Due to
the importance of qubits in the field of quantum computation and information this is often
referred to as the computational basis. Expressed in the computational basis, the matrix
representations of the Pauli operators are:

X :

(

0 1
1 0

)

Y :

(

0 −i
i 0

)

Z :

(

1 0
0 −1

)

(2.8)

The eigenstates of X are conventionally denoted |+〉 and |−〉, and in the computational basis
are written:

|+〉 = 1√
2
(|0〉 + |1〉) |−〉 = 1√

2
(|0〉 − |1〉) (2.9)

whilst the eigenstates of Y are conventionally denoted |i〉 and |− i〉, and in the computational
basis are written:

|i〉 = 1√
2
(|0〉 + i|1〉) | − i〉 = 1√

2
(|0〉 − i|1〉) (2.10)

Comparison with equation 2.5 indicates that X and Z, and Y and Z are mutually unbiased
pairs of observables, and a straightforward calculation shows that X and Y also are.

Consider the 16 element set consisting of X, Y , Z and I, along with multiples of these
operators by the scalar factors −1, i and −i. It is straightforward to verify, using relations
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2.6 and 2.7 that this set is closed under composition of operators, and furthermore satisfies all
of the axioms of a group. This group is termed the Pauli group on 1 qubit. The Pauli group
on n qubits consists of all n-fold tensor products of the three Pauli operators and the identity,
and the −1, i and −i multiples of these. For example, X ⊗X and i(Y ⊗ Z) are elements of
the Pauli group on two qubits. Note that the elements of the Pauli group with scalar factors
of 1 and −1 are Hermitian, whilst those with scalar factors of i and −i are anti-Hermitian
(i.e. A† = −A).

2.1.7 Compound systems, separable and entangled states

Our fourth postulate in section 2.1.1 noted that the compound system of two systems with
state spaces H1 and H2 has as its state space the tensor product H1 ⊗H2.

For any pair of vectors |ψ〉 ∈ H1 and |φ〉 ∈ H2 we have a product vector or separable vector in
the tensor product space denoted by |ψ〉 ⊗ |φ〉. Most vectors in H1 ⊗H2 however, are linear
superpositions of such product vectors, and cannot be written as a product vector themselves.
To see this, assume that {|i〉}i=0,m−1 and {|j〉}i=0,n−1 constitute orthonormal bases for H1

and H2 respectively, so that we can write |ψ〉 ⊗ |φ〉 as:

|ψ〉 ⊗ |φ〉 =
∑

i,j

ψiφj |i〉 ⊗ |j〉 (2.11)

Now by the definition of the tensor product it’s clear that the vectors {|i〉 ⊗ |j〉} form a basis
for H1 ⊗H2. Thus we can write a general vector |Ψ〉 ∈ H1 ⊗H2 as:

|Ψ〉 =
∑

i,j

Ψi,j|i〉 ⊗ |j〉 (2.12)

Clearly, the majority of the choices for the numbers Ψi,j will not be decomposable as ψiφj .

Definition 2.1.4 A quantum state vector in a tensor product state space which is not a
product vector is called an entangled state.

A well-known example of such as state, in the case that the two spaces H1 and H2 have the
same dimension, is the Bell state:

|ΨBell〉 =
1√
m

∑

i

|i〉 ⊗ |i〉 (2.13)

In a classical theory to specify the state of a compound system we merely need to specify the
states of all of its components. Entanglement means that the situation is different in QM.
Even if the entangled systems are separated by great distances we must in some sense view
them as a single system.

Given linear operators f1 : H1 → H1 and f2 : H2 → H2 we can form an operator f1 ⊗ f2
acting on the tensor product space. Such an operator is interpreted as performing separate
operations on the two component parts of the system. It is straightforward to show that such
a local operator cannot map a product state into an entangled state although the reverse
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is possible. This leads to a notion of ranking the entanglement in different states. Very
loosely, a state |Ψ〉 is deemed to have greater or equal entanglement to a state |Φ〉 if it
is possible to map |Ψ〉 to |Φ〉 via local operations. For compound systems with just two
components (bipartite systems), it is possible to rank all states like this into a well-defined
hierarchy (actually a pre-order) [25]. At the top of this order are the Bell state and all
states which can be reached from it by applying local unitary operations (local operations
in which all of the constituent maps are unitary). These Bell-type states are thus deemed
to be the maximally entangled bipartite states. For compound systems with more than two
components (multipartite systems) the situation is much more complicated, and determining
this hierarchy of states under local operations is still an unsolved problem, though there do
exist some coarser-grained classifications of multipartite entanglement [15].

One can map a product state into an entangled state by using an operation which is not local.
This corresponds to an operation in which the subsystems interact directly. As an example
consider the case of a pair of qubits, and the following operation, termed the controlled-NOT
gate or CNOT gate:

UCNOT ::















|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|10〉 → |10〉

(2.14)

so called because, in the computational basis, the first qubit acts as a control: if it is 0 the
identity is applied to the second qubit, if it is 1 the value of the second qubit is flipped.
Observe the effect of the CNOT gate on the separable state |+〉 ⊗ |0〉:

UCNOT(|+〉 ⊗ |0〉) = UCNOT(
1√
2
(|0〉 + |1〉)⊗ |0〉) = 1√

2
(|00〉 + |11〉) (2.15)

2.1.8 Quantum teleportation

The structure of quantum mechanics allows for many information processing tasks to be
performed which would not otherwise be possible at all, or would only be possible with much
lower efficiency. Information is encoded in the states of quantum system and is then processed
through the appropriate application of unitary operators, or measurements. Examples include
quantum computing algorithms for factoring numbers [30], quantum cryptography protocols
[5] for secure communication, and a host of other protocols. We present one particular
protocol here, quantum teleportation [6], both because it provides a good example of quantum
information processing, and because it is a feature which is replicated in the quantum-like
theories we will later be considering.

The protocol involves two parties traditionally known as Alice and Bob. Alice begins with a
single qubit in an unknown state:

|ψ〉 = ψ0|0〉+ ψ1|1〉 (2.16)

Alice and Bob also have one qubit each of an entangled two-qubit system. These two qubits
are collectively described by the qubit Bell state:

|Ψ+〉 = 1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) (2.17)
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The aim of the protocol is for Alice to transmit the information about the state of her qubit
to Bob, so that he is able to prepare a qubit in the same state, without Alice actually sending
her qubit to Bob. Alice and Bob can exchange classical information, but they cannot send any
qubits between one another. Naively one might think that Alice could simply determine her
state and send the information about that state (i.e. the complex numbers ψ0 and ψ1 from
equation 2.16) to Bob over the classical channel. But given a single copy of |ψ〉 how would
Alice determine these coefficients? If she performs any measurement on the state she will get
one outcome or the other with a certain probability. Attempting to measure the system will
collapse the state vector into one or other eigenvector.

In fact Alice and Bob proceed as follows. The state of the three qubits is initially |ψ〉⊗ |Ψ+〉.
Alice performs a measurement on the two qubits she possesses (one that she’s aiming to
teleport, and one half of the Bell pair) in the Bell basis. The Bell basis is spanned by:

|Ψ+〉 = 1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) (2.18)

|Ψ−〉 = 1√
2
(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉) (2.19)

|Φ+〉 = 1√
2
(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉) (2.20)

|Φ−〉 = 1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) (2.21)

What happens to the state of the three qubits depends on the measurement outcome. If, for
example, the fourth measurement outcome is realised, the new state of the three qubits is
given by:

(|Φ−〉〈Φ−| ⊗ 1)(|ψ〉 ⊗ |Ψ+〉 (2.22)

and similarly for the other measurement outcomes. The next step in the protocol is for Alice
to communicate the result of the measurement over the classical channel to Bob. Since there
are four possible outcomes, Alice needs to send only two classical bits of information over the
channel. Depending on the information which he receives from Alice, Bob then performs one
of four unitary correction operations on his qubit (which was originally one half of the Bell
pair). The remarkable result of the protocol, proved in the original paper [6], is that after
making the appropriate correction Bob’s qubit will be in the state |ψ〉.

A particularly remarkable aspect of this protocol is this: according to equation 2.16 it takes
two complex parameters to describe the state |ψ〉. In fact the state will be normalised and the
overall phase of the state is physically unimportant. Nevertheless this leaves two continuous
real parameters needed to completely specify |ψ〉. But Alice sends just two bits of information
over the classical channel to Bob, and from this he is able to reconstruct |ψ〉. Somehow the
entangled state shared by Alice and Bob must act as a kind of channel to transmit the rest
of the information.

2.1.9 Mixed states, POVMs, completely positive maps

The description of the axioms of quantummechanics in section 2.1.1 assumes a closed quantum
system. It also assumes that we have the maximum possible knowledge about the system. If
either of these conditions doesn’t hold, in the case of an open system, or incomplete knowledge,
an alternative set of mathematical structures are employed to describe quantum systems (see
for example [26]).
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• A system is still associated with a Hilbert space H.

• The state of a system is described by a density operator ρ : H → H, a positive Hermitian
operator with trace equal to 1. Such a state is termed a mixed state. In contrast we
refer to the states described by state vectors, which were introduced in section 2.1.1, as
pure states.

• Measurements are described by positive operator value measurements or POVMs.

• The evolution of the system is described by a completely positive map, a map of type
(H → H) → (H → H) which preserves the defining properties of a density operator.

We will make very little use of these concepts in what follows, since they complicate matters,
and the phenomenon in which we are primarily interested, the issue of hidden variables, can
just as easily be exhibited in the pure state formalism.

2.2 Hidden variable theories and no-go theorems

2.2.1 Hidden variable interpretations

In QM the most complete description of a system is given by a pure state vector |ψ〉. Given
this vector, for any observable A of the system, we can derive a probability distribution
p(A = a) = |〈a|ψ〉|2. This tells us the probability of obtaining each possible outcome a, if
we measure observable A. Probably the most natural conclusion to draw is that QM is not
a complete description of nature, but is some kind of ‘statistical’ theory, reflecting a lack of
knowledge of the exact state of the system. The following statements would be typical of
such a view:

• The systems described by quantum mechanics possess well-defined definite values for
all their observable quantities. Specifying all these values would give us the true state
of the system. We will refer to this as the ‘ontic’ state of the system - it would tell us
how the system actually is.

• However, in practice, we never have a situation where we know the ontic state exactly.
Instead the best state of knowledge we can have is a probability distribution over the
ontic states. This restriction on our knowledge might be practical, simply a deficiency
of our technical abilities in probing and manipulating quantum systems, or it might
have some more fundamental origin. Each quantum state would correspond to a par-
ticular probability distribution over the ontic states, and conversely, these are the only
distributions allowed. We would denote such a distribution by:

pψ(A = a,B = b, C = c . . . ) (2.23)

where ψ is the QM state, A,B,C . . . are the observables for the system, and a, b, c . . .
range over the possible values the observables can take.
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• The probabilities which we obtain from the quantum state via the Born rule are equal to
the marginal probabilities obtained from the distribution over ontic states. For example,
if A,B,C . . . are the observables of the system, the probability distribution over values
for A would be given by these equivalent formulae:

|〈a|ψ〉|2 =
∑

b,c...

pψ(A = a,B = b, C = c . . . ) (2.24)

the LHS being the value derived from the QM state vector, and the RHS coming from
the probability distribution over the ontic states.

These statements seem so obviously and necessarily true that one may wonder why we are
bothering to spell them out. The reason is that, unless combined with some other rather
bizarre assumptions, they are actually incompatible with the predictions of quantum me-
chanics. We will shortly examine some of the ways in which this can be shown, but we will
pause briefly here to consider what this means for the ontology of a world described by QM.

An attempt to interpret QM according to the statements above is traditionally termed a
hidden variable interpretation (HVI). The origin of this terminology is the idea if we wanted
to know the exact ‘ontic’ state of a system we need to know both the QM state vector, and the
value of additional variables, which in practice are ‘hidden’ from us. Although the literature
can sometimes be confusing on this issue, without loss of generality we can take these hidden
variables to be the values of the observables themselves. Perhaps the key point about this
type of interpretation is the idea that systems possess well-defined values for the observables
at all times, regardless of whether any observer is measuring them, and for this reason a
better term might be ‘realist interpretation’. A theory which can be given a hidden variable
interpretation is termed a hidden variable theory or HVT.

Almost from the beginning of QM claims were made to have shown that there could be no
HVI for QM [34]. However the majority view is that these early arguments were all flawed
and it was not until the 1960s that two convincing ‘no-go’ arguments were put forward,
ruling out HVIs for QM. These were Bell’s theorem [4], and the Kochen-Specker theorem [22].
These arguments were extremely significant in the history of the understanding of the hidden
variable issue, but they have to some extent been superseded by subsequent simpler or more
elegant arguments, one of which we now present in detail.

2.2.2 The GHZ no-go argument

By far the simplest and most convincing no-go argument was proposed in 1989 [18] and re-
worked into the form which we will discuss here in 1990 [24]. This argument employs three
qubits in the following quantum pure state:

1√
2
(|000〉 + |111〉) (2.25)

where |0〉 and |1〉 are the eigenstates of the Pauli Z operator. This state is known as the
Greenberger-Horne-Zeilinger state or GHZ state, after the authors of the 1989 paper.
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What are the predictions of a realist/hidden variable interpretation of this state? Any three
qubits in this state will each possess a well-defined, at-all-times-existing value for each of its
observables. For reasons which will become apparent below, we are particularly interested
in the Pauli X and Y observables. These can each take two values, +1 and -1. There are
26 = 64 possible combinations of values which they can take for the three qubits. Any given
system of three qubits should have one of these combinations of values.

What are the predictions of QM? It is straightforward to verify that this state is an eigenstate
of the observable (X1 ⊗X2 ⊗ X3) with eigenvalue +1. This implies that if we measure the
X observable on each qubit our triple of outcomes must multiply together to give +1. Put
another way, the triple of outcomes must have +1 occurring an odd number of times. Put
yet another way the outcome triples (1,1,1), (1,-1,-1), (-1,1,-1) and (-1,-1,1) may all occur
while the other four will never occur. Simultaneously the GHZ state is an eigenstate of the
observables (X1 ⊗ Y2 ⊗ Y3), (Y1 ⊗X2 ⊗ Y3) and (Y1 ⊗ Y2 ⊗X3), in each case with eigenvector
-1. In these cases, in contrast to the (X1 ⊗X2 ⊗X3) case, the triple of outcomes must have
+1 occurring an even number of times.

Are the predictions of the HVI and QM compatible? It turns out that they are not. This
failure of compatibility is quite extreme – none of the 64 possible assignments of values to
the six observables (X1,X2,X3, Y1, Y2, and Y3) satisfies the parity conditions described in the
paragraph above. We could verify this by going through each of the 64 assignments, one by
one, and checking whether they satisfy the parity conditions, but there is a more elegant and
much easier way to show it.

We begin by constructing what we will refer to as aMermin table. We take the four observable
triples and arrange them in four rows. We then have a four-by-three array of observables,
with each observable appearing twice:

X1 X2 X3

X1 Y2 Y3
Y1 X2 Y3
Y1 Y2 X3

Suppose we pick a particular one of the 64 possible assignments, and input the values into
this table. Multiply all the values together. Do we get +1 or -1?

We can work this out in two ways. The first way is to figure out the result of multiplying the
entries of each row, and then multiplying these three numbers together. The result for each
row is already given to us by the QM predictions: for the first row it is +1, and for the other
rows it is -1. Thus the product of all the entries in the table should be -1.

X1 X2 X3 +1
X1 Y2 Y3 −1
Y1 X2 Y3 −1
Y1 Y2 X3 −1

= −1

The second way is to figure out the result of multiplying the entries of each column, and then
multiplying these three numbers together. Each column has four entries - two observables each
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appearing twice. Presumably each appearance of the same observable in the table should be
assigned the same value (a key assumption which will be re-examined below), so multiplying
these two identical values together should yield +1, making each column product +1. This
implies that the product of all entries in the table should be +1, and we have a contradiction
with the first calculation.

X1 X2 X3

X1 Y2 Y3
Y1 X2 Y3
Y1 Y2 X3

+1 +1 +1 = +1

We conclude that there is no way of assigning well-defined values to the six observables which
is consistent with the predictions of QM.

This result is problematic for the proponent of hidden variables. According to the HVI
the system of three qubits must have definite values for X and Y for each qubit. We can
choose to measure any triple of observables, and this measurement will reveal the pre-existing
definite value of those observables. In particular we could choose to measure (X1⊗X2⊗X3),
(X1⊗Y2⊗Y3), (Y1⊗X2⊗Y3) or (Y1⊗Y2⊗X3). The QM predictions claim that the outcomes
of these measurements must obey certain parity conditions. But there is no way that we could
assign values to each of the six observables in such a way that we could choose to measure any
one of the four observable triples, and still get results which respected the parity conditions.

2.2.3 Non-local hidden variables

There is an escape from the GHZ argument for the hidden variables proponent. In the
argument using the Mermin table, a key assumption was that both appearances of each
observable in the table should be assigned the same value. If this requirement was not in
place, there would be no constraints on the column products, and would be able to fill in the
table, happily obeying the constraints on the row products.

This is all very well as a mathematical manoeuvre, but what does it mean physically? To
answer this we need to ask: why did we initially require each instance of a given observable
in the table to take the same value? For example, consider the appearances made by X1 in
the first and second rows of the table.

X1 X2 X3

X1 Y2 Y3
Y1 X2 Y3
Y1 Y2 X3

It seems to make sense that these should both take the same value - in a realist interpretation
a physical quantity has one definite value. However, suppose we allow for the possibility that
the choice of which measurements to make on the second and third systems, either X on
both, or Y on both, is in some way capable of disturbing the value of X possessed by the
first system. Then the two appearances of X1 in the table need not necessarily be assigned
the same value.
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This disturbance would need to be instantaneous, because the quantum predictions hold,
regardless of what distances separate the particles, and what intervals separate the measure-
ments.

Thus, the predictions of quantum mechanics are compatible with the idea of systems pos-
sessing well-defined values for their observables, so long as we allow that these values can
be instantaneously disturbed by actions performed on other systems, potentially separated
from the initial system by great distances. Indeed there do exist famous examples of realist
interpretations of quantum mechanics, which have exactly this non-local character [8]. Not
surprisingly, such a theory is termed a non-local hidden variable theory. Strictly then, the
GHZ argument only rules out a local hidden variable interpretation of quantum mechanics.

2.3 Stabiliser quantum mechanics

We now consider a ‘sub-theory’ of standard quantum mechanics, in which the only systems
are qubits, and which involves only a subset of the states and operations of QM. The states
concerned are termed the stabiliser states, which give their name to the theory.

2.3.1 Stabiliser states

We say that a state |ψ〉 is stabilised by a linear operator A if it is an eigenstate of that operator
with eigenvalue +1, i.e. A|ψ〉 = |ψ〉. If all vectors in a subspace are stabilised by A, then
that subspace is said to be stabilised by A.

Recall the definition of the Pauli group on n qubits in section 2.1.6. Consider a commutative
sub-group of the Pauli group on n qubits generated by k independent Hermitian operators (a
set of Pauli operators are said to be independent if none can be obtained as products of the
others). It’s possible to show (e.g. [16, page 20]), that the members of such a sub-group will
simultaneously stabilise a sub-space of dimension 2n−k.

Definition 2.3.1 A stabiliser sub-group is a commutative sub-group of the Pauli group on
n qubits, generated by n independent Hermitian operators.

Definition 2.3.2 A stabiliser state on n qubits is an element of the 1-dimensional subspace
stabilised by a stabiliser sub-group.

Stabiliser states form a key ingredient of the stabiliser formalism which has important ap-
plications in many branches of quantum information theory, and we have included their full
definition for completeness. However the details of the definition of a stabiliser state concerns
us much less than the fact that these states form a discrete subset of the full set of quan-
tum states, which is much easier to work with, but still exhibits many of the key ‘typically
quantum’ features. Here is a brief summary of the stabiliser states for low numbers of qubits:

1. A single qubit has six stabiliser states: |0〉, |1〉, |+〉, |−〉, | + i〉 and | − i〉, being the +1
eigenstates of the following six states X,−X,Y,−Y,Z and −Z.
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2. There are 60 stabiliser states on two qubits: 36 of these are the product states of the six
single qubit states, for example |01〉, and the other 24 are maximally entangled states,
all LU equivalent to the qubit Bell state, 1√

2
(|00〉 + |11〉).

3. From the discussion in section 2.2.2 the three-qubit stabiliser states clearly include the
GHZ state 1√

2
(|000〉 + |111〉). Three independent generators for the sub-group which

stabilises it are −X ⊗ Y ⊗ Y , −Y ⊗X ⊗ Y and −Y ⊗ Y ⊗X.

2.3.2 Clifford operations and Pauli measurements

Definition 2.3.3 The n-qubit Clifford unitaries are those n-qubit unitary operations which
map the stabiliser states back into stabiliser states.

It is clear that these operations will form a sub-group of the unitary group U(n), termed
the Clifford group. It can be shown [19] that, up to a phase factor, there are 24 single-qubit
Clifford unitaries, and they form the permutation group S4.

Proposition 2.3.4 Any n-qubit Clifford unitary can be decomposed into a sequence of
single-qubit Clifford unitaries and two-qubit CNOT operations.

Proof: See for example [19]. 2

The Clifford unitaries are the unitary operations which preserve stabiliser states. What
sort of measurements can be performed which will guarantee that the resulting state is a
stabiliser state? If we restrict ourselves to measurement of the observables corresponding
to the Hermitian elements of the Pauli group, we will ensure that the state of a system,
post-measurement, will be one of the eigenstates of these operators, which is bound to be a
stabiliser state. Interestingly it can be shown [16, pages 37-8] that any pair of observables
from the Pauli group will either commute, or be mutually unbiased. Thus Pauli measurements
on stabiliser states will either yield one outcome with certainty, or all possible outcomes with
equal probability.

2.3.3 Stabiliser quantum mechanics

In standard quantum mechanics, systems are associated with Hilbert spaces, their states
are described by normalised vectors within those spaces, the evolution of these states is
described by unitary operators, and observables are described by Hermitian operators, with
measurement of these observables occurring as described in the third postulate in section
2.1.1.

Definition 2.3.5 Stabiliser quantum mechanics is a sub-theory of standard QM, in which:

• The systems are qubits, or collections of qubits.

• The states which these systems can occupy are the stabiliser states.
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• The evolution of the state of a system is described by the Clifford unitaries.

• The observables of an n-qubit system are described by the Hermitian elements of the
Pauli group on n-qubits. Apart from the restriction on the operators which represent
observables, the description of measurement exactly parallels that in standard QM.

This is clearly a well-defined theory, since both evolution and measurement disturbance trans-
form one stabiliser state into another. It is a much simpler theory than QM, having only one
type of system, and a discrete set of states and transformations, rather than a continuum.
For example, a single system has only three observables, all of which are mutually unbiased.
Each of these has two eigenstates, and these six states are the only states which a single
system can occupy. Despite this simplicity, stabiliser quantum mechanics still exhibits many
of the features which are generally considered typical of quantum mechanics.

• The stabiliser theory has incompatible observables, and thus the state of a system
cannot simultaneously specify well-defined values for all of its observables. The most
obvious examples are the three observables X, Y and Z on the single system. Given
a system in state |+〉 a measurement of X is bound to yield an outcome of +1, but
measurements of Y or Z could yield either outcome, each with a probability of 1/2.

• The stabiliser theory exhibits entanglement. The entanglement structure is rather
simpler than in the case of full QM: for example for a two qubit system states are
either separable or maximally entangled - there is no complex hierarchy of bipartite
entanglement as described in section 2.1.7. Much of the complexity of multipartite is
also missing - for example the W -class states of [15] are not stabiliser states. None the
less, considerable complexity remains - the graph states, a sub-class of entangled states
which have been heavily studied [19] are all stabiliser states.

• All of the essential ingredients of the teleportation protocol survive, as do many
other quantum information protocols, for example dense coding.

• All of the ingredients of the no-go proof against local hidden variables described
in section 2.2.2, the GHZ state, and measurements of the observables X and Y , survive
in stabiliser theory. Thus stabiliser theory has no interpretation in terms of local hidden
variables.

2.4 Spekkens’s toy bit theory

We now consider our key example of a ‘quantum-like’ theory, the toy bit theory proposed
by Rob Spekkens [32]. Spekkens developed this theory with the aim of demonstrating that
many (though not all) of the typically ‘quantum’ features of QM, can in fact be exhibited
by a typically classical system, so long as there is some restriction on our knowledge of the
system.
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2.4.1 Systems and knowledge balance principle

The theory is very abstract in character - there are ‘systems’ which can occupy ‘states’,
‘measurements’ can be made, but there is no mention of any concrete attributes which a
system could possess, such as position, momentum, spin etc. There is only one kind of system
in the theory, which is intended to resemble a qubit. We will describe this as the elementary
system. This system can exist in one of four different states. Spekkens uses the term ontic
state to describe these states, since they are intended to represent the objectively-existing
state of affairs with respect to the system. We will refer to the ontic states of an elementary
system simply as 1, 2, 3, and 4; thus the ontic state space is the set IV := {1, 2, 3, 4}. The
ontic state of a compound system is given by stating the ontic state of each of the elementary
constituents, thus the ontic state space for a compound system with n elementary constituents
is IVn - this is in clear contrast to the QM situation.

So far this is simply a very abstract presentation of an essentially classical theory. The key
novel feature of Spekkens’s theory is that there is a restriction on how accurately we can know
the ontic state of a system.

Definition 2.4.1 A canonical question set is a set of yes-no questions about the ontic state
of a system, which has the minimum number of elements such that the answers uniquely
identify the ontic state.

For an elementary system an example of a canonical question set would be the two questions:
“Is the ontic state in the set {1, 2} or not?”, and “Is the ontic state in the set {2, 3} or
not?”. In Spekkens’s scheme the only kind of knowledge one can have about the ontic state
of a system is to know the answers to some subset of the questions in a canonical set. The
‘amount of knowledge’ we have is exactly equal to the number of questions we know the
answer to. With this concept in mind we are able to state the knowledge balance principle:

“If one has maximal knowledge, then for every system, at every time, the amount of knowledge
one possesses about the ontic state of the system at that time must equal the amount of
knowledge one lacks.”

2.4.2 Epistemic states for a single system

We can apply this principle to the elementary system. A canonical question set for an elemen-
tary system consists of two questions, and from the knowledge balance principle we deduce
that we can know the answer to at most one of these. Thus, in a state of maximal knowledge
we know that the system occupies one of two ontic states. Spekkens refers to the state of our
knowledge about the system as the epistemic state, and it is this which is intended to be the
analogue of the quantum state.

We can represent the ontic state space of an elementary system by:

(2.26)

We then represent an epistemic state by shading those ontic states which the system might
occupy when that epistemic state represents the state of our knowledge about the system. Us-
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ing this diagrammatic notation, we can depict the six epistemic states of maximal knowledge
for an elementary system as:

(2.27)

Note, firstly, that epistemic states are simply subsets of the ontic state space. Any two states
which, when viewed as subsets, have an empty intersection, are termed disjoint. Disjoint
epistemic states are the analogue of orthogonal quantum states. Note, secondly, that these
six states fall naturally into three families of two states, where the states of a family are
disjoint, and their union is equal to the whole ontic state space. Such a family is the analogue
of an orthogonal basis in QM.

There are also epistemic states representing less than maximal knowledge about the system.
Non-maximal knowledge, in this context, means knowing the answer to less than half the
questions in a canonical set. In the case of an elementary system this implies knowing the
answer to no questions. Thus we have just one non-maximal epistemic state:

(2.28)

Such states play an analogous role in the toy theory to mixed states in quantum mechanics.

Spekkens goes on to employ the knowledge balance principle on multiple occasions to derive
the allowed states and transformations in his theory. We will come back to this point later on,
when we discuss the issue of how well-defined the theory is, but for now we will largely restrict
ourselves to simply describing the states, transformations and phenomena of the theory.

2.4.3 Transformations and measurements on a single system

We next consider dynamics: how does the ontic state of a system evolve? Spekkens approaches
this question by asking: what transformations on the ontic states lead to transformations on
the epistemic states which are allowed by the knowledge balance principle? A transformation
on the ontic states of an elementary system is a function of type IV → IV. We note that this
function must be injective. Imagine that we have a non-injective function, which, for example
maps 1 and 2 into the same ontic state. The epistemic state {1, 2} would then be mapped into
a singleton subset, which is not a valid epistemic state according to the knowledge balance
principle. Thus we conclude that the allowed transformations are the permutations of the
four ontic states. There are 24 such permutations, forming a group, S4 under composition.

Measurement in the toy theory corresponds to asking as many questions from a canonical set
as the knowledge balance principle will allow you answers to. In the case of an elementary
system this means asking one question. In fact there are three questions about the ontic
state of an elementary system which can form part of a canonical set (any given canonical
set contains two of these questions), and thus there are three possible measurements we can
perform. Pictorially we denote them as:

A A B B A B A B A B B A (2.29)
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where the ‘A’ and ‘B’ denote the different possible outcomes for the measurement: for example
the first measurement amounts to the question: “Is the ontic state one of {1, 2} (outcome A)
or is it one of {3, 4} (outcome B)?”.

Suppose we perform the first measurement on elementary systems described by the following
three epistemic states:

(i) (ii) (iii)
(2.30)

If our system is described by (i), we are certain to get outcome A, because we know that the
state has ontic state 1 or 2. If our system is described by (ii) we are certain to get outcome
B. If our system is described by (iii) we know that our system is either in ontic state 1 or 3,
so we may get either outcome A or outcome B. Spekkens actually goes further and suggests
that we will get each outcome with a probability of 1/2, but we can equally well view the
theory as giving us certainties, possibilities and impossibilities, rather than probabilities.

The knowledge balance principle implies that any measurement inevitably induces a distur-
bance on the ontic state. To see this imagine that initially our epistemic state for the system
is (iii), and we get outcome A when performing the first measurement. We can now infer
that the system was in ontic state 1. However, the knowledge balance principle prohibits us
from knowing which ontic state the system is in at the present time. Thus, even though we
can infer what the ontic state was prior to measurement, there must have been some kind
of disturbance of the ontic state during the measurement, so that we can no longer be sure
what it is. Spekkens also requires that repeated measurements of the same type should yield
the same outcome. From these requirements we conclude that the disturbance should be
probabilistic, and of the following form. All ontic states consistent with a given outcome of
the measurement should be permuted amongst themselves. The different possible permuta-
tions should be realised with equal probability. Thus, the first measurement in diagram 2.29
should induce, with equal probability, one of the following four permutations of the ontic
states: (1)(2)(3)(4) (i.e. the identity), (12)(3)(4), (1)(2)(34), or (12)(34).

The result of such a disturbance is that if we obtain outcome A the new epistemic state is the
one on the left below, while if we obtain B, the new epistemic state is the one on the right:

(2.31)

If we are considering only epistemic states, the disturbance due to the measurement can be
conveniently described in terms of the following relations. If we obtain outcome A:

1 ∼ {1, 2}, 2 ∼ {1, 2}, 3 ∼ ∅, 4 ∼ ∅ (2.32)

and if we obtain outcome B:

1 ∼ ∅, 2 ∼ ∅, 3 ∼ {3, 4}, 4 ∼ {3, 4} (2.33)

or more generally, if IIA, IIB ⊂ IV correspond to outcomes A and B respectively, then if we
get outcome A we apply IIA ∼ IIA, IIB ∼ ∅ and similarly for outcome B.

The rules for probabilities of measurement outcomes and disturbance by measurement both
indicate that the three families of epistemic states in diagram 2.27 constitute clear analogues
of QM eigenstates for the three measurements depicted in diagram 2.29, and that furthermore
the three measurements are not only incompatible, but mutually unbiased.
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2.4.4 States of composite systems

The ontic state space for a pair of systems is IV × IV, thus there are sixteen possible ontic
states, which correspond to every possible combination of the ontic states for the individual
systems. We represent this state space in the following fashion:

1

2

3

4

1 2 3 4

System 2

System 1

(2.34)

In this case a canonical question set contains four questions, since this is how many yes-no
questions it takes to single out one ontic state from the sixteen. Thus, in an epistemic state of
maximal knowledge we know that the ontic state is one of four possibilities. However, there
are tighter requirements on the allowed epistemic states. For example, despite having the
right number of filled boxes, the following two states are not allowed:

(ii)(i)

(2.35)

Our first extra requirement is that the knowledge balance principle should apply to each
constituent system as well as to the overall composite system. This is where (i) fails, since if
this is our epistemic state, we know for sure that system 2 is in ontic state 1.

Epistemic state (ii) satisfies the knowledge balance principle overall, and on all its subsystems.
The problem here is that applying an allowed operation to this state will yield an epistemic
state which doesn’t satisfy the knowledge balance principle. Consider applying a measurement
of the first type depicted in diagram 2.29, to system 1 of a pair of systems described by the
epistemic state (ii). If we obtain outcome B, then, assuming that the disturbance induced by
the measurement acts only on the measured system, the epistemic state after measurement
will be:

(2.36)

which fails to satisfy the knowledge balance principle either for system 2, or for the composite
system as a whole.

We note in passing that the fact that the measurement disturbance only affects the measured
system, and not any (potentially quite distant) other constituent systems is what makes the
toy theory a local theory.
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After applying such arguments as these, Spekkens shows that there are essentially two kinds
of allowed epistemic states of maximal knowledge on a composite system of two elementary
systems.

1. This state, and all states which can be obtained from it by permuting the rows and
columns of the diagram:

(2.37)

These are the analogues of the separable states of QM. In such states we have maximal
knowledge about the individual systems, but we know nothing about the relationship
between them. There are 36 such states in total.

2. This state, and all states which can be obtained from it by permuting the rows and
columns of the diagram:

(2.38)

These are the analogues of the totally entangled states of QM. In such states we know
nothing about the individual systems, but we have full knowledge of the relationship
between the systems. There are 24 such states in total.

There are further states, of non-maximal knowledge, which again play a role in the theory
analogous to the mixed states of quantum mechanics.

We will not record all the details here (these can be found in the original paper [32]), but
one can go on to develop the treatment of two-system transformations and measurements in
a way very analogous to what was described for single systems. As was the case with the
development of two-system states, there are extra complications which were not present for
the single system case, but the essential principles are the same.

In his original paper Spekkens goes as far as treating the case of three systems. Here he
determines that there are essentially three kinds of epistemic state: one in which there is no
correlation between the three systems (essentially an extension of the type of state depicted
in equation 2.37), one in which one system is uncorrelated with the other two, which are
correlated, and one in which all three systems are correlated. Clearly it’s harder to depict
such states graphically, but an example of such a state would be the following subset of
IV× IV× IV:

{(1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1), (3, 3, 3), (3, 4, 4), (4, 3, 4), (4, 4, 3)} (2.39)

These states are the analogues of the GHZ states of quantum mechanics.
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Spekkens devotes considerable time to demonstrating that the properties of the states and
transformations of the theory are such that many typically quantum phenomena are repro-
duced. Examples include the ‘remote steering’ effect, whereby given an entangled two-system
state the choice of measurement on one system can ‘steer’ the other system into a state from
a particular basis; the well-known dense-coding [7] and quantum teleportation [6] protocols;
and the no-cloning [35] and no-broadcasting [2] results. Many of these results seem bizarre
or inexplicable in the quantum context, but are seen to be quite trivial and comprehensible
phenomena within the toy theory. For example the apparent teleportation of a whole state
via the communication of just two bits, in the teleportation protocol is shown not to be at all
mysterious when the state is a state of incomplete knowledge, rather than a quantum state.
Perhaps the most notable quantum phenomena which are not reproduced are all the no-go
results ruling out local hidden variables, for example violation of Bell inequalities. This is
clearly to be expected, since the toy theory is a local hidden variable theory, by construction.

The toy theory clearly bears a very close resemblance to stabiliser theory: they both have one
kind of elementary system, and discrete collections of states and transformations. In both
cases the elementary system has three mutually unbiased observables, each with two outcomes.
Evolution of the single system is described by a set of 24 transformations, together forming
the group S4. In both cases the 2-system states are either separable/totally uncorrelated, or
maximally entangled/totally correlated. In fact we introduced the stabiliser theory precisely
because it is the fragment of QM which the toy theory most closely resembles. However,
despite their similarity they are clearly not quite the same, since the GHZ no-go proof shows
that the results of the stabiliser theory could not be replicated by a local hidden variable
theory.

2.4.5 Is the toy theory well-defined and consistent?

In his original paper Spekkens works out the details of the epistemic states and transfor-
mations in the theory up to the case of three systems. In later work he has extended this
to four systems [31]. Nevertheless, the approach he takes to deriving the allowed epistemic
states and transformations seems inevitably to be iterative, requiring derivation of states and
transforms for systems with smaller numbers of components before those for systems with
larger numbers of components can be determined.

The style of the original paper is quite informal, but essentially the procedure for determining
allowed epistemic states and transformations for a system with n elementary components
seems to amount to the following:

1. We first determine whether an epistemic state satisfies the knowledge balance principle
‘globally’ i.e. do we know the answer to half or less of a set of canonical questions about
the system as a whole. In practice this means that allowed states constitute subsets of
IVn with one of the following cardinalities: 2n, 2n+1, . . . , 22n.

2. Clearly a system of n elementary components will have many possible subsystems: for
example it will have n subsystems each with n − 1 elementary components, n(n−1)

2
subsystems with n− 2 elementary components, and so on, down to n subsystems each
with one elementary component. Given an epistemic state for the full system, we
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can clearly derive ‘marginal’ epistemic states on any of these subsystems: the original
epistemic state is a subset of n-tuples, and we derive the ‘marginal’ state by deleting
from each tuple the components corresponding to the elementary systems which do not
appear in our subsystem of interest. Each of these marginal epistemic states must itself
be a valid epistemic state. It was this requirement which failed to be satisfied for state
(i) in diagram 2.35 in the previous section, thus ruling this out as a valid epistemic
state. Note that this requirement requires knowledge of all allowed epistemic states for
systems of n− 1, n− 2, . . . , 1 elementary components.

3. The last rule is: Applying a valid operation to a valid epistemic state must yield a
valid epistemic state. Spekkens employs this requirement on several occasions in his
development of the theory. For example, having established the valid epistemic states
of an elementary system in section 2.4.2 we used this rule in section 2.4.3 to deduce that
the valid transformations on an elementary system were the permutations: any other
transformations would have mapped valid states into non-valid states. Note that here
we use our knowledge of valid states to deduce the form of the valid transformations. On
the other hand, in ruling out state (ii) in diagram 2.35 in the previous section, we used
our knowledge of the form of the valid transformation corresponding to measurement
disturbance to deduce the form of valid states. Once again, using this rule requires us
to have already deduced the valid form for certain states or transformations.

These appear to be the only rules which Spekkens uses in deriving the form of allowed states
and transformations, although their application is something of an art! They raise several
issues. Firstly, this approach seems to be necessarily iterative. Compare it for example to
how we would describe the form of valid states in quantum mechanics - in one line we can
say that they are the normalised vectors of the system’s state space.

Secondly, do these rules actually uniquely define the toy theory? There does seem to be
a problem with the third rule. When we use it to rule out state (ii) in diagram 2.35, our
argument is that we already know what the valid measurement disturbance transformations
on a single elementary system are, and when we apply one of them to state (ii) we obtain a
state which clearly violates the knowledge balance principle. However, it is not clear that we
could not have made the alternative choice - that this state should be valid, and therefore that
the transformation which we had previously thought was valid could no longer be considered
as such. It seems that considerations other than the three rules above come into deciding
which should be the valid states of the theory, but it is nowhere clearly stated exactly what
they are.

The second point touched slightly on our final issue: is the theory as Spekkens presents
it consistent? He derives valid states and transformations for systems with up to three
elementary components. However, can we be sure that these states and transformations,
when combined in more complex situations involving four or more elementary systems, won’t
yield a state which clearly violates the knowledge balance principle? Currently there seems
to be no such proof of consistency. In fact, on the way to deriving a categorical treatment of
the theory we will develop such a proof. This will be discussed further in chapter 4.



Chapter 3

Background: the categorical

framework

In this section we introduce the programme initiated by Abramsky and Coecke [1] and contin-
ued by many authors, for example [29, 13, 9], to re-express quantum mechanics and quantum-
like theories in terms of category theory. This programme has had multiple motivations, which
have been more or less important to different authors. In this work we will primarily view the
categorical approach as a unifying mathematical framework in which to study and compare
quantum-like theories which were originally expressed in disparate mathematical forms.

The key idea in the categorical approach is to concentrate on the ‘algebra’ of how operations
and transformations of systems in a theory combine. Two physical theories might represent
their states and operations using quite different mathematical structures, but in the categor-
ical approach we are uninterested in the ‘internal structure’ of states and operations. Instead
we view the operations as the primitive mathematical elements, and ask how they combine.
For example, if I perform operation A, followed by operation B, and the overall result is the
same as if I had simply performed the operation C, then we can form an equation on our
operations: A;B = C. We will now see that categories are the appropriate mathematical
arena for stating such results.

In section 3.1 we introduce the basic category theoretic definitions, and discuss why categories
are the appropriate structure with which to model the algebra of processes in a physical theory.
We introduce a particular type of category, a symmetric monoidal category and show that any
category corresponding to a physical theory will be of this type. In section 3.2 we introduce
some additional structures which we expect any category corresponding to a quantum-like
theory to possess. We continue with this in section 3.3 which is devoted to a structure which
will be of particular importance in succeeding chapters, the basis structure. Finally in section
3.4 we give a detailed description of the category Stab, which corresponds to the stabiliser
theory described in the previous chapter.

Since this chapter primarily summarises an existing body of work for the most part we will
state results without proof. Details of proofs can be found in the references. The definition
of Stab first appeared in a paper co-authored with Bob Coecke and Rob Spekkens [11].

29
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3.1 Categories and physical theories

3.1.1 Basic definitions in category theory

A category [23] is an algebraic structure like a group, a field or a vector space. A category
is a collection of elements with an associative binary operation, but, unlike the examples
above, this operation is not defined for all pairs of elements. Each element has a pair of
labels which determine which other elements it can combine with. For example an (A,B)
element can combine with a (B,C) element; the result will be an (A,C) element, which could
then combine with a (C,D) element to produce an (A,D) element, or could combine with a
(Z,A) element to yield a (Z,C) element. The order of the labelling is important: a (B,A)
element could not combine with a (B,C) element. Thus each element has a kind of inherent
‘direction’, and they are often termed arrows.

This is not the standard way of introducing a category, though it has the merit of emphasising
exactly where the algebraic structure of the category lies. A more standard definition is:

Definition 3.1.1 A category C consists of:

• A collection of Objects, denoted Ob(C). These are normally labelled A,B,C, . . . .
These are not the algebraic elements of the system, they are the labels referred to
above.

• A collection of Arrows orMorphisms, denoted Hom(C) to each of which are associated
two objects, one called the domain of the morphism, the other its codomain. The

morphism f with domain A and codomain B would be written as f : A→ B or A
f→ B.

We also write f ∈ C(A,B). These morphisms are the algebraic elements of the category.

Furthermore, for each triple of objects A, B and C there is a map cA,B,C : C(A,B)×C(B,C) →
C(A,C). Given f : A→ B and g : B → C we denote cA,B,C(f, g) by either g ◦ f or f ; g. This
operation satisfies two conditions:

• It is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f)

• Each object A has an associated identity morphism, denoted idA or 1A so that if f :
A→ B then f ◦ 1A = f = 1B ◦ f .

Definition 3.1.2 A sub-category C′ of a category C consists of:

• A sub-collection of the objects of C, Ob(C′) ⊆ Ob(C).

• A sub-collection of the morphisms of C, Hom(C′) ⊆ Hom(C).

such that

• ∀A ∈ Ob(C′), 1A ∈ Hom(C′).
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• ∀f : A→ B ∈ Hom(C′), A,B ∈ Ob(C′).

• ∀f : A→ B, g : B → C ∈ Hom(C′), g ◦ f ∈ Hom(C′).

3.1.2 Examples of categories; link to physical theories

Concrete realisations of categories take many forms. We can construct very simple abstract
structures, satisfying the axioms of a category, unrelated to any other context. For example,
the following diagram illustrates a very simple category with two objects:

1A

f

g

1BA B

(3.1)

where: g ◦ f = 1A and f ◦ g = 1B .

However, concrete examples of categories also arise naturally in other contexts. The notation
f : A → B is clearly reminiscent of the notation for functions and sets, and this is no
coincidence. Some of the most important concrete examples of categories are those in which
the objects are some form of mathematical structure, and the arrows are maps which preserve
this structure. Key examples include:

• Set in which the objects are sets, and the arrows are functions.

• Grp in which the objects are groups and the arrows are group homomorphisms.

• Rel in which the objects are sets, and the arrows are relations.

• Hilb in which the objects are Hilbert spaces and the arrows are linear maps.

It is straightforward to verify in each case that the objects and arrows obey the axioms of
a category. In each case we are uninterested in the internal structure of the objects, we are
interested in the algebra of how the morphisms combine. For example, although the objects
of Set and Rel are the same, as categories they have very different structures; in fact Rel

has much more in common with Hilb than it does with Set.

It is clear that any physical theory will also give rise to a category, whose objects are the
systems of the theory, and whose arrows are the operations or transformations which these
systems can undergo. Such a ‘physical’ category is of course always going to be isomorphic
to a ‘mathematical structure’ category of the type described in the previous paragraph. This
is because the states of the systems in a theory are described by some sort of element in a
mathematical structure, and the operations which transform these states essentially map one
such state element into another.

Definition 3.1.3 The physical category of a theory is the category whose objects are the
mathematical structures whose elements are used by the theory to describe states of systems,
and whose morphisms are the structure preserving maps used by the theory to represent
transformations of systems.
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Some examples will make this clear:

Example 3.1.4 In pure state quantum mechanics the state of a system is described by a
vector in a Hilbert space. Via carefully chosen operations, it is actually possible to realise
every linear map as a transformation on states [17]. Thus the physical category of pure state
quantum mechanics (the form of QM which we will concentrate on in this work), is FHilb,
whose objects are finite-dimensional Hilbert spaces and whose arrows are linear maps.

Example 3.1.5 The states in Spekkens’s toy theory are subsets of state space, and the most
general form of transformations these states can undergo are described by relations between
the sets. Thus it is unsurprising that the toy theory’s physical category, Spek, is a sub-
category of the category FRel whose objects are finite sets and whose arrows are relations.
Spek will be formally defined, and its properties extensively analysed in chapter 4.

3.1.3 Further concepts in category theory

Before proceeding further we need to introduce a few more categorical concepts. Firstly, we
note that categorical equations are often expressed with the aid of commutative diagrams.
For example, given four morphisms f : A → B, g : B → D, h : A → C and k : C → D, the
commutative diagram:

A
f - B

C

h

? k - D

g

?

(3.2)

expresses the equation g ◦ f = k ◦ h. Although this notation seems to provide no advantage
in this simple case, this kind of diagram can be very helpful in clarifying complex equations.

Next we introduce structure preserving maps between categories:

Definition 3.1.6 A functor F between categories C and D, denoted F : C → D, is a pair of
functions, F : Ob(C) → Ob(D) and F : Hom(C) → Hom(D) such that:

• ∀A,B ∈ Ob(C), f ∈ Hom(C), if f ∈ C(A,B) then F (f) ∈ D(F (A), F (B)).

• F (g ◦ f) = F (g) ◦ F (f) ; F (1A) = 1F (A)

We also define what is effectively a map between functors:

Definition 3.1.7 Given two functors F,G : C → D, a natural transformation θ : F → G
exists iff ∀A ∈ Ob(C) there exists a morphism θA : F (A) → G(A) ∈ Hom(D) such that the
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following diagram commutes:

F (A)
θA- G(A)

F (B)

F (f)

? θB- G(B)

G(f)

?

(3.3)

for all pairs of objects A,B ∈ Ob(C) and all morphisms f ∈ C(A,B).

Definition 3.1.8 Two morphisms f : A→ B and g : B → A are isomorphisms iff g ◦f = 1A
and f ◦ g = 1B . g is often written as f−1. Two objects A and B are isomorphic iff there
exists a pair of isomorphisms between them.

3.1.4 Symmetric monoidal categories

A symmetric monoidal category (SMC) is a type of category obeying additional conditions.
Such categories are of particular interest to us because all physical categories are SMCs. In
any physical theory we can consider two or more systems as one single composite system.
Thus the corresponding physical category must have some operation whereby two objects can
be combined together to yield a third object. Given a composite system, we can perform
independent operations on the constituent parts: these ‘parallel’ operations can be seen as a
single operation on the composite system. Thus, the operation of combining physical systems
must extend beyond objects and apply to morphisms as well. We expect then that a physical
category will have some sort of functor-like operation corresponding to forming a composite
system. Naturally this operation will be bound by various restrictions. We will first define
the kind of structure required, and then return to show that it does indeed correspond to the
physical idea of compositeness.

Definition 3.1.9 A symmetric monoidal category (C, I,−⊗−) is a category equipped with
the following extra structure:

• A bifunctor − ⊗ − : C × C → C. (Bifunctoriality means that (f2 ◦ f1) ⊗ (g2 ◦ g1) =
(f2 ⊗ g2) ◦ (f1 ⊗ g1)).

• A unit object I.

• Four natural isomorphisms, left and right unit:

λA : A ∼= I ⊗A ρA : A ∼= A⊗ I (3.4)

associative:
αA,B,C : (A⊗B)⊗ C ∼= A⊗ (B ⊗ C) (3.5)

and commutative:
σA,B : A⊗B ∼= B ⊗A (3.6)
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Furthermore these objects and natural isomorphisms obey a series of coherence conditions
[23].

Example 3.1.10 Both (Set, {∗},− × −) and (Set, ∅,− ⊔ −) are SMCs. This demonstrates
that the same underlying category with different choices of monoidal bifunctor and unit object
can give rise to different SMCs.

Example 3.1.11 Both (FRel, {∗},− ×−) and (FRel, ∅,− ⊔−) are SMCs.

Example 3.1.12 Both (FHilb,C,− ⊗ −) and (FHilb,0,− ⊕ −), where 0 is the zero-
dimensional vector space consisting solely of the zero vector, are SMCs. It is the first of
these which is the physical category for pure state quantum mechanics.

For the remainder of this work, unless otherwise stated, when we refer to the SMCs FRel

and FHilb we mean the first of the two SMCs in each of the above examples.

Definition 3.1.13 In a SMC a scalar is a morphism of type I → I.

Proposition 3.1.14 (C(I, I),− ◦ −, 1I) is a commutative monoid.

Example 3.1.15 The scalars of FHilb are C. The scalars of FRel are the elements of the
two element Boolean algebra B2.

We can define an abstract notion of scalar multiplication, whereby we can multiply any
morphism by a scalar:

Definition 3.1.16 Scalar multiplication of a morphism f : A → B by a scalar s : I → I is
defined by:

A
s • f - B

I ⊗A

λA

? s⊗ f- I ⊗B

λ−1
B

6

(3.7)

There is an extremely useful graphical language for describing SMCs. In this language we
represent an object A by a labelled line:

A (3.8)

and we represent a morphism f : A→ B by a box:



3.1. CATEGORIES AND PHYSICAL THEORIES 35

fA B
(3.9)

g ◦ f , the composition of morphisms f : A→ B and g : B → C is depicted as:

fA B g C
(3.10)

The identity morphism 1A is actually just written as a straight line — this makes sense if you
imagine composing it with another morphism.

Turning to the symmetric monoidal structure, a morphism f : A⊗B → C ⊗D is depicted:

B

A

D

C
f=fA⊗B C ⊗D

(3.11)

and if f : A→ B and g : C → D then f ⊗ g is depicted as:

C g D

A f B

f ⊗ g =
B ⊗DA⊗ C

(3.12)

Note that bifunctoriality is implicit in this language: (f2◦f1)⊗(g2◦g1), and (f2⊗g2)◦(f1⊗g1),
equated by bifunctoriality, are both written as:

g1

f1

g2

f2

(3.13)

The identity object I is not actually depicted in the graphical language. Morphisms ψ : I → A
and π : A→ I are written as:

ψ A πA
(3.14)

The associativity and left and right unit natural isomorphisms are also implicit in the lan-
guage. The symmetry natural isomorphism is depicted as:

A

B

B

A (3.15)
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The fact that it is a natural transformation depicts as:

A
f

B

g A
=

A

B

g

f

B

AB
(3.16)

In fact the graphical language is more than just a useful tool - it is completely equivalent to
the axioms of a SMC:

Theorem 3.1.17 Two morphisms in a symmetric monoidal category can be shown to be
equal using the axioms of a SMC iff the diagrams corresponding to these morphisms in the
graphical language are isomorphic as graphs.

Proof: This important theorem is proved in [20]. 2

This graphical language is very suggestive of the physical interpretation of SMCs, which
was the original motivation for introducing this type of category. We return to this subject
and note that the operation of combining systems naturally has all of the properties of the
bifunctor of a SMC.

Forming a composite system is clearly an associative operation, and it would be a very odd
physical theory for which it was not also a commutative one. It turns out to be convenient to
have an object to represent the absence of a system, and the monoidal unit object has exactly
the properties we would expect from such an object.

The action of the bifunctor on the morphisms is also bound by the kind of conditions we
would expect given the physical interpretation. The bifunctoriality condition itself (shown
in diagram 3.13) is trivially true when we view the morphism f ⊗ g as two independent
operations f and g on separate systems. The naturality of the isomorphisms in equations
3.4 to 3.6 also has a clear physical interpretation. For example, consider the naturality of
the symmetry isomorphism, as depicted graphically in diagram 3.16. Informally what this
depicts is: system A starts on my left, system B on my right. I perform operation f on the
left hand system and g on the right hand system. Then I swap the two systems around. This
is the same as swapping the two systems first, and then performing g on the left hand system
and f on the right hand system. This is obviously what we expect!

In a physical category the special object I represents the absence of a system. This allows
us to describe preparations, processes in which a new system is created: these are morphisms
from I to the object representing the new system. There may be several such arrows, e.g.

ψ : I → A and φ : I → A

are different ways of preparing the system A, i.e. they represent preparing A in two different
states. Morphisms of type I → A in physical categories will, for this reason, frequently be
described as states. Morphisms of type A→ I will be termed co-states.

Remark 3.1.18 The states of FRel are relations of type R : {∗} → X. It is clear that
these relations are in bijection with the subsets of X, and in what follows we often (somewhat
abusively) work as if the states of FRel are subsets.
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Remark 3.1.19 In example 3.1.12 it was noted that in Hilb the role of I is played by C. It
may not be immediately obvious that operators of the form ψ : C → H represent preparations
of systems in certain states. However, note that the linear maps from C to H are in bijective
correspondence with the vectors in H. This is because the action of a map ψ : C → H is
entirely determined by its action on 1, because of its linearity: if c ∈ C then ψ(c) = cψ(1). So
each function ψ : C → H corresponds to a particular vector in H. In the standard formulation
of QM each vector in H represents a state of the system. So, the operations ψ : C → H are
exactly able to describe preparations of the system in all of its possible states.

Some readers might argue, with some justification, that an operation of type I → A, where
we simply create a system out of nothing, does not exist in any theory that actually describes
the real world. Such an operation would seem to defy the conservation of mass for example.
This is a good point to clarify what exactly the morphisms in the physical category of a
theory represent.

If one straightforwardly views the morphisms in a physical category as representing physical
processes, then a morphism f : A→ B transforms one system into another, perhaps turning
an electron into a proton. A morphism δ : A→ A⊗A takes one system, and electron perhaps,
and turns it into two electrons. Putting aside quantum field theory, it is hard to see how these
sort of processes can occur in the physical theories we are familiar with (for example QM),
and yet the categorical approach is claiming that they occur in the corresponding physical
categories, and furthermore (as we will see) are important.

Conceivably these operations could form part of a theory describing one open subsystem
of a larger closed system. The preferred interpretation of this author however, is that the
morphisms of a physical category do not necessarily individually represent realisable processes
in the corresponding theory, rather they represent patterns of dependency or information flow.

For example, consider a system of two electrons. These electrons may undergo a process which
changes their state. So long as we remain within standard non-relativistic QM, this process
will not result in any final system other than the same two electrons we began with. However,
it may well be that the final state of the two electrons depends only on the initial state of
one of the electrons, with the initial state of the other electron having no influence on the
final state of either. In this case we could decompose the process into two parts, illustrated
diagrammatically here:

A

A

A

A

A

A

A

A
=

(3.17)

one of type A → I, the other of type A → A ⊗ A. It is quite reasonable to claim that the
theory corresponding to our physical category includes both of these operations, even if it is
impossible, in practice, to realise them individually. In fact, it is a key claim of the categorical
approach that an analysis of these types of operation is enlightening, and yields fresh insight
into the theory under consideration.
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3.2 Physical categories of quantum-like theories

Our particular interest is quantum mechanics, and other quantum-like theories which share
certain features with QM. Thus, from a categorical perspective, we are interested in a par-
ticular class of physical categories. Over the next few sections we will identify categorical
features of FHilb which are important in its description of QM, which we expect to recur
in the physical categories of other quantum-like theories. Much of this material will initially
appear to have little physical relevance, but it is all essential background to what follows.

3.2.1 Dagger categories

Any linear map f : H1 → H2 on a Hilbert space has an adjoint or Hermitian conjugate,
f † : H2 → H1, defined using the inner product by:

〈φ|fψ〉 = 〈f †φ|ψ〉 (3.18)

It’s simple to show that the adjoint satisfies several important properties: for example (f †)† =
f , (f ◦ g)† = f † ◦ g† etc. It will turn out to be useful to abstract some of the features of the
adjoint to a more general categorical setting:

Definition 3.2.1 A dagger category is a category, C, equipped with a functor (−)† which is:

• Identity on Objects: A† = A

• Contravariant: a contravariant functor F reverses the direction of arrows i.e. if f :
A → B then Ff : FB → FA. So in this case f † : B† → A†. But since A† = A in fact
we have f † : B → A.

• Involutive: (f †)† = f

Remark 3.2.2 Because of these properties we note that the dagger functor induces a bi-
jection between the hom-sets C(A,B) and C(B,A). From this we can immediately see that
Set cannot be a dagger category, because in general there is no such bijection between hom-
sets. To see this consider the hom-set of functions from the singleton set to an n-element
set, Set({∗}, N) which has n members, and contrast it with this hom-set Set(N, {∗}) which
has just one member. In contrast, Rel is a dagger category, with relational converse as the
dagger operation.

If a category is also a SMC, then we are interested to see how the dagger and symmetric
monoidal structures interact. They interact most ‘neatly’ in the following case:

Definition 3.2.3 A dagger symmetric monoidal category (†-SMC) is a symmetric monoidal
category with a dagger functor such that:

(A⊗B)† = A† ⊗B† and (3.19)
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λ−1
A = λ†A ρ−1

A = ρ†A (3.20)

σ−1
A,B = σ†A,B α−1

A,B,C = α†
A,B,C (3.21)

Example 3.2.4 (FRel, {∗},−×−) is a †-SMC with the relational converse playing the role
of the dagger functor.

Example 3.2.5 (FHilb,C,−⊗−) is a †-SMC with the adjoint playing the role of the dagger
functor.

The physical significance of the dagger functor will become clearer once we introduce the
abstract equivalent of observables. At this stage the key feature is the bijection between hom-
sets noted in remark 3.2.2, which will be an important ingredient in subsequent definitions.

3.2.2 Compact closed categories

There is a second important bijection amongst the morphisms of FHilb, this time between
maps of type HA → HB , and bipartite states, of type I → HA ⊗HB .

The most general vector |ψ〉 ∈ HA ⊗HB can be written as:

|ψ〉 =
∑

i,j

ψij |ai〉A ⊗ |bj〉B (3.22)

where the |ai〉A are a basis for HA and the |bj〉B are a basis for HB, and the ψij are complex
numbers. The most general linear map f : HA → HB can be written as:

f =
∑

i,j

fji|bj〉B A〈ai| (3.23)

where the fji are complex numbers. Clearly the possibilities for ψij and fji are in bijective
correspondence. There is a map-state duality in FHilb. The state |ψ〉 and map f for which
ψij = fji =Mij are dual.

Given a Hilbert space HA and a choice of basis vectors |ai〉A, consider the following (non-
normalised) state and co-state:

|ΨBell〉 =
∑

i |ai〉 ⊗ |ai〉
〈ΨBell| =

∑

i〈ai| ⊗ 〈ai|
(3.24)

Considered as morphisms in FHilb these have types I → HA ⊗ HA and HA ⊗ HA → I,
respectively, and we provisionally depict them in the graphical language as follows:

HA

HA HA

HA

Bell Bell

(3.25)
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Now consider a state, |ΨM 〉 = ∑

i,jMij|ai〉A⊗|bj〉B and mapM =
∑

i,jMij |bj〉B A〈ai|, clearly
dual in the sense described above, and depicted graphically as:

HA

MΨM

HB

HBHA

(3.26)

Now consider composingM with |ΨBell〉 as shown in the diagram below. A simple calculation
shows that this is equal to |ΨM 〉:

HA

M

HA

ΨM=

HB HB

Bell

(3.27)

Likewise consider composing |ΨM 〉 with |ΨBell〉. Again, a simple calculation shows that this
is equal to M :

HA M
ΨM

HB

HBHA

HA

Bell

=

(3.28)

So these two morphisms in equation 3.24 provide a compositional way of moving between
states and maps. In fact a closer inspection of the linear algebra calculations which underlie
the graphical equations 3.27 and 3.28 shows that they basically arise from a more fundamental
relationship, shown graphically here:

HA
HA

HA

Bell

=

HA

Bell

(3.29)

Equally if we begin with this fact, then we can treat either 3.27 or 3.28 as a definition, and
derive the other.

This ‘compositionally derived’ bijection between hom-sets is another feature of FHilb which
it will be convenient to abstract to the more general categorical setting, and to this end we
introduce the following definitions:

Definition 3.2.6 In a SMC C a compact structure on an object A is a tuple {A,A∗, ηA : I →
A∗ ⊗A, ǫA : A⊗A∗ → I}, where A∗ is a dual object to A which may or may not be equal to
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A, and ηA and ǫA satisfy the conditions:

A
ρA- A⊗ I

1A ⊗ ηA- A⊗ (A∗ ⊗A)

A

1A

?
� λ−1

A I ⊗A �ǫA ⊗ 1A
(A⊗A∗)⊗A

αA,A∗,A

?

(3.30)

and the dual diagram for A∗.

Definition 3.2.7 A compact closed category C is a SMC in which all A ∈ Ob(C) have com-
pact structures.

Example 3.2.8 In FHilb we can assign H∗
A = HA, and ηHA

= |ΨBell〉 and ǫHA
= 〈ΨBell|,

as defined in equation 3.24. The commutative diagram 3.30 translates into the wire diagram
3.29.

All of the compact structures with which we will be dealing in this work will be self-dual, i.e.
A∗ = A. For a more general treatment of compact closure in categorical quantum mechanics,
where we do not assume self-duality see [1], [29].

Diagram 3.29 uses the graphical language introduced in section 3.1.4 along with the symbols
introduced in equation 3.25 to depict the unit and co-unit. However, in view of the importance
of these morphisms we will extend the graphical language by introducing special elements to
represent them:

A

A A

A
ηA ǫA

(3.31)

Equation 3.30 and its dual are then depicted as:

A

A

=

A

A

=

(3.32)

This extension of the graphical language now renders it completely equivalent to the axioms
of a compact closed category.

Theorem 3.2.9 Two morphisms in a compact closed category can be shown to be equal
using the axioms of compact closure iff the diagrams corresponding to these morphisms in
the graphical language are isomorphic as graphs.

Proof: This important theorem is proved in [21]. 2

Compact structures are not usually unique as the following proposition shows.
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Proposition 3.2.10 Given a self-dual compact structure {A,A, ηA, ǫA}, and an isomorphism
f : A → A, we can derive another compact structure {A,A, (1A ⊗ f) ◦ ηA, (f−1 ⊗ 1A) ◦ ǫA}.
Diagrammatically our new unit and co-unit are depicted as:

A

Af A

A f−1

(3.33)

If we allow the domain and codomain of f to differ i.e. f : A→ B then we can actually derive
compact structures which are not self-dual. For such a structure B = A∗.

In general then, an object A will have many compact structures.

Example 3.2.11 Consider the state and co-state in equation 3.24, which constitute the unit
and co-unit of a compact structure in FHilb. In general a different choice of basis vectors
|ai〉 will yield a different state |ΨBell〉. This suggests that the duality in FHilb between maps
of type HA → HB and states of type I → HA ⊗HB is basis-dependent, which is indeed the
case.

Note that this plurality of compact structures on A does pose some problems for our graphical
language. If we use the diagrams in equation 3.31 it is not clear which of the many compact
structures A they represent. Unless it is clear from the context, we must state explicitly which
compact structure is represented by these wire diagrams.

Compact closure is an important structure in our study of quantum-like physical categories
for several reasons. Firstly, we expect the physical categories of most quantum-like theories
to be compact closed, since the unit/co-unit structure can actually arise from a more basic
piece of structure, which, as we will see, models the essential features of quantum observables.
We have chosen to discuss compact closure first so that when it arises in the context of basis
structures (section 3.3.2) its full significance can be understood.

Secondly, compact closure has a direct physical interpretation. In the case of FHilb the unit
corresponds to preparation of a Bell state. The ‘compact closed derived’ ability of Bell states
to encode a linear transformation as a state is at the root of several important quantum
information protocols, for example quantum teleportation [6], logic gate teleportation [17]
and entanglement swapping [36]. Any physical category which is compact closed also has a
state with these abilities and thus its corresponding theory shares with quantum mechanics
the possibility of realising these protocols. The analysis of these protocols in abstract terms
was one of the key initial motivations for the development of the categorical approach [1].

The third reason is probably the most important from our perspective. In any compact closed
category there will be map-state duality, effectively of the type described at the start of this
section: there will be a bijection between the hom-sets C(I,A⊗B) and C(A,B) (in fact both
these will further be in bijection with C(A⊗B, I)). Pairs of morphisms will be related by the
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abstract equivalents of equations 3.27 and 3.28:

M
ΨM

HB

HBHA

HA

=

(3.34)

and
HA

M

HA

ΨM=

HB HB (3.35)

If we have a morphism with larger composite domain and codomain the number of hom-sets
in bijection increases dramatically. For example the morphisms of the hom-sets C(A1 ⊗ · · · ⊗
Am ⊗X,B1 ⊗ · · · ⊗Bn) and C(A1 ⊗ · · · ⊗Am, B1 ⊗ · · · ⊗Bn ⊗X) are in bijection: explicitly
the conversion between morphisms from the two sets can be depicted as:

A1

A2

Am

B1

B2

Bn

X (3.36)

Clearly manoeuvres like this can convert any ‘input’ line into an ‘output’ line, by using the
unit and co-unit morphisms to ‘bend lines around’. The property of two morphisms being
related via compact-closed duality is clearly an equivalence relation, which partitions the
morphisms of a compact-closed category into classes.

Definition 3.2.12 A diagram equivalence class (DEC) is a set of morphisms in a compact
closed category which can be inter-converted by composition with the units and co-units of
the factors of their domains and codomains.

The terminology is inspired by the fact that the diagrams of all members of a class are
essentially the same, only differing in the orientations of their input and output arrows. The
idea of a DEC can be useful when working with the concrete representations of categories.
When doing calculations with a morphism it may be more convenient to work with another
member from its diagram equivalence class with a different type, and then translate the results
back to the original type. We will use this procedure extensively in the next chapter.

It’s important to note that DECs are defined relative to a particular choice of compact struc-
ture for each object.

A compact closed category may also have a dagger functor, this is clearly the case with FHilb.
In FHilb the two structures work together nicely in a way which we formalise here:

Definition 3.2.13 A dagger compact closed category is a compact closed category C with a
dagger functor such that for all A ∈ Ob(C), ηA = σA,A∗ ◦ ǫ†A.
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Finally we note that compact structures allow us to define some new operations on morphisms,
which, if the category is compact closed, extend to functors on the whole category.

Definition 3.2.14 In a compact closed category we define the upper star operation on a
morphism f : A→ B by:

f∗ = (1A ⊗ ǫB) ◦ (1A ⊗ f ⊗ 1B) ◦ (ηA ⊗ 1B) : B → A (3.37)

or diagrammatically:
A

f

B (3.38)

Note that the upper star operation is defined relative to a particular choice of compact
structure on each object. Different choices of compact structure will yield a different upper
star operation. This is illustrated in the next example:

Example 3.2.15 In FHilb, suppose our unit on a space A is given by the Bell state |ΨA
Bell〉 =

∑

i |ai〉 ⊗ |ai〉 and our unit on B is given by the Bell state |ΨB
Bell〉 =

∑

i |bi〉 ⊗ |bi〉, then the
matrix representation of f∗ with respect to the bases |ai〉 on A and |bi〉 on B is equal to the
transpose of the matrix representation of f with respect to the same basis. It is well-known
that the transpose of a linear map, unlike its adjoint, is a basis-dependent notion.

Proposition 3.2.16 The operation (−)∗ constitutes an identity-on-objects contravariant
functor.

In a dagger compact closed category we can go further.

Proposition 3.2.17 In a dagger compact closed category, for any morphism f : A → B,
(f †)∗ = (f∗)†.

Definition 3.2.18 In a dagger compact closed category we define the lower star operation
on a morphism f : A→ B by f∗ := (f †)∗ = (f∗)† : A→ B.

Clearly, since this operation is the result of applying one functor after another, it too is a
functor:

Proposition 3.2.19 The operation (−)∗ constitutes an identity-on-objects covariant functor.

Again, the lower star operation is defined relative to a particular choice of compact structure
on each object.

Example 3.2.20 In FHilb, suppose our units on A and B are those described in example
3.2.15, then the matrix representation of f∗ with respect to the bases |ai〉 on A and |bi〉 on B
is equal to the complex conjugate of the matrix representation of f with respect to the same
basis. Again, complex conjugation is a basis-dependent notion.
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3.2.3 Zero morphisms

Given any pair of Hilbert spaces H1 and H2 there exists a linear map 01,2 : H1 → H2 such
that ∀ψ ∈ H1, 01,2(ψ) = 0. In quantum mechanics such maps are interpreted as ‘impossible’
operations, those which have zero probability of occurring.

There is a natural generalisation of these morphisms to the categorical arena.

Definition 3.2.21 A category C has zero morphisms if ∀A,B ∈ Ob(C) there exists a mor-
phism 0A,B : A→ B with the following property:

Given any two morphisms f : A→ B and g : C → D the following diagram commutes:

A
0A,C - C

B

f

? 0B,D - D

g

?

(3.39)

Each morphism 0A,B is called a zero morphism.

Taking either f or g to be an identity yields probably the key property of a zero morphism:
that composing it with any other morphism yields another zero morphism.

Proposition 3.2.22 If a category has zero morphisms then they are unique.

Example 3.2.23 FRel has zero morphisms. The zero morphism between sets X and Y is
the relation which relates none of the elements of X to elements of Y . Viewed as a subset of
X × Y it is the empty set.

Zero morphisms provide an ideal way of dealing with impossible processes in a theory. Suppose
we have two processes which cannot be performed sequentially: for example it might be
impossible to prepare a system in a certain state, represented by in the physical category
ψ : I → A, and then successfully perform a certain operation, f : A → A, on it. If the
processes of the theory are to constitute a category, then the composition f ◦ψ must be well-
defined. The solution is to introduce a morphism in each hom-set, representing an impossible
process: then we can say that f ◦ψ = 0I,A. Certainly, a process composed with an impossible
process should be another impossible process, so it is natural to model impossible processes
with zero morphisms.

Definition 3.2.24 A zero symmetric monoidal category (0-SMC) is a SMC with zero mor-
phisms for which ∀A,B,C,D ∈ Ob(C) and ∀f : A→ B, g : C → D we have that

f ⊗ 0C,D = 0A⊗C,B⊗D = 0A,B ⊗ g (3.40)
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Proposition 3.2.25 In a 0-SMC, we have a zero scalar 0I,I . Given any morphism f : A→ B
scalar multiplication with the zero scalar yields a zero morphism:

0I,I • f = 0A,B (3.41)

Definition 3.2.26 A dagger category has dagger zero morphisms if it has zero morphisms,
and furthermore ∀A,B ∈ Ob(C) we have 0B,A = 0†A,B .

Definition 3.2.27 A dagger-zero symmetric monoidal category (†-0-SMC) is a †-SMC which
is a 0-SMC, and has dagger zero morphisms.

Example 3.2.28 Both FHilb and FRel are †-0-SMCs.

3.3 Basis structures and observables

We now introduce an abstract categorical structure, the basis structure, which, as its name
suggests, generalises the notion of an orthonormal basis. This categorical structure was
first developed in a different context by Coecke and Pavlovic [13], and was subsequently
used to model orthonormal bases by Coecke and Duncan [9]. The applications so far have
concentrated on elucidating the interactions between different bases (in particular mutually
unbiased bases) in the workings of various quantum information protocols.

We will first introduce the definition and basic properties of the basis structure in sections
3.3.1 to 3.3.4. The connection to orthonormal bases is not immediately apparent, but emerges
with a small amount of work. The properties described here will be crucial to later discussions.
We will subsequently proceed to develop two new applications of the basis structure. While
both these applications are crucial to the remainder of this work, and both are developments
of the same structure, they are quite distinct.

First, in section 3.3.5 we demonstrate that the same categorical structure used to represent
orthonormal bases can also be used to provide us with an abstract counterpart to the GHZ
state. The second development will be postponed to chapter 5. Here we will develop an
abstract counterpart to the notion of observable. That this task should utilise basis structures
is unsurprising since the key structural representative of an observable in standard Hilbert
space quantum mechanics is an orthonormal basis.

3.3.1 Definitions and examples

Definition 3.3.1 In a †-SMC C, a basis structure on an object A is a triple ∆ = {A, δ : A→
A⊗A, ǫ : A→ I}, where the morphisms δ and ǫ, represented graphically as:

δ ǫ
(3.42)
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satisfy the following conditions, here given graphically:

=
(Coassociativity)

(3.43)

== (Counit)

(3.44)

= (Cocommutativity)
(3.45)

= = (Frobenius)

(3.46)

= (Speciality)
(3.47)

Note that we are using the following graphical convention:

δ† ǫ†
(3.48)

Example 3.3.2 In FHilb, consider a Hilbert space H of dimension n, with an orthonormal
basis {|i〉}i=1,...,n. {H, δ, ǫ} constitutes a basis structure, where:

δ : H → H⊗H :: |i〉 7→ |i〉 ⊗ |i〉 ǫ : H → C :: |i〉 7→ 1 (3.49)

So any orthonormal basis gives rise to a basis structure in FHilb. In fact the converse is also
true as this important theorem shows:

Theorem 3.3.3 All basis structures in FHilb are of the form described in example 3.3.2.

Proof: This theorem was proved by Coecke, Pavlovic and Vicary in [14]. 2

These results demonstrate that basis structures in FHilb are in bijective correspondence with
orthonormal bases, which goes some way to justifying our claim that basis structures are the
abstract counterparts of observables.

3.3.2 Induced compact structure

Proposition 3.3.4 Any basis structure induces a self-dual dagger compact structure, with
A = A∗ and ηA = δ ◦ ǫ†.
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Proof: Recalling definition 3.2.6 of a compact structure, the statement above can be re-
written graphically as:

=

(3.50)

which is a straightforward consequence of conditions 3.46 and 3.44 (Frobenius and Counit)
in definition 3.3.1. 2

Example 3.3.5 Consider the FHilb basis structure ∆Z = {C2, δZ , ǫZ} where:

δZ ::

{

|0〉 7→ |0〉 ⊗ |0〉
|1〉 7→ |1〉 ⊗ |1〉 ǫZ ::

{

|0〉 7→ 1
|1〉 7→ 1

(3.51)

The induced compact structure here has:

η :: 1 7→ |00〉 + |11〉 = |ΨBell〉 (3.52)

which is the compact structure which was used to introduce the notion of compact closure in
section 3.2.2.

Remark 3.3.6 Note different basis structures in general give rise to different compact struc-
tures - this is illustrated by the next example. Some basis structures do give rise to the same
compact structure. Such basis structures are said to have coincident compact structures.

Example 3.3.7 Consider the following two FHilb basis structures: ∆X = {C2, δX , ǫX} and
∆Y = {C2, δY , ǫY } where:

δX ::

{

|+〉 7→ |+〉 ⊗ |+〉
|−〉 7→ |−〉 ⊗ |−〉 ǫX ::

{

|+〉 7→ 1
|−〉 7→ 1

(3.53)

δY ::

{

|i〉 7→ |i〉 ⊗ |i〉
| − i〉 7→ | − i〉 ⊗ | − i〉 ǫY ::

{

|i〉 7→ 1
| − i〉 7→ 1

(3.54)

The compact structure corresponding to the first structure is:

η :: 1 7→ |++〉+ | − −〉 = |00〉 + |11〉 (3.55)

the same as for ∆ in the previous example, while that corresponding to the second structure
is:

η :: 1 7→ |ii〉 + | − i− i〉 = |00〉 − |11〉 6= |00〉+ |11〉 (3.56)

3.3.3 Eigenstates

A basis structure is supposed to be the abstract counterpart of an orthonormal basis. Can we
find abstract counterparts of the basis vectors themselves? Recall that in FHilb, the basis
vectors are copied by the δ morphism which forms part of the basis structure. We take this
as our inspiration:
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Definition 3.3.8 A morphism x : I → A is an eigenstate of a basis structure ∆ = {A, δ, ǫ}
iff it satisfies the following conditions:

δ ◦ x = x⊗ x x = x∗ ǫ ◦ x = 1I (3.57)

These are depicted graphically as:

= == x∗x xx
x

x (3.58)

The first condition is simple: the eigenstates are copied by the δ operation. With the second
condition we need to note that the lower star operation is relative to the compact structure
which is induced by the basis structure. The third condition is a normalisation condition.

Example 3.3.9 Consider the FHilb basis structure of example 3.3.2. Its eigenstates are
clearly |0〉 and |1〉.

We will frequently use the notation C∆ to denote the set of eigenstates of the basis structure
∆.

3.3.4 Basis structure monoid, unbiased states and phase group

Definition 3.3.10 Given a basis structure ∆ = {A, δ, ǫ} in a †-SMC C, the basis structure
multiplication is a map:

−⊙− : C(I,A) × C(I,A) → C(I,A) (3.59)

where
ψ ⊙ φ = δ† ◦ (ψ ⊗ φ) (3.60)

or diagrammatically:

=

ψ

φ

ψ ⊙ φ

(3.61)

Proposition 3.3.11 (C(I,A),⊙, ǫ†) is a commutative monoid. We refer to this as the basis
structure monoid corresponding to ∆.

Proof: Referring to definition 3.3.1, associativity of the basis structure multiplication follows
from applying the dagger functor condition 3.43, and commutativity follows from applying
the dagger functor to condition 3.45. The fact that ǫ† is a unit follows from applying the
dagger functor to condition 3.44. 2

Example 3.3.12 In FHilb consider the basis structure on an n-dimensional Hilbert space
H, corresponding to the basis {|i〉}i=1,...,n. The basis structure multiplication on two states
|ψ〉, |φ〉 ∈ H is given explicitly by:

|ψ ⊙ φ〉 =
n
∑

i=1

ψiφi|i〉 (3.62)
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where ψi and φi are the components of |ψ〉 and |φ〉 in the basis corresponding to the basis
structure.

Consider a basis {|i〉}i=1,...,n for a Hilbert space H. Recall from section 2.1.5 that a state
|ψ〉 is unbiased w.r.t this basis if, when expressed in the basis, its components |ψi|2 are all
equal1. Combining this fact with equation 3.62, and the fact that the lower star functor in
Hilb corresponds to conjugation (example 3.2.20), we conclude that |ψ⊙ψ∗〉 =

∑n
i=1 |i〉. We

generalise this idea to get an abstract definition of an unbiased state:

Definition 3.3.13 Given a basis structure ∆ = {A, δ, ǫ} a state ψ : I → A is unbiased with
respect to ∆ iff. ψ ⊙ ψ∗ = ǫ†. Graphically:

=

ψ

ψ∗ (3.63)

We will frequently use the notation U∆ to denote the set of unbiased states of the basis
structure ∆.

Lemma 3.3.14 (U∆,⊙, ǫ†, (−)∗) is an Abelian sub-group of the basis structure monoid.

Proof: U∆ is a subset of a commutative monoid, thus commutativity and associativity are
given. The unit of the monoid is ǫ† and from condition 3.44 in definition 3.3.1 of a basis
structure, we can deduce that ǫ† ∈ U∆. From equation 3.63 in definition 3.3.13, and the fact
that the lower star functor is involutive we deduce that ∀ψ ∈ U∆, ψ∗ is also an element of
U∆, and furthermore constitutes the group inverse for ψ. Finally we must show closure of U∆

under ⊙, i.e. that (ψ ⊙ φ)⊙ (ψ ⊙ φ)∗ = ǫ†. We proceed as follows:

(ψ ⊙ φ)⊙ (ψ ⊙ φ)∗ = (ψ ⊙ φ)⊙ (ψ∗ ⊙ φ∗) functoriality of (−)∗, δ∗ = δ
= (ψ ⊙ ψ∗)⊙ (φ⊙ φ∗) coassociativity and cocommutativity
= ǫ† ⊙ ǫ† = ǫ†

2

Definition 3.3.15 The Abelian group of lemma 3.3.14 is termed the phase group of ∆.

Example 3.3.16 Consider the FHilb basis structure of example 3.3.2. The unbiased states
are those which can be written as |0〉+ eiφ|1〉. The phase group is isomorphic to U(1).

3.3.5 GHZ states

The 3-qubit GHZ state was introduced in section 2.2.2:

|ΨGHZ〉 =
1√
2
(|000〉 + |111〉) (3.64)

1Here we are not requiring that the state is normalised. If it is then ∀ i, |ψi|
2 = 1√

n
, as per equation 2.5
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This state can be generalised to three systems all described by state space H, with dimension
n:

|ΨGHZ〉 =
1√
n

n
∑

i=1

|iii〉 (3.65)

where {|i〉}i=1,...,n is a basis for H. Note that for each choice of basis for H we have a unique
GHZ state. Key properties of the state include that it is symmetric under the interchange of
any two of the systems, and that the application of the bra

∑n
i=1〈i| to one system yields the

Bell state 1√
n

∑n
i=1 |ii〉 on the other two systems.

We now define an abstract counterpart to the GHZ state:

Definition 3.3.17 In a †-SMC, the GHZ state Ψ∆ : I → A ⊗ A ⊗ A corresponding to the
basis structure ∆ = {A, δ, ǫ} is the composition:

Ψ∆ := (δ ⊗ 1A) ◦ δ ◦ ǫ† (3.66)

or graphically:

:=

(3.67)

Recall that in FHilb each basis structure corresponds to an orthonormal basis, and in this
category the definition above yields exactly the GHZ state corresponding to this basis.

Bearing in mind proposition 3.3.4 we see that the GHZ state is related via compact closed
duality to the δ morphism, and furthermore that the compact structure involved is the one
induced by ∆.

A word on notation: if the basis structure itself is labelled with a subscript, we may label the
GHZ state with the same subscript to indicate the correspondence. For example the GHZ
state corresponding to the basis structure ∆1 could be labelled as Ψ1 rather than Ψ∆1

.

In addition to coinciding with the original notion of GHZ state in FHilb, the abstract GHZ
state has, in its own right, many of the properties of the original GHZ state:

Proposition 3.3.18 The abstract GHZ state satisfies the following equalities, expressed
graphically:

===

(3.68)

=

(3.69)

Proof: Straightforward verification with graphical calculus. 2
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3.4 Case study: Stab, the physical category of the stabiliser

theory

We conclude this section by introducing the physical category for the stabiliser theory intro-
duced in section 2.3. First we digress briefly to discuss a category derived from FHilb which
can more accurately claim to be the physical category for quantum mechanics. We will then
define the category Stab, show that it is indeed the physical category for this theory, and
pinpoint the concrete realisations of some of the structures introduced in earlier sections of
this chapter.

3.4.1 FHilb and FHilbp

In the standard treatment of QM, it is well-known that states of a system correspond to
the rays of the Hilbert space describing that system, rather than to individual vectors. This
is because (a) Any vector representing a state must be normalised and (b) Any two such
state vectors which differ only by a scalar factor with magnitude 1 (i.e. by a phase), will
give identical results for the probability of any measurement outcome, and thus represent the
same state. As a further consequence of this, scalar multiples of linear maps also represent
essentially the same quantum operation. One might wonder why we continue to work with
vectors at all, given this redundancy. Why not do all our calculations with rays, since these
are the objects which genuinely represent states? Unfortunately, unlike the case of vectors,
there is no well-defined algebraic structure on rays. If we dropped vectors altogether from
our description, we would have no means of showing that one state is a superposition of
others, since we would have lost our ability to describe relative phases, which of course are
empirically observable.

However, in our categorical treatment of QM we make no use of the concept of superposition,
or indeed of any additive structure. Thus it may make sense to quotient over scalar multiples
to reduce the amount of redundant structure we are working with. There is good motivation
to do this: thus far, we have claimed that FHilb was the physical category of pure state
QM, but in the light of this discussion we see that this is not quite correct. Many different
morphisms of FHilb will correspond to the same physical operation. The genuine physical
category of QM will be derived from FHilb in the following fashion:

Definition 3.4.1 FHilbp is the category whose objects are those of FHilb, and whose
morphisms are the equivalence classes of FHilb morphisms under the following relation:

f ∼ g iff. ∃ c ∈ C\{0}, such that f = c.g (3.70)

Note that in what follows, we may (slightly abusively) use a specific linear map to represent
the equivalence class of which it is a member.

Proposition 3.4.2 FHilbp inherits the composition, monoidal product, dagger functor and
zero morphisms of FHilb. One can straightforwardly verify that under these operations
FHilbp is also a †-0-SMC. Basis structures are also inherited from FHilb. The equivalence
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classes containing the δ and ǫ morphisms of FHilb themselves become the δ and ǫ morphisms
of FHilbp. Compact structures are similarly inherited.

Note that FHilbp has only two scalars (a zero and a ‘not zero’).

3.4.2 Definition of Stab

Definition 3.4.3 The category Stab is a sub-category of FHilbp. It is defined construc-
tively, as follows:

• The objects of Stab are C, C2 and the n-fold tensor products C2 ⊗ · · · ⊗ C
2.

• The morphisms of Stab are all those equivalence classes of linear maps generated by
composition, tensor product and adjoint from the following generating classes:

1. The classes containing the single qubit Clifford unitaries.

2. The class containing the map δStab : C2 → C
2 ⊗ C

2 ::

{

|0〉 7→ |00〉
|1〉 7→ |11〉

3. The class containing the map ǫStab : C2 → C ::

{

|0〉 7→ 1
|1〉 7→ 1

Stab inherits the †-0-SMC structure from FHilbp. We know from example 3.3.2 that
{C2, δStab, ǫStab} is a basis structure, which in turn generates a compact structure.

3.4.3 Stab is the physical category of the stabiliser theory

From this definition it is not at all clear that Stab is the physical category of the stabiliser
theory. To show that it is, we proceed in several steps.

Proposition 3.4.4 The morphisms of Stab include all of the n-qubit Clifford operations.

Proof: The single qubit Clifford unitaries include the Hadamard operator which, expressed
in the computational basis has the matrix form:

H =
1√
2

(

1 1
1 −1

)

(3.71)

It is straightforward to verify that the following combination of the δStab morphism with the
Hadamard operator is equal to the CNOT gate:

H

H

H

(3.72)
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We recall from section 2.3.2 that any n-qubit Clifford unitary can be generated by composing
the single qubit Clifford unitaries and CNOT gate. 2

Proposition 3.4.5 The map ǫ†Stab : C → C
2 prepares the state |+〉.

Proposition 3.4.6 Given any n-qubit stabiliser state |Ψ〉 there exists some Clifford unitary
U such that |Ψ〉 = U(|+〉 ⊗ · · · ⊗ |+〉).

Propositions 3.4.4, 3.4.5 and 3.4.6 together imply that the morphisms of Stab include all
stabiliser states and Clifford unitaries, and can describe any Pauli measurement. Thus we
conclude:

Proposition 3.4.7 The morphisms of Stab include all states and transformations of the
stabiliser theory.

The converse is also true:

Proposition 3.4.8 The morphisms of Stab are all realisable in the stabiliser theory.

Proof: The generators of Stab are all clearly contained within the theory. ǫStab is the adjoint
of the state |+〉. δStab can be obtained by composing the GHZ states with the adjoint of the
Bell state. Since the stabiliser states and Clifford operations are closed under composition all
morphisms in Stab must be states or transformations of the stabiliser theory. 2

Thus we conclude that Stab is exactly the physical category of the stabiliser theory.

3.4.4 The basis structures of Stab

Stab is a sub-category of FHilbp. Thus to understand the basis structures of Stab we must
first understand the basis structures of FHilbp.

Clearly any basis structures on FHilbp derive from those on FHilb. We know from theorem
3.3.3 that in FHilb every basis structure corresponds uniquely to an orthonormal basis.
Such a basis consists of normalised vectors. Multiplying each basis vector by a phase yields
a new basis, which corresponds to a different basis structure in FHilb. For example, it is
straightforward to verify that the δ map in example 3.3.2 does not copy the vector eiθ|1〉,
unless θ = 0. In FHilbp however, these may not yield distinct basis structures:

Proposition 3.4.9 Consider two orthonormal bases {|j〉}j=1,...,n and {eiθ(j)|j〉}j=1,...,n, on
an n-dimensional space H, where θ is a function of j. In FHilb these correspond to distinct
basis structures. In FHilbp if θ(j) is constant for all j they correspond to the same basis
structure, otherwise they correspond to distinct basis structures.

Even when we do get distinct basis structures, the states which are copied are not distin-
guishable within FHilbp because they differ only by scalars.
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Proposition 3.4.10 Two distinct basis structures in FHilbp, corresponding to the two sets
of basis vectors {|j〉}j=1,...,n and {eiθ(j)|j〉}j=1,...,n have the same eigenstates and unbiased
states.

In any †-SMC, given some basis structure ∆ = {A, δ, ǫ} recall that by its definition the ǫ†

map is unbiased with respect to that basis structure.

Proposition 3.4.11 Consider a basis structure, ∆ in FHilbp with a given set of eigenstates
C∆ and unbiased states U∆. Now consider the set Σ∆ of all other basis structures which share
these eigenstates.

• All members of Σ∆ have the same set of unbiased states, U∆.

• Each member of Σ∆ has a distinct ǫ map. In each case ǫ† ∈ U∆.

• For every u ∈ U∆ there is some ∆′ = {A, δ′, ǫ′} ∈ Σ∆ such that u† = ǫ.

The qubit object in Stab has six states, the single-qubit stabiliser states. Viewed as vectors
in C

2 these constitute three bases for this space {|0〉, |1〉}, {|+〉, |−〉} and {|i〉, |− i〉}. Further-
more, given any pair which together form a basis, the other four are unbiased with respect
to them. Thus, in the light of the discussion above, we deduce that the qubit object on Stab

has twelve basis structures, each with two eigenstates, and four unbiased states.

These twelve basis structures are grouped into three families of four basis structures. Each
element of the family has the same eigenstates and unbiased states. The four family members
differ in which of their four unbiased states is equal to ǫ†.

Proposition 3.4.12 For all twelve basis structures on the qubit object in Stab, the phase
group is isomorphic to the four element cyclic group, Z4.

Proof: Straightforward verification. 2
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Chapter 4

The category Spek

This chapter is devoted to consideration of the physical category of Spekkens’s toy theory.
The first three sections are very abstract: we introduce two new categories and investigate
their properties without any consideration of their physical significance. We begin in section
4.1 by defining a category Spek in a constructive fashion analogous to the definition of Stab.
In section 4.2 we characterise the form of the relations which constitute the morphisms of
Spek. This is quite an involved process, and the technical details are relegated to appendix
A, with section 4.2 containing quite a detailed sketch of the proof. Then in section 4.3 we
define another category MSpek, which is closely related to Spek.

In section 4.4 we consider how Spek and MSpek are related to the toy theory. We note that
because of the issues with the well-definedness of the toy theory raised in section 2.4.5 the
question of which category is the physical category of the toy theory is not entirely clear-cut.
However we do show that MSpek is a strong candidate for the physical category of the toy
theory, in which case Spek is the physical category of the fragment of the theory consisting
of the epistemic states of maximal knowledge. In subsequent chapters we will actually be
more concerned with Spek than with MSpek, because it more closely corresponds with the
category Stab defined in the previous chapter, and allows a clearer comparison with that
category on the issue of hidden variable theories.

Since the toy theory is a quantum-like theory we would expect its physical category to exhibit
some of the key features introduced in the previous chapter, and this is indeed the case. In
section 4.5 we investigate some of the basis structures which arise in Spek.

The definition of Spek first appeared in a paper co-authored with Bob Coecke [10]. Much of
the remainder of the chapter will appear in an extended version of this paper.

4.1 Definition and examples

Definition 4.1.1 The category Spek is a subcategory of FRel. It is defined constructively,
as follows:

• The objects of Spek are the single-element set I = {∗}, the four element set IV :=
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{1, 2, 3, 4}, and its n-fold Cartesian products IVn.

• The morphisms of Spek are all those relations generated by composition, Cartesian
product and relational converse from the following generating relations:

1. All permutations {σi : IV → IV} of the four element set, represented diagrammat-
ically by:

σi (4.1)

There are 24 such permutations and they form a group, S4.

2. A relation δSpek : IV → IV× IV defined by:

1 ∼ {(1, 1), (2, 2)} 2 ∼ {(1, 2), (2, 1)} 3 ∼ {(3, 3), (4, 4)} 4 ∼ {(3, 4), (4, 3)} ;

represented diagrammatically by:

(4.2)

3. a relation ǫSpek : IV → I :: {1, 3} ∼ ∗ represented diagrammatically by:

(4.3)

Remark 4.1.2 Spek inherits both symmetric monoidal and dagger structure from FRel:
the monoidal product is the Cartesian product, the monoidal identity object I is the singleton
set, and the dagger functor is given by the relational converse. Furthermore, perhaps unsur-
prisingly given the notation, {IV, δSpek, ǫSpek} is easily seen to be a basis structure. The
corresponding compact structure is ηSpek : I → IV × IV :: {∗} ∼ {(1, 1), (2, 2), (3, 3), (4, 4)}.
Given all this structure, the results of the preceding chapter would suggest that Spek will
exhibit many quantum-like features.

4.2 General form of the morphisms of Spek

Clearly there is no limit to the number of different ways in which the generators of Spek can
be linked together. Can we get a full characterisation of the relations which result from these
combinations? For example, it’s not clear that Spek is not in fact just the full sub-category
of FRel restricted to the objects IVn, i.e. Spek(IVm, IVn) = FRel(IVm, IVn). It turns out
that this is not the case - the hom-sets of Spek are strictly smaller than the corresponding
hom-sets from FRel, as we will shortly show.

In fact our proof of the general form of Spek morphisms is quite lengthy, and the details
are found in appendix A. In this section we give a sketch of the proof. We begin with some
important pre-requisite ideas.
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4.2.1 The proof is about diagrams

Definition 4.2.1 A Spek diagram is any valid diagram in the graphical language introduced
in chapter 3 which can be formed by linking together the diagrams of the Spek generators,
as described in definition 4.1.1.

There is clearly a bijection between the possible compositions of Spek generators, and Spek

diagrams. A Spek diagram with m inputs and n outputs represents a morphism of type
IVm → IVn: a relation between sets IVm and IVn. The number of relations between two
finite sets A and B is clearly finite itself: it is the power set of A × B. Thus the hom-set
FRel(A,B) is finite. Since Spek(IVm, IVn) ⊆ FRel(IVm, IVn) we can be sure that the hom-
sets of Spek are finite. On the other hand, there is clearly an infinite number of Spek

diagrams which have m inputs and n inputs - we can add more and more internal loops to
the diagrams. Thus many diagrams represent the same morphism. However the morphisms
of Spek are, by definition, all those relations resulting from arbitrary compositions of the
generating relations, i.e. any relation that corresponds to one of the infinity of Spek diagrams.
Hence any proof about the form of the morphisms in Spek is going to have to be a result
about the relations corresponding to each possible Spek diagram, even though in general
many diagrams correspond to a single morphism.

Note that any Spek diagram can be built up in several well-defined stages. Our proofs of the
general form of Spek elements will employ induction over each of these stages. To illustrate
the stages we will use this diagram:

(4.4)

Firstly we can link together δ morphisms, possibly via permutations, to form a tree-like
structure, without internal loops:

(4.5)

We’ll call this the tree-level stage. Next we can link together external legs of the tree, possibly
via permutations, to form loops:

(4.6)
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We’ll call this the loop-level stage. Finally we can add permutations and ǫ morphisms to the
free ends of the diagram:

(4.7)

We’ll call this the capping-level stage.

4.2.2 It’s enough to show the general form of states in Spek

If we know the relation corresponding to one diagram in one of Spek’s diagram equivalence
classes (recall definition 3.2.12), then it’s straightforward to determine the relations corre-
sponding to all of the other diagrams.

Lemma 4.2.2 Given a Spek diagram and corresponding relation:

R

X1

X2

Xm

Y1
Y2

Yn

R : X1 ×X2 × · · · ×Xm → Y1 × Y2 × · · · × Yn (4.8)

then the relation corresponding to the following diagram:

R

Y1
Y2

Yn

Xm

X1

X2

(4.9)

is given by:

(x1, x2, . . . , xm−1) ∼ {(y1, y2, . . . , yn, xm)|xm ∈ Xm, (y1, y2, . . . , yn) ∈ R(x1, x2, . . . , xm)}
(4.10)

where xi ∈ Xi, yi ∈ Yi and by R(x1, x2, . . . , xm) we denote the subset of Y1 × · · · × Yn which
is related by R to (x1, x2, . . . , xm). Note that the compact structure we are using here is the
canonical one induced by the basis structure appearing among the generators of Spek - see
remark 4.1.2.

Every diagram equivalence class in Spek has at least one diagram of type I → IVn, repre-
senting a state, where we make every external line an output. Relations of this type can be
viewed as subsets of the set IVn and it will be convenient for us to concentrate on characteris-
ing these morphisms. Via lemma 4.2.2 any results on the general form of states will translate
into results on the general form of all morphisms. In what follows we will therefore make no
distinction between the inputs and outputs of a Spek-diagram: a diagram with m inputs and
n outputs will simply be referred to as a (m+ n)-legged diagram.
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4.2.3 Sketch of the proof

We now present an outline of the proof of the general form of the states of Spek. The full
proof appears in appendix A.

Phased and unphased permutations

First we need to refine the group of permutations on IV. Note from definition 4.1.1 that the
generator δSpek effectively partitions the elements of IV into two halves {1, 2} and {3, 4}.

Definition 4.2.3 A phased permutation is an element of S4 which maps {1, 2} into {1, 2}
and {3, 4} into {3, 4}. There are four such permutations: the identity, (12)(3)(4), (1)(2)(34)
and (12)(34). These permutations form a subgroup of S4, termed the phased subgroup. All
other permutations in S4 are termed unphased.

Definition 4.2.4 Spek diagrams which are generated by composition, Cartesian product
and relational converse from the generators δSpek, ǫSpek, and the four phased permutations
will be termed phased diagrams. All other diagrams will be termed non-phased diagrams.

The ‘phased’ terminology is chosen because the phased subgroup turns out to be isomorphic
to the phase group of δSpek. Only a subset of the morphisms of Spek correspond to phased
diagrams, and these will be termed phased morphisms. The majority of Spek morphisms,
which correspond only to non-phased diagrams, are termed non-phased morphisms. The
general form of a phased morphism is much simpler than the general form of a non-phased
morphism. In fact our proof splits into two major stages: we first derive the general form
of a phased morphism, and then use this result in our derivation of the general form of a
non-phased morphism.

Phased morphisms

We begin by stating the main result on phased morphisms.

Theorem 4.2.5 (Listed as theorem A.3.8 in appendix A)

A phased morphism in Spek of type I → IVn is a subset of IVn, consisting of 2n n-tuples,
divided into two classes of equal number:

• The first class consists of tuples of 1s and 2s, all of either odd or even parity.

• The second class consists of tuples of 3s and 4s, again all of either odd or even parity.

Tuples of the first class have odd parity if they have an odd number of 2s, even parity if they
have an even number of 2s. Tuples of the first class have odd parity if they have an odd
number of 4s, even parity if they have an even number of 4s.
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The proof of this theorem proceeds in two main stages. In the first stage we define a new
category, MiniSpek (definition A.2.1). This category is also a sub-category of FHilb and
is defined in a very similar fashion to Spek. It too has one elementary object, this time a
two-element set II = {0, 1}, and is generated by the morphisms of a basis structure δMini :
II → II× II and ǫMini : II → I, and the four-element group of permutations on II. The general
form of MiniSpek morphisms is then deduced, employing induction over tree-, loop- and
capping-levels (theorem A.2.3).

In the second stage we show that any phased Spek morphism can essentially be seen as the
union of a pair of MiniSpek morphisms - thus by characterising the morphisms of MiniSpek

we have done the same for the phased morphisms of Spek.

Non-phased morphisms

First note that a non-phased diagram can be built up in tree, loop and capping phases,
analogous to our discussion in section 4.2.1, but in this case our basic units are not the three-
legged δSpek diagrams, but complete n-legged phased diagrams, and the permutations joining
them are not members of the phase subgroup.

D1

D2

D3

D4

(4.11)

These phased sub-diagrams will be termed zones. If a zone has external legs we call it an
external zone. A general Spek diagram consists then of phased zones linked by non-phased
permutations. We now have the vocabulary to state the general form of relation corresponding
to such diagrams.

Theorem 4.2.6 (Listed as theorem A.4.2 in appendix A)

The state ψ : I → IVn in Spek corresponding to an n-legged Spek-diagram with m external
zones is either

A subset of IVn satisfying the following properties:

1. It consists of 2n n-tuples.

2. Each n-tuple is divided into m sub-tuples, each corresponding to an external zone in
the diagram. Each sub-tuple has as many components as the corresponding zone has
external legs - we will denote this number by ni - and has a well-defined type (components
either all 1 or 2, or all 3 or 4) and parity (as defined for phased relations).

3. ψ is partitioned into 2m equally sized subsets called blocks. The ith sub-tuple of every
tuple in a block has the same type and parity. The sequence of types and parities of
each sub-tuple is called the signature of the block. Each block has a unique signature.
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4. Each block has 2(n−m) elements: these constitute every possible combination of the
sub-tuples which satisfy the parity and type requirements of the block’s signature.

5. Each of the four possible combinations of parity and type appear in the ith sub-tuple
in one quarter of the tuples.

or it is equal to the empty set, ∅.

An example might make these definitions clearer. Consider a diagram with three external
zones, the first two of which have three legs, and the third of which has two legs. The
corresponding state ψ would consist of 28 = 256 8-tuples. These would be partitioned into
23 = 8 blocks, each consisting of 32 tuples. The tuple (1,2,1,3,3,4,2,2) might be an element of
the block with signature (P1 = odd, T1 = {1, 2};P2 = odd, T2 = {3, 4};P3 = even, T3 = {1, 2}).

The proof of theorem 4.2.6 proceeds inductively over the tree-, loop- and capping-levels.

Tree-level diagrams

The first result here (lemma A.4.3) is to show that if the state ψ corresponding to an n-legged
diagram D satisfies the five conditions of theorem 4.2.6, so too will the state ψ′ corresponding
to the (n+ n′ − 2)-legged diagram D′ with m+1 zones which is formed by connecting a new
n′-legged phased zone onto D via an unphased permutation. Note that ψ′ will need 2n+n

′−2

tuples and 2m+1 blocks.

The key move in this proof is to show that every ‘parent’ block B of tuples in ψ begets two
‘progeny’ blocks B1 and B2 in ψ′, each with 2n

′−2 as many tuples as B, and further that all
progeny blocks are distinct. These results ensure that ψ′ has the correct number of blocks
and tuples.

Having proved this result, and noting (i) that any phased diagram satisfies the five conditions
in theorem 4.2.6, and (ii) that any tree-level diagram can be formed by connecting together
phased diagrams via unphased permutations, we can conclude that the states corresponding
to all tree-level diagrams satisfy the five conditions in theorem 4.2.6 (corollary A.4.4).

Closing chains to form loops

The loop-level is somewhat more complicated. We note that in building up a loop-level
diagram from a tree-level diagram we form a loop by connecting the two ends of a chain of
adjacent zones in the tree-level diagram.

Before proceeding further we first need to refine the group of permutations on IV further, by
splitting the unphased permutations into two classes:

Definition 4.2.7 A totally unphased (TU) permutation is an element of S4 which maps
{1, 2} into {3, 4} and vice versa. There are four such permutations: (13)(24), (14)(23), (1324)
and (1423).
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Definition 4.2.8 partially unphased (PU) permutation is an element of S4 which either maps
1 into {1, 2} and 2 into {3, 4} or vice versa, and which either maps 3 into {1, 2} and 4 into
{3, 4} or vice versa. Any permutation which is not phased or totally unphased is partially
unphased. There are 16 such permutations.

If any two adjacent zones in a loop are connected via a partially unphased permutation, then
we can ensure that, when building up the diagram, this is the last connection in the loop
which we make, thus closing a chain via a partially unphased permutation. Only if all the
adjacent zones in a loop are joined by totally unphased permutations do we have to build
up this loop by closing a chain with a totally unphased permutation. This turns out to be
important: given a chain some of whose zones are connected via partially unphased permuta-
tions, closing this chain via a totally unphased, rather than partially unphased, permutation
leads to considerable complications in the proof.

Closing with a partially unphased permutation

The main result here (lemma A.4.15) is to show that if the state ψ corresponding to a diagram
D satisfies the five conditions of theorem 4.2.6, so too will the state ψ′ corresponding to a
diagram D′, formed by closing a chain in D via a partially unphased permutation.

Note that D′ has two less legs than D and the same number of zones. Thus we expect ψ′ to
have one quarter as many tuples as ψ and the same number of blocks. The key step here is to
show that each parent block B ⊂ ψ gives rise to one progeny block B′ ⊂ ψ′ with one quarter
as many tuples as B, and further that all progeny blocks are distinct. These results ensure
that ψ′ has the correct number of blocks and tuples.

Closing with a totally unphased permutation

This case is more complicated. First, given a diagram D and corresponding state ψ, recall
that each tuple in ψ is divided into sub-tuples each corresponding to a zone in D, and that
these sub-tuples have well-defined parities and types (i.e. (12) or (34)).

Definition 4.2.9 Consider a diagram D with a chain, and its corresponding state ψ. In a
block B ⊂ ψ which is same-ended with respect to the chain, the sub-tuples which correspond
to initial and final zones of the chain have the same type. A different-ended block is defined
analogously.

Now, we consider closing a chain in diagram D (with corresponding state ψ) to form a new
diagram D′ (with corresponding state ψ′), via a totally unphased permutation. The first step
in the analysis is to show that upon doing this:

1. Blocks B ⊂ ψ which are same-ended with respect to the chain give rise to no progeny
blocks in ψ′ (lemma A.4.20).
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2. Blocks B ⊂ ψ which are different-ended with respect to the chain give rise to two
progeny blocks, each with one quarter as many tuples as B (lemma A.4.21).

Furthermore, the progeny blocks are not necessarily all distinct. Two distinct blocks B,B′ ⊂
ψ can be in a certain relation to one another such that the two progeny blocks of B are
identical to the two progeny blocks of B′ (proposition A.4.25). We term such a pair of blocks
as mirrored with respect to the chain we are closing.

In order to derive a result for totally unphased permutations analogous to the one stated
for partially unphased permutations at the beginning of the previous section we require that
there are as many distinct blocks in ψ′ as there are in ψ. But as it stands, some blocks (same-
ended) in ψ produce no progeny blocks, some blocks (different-ended) produce two progeny
blocks, and some progeny blocks may be duplicated.

Fortunately we are only interested in closing chains all of whose zones are linked by totally
unphased morphisms. We go on to show that in the case of such chains:

1. The state ψ corresponding to the diagram with the chain consists entirely of pairs of
blocks mirrored with respect to the chain (proposition A.4.29).

2. Either every block in ψ is same-ended with respect to the chain, or every block is
different-ended with respect to the chain (proposition A.4.33).

If every block is same-ended then no blocks give rise to progeny blocks, and ψ′ = ∅. If every
block is different-ended then every block gives rise to two progeny blocks, but each of these
is duplicated once - thus in total ψ′ has as many blocks as ψ.

Thus we overcome the final obstacle to deriving the main result for totally unphased mor-
phisms (lemma A.4.34). If we begin with a diagram D with a chain whose zones are connected
only by totally unphased permutations, whose corresponding state ψ satisfies the five condi-
tions of theorem 4.2.6, and then form a new diagram D′ by closing the chain in D via a totally
unphased permutation, the state ψ′ corresponding to D′ will also satisfy the conditions of
theorem 4.2.6.

Using this result, and the one for partially unphased morphisms (lemma A.4.15), we can
extend the inductive argument of corollary A.4.4 to loop-level (lemma A.4.35): the states
corresponding to all loop-level diagrams either satisfy the five conditions of theorem 4.2.6, or
are equal to ∅.

Capping-level diagrams

Finally we show (lemma A.4.36) that if the state ψ corresponding to an n-legged diagram
D satisfies the five conditions of theorem 4.2.6, so too will the state ψ′ corresponding to an
(n− 1)-legged diagram D′, formed by capping off one of the external legs of D with ǫSpek via
an unphased permutation.

This result allows us to extend our inductive argument all the way, and conclude that all
Spek morphisms either satisfy the five conditions of theorem 4.2.6, or are equal to ∅.
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4.3 The category MSpek

We now define another category, MSpek:

Definition 4.3.1 MSpek is a sub-category of FRel. Its objects are the same as those of
Spek. Its morphisms are all those relations generated by composition, Cartesian product
and relational converse from the generators of Spek, plus the following relation:

⊥MSpek : I → IV :: ∗ ∼ {1, 2, 3, 4} (4.12)

Clearly any MSpek-diagram can be obtained from a Spek-diagram by capping off some
external legs with ⊥MSpek diagrams.

In the appendix we derive the following result:

Proposition 4.3.2 All MSpek morphisms of type I → IVn are subsets of IVn containing
2n, 2n+1, . . . , 22n−1 or 22n n-tuples.

4.4 The physical category of the toy theory

We are interested here in the epistemic states and the transformations of the toy theory viewed
as transformations on the epistemic states rather than on the ontic states. As an example of
this distinction, recall (end of section 2.4.3) that the measurement disturbance corresponding
to a particular outcome in the toy theory can be seen as a the non-deterministic choice of one
of several permutations on IV for the ontic states, but as a well-defined relation on IV for the
epistemic states.

We know that the epistemic states of the toy theory are subsets of the sets IVn, and that the
transformations on these states are relations between these sets. Thus we can see immediately
that the physical category must be some sub-category of FRel, restricted to the objects IVn.
Furthermore we know that it cannot be the full sub-category restricted to these objects, since
some subsets of IVn clearly violate the knowledge balance principle.

We will show now that (a strong candidate for) the physical category for the toy theory in
its entirety is MSpek, while if we restrict the toy theory to states of maximal knowledge
(consistent with the knowledge balance principle), the physical category is Spek. We have
chosen to emphasise the category Spek rather than MSpek because it is in closer corre-
spondence with Stab, and a major theme of this work will be a comparison of these two
categories. We could have defined some kind of ‘MStab’ category, including mixed quantum
states as well, and indeed there exists a construction to do this [29]. However this would
unnecessarily complicate our analysis, especially since the phenomenon in which we will be
particularly interested whilst comparing Stab and Spek (the existence or otherwise of local
hidden variables) is exhibited perfectly well by pure states / states of maximal knowledge.

Proposition 4.4.1 The morphisms of the physical category of the toy theory are closed
under composition, Cartesian product and relational converse.
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Proof: There is no feature of the toy theory which would put any restrictions on which
operations could be composed, so we expect the states and transformations to be closed under
composition. Since the Cartesian product is used by the toy theory to represent composite
systems we also expect the states and transformations to be closed under Cartesian product.

Every epistemic state corresponds to an outcome for at least one measurement (measurements
correspond to asking as many questions as possible from canonical sets, epistemic states
correspond to the answers). Recalling the discussion at the end of section 2.4.3, we see that
given a state ψ ⊂ IVn the disturbance resulting from the corresponding measurement outcome
can be decomposed as ψ ◦ ψ†, where ψ† is the relational converse of ψ. Thus we expect the
relational converse of each state also to feature in the physical category of the theory.

The toy theory state corresponding to the subset ΨSpek = {(1, 1), (2, 2), (3, 3), (4, 4)} ⊂ IV×IV
(depicted in diagram 2.38) along with its relational converse are then easily seen to constitute
a compact structure on IV. We thus have map-state duality, and it is straightforward then to
show that if states are closed under relational converse, so is any morphism in the physical
category. 2

Note that this point sharpens our discussion about the consistency of the toy theory, in section
2.4.5. If the states and transformations which Spekkens has derived for up to three systems,
under the operations of composition, Cartesian product and relational converse, yield states
which violate the knowledge balance principle, then the theory as presented is inconsistent.

Proposition 4.4.2 All of the generating morphisms of MSpek are states or transformations
of the toy theory, or can be derived from them by composition, Cartesian product or relational
converse.

Proof: The only generator for which this is less than obvious is δSpek. This is formed by
composing Spekkens’s GHZ-like state (equation 2.39) with the relational converse of the state
ΨSpek defined in the proof above. 2

Proposition 4.4.3 All of the states and transformations derived by Spekkens in his original
paper [32] are morphisms of MSpek. When we restrict to states of maximal knowledge all
of the states and transformations are morphisms of Spek.

Proof: By inspection of [32]! 2

Corollary 4.4.4 MSpek is the minimal closure under composition, Cartesian product and
relational converse of the states and transformations described in [32]. Spek is the minimal
closure under these operations of the states of [32] corresponding to maximal knowledge and
the transformations which preserve them.

Proposition 4.4.5 All states ψ : I → IVn of MSpek and Spek satisfy the knowledge
balance principle on the system corresponding to IVn viewed as one complete system. All
those of Spek satisfy the principle maximally.
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Proof: Recall that the knowledge balance principle requires that we can know the answer
to at most half of a canonical question set. A system with n elementary components has
22n ontic states. A canonical set for such a system consists of 2n questions, each answer
to a question halving the number of possibilities for the ontic state. Thus, we know the
answer to m such questions (m = 0, . . . , n), iff our epistemic state is a subset of IVn with
22n−m elements. We conclude from proposition A.5.2 that all states of MSpek satisfy the
knowledge balance principle on the system as a whole. We conclude from theorem 4.2.6
that all states of Spek correspond to the maximum knowledge about the system as a whole
consistent with the knowledge balance principle. 2

Proposition 4.4.6 All states ψ : I → IVn of MSpek and Spek satisfy the knowledge
balance principle on every subsystem of the system corresponding to IVn.

Proof: Given an epistemic state ψ ⊂ IVn of a composite system with n elementary com-
ponents, the ‘marginal’ state on some subsystem is obtained from ψ by deleting from the
tuples of ψ the components corresponding to the elementary systems which are not part of
the subsystem of interest.

Suppose this epistemic state corresponds to a Spek or MSpek diagram, D. The elementary
systems which are not part of the subsystem correspond to a certain collection of external
legs of D, and, by lemma A.1.8, if we cap these with the MSpek generator ⊥MSpek, the
effect on the state ψ is exactly as described in the previous paragraph.

Composing a Spek or MSpek morphism with ⊥MSpek yields some morphism of MSpek,
which by proposition 4.4.5 satisfies the knowledge balance principle. 2

From corollary 4.4.4 and propositions 4.4.5 and 4.4.6 we reach two key conclusions:

• The states and transformations derived by Spekkens in [32] for systems of up to three
components are all consistent with the knowledge balance principle.

• The physical category of the toy theory must, at least, contain all of the morphisms of
in MSpek.

The second conclusion begs the question, couldMSpek be a strict sub-category of the physical
category of the toy theory i.e. could the toy theory contain operations not contained in
MSpek? It’s difficult to answer this question, since, as discussed in section 2.4.5 it is not
clear what the rigourous definition of the toy theory is, or whether there is an unambiguous
way to extend it beyond three systems. Certainly, MSpek is the physical category of a
theory which coincides with Spekkens’s theory up to the case of three qubits, and whose
states and transformations are bound to satisfy the three rules of section 2.4.5 (the first two
rules by propositions 4.4.5 and 4.4.6, and the third simply by its definition as the closure
under composition of a set of generators). It is in this sense that we earlier remarked that
MSpek is a strong candidate for the physical category of the toy theory.
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4.5 The basis structures of Spek

Spek is a sub-category of FRel and thus inherits its basis structures from that category.
The basis structures of FRel are of two types. Both definitions employ groups.

An Abelian group can be viewed in map theoretic terms as a triple (X,µ : X ×X → X, ν :
I → X) where X is the underlying set, µ is the group multiplication, and ν picks out the unit
element. Now consider these maps as relations, and take the converse relations of µ and ν,
respectively δ : X → X ×X and ǫ : X → I. Then the triple (X, δ, ǫ) forms a basis structure
in the category FRel:

Definition 4.5.1 A simple basis structure, ∆G in FRel is a triple {N, δG, ǫG}, where N is
an n-element set, and

δG(z) = {(z′, z′′)|z′ ∗ z′′ = z} (4.13)

ǫG(z) =

{

{∗} z is group identity
∅ z is any other z ∈ N

(4.14)

where z, z′, z′′ ∈ N and where z′ ∗ z′′ denotes the group multiplication of G on z′ and z′′. We
refer to G as the underlying group of ∆G.

The other type of FRel basis structure can be formed by ‘patching together’ several such
simple basis structures.

Definition 4.5.2 Given a set of Abelian groups G = {G1, G2, . . . , Gm}, each with a cor-
responding simple basis structure ∆Gi = {Ni, δGi , ǫGi}, a compound basis structure, ∆G in
FRel is a triple {N, δG , ǫG} where:

N = ⊔mi=1Ni (4.15)

δG(x) = δGi(x),∀x ∈ Ni (4.16)

ǫG(x) = ǫGi(x),∀x ∈ Ni (4.17)

Each of the simple basis structures will be known as a constituent of the compound basis
structure.

The subsets Ni in definition 4.5.2 will be termed the sectors of N with respect to ∆G .

Theorem 4.5.3 All basis structures in FRel are either simple or compound.

Proof: This key result was proved by Pavlovic in [27]. 2

Evidently, the orders of the underlying groups must sum to give the cardinality of the
set on which the basis structure is defined. With this in mind we see that the possibil-
ities for the collections of underlying groups of basis structures on IV are: {Z4}, {Z2 ×
Z2}, {Z3, Z1}, {Z2, Z2}, {Z2, Z1, Z1} and {Z1, Z1, Z1, Z1}. Direct calculation establishes that
of these, only {Z2, Z2} generates a basis structure whose δ and ǫ morphisms are Spek mor-
phisms.
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The underlying groups are not sufficient to completely specify a basis structure in FRel:
we also need to specify how the underlying set on which the basis structure is defined is
to be partitioned into sectors, and which element of each sector is to correspond to the
group identity. There are three ways of partitioning IV into two equal subsets, {1, 2} and
{3, 4}, {1, 3} and {2, 4}, and {1, 4} and {2, 3}. In each of these cases there are four possible
combinations of choices for which elements should correspond to the group identity. Thus IV
has twelve basis structures.

Further calculations reveal that the four basis structures corresponding to a given partition
all have the same two eigenvalues: the two sectors themselves. Furthermore they all have the
same four unbiased states: the other two-element subsets of IV. They differ in which of these
four unbiased states is equal to ǫ†.

An example is useful. The basis structure {IV, δSpek, ǫSpek}, which employs the generating
morphisms of Spek corresponds to a partition of IV into sectors of {1, 2} and {3, 4}, and a
choice of 1 and 3 as the elements to correspond to the group identity. This basis structure
has eigenvalues {1, 2} and {3, 4}, and unbiased states {1, 3}, {2, 4}, {1, 4} and {2, 3}.

Proposition 4.5.4 For all twelve basis structures on the object IV in Spek the phase group
is isomorphic to the four element product group Z2 × Z2.

Proof: Direct calculation. 2



Chapter 5

Hidden variables in the categorical

framework

Our overall programme is to investigate which mathematical features of theories, when ex-
pressed in categorical terms, correspond to which physical features. The physical feature
which we will concentrate on is the existence or otherwise of a local hidden variable theory
which reproduces the results of the theory. In order to investigate this in the categorical
setting, we need to translate the idea of a hidden variable theory into abstract categorical
terms.

The categorical approach emphasises the structure resulting from the composition of pro-
cesses: this makes it particularly suitable for the analysis of certain types of quantum-like
phenomena, principally quantum protocols and information processing, and this has been
the focus of most work in the field so far. In this context, the traditional preoccupations of
quantum physicists e.g. the values taken by observables, and the probabilities of the out-
comes of measurements, are of limited importance, and thus little effort has been made to
deal with these considerations within the categorical approach. However, if we are to address
the question of hidden variables within the categorical framework then we are going to have
to develop the means to treat the issue of measurement of observables.

We begin in section 5.1 by briefly considering the notions of probability which might occur in
physical theories, and which of these can be accommodated within the categorical framework.
Next, in section 5.2, we consider the ways in which measurement in a physical theory can
relate to the structure of the physical category of that theory. We need to pin this down quite
precisely before we can use categorical reasoning to tell us anything about measurement.
We define the notion of a physical theory with quantum-like measurement - in such theories
measurement relates to the categorical structure in a particular way, and it will be for such
theories that all of our subsequent results are valid. In such theories basis structures are
very closely related to the notion of observables, but the two do not precisely correspond.
In section 5.3 we define observable structures, a structure derived from basis structures, but
corresponding directly with observables in the physical theory.

If we are to consider local hidden variables, we must have a clear idea of which objects in the
physical category correspond to elementary systems, and which to composite systems, and
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this point is addressed briefly in section 5.4. We then go on in section 5.5 to make the key
definitions which allow us to discuss hidden variable theories in the abstract setting. Our
definitions at this stage also encompass non-local hidden variables, and in sections 5.6 and
5.7 we go on to give an abstract account of local hidden variables.

This chapter builds on some preliminary ideas about defining hidden variables which first
appeared in a paper co-authored with Bob Coecke and Rob Spekkens [11].

5.1 Generalised probabilistic theories

We now make a brief digression to discuss notions of probability which can arise in physical
theories. Quantum mechanics is a probabilistic theory, in that it assigns probabilities to the
different outcomes of a measurement. The notion of a probabilistic theory will be familiar
to most readers, but we will re-cap for completeness. This definition can be applied to any
theory for which systems have observables, which can be measured, yielding some outcome.

Definition 5.1.1 A probabilistic theory assigns to each measurement outcome of each ob-
servable a positive real number between 0 and 1, called a probability. Denoting an observable
by A, and the exhaustive set of outcomes of a measurement of that observable by {ai}i=1,...,n,
we denote the probability assigned to outcome ai by p(ai). The probabilities assigned, in
general, depend on the state of the system, but in all cases the probabilities must satisfy the
following condition for all observables:

n
∑

i=1

p(ai) = 1 (5.1)

The interpretation of probabilities is an involved subject, but some points are clear. Outcomes
assigned a probability of 0 are impossible. Outcomes assigned a probability of 1 are certain.
Many interpretations exist for the probabilities between 0 and 1!

We can also have a simpler type of theory which states simply whether an outcome is possible
or impossible.

Definition 5.1.2 A possibilistic theory assigns to each measurement outcome of each ob-
servable an element of the two-element Boolean algebra B2, called a possibility. Using the
same notation for observables and outcomes as before, we denote the possibility assigned to
outcome ai by p(ai). Possibilities must satisfy the following condition for all observables:

n
∨

i=1

p(ai) = 1 (5.2)

It is possible to have intermediate theories assigning a more general notion of likelihood to
outcomes. We will not go into any detail here, but just note that our framework will be
able to accommodate a wider range of theories than just probabilistic and possibilistic, so
long as these theories have certain key features. For example, these generalised probabilities
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should be ordered (at least partially) with a bottom element, representing impossibility, and
a top element, representing the maximum level of likelihood (for probabilistic theories this
is certainty, for possibilistic theories merely possibility). It should be possible to combine
them in some commutative and associative fashion (in probabilistic theories this is addition,
+, in possibilistic theories it is join, ∨), and so on. Bearing in mind the possibility of these
alternative theories, we will henceforth refer to generalised probabilistic theories. We will use 0
to represent the bottom element, 1 to represent the top element, and + to represent whatever
operation the theory uses to combine generalised probabilities.

5.2 Theories with quantum-like measurement

The physical category of a theory supplies a lot of information about the theory, but it
doesn’t give the whole story by any means. For example, whilst we know that morphisms
represent physical processes undergone by systems, the category tells us nothing about what
sort of physical processes each morphism represents, or under what circumstances different
morphisms will be realised. Some evolutions in the theory may be probabilistic, and, as we
will shortly see, the category itself can give only limited information about the probabilities
of different outcomes. The category tells us nothing about the values taken by the attributes
of the system.

The categorical approach has so far largely been used to address the question of what informa-
tion processing protocols are possible in a theory (e.g. [1], [9]), and almost no ‘non-categorical’
input is required to draw useful conclusions about this question. However, when dealing with
the issues of measurements of observables and probabilities of measurement outcomes, we will
need to supplement the information from the category with considerably more non-categorical
input.

We will shortly define a certain type of theory, by the way in which certain features of its
physical category relate to the description of measurement within the theory. In this chapter
and the next we will show how the structure of the physical category can tell us a great
deal about measurements, probabilities and the possibility of hidden variable interpretations
in this type of theory. However, if measurements and probabilities in a theory relate to the
morphisms of the physical category in a different way, or if they are absent entirely as concepts
within the theory, then this categorical analysis will tell us nothing useful about the theory.
In fact the non-cateogorical input is even more important than this: without knowledge of a
few key pieces of non-categorical information we will be unable to formulate several important
structures which we need for our (largely) categorical treatment of hidden variables.

Here is the key definition:

Definition 5.2.1 Consider a generalised probabilistic theory, whose physical category is a
†-0-SMC. We say that this theory has quantum-like measurement if it exhibits the following
features:

1. Every observable of a system in the theory is associated with one or more basis structures
of the corresponding object A in the theory’s physical category. Each basis structure
corresponds to a unique observable.
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2. Given an observable, and a corresponding basis structure ∆, there is a bijection between
the possible outcomes of a measurement of that observable, and the eigenstates {xi :
I → A}i=1,...,n of ∆.

3. A measurement results in a disturbance to the state of a system. If xi : I → A is the
eigenstate corresponding to an outcome of the measurement on a system A then the
resulting disturbance is described, in the physical category, by the morphism xi ◦ x†i :
A→ A.

4. If the system A is prepared in a state ψ : I → A the generalised probability assigned by
the theory to an outcome corresponding to eigenstate xi : I → A is some function of the
scalar x†i ◦ψ. We refer to such a scalar as a state-outcome scalar. The function is termed
the scalar-probability function and must be such that it maps a zero state-outcome scalar
to a generalised probability of zero.

Example 5.2.2 Both the stabiliser theory and Spekkens’s toy theory (with the epistemic
states playing the role of the ‘states’ in the previous definition) have quantum-like measure-
ment.

These points all merit some further discussion. Point (1) is somewhat puzzling in that it
allows multiple basis structures to correspond to the same observable. The reason is that
it’s possible for two different basis structures to have the same eigenstates. We have seen
examples of this in the cases of Stab and Spek. Clearly these represent the same observable
within the theory. This will be dealt with in more detail in the next section.

Can we give any kind of justification for the features of a theory with quantum-like mea-
surement in physical terms? The physical significance of having the morphisms associated
with measurement outcomes be the eigenstates of a basis structure is not completely clear
at present. All we can say is that this correspondence does exist in all the theories so far
analysed within the categorical approach.

We can do better for point (3). In QM, the measurement disturbance results in the system
being prepared in a new state which depends only on the measurement outcome, not on
the original state of the system. In any theory for which this is true, bearing in mind the
discussion of the interpretation of morphisms in a physical category at the end of section 3.1.4,
we would expect the morphism representing measurement disturbance to have the schematic
form:

AA

(5.3)

Finally, point (4), the relationship between state-outcome scalar and generalised probability.
Suppose, having prepared the system in a state ψ : I → A, a measurement outcome, with
corresponding eigenstate xi : I → A is impossible. Given the discussion of zero morphisms in
section 3.2.3 we would expect this composition:
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A
ψ xi xi

(5.4)

to be equal to 0I,A : I → A. We thus expect that, given any outcome (with corresponding
eigenstate xi) which has zero probability when the system is in state ψ, the state-outcome

scalar x†i ◦ ψ = 0I,I . This makes the beginning of a connection between the state-outcome
scalar and the generalised probability of an outcome - at the very least we should be able to
deduce the possibility of an outcome from the scalar.

The question then arises as to whether the possibilities associated with a †-0-SMC with basis
structures can be fine-grained to give a generalised probabilistic theory. It may be that this
is possible, but not indicated in any way by the structure of the category. Equally it may be
that the structure of the scalars in the category suggest a type of generalised probability and a
scalar-probability function: for example the scalars in FHilb are C, and the scalar probability
function is |−|2 yielding standard probabilities for appropriately normalised states. In general
however, we don’t have a clear understanding of how to derive anything other than possibilities
from the state-outcome scalars of the physical category. In particular it is unclear how the
scalar-probability function relates to the structure of the category, if it does at all.

In the remainder of this chapter we will attempt to develop a categorical definition of hidden
variables which is general enough to encompass all generalised probabilistic theories with
quantum-like measurement. This will require us to employ various ‘non-categorical’ data,
such as the scalar-probability function. In the next chapter, we will focus on developing an
abstract version of the GHZ no-go proof against hidden variables. Here the only relevant
issue will be whether a measurement outcome is possible or not. This work then will require
rather less ’non-categorical’ input.

5.3 Observable structures

We noted in the previous section that, in general, one observable in a theory may correspond
to multiple basis structures in its physical category.

Definition 5.3.1 Two basis structures ∆1 = {A, δ1, ǫ1} and ∆2 = {A, δ2, ǫ2} are observably
equivalent if they have identical sets of eigenstates.

We have seen examples of observably equivalent basis structures in Stab (section 3.4.4) and
Spek (section 4.5). On the object C

2 in Stab there are twelve basis structures, falling
into three families - the basis structures in each family are observably equivalent. A similar
situation prevails in Spek.

Observable equivalence is clearly seen to be an equivalence relation on BA. The equivalence
classes correspond more directly to observables than do the basis structures.

Definition 5.3.2 An observable structure, Ω, on an object A is an equivalence class of basis
structures on A, under the relation of observable equivalence.
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We conventionally denote observable structures with a capital omega, Ω, using subscripts or
superscripts to distinguish between them. We denote the set of observable structures on an
object A by OA.

Definition 5.3.3 We refer to the common set of eigenstates shared by all members of an
observable structure Ω as the values or outcomes of Ω. We denote the set of values of Ω by
CΩ.

5.4 Elementary and composite objects

Another important piece of non-categorical information we need to introduce is whether
an object represents an elementary indivisible system, or a composite system of potentially
separable parts. Consider the case of quantum mechanics. The state space of a composite
system is equal to the tensor product of the state spaces of the composite systems. Recall
that the dimension of a tensor product H1 ⊗ H2 is the product of the dimensions of its
‘factor’ spaces H1 and H2. Thus a Hilbert space with prime dimension cannot be the tensor
product of any non-trivial state spaces. However we can have a single system described by,
say, a 4-dimensional state space (the spin state of a spin-3/2 particle for example), whilst the
tensor product space of a pair of qubits also has dimension four, being the product of two
2-dimensional spaces. From the point of view of the category FHilb these are two isomorphic
objects, and thus cannot be distinguished in categorical terms.

For our purposes however, whether an object represents an elementary or composite system is
crucial. In fact in the case of our two key examples Stab and Spek this issue is side-stepped:
in each case the category is constructed so that there is just one non-trivial object which
cannot be written as the monoidal product of any other object (C2 and IV respectively), and
it is exactly this object which is interpreted as representing an elementary indivisible system,
with all other objects representing composite systems. However, more generally we will have
to put the distinction between elementary and composite objects ‘in by hand’.

5.5 Abstract hidden variables

Throughout the remainder of this chapter our setting will be a generalised probabilistic theory
with quantum-like measurement, and its physical category C. The generalised probabilities
take their values in P, and the scalar-probability function is denoted by P : C(I, I) → P.

Definition 5.5.1 The outcome set of an object A is the set RA =
⋃

Ω∈OA CΩ.

Note that RA may be only a proper subset of C(I,A). The two will only be equal if every
state of A is an eigenstate of some basis structure of A.

Definition 5.5.2 An outcome probability function (OPF) on an object A is a function P :
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RA → P such that:
∀ Ω ∈ OA,

∑

x∈CΩ

P (x) = 1 (5.5)

i.e. the probabilities assigned by the OPF are normalised over the outcomes of all observables.

An OPF corresponds with the intuitive notion of a state: some mathematical entity which
gives us the probability of every measurement outcome. Indeed, every state in the theory (i.e.
every morphism of type I → A) gives rise to an OPF:

Proposition 5.5.3 A state ψ : I → A naturally gives rise to an OPF, termed the outcome
probability function of ψ, via the prescription:

Pψ : RA → P :: x 7→ P(x† ◦ ψ) (5.6)

Proof: The scalar-probability function by definition yields the probabilities for a generalised
probabilistic theory, which, again by definition, are bound to satisfy the normalisation con-
dition in equation 5.5. 2

Note however that not every OPF that could be defined on A will arise from one of the states
of A. Not all ‘states’, in the sense of probability distributions over measurement outcomes,
will actually be realised in a given theory.

We now define the key notions which allow us to make sense of questions about hidden
variables in the abstract categorical framework.

Definition 5.5.4 The hidden state space of an object A is the set ΞA =
∏

Ωi∈OA CΩi . The
elements of ΞA are termed hidden states.

Each hidden state h ∈ ΞA is a tuple of values. By hi we denote the ith component of the
tuple h: this is interpreted as representing the value of observable Ωi in this hidden state.

Definition 5.5.5 Each h ∈ ΞA induces a value function vh : OA → RA :: Ωi 7→ hi.

Definition 5.5.6 A hidden state distribution (HSD) over a hidden state space Ξ is a σ-
additive measure µ : B(Ξ) → P, such that µ(Ξ) = 1.

Proposition 5.5.7 Any HSD µ gives rise to a corresponding OPF Pµ via the following
prescription. If x ∈ CΩi :

Pµ(x) = µ({h ∈ Ξ|vh(Ωi) = x}) (5.7)

Proof: ∀ Ωi ∈ OA,
∑

x∈CΩi
Pµ(x) = µ(

⋃

x∈CΩi
{h ∈ Ξ|vh(Ωi) = x}) = µ(Ξ) = 1. 2

Definition 5.5.8 A state ψ : I → A has a hidden variable interpretation (HVI) if there
exists a HSD µ on ΞA such that Pµ = Pψ.
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So, every object in a physical category (representing a system in the corresponding theory)
which has observable structures, also has a HSS. This state space is well-defined irrespective
of whether the theory actually has a hidden variable interpretation. The hidden states them-
selves are basically all the possible combinations of outcomes for each observable structure.
Physically we interpret them as telling us the value of each observable. HSDs are simply
probabilistic measures on the HSS; any HSD will yield an OPF on the object. If the OPF
derived from a state of the theory coincides with the OPF derived from an HSD, then that
HSD provides a hidden variable interpretation for the state.

5.6 Basis and observable structures on composite objects

Definition 5.6.1 A state ψ : I → A1⊗· · ·⊗An is separable if it can be written as ψ1⊗· · ·⊗ψn
where ψi : I → Ai. Any state which is not separable is termed non-separable.

Proposition 5.6.2 Two basis structures ∆A = {A, δA, ǫA} and ∆B = {B, δB , ǫB} induce a
third basis structure, which we write as ∆A ⊗∆B = {A⊗B, δA⊗B , ǫA⊗B}, with:

δA⊗B = (1A ⊗ σA,B ⊗ 1B) ◦ (δA ⊗ δB) ǫA⊗B = ǫA ⊗ ǫB , (5.8)

or diagrammatically:

A

B

A

B

A

B

A

B
ǫA⊗BδA⊗B

(5.9)

The extension to more than two basis structures is clear.

Definition 5.6.3 A basis structure on the composite object A ⊗ B which arises via the
construction described in proposition 5.6.2 is termed a separable basis structure. All other
basis structures on A⊗B are termed non-separable.

Definition 5.6.4 A physical category with basis structures satisfies the compound observable
condition if the following two conditions are satisfied:

1. The following are equivalent:

• The basis structures ∆A and ∆′
A on A are observably equivalent and the basis

structures ∆B and ∆′
B on B are observably equivalent.

• The basis structures ∆A ⊗∆B and ∆′
A ⊗∆′

B on A⊗B are observably equivalent.

2. No separable basis structure is observably equivalent to a non-separable basis structure.

Proposition 5.6.5 In a physical category satisfying the compound observable condition, two
observable structures, ΩA on A and ΩB on B, induce a third on A ⊗ B which we denote as
ΩA⊗ΩB = {∆A⊗∆B|∆A ∈ ΩA,∆B ∈ ΩB}. Such an observable structure is termed separable.
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Proposition 5.6.6 In a physical category satisfying the compound observable condition, an
observable structure on a composite object consists either entirely of separable basis struc-
tures, in which case it is of the form described in proposition 5.6.5, or entirely of non-separable
basis structures. The latter are termed non-separable observable structures.

Example 5.6.7 Both FHilb and FHilbp satisfy the compound observable condition.

In all our subsequent discussions we will assume that the physical category satisfies the
compound observable condition.

5.7 Abstract local hidden variables

As it stands, our definitions of HSS, HSD, HVI etc. capture the idea of a hidden variable
theory, but not the more specific case, in which we are interested - that of a local hidden
variable theory. Both separable and non-separable observable structures cause problems with
the interpretation of the HSS of a composite object.

Firstly we consider the separable observable structures. Suppose we have two objects A, with
observable structure ΩX and B, with observable structures ΩY and ΩZ . From these we can
form two further observable structures: ΩX ⊗ ΩY and ΩX ⊗ ΩZ . A hidden state h ∈ ΞA⊗B
will have two different components hi and hj , one of which is a value of ΩX ⊗ ΩY , the other
of which is a value of ΩX ⊗ ΩZ . More formally:

hi = x⊗ y ∈ CΩX⊗ΩY (5.10)

hj = x′ ⊗ z ∈ CΩX⊗ΩZ (5.11)

where x, x′ ∈ CΩX , y ∈ CΩY and z ∈ CΩZ . Given the definition of a HSS (definition 5.5.4),
there is no reason why x and x′ should necessarily coincide. This causes problems for our
interpretation of the hidden state. The natural interpretation of a separable observable struc-
ture is that it represents the simultaneous measurement of a property from each system.
Furthermore, it is natural to assume that the X in the observable structures ΩX ⊗ ΩY and
ΩX ⊗ ΩZ is the same observable, but measured simultaneously with a different observable
on the other system in each case. However, if we do adopt this interpretation, then hidden
states such as the one above have the property that the value assigned to X on the first
system depends on which observable we measure on the second system. This is exactly the
kind of non-locality which was invoked in section 2.2.3 as a get-out clause for the GHZ no-go
argument. We conclude that hidden states of this sort should not be allowed in a local hidden
variable theory.

Non-separable observables are also problematic. Presumably they represent some kind of
global property of the whole system, rather than individual properties of each subsystem.
Nonetheless, in a local theory we would surely expect such global properties to be calculable
from the local properties of each subsystem. For example, whilst the total momentum of a
pair of classical particles is not a property of either particle, it is calculable from the individual
momenta of the two particles. However, the HSS of a composite object contains hidden states
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with identical components for separable observable structures, which differ in the components
for non-separable observable structures.

These two problems can, to some extent, be avoided by tweaking the definitions of the previous
section. Firstly we focus attention on separable observable structures. We denote the set of
separable observable structures on a composite object A by OSep

A .

Definition 5.7.1 The separable outcome set of a composite object A is the set RSep
A =

⋃

Ω∈OSep

A

CΩ.

Definition 5.7.2 A separable outcome probability function (SOPF) on a composite object A
is the restriction of an OPF to the separable outcome set.

As with OPFs, states naturally give rise to SOPFs:

Proposition 5.7.3 A state ψ on a composite object A = A1 ⊗ · · · ⊗An naturally gives rise
to a SOPF, termed the local outcome-probability function of ψ, via the prescription:

P Sep
ψ : RSep

A → P :: (x1 ⊗ · · · ⊗ xn) 7→ P((x1 ⊗ · · · ⊗ xn)
† ◦ ψ) (5.12)

Next we modify our hidden variable definitions from section 5.5 to make them ‘local’:

Definition 5.7.4 The local hidden state space (LHSS) of a composite object A = A1⊗· · ·⊗An
is the set ΛA =

∏n
i=1 ΞAi .

where we recall that ΞAi denotes the hidden state space (HSS) of the object Ai.

The hidden states of an LHSS are again tuples of values. However, this time it will be
convenient to index the components of the tuple with two labels: hij . This represents the
value of observable Ωj on the constituent system Ai.

Definition 5.7.5 Each h ∈ ΛA induces a value function on each constituent object Ai:

vih : OAi → RAi :: Ωj 7→ hij (5.13)

The local hidden state distribution is defined exactly analogously to the original HSD:

Definition 5.7.6 A local hidden state distribution (LHSD) over a local hidden state space Λ
is a σ-additive measure µ : B(Λ) → P, such that µ(Λ) = 1.

Proposition 5.7.7 Any LHSD µ gives rise to a corresponding SOPF, via the following pre-
scription:

P Sep
µ (x1 ⊗ · · · ⊗ xn) = µ({h ∈ Λ|v1h(Ωi1) = x1, . . . v

n
h(Ωin) = xn}) (5.14)

where Ωij ∈ OAj and xj ∈ Cij .
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Proof: Entirely analogous to proof of proposition 5.5.7. 2

Definition 5.7.8 A state ψ : I → A, with A = A1 ⊗ · · · ⊗ An, has a local hidden variable
interpretation (LHVI) if there exists a LHSD µ on ΛA such that P Sep

µ = P Sep
ψ .

Appearing in the hidden states of a LHSS is a unique eigenstate from each observable structure
on the individual constituent objects, thus solving the first problem we faced with interpreting
an HSS in terms of a local hidden variable theory. The second problem is also addressed,
since hidden states of an LHSS no longer contain eigenstates for non-separable observable
structures.
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Chapter 6

Spek and Stab, phase group and

locality

In this chapter we bring together the various strands of our story. We have translated two
key examples of quantum-like theories into the categorical framework: the stabiliser theory,
which is a sub-theory of standard QM, and whose physical category is Stab; and Spekkens’s
toy theory, whose physical theory is Spek. In section 6.1 we compare the two categories,
noting that they are very similar, but identifying a key difference: the phase groups of the
basis structures on the elementary objects of the categories are different, for Stab, Z4, for
Spek, Z2 × Z2.

We go on to connect this observation with the other major strand of the story - the categorical
treatment of local hidden variables. We will show that the difference in phase groups is
directly related to the key physical difference between the two theories: that the toy theory
has a local hidden variable interpretation, while the stabiliser theory does not. In sections
6.2 and 6.3 we explain the connection between the phase group of a basis structure ∆ and
the generalised probabilities of the outcomes of measurements of certain local observables on
the corresponding GHZ state Ψ∆. In section 6.4 we show that in the case of Stab these
generalised probabilities allow for a no-go proof ruling out a LHVI for the GHZ state. This
proof is essentially the standard Mermin argument [24] introduced in section 2.2.2 recast in
the language of the categorical framework. We also show that because the phase group of
Spek is different, the generalised probabilities in this case do not allow for the construction
of a no-go proof. Thus we trace the non-locality of the stabiliser theory to its Z4 phase group.

In section 6.5 we generalise this result to a much wider class of phase groups. Given a basis
structure with a phase group satisfying two key conditions, we can construct a generalisation
of the Mermin argument. This leads to a purely group theoretic criterion for whether or not
the corresponding GHZ state has a LHVI. We show that this criterion is closely related to
the well-known issue of group extensions.

The results of section 6.1 first appeared in a paper co-authored with Bob Coecke and Rob
Spekkens [11]. The results of sections 6.2-4 also essentially appeared in this paper, although
they have been extensively re-worked in this chapter.

83
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6.1 Spek and Stab compared

Compare the definitions of the categories Stab (definition 3.4.3) and Spek (definition 4.1.1).
There are clear structural similarities. Both are sub-categories of a †-SMC, of the following
form:

• The objects are the monoidal unit object I, an elementary object A, and n-fold monoidal
products A⊗A⊗ · · · ⊗A.

• The morphisms are all those generated by composition, monoidal product and dagger
functor from the following generating morphisms:

1. Twenty-four morphisms σi : A→ A combining together as the group S4.

2. The δ and ǫ morphisms of a basis structure ∆A = {A, δ, ǫ} on A.

In Spek the morphisms are relations, in Stab they are linear maps, but of course from a
categorical perspective these distinctions are irrelevant. The only important thing is how the
morphisms combine together. Viewed in this light, the two categories start to look almost
identical. They are generated by an essentially identical set of morphisms: any difference
between the categories must reside in the way in which these morphisms combine. There is
no difference in the way in which the σi morphisms combine, since in both cases we know
that they form the group S4. As elements of a basis structure, the δ and ǫ morphisms must
also combine together in the same way in both cases, by definition. The only way in which
the categories can differ is in the interaction between the group elements and the morphisms
from the basis structure.

In fact we can identify a way in which the categories differ. We have seen already that in both
categories, the elementary object has twelve basis structures, partitioned into three mutually
complementary observable structures, each with four members. Each basis structure has two
eigenstates and four unbiased states. In each category all these basis structures have the same
phase group. But this phase group differs between the two categories: in Stab it is Z4 and
in Spek it is Z2 × Z2.

In the stabiliser theory and the toy theory we have two theories which describe very similar
systems and give very similar physical predictions for the behaviour of these systems, but
with certain key differences e.g. whether or not they can be given a local hidden variable
interpretation. When translated into the categorical framework, the two theories look very
similar, but with certain key differences, for example the difference in phase groups. We will
go on to make an explicit link between this physical difference between the theories and this
mathematical difference between the physical categories.

In brief, we have already seen that there is a connection between basis structures and GHZ
states (section 3.3.5). Shortly we will see that this connection extends to a link between the
phase group, and the correlations between outcomes of measurements performed on the three
systems in a GHZ state. We have already seen (section 2.2.2) that these correlations are a key
ingredient in one of the no-go theorems ruling out hidden variable interpretations of quantum
mechanics.
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6.2 Forbidden triples and all-or-nothing no-go proofs

Whilst we are initially focussing on comparing Stab and Spek, we would eventually like to
derive the most general possible conclusions about the links between the phase groups of basis
structures, and the possibility of LHVIs. For this reason we will work in the most general
setting possible, that of generalised probabilistic theories with quantum-like measurement.

Definition 6.2.1 Consider a state Ψ : I → A1 ⊗ · · · ⊗ An in a physical category C. An
n-tuple of values (x1, x2, . . . , xn), where xi ∈ CΩ, Ω ∈ OAi , is termed a forbidden outcome
n-tuple with respect to Ψ if:

(x1 ⊗ x2 ⊗ · · · ⊗ xn)
† ◦Ψ = 0 (6.1)

n-tuples which are not forbidden with respect to Ψ are allowed with respect to it.

The terminology is justified since, as noted in section 5.2 any generalised probabilistic theory
with quantum-like measurement will assign to such a tuple of outcomes a generalised proba-
bility of zero. We now show how forbidden tuples facilitate a particular type of ‘no-go’ proof,
ruling out a LHVI for a state.

Definition 6.2.2 An observable n-tuple on a composite object A = A1 ⊗ · · · ⊗An is a tuple
of observable structures (Ω1, . . . ,Ωn) where Ωi ∈ OAi .

Lemma 6.2.3 If the value functions of a hidden state h map an observable n-tuple into an
outcome n-tuple which is forbidden with respect to a state Ψ, then for a LHVI of Ψ to exist,
the corresponding LHSD must assign a generalised probability of zero to h.

Proof: Recall the definition of a LHVI from section 5.7. Suppose a compound object A =
A1 ⊗ · · · ⊗ An has a LHSS Λ. A state Ψ : I → A has a local hidden variable interpretation
(LHVI) when there exists a LHSD µ such that, for each choice of observable structures
Ωi1 ∈ OA1

, . . .Ωin ∈ OAn , and each choice of eigenstates x1 ∈ CΩi1
, . . . xn ∈ CΩin :

µ({h ∈ Λ|v1h(Ωi1) = x1, . . . v
n
h(Ωin) = xn}) = P((x†1 ⊗ · · · ⊗ x†n) ◦Ψ) (6.2)

If (x1, . . . , xn) is a forbidden tuple then the RHS of this equation must be equal to zero.
Clearly then so is the LHS, from which we can conclude that all hidden states h ∈ Λ for
which vjh(Ωij ) = xj must be assigned a generalised probability of zero. 2

The key point is that knowledge of the forbidden tuples of a state of an object A allows us
to deduce that certain hidden states in the LHSS of A must be assigned zero probability by
any LHSD which aspires to be a LHVI for the state.

Definition 6.2.4 An all-or-nothing no-go proof against a LHVI for a state Ψ is one in which
we use our knowledge of the forbidden tuples of Ψ along with lemma 6.2.3 to conclude that
for a LHVI for Ψ to exist, the corresponding LHSD must assign a generalised probability
of zero to all hidden states in the LHSS of Ψ. But by its definition a LHSD must assign a
non-zero generalised probability to some states. Thus we have a contradiction, and conclude
that no LHVI exists.
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We will shortly see an example of exactly this type of proof.

Throughout the remainder of this chapter we will only be interested in GHZ states, and if we
refer to an outcome n-tuple as forbidden, we will mean that it is forbidden with respect to
whichever GHZ state is under consideration. Since the GHZ states are states on a 3-composite
object, we will be referring throughout to forbidden outcome triples, or, for short, forbidden
triples.

6.3 Phase group, monoid and forbidden triples

In this section we show that the phase group of a basis structure gives information on which
outcome triples are allowed and forbidden with respect to its corresponding GHZ state.

6.3.1 Basis structure monoid and forbidden triples

Recall now the definition and properties of the basis structure monoid, from section 3.3.4.
Given a basis structure ∆ = {A, δ, ǫ}, the corresponding monoidal product on two points
a, b : I → A is defined by a⊙ b = δ† ◦ (a⊗ b). We will now show that this monoid catalogues
the forbidden triples of the GHZ state corresponding to ∆.

Proposition 6.3.1 Given basis structure ∆ = {A, δ, ǫ}, and x, x′ ∈ C∆, we have that (x† ◦
x′)2 = x† ◦ x′, i.e. the state-outcome scalar of eigenstates of the same basis structure is an
idempotent.

Proof: (x† ◦ x′)2 = (x† ⊗ x†) ◦ (x′ ⊗ x′) = x† ◦ δ† ◦ δ ◦ x′ = x† ◦ x′ 2

Proposition 6.3.2 Given x, x′ ∈ C∆, if x
† ◦ x′ = 1I then x = x′.

Proof: First note that (1A ⊗ x†) ◦ δ ◦ x′ = (1A ⊗ x†) ◦ (x′ ⊗ x′) = (x† ◦ x′) • x′ = x′. Now
since x is an eigenstate of δ, then x∗ = x w.r.t. the compact structure derived from δ. We
then conclude that (1A ⊗ x†) ◦ δ ◦ x′ = x⊙ x′, and thus that x⊙ x′ = x′. However we could
argue completely symmetrically that x⊙ x′ = x. Thus x = x′. 2

Hence the state-outcome scalar between two eigenstates of the same basis structure is an
idempotent, and for two non-equal eigenstates this idempotent cannot be the identity.

Proposition 6.3.3 In the physical category of a theory with quantum-like measurement
there are only two idempotent scalars, 0I,I and 1I .

Proof: In such a theory, probabilities are functions of the scalars of the category. The
requirement that we can normalise states ensures that all scalars in this category have inverses,
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with the exception of the zero scalar. Scalar multiplication is associative. Under an associative
operation any idempotent with an inverse must be equal to the identity:

s = s • 1I = s • (s • s−1) = (s • s) • s−1 = s • s−1 = 1I (6.3)

2

Proposition 6.3.4 In the physical category of a theory with quantum-like measurement, for
x, x′ ∈ C∆, x 6= x′, we have that x† ◦ x′ = 0I,I .

Proof: Consequence of propositions 6.3.1, 6.3.2 and 6.3.3. 2

Lemma 6.3.5 Given a, b : I → A, and a basis structure ∆ on A with corresponding monoidal
product ⊙, suppose ∃∆′ ∈ BA (not necessarily equal to the original ∆) such that a⊙ b ∈ C∆′ .
Then (a∗, b∗, a ⊙ b) is an allowed triple with respect to the GHZ state corresponding to ∆.
Furthermore ∀x ∈ C∆′ , x 6= a⊙ b, we have that (a∗, b∗, x) is a forbidden triple with respect to
this GHZ state.

Proof: First note that:

=
a

b
x

a∗

b∗ x = x

a ⊙ b

(6.4)

Then if x = a⊙b then the rightmost diagram equals 1I , and (a∗, b∗, a⊙b) is an allowed triple.
And if x 6= a⊙ b the rightmost diagram equals 0I,I , and (a∗, b∗, x) is a forbidden triple. 2

Hence, every pair of points a and b of A for which a⊙b is an eigenstate of some basis structure
has a set of associated forbidden triples. Obviously there is no overlap between these forbidden
triples, since a and b are different in each case.

6.3.2 Phase groups of Stab and Spek

In this section we will retreat from the generality of the previous sections back to the specific
cases of Spek and Stab. It will be the aim of subsequent sections to extend the ideas
presented here to more general categories.

We have seen that in both Spek and Stab the elementary object has twelve basis structures,
equally partitioned into three observable structures. We will label the three observables as
ΩX , ΩY and ΩZ , in both categories. The elementary object in each case has six points,
which we label as x0, x1, y0, y1, z0 and z1, with the labelling indicating that each observable
structure has two eigenstates. The phase group is the same for all twelve basis structures,
Z4 for Stab and Z2 × Z2 for Spek. Here are the group multiplication tables for the phase
group of the basis structure with eigenstates z0 and z1, and ǫ

† = x0, as it appears in the two
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categories:
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The phase group is, by definition, a subgroup of the basis structure monoid. By lemma 6.3.5
we expect the phase group of a basis structure ∆ to give us information on the forbidden
triples of its corresponding GHZ state. Recall from lemma 6.3.5 that the allowed triples
cannot simply be read off from the group table - the allowed triples are (a∗, b∗, a⊙ b). In fact,
since the lower star, or conjugation operation yields the group inverse, one could equally well
say that the allowed triples are (a, b, (a⊙b)∗). With this in mind, we re-write the group tables
above as allowed triple tables, by replacing each entry in the table with its group inverse:
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(6.6)

In the Spek (Z2 × Z2) case, all elements of the group are self-inverse, so there is no change.
In the Stab (Z4) case x0 and x1 are self-inverse, while (y0)∗ = y1.

There are two key features of these allowed triple tables which facilitate the no-go argument
against HVIs: these are addressed in the next two sections.

6.3.3 Phase group gives all forbidden outcomes for certain observable triples

Each table breaks down into four two-by-two blocks. The rows of each block are labelled
by the complete set of eigenstates of some observable, and the same is true for the columns.



6.3. PHASE GROUP, MONOID AND FORBIDDEN TRIPLES 89

Within each block, the entries are all eigenstates of the same observable structure. Thus, to
each block we can associate a triple of observable structures:
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(6.7)

To make clear the significance of these facts, we return to the more general case of gener-
alised probabilistic theories with quantum-like measurement. For the next few definitions and
propositions we are referring to a basis structure ∆ on an object A, with phase group U∆.

Definition 6.3.6 U∆ is observable-covered if ∃ {Ω1, . . .Ωn} ⊆ OA such that U∆ = ⊔iCΩi ,
i.e. the phase group is the disjoint union of the eigenstates of these observable structures. In
this context, viewed as subsets of U∆ the CΩi are termed the observable subsets of the phase
group.

For example in the cases of Stab and Spek the phase groups are both observable-covered,
by the observable structures ΩX and ΩY .

Definition 6.3.7 A phase group U∆ which is observable-covered satisfies the observable-coset
condition if one of the observable subsets is a normal sub-group of U∆, and the rest of the
observable subsets are the cosets of this sub-group. If this condition holds we term this sub-
group the observable sub-group, which we denote by C0, and the cosets are termed observable
cosets.

The phase groups on the elementary objects of Stab and Spek both satisfy the observable-
coset condition. The observable sub-group is {x0, x1}, and there is one observable coset
{y0, y1}.

Definition 6.3.8 The observable quotient group is the group U∆\C0. Its elements are the
observable cosets.

Definition 6.3.9 In an phase group U∆ with the observable-coset property, a triple of ob-
servable structures (Ω1,Ω2,Ω3) is said to be a forbidden-outcome observable triple or FO-
observable triple if CΩ1

, CΩ2
and CΩ3

are observable cosets and CΩ3
= (CΩ1

.CΩ2
)−1 where

−.− and (−)−1 denote group multiplication and inverse with respect to the observable quo-
tient group.
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In the Stab and Spek cases there are four FO-observable triples, (ΩX ,ΩX ,ΩX), (ΩX ,ΩY ,ΩY ),
(ΩY ,ΩX ,ΩY ) and (ΩY ,ΩY ,ΩX).

Proposition 6.3.10 Given an FO-observable triple (Ω1,Ω2,Ω3), any element of CΩ1
×CΩ2

×
CΩ3

which is not of the form (a, b, (a ⊙ b)∗) is a forbidden triple.

Proof: Any element of CΩ1
× CΩ2

× CΩ3
which is not of the form above takes the form

(a, b, x) where: (i) x, a⊙ b ∈ C3; and (ii) x 6= a⊙ b . From lemma 6.3.5 this implies (a, b, x)
is forbidden. 2

6.3.4 ‘Parities’ of allowed and forbidden triples

Within each block there is a pattern in the ‘parities’ of the subscript labels on the outcomes
in the allowed triples. In the Spek case, in each block the labels sum modulo 2 to give 0.
From this, and the previous point, we can deduce that for the observables XXX, XY Y ,
Y XY and Y Y X in Spek, any outcome triple with an odd number of 1s is forbidden. In the
Stab case, the labels on the allowed triples of the XXX block sum modulo 2 to give 0, while
the allowed triples of the other three blocks sum to give 1. As in the Spek case we can then
draw conclusions about the parities of the forbidden triples for these observables.
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Note that the origin of these differences in parity patterns are ultimately to be found in the
different phase groups in the two categories.

6.4 No-go proof from phase groups of Stab and Spek

The final stage is to try to construct an all-or-nothing no-go proof (in the sense of definition
6.2.4) for the GHZ states of Spek and Stab, using the properties of their phase groups, and
what they tell us about the forbidden triples of these states.

We begin by considering a four-element phase group on an elementary object Q. We assume
that the phase group is observable-covered, by two observable structures, which we will denote
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ΩX and ΩY . We assume further that CX is a Z2 sub-group of the phase group, and thus that
CY is its coset. All of these assumptions apply equally well to the phase groups of any of the
basis structures on the elementary objects of Stab and Spek.

Definition 6.4.1 The Mermin table for such a phase group is the following array of observ-
able structures:

ΩX ΩX ΩX
ΩX ΩY ΩY
ΩY ΩX ΩY
ΩY ΩY ΩX

(6.8)

Note that the elements of each row together constitute a FO-observable triple.

Definition 6.4.2 Consider a hidden state h ∈ ΛQ⊗Q⊗Q, the LHSS of Q ⊗ Q ⊗ Q. The
h-realisation of the Mermin table is:

v1h(ΩX) v2h(ΩX) v3h(ΩX)
v1h(ΩX) v2h(ΩY ) v3h(ΩY )
v1h(ΩY ) v2h(ΩX) v3h(ΩY )
v1h(ΩY ) v2h(ΩY ) v3h(ΩX)

(6.9)

Note that vih(ΩX) can take two values, x0 or x1. A similar statement applies to vih(ΩY ).
Essentially an h-realisation maps the observable triples in each row of the Mermin table into
outcome triples.

Definition 6.4.3 The parity of a row or column of an h-realisation is the sum modulo 2 of
the subscripts of the elements appearing in that row or column.

Proposition 6.4.4 In any h-realisation of any Mermin table, the parity of each of the three
columns is 0.

Proof: In each column vih(ΩX) and v
i
h(ΩY ) each appear twice. Adding either 0 to itself or 1

to itself, modulo 2, always yields 0. 2

Definition 6.4.5 The allowed parity of a row in the Mermin table is the parity of that row
in all h-realisations which assign an allowed triple to that row.

The allowed parities are well-defined in all cases, but depend on whether the phase group is
Z4 or Z2 × Z2. We can read them off from the tables in section 6.3.4.

Z4 : ΩX ΩX ΩX 0
ΩX ΩY ΩY 1
ΩY ΩX ΩY 1
ΩY ΩY ΩX 1

Z2 × Z2 : ΩX ΩX ΩX 0
ΩX ΩY ΩY 0
ΩY ΩX ΩY 0
ΩY ΩY ΩX 0

(6.10)
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Theorem 6.4.6 If U∆ is the group Z4, there exists no LHVI for the corresponding GHZ
state.

Proof: Given any h ∈ ΛQ⊗Q⊗Q, consider summing the subscripts of all elements in the h-
realisation, modulo 2, to give the table parity for that h. We can do this by summing the
parities of the three columns; from proposition 6.4.4 we conclude that for all h, the table
parity is 0. Alternatively we can do it by summing the parities of the four rows. If the
h-realisation maps each row into an allowed outcome triple, then from the table above we
note that the table parity is 1. This is in contradiction with our previous conclusion, thus
we conclude that there is no h such that the h-realisation has an allowed triple in every row.
Thus every h ∈ ΛQ⊗Q⊗Q maps at least one observable triple into a forbidden outcome triple,
meaning that we have an all-or-nothing no-go proof against a LHVI for Ψ∆. 2

Corollary 6.4.7 The GHZ states on the elementary object of Stab do not have LHVIs.
Hence we deduce that no hidden variable theory can reproduce the results of the corresponding
theory, stabiliser QM.

The same argument cannot be applied to a Z2 × Z2 phase group, because the sum of the
allowed parities for the four rows is 0, not 1 as in the Z4 case. We should expect as much,
since we know that the theory corresponding to Spek, Spekkens’s toy theory, is a hidden
variable theory.

6.5 General relationship between phase group and non-locality

So far, we have shown that a GHZ state corresponding to a Z4 phase group fails the Mermin
table test for locality, and is inherently non-local. Conversely a GHZ state corresponding to
a Z2 ×Z2 phase group does not fail the Mermin table test, and cannot be declared non-local
on these grounds.

We now seek to extend this result to a general one covering a wider range of phase groups.
To do this we will create a generalised analogue of the Mermin table argument applicable
to other Abelian groups. We will proceed in several stages. Firstly we will show how to
construct a generalised Mermin table, an analogue of equation 6.8. This will still have three
columns, but in general many more rows, as many, in fact, as there are FO-observable triples
for the phase group. Secondly we will develop a generalised parity to play the role of the 0
and 1 subscripts in the original argument. Thirdly we will show that in all cases the rows
and columns of the generalised Mermin table have well-defined generalised parities. Once
again, if the overall generalised parities of the table as calculated by the row method and
column method don’t match, we will have proved non-locality. Fourthly, we attempt to link
passing/failing the Mermin table test to better known properties of the group.

6.5.1 Caveats

There are certain restrictions on the phase groups to which we can extend the no-go argument.
The first of these is the observable-coset condition as defined in section 6.3.3. This condition is
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key, since many of the definitions and results which we will soon develop are only well-defined
when it holds.

The observable-coset condition is clearly a categorical property of the physical category, rather
than a group theoretic property. For example it is impossible to say whether the group Z4

has the observable coset property. However, we can say that the Z4 phase group appearing
in the elementary object basis structure in Stab does have the observable coset property.

The second restriction is the QSP condition. The definitions which follow in the next few
sections still make sense for a phase group which does not satisfy this condition. However,
our main result, theorem 6.5.16 will only apply to those which do satisfy it.

Recall that the period of a group element a is the smallest positive integer p such that ap = e
where e is the group identity. The period is a divisor of the order of the group.

Definition 6.5.1 The mutual period of a group is the lowest common multiple of the periods
of its elements.

Definition 6.5.2 A phase group U∆ satisfies the quotient-sub-period condition, or QSP con-
dition, if the order of the observable quotient group is a positive integer multiple of the mutual
period of the observable sub-group. Put another way, in such a phase group, given any a ∈ C0,
a|CQ| = e.

Example 6.5.3 This condition is clearly satisfied whenever the observable quotient group
and observable sub-groups have equal order: this was the case in both of our previous exam-
ples, Z4 and Z2 × Z2. Such cases obviously only arise for phase groups of square order.

Throughout the following sections we will assume that we are dealing with a phase group
U∆, which satisfies the observable-coset property, and corresponds to a basis structure ∆ =
{A, δ, ǫ}. We will explicitly note when we require a phase group to satisfy the QSP condition.

6.5.2 Observable quotient group and generalised Mermin table

Recall the definition of the observable quotient group CQ = U∆/C0.

Throughout this section we will denote the observable sub-group by C0, and the observable-
cosets by C1, C2, . . . etc. The corresponding observable structures will be denoted by Ω0,Ω1, . . .
etc. C0, C1, . . . are the elements of CQ. We will denote the group multiplication by −.− and
the inverse operation by (−)−1.

For the remainder of these sections we will use n to denote the order of the observable quotient
group i.e. n = |CQ|.

Definition 6.5.4 The generalised Mermin table of a phase group U∆ satisfying the observable-
coset condition is an array of observable structures of n2 rows and three columns, with each
row being of the form:

Ωi Ωj Ωk
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where i, j = 0, . . . , n− 1 and the corresponding observable-cosets satisfy Ck = (Ci.Cj)
−1, i.e.

each row contains the elements of a FO-observable triple. Clearly the rows are indexed by i
and j so we will refer, for example to the (i, j)th-row.

This generalises the Mermin table employed in our no-go proof for Stab.

6.5.3 Observable sub-group and generalised parities

We will denote the elements of the observable sub-group by C0 = {a0, . . . , am−1} where a0
denotes the group identity element. Throughout the remainder of these sections we will use
m to denote the order of the observable sub-group.

Definition 6.5.5 A labelling of observable coset elements is a function:

L : CQ\{C0} → U∆ :: Ci 7→ ci (6.11)

such that ci ∈ Ci, i.e. it consists of selecting a representative element from each observable
coset. Each different set of choices yields a different labelling - thus there are mn−1 labellings.

Clearly, having chosen a labelling of observable coset elements we can write the observable
coset Ci as {ci ⊙ a0, . . . , c

i ⊙ am−1}.

Definition 6.5.6 Relative to a given labelling of observable coset elements, the label of an
element ci ⊙ aj is the observable sub-group element aj . The label of an element of the
observable sub-group is simply the element itself.

These labels will generalise the 0 and 1 subscripts which appeared in the Spek and Stab

cases. In the next definitions, recall definition 5.7.4 of ΛA, the local hidden state space of an
object A.

Definition 6.5.7 Given a hidden state h ∈ ΛA⊗A⊗A, the h-realisation of the generalised
Mermin table of U∆ is obtained via the following procedure. Beginning with the generalised
Mermin table, with three columns, and rows of the form:

Ωi Ωj Ωk

take the value function of each observable structure:

v1h(Ωi) v2h(Ωj) v3h(Ωk)

Choosing a specific labelling L, we can write this row as:

ci ⊙ ap cj ⊙ aq ck ⊙ ar
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Remark 6.5.8 An h-realisation of a generalised Mermin table can more succinctly be de-
scribed as a re-writing of the original table where every appearance of Ωi in a given column is
replaced by the same element of Ci, which we write as ci⊙ ai′ . The label ai′ will be different
in each column, and will depend on h.

Definition 6.5.9 The generalised parity, with respect to a labelling L, of a row or column in
an h-realisation of a generalised Mermin table is the product of all the labels of the elements
appearing in that row or column. Thus, the generalised parity is an element of the observable
sub-group.

For example, the generalised parity of the final example row in definition 6.5.7 is ap⊙aq⊙ar.

6.5.4 An all-or-nothing no-go proof

Lemma 6.5.10 Consider a phase group U∆ which satisfies both the observable-coset and
QSP conditions. Given any labelling L, all h-realisations of the generalised Mermin table of
U∆ will have, for all three columns, a generalised parity equal to the identity.

Proof: From the definition of a generalised Mermin table (definition 6.5.4), each of the
n observable structures {Ωi}i=0,...,n−1 (corresponding to the observable sub-group C0 and
observable cosets {Ci}i=1,...,n−1) appear in the first and second columns of the table n times.
Simple group theory tells us that ∀ Ci, Ck ∈ CQ there exists a unique Cj ∈ CQ such that

(Ci.Cj)
−1 = Ck (6.12)

So, in the third column, Ωk appears in the same row as Ωi, for each i = 0, . . . , n− 1, exactly
once. Thus we conclude that each of the n observable structures {Ωi}i=0,...,n−1 appear n times
in the third column of the table as well.

Now focus on a particular column, for definiteness the first. The argument will apply equally
to the second and third columns. From the argument above, and noting remark 6.5.8, we see,
in the first column of any h-realisation of the table, there are n occurrences of some element
ci ⊙ ai′ for each i = 0, . . . n − 1 (there is no need for the different i′ to be distinct). The
generalised parity of the first column of this h-realisation will be (

⊙n
i=0 ai′)

n. Now,
⊙n

i′=0 ai′

is some element of C0. Furthermore n is some integer multiple of the mutual period of C0.
Therefore (

⊙n
i=0 ai′)

n = a0. 2

Lemma 6.5.11 Consider a phase group U∆ which satisfies the observable-coset property.
Given any labelling L, all h-realisations which map the observable triple in the top row of the
generalised Mermin table into an allowed outcome triple have a generalised parity for this
row equal to the identity.

Proof: The top row of a generalised Mermin table is:

Ω0 Ω0 Ω0
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From proposition 6.3.10 we know that all allowed outcome triples for this triple of observables
are of the form (ai, aj , (ai ⊙ aj)∗). Recall that the lower star operation gives the phase group
inverse, by definition. In any h-realisation with such an outcome triple as its top row:

ai aj (ai ⊙ aj)∗

the generalised parity of the first row is clearly a0, the identity element. 2

Lemma 6.5.12 Consider a phase group U∆ which satisfies the observable-coset property.
Given any labelling L, all h-realisations which map the observable triple in a given row of the
generalised Mermin table into an allowed outcome triple have the same generalised parity for
this row. This value of this parity will, in general, depend on L.

Proof: Consider a general row of the generalised Mermin table:

Ωi Ωj Ωk

Recall that the value of k is determined by the observable quotient group via Ck = (Ci.Cj)
−1.

Again, from proposition 6.3.10, we know that all allowed outcome triples for this triple of
observables are of the form (ci ⊙ ap, c

j ⊙ aq, ((c
i ⊙ ap)⊙ (cj ⊙ aq))∗) where we have chosen a

specific labelling. Note that the final outcome in the triple can be re-written:

((ci ⊙ ap)⊙ (cj ⊙ aq))∗ = (ci ⊙ cj)∗ ⊙ (ap ⊙ aq)∗ = dk ⊙ (ap ⊙ aq)∗ (6.13)

where dk = (ci ⊙ cj)∗ ∈ Ck but in general dk 6= ck, i.e. dk is not the representative element of
Ck picked out by the labelling function. This last point is important because it implies that
if this outcome triple is a row in an h-realisation:

ci ⊙ ap cj ⊙ aq dk ⊙ (ap ⊙ aq)∗

the (ap⊙aq)∗ appearing in the third column is not the label of that element, and hence is not
what we need to use to calculate the generalised parity of this row. However, since dk ∈ Ck
we know that there exists a(i, j) ∈ C0 such that dk = ck ⊙ a(i, j). We can then re-write the
row above as:

ci ⊙ ap cj ⊙ aq ck ⊙ (a(i, j) ⊙ (ap ⊙ aq)∗)

Clearly now a(i, j) ⊙ (ap ⊙ aq)∗ is the label for the element in the third column. We can use
it to calculate the generalised parity for this row, which clearly equals a(i, j). 2

Definition 6.5.13 With respect to a labelling L, the allowed parity for the (i, j)th row of a
generalised Mermin table is a(i, j) ∈ C0, defined by:

a(i, j) = (ci ⊙ cj ⊙ ck)∗ (6.14)

where Ck = (Ci.Cj)
−1 and ci = L(Ci) . . . etc. Taking into account lemma 6.5.11 we define

a(0, 0) = a0.
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Corollary 6.5.14 Any h ∈ ΛA whose h-realisation has a generalised parity for the (i, j)th row
which is not equal to the allowed parity a(i, j), maps the observable triple in the (i, j)th row
of the generalised Mermin table into a forbidden outcome triple. Consequently, for a LHVI
to exist for the GHZ state, the corresponding LHSD must assign h a generalised probability
of zero.

Proposition 6.5.15 For a phase group satisfying the observable-coset and QSP conditions
the product of the allowed parities of all rows

⊙n
i,j=0 a(i, j) is independent of the labelling.

We term this product the Mermin parameter of the phase group.

Proof: Consider a re-labelling which changes the representative element of just one of the
cosets. For the coset Cm, instead of cm we choose dm. Note that ∃ a∗ ∈ C0 such that
dm = cm⊙a∗. Note that in all labellings c0 = a0, so we can assume that m 6= 0. With respect
to this new labelling we get a new set of allowed parities for the rows of the Mermin table,
a′(i, j). We need to determine how they relate to the previous allowed parities a(i, j), which
were defined by the relation ci ⊙ cj = ck ⊙ a(i, j). There are several distinct situations to
consider.

• i, j, k 6= m: We simply have a′(i, j) = a(i, j).

• i = m, j = 0 or i = 0, j = m: a(i, 0) and a(0, j) both equal a0 in all labellings, so again
we have a′(i, j) = a(i, j). There are two such cases.

• i = m, j 6= 0,m or i 6= 0,m, j = m: In the first instance we have dm⊙cj = ck⊙a′(m, j),
in the second we have ci ⊙ dm = ck ⊙ a′(i,m), from which we conclude that in either
instance a′(i, j) = a∗ ⊙ a(i, j). There are 2n− 4 such cases.

• i = j = m: Here we have a′(i, j) = (a∗)2 ⊙ a(i, j). There is one such case.

• k = m: Here we have ci ⊙ cj = dm ⊙ a′(i, j), and can thus conclude that a′(i, j) =
(a∗)−1 ⊙ a(i, j). There are n such cases, however two of them coincide with the second
situation in this list. There is no overlap with the other situations in the list.

Overall then, we conclude that:

n
⊙

i,j=0

a′(i, j) = (a∗)2n−2 ⊙ (a∗)−(n−2) ⊙ [

n
⊙

i,j=0

a(i, j)] = (a∗)n ⊙ [

n
⊙

i,j=0

a(i, j)] (6.15)

If the QSP condition holds then (a∗)n = a0 and we have
⊙n

i,j=0 a
′(i, j) =

⊙n
i,j=0 a(i, j).

Since we can move between any two labellings via a sequence where we only change the
representative element of one coset, we have shown that the Mermin parameter is independent
of labelling. 2

Theorem 6.5.16 Given a phase group U∆ which satisfies the observable-coset and QSP
conditions, for which the Mermin parameter does not equal a0, the corresponding GHZ state
Ψ∆ does not have a LHVI.
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Proof: We will define the table parity of an h-realisation of a generalised Mermin table as the
product of the labels of all elements appearing in the h-realisation. Clearly the table parity
can be calculated either by taking the product of the generalised parities of all three columns,
or by taking the product of the generalised parities of all n2 rows. Using the column method,
from lemma 6.5.10, any h-realisation must have a table parity of a0. Using the row method,
from corollary 6.5.14, any h-realisation in which every row is an allowed triple must have a
table parity equal to the Mermin parameter. If the Mermin parameter is not equal to a0,
then there does not exist an h-realisation in which every row is an allowed triple i.e. every
h-realisation has at least one row which is a forbidden triple for the corresponding observable
triple in the generalised Mermin table. From lemma 6.2.3 we then conclude that any LHSD
which was an LHVI for the GHZ state would have to assign a probability of zero to all hidden
states h. But by its definition a LHSD must assign a non-zero probability to some states.
Thus we have a contradiction, and conclude that no LHVI exists. 2

6.5.5 Connection to group extensions

In group theory the group extension problem is the following: given an Abelian group G1 and
some other group G2, find all groups G with a normal sub-group isomorphic to G1, such that
G/G1

∼= G2. We will concentrate on the special case where all three groups are Abelian.

Let us suggestively denote the elements of G1 by {a0, . . . , am−1} with a0 the identity, and
those of G/G1(∼= G2) by {C0, . . . , Cn−1} with C0 the identity. Now choose a representative
element ci from each Ci. Clearly now the elements of G are {ci.aj}i=0,...,n−1;j=0,...,m−1. To
fully specify G, it remains to determine the product of two arbitrary elements (ci.ap).(c

j .aq).
Note first that:

(ci.ap).(c
j .aq) = (ci.cj).(ap.aq) (6.16)

Now (ap.aq) is fully specified by G1. It remains to determine (ci.cj). We know that (ci.cj) ∈
Ck = Ci.Cj where k is determined by G2. Whilst, in general, (ci.cj) 6= ck, we do know that
∃ ã(i, j) ∈ C0 such that (ci.cj) = ck.ã(i, j), so that we can write the product of two arbitrary
elements in G as:

(ci.ap).(c
j .aq) = ck.ã(i, j).(ap.aq) (6.17)

Clearly the choices for ã(i, j) constitute the only degrees of freedom not pre-determined by
G1 or G2, and thus different choices for these parameters will give us the different possible
group extensions G.

The two sets of parameters ã(i, j) (which determine which group extension is realised) and
a(i, j) (which determine locality properties) are not identical, but are closely related.

Lemma 6.5.17 In a phase group satisfying the observable-coset and QSP conditions, the
product of the group extension parameters ã(i, j) is equal to the inverse of the Mermin pa-
rameter.

Proof: Let us assume that we have Ci.Cj = Ck and (Ck)
−1 = Cl. Then the defining property

of the a(i, j) is (ci.cj)∗ = cl.a(i, j) whilst that of the ã(i, j) is ci.cj = ck.ã(i, j).
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First note that (ck)∗ = dl, with el ∈ Cl. Now define a new parameter a(k) ∈ C0, such that
dl = cl.a(k), so that we have (ck)∗ = cl.a(k). From (ci.cj)∗ = ck.a(i, j) we deduce ci.cj =
(ck.a(i, j))∗ = ck∗ .(a(i, j))∗ = cl.a(k).(a(i, j))∗ . We thus conclude that ã(i, j) = a(k).(a(i, j))∗ .

The product of the group extension parameters is
∏n
i,j=0 ã(i, j) =

∏n
i,j=0(a(k).(a(i, j))∗) =

(
∏n
i,j=0 a(k)).M∗, where M denotes the Mermin parameter. Now note that there will be

precisely n combinations of i, j for which Ci.Cj = Ck. Thus for each value of k, a(k) will
appear in the product n times. From the QSP condition we know that a(k)n = a0, thus we
can conclude that

∏n
i,j=0 a(k) = a0 and

∏n
i,j=0 ã(i, j) =M∗. 2

The most straightforward example of a group extension for G1 and G2 is the direct product
G1 × G2. In fact we can immediately show a direct product phase group won’t exhibit
Mermin-style non-locality:

Lemma 6.5.18 Given a phase group satisfying the observable-coset and QSP conditions,
which can be written as G1 ×G2 where G1 is the observable subgroup, the Mermin parameter
is equal to the identity element.

Proof: The elements of G1×G2 can be written as (ai, Cj). The elements of the form (ai, C0)
form the subgroup isomorphic to G1. Elements of the form (ai, Cj), for constant j form a
coset to this subgroup. Now recall our earlier discussion of labellings of the elements of cosets.
Suppose we pick a particular labelling for G1×G2 such that ci = (a0, Ci) for all cosets Ci. In
this case we get ci.cj = (a0, Ci).(a0, Cj) = (a0, Ck) = ck, for all i, j. Recall that the allowed
parities a(i, j) are defined by ci.cj = ck.a(i, j). From this we conclude that in this labelling,
a(i, j) = a0 for all i, j, and thus that the Mermin parameter M =

⊙n
i,j=1 a(i, j) is also equal

to a0, for all labellings. 2

The phase group of Spek is an example of this sort of situation. Note that the converse of
this theorem is not true: a Z9 phase group with Z3 observable subgroup provides a counter-
example.
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Chapter 7

Conclusions and further work

Let us review the principal results of this work. We have introduced a mathematical frame-
work, based on the categorical approach to quantum mechanics of Abramsky and Coecke,
within which we can compare and contrast quantum-like theories which might initially have
been formulated in terms of quite distinct mathematical structures. We have demonstrated
the use of this framework, by expressing in it a well-known quantum-like theory, Spekkens’s
toy bit theory. We have shown that, when expressed in the categorical framework, the toy
theory exhibits many of the same categorical structures as does quantum theory, and that it
is precisely these structures which endow both these theories with certain ‘typically quantum’
features. In the process of re-expressing the toy theory within the categorical framework we
have, as a by-product, demonstrated its internal consistency.

We have developed an entirely abstract treatment of hidden variables. This allows us to frame
the question of whether or not a theory can be interpreted in terms of hidden variables, in any
†-0-SMC with basis structures. This treatment provides us with all the tools we need for our
subsequent analysis of all-or-nothing no-go theorems, and is flexible enough to accommodate
a wider range of notions of probability, which should be useful in future work. Along the
way we have developed a better understanding of how ‘non-categorical’ information should
be employed alongside the structure of the physical category to draw useful conclusions about
measurement outcomes in a theory.

We have demonstrated that the impossibility of interpreting the stabiliser theory in terms of
hidden variables stems directly from the fact that the GHZ states on the elementary object of
Stab derive from a basis structure with a Z4 phase group. Such a basis structure effectively
endows a physical category with ‘non-locality’. We also showed why this argument does not
work with a basis structure with a Z2 ×Z2 basis structure [11]. We have extended this result
and given a group theoretic criterion which picks out a class of Abelian groups which, as
phase groups of basis structures, endow a physical category with non-locality.

Many avenues of further research are suggested by this work. There exists a generalisation
of the stabiliser states and Clifford operations beyond qubits, to d-level quantum systems. It
should be possible to deduce the properties of the physical categories of these theories, which
we could denote by Stabd, although whether they can be defined in the same way as Stab,
as the closure of a small set of generators, is an open question. It would be interesting to see
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what kinds of phase groups arise, and what this implies about the locality or otherwise of
these theories.

Rob Spekkens has recently proposed a variation of the toy theory, which models trits rather
than bits [33] i.e. the individual systems have observables with three possible outcomes
rather than two. This theory is more clearly defined than the original version of the toy
theory, employing symplectic structure on phase space. He has also recently returned to the
original toy bit theory, and re-worked it in these terms. An obvious question is whether
we can formulate the physical category of the trit theory (tentatively called Spek3), and
whether it would be at all analogous to Spek. As yet Spekkens has no theories for higher
level systems, but might it be possible to extend the definition of Spek3 to Spekd? How
would these categories relate to Stabd? In fact we would expect that Spek3 = Stab3 since
Spekkens has shown that his toy trit theory is equivalent to the qutrit stabiliser theory, in
clear contrast to the bit/qubit case. How would this pattern continue as d increased beyond
3?

Much of our treatment of observables, measurements and outcome probabilities in chapter 5
is quite ad hoc, and would benefit from a more rigourous foundation. For example, the justi-
fication for associating the outcomes of measurements with the eigenstates of basis structures
is, at present, quite flimsy: essentially we have adopted this rule simply because it works both
for standard QM and for Spekkens’s toy theory. We might hope to find a more convincing
argument, beginning with reasonable physical assumptions, which would lead us to make
the identification between observables and basis structures, and measurement outcomes and
eigenstates. In a similar vein, would it be possible to give a general argument, on physical
grounds, for how the generalised probabilities of measurement outcomes in a theory are re-
lated to the state-outcome scalars of the physical category, i.e. in the language of chapter 5,
to deduce the form of the scalar-probability function?

We are able to describe locality and non-locality within our framework, but we currently have
no treatment of contextuality. Suppose we have a system with three observables A, B and C,
and further that A can be measured simultaneously with either B or C, but B and C cannot
be simultaneously be measured. A hidden variable theory is contextual if it predicts that the
outcome of measurement of A depends on which of B or C is measured simultaneously with
A. Non-local theories are a special case of contextual theories: in this case A is an observable
of one sub-system, and B and C are observables of another, spatially separated subsystem.
Just as non-locality can be used as a ‘get-out clause’ from the GHZ no-go theorem, other
no-go theorems (for example the Kochen-Specker theorem), which employ a single system,
can be escaped by allowing a more general form of contextuality. It is commonly felt that
contextuality, like non-locality, is a non-intuitive and undesirable feature for a hidden variable
theory to possess. However, our definitions of local hidden state space (LHSS), local hidden
state distribution (LHSD) and local hidden variable interpretation (LHVI) still allow for
contextuality of observables on the individual subsystems. An obvious line of inquiry is to
see how we might distinguish between contextual and non-contextual hidden variables within
the categorical framework.

Our treatment of no-go theorems in chapter 6 suggests many avenues of further research. The
most immediate goal is to fully elucidate the connection between the Mermin parameter of a
phase group and the subject of group extensions. Beyond this there are many obvious open
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questions.

If we can construct a no-go theorem ruling out a LHVI for a state Ψ then we have conclusively
identified it as ‘non-local’. However, if the no-go theorem does not apply to a particular state
Φ, this does not allow us to conclude immediately that Φ is ‘local’. It may be that there is
some other no-go theorem which applies to Φ. For example, we have shown that given a basis
structure ∆ with a Z4 phase group, the corresponding GHZ state Φ∆ can have no LHVI:
thus the Z4 phase group is in some sense a marker of ‘non-locality’. We also showed that an
analogous no-go theorem fails if the phase group is Z2 ×Z2. But clearly from this we cannot
immediately conclude that a Z2×Z2 phase group is in some way ‘local’. We can in fact come
to this conclusion from the fact that a basis structure with a Z2 ×Z2 phase group does arise
in the physical category of a theory which we know to be a hidden variable theory - the toy
theory. To show that a state is local we need to demonstrate that a LHVI exists for it. This
raises the question: is it possible to construct a LHVI directly from certain phase groups?

We have focussed on the phase group of the basis structure ∆, when trying to determine
whether a GHZ state Ψ∆ has a LHVI. However, as we saw in section 6.3.1, the key determinant
of the forbidden outcome triples of Ψ∆ is in fact the full basis structure monoid. In some
cases, the phase group fully determines the monoid. This is the case for example when
we have a totally unbiased basis structure ∆ = {A, δ, ǫ}, one for which all states on A are
either eigenstates or unbiased states (this is proved in detail in [11]). The basis structures on
the elementary objects of Stab and Spek are examples of this type. The forbidden outcome
triples of totally unbiased basis structures are completely classified by Abelian groups. Totally
unbiased basis structures which are furthermore ‘qubit-like’ i.e. with three mutually unbiased
observables, each with two eigenstates, will have phase groups of four elements; there are
only two Abelian groups of four elements, Z4 and Z2 × Z2, and thus the basis structures
of Stab and Spek exhaust the possibilities for ‘qubit-like’ totally unbiased basis structures.
More generally, in the case of basis structures which are not totally unbiased, we expect the
phase group to give us only part of the story about forbidden outcome triples (an example of
such a basis structure would be the one in Hilb from example 3.3.2). An obvious question is
whether it is possible to give a more complete description of the locality or non-locality of a
GHZ state by analysis of the corresponding monoid.

We have focussed throughout on whether the GHZ states of a theory have LHVIs or not.
Of course, even if we showed explicitly that the GHZ states of a physical category did have
LHVIs we would not have proved that the corresponding theory had a local hidden variable
interpretation, since there might simply be some other state in the category which did not
have an LHVI. Why the focus on GHZ states then? The answer to this is partly just that we
know that they are involved in a celebrated no-go theorem, and we know how to treat them
within the categorical framework. Additionally, we expect GHZ states (in the abstract sense)
to be ubiquitous in the physical categories of quantum-like theories, since they derive from
basis structures, and we expect basis structures to be a feature of such categories. A third
reason is that GHZ states play a particularly important role in many of our key examples of
physical categories for quantum-like theories. Both Spek and Stab are notable for the way
in which they are defined: as the closure of a collection of generating objects and morphisms.
Employing compact closed duality, and the dagger functor, every generator can be expressed
as a state: the group elements each correspond to a bipartite state, ǫ to a single-system state,
and δ to the GHZ state. The question arises, if all of these states can be shown to have LHVIs,
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does every state in the theory have a LHVI? It seems likely that this is true, although proving
it for certain requires an understanding of how local hidden variables determine the values
of non-separable observables. If it is true, then, in theories like Spek and Stab, establishing
that the GHZ state generator had an LHVI would go most of the way towards establishing
that the entire theory could be modelled by hidden variables.

The GHZ state no-go proof is an ‘all-or-nothing’ proof in that certain combinations of mea-
surement outcomes are totally forbidden by the QM predictions, but all hidden states predict
that at least some of them will be realised. There also exist several no-go proofs which
are more statistical in character: a hidden variable theory predicts the same measurement
outcomes as quantum mechanics does, but the two theories disagree on the probabilities of
outcomes. A famous example would be the proof involving the Bell inequalities. Would it
be possible to treat such no-go theorems within the categorical framework? Certainly the
framework lends itself more naturally to all-or-nothing proofs, because these require us only
to consider the possibilities of measurement outcomes rather than the full generalised prob-
abilities. Nevertheless this issue needs to be addressed if the categorical framework is to be
able to give a full commentary on the issue of hidden variables.

Consideration of the phase groups of the basis structures of a theory apparently gives us
information on whether or not that theory shares the non-local features of quantummechanics.
Could it also tell us whether that theory goes beyond QM in its degree of non-locality? Various
authors have considered quantum-like theories with states which exhibit a greater degree of
non-locality than is found in any genuine quantum state [3]. What features do the physical
categories of such theories have? Do they have basis structures, and if so, do the phase groups
or basis structure monoids tell us anything about the degree of non-locality which their states
exhibit?



Appendix A

Proof of form of general Spek

morphisms

Here we give the full proof of the general form of the morphisms of Spek. The proof is
lengthy, and readers are advised first to study the proof sketch in section 4.2.3 to understand
the overall structure of the proof. Some parts of that section are repeated here for convenience.

A.1 Preliminaries

First we need to refine the group of permutations on IV. Note from definition 4.1.1 that the
generator δSpek effectively partitions the elements of IV into two halves {1, 2} and {3, 4}.

Definition A.1.1 A phased permutation is an element of S4 which maps {1, 2} into {1, 2}
and {3, 4} into {3, 4}. There are four such permutations: the identity, (12)(3)(4), (1)(2)(34)
and (12)(34). These permutations form a subgroup of S4, termed the phased subgroup. All
other permutations in S4 are termed unphased.

Definition A.1.2 Spek diagrams which can be generated by composition, Cartesian product
and relational converse from the generators δSpek, ǫSpek, and the four phased permutations
will be termed phased diagrams. All other diagrams will be termed non-phased diagrams.

The ‘phased’ terminology is chosen because the phased subgroup turns out to be isomorphic
to the phase group of δSpek. Only a subset of the morphisms of Spek correspond to phased
diagrams, and these will be termed phased morphisms. The majority of Spek morphisms,
which correspond only to non-phased diagrams, are termed non-phased morphisms. The
general form of a phased morphism is much simpler than the general form of a non-phased
morphism. In fact our proof splits into two major stages: we first derive the general form
of a phased morphism, and then use this result in our derivation of the general form of a
non-phased morphism.

105
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We next detail what each of the stages involved in building up a Spek-diagram introduced
in section 4.2.1 means in concrete terms for the corresponding relations. Henceforth, remem-
bering the discussion in section 4.2.2, we will assume that the relation corresponding to any
n-legged diagram is of type I → IVn.

First, some preliminary definitions:

Definition A.1.3 The ith-remnant of an n-tuple is the (n − 1)-tuple obtained by deleting
its ith component.

Definition A.1.4 The composite of an m-tuple (x1, . . . , xm) and an n-tuple (y1, . . . , yn) is
the (m+ n)-tuple (x1, . . . , xn, y1, . . . , yn) from IIm+n.

Now what does the tree stage correspond to in relational terms?

Proposition A.1.5 Consider linking two diagrams, the first representing the relation R : I →
X1 × · · · ×Xm the second representing the relation S : I → Y1 × · · · × Yn via a permutation
P , to form a new diagram as shown:

R

S

X1

Xm

Yn

Y1

Yj

Xi

P

(A.1)

The relation corresponding to this diagram is given by

∗ ∼ {(x1, . . . , xi−1, xi+1, . . . , xm, y1, . . . , yj−1, yj+1, . . . , yn)} (A.2)

where (x1, . . . , xm) ∈ R(∗), (y1, . . . , yn) ∈ S(∗) and xi = P (yj).

Or, in less formal language, for every pair of a tuple from R and a tuple from S obeying the
condition xi = P (yj), we form composite of the ith remnant of the tuple from R, and the jth

remnant of the tuple from S.

Next, what does the loop stage correspond to in relational terms? Again we begin with a
useful definition.

Definition A.1.6 The i, jth-remnant of an n-tuple (where i > j) is the (n − 2)-tuple ob-
tained by deleting the jth component of its ith-remnant (or equivalently, deleting the (i− 1)th

component of its jth-remnant).
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Proposition A.1.7 Given a diagram representing the relation R : I → X1 × · · · × Xm,
consider forming a new diagram by linking the ith and jth legs of the original diagram via a
permutation P .

R P

X1

Xm

Xi

Xj

(A.3)

The relation corresponding to this diagram is given by:

∗ ∼ {(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xm)|(x1, . . . , xm) ∈ R(∗), xi = P (xj)} (A.4)

Or, in less formal language, we take the i, jth-remnant of every tuple for which xi = P (xj).

Finally what does the capping stage correspond to in relational terms?

Proposition A.1.8 Consider linking two diagrams, the first representing the relation R :
I → X1 × · · · ×Xn the second representing the relation S : I → Xi via a permutation P , to
form a new diagram as shown:

R S

X1

Xn

XiP

(A.5)

The relation corresponding to this diagram is given by:

∗ ∼ {(x1, . . . , xi−1, xi+1, . . . , xn)|(x1, . . . , xn) ∈ R(∗), xi ∈ P (S(∗))} (A.6)

Or, in less formal language, we take the ith remnant of every tuple for which xi ∈ P (S(∗)).

Preliminaries complete we now proceed to the proof proper. We begin by deriving the general
form of phased morphisms.

A.2 MiniSpek

We build up to the full theorem via a simplified case. For this we need a new category.

Definition A.2.1 The category MiniSpek is a subcategory of FRel. It is defined construc-
tively, as follows:

• The objects of MiniSpek are the single-element set I = {∗}, the two element set
II := {0, 1}, and its n-fold Cartesian products IIn.
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• The morphisms of MiniSpek are all those relations generated by composition, Carte-
sian product and relational converse from the following generating relations:

1. All permutations {σi : II → II} of the two element set. There are 2 such permu-
tations, the identity and the operation which swaps the elements of II. Together
they form the group, Z2.

2. A relation δMini : II → II× II defined by:

0 ∼ {(0, 0), (1, 1)} 1 ∼ {(0, 1), (1, 0)} ;

3. a relation ǫMini : II → I :: 0 ∼ ∗

Next we determine the general form of the relations which constitute the morphisms of Min-

iSpek. All of the considerations laid out in sections 4.2.1 and 4.2.2 also apply in this case.

Definition A.2.2 An element of IIn has odd parity if it has an odd number of ‘1’ elements,
and has even parity if it has an even number of ‘1’ elements.

Whether an odd-parity n-tuple has an odd or even number of ‘0’ elements clearly depends
on whether n itself is odd or even. We could have chosen either 0 or 1 to play the role of
labelling the parity; we have chosen 1 since it will turn out to be more convenient later on.

Theorem A.2.3 The relation inMiniSpek corresponding to an n-leggedMiniSpek-diagram
is a subset of IIn, consisting of 2n−1 n-tuples, all of the same parity. The product of all the
permutations appearing in the diagram determines the parity of the morphism: if the product
is the identity (1)(2), the parity is even, if the product is (12) the parity is odd.

Several preliminary results are required for the proof of this theorem. First recall that IIn has
2n elements: all possible n-tuples whose entries are either 0 or 1.

Some notation: we will use P to represent a particular parity, odd or even, and P ′ will
represent the opposite parity.

Proposition A.2.4 There are equal numbers of odd- and even-parity tuples in IIn: 2n−1 of
each.

Proposition A.2.5 Consider the 2n−1 elements of IIn of a given parity P . Half of these
n-tuples have a 0 in the ith position, the other half have a 1 in the ith position.

Proposition A.2.6 Consider an element of IIn of parity P . If its ith component is 0, its
ith-remnant is of parity P . If its ith component is 1, its ith-remnant is of parity P ′.

Proposition A.2.7 The composite of two tuples of opposite parity is of odd parity itself.
The composite of two tuples of the same parity is of even parity itself.
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Proposition A.2.8 Consider the set of all elements of IIn of parity P , with a 0 in the ith

position. Their ith-remnants comprise the set of all elements of IIn−1 of parity P . Likewise,
the ith-remnants of the set of all elements of IIn of parity P , with a 1 in the ith position
comprise the set of all elements of IIn−1 of parity P ′.

Proof: First consider the set of all elements of IIn of parity P , with a 0 in the ith position.
From proposition A.2.5 there are 2n−2 such elements. They are all different, but all have the
same ith component. Thus they must all differ at other positions, and thus their ith-remnants
are all distinct. From proposition A.2.6 they all have parity P . Thus the ith-remnants
comprise 2n−2 distinct (n − 1)-tuples of parity P . From proposition A.2.4 we conclude that
they constitute all elements of IIn−1 of parity P . The proof for elements of IIn with a 1 in the
ith position proceeds analogously. 2

Lemma A.2.9 Consider two MiniSpek-diagrams D1 and D2, and assume that the corre-
sponding states ψ1 and ψ2 are of the form described in theorem A.2.3. Further assume that
ψ1 ⊂ IIm and has parity P1, while ψ2 ⊂ IIn and has parity P2. Connecting the ith leg of D1

with the jth leg of D2, via a permutation S gives a new diagram, D3. The state corresponding
to D3 is a subset of IIm+n−2, consisting of 2m+n−3 (m+ n− 2)-tuples, all with parity P3. P3

depends on P1, P2 and S, in the following fashion:

P1 = P2

S = (12)

EVEN ODD

ODD EVEN

S = (1)(2)

P1 = P ′
2

The state corresponding to D3 will thus also take the form described in theorem A.2.3.

Proof: Consider ψ1. From proposition A.2.5 it consists of 2m−2 tuples with 0 in the ith

position, and 2m−2 tuples with 1 in the ith position. Removing the 0 and 1 from ith position
of these tuples yields respectively the 0-ith-remnants and the 1-ith-remnants of ψ1. From
proposition A.2.8 we conclude that they are all distinct.

Likewise ψ2 includes 2
n−2 tuples with S(0) in the jth position and 2n−2 tuples with S(1) in the

jth position. Removing the S(0) and S(1) from jth position of these tuples yields respectively
the S(0)-jth-remnants and the S(1)-jth-remnants of ψ2. From proposition A.2.8 we conclude
that they are all distinct.

From proposition A.1.5 we know that ψ3 will consist of all possible composites of the 0-ith-
remnants of ψ1 with the S(0)-jth-remnants of ψ2, of which there are 2m+n−4, and all possible
composites of the 1-ith-remnants of ψ1 with the S(1)-jth-remnants of ψ2, of which there are
also 2m+n−4. The resulting (m + n − 2)-tuples are clearly all different. In total then ψ3 will
consist of 2m+n−3 (m+ n− 2)-tuples.

We now consider the parities of the resulting tuples. From proposition A.2.6, the parity of
the 0-ith-remnants and the 1-ith-remnants of ψ1 are P1 and P ′

1 respectively.
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• If S is the identity then the parities of the S(0)-jth-remnants and the S(1)-jth-remnants
of ψ2 are P2 and P ′

2 respectively. In this case, applying proposition A.2.7, if P1 = P2

then the tuples of ψ3 are all of even parity, while if P1 = P ′
2 they are all of odd parity.

• If S is instead the permutation which swaps 0 and 1, then the parities of the S(0)-jth-
remnants and the S(1)-jth-remnants of ψ2 are P

′
2 and P2 respectively. In this case, again

applying proposition A.2.7, if P1 = P2 then the tuples of ψ3 are all of odd parity, while
if P1 = P ′

2 they are all of even parity.

2

Proposition A.2.10 Consider the 2n−1 elements of IIn of a given parity P . One quarter of
these have a 0 in both the ith and jth positions, one quarter have a 0 in the ith position and
a 1 in the jth position, one quarter have a 1 in the ith position and a 0 in the jth position,
and the final quarter have a 1 in both the ith and jth positions.

Proof: Simple consequence of propositions A.2.5 and A.2.8. 2

Proposition A.2.11 Consider the set of all elements of IIn of parity P with 0 in the ith and
jth positions. Consider also the set of all elements of IIn of parity P with 1 in the ith and jth

positions. The sets of i, jth remnants of these two sets coincide: they comprise the set of all
2n−3 elements of IIn−2 of parity P . An analogous results holds for those elements whose ith

and jth components differ: their i, jth remnants comprise the set of all 2n−3 elements of IIn−2

of parity P ′.

Proof: Simple consequence of propositions A.2.5, A.2.6 and A.2.8. 2

Lemma A.2.12 Consider aMiniSpek-diagram D, and assume that the corresponding state
ψ is of the form described in theorem A.2.3, is an element of IIm and has parity P . Con-
necting the ith and jth legs of D, via a permutation S yields a new diagram, D′. The state
corresponding to D′ is a subset of IIm−2, consisting of 2m−3 (m − 2)-tuples, all with parity
S(P ).

Proof: From proposition A.2.10 we note that of the 2m−1 tuples in ψ, 2m−2 have identical
ith and jth components, and 2m−2 have different ith and jth components. Removing the ith

and jth components of these two classes yields respectively the matching-i, jth-remnants and
nonmatching-i, jth-remnants of ψ. From proposition A.2.11 we know that each of these sets
have 2n−3 distinct members.

From proposition A.2.6 and definition A.1.6, we can deduce that if the ith and jth components
of a tuple of parity P are equal its i, jth-remnant has parity P , whilst if its ith and jth

components are not equal its i, jth-remnant has parity P ′. Thus the matching-i, jth-remnants
of ψ have parity P , while the nonmatching-i, jth-remnants have parity P ′.

From proposition A.1.7 we know that:
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• If S is the identity then ψ′ will consist of all the matching-i, jth-remnants of ψ: there
are 2m−3 distinct ones, all with parity P .

• If S is instead the permutation which swaps 0 and 1, then ψ′ will consist of all the
nonmatching-i, jth-remnants of ψ: there are 2m−3 distinct ones, all with parity P ′.

2

Lemma A.2.13 Consider aMiniSpek-diagram D, and assume that the corresponding state
ψ is of the form described in theorem A.2.3, is an element of IIm and has parity P . Now
consider the diagram D′ that results when we cap off the ith leg of D with the diagram
representing ǫMini (recall definition A.2.1), via a permutation S. The state ψ′ corresponding
to D′ is a subset of IIm−1, consisting of 2m−2 tuples, all with parity S(P ).

Proof: From proposition A.1.8 and definition A.2.1, ψ′ consists of the ith-remnants of all
tuples in ψ for which S(xi) = 0. From proposition A.2.8 we conclude that these constitute
the set of all elements of IIm−1 of parity P , if S is the identity, or of parity P ′ if S is the
permutation which swaps 0 and 1. 2

We are now finally in a position to prove theorem A.2.3.

Proof: In section 4.2.1 we showed that any MiniSpek-diagram can be built up beginning
from the diagram representing the generating morphism δMiniSpek, via three stages: linking
diagrams together by external legs, via a permutation, to form a tree-level diagram with no
internal loops; linking together external legs of a tree-level diagram, via a permutation, to
form a loop-level diagram with internal loops; and finally capping off external legs with the
diagram representing ǫMiniSpek, via a permutation, to form a capping-level diagram. We
prove the theorem by induction over these stages.

The base case is the diagram corresponding to the relation δMini. By bending around the
input line we can convert this to a relation of type I → II× II× II which according to lemma
4.2.2 is the following subset of II3: {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. This clearly satisfies
the inductive hypothesis.

Lemma A.2.9 shows that if two diagrams D1 and D2 both obey the inductive hypothesis, so
does the tree-level diagram formed by linking them together along an external leg from each
diagram, via a permutation.

Lemma A.2.12 shows that if a diagram D obeys the inductive hypothesis, so does the loop-
level diagram formed by linking together two of the external legs of D, via a permutation.

Lemma A.2.13 shows that if a diagram D obeys the inductive hypothesis, so does the capping
level diagram formed by capping off one of the external legs with the diagram corresponding
to ǫMini, via a permutation. 2
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A.3 The general form of phased morphisms

We want to apply our results on MiniSpek to the category of real interest, Spek. To do
this we first need to digress to discuss some features of relations.

Suppose we can partition a set A into m subsets Ai, and a set B into n subsets Bj. Recalling
that a relation R : A→ B is a subset of A×B, it’s clear that we can decompose R into mn
components of the form Ri,j : Ai → Bj , such that R =

⊔

i,j Ri,j.

Definition A.3.1 The relations Ri,j : Ai → Bj are termed the components of R with respect
to the partitions A = ⊔iAi, B = ⊔jBj .

Proposition A.3.2 Given four sets each with a partition A = ⊔iAi, B = ⊔jBj , C = ⊔kCk
and D = ⊔lDl, and three relations R : A→ B, S : B → C and T : C → D:

1. The components of (S ◦R) : A→ C are:

(S ◦R)i,k =
⊔

j

Sj,k ◦Ri,j (A.7)

2. The components of (R× T ) : A×B → C ×D are:

(R × T )i,j,k,l = Tk,l ×Ri,j (A.8)

3. The components of the relational converse Rc : B → A are:

Rcj,i = (Ri,j)
c (A.9)

Consider a set A partitioned into two subsets A1 and A2. We can write Am in terms of its
subsets as some kind of binomial expansion:

Am1 ⊔ (Am−1
1 ×A2) ⊔ (Am−2

1 ×A2 ×A1) ⊔ · · · ⊔ (Am−2
1 ×A2

2) ⊔ · · · ⊔Am2 (A.10)

Definition A.3.3 Consider a relation R : Am → An with the property that with respect
to the decomposition A = A1 ⊔ A2 there are only two non-empty component relations: R1 :
Am1 → An1 and R2 : A

m
2 → An2 . Such a relation is parallel with respect to this partition of A.

Proposition A.3.4 Consider three relations R : Am → An, S : An → Ap and T : Ap → Aq

which are all parallel with respect to the partition A = A1 ⊔A2. The following relations:

S ◦R : Am → Ap

T ×R : Am+p → An+q

Rc : An → Am
(A.11)

are all also parallel to the same partition of A.
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Proof: Straightforward consequence of A.3.2. 2

Finally we can use these results to make a connection between MiniSpek and Spek.

Proposition A.3.5 The generators of the phased morphisms of Spek, i.e. δSpek, ǫSpek
and the phased permutations on IV, are all parallel with respect to the following partition of
IV = {1, 2} ⊔ {3, 4}. We conclude that all phased morphisms of Spek are also parallel with
respect to this partition. We refer to the two components of a phased Spek morphism as its
{1, 2}-component and {3, 4}-component.

Proof: Straightforward verification combined with proposition A.3.4. 2

Proposition A.3.6 The {1, 2}-components of the generators of the phased morphisms of
Spek are simply the generators of MiniSpek with the elements of II = {0, 1} re-labelled
according to 0 7→ 1, 1 7→ 2. Similarly the {3, 4}-components of the generators of the phased
morphisms of Spek are simply the generators of MiniSpek with the elements of II = {0, 1}
re-labelled according to 0 7→ 3, 1 7→ 4.

Proposition A.3.7 A state ψ ⊂ IVn corresponding to a phased Spek diagram D is equal
to the union of two states ψ12 ⊂ {1, 2} and ψ34 ⊂ {3, 4}. ψ12 and ψ34 are obtained by the
following procedure. Form a MiniSpek diagram D12 by replacing every incidence of δSpek
and ǫSpek in D with δMini and ǫMini, and replacing every incidence of a permutation with
its {1, 2} component, re-labelled as a MiniSpek permutation as described in proposition
A.3.6. Form a second MiniSpek diagram D34 in the obvious analogous fashion using {3, 4}
components of permutations. ψ12 and ψ34 are the states corresponding to D12 and D34, once
again under the re-labelling described in proposition A.3.6.

Note that D12 and D34 will appear identical as graphs, both to each other and to D, but the
labels on some of their permutations will differ.

Finally we are able to state our main result:

Theorem A.3.8 A phased morphism in Spek of type I → IVn is a subset of IVn, consisting
of 2n n-tuples, divided into two classes of equal number:

• The first class consists of tuples of 1s and 2s, all of either odd or even parity.

• The second class consists of tuples of 3s and 4s, again all of either odd or even parity.

Proof: Straightforward consequence of proposition A.3.7 and theorem A.2.3. 2

Note that we are adopting the convention that tuples of the first class have odd parity if they
have an odd number of 2s, even parity if they have an even number of 2s. Tuples of the first
class have odd parity if they have an odd number of 4s, even parity if they have an even
number of 4s.
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A.4 The general form of non-phased morphisms

We now proceed to derive the general form of the relations which constitute the morphisms
of Spek. We have already derived the general form of those morphisms which correspond
to diagrams in which the only permutations to appear are the four members of the phase
subgroup. We now turn our attention to all other morphisms, those which don’t have a
diagrammatic counterpart involving only members of the phase subgroup. The general form
of these morphisms is rather more complicated.

First note that a non-phased diagram can be built up in tree, loop and capping phases,
analogous to our discussion in section 4.2.1, but in this case our basic units are not the three-
legged δSpek diagrams, but complete n-legged phased diagrams, and the permutations joining
them are not members of the phase subgroup.

D1

D2

D3

D4

(A.12)

These phased sub-diagrams will be termed zones. A general Spek diagram consists then of
phased zones linked by non-phased permutations. We now have the vocabulary to state the
general form of relation corresponding to such diagrams.

Definition A.4.1 An external zone in a Spek-diagram is a zone with external legs.

Theorem A.4.2 The relation in Spek corresponding to an n-legged Spek-diagram with m
external zones is either

A subset of IVn satisfying the following properties:

1. It contains 2n n-tuples.

2. Each n-tuple is divided into m sub-tuples, each corresponding to an external zone in
the diagram. Each sub-tuple has as many components as the corresponding zone has
external legs - we will denote this number by ni - and has a well-defined type (components
either all 1 or 2, or all 3 or 4) and parity (as defined for phased relations).

3. The 2n tuples are grouped into 2m equally sized subsets called blocks. The ith sub-tuple
of every tuple in a block has the same type and parity. The sequence of types and
parities of each sub-tuple is called the signature of the block. Each block has a unique
signature.

4. Each block has 2(n−m) elements: these constitute every possible combination of the
sub-tuples which satisfy the parity and type requirements of the block’s signature.
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5. Each of the four possible combinations of parity and type appear in the ith sub-tuple
in one quarter of the tuples.

or it is equal to the empty set, ∅.

A couple of remarks on notation and terminology first. The sub-tuples referred to in point
(2) above, corresponding to zones in the diagram, may also be termed zones themselves.
Whether we are referring to a zone of a diagram, or zone of a tuple should be clear from the
context. We represent the signature of a tuple with m zones as (P1, T1; . . . ;Pm, Tm) where
Pi is the parity of the ith zone, and Ti is its type. Again, if P is a parity, P ′ indicates the
opposite parity, and likewise if T is a type ((12) or (34)), T ′ represents the other type.

The proof of this theorem will require many intermediate results.

A.4.1 Tree-level diagrams

Lemma A.4.3 Consider an n-legged non-phased diagram D1 with m zones. Suppose the
corresponding state ψ1 ⊂ IVn satisfies the conditions in theorem A.4.2. Now consider linking
the ith leg of D1 to the jth leg of an n′-legged phased diagram D2 (with corresponding state
ψ2), via a non-phased permutation S, to create an (n+n′−2)-legged diagram D3 with m+1
zones. We will assume that the ith leg of D1 lies within its kth external zone. The state
ψ3 ⊂ IVn+n′−2 corresponding to D3 also satisfies the conditions in theorem A.4.2.

Proof: We will go step by step through the conditions from theorem A.4.2. First, condition
(1), ψ3 should comprise 2n+n

′−2 tuples. We define the 1-, 2-, 3- and 4-ith-remnants of ψ1

in straightforward analogy with the 0- and 1-ith-remnants defined in the proof of lemma
A.2.9. From proposition A.1.5 we know that the elements of ψ3 comprise all the possible
composites of the x-ith-remnants of ψ1 and the S(x)-jth-remnants of ψ2, where x = 1, . . . , 4.
By hypothesis (point 5 in theorem A.4.2) there will be equal numbers of 1-, 2-, 3- and 4-ith-
remnants of ψ1, 2

n−2 of each. And from proposition A.2.5 and theorem A.3.8 there will be
equal numbers of 1-, 2-, 3- and 4-jth-remnants of ψ2, 2

n′−2 of each. Thus there are 2n+n
′−4

distinct composites of the x-ith-remnants of ψ1 and the S(x)-jth-remnants of ψ2, and in total
ψ3 contains 4× 2n+n

′−4 = 2n+n
′−2 tuples.

Next, condition (2), the tuples of ψ3 should have as many sub-tuples as D3 has external zones.
If the external zone in D1 to which we are linking D2 has only one external leg, then it will no
longer be an external zone in the new diagram D3. In this case the corresponding sub-tuple
in ψ1 will have only one component. This block will not appear in the ith-remnants of ψ1,
which will then have m− 1 sub-tuples. If the linking zone has more than one external leg, it
will continue to be an external zone in D3, and the ith-remnants of ψ1 will have m sub-tuples.
From proposition A.2.8 we deduce that the x-jth-remnants of ψ2 all have definite type and
parity. Thus, in the composites which constitute ψ3, the x-j

th-remnant of ψ2 comprises a
single zone, corresponding to the extra zone in D3 formed by the phased diagram D2

1. We

1We neglect the possibility that D2 has only one external leg, since this contingency will be covered in the

capping stage.
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will conventionally consider this to be the (m+1)th zone of the tuples in ψ3. We thus conclude
that the tuples of ψ3 have the same number of sub-tuples as D3 has external zones, m+ 1 if
the linking zone in D1 has more than one external leg, m if it has only one.

Next, condition (3), ψ3 should consist of 2m+1 blocks all with unique signatures. Consider
a block B ⊂ ψ1, with signature (P1, T1; . . . ;Pk, Tk; . . . ;Pm, Tm), in which, for definiteness
we assume that the kth zone is of type-(12) (the argument runs entirely analogously if it is
of type-(34)). The composites of the 1-ith-remnants of B and the S(1)-jth-remnants of ψ2

all have the same signature, (P1, T1; . . . ;Pk, Tk; . . . ;P
1
m+1, T

1
m+1). They constitute a block

B1 ⊂ ψ3. The composites of the 2-ith-remnants of B and the S(2)-jth-remnants of ψ2 also
all have the same signature, (P1, T1; . . . ;P

′
k, Tk; . . . ;P

2
m+1, T

2
m+1). They constitute a block

B2 ⊂ ψ3. (The relationship between P 1
m+1 and P 2

m+1, and T
1
m+1 and T 2

m+1 depends on the
permutation S). We term B the parent block, and B1 and B2 the progeny blocks. Suppose a
parent block B′ ⊂ ψ1, distinct from B, gave rise to a progeny block B′

1 with the same signature
at B1, (P1, T1; . . . ;Pk, Tk; . . . ;P

1
m+1, T

1
m+1). To be distinct from B, B′ would have to have

a signature of (P1, T1; . . . ;P
′
k, Tk; . . . ;Pm, Tm), with B

′
1 deriving from its 2-ith-remnant. But

in this case the signature of B′
1’s (m + 1)th zone would be (P 2

m+1, T
2
m+1). Thus we conclude

that all progeny blocks in ψ3 derived from parent blocks in ψ1 are distinct, and the number
of blocks in ψ3 is double that in ψ1.

Next, condition (4), a block of ψ3 should contain all possible combinations of zones whose
parity and type are consistent with its signature. With no loss of generality we will work with
the blocks from the previous paragraph. By hypothesis and by proposition A.2.8 the 1-ith-
remnants of B will constitute all possible (n−1)-tuples of signature (P1, T1; . . . ;Pk, Tk; . . . ;Pm, Tm).
Again, by proposition A.2.8 the S(1)-jth-remnants of ψ2 will constitute all possible (n′ − 1)-
tuples of parity P 1

m+1 and type T 1
m+1. The elements of B1 are all possible composites of the

1-ith-remnants of B and the S(1)-jth-remnants of ψ2. Thus B1 satisfies condition (4). A
similar argument applies to B2.

2

Corollary A.4.4 All tree-level Spek-diagrams satisfy the conditions in theorem A.4.2.

Proof: Note from theorem A.3.8 that the general form of phased morphisms satisfies the
conditions in theorem A.4.2. In this casem = 1, and we have two blocks, and just a single zone
- the tuple itself. Any tree-level Spek-diagram can be constructed step-by-step, beginning
with a single phased diagram, by adding another phased diagram to the existing diagram
via an unphased permutation at each step. Lemma A.4.3 shows that after each stage of
this process the state corresponding to the resulting diagram still satisfies the conditions in
theorem A.4.2. 2

A.4.2 Totally and partially unphased permutations

Before proceeding we need to further refine our classification of permutation. Formally we
distinguished between phased and unphased permutations. We now divide the unphased
permutations into two classes.
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Definition A.4.5 A totally unphased (TU) permutation is an element of S4 which maps
{1, 2} into {3, 4} and vice versa. There are four such permutations: (13)(24), (14)(23), (1324)
and (1423).

Definition A.4.6 A partially unphased (PU) permutation is an element of S4 which either
maps 1 into {1, 2} and 2 into {3, 4} or vice versa, and which either maps 3 into {1, 2} and 4
into {3, 4} or vice versa. Any permutation which is not phased or totally unphased is partially
unphased. There are 16 such permutations.

Proposition A.4.7 Suppose we link a Spek-diagram D1 with m zones, with corresponding
state ψ1, from its kth zone, via a permutation S, to a phased diagram D2 with corresponding
state ψ2, to form a diagram D3 with corresponding state ψ3. Consider a parent block B ⊂ ψ1,
with type signature (T1, . . . , Tk, . . . , Tm). The signatures of the two progeny blocks B1 and
B2 will be:

• If S is TU: (T1, . . . , Tk, . . . , Tm, T
′
k) for B1 and B2.

• If S is PU: (T1, . . . , Tk, . . . , Tm, Tk) for B1 and (T1, . . . , Tk, . . . , Tm, T
′
k) for B2.

A.4.3 Loop-level: preliminaries

We now move on to the loop level. First we need to introduce the important notion of chains.

Definition A.4.8 Two zones in a Spek-diagram are adjacent if they are directly linked via
a permutation. Two sub-tuples in the corresponding state are adjacent if they correspond to
adjacent zones.

Definition A.4.9 A chain in a Spek-diagram is a sequence of adjacent zones. A chain in
the corresponding state is the sequence of sub-tuples corresponding to the zones in the chain.
An n-chain is a chain with n zones.

Definition A.4.10 Consider a diagram D with a chain, with corresponding state ψ. The
end-type of a block B ⊂ ψ with respect to the chain refers to the combination of the types of
the initial and final zones of the chain. Clearly there are four possible end-types.

Definition A.4.11 In a block B ⊂ ψ which is same-ended with respect to a chain, the
initial and final zones of the chain have the same type. A different-ended block is defined
analogously.

Clearly any loop in a diagram is formed by linking together the initial and final zones of a
chain via an unphased permutation.

Definition A.4.12 The x, y-i, jth-remnants of a set of tuples are the i, jth-remnants of all
those tuples with x in the ith position and y in the jth position.
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Suppose we close a chain in a diagram D with corresponding state ψ, to form a diagram D′

with corresponding state ψ′. From proposition A.1.7, ψ′ consists of the x, S(x)-i, jth-remnants
of ψ. We will need various properties of these remnants.

Proposition A.4.13 If the signature of some tuple is (P1, T1; . . . ;Pk, Tk; . . . ;Pl, Tl; . . . ;Pm, Tm)
then the signature of its i, jth-remnant can take one of four forms:

• (P1, T1; . . . ;Pk, Tk; . . . ;Pl, Tl; . . . ;Pm, Tm) if the ith component is 1 or 3 and the jth

component is 1 or 3.

• (P1, T1; . . . ;Pk, Tk; . . . ;P
′
l , Tl; . . . ;Pm, Tm) if the ith component is 1 or 3 and the jth

component is 2 or 4.

• (P1, T1; . . . ;P
′
k, Tk; . . . ;Pl, Tl; . . . ;Pm, Tm) if the ith component is 2 or 4 and the jth

component is 1 or 3.

• (P1, T1; . . . ;P
′
k, Tk; . . . ;P

′
l , Tl; . . . ;Pm, Tm) if the ith component is 2 or 4 and the jth

component is 2 or 4.

We use a, a′ to denote the two distinct elements of Tk, either 1 and 2, or 3 and 4, depending
on the type. Likewise b, b′ denote the two distinct elements of Tl. If Tk = Tl we will adopt
the convention that a = b, a′ = b′.

Proposition A.4.14 Of the 2n−m tuples in some block B ∈ ψ, one quarter have an a in the
ith position and a b in the jth position, one quarter have an a in the ith position and a b′ in
the jth position, one quarter have an a′ in the ith position and a b in the jth position, and
the last quarter have an a′ in the ith position and a b′ in the jth position.

Proof: Suppose in any tuple in ψ the ith component is in the kth zone, and the jth component
is in the lth zone. Let Pk and Pl be the parities of these zones in block B. From proposition
A.2.5, half of the possible kth sub-tuples will have an a in the ith position, and half will have
a′. Similarly half of the possible lth sub-tuples will have an b in the jth position, and half
will have b′. By hypothesis (condition 4 in theorem A.4.2) B contains tuples featuring every
possible combination of kth sub-tuple with parity Pk, and l

th sub-tuple with parity Pl, thus
completing the proof. 2

The two cases of closing a chain via a partially unphased permutation and with a totally
unphased permutation are distinct, and will be treated separately. We will begin with the
simpler partially unphased case.

A.4.4 Closing chains with partially unphased permutations

Lemma A.4.15 Consider an n-legged D withm external zones, which contains a chain. The
initial zone of the chain is the kth zone of D, while its final zone is the lth of D. Suppose the
corresponding state ψ satisfies the conditions in theorem A.4.2. Now consider forming a new
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(n− 2)-legged diagram D′, with corresponding state ψ′, by linking the ith leg of D, which is
in the initial zone of the chain, to the jth leg, which is in the final zone of the chain, via a
partially unphased permutation S. ψ′ also satisfies the conditions in theorem A.4.2.

The proof of this lemma requires some subsidiary results.

Proposition A.4.16 If S is partially unphased then each block B ⊂ ψ gives rise to a single
block B′ ⊂ ψ′, consisting of 2n−m−2 tuples. We call B′ the progeny block and B the parent
block.

Proof: If S is partially unphased, then S(a) = b or b′ implies that S(a′) 6= b or b′, and vice
versa. Thus, from proposition A.4.14 we see that, in any given block B ⊂ ψ, only a quarter
of the tuples ’yield’ x, S(x)-i, jth-remnants. Thus each B has 2n−m−2 x, S(x)-i, jth-remnants.
From proposition A.4.13 we note that each of these remnants has the same signature. Via
a counting argument we conclude that the remnants represent all possible combinations of
tuples of this signature - thus they constitute a single block B′ ⊂ ψ′. 2

Definition A.4.17 The relationship between the signatures of parent and progeny blocks
will take one of the four forms appearing in proposition A.4.13. Which particular form is
exhibited for a given parent block is termed the parent-progeny-signature-relation (PPSR) for
that block.

Proposition A.4.18 All blocks with the same end-type relative to the chain will exhibit the
same PPSR upon closing of the chain via a partially unphased permutation.

Proof: From definition A.4.6, if S is partially unphased then for each end-type there is only
one value of x for which there are x, S(x)-i, jth-remnants. Thus, for every block of a given
end-type we are eliminating the same values to yield our x, S(x)-i, jth-remnants, and thus,
from proposition A.4.13 the PPSR is the same in each case. 2

Proposition A.4.19 After closing a chain with a partially unphased permutation two dis-
tinct parent blocks B1, B2 ⊂ ψ will give rise to distinct progeny blocks B′

1, B
′
2 ⊂ ψ′.

Proof: From proposition A.4.13 we note that parent and progeny blocks have identical type
signatures. Thus if B1 and B2 have distinct type signatures, so will B′

1 and B′
2. If B1 and

B2 have identical type signatures we can conclude (i) They will exhibit identical PPSRs; and
(ii) If they are themselves distinct they must have distinct parity signatures. But clearly
applying the same PPSR to two distinct parity signatures yields a further two distinct parity
signatures: thus B′

1 and B′
2 are distinct. 2

We can now prove lemma A.4.15

Proof: From proposition A.4.16 each block B ⊂ ψ gives rise to one progeny block, B′ ⊂ ψ′

consisting of 2n−m−2 tuples (satisfying condition 4 of theorem A.4.2). By hypothesis ψ consists
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of 2m blocks, thus so does ψ′ (satisfying condition 3), and in total, ψ′ consists of 2n−2 tuples
(satisfying condition 1). From proposition A.4.13 we see that the number of zones in the
tuples of ψ′ is unchanged, so condition (2) is also satisfied.

2

A.4.5 Closing chains with totally unphased permutations

This is somewhat more complicated. In this section we will continue to use the terminology
introduced in lemma A.4.15: we form diagram D′ by closing a chain in diagram D, their
corresponding states are ψ′ and ψ, the initial and final zones of the chain are as described
before; however, we will now assume that S is totally unphased.

First, recall the definition of blocks which are same-ended and different-ended with respect
to a chain (definition A.4.11).

Proposition A.4.20 If S is totally unphased then a same-ended block B ∈ ψ has no x, S(x)-
i, jth-remnants, and thus gives rise to no progeny blocks in ψ′.

Proposition A.4.21 If S is totally unphased then a different-ended block B ⊂ ψ, with
signature (P1, T1; . . . ;Pk, Tk; . . . ;Pl, Tl; . . . ;Pm, Tm) gives rise to two progeny blocks B1, B2 ⊂
ψ′, each of which consists of 2n−m−2 tuples. The signatures of these blocks are either:

(P1, T1; . . . ;Pk, Tk; . . . ;Pl, Tl; . . . ;Pm, Tm) and (P1, T1; . . . ;P
′
k, Tk; . . . ;P

′
l , Tl; . . . ;Pm, Tm)

or (P1, T1; . . . ;P
′
k, Tk; . . . ;Pl, Tl; . . . ;Pm, Tm) and (P1, T1; . . . ;Pk, Tk; . . . ;P

′
l , Tl; . . . ;Pm, Tm)

Proof: Using the terminology of proposition A.4.14 either S(a) = b, S(a′) = b′ or S(a) =
b′, S(a′) = b. Either way in any given block B ⊂ ψ, one half of the tuples ’yield’ x, S(x)-i, jth-
remnants. Thus each B has 2n−m−1 x, S(x)-i, jth-remnants. Further it is clear that either
half of these will all have the first signature listed in proposition A.4.13, and the other half
will all have the fourth signature, or half will all have the second signature, and half will all
have the third signature. 2

Definition A.4.22 We define the parent-progeny-signature-relation (PPSR) for the case of
closing with a totally unphased morphism exactly as we did for partially unphased morphisms
(definition A.4.17). In this case there are clearly only two possible PPSRs.

Proposition A.4.23 All blocks with the same end-type relative to the chain will exhibit the
same PPSR upon closing of the chain via a totally unphased permutation.

Proof: Totally analogous to proof of proposition A.4.18. 2
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Mirrored blocks and duplicated progeny blocks

Unlike the partially unphased case it is not generally true that progeny blocks from different
parent blocks are themselves distinct. We will now show that parent blocks with a specific
relationship will produce identical progeny blocks. Fortunately these are the only blocks
which will produce identical progeny.

Definition A.4.24 Two blocks B,B′ ⊂ ψ are said to be mirrored with respect to the chain
if their respective signatures are:

(P1, T1; . . . ;Pk, Tk; . . . ;Pl, Tl; . . . ;Pm, Tm) and (P1, T1; . . . ;P
′
k, Tk; . . . ;P

′
l , Tl; . . . ;Pm, Tm)

where all zones not explicitly listed have identical parities and types. Together B and B′

constitute a mirrored pair.

Proposition A.4.25 Two different-ended blocks B,B′ ⊂ ψ, mirrored with respect to a
chain, give rise to identical pairs of progeny blocks when the chain is closed via a totally
unphased permutation.

Proof: B and B′ have the same end-type with respect to the chain, and thus exhibit the
same PPSR. Referring to proposition A.4.21, it is simple to see that, whichever PPSR it is,
the two progeny blocks derived from B will have identical signatures to those derived from
B′. 2

Proposition A.4.26 If different-ended two blocks B,B′ ⊂ ψ are not mirrored with respect
to a chain, then upon closing that chain with a totally unphased permutation they will give
rise to distinct pairs of progeny blocks.

Proof: From proposition A.4.13 we note that parent and progeny blocks have identical type
signatures. Thus if B and B′ have distinct type signatures, so will their progeny blocks. If
they have identical type signatures we conclude (i) They will exhibit identical PPSRs; and
(ii) If they are themselves distinct they must have distinct parity signatures. If they are not
mirrored, then (ii) implies that either the parities of their ith zones differ and those of their
jth zones coincide, or vice versa. In either case, applying either PPSR to both can easily be
seen to lead to distinct pairs of progeny blocks. 2

When mirrored blocks arise

Proposition A.4.27 Consider a tree-level diagram D1 (with corresponding state ψ1) with
an n-chain, whose initial and final zones are the kth and lth of D1. Now consider extending
the chain by adding a phased diagram D2 (with corresponding state ψ2) to the final zone of
the chain, via a totally unphased permutation R to yield a diagram D3 (with corresponding
state ψ3) with an (n + 1)-chain. Consider two blocks B,B′ ∈ ψ1 which are mirrored with
respect to the n-chain in D1. B has two progeny blocks B1 and B2, B

′ has two progeny blocks
B′

1 and B′
2. B1 and B′

2 are mirrored with respect to the (n + 1)-chain in D3, as are B2 and
B′

1.
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Proof: The signatures of B and B′ are:

B : (P1, T1; . . . , Pk, Tk; . . . , Pl, Tl; . . . , Pm, Tm)

B′ : (P1, T1; . . . , P
′
k, Tk; . . . , P

′
l , Tl; . . . , Pm, Tm)

where all components not explicitly written have identical parity and type.

Denote the two elements of Tl by a (representing either 1 or 3) and a′ (representing either
2 or 4). The elements of B1(B

′
1) are the composites of the a-ith-remnants of B(B′) and the

R(a)-jth-remnants of ψ2. The elements of B2(B
′
2) are the composites of the a′-ith-remnants of

B(B′) and the R(a′)-jth-remnants of ψ2. If R is totally unphased then both R(a), R(a′) ∈ T ′
l ,

and thus R(a′) = (R(a))′. Taking all this into account we conclude that the signatures of the
progeny blocks are:

B1 : (P1, T1; . . . , Pk, Tk; . . . , Pl, Tl; . . . , Pm, Tm;Pm+1, T
′
l )

B2 : (P1, T1; . . . , Pk, Tk; . . . , P
′
l , Tl; . . . , Pm, Tm;P

′
m+1, T

′
l )

B′
1 : (P1, T1; . . . , P

′
k, Tk; . . . , P

′
l , Tl; . . . , Pm, Tm;Pm+1, T

′
l )

B′
2 : (P1, T1; . . . , P

′
k, Tk; . . . , Pl, Tl; . . . , Pm, Tm;P

′
m+1, T

′
l )

from which we can read off that B1 and B′
2 are mirrored with respect to the (n + 1)-chain,

as are B′
1 and B2. 2

Proposition A.4.28 Consider a diagram D with a chain. Suppose the corresponding state
ψ includes two blocks B1, B2 ⊂ ψ which are mirrored with respect to the chain. Now we
generate a new diagram D′ either by adding a new zone to D, or by closing some other chain
in D, but we do not either extend or close the original chain, which remains in D′. In all
cases the progeny blocks of B1 and B2 will constitute one or two mirrored pairs.

Proof: Tedious calculation verifies this claim for all cases. 2

Proposition A.4.29 Given any diagram with a chain in which all of the zones are linked
via totally unphased permutations, the corresponding state will consist entirely of pairs of
blocks which are mirrored with respect to the chain.

Proof: Consider a diagram consisting solely of a 2-chain, with its two zones joined via a
totally unphased permutation. It is straightforward to verify that it will have four blocks,
with signatures:

(PA, T ;PC , T
′) (P ′

A, T ;P
′
C , T

′) (PB , T
′;PD, T ) (P ′

B , T
′;P ′

D, T )

(to see this, note that a phased diagram has two blocks, with signatures (PA, T ) and (PB , T
′)).

Thus, such a 2-chain consists of two mirrored pairs. We then invoke proposition A.4.27 to
show that we can extend the chain, via totally unphased permutations to any length and the
resulting state will still consist of mirrored pairs. Finally we invoke proposition A.4.28 to
show that adding any extra zones and closing any loops elsewhere in the diagram has no
effect on this property. 2
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All-same and all-different chains

Definition A.4.30 An all-same chain in a Spek-diagram D is a chain such that in every
block in the corresponding state ψ is same-ended (definition A.4.11). An all-different chain
is defined similarly.

Proposition A.4.31 Extending an all-same chain via a totally unphased permutation results
in an all-different chain. Extending an all-different chain via a totally unphased permutation
results in an all-same chain.

Proof: Let the unextended n-chain lie within an m-legged diagram D, with corresponding
state ψ. Let the first and nth zones in the chain be the kth and lth zones in D respectively.
Following the normal convention, the (n+1)th zone in the extended chain will be the (m+1)th

zone in the extended diagram D′, which has corresponding state ψ′.

Proposition A.4.7 indicates that a parent block in which the ith and (m+1)th zones have the
same type gives rise to two progeny blocks in which the ith and (m+1)th zones have different
types, and vice versa. Thus if all parent blocks have matching types, all progeny blocks will
have different types, and vice versa. 2

Proposition A.4.32 Consider a diagram D with an all-same n-chain. Now we generate a
new diagram D′ either by adding a new zone to D, or by closing some other chain in D, but
we do not either extend or close the original chain, which remains as an n-chain in D′. This
chain is still all-same. An exactly analogous result holds for an all-different chain.

Proof: From propositions A.4.21 and A.4.16 closing a loop anywhere in a diagram results in
progeny blocks with type signatures identical to those of their parent blocks (aside from the
case where closing with a totally unphased permutation leads to no progeny block). From
proposition A.4.7 extending a diagram by adding a phased zone results in progeny blocks
with type signatures which are identical to those of the parent blocks when restricted to the
zones from the parent diagram. Since the chain is not being extended in this case, the types
of its initial and final zones will be unaffected. 2

Proposition A.4.33 In any tree-level or loop-level diagram a chain whose zones are linked
only by totally unphased permutations is an all-same or all-different chain.

Proof: A diagram with such a chain can be built up by (i) linking together all the zones in
the chain sequentially via totally unphased permutations, then (ii) by connecting all the zones
which do not appear in the chain, and closing up any loops. The first step is to link two phased
diagrams together via a totally unphased morphism to form a 2-chain. Using proposition
A.4.7 we conclude that all such 2-chains are all-different. We then invoke proposition A.4.31
to conclude that by the end of stage (i) all chains will be either all-same or all-different.
Proposition A.4.32 then shows that stage (ii) has no effect on the end-type of the chain. 2

Finally we are able to state our key result on the effect of closing chains with totally unphased
morpisms.
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Lemma A.4.34 Consider an n-legged D with m external zones, which contains a chain
whose zones are linked only by totally unphased permutations. The initial zone of the chain
is the kth zone of D, while its final zone is the lth of D. Suppose the corresponding state ψ
satisfies the conditions in theorem A.4.2. Now consider forming a new (n−2)-legged diagram
D′, with corresponding state ψ′, by linking the ith leg of D, which is in the initial zone of the
chain, to the jth leg, which is in the final zone of the chain, via a totally unphased permutation
S. Either ψ′ also satisfies the conditions in theorem A.4.2 or ψ′ = ∅.

Note that this lemma is almost the equivalent of lemma A.4.15 for partially unphased permu-
tations, except that there is a restriction on what kind of chains we are closing - those linked
solely by totally unphased permutations.

Proof: Note first, from propositions A.4.29 and A.4.33 that if we have a diagram with a
chain whose zones are linked only by totally unphased morphisms then (i) the chain is either
all-same or all-different (ii) the state corresponding to the diagram consists entirely of pairs
of blocks which are mirrored with respect to the chain.

From proposition A.4.20, we conclude that if the chain in D is all-same then no tuples in ψ
have x, S(x)-i, jth-remnants, and thus ψ′ is empty.

If the chain is all-different, from proposition A.4.21 each block B ⊂ ψ gives rise to two progeny
blocks, B1, B2 ⊂ ψ′ each consisting of 2n−m−2 tuples. By hypothesis ψ consists of 2m blocks,
thus there are 2m+1 such progeny blocks. However, since ψ consists entirely of mirrored pairs
of blocks, by proposition A.4.25, only 2m of these blocks are distinct.

Thus in total, ψ′ consists of 2n−2 tuples, thus satisfying condition (1) of theorem A.4.2. From
proposition A.4.13 we see that the number of zones in the tuples of ψ′ is unchanged, so
condition (2) is also satisfied. Conditions (3) and (4) are satisfied via proposition A.4.21.

2

A.4.6 Loop level diagrams

Lemma A.4.35 All loop-level Spek-diagrams have one of the forms described in theorem
A.4.2.

Proof: Any loop level diagram D can be formed in three stages: (i) Join all the zones together
in a tree-level diagram; (ii) The chains giving rise to any loops in D whose zones are linked by
at least one partially unphased morphism are now closed, via a partially unphased morphism;
(iii) The chains giving rise to all remaining loops, i.e. those whose zones are linked only by
totally unphased morphisms, are closed via a totally unphased morphism.

By corollary A.4.4 all tree-level diagrams satisfy the conditions in theorem A.4.2. By lemma
A.4.15 subsequent to stage (ii) all diagrams will still satisfy these conditions. Finally lemma
A.4.34 implies that subsequent to stage (iii) all diagrams will still satisfy the conditions, thus
concluding the proof. 2
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A.4.7 Capping level diagrams

The final stage in constructing a Spek diagram involves capping off certain external legs with
an ǫSpek morphism, possibly via a permutation.

Lemma A.4.36 Consider an n-legged D with m external zones. Suppose the corresponding
state ψ satisfies the conditions in theorem A.4.2. Now consider forming a new (n− 1)-legged
diagram D′, with corresponding state ψ′, by capping one of the external legs with an ǫSpek
morphism, via an unphased permutation S. ψ′ also satisfies the conditions in theorem A.4.2.

Proof: By proposition A.1.8 ψ′ will consist of the a- and b-ith-remnants of ψ, where a = S(1)
and b = S(3). By hypothesis (condition 5 of theorem A.4.2) half of the blocks B ⊂ ψ have
Tk = T and half have Tk = T ′.

If S is totally unphased then a ∈ T and b ∈ T ′. By proposition A.2.5 half of those blocks
with Tk = T will have a as their ith component. By proposition A.2.8 the a-ith-remnants of
any such block will all have the same signature, and thus constitute a block of ψ′ themselves.
Likewise half of those blocks with Tk = T ′ will have b as their ith component, and their b-ith-
remnants constitute a block of ψ′. Thus, every block in ψ gives rise to one progeny block in
ψ′, containing 2n−m−1 tuples.

If S is partially unphased then a, b ∈ T . Those blocks with Tk = T each generate two blocks,
one deriving from the a-ith-remnants, the other from the b-ith-remnants. Each contains
2n−m−1 tuples. Those blocks with Tk = T generate no progeny blocks.

In each case, ψ′ has 2m blocks, each containing 2n−m−1 tuples, and thus has 2n−1 tuples in
total. The a- and b-ith-remnants of ψ have the same zone structure as the tuples of ψ. Thus
ψ′ also satisfies the conditions in theorem A.4.2. 2

Finally we can give a proof of theorem A.4.2:

Proof: Any Spek diagram can be formed by capping off external legs of a loop-level diagram
with ǫSpek morphisms. By lemma A.4.35 the states corresponding to all loop-level diagrams
either satisfy the five conditions in theorem A.4.2, or are equal to ∅. Thus, lemma A.4.36
implies that all Spek diagrams also either satisfy these five conditions, or are equal to ∅. 2

A.5 MSpek

The category MSpek was defined in section 4.3. We repeat the definition here for conve-
nience.

Definition A.5.1 MSpek is a sub-category of FRel. Its objects are the same as those of
Spek. Its morphisms are all those relations generated by composition, Cartesian product
and relational converse from the generators of Spek, plus the following relation:

⊥MSpek : I → IV :: ∗ ∼ {1, 2, 3, 4} (A.13)
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In this section we prove proposition A.5.2 which is repeated here for convenience:

Proposition A.5.2 All MSpek morphisms of type I → IVn are subsets of IVn containing
2n, 2n+1, . . . , 22n−1 or 22n n-tuples.

Proof: Clearly any MSpek-diagram can be obtained from a Spek-diagram by capping off
some external legs with ⊥MSpek diagrams. Suppose for definiteness that we cap off the ith

leg of an n-legged Spek-diagram D to obtain a (n − 1)-legged MSpek-diagram D′. Denot-
ing the corresponding states by ψ′ and ψ, we note from proposition A.1.8 that ψ′ consists
simply of the ith-remnants of ψ. It is straightforward to see that each block B ⊂ ψ gives
rise to two progeny blocks B1 and B2: if the signature of B is (P1, T1; . . . ;Pi, Ti; . . . ;Pn, Tn)
then those of B1 and B2 are (P1, T1; . . . ;Pi, Ti; . . . ;Pn, Tn) and (P1, T1; . . . ;P

′
i , Ti; . . . ;Pn, Tn).

Thus ψ′ has 2m+1 blocks, each with 2n−m−1 tuples. There can only be duplication of
blocks if ψ had contained pairs of blocks with signatures (P1, T1; . . . ;Pi, Ti; . . . ;Pn, Tn) and
(P1, T1; . . . ;P

′
i , Ti; . . . ;Pn, Tn). However consideration of the effect on signatures of adding

zones (propositionA.4.7), closing loops (propositions A.4.16 and A.4.21) and capping ends in-
dicates that such pairs cannot exist in the relation corresponding to a Spek-diagram. Hence,
ψ′ has 2n tuples, while diagram D′ has (n−1) legs, or alternatively ψ′ has 2n

′+1 tuples, while
diagram D′ has (n′) legs. 2
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