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Introduction

The idea of using quantum mechanical phenomena to devise a new computational
paradigm first came to prominence in 1982, when physicist Richard Feynman observed
that simulation of quantum systems on a classical computer seems to require an exponen-
tial amount of resources. He also noticed that a computer based on quantum mechanical
features, being a quantum system itself, could perform the same task with only a polynomial
amount of resources. The idea was further explored by David Deutsch and led to defining
an abstract notion of Quantum Turing Machine in 1985[9]. A major breakthrough came
in 1994, when Peter Shor published his famous factoring algorithm[21]. Nowdays research
in Quantum Computing concentrates, apart from efforts to physically realise a quantum
computer, on quantum cryptography, quantum complexity theory and on the origins of
quantum speed-up.

A major difficulty encountered in reasoning about quantum computation is the formal-
ism that is being used. The so-called Hilbert Spaces formalism devised by John von Neu-
mann in 1931 as a mathematical foundation for quantum mechanics is still in use today.
To perform operations it requires multiplication of matrices, whose size rises exponentially
with the increase of quantum system’s size. That is why computation in this formalism is
cumbersome and far from intuitive.

Because of this reason, many researchers concentrate on finding an alternative formalism
that would capture the compositional nature of quantum systems in a more natural way.
A promising attempt to achieve that is Categorical Quantum Mechanics, first described
by Bob Coecke and Samson Abramsky in 2004[1]. Afterwards, this stream of research has
been continued throughout the years in multiple papers written by members of the Quantum
Group at the Oxford University Computing Department.

Categorical axiomatisation of Quantum Theory leads to an intuitive language for de-
scribing quantum computation - graphical calculi. The subject of this dissertation is to
explore its capabilities within different branches of the field of Quantum Computing. Knowl-
edge of Oxford Part C courses on Category Theory and Quantum Computing is assumed
throughout. Chapter 1 gives a summary of abstract notions necessary in the categorical
axiomatisation. Chapter 2 describes two graphical calculi: Red-green calculus (otherwise
known as Z/X-calculus) and Red-green-blue calculus (RGB-calculus). Chapters 3, 4 and
5, discuss three different applications of both calculi. In chapter 3, two quantum theories
are compared and the interpretation of Red-green-blue calculus in Spekkens Toy Theory is
the author’s individual contribution. Chapter 4 analyses three quantum protocols that have
never been interpreted in RGB-calculus. In Chapter 5 a new alternative diagrammatical
proof of a standard result on classical simulability is presented. These three different appli-
cations present the versatility of graphical calculi in reasoning about quantum computation.
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Chapter 1

Categorical Quantum Mechanics

The first chapter establishes some preliminary notions used in the categorical approach
to Quantum Mechanics and presents the diagrammatical formalism based on it. Section
1 follows the description of monoidal categories given in the Oxford graduate course on
Categorical Quantum Mechanics. Section 2 follows Bob Coecke’s presentation from [3].

1.1 Symmetric Monoidal Categories

A monoidal category is a category endowed with additional structure that allows us to
define composite objects and morphisms. This additional structure is expressed by a binary
operator - monoidal tensor product ⊗. Along with morphism composition ◦, they constitute
two methods for producing and acting upon composite systems.

Tensor product ⊗ acts on objects in the following way: given A, B in a monoidal
category C, A⊗ B is a composite object in C. It also induces an operation on morphisms:
given A,B,C,D in C and for f : A→ C, g : B → D, we have (f ⊗ g) : (A⊗B)→ (C ⊗D).

Morphism composition ◦ can be thought of as composition in time. When acting with
f ◦g on an object, we first act with the morphism g and after that with f . Monoidal tensor
composition in turn, can be thought of as parallel composition. When acting with f ⊗ g on
a composite object A⊗B, we act on A with f , while acting on B with g.

Any algebraic structure that admits a morphism that preserves the structure’s properties
may be used to define a category:

• Set - sets are objects and functions between sets are arrows

• FHilb - finite dimensional Hilbert Spaces are objects and linear maps are arrows

• Rel - sets are objects and relations are arrows

All three of these categories can be made into monoidal categories by defining the
monoidal tensor product operator ⊗:

• Set - ⊗ is the cartesian product of sets

• FHilb - ⊗ is the oridinary tensor product of Hilbert Spaces

• Rel - as in Set ⊗ is the cartesian product of sets

1



Now, we proceed to formally define monoidal categories and attributes that they admit:
symmetry, strictness and the dagger functor.

Definition 1.1. A monoidal category consists of a category C, a bifunctorial tensor

⊗ : C × C → C

a unit object I and families of natural isomorphisms such that:

• for all objects A, there exist natural isomorphisms called respectively the left and
right unitors:

λA : A ' I⊗A ρA : A ' A⊗ I

• for all objects A, B, C, there exist natural isomorphisms called the associators:

αA,B,C : A⊗ (B ⊗ C) ' (A⊗B)⊗ C

which are subject to certain coherence conditions. MacLane proved that commutativity of
the following two diagrams is a sufficient condition to ensure coherence[18].

A⊗ (I ⊗B)
αA,I,B//

IA⊗λB

��

(A⊗ I)⊗B

ρA⊗IB

~~
A⊗B

(A⊗B)⊗ (C ⊗D)

α

%%
A⊗ (B ⊗ (C ⊗D))

α
99

IA⊗α
��

((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D)
α // (A⊗ (B ⊗ C))⊗D

α⊗ID

OO

Definition 1.2. A monoidal category is symmetric if there exists a familiy of natural
isomorphisms such that for every pair of objects A, B there is a morphism:

σA,B : A⊗B ' B ⊗A

Definition 1.3. A monoidal category is strict if the natural isomorphisms α, λ and ρ
are identities. Every monoidal category is monoidally equivalent to a strict monoidal
category.[18]

Due to this fact, from now on we assume that all categories that we consider are strict.

Definition 1.4. A strict dagger monoidal category is a strict monoidal category equipped
with an involutive identity-on objects functor † : Cop → C, such that :

• ∀A ∈ C,A† = A

• ∀f, g ∈ C, f †† = f and (f ⊗ g)† = f † ⊗ g†

Definition 1.5. A strict dagger symmetric monoidal category C is both a strict dagger
monoidal category and a strict symmetric monoidal category, such that σ†A,B = σ−1A,B, where

f † : B → A is the adjoint of f : A→ B.

2



1.2 Graphical Calculi for Quantum Computation

Details of how monoidal categories are used to describe quantum systems in the categorical
axiomatisation of Quantum Theory are available in [1]. In the diagrammaric formalism
based upon this axiomatisation linear operators are represented as pictures:

IA : A→ A ≡ f : A→ A ≡ f

g ◦ f : A→ A ≡
g

f
f ⊗ g : (A⊗B)→ (A⊗B) ≡ f fg

Functional composition is realised by joining inputs and outputs of boxes representing
the operators and the tensor product by putting the boxes next to each other. Identity is
depicted as a straight wire.

This method also allows to express states I
ψ−→ A, effects A

π−→ I, constants I
π−→ I and

adjoint mappings by means of pictures. A detailed account of those is available in [3].

Now we quote the most important result of this chapter. A theorem, due to Joyal
and Street[13], that establishes the connection between the diagrammatic language and
symmetric monoidal categories.

Theorem 1.1. The graphical calculi for monoidal categories and symmetric monoidal cat-
egories is such that an equational statement between formal expressions in the language of
(symmetric) monoidal categories holds if and only if it is derivable in the graphical calculus.

The concept of symmetry allows us to swap components of compound systems and is
captured by the following laws:

g

f g
=

f
=

In equations, they are expressed as (with σA,B as defined in Definition 1.2)

σB,A ◦ σA,B = 1A,B and σA,B ◦ (f ⊗ g) = (g ⊗ f) ◦ σA,B .

Bell states and Bell effects are expressed by turning the wire:

which are expressed in categorical terms as I
ηA−→ A ⊗ A and A ⊗ A εA−→ I, with η to be

rigorously defined later in the chapter.
They are subject to the identity (εA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A, which allows us to cancel

two consecutive opposite turns by yanking the wire.

=yank
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Definition 1.6. A symmetric monoidal dagger category in which morphisms ηA, εA exist
for each object A and satisfy certain coherence conditions is called compact. Theorem 1 is
extended to dagger compact categories.

To give a more complete description of quantum theory, we include an interpretation of
non-degenerate observables.

Definition 1.7. A non-degenerate observable (or basis) for an object A in a dagger sym-
metric monoidal category is a family of spiders with n front and m back legs, for n,m ∈ N
denoted A⊗n

δmn−−→ A⊗m and depicted as:

m︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n

It is worth noting that δ20 and δ02 correspond to Bell states and Bell effects and because
of this, the spider structure captures all features gained by introduction of wire turns.

The following theorem proved in [7] explains why in FHilb these spiders represent
observables.

Theorem 1.2. In FHilb, non-degenerate observables {H⊗n δ
m
n−−→H⊗m}n,m exactly corre-

spond with orthonormal bases on the underlying Hilbert space H, which in turn correspond
to non-degenerate observables on H

The second correspondence is due to the fact that an observable M on an n-dimensional
Hilbert Space H is represented by a linear combination of projections Pi = |i〉〈i| for some
orthonormal basis {|i〉}i.

The exact nature of the first correspondence is best explained using the copying-deleting
pair presentation of non-degenerate observables using Frobenius algebras, for a reference see
[3]. There a non-degenerate observable in a dagger symmetric monoidal category is a triple

(A, δ, ε) where A is an object, A
δ−→ A ⊗ A a copying morphism and A

ε−→ I a deleting
morphism.

An orthonormal basis {|i〉}i of a Hilbert Space H induces two linear maps: the operation
that copies the basis vectors and the operation that deletes the basis vectors.

δ : H → H⊗H; |i〉 → |ii〉 ε : H → C; |i〉 → 1

No-cloning theorem implies that the only vectors copied by δ and deleted by ε are the
basis vectors, so {|i〉}i is the only basis corresponding to δ and ε.

It is shown in [3] that δ can be thought of as a spider δ12 and ε as a spider δ10 . The
morphisms generated from δ12 and δ10 using composition, tensor products and adjoints, such
that their graphical representation is connected are exactly the family of spiders. This is
due to the fact that such morphisms only depend on the number of inputs and outputs.

In the subsequent results we assume familiarity with the Dirac bra-ket notation for
Quantum Computation. In this notation eigenvectors of Pauli matrices Z, X, Y are denoted
by:
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|0〉 =

(
1
0

)
|+〉 = 1√

2

(
1
1

)
|i〉 = 1√

2

(
1
i

)
|1〉 =

(
0
1

)
|−〉 = 1√

2

(
1
−1

)
| − i〉 = 1√

2

(
1
−i

)
Definition 1.8. Let {ψ1, . . . , ψn} be the set of normalized eigenvectors of an observable A,
a normalized vector |ψ′〉 is unbiased for A if for all i we have that |〈ψi|ψ′〉|2 = 1

n .

Unbiasedness can be understood in terms of all outcomes of a measurement on A being
equally likely.

Definition 1.9. Two non-degenerate observables A and B in an n-dimensional Hilbert
Space are complementary if their mutually orthogonal normalised eigenvectors |ψA1 〉, . . . , |ψAn 〉
and |ψB1 〉, . . . , |ψBn 〉 are unbiased with respect to the other observable. i.e for all i, j it holds
that |〈ψAi |ψBj 〉|2 = 1

n .

This definition extends in a straightforward manner to a finite set of non-degenerate
observables:

Definition 1.10. A finite set of non-degenerate observables A1, . . . , An in an n-dimensional
Hilbert Space is a set of complementary observables if each pair Ai, Aj is complementary
in the sense of the above definition.

Examples of pairs of complementary observables include position and momentum as
well as each pair of the set of Z-, X- and Y -observables for a qubit. Let α ∈ [0, 2π):

Observable Eigenvectors Unbiased vectors Examples of unbiased states

Z |0〉, |1〉 |0〉+ eiα|1〉 |+〉+ |−〉, |i〉+ | − i〉
X |+〉, |−〉 |+〉+ eiα|−〉 |0〉+ |1〉, |i〉+ | − i〉
Y |i〉, | − i〉 |i〉+ eiα| − i〉 |0〉+ |1〉, |+〉+ |−〉

Example: |i〉 is unbiased with respect to the observable X. For a qubit, n = 2.

|〈+|i〉|2 = |〈 1√
2

(
1
1

)
| 1√

2

(
1
i

)
〉|2 = |1

2
(1 + i)|2 =

1

2

Notions of unbiasedness and eigenvectors for non-degenerate observables can also be
defined for observables in dagger compact categories, but first we have to define an auxiliary
notion of the abstract conjugate morphism f∗.

Each observable (A, δ, ε) in a dagger compact category is associated with a compact
structure (A, η = δ ◦ ε†, I → A⊗A). Here, compactness is to be understood in the sense of
Definition 1.6. Notice that η can be expressed by a spider δ02 from the family corresponding
to the observable.

Definition 1.11. For a morphism f : A → B and a pair of observables and induced
compact structures (A, ηA), (B, ηB) the conjugate morphism f∗ : B → A is defined as

f∗ = (η†A ⊗ 1B) ◦ (1A ⊗ f † ⊗ 1B) ◦ (1A ⊗ ηB)

For clarity of presentation, we define an operation �. For two states I
ψ−→ A and I

φ−→ A
let ψ � φ := δ† ◦ (ψ ⊗ φ).

5



Definition 1.12. A state ψ is unbiased with respect to an observable (A, δ, ε) in a dagger
compact category if the following equality is satisfied:

ψ∗ � ψ = δ† ◦ (ψ∗ ⊗ ψ) = ε†

where ψ∗ is the abstact conjugate of the state ψ.

Definition 1.13. Eigenstates (equivalently eigenvectors) for an observable (A, δ,A→ A⊗
A, ε : A→ I) in a dagger symmetric monoidal category are defined to be the states ψ that
are copied by δ, i.e. states ψ for which: δ ◦ ψ = ψ ⊗ ψ.

In the graphical interpretation this equality results in the diagram becoming discon-
nected. Note that, for this notion, compactness is not required.

Definition 1.14. Two observables (A, δX , εX) and (A, δY , εY ) in a dagger compact category
are complementary if the eigenvectors of one are unbiased for the other.

The definition extends to any finite set of observables {(Ai, δi, εi)}i in the same way
as for observables in a Hilbert Space in Definition 1.10. In graphical calculi we denote
observables that are complementary with different colours.

In categorical interpretations of different quantum theories a pivotal role is played by
the phase group that we associate with the theory. In Chapter 3, we look more closely
at Qubit Stabilizer Theory and Spekkens Toy Theory and their categorical interpretetions.
But firstly, let us consider the notion of phase group in an abstract setting.

Definition 1.15. Let S(A, δ, ε) be the set of all states I
ψ−→ A that are unbiased for (A, δ, ε).

Let U(A, δ, ε) be the set of all unitary morphisms of the form Uψ = ψ� 1A = δ† ◦ (ψ⊗ 1A).
The morphism Uψ is unitary if and only if it is unbiased for (A, δ, ε).

Theorem 1.3. For any observable (A, δ, ε), (S(A, δ, ε),�, ε†) and (U(A, δ, ε), ◦, 1A) are iso-
morphic Abelian groups. For S(A, δ, ε) the inverse is provided by the conjugate and the
adjoint respectively. The group is called the phase group.

Since phases originated from the copying-deleting formalism for observables, they have
a natural graphical depiction and it is possible to augment spiders to support phases. In
the graphical calculi considered here, the following law presents how spiders interact with
other spiders of the same colour.

n︷ ︸︸ ︷

........

....

....

....
α

β︸ ︷︷ ︸
m

=

n︷ ︸︸ ︷

....

....

α+β

︸ ︷︷ ︸
m

The phases are added, since multiplication in the phase group corresponds to addition
of angles. As demonstrated by the example of the X-observable for a qubit in FHilb recall
that: S(A, δ, ε†) =

{
|+〉+ eiα|−〉

∣∣ α ∈ [0, 2π)
}

. Then for two elements of the group:

(|0〉+ eiα|1〉)� (|+〉+ eiα
′ |−〉) = |0〉+ ei(α+α

′)|1〉
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Now we discuss the connection between phase groups and non-locality in a particular
class of theories – so called Mutually Unbiased Theories. Non-locality in this context means
that correlations between the results of measurements violate Bell inequalities. Firstly, we
need to introduce the notion of a GHZ-state.

Definition 1.16. A GHZ-state is an entangled quantum state |GHZ〉 = |000〉+|111〉√
2

Together with the W-state, |W 〉 = |100〉+|010〉+|001〉√
3

, they represent two different and

LOCC-inequivalnet classes of tripartite entanglement. Any tripartite entangled state can
be transformed to either GHZ or W using only local operations and classical communication
(LOCC). GHZ can be thought of as a maximally entangled tripartite state. The nature
of entanglement in the W state can be understood as pairwise entanglement between its
qubits. This difference is exhibited by their graphical representations.[3]

GHZ state is important when considering non-locality, because the results of measuring
its different subsystems exhibit non-local correlations. GHZ is expressed in categorical terms
for an observable (A, δ, ε) as the the structure (A, Ψ : I → A ⊗ A ⊗ A, ε : A → I), and
graphically with a spider δ03 .

Definition 1.17. A Mutually Unbiased Theory is a theory where for each state ψ of an
elementary system A, and each observable (A, δ, ε), ψ is either an eigenvector or unbiased
for (A, δ, ε).

Theorem 1.4. In any mutually unbiased theory all non-local correlations are completely
determined by the phase group, and hence classified by finite abelian groups.

Both theories considered in chapter 3: Qubit Stabilizer Theory and Spekkens’ Toy
Theory are mutually unbiased. Their phase groups are respectively the cyclic group Z4 and
the Klein group Z2×Z2. All differences between their categorical interpretations Stab and
Spek can be traced back to this fact.[6]

If a theory has Z4 as a subgroup of its phase group, then it is non-local. Theories that
have Z2×Z2 as their phase group are local. Z4 and Z2×Z2 are the only 4-element abelian
groups, so for theories with 4-element phase groups these two are the only possibilities.
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Chapter 2

Dichromatic and Trichromatic
Graphical Calculi

In this chapter we introduce two graphical calculi. Red-green calculus presentation follows
the approach taken in [4] by Coecke and Duncan. Red-green-blue calculus presentation
follows a paper by Lang and Coecke[17].

2.1 Red-Green Calculus

Red-green calculus, also known as Z/X- calculus is a calculus of complementary observables
for Pauli Z- and X-observables for a qubit. Its main components are two copying-deleting
pairs, one for each observable. As indicated before we will use two different colours to
distinguish between both complementary observables. Due to the results established in
Chapter 1, it is possible to introduce phase angles, we also introduce the Hadamard gate
that will act as a colour changer. Numbering will be used to facilitate referring to these
equations in later chapters.

θ θ H (2.1)

Since it is our aim to present Z/X−calculus as a dagger symmetric monoidal category
RG, here we expose how these generating elements behave under the dagger operation.

( )†
=

( )†
=

( )†
=

( )†
=

( )†
=

( )†
=

( )†
=

( )†
=

 θ

† = −θ

 θ

† = −θ

H
† = H
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Axioms governing these graphs and rationale behind them are explained carefully in [4],
here we give a short summary:

• Only the topology matters

• All equations are valid under flip of colours

• All equations are valid under flip of arrows and †-negation of angles

· · ·

0

· · ·

=

· · ·

· · ·

= (2.2)

· · · · · ·

α ... β

· · · · · ·

=

· · · · · ·

α+ β

· · · · · ·

(2.3)

= = (2.4)

2 =
2 2

2

θ
=
−θ

2
(2.5)

=

· · ·
θ

· · ·
=

H

H

H

H

· · ·

θ

· · ·

(2.6)

General phases α ∈ [0, 2π) allow for expression of any single-qubit unitary gate and
hence together with existence of CNOT gate imply universality of the calculus – any n-
qubit unitary map can be depicted in Z/X-calculus. This full version of Z/X-calculus is
used to define the notion of classical simulability in Chapter 5. Here, we restrict ourselves
to α ∈ {0, π2 , π,

3
2π} ∼= {0, 1, 2, 3} in order to be able to compare categorical representations

of Red-green and Red-green-blue calculi. In pictures, phases are denoted using elements of
{0, 1, 2, 3} to increase clarity of presentation.

Naturally because of the origin of copying-deleting pair presentation of non-degenerate

observables, the two tuples

(
, , ,

)
and

(
, , ,

)
form †-special

commutative Frobenius Algebras, whose significance is explored in [3].

On the basis of work done by Kissinger in [15], Lang and Coecke suggested a name ’open
digraphs’ for graphs that are obtained from these generators. Composition is realised by
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connecting the open ended wires and the tensor product by putting two digraphs side-by-
side. The direction of arrows suggests the direction of the flow of information, so incoming
wires could be thought of as inputs and outcoming wires as outputs. Structures with neither
correspond to constants, here we will omit them for the sake of simplicity.

By the above remarks we have a well-defined symmetric monoidal dagger category RG.
Using the approach taken by Lang and Coecke in [17], we make the following definition.

Definition 2.1. A category RG is a dagger symmetric monoidal category in which the
objects are n-fold monoidal products of an object ?, denoted ?n and a morphism from ?m

to ?n is a dichromatic open digraph from m wires to n wires, built from the sets of green
and red generators mentioned above and the Hadamard gate. The identity morphism on
each object is depicted as a straight wire. Phases are limited to values from {0, π2 , π,

3
2π}.

2.2 Red-Green-Blue Calculus

It has been proved that in a Hilbert Space of dimension n at most n + 1 observables can
form a set in which each pair of observables is mutually complementary.[24] If n is a power
of a prime, then this number is exactly equal to n+1. Since a single qubit is mathematically
modelled by a Hilbert Space H such that dim(H) = 2 and 2 is a power of a prime, there
can be at most three complementary observables within a qubit.

This fact together with incompleteness of Z/X-calculus with respect to Qubit Theory,
which will be discussed later in this chapter, lead to the introduction of Red-green-blue
calculus. Similarly as for RG:

Definition 2.2. A category RGB is a dagger symmetric monoidal category with tensor
products of ? as objects, and morphisms represented as open digraphs with red, green
and blue nodes. The identity morphism on each object is depicted as a straight wire.
Composition and monoidal products are as defined for open digraphs.

RGB-calculus is a graphical calculus for three complementary observables. Each colour
corresponds to a different observable and we have three sets of generators, instead of two
like in Z/X-calculus.

θ θ

θ

Dagger operation is defined as for RG, arrow directions are flipped, copying and deleting
morphisms are flipped upside-down and phases negated:

( )†
=

( )†
=

( )†
=

( )†
=
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( )†
=

( )†
=

( )†
=

( )†
=

( )†
=

( )†
=

( )†
=

( )†
=

 θ

† = −θ

 θ

† = −θ

 θ

† = −θ

Phases are limited to values from {0, π2 , π,
3
2π} ∼= {0, 1, 2, 3}. Again, for convenience and

clarity of presentation, we utilise the fact that this set forms a group isomorphic to Z4 and
denote phases using elements of this group. Again for clarity, phases ’0’ are omitted and
expressed as a coloured dot without a phase.

Red-green-blue axioms are similar to those of Red-green calculus but there are some
subtle differences necessary to accommodate the addition of a third colour. A thorough
account of all rules is available at [17].

• Only the topology matters

• All equations are valid under even permutation of colours

• All equations are valid under flip of arrows and †-negation of angles

· · ·

0

· · ·

=

· · ·

· · ·

= (2.7)

· · · · · ·

α ... β

· · · · · ·

=

· · · · · ·

α+ β

· · · · · ·

(2.8)

= 3 = (2.9)

3 3
=

3
(2.10)
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Again, because of the copying-deleting pair origins of the formalism, the tuples of genera-

tors of different colours:

(
, , ,

)
,

(
, , ,

) (
, , ,

)
form Frobenius Algebras.

It is a consequence of RGB-axioms and even coulour permutations and the dagger
structure that the following tuples form bialgebras in the sense of the definition stated in
[14]. Their copying capabilities will be used in later chapters.(

, 3 , ,

) (
, 3 , ,

) (
, 3 , ,

)
(

, , 1 ,

) (
, , 1 ,

) (
, , 1 ,

)
Phases can be expressed using the copying and deleting operation, by the following

equation:

= 1 (2.11)

One of the significant advantages of introducing the third colour is that we are now
able to realise the change of colour operation without introducing an additional primitive
structure, like the Hadamard gate used in Z/X. In RGB colour rotation gates are expressed
using known generators and their effect on different colours is as follows:

� :=
1

1
=

1

1
=

1

1
	 :=

�

�

(2.12)

m︷ ︸︸ ︷

��

		

θ

︸ ︷︷ ︸
n

=

m︷ ︸︸ ︷
· · ·

θ

· · ·︸ ︷︷ ︸
n

=

m︷ ︸︸ ︷

		

��

θ

︸ ︷︷ ︸
n

(2.13)

Each colour may be expressed using two remaining colours as a consequence of the
following derivable equation:
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m︷ ︸︸ ︷
3 3

θ −m+ n

1 1

· · ·

· · ·

︸ ︷︷ ︸
n

=

m︷ ︸︸ ︷
· · ·

θ

· · ·︸ ︷︷ ︸
n

=

m︷ ︸︸ ︷
1 1

θ +m− n

3 3

· · ·

· · ·

︸ ︷︷ ︸
n

(2.14)

Another useful derivable result that we state is:

3
= (2.15)

It is a version of the Hopf law[14], that holds under appropriate modifications for all
six bialgebra tuples defined above. It shows that each of them is also a Hopf Algebra. It is
worth noting that this law results in a radical change of the diagram topology.

In Red-green calculus the compact structure of the pair of complement of complementary
observables is compatible. However that is not the case for complementary observables in
Red-green-blue calculus. In order to be able to define an operation flipping the direction
of arrows and leaving the rest of the digraph unmodified, we need dualizers[4]. There are
three, one per each pair of colours:

:= = = 2 (2.16)

:= = = 2 (2.17)

:= = = 2 (2.18)

And their arrow flipping capabilities are exhibited by the following law (that also works
under even colour permutations).

· · · · · ·

· · · · · ·
=

· · · · · ·

· · · · · ·
(2.19)

= =
2

=
2

(2.20)
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· · ·

· · ·

=

· · ·

· · ·

· · ·

· · ·

=

· · ·

· · ·

(2.21)

= = = (2.22)

In Red-Green calculus the dualizer reduces to identity, hence edges can be thought of
as undirected.

Now we will provide a result that relates dualizers to the concept of complementarity
and gives a diagrammatical characterisation of complementary observables.

Theorem 2.1. A pair of observables (A, δX , εX), (A, δY , εY ) is complementary if and only
if the following equation is satisfied:

=

where D is a dualiser.

Grey boundary boxes, used here and in the remaining chapters, denote inputs and
outputs and are used to capture wires incoming and outcoming from the digraph.

In Red-green calculus this is equivalent to the familiar version of the Hopf Law, and in
Red-green-blue it can be ilustrated by an example:

(2.8)
=

(2.7)
=

(2.8)
=

(2.15)
=

(2.14)
=
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=
(2.8)
=

(2.11)
=

(2.8)
=

(2.7)
=

In [17] Coecke and Lang provide a translation from RG to RGB by defining a functor
T : RG → RGB on generators of RG. T maps green generators to green generators and
acts on red generators as follows:

T

( )
= 3 T

( )
=

1
T

( )
= 1 T

( )
=

3
T

 θ

 = θ

The fact that T is a functor allows us to conclude that all protocols expressible in
RG are also expressible in RGB. It is used as a starting point for results obtained in
Chaper 4, since it guarantees that any quantum protocol expressible in Red-green calculus
is expressible in Red-green-blue calculus.

The action on red generators can be justified by Bloch Sphere representations of observ-
ables that are taken as primitives for both calculi.

α

α

From these pictures we can conclude that this is due to the different position of the red
deleting point on the Bloch Sphere.

Two alternate routes of extending RG have been considered. The first is to add the
observable Y to Z/X-calculus. It is true that we showed in Chapter 1 that observables X,
Z and Y for a qubit are complementary. It is however the case that the compact structures
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of pairs of observables Z, Y and X, Y are not complementary. This together with the fact
that Z, X observables share a compact structure would lead to an asymmetry.[8]

The second is to add an important equation, which is true in Qubit Stabilizer Theory
but not provable in RG[20], the so called Euler decomposition of the Hadamard gate:

H
E≡

1

1

1

(2.23)

Definition 2.3. A category RG+ is a dagger symmetric monoidal category obtained by
quotienting the category RG by the Euler Decomposition relation on morphisms of RG.

Coecke and Lang in [17] define a functor S: RGB→ RG+ and lift the functor T that
we defined earlier to S: RG+ →RGB. They proved that T and S are inverse functors,
hence showing that RGB and RG+ are isomorphic categories.
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Chapter 3

Graphical Calculi and Quantum
Theories

In this chapter we present two different quantum theories, Qubit Stabilizer Theory (QST)
and Spekkens Toy Theory (STT) and apply the categorical approach and graphical calculi
to analyse the differences between them. For QST, both categorical description as well as
interpretation of RG and RGB in the theory follow the presentation in [17]. For STT,
categorical description is given as in [5]. Examples and the rest of the chapter are the
author’s original contribution.

3.1 Qubit Stabilizer Theory

Qubit Stabilizer Theory is an important subset of Quantum Theory. We investigate it
because it exhibits many standard quantum features despite its limited nature. Among
others, it has non-locality, incompatible observables and allows us to prove the no-cloning
theorem. The practical aspect also has its significance. QST is much more likely to be
physically realised than full Quantum Theory.

Stabilizer Qubit Theory is a restriction of the standard Quantum Theory in which only
a limited set of systems, states and operators is allowed. In this theory:

• Only measurements in X- Z- and Y -eigenbases are allowed

• Quantum systems consist of qubits that, when subject to measurement, admit eigen-
states of Pauli operators.

• States are eigenstates of n-fold tensor products of Pauli operators

• One qubit operators preserve stabilizer states, they coincide with so-called Clifford
unitaries

Clifford unitaries include the Hadamard gate, CNOT gate and Pauli operators. All n-
qubit Clifford unitaries can be simulated using just these gates. States that can be realised
in this theory include: |0〉, |1〉, |+〉, |−〉, |i〉, | − i〉 for a single qubit, their tensor products
and the Bell state for a pair of qubits. By this we can see that quantum protocols, like the
Quantum Teleportation protocol are obtainable in QST, which is another reason why we
investigate it.

To establish interpretation of both calculi in Qubit Stabilizer Theory, we first have to
provide a categorical axiomatisation of this theory.
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Definition 3.1. The category Stab is the subcategory of FdHilbQ (category of qubits,
as defined in [17]) generated by the following linear maps:

• single-qubit Clifford unitaries: Q→ Q

• δStab : Q→ Q⊗Q

{
|0〉 7→ |00〉
|1〉 7→ |11〉

• εStab : Q→ 1

{
|+〉 7→ 1

|−〉 7→ 0

We want to demonstrate that Stab is a correct categorical representation of QST.
Clearly all morphisms obtained by composing generators of Stab correspond to elements of
QST. For completeness, we need to show that all elements of QST are obtainable in Stab.

Six stabilizer states are obtained by taking the transpose of the deleting morphism: ε†

and acting on it with single-qubit Clifford unitaries, tensor products of these six states are
all states allowed in QST. All single-qubit Clifford unitaries are already expressible in Stab,
being its generators. What remains is to show that the Controlled-Not gate is realised by:

CNOT = (IQ ⊗H) ◦ (IQ ⊗ δ†Stab) ◦ (IQ ⊗H ⊗ IQ) ◦ (δStab ⊗ IQ) ◦ (IQ ⊗H)

Where, IQ is the identity morphism on the object Q, and H is the Hadamard gate. Both
are Clifford unitaries, so CNOT is expressible in Stab. All multiple qubit operators that
are allowed in QST can now be generated in Stab from single qubit Clifford unitaries and
CNOT. Therefore, Stab does indeed capture all the operations definable in Qubit Stabilizer
Theory.

Now, using the approach taken by [17] we define two functors J·KRG:RG → Stab and
J·KRGB:RGB→Stab that have the following effect on the generators:

s {

RG

= |+〉
s {

RG

= 〈+|

t |

RG

= |0〉 〈00|+ |1〉 〈11|

u

v θ

}

~

RG

= |0〉 〈0|+ ei
π
2
θ |1〉 〈1|

t |

RG

= |00〉 〈0|+ |11〉 〈1|

s {

RG

= |0〉
s {

RG

= 〈0|

t |

RG

= |+〉 〈++|+ |−〉 〈−−|

u

v θ

}

~

RG

= |+〉 〈+|+ ei
π
2
θ |−〉 〈−|

t |

RG

= |++〉 〈+|+ |−−〉 〈−|

u

vH

}

~

RG

= |+〉 〈0|+ |−〉 〈1|
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s {

RGB

= |+〉

t |

RGB

= 〈+|

t |

RGB

= |0〉 〈00|+ |1〉 〈11|

u

v θ

}

~

RGB

= |0〉 〈0|+ eiθ
π
2 |1〉 〈1|

t |

RGB

= |00〉 〈0|+ |11〉 〈1|

s {

RGB

= |i〉

t |

RGB

= 〈i|

t |

RGB

= |+〉 〈++|+ i |−〉 〈−−|

u

v θ

}

~

RGB

= |+〉 〈+|+ eiθ
π
2 |−〉 〈−|

t |

RGB

= |++〉 〈+| − i |−−〉 〈−|

s {

RGB

= |0〉

t |

RGB

= 〈0|

t |

RGB

= |i〉 〈ii|+ |−i〉 〈−i− i|

u

v θ

}

~

RGB

= |i〉 〈i|+ eiθ
π
2 |−i〉 〈−i|

t |

RGB

= |ii〉 〈i|+ |−i− i〉 〈−i|

Both are symmetric monoidal †-functors. A diagram made of these two functors and
previously defined T commutes.[17] This shows that all quantum computation expressible
in either RG or RGB is expressible using Qubit Stabilizer Theory.

3.2 Spekkens Toy Theory

There are two main ways of explaining the physical meaning of quantum states. In the
ontic approach, quantum states are states of physical reality. In the epistemic approach
they represent our incomplete knowledge about the system. Spekkens Toy theory takes the
epistemic view of quantum mechanics and uses the so called ‘knowledge balance principle‘
to be able to express some quantum features.

The most simple system in this theory is described by a state space with just four
states denoted IV = {1, 2, 3, 4}. More complex systems are produced by composing state
spaces of multiple primitive systems by taking Cartesian products IVn. We call the system’s
real physical state – the ontic state, our state of knowledge about the system is called the
epistemic state. An epistemic state is always a subset of the state space of the system. The
knowledge balance principle puts a restriction on which epistemic states can be admitted
by the system. It is stated in full generality and explained in [22].

It can be thought of as a rule enforcing that the amount of knowlege about the system
we have is equal to the amount we do not have. For the elementary system {1, 2, 3, 4} only
six epistemic states of maximal knowledge are allowed. These are: 1∨ 2, 3∨ 4, 1∨ 3, 2∨ 4,
1 ∨ 4, 2 ∨ 3

It is not a coincidence that the number of epistemic states is equal to the number of
Pauli eigenstates in Qubit Stabilizer Theory. There is the following correspondence:
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1 ∨ 2⇔ |0〉 3 ∨ 4⇔ |1〉
1 ∨ 3⇔ |+〉 2 ∨ 4⇔ |−〉
1 ∨ 4⇔ |i〉 2 ∨ 3⇔ | − i〉

Notice that each pair of epistemic states that shares no ontic states is mapped to a pair
of orthogonal stabilizer states.

Transformations are limited to those that preserve the knowledge balance principle.
These turn out to be the permutations of the four ontic states. Measurements are limited
to those that distinguish between the epistemic states of the system.

Let us consider the example of performing a measurement of the primitive system with
state space IV. We could for instance ask whether the system is in the epistemic state 1∨3.
The result of this measurement will be either ’yes’ (if the physical state of the system is
either 1 or 3) or ’no’ otherwise.

There is however one subtlety, it occurs if we want to distinguish between two epistemic
states, for example 1∨ 3 and 2∨ 4, and the system is in 2∨ 3. In such a case, if we were to
obtain an answer, we would be able to uniquely determine the physical state of the system,
thus contradicting the knowledge balance principle. Answer ’1 ∨ 3’ indicates ontic state 3
and ’2∨4’ indicates ontic state 2. This is not permitted. To prevent this from happening, we
assume that the physical state is subject to a probabilistic disturbance. It either undergoes
a transition or stays the same and both events happen with equal probability. In this
example, if we obtain 1 ∨ 3 as a result of the measurement, then the physical state either
remains 1 or randomly changes to 3, resulting in the epistemic state of the system: 1 ∨ 3 .

This concept is captured in the best way by a relation on the ontic state space and leads
us to a categorical interpretation Spek as a subcategory of the category of finite relations.
FRel is a dagger symmetric monoidal category and so is Spek as its subcategory.

Definition 3.2. The category Spek is a subcategory of FRel defined inductively as follows:

• Objects are the single element set I={∗}, the four element set IV={1, 2, 3, 4} and its
n-fold Cartesian products IVn.

• Morphisms are relations generated by composition, Cartesian product and relational
converse from the following generating relations:

– All permutations {σi :IV→IV} of the four element set, there are 24 of them and
they form a group isomorphic to S4.

– A relation δZ : IV→IV×IV:

δZ =


1 ∼ {(1, 1), (2, 2)}
2 ∼ {(1, 2), (2, 1)}
3 ∼ {(3, 3), (4, 4)}
4 ∼ {(3, 4), (4, 3)}

– A relation εZ : IV→I defined by {1, 3} ∼ ∗.
– The relevant unit, associativity and symmetry natural isomorphisms.

It is worth mentioning that there is a bijection between states and operations of both
theories. Isomorphism is however not achieved, due to the way operations compose. The
reason for using Z in the subscript of δZ and εZ will soon become clear.
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We use the grid notation to denote the copying relations δ : IV→IV⊗IV, in a 4 by 4
grid, we say that x ∼ (y, z) if there is an x at the position (y, z) in the grid. In this notation
δZ has the form:

1 2

2 1

3 4

4 3

We set x0 := ε†Z and apply permutations to it to obtain 6 states. Each of them is a
relation of the type I→IV:

z0 := ∗ ∼ {1, 2} x0 := ∗ ∼ {1, 3} y0 := ∗ ∼ {1, 4}
z1 := ∗ ∼ {3, 4} x1 := ∗ ∼ {2, 4} y1 := ∗ ∼ {2, 3}

These turn out to be the eigenvectors (which in this context we call classical points) of
three observables that are definable in Spek.

Let us consider how the tuple (IV, δZ , εZ) interacts with the states z0, z1.

δZ ◦ z0 = ∗ ∼ {(1, 1), (1, 2), (2, 1), (2, 2)} = (∗ ∼ {1, 2})⊗ (∗ ∼ {1, 2}) = z0 ⊗ z0
δZ ◦ z1 = ∗ ∼ {(3, 3), (3, 4), (4, 3), (4, 4)} = (∗ ∼ {3, 4})⊗ (∗ ∼ {3, 4}) = z1 ⊗ z1

By this computation we can see that both z0 and z1 are copied by δZ , hence, by the
definition 1.8, they are the classical points of (IV, δZ , εZ). The subscript in δZ was chosen
to indicate the basis that this operator copies. The remaining four points are unbiased for
δZ and form a phase group:

Lemma 3.1. ({x0, x1, y0, y1},�) is an abelian group isomorphic to Z2×Z2, where � is the
abstract operation defined in chapter 1.

Proof. The fact that ({x0, x1, y0, y1},�) is an abelian group follows by Theorem 1.3. We
show that the group is isomorphic to Z2×Z2. Since the only other 4 element abelian group
is Z4, it is sufficient to show that our group is not isomorphic to Z4. To ensure that, we
show that each element squares to the identity element, i.e. the group is not cyclic.

x0 � x0 = δ†Z ◦ (x0 ⊗ x0) = δ†Z ◦ (∗ ∼ {(1, 1), (1, 3), (3, 1), (3, 3)}) = (∗ ∼ {1, 3})
x1 � 10 = δ†Z ◦ (x1 ⊗ x1) = δ†Z ◦ (∗ ∼ {(2, 2), (2, 4), (4, 2), (4, 4)}) = (∗ ∼ {1, 3})
y0 � y0 = δ†Z ◦ (y0 ⊗ y0) = δ†Z ◦ (∗ ∼ {(1, 1), (1, 4), (4, 1), (4, 4)}) = (∗ ∼ {1, 3})
y1 � y1 = δ†Z ◦ (y0 ⊗ y0) = δ†Z ◦ (∗ ∼ {(2, 2), (2, 3), (3, 2), (3, 3)}) = (∗ ∼ {1, 3})

Hence all elements square to one element, now sufficient to show that x0 is the identity:

x0 � y0 = δ†Z ◦ (y0 ⊗ y0) = δ†Z ◦ (∗ ∼ {(1, 1), (3, 1), (1, 4), (3, 4)}) = (∗ ∼ {1, 4}) = y0
y0 � x0 = δ†Z ◦ (y0 ⊗ y0) = δ†Z ◦ (∗ ∼ {(1, 1), (4, 1), (1, 3), (4, 3)}) = (∗ ∼ {1, 4}) = y0

similarly for x1 and y1. Therefore, ({x0, x1, y0, y1},�) is isomorphic to Z2 × Z2.

Each element of the set {x0, x1, y0, y1} induces a relation (xi �Z 1IV ) : IV→ IV. Given

by: (xi �Z 1IV ) = δ†Z ◦ (x1 ⊗ 1IV ) , for example:
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(x1 �Z 1IV ) = δ†Z ◦ (x1 ⊗ 1IV ) = δ†Z ◦


1 ∼ {(2, 1), (4, 1)}
2 ∼ {(2, 2), (4, 2)}
3 ∼ {(2, 3), (4, 3)}
4 ∼ {(2, 4), (4, 4)}

=


1 ∼ 2

2 ∼ 1

3 ∼ 4

4 ∼ 3

Other induced relations are as follows:

δ†Z ◦(x0⊗1IV ) =


1 ∼ 1

2 ∼ 2

3 ∼ 3

4 ∼ 4

δ†Z ◦(y0⊗1IV ) =


1 ∼ 1

2 ∼ 2

3 ∼ 4

4 ∼ 3

δ†Z ◦(y1⊗1IV ) =


1 ∼ 2

2 ∼ 1

3 ∼ 3

4 ∼ 4

By the results from chapter 1, ({(x0 �Z 1IV ), (x1 �Z 1IV ), (y0 �Z 1IV ), (y1 �Z 1IV )}, ◦)
is a group isomorphic to ({x0, x1, y0, y1},�), where ◦ is the usual relational composition.
The significance of this result will become apparent in the later part of this chapter.

One may be tempted to define (IV, δZ , εZ) to be an observable in Spek. However

composing δZ with different permutations results in obtaining three tuples (IV, δ
′
Z , x†1),

(IV, δ
′′
Z , y†0), (IV, δ

′′′
Z , y†1), that have the same classical and unbiased points. Hence, we

label Z := {(IV, δZ , εZ), (IV, δ
′
Z , x

†
1), (IV, δ

′′
Z , y

†
0), (IV, δ

′′′
Z , y

†
1)} and define it to be the first

observable. Its classical points are z0, z1 and unbiased points are x0, x1, y0, y1.
By applying further permutations we obtain two more observables: X and Y which are

generated by δX and δY which are represented by the two grid diagrams:

δX :

1 3

2 4

3 1

4 2

δY :

1 4

3 2

2 3

4 1

Labels chosen for the 6 states enumerated above, indicate which of them are classical
and unbiased points of observables X and Y.

Since each observable consists of 4 tuples, we augment the notion of complementarity.

Definition 3.3. [5] Two observables O1, O2 in Spek are complementary if there exists a
pair of tuples (IV, δ1, ε1)∈ O1 and (IV, δ2, ε2)∈ O2, complementary in the usual sense.

Lemma 3.2. Each pair of the set of observables {Z,X, Y } in Spek is complementary.

Again, like for Stab we want to argue that Spek is a categorical Model of Spekkens’ Toy
Theory. There is a straightforward bijective correspondence between six epistemic states of
the primitive system IV and six classical points in Spek. Now, following the presentation
due to [5], any two-system state is obtainable by applying permutations of IV to one of
these states. Both are expressible in Spek :

δZ ◦ εZ :I→IV×IV:: ∗ ∼ {(1, 1), (2, 2), (3, 3), (4, 4)}
δZ ◦ z0 = z0 ⊗ z0 :I→IV×IV:: ∗ ∼ {(1, 1), (1, 2), (2, 1), (2, 2)}

22



The composition δZ◦εZ is sometimes referred to as a ’Bell state’ – a counterpart of maximally
entangled state of two qubits.

For three systems, all states can be generated using permutations from the GHZ state,
expressed in Spek as (δZ ⊗ IIV ) ◦ (δZ ◦ εZ), where the second component is a Bell state.

Probabilistic perturbations discussed earlier in this chapter, that are caused by mea-
surement, are expressed by permutations composed with relations of the form:

(x0 ◦ z†0) :IV→IV:: {1, 2} ∼ {1, 3}

Hence, all the components of Spekkens’ Toy Theory are expressible in Spek, which is its
categorical counterpart. Now we may proceed to apply graphical calculi to analyse Spek.

As showed earlier for observable Z, each observable is associated with a phase group. In
Spek each phase group is isomorphic to Z2×Z2. We state thee complementary obervables
in Spek explicitly:

GZ = ({(x0 �Z 1IV ), (x1 �Z 1IV ), (y0 �Z 1IV ), (y1 �Z 1IV )}, ◦) =

= ({1IV ,

{
1 ∼ 2

2 ∼ 1
,

{
3 ∼ 4

4 ∼ 3
,


1 ∼ 2

2 ∼ 1

3 ∼ 4

4 ∼ 3

}, ◦)

GY = ({(x0 �Y 1IV ), (x1 �Y 1IV ), (z0 �Y 1IV ), (z1 �Y 1IV )}, ◦)

= ({1IV ,

{
1 ∼ 4

4 ∼ 1
,

{
2 ∼ 3

3 ∼ 2
,


1 ∼ 4

2 ∼ 3

3 ∼ 2

4 ∼ 1

}, ◦)

GX = ({(z0 �X 1IV ), (z1 �X 1IV ), (y0 �X 1IV ), (y1 �X 1IV )}, ◦)

= ({1IV ,

{
1 ∼ 3

3 ∼ 1
,

{
2 ∼ 4

4 ∼ 2
,


1 ∼ 3

2 ∼ 4

3 ∼ 1

4 ∼ 2

}, ◦)

Now let RGB-Even be a subcategory of RGB generated by generators of RGB with
phase angles limited to the set {0, 2}, i.e. with odd angles excluded. Then let J·KF :RGB-
Even→Spek be a functor that acts on the generators as follows:
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s {

F
= ε†Z = ∗ ∼ {1, 3} = x0

t |

F

= δ†Z

u

v 2

}

~

F

= y1 �Z 1IV =


1 ∼ 2

2 ∼ 1

3 ∼ 4

4 ∼ 3
t |

F

= δZ

t |

F

= εZ = {1, 3} ∼ ∗

s {

F
= ε†X = ∗ ∼ {1, 4}

t |

F

= δ†X

u

v 2

}

~

F

= z1 �X 1IV =


1 ∼ 3

2 ∼ 4

3 ∼ 1

4 ∼ 2
t |

F

= δX

t |

F

= εX = {1, 4} ∼ ∗

s {

F
= ε†Y = ∗ ∼ {1, 2}

t |

F

= δ†Y

u

v 2

}

~

F

= x1�Y 1IV =


1 ∼ 4

2 ∼ 3

3 ∼ 2

4 ∼ 1
t |

F

= δY

t |

F

= εY = {1, 2} ∼ ∗

Theorem 3.3. F is a symmetric monoidal †-functor.

Proof. We check that JfKF=JgKF holds for each rule f = g in RGB. Also, for all generators
g, we check that J·KF preserved the †-structure: JgKF

†=
q
g†

y
F and that J·KF respects the

symmetric monoidal structure on generators.

The idea to interpret even phases as these relations originated from the fact that both

({1IV ,


1 ∼ 2

2 ∼ 1

3 ∼ 4

4 ∼ 3


1 ∼ 3

2 ∼ 4

3 ∼ 1

4 ∼ 2

,


1 ∼ 4

2 ∼ 3

3 ∼ 2

4 ∼ 1

}, ◦) and the group of dualizers (three even phases

and the identity) are groups isomorphic to Z2 × Z2.
The only elements of RGB that we are unable to interpret in Spek are odd phases.

This comes as no surprise, as an opposite result would imply that we could recreate in
Spek all quantum mechanical behaviours that it is known not to support (for example
phase gates).

As clearly visible from the presentation of phase groups for different observables, each
of these relations decomposes into two smaller factors. The question remains whether there
is any piece of structure in RGB, that we could associate with these factors. Since even
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phases in RGB decompose to two odd phases of the same colour that cannot be translated
into Spek, we conjecture that there is no such structure in RGB.

The consequence the fact that we are able to interpret generators of RGB-Even is that
all quantum computational operations expressible using these generators are expressible in
Spekkens Toy Theory. In particular this applies to some of the protocols considered in the
next chapter.
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Chapter 4

Quantum Protocols

In this chapter we consider the application of graphical calculi to expressing and proving
correctness of quantum protocols. The concept was briefly explored in a paper by Coecke
and Duncan[4], but the most extensive and thorough analysis of the topic appeared in
Anne Hillebrand’s MFoCS dissertation[11]. She formally defines notions used in description
of quantum protocols within Red-green calculus and presents a variety of protocols in this
way. Here, we use her ideas to interpret and prove correctness of several protocols in
Red-green-blue calculus. Further, we proceed to compare the complexity of Red-green and
Red-green-blue interpretations. Throughout the chapter we will refer to different parties
involved in quantum protocols as Alice, Bob and Charlie and to the evesdropper as Eve,
these names are a long standing convention in cryptography.

4.1 Quantum Protocols in Graphical Calculi

One of the most serious physical difficulties encountered in the process of building a quantum
computer is the phenomenon of decoherence of the quantum state. Once qubits come in
contact with the surrounding environment an inadvertent measurement is conducted and
the quantum state collapses. Unfortunately, it is extremely difficult to keep qubits separated
from the outside environment. This effectively limits the size of today’s quantum computers
to at most a couple of qubits. In the current state of technology, it is unlikely that quantum
computers consisting of many more will be physically realisable in the near future. Many
quantum algorithms require at least a few thousand qubits to be able to solve problems
of size sufficient for the quantum speed-up advantage to manifest. So, it is reasonable to
turn our attention to applications that are perhaps less spectacular, but nonetheless offer
improvement over classical methods.

Quantum protocols, especially security protocols offer exactly this. Their most impor-
tant feature is that due to quantum mechanical effects, they provide protection from mali-
cious evesdroppers. This is achieved because of the influence that measurement has on the
quantum state. If Eve attempts to tamper with the message, she unintentionally performs a
measurement and her interference can be detected by Alice and Bob. We mentioned earlier
that inadvertent measurements constitute a great obstacle on the path to constructing a
quantum computer. Here their effect is beneficial and they allow us to devise completely
secure quantum protocols.

Before we proceed to presentation of specific protocols, we need to establish several
preliminary facts. In this chapter we will be using the following definitions[11]:

26



Definition 4.1. A quantum protocol consists of two parts, the set of instructions and the
desired behaviour. The set of instructions is an ordered list of operations to perform in
order to achieve the desired behaviour, otherwise referred to as the goal of the protocol.

Definition 4.2. A quantum protocol is considered to be correct or valid if the set of
instructions implies the desired behaviour.

Since Red-green-blue calculus is the language in which we will express the protocols, we
first need to show a couple of technical results, whose relevance will become clear in the
later part of this chapter. Grey boundary boxes denote inputs and outputs and are used to
capture incoming and outcoming wires.

Lemma 4.1. The GHZ state, represented in the Dirac’s notation by |GHZ〉 = |000〉+|111〉√
2

and defined in chapter 1 is represented in RGB-calculus by:

Lemma 4.2. The Controlled-Not gate is graphically represented in RGB-calculus by:

Proof. Using the results from Chapter 2 and the functor T : RG→RGB:

T




=

Lemma 4.3. The Hadamard gate is represented in RGB-calculus by:

T




=

Proof. It has been showed in Chapter 2 that categories RG+ and RGB are isomorphic,
hence we could apply the functor T : RG→RGB to the Euler’s decomposition of the
Hadamard gate, to obtain the required result.
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Lemma 4.4. Let σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
denote three Pauli

matrices, they are represented in RGB-calculus by phase angles 2:

σx = σy = σz =

Proof. This follows by interpretation of these digraphs in Stab.

As stated before, when considering RGB-calculus representations of quantum opera-
tions, we omit constants. This leads to another result that will be used while proving
correctness of quantum protocols.

Lemma 4.5. The set {I, σx, σz, σy} forms a group under composition in RGB isomorphic
to Z2 × Z2. In particular, the product of all three non-identity elements is equal to the
identity. Hence any Pauli gate may be replaced by a combination of two others.

Note, that three Pauli operators in RGB-calculus are exactly the three dualizers (as
defined in 2.16-2.18), used to flip the direction of arrows. We will use this fact in section
4.3.

4.2 Quantum Secret Key Sharing with GHZ

The first protocol we discuss is a basic case of secure communication. Alice wants to send
a message to Bob and Charlie, but she wants them to be able to read the message only if
they cooperate. If one of them attempts to recover the message on their own, they should
be unsuccessful. Such a situation could occur, for instance, if Alice had a set of instructions
to be performed and she knew that exactly one of Bob and Charlie is not trustworthy and
will not fulfill the tasks if working on their own. Then the requirement above guarantees
that her instructions will be followed.

An easy classical solution is to encode the message in binary and then split it into two
parts A and B, such that when a bitwise or operation is performed on A and B, the original
message is retrieved. This idea however, does not deal with the problem of presence of po-
tential evesdroppers. As mentioned at the beginning of this chapter, quantum cryptography
provides a solution, as interference of Eve can always be detected. The obvious approach
would be to send classically obtained messages A and B using quantum cryptography and
then, as previously, combine them using bitwise or operation. However, a more elegant
solution using multipartite entanglement as a resource was devised and first presented in
[12]. This is the protocol that we will consider.

Let Alice, Bob and Charlie share a GHZ state, so that each of them holds one qubit.
The instructions for Secret Key Sharing are as follows:

• Alice, Bob and Charlie each decide whether to measure their qubit in the x- or y-
direction and they inform others about their choice.
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• If the combination of their choices is valid, cooperation between Bob and Charlie is
possible to recover Alice’s result of measurement, this result is then used as a joint
key between Alice and both parties.

The table below summarises Charlie’s qubit state depending on Alice’s and Bob’s state.
If Charlie decides to measure the qubit along axis that corresponds to this state, a valid
combination of measurement directions is obtained and Charlie together with Bob may
deduce Alice’s result. If he chooses a wrong axis, then no informaiton about Alice’s state
can be recovered. Thus, exactly half of all the combinations are valid.

〈+| 〈−| 〈i| 〈−i|
〈+| 〈+| 〈−| 〈−i| 〈i|
〈−| 〈−| 〈+| 〈i| 〈−i|
〈i| 〈−i| 〈i| 〈−| 〈+|
〈−i| 〈i| 〈−i| 〈+| 〈−|

Note, that results of measurements in the x- and y- direction are represented graphically
as:

〈+| = 〈−| = 〈i| = 〈−i| =

With the representation of GHZ justified in Lemma 4.1. correctness of the protocol will be
proven if we manage to replicate the results from the table above in RGB calculus.

Theorem 4.6. Quantum secret key sharing with GHZ is a valid protocol.

Proof. We need to consider cases, let A denote Alice’s measurement result and B Bob’s.
First let’s derive an auxilliary result using †-properties of RGB:

(2.11)
=

implies that: 



†

=





†

hence:

= (∗)
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• A=B=〈+|

(2.8)
= = = 〈+|

• A=B=〈−|

(2.8)
= = = 〈+|

• A=〈+|, B=〈−|, symmetrically for A=〈−|, B=〈+|

(2.8)
= = = 〈−|

• A=〈+|, B=〈i|, symmetrically for A=〈i|, B=〈+|

(2.8)
=

(2.20)
=

(2.7)
= = = 〈−i|

• A=〈+|, B=〈−i|, symmetrically for A=〈−i|, B=〈+|

(2.8)
=

(2.20)
=

(2.7)
= = = 〈i|
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• A=〈−|, B=〈i|, symmetrically for A=〈i|, B=〈−|

(2.8)
=

(2.8)
=

(∗)
= =

(2.8)
=

(2.11)
=

(2.7)
= = = 〈i|

• A=〈−|, B=〈−i|, symmetrically for A=〈−i|, B=〈−|

(2.8)
=

(2.8,2.20)
=

(2.11)
= =

(∗)
=

(2.20)
=

(2.7)
= = = 〈−i|

• A=〈i|, B=〈−i|, symmetrically for A=〈−i|, B=〈i|

(2.8)
=

(2.8)
=

(∗)
= =

(2.8)
= = = 〈+|
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• A=B=〈i|

(2.8)
=

(∗)
= =

(2.8)
= = = 〈−|

• A=B=〈−i|

(2.20)
=

(2.8)
= =

(2.11)
= = = 〈−|

The results from the table are thus replicated, hence the set of instructions realises the goal
of the protocol, so by Definition 4.1, the protocol is valid.

As an aside, we add that the protocol can be extended to four and more parties in a
straightforward manner. All that is necessary for the case with n participants is an n-GHZ
multipartite state.[11]

The proof of this protocol’s correctness in Red-green calculus as shown by Hillebrand
is less complex than the proof above. This is due to the fact that in Z/X-calculus both
〈i| and 〈−i| are represented using the same colour as 〈+| and 〈−| and only have different
phases. In that proof, in all cases the graphs collapse to the required result in one step,
using the green-spider rule. This shows a very important fact: representing a protocol in
RGB-calculus does not always offer better results than the Z/X-calculus representation.

4.3 Quantum Secret State Sharing with GHZ

In this protocol, the problem is the same as in the previous section, but this time Alice
wants to send a stream of qubits. At her disposal she has an unlimited number of GHZ
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triplets. Qubits of each GHZ state are divided between her, Bob and Charlie in the same
way as in the Secret Key Sharing protocol. Instructions for transfering each qubit are as
outlined in [12]:

• Alice measures both her qubits in the Bell basis. One qubit is a member of the GHZ
triplet, the other is the one being transferred.

• Bob measures his qubit along the x-axis.

• Alice announces her result publicly, as does Bob. On that basis Charlie determines
what unitaries to apply to his qubit to recover Alice’s state.

The following table lists the corrections that Charlie needs to make depending on Alice’s
and Bob’s measurement result.

〈Φ+| 〈Φ−| 〈Ψ+| 〈Ψ−|
〈+| I σz σx σxσz
〈−| σz I σxσz σx

The following is a diagrammatical RGB representation of the initial setup and the set
of instructions in the Quantum Secret State Sharing with GHZ protocol.

Alice’s qubit and the GHZ qubit that she holds are measured in the Bell basis, the result
of this measurement is denoted using α and β. Measurement in the x-basis is performed on
the second qubit of the GHZ triplet, we will denote its result by γ. Finally, a unitary local
operation U is performed on Charlie’s qubit, which is the third qubit of the GHZ state.

The following computation justifies the representation of Bell basis measurement, using
functor T : RG→RGB defined in chapter 2:

T




= = = =
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(2.13)
=

(2.16)
=

(2.8)
=

The table below contains eight different possible combinations of measurements out-
comes, four for Bell basis measurement of two qubits multiplied by two for the x-basis.

α β γ Bell state x-state unitary

0 0 0 〈Φ+| 〈+| I

0 0 2 〈Φ+| 〈−| σz
0 2 0 〈Ψ+| 〈+| σx
0 2 2 〈Ψ+| 〈−| σxσz
2 0 0 〈Φ−| 〈+| σz
2 0 2 〈Φ−| 〈−| I

2 2 0 〈Ψ−| 〈+| σxσz
2 2 2 〈Ψ−| 〈−| σx

Lemma 4.7. Quantum Secret State sharing with GHZ is a correct protocol.

Proof. In order to prove this statement, we need to show that in all eight cases outlined
above the graphical representation of the protocol’s instructions simplifies to a straight
wire, which signifies transfer of Alice’s qubit. But first we provide a justification for arrow
direction flipping using dualizers:

(2.8)
=

(2.19)
= (∗)

Now, we consider cases:

• α = β = γ = 0

(2.8,∗)
=

(∗)
=

=
(2.7)
=
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• α = β = 0, γ = 2

(2.8,∗)
=

(2.7)
=

=
(2.7)
=

• α = 0, β = 2, γ = 0

(2.8,∗)
=

(2.7)
=

=
(2.7)
=

• α = 2, β = γ = 0

(2.8,∗)
=

(2.7)
=

=
(2.7)
=

• α = 0, β = γ = 2, before this case is considered, let us note that due to the result from
Lemma 4.5, σxσz may be graphically represented by the graphical representation of
σy.

(2.8,∗)
=

(2.7)
=

=
(4.5)
=
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• α = β = 2, γ = 0

(2.8,∗)
=

(2.7)
=

=
(4.5)
=

• α = 2, β = 0, γ = 2

(2.8,∗)
=

(2.7)
=

=
(2.7)
=

• α = β = γ = 2

(2.8,∗)
=

(4.5)
=

=
(4.5)
=

An important remark is that a variant of this protocol in which Alice holds one qubit of
the GHZ state and Diana holds two that are normally held by Bob and Charlie is nothing
but teleportation of a quantum state through GHZ. This is analysed in detail in [11].

Proof of this result in Red-Green calculus, due to Hillebrand, has a comparable level of
simplicity. The part of the digraph denoting Bell’s measurement is rewritten more efficiently,
but Charlie’s unitary corrections are expressed in a less elegant way. This is due to the fact
that all three observables are explicitly used in the protocol and RGB-calculus has primitive
structures to support all three, whereas Z/X-calculus does not.
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4.4 EPR Teleportation through GHZ

In this next protocol Alice wants to teleport an entangled state |ψ〉 = α|01〉+β|10〉(α2+β2 =
1) to Bob and Charlie. The three parties share a GHZ state and as in other protocols, each
holds one qubit of the triplet. The instructions of the protocol, as they appear in [10] are
as follows:

• Alice measures the first qubit of the EPR pair in the x-basis, simultaneously she
measures the second qubit of the pair and her GHZ qubit in the Bell basis. She
announces the results of both measurements to Bob and Charlie.

• Depending on the information provided by Alice, Bob and Charlie deduce what uni-
taries to apply to their individual qubits. The appropriate combinations are displayed
in the table below.

The following digraph presents the initial setup and the set of instructions in the EPR
teleportation through GHZ protocol.

The first qubit of the EPR pair is measured in the x-basis, the result is denoted by α.
The Bell basis measurement on two remaining Alice’s qubits is denoted by β and γ. Two
other members of the GHZ triplet are subject to unitary corrections U performed by Bob
and Charlie. Note, that again there are 8 possible measurement outcomes, similarly as for
Quantum Secret Sharing, we present them in the table, along with unitary corrections to
be applied (constants are omitted for simplicity):

Bell basis outcome x-basis outcome Bob’s unitary Charlie’s unitary α β γ

〈Φ+| 〈+| σx I 0 0 0

〈Φ−| 〈+| σy I 0 2 0

〈Φ+| 〈−| σy I 2 0 0

〈Φ−| 〈−| σx I 2 2 0

〈Ψ+| 〈+| I σx 0 0 2

〈Ψ−| 〈+| I σy 0 2 2

〈Ψ+| 〈−| I σy 2 0 2

〈Ψ−| 〈−| I σx 2 2 2

The state |ψ〉 that Alice wants to teleport is realised graphically as:
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Lemma 4.8. EPR teleportation through GHZ is a valid protocol.

Proof. It is necessary to show for all 8 cases enumerated in the table above that the diagram-
matic RGB representation of the protocol’s initial setup and instructions can be rewritten
using rules of RGB-calculus into the representation of the EPR pair that Alice wants to
teleport. First let’s show a result that is a consequence of the way dualizers interact with
colours in RGB:

(2.21)
=

(2.8)
= (∗)

• α = β = γ = 0

(2.8,∗)
=

(∗)
=

• α = β = 0, γ = 2

(2.8)
=

(2.7)
=

• α = 0, β = 2, γ = 0

(2.8)
=

(2.8)
=

(4.5)
=

=
(∗)
=
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• α = 2, β = γ = 0

(2.8)
=

(4.5)
=

(4.5)
=

=
(2.8)
=

(4.5)
=

(∗)
=

• α = 0, β = γ = 2

(2.8)
=

(4.5)
=

(4.5)
=

(2.8)
=

(4.5)
=

• α = β = 2, γ = 0

(2.8)
=

(2.8)
=

(4.5)
=

=
(4.5)
=

(2.8)
=

(4.5)
=
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=
(∗)
=

• α = 2, β = 0, γ = 2

(2.8)
=

(2.7)
=

=
(2.8)
=

(4.5)
=

• α = β = γ = 2

(2.8,4.5)
=

(4.5)
=

As in the case of protocols from sections 4.2 and 4.3 Hillebrand proves the correctness
of EPR teleportation through GHZ in Z/X-calculus.[11] Due to the elegant representation
of unitary corrections, the proof in RGB is significantly simpler.

As an aside, let’s consider the presentations of Quantum Secret State Sharing and EPR
teleportation in the context of results from Chapter 3. Graphical representations of both
protocols only use generators from the subcategory RGB-Even and hence by the above, we
showed that both protocols are realisable in Spek and therefore in Spekkens Toy Theory.

Analysis performed in this chapter illustrates that it is possible to apply Red-green-blue
calculus to express and prove correctness of quantum protocols. Three considered examples
show that RGB-calculus in some cases offers an advantage over Red-green calculus, espe-
cially when three complementary observables of a qubit are explicitly mentioned. However,
when the observable Y is absent, description with Z/X-calculus is superior.
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Chapter 5

Classical Simulability of Quantum
Algorithms

So far in chapters 3 and 4 we showed that graphical calculi and categorical approach to
quantum mechanics can be applied to analyse differences between quantum theories and
to describe and prove correctness of quantum protocols. In this chapter we show how to
capture the notion of classical simulability of quantum computation within Z/X-calculus.
We use this concept to provide an alternative, diagrammatical proof of a standard result in
Quantum Computing due to Browne [2], that the Quantum Fourier Transform is classically
simulable on eigenstate inputs.

5.1 Classical Simulability in Z/X-Calculus

The idea of simulating quantum computation on a classical computer might seem a bit
counterintuitive, why would one want to deprive oneself of the benefits of quantum speed-
up? Of course, given appropriate time and memory resources any quantum computation
can be simulated by a classical computer, but here we are interested in simulation that is
efficient. If a quantum algorithm can be efficiently classically simulated then it means that
an efficient classical algorithm solving the given problem is thus constructed. Therefore
classical simulation of quantum computation can be seen as a mean of devising efficient
classical algorithms. Analysis of classical simulation also gives us an additional insight into
the origins of quantum speed-up. It allows us to pinpoint precisely which components of
the quantum algorithm are responsible for the advantage over classical computation and
which are merely classical procedures disguised as quantum operations.

Definition 5.1. An algorithm is said to be efficient if its running time is a polynomial in
the size of the input.

The definition of efficient classical simulation of quantum computation, as given by Van
Den Nest[23] is as follows:

Definition 5.2. Consider a uniform family of quantum circuits U ≡ UN acting on the
N -qubit input state |0〉 ≡ |0〉⊗N , and followed by a measurement of the first qubit in the
computational basis. Then the outcome is a classical bit α ∈ {0, 1}. The probability that
the result α occurs is given by π(α) = 〈0|U†[|α〉〈α|⊗I]U|0〉. We say that the above quantum
computation can be efficiently simulated classically if it is possible to evaluate π(0) up to
M digits in poly(N,M) time on a classical computer.
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In this chapter we consider an full version of Z/X-calculus, as defined in [4]. Phase
angles now range over a continuous set [0, 2π), as opposed to a discrete set {0, π2 , π,

3π
2 } as

in the category RG from Chapter 2.
The following theorem gives a sufficient condition for efficient classical simulability

within Z/X-calculus, assuming that quantum computation is described in the standard
Hilbert Spaces formalism:

Theorem 5.1. If the graph that represents the initial setup of a quantum computation Q
on an input I can be rewritten into a product state

• In a number of steps polynomial in the size of the input

• Using the rules of the red-green calculus

Then the quantum computation Q on input I can be efficiently classically simulated.

Proof. Let Q be a quantum computation whose diagrammatical representation in Z/X-
calculus satisfies all the conditions. Then the corresponding classical procedure is as follows:
1. Translate Q into its representation in Z/X-calculus 2. Rewrite the representation to a
product state 3. Translate the obtained product state back to its Hilbert Space formalism
equivalent Both translations are performed in a polynomial number of steps, as is the
procedure of rewriting, hence the classical algorithm is an efficient simulation of Q.

The general form of a product state expressed in Z/X-calculus is:

...

where α, β ∈ [0, 2π). Examples of product states include: and

.

We now proceed to illustrate applications of this theorem with an example. The specific
algorithm chosen is the Quantum Fourier Transform, a procedure that is in the heart of the
most spectacular example of quantum speed-up - Shor’s algorithm[21]. Otherwise known as
the factoring algorithm, it computes prime factors of a natural number in time polynomial
in the number of bits in that number’s binary representation. If realised physically it
would constitute a breach in security of all security protocols that exploit the difficulty of
computing prime factors on a classical computer. This includes the widely popular RSA
encryption protocol.

Definition 5.3. Quantum Fourier Transform is a linear transformation on qubits that is
the quantum counterpart of the Discrete Fourier Transform. QFT is the classical DFT
applied to the vector of amplitudes of a quantum state. It can be interpreted as a unitary
matrix acting on a quantum state:
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FN = 1√
N



1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωN−1

1 ω2 ω4 ω6 . . . ω2(N−1)

1 ω3 ω6 ω9 . . . ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) . . . ω(N−1)(N−1)


Schematically, QFT can be expressed by a quantum circuit. In the following diagram

H denotes the Hadamard gate and Rα represents the Controlled Phase gate with phase α.
It is worth noting that the order of qubits is reversed on output.

To translate the QFT circuit into Red-green calculus, we need the Hadamard gate, as
well as the controlled phase gate (denoted Rα). The former, being one of the primitive
elements, is easily realisable, the latter requires composing several basic operators. Firstly,
we need to construct the CNOT gate:

CNOT = (I⊗δX)◦(δZ⊗I)
(Topology)

=
(Topology)

=

then, following the result presented in [4] we compose CNOTs with green phase gates
(denoted Zα):

Correctness may be verified by multiplying matrices corresponding to these gates:

(I⊗Zα)◦CNOT◦(Zα⊗Zα)◦CNOT =

( (
1 0
0 1

)
⊗

(
1 0

0 e
iα
2

) )
◦


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ◦

◦

( (
1 0

0 e
iα
2

)
⊗

(
1 0

0 e−
iα
2

) )
◦


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiα

 = Rα

In Red-green calculus the above product of matrices is expressed as:
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(2.3)
=

For two qubits the QFT circuit translated into Z/X-calculus is depicted as follows:

Due to qubit reversal on output, visible on the QFT circuit graph, the qubits are first

swapped. The sample input, say |0〉 ⊗ |1〉 is denoted (after the swap) by .

Plugging the input results in yields:

5.2 Classical Simulability of QFT in Z/X-Calculus

Before we proceed to the graphical proof, we prove the following useful lemma:

Lemma 5.2. In red-green calculus, when one of , is fed into a green copy

, the resulting graph is disconnected.
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Proof. This follows by axioms of Z/X-calculus. Note that |0〉 and |1〉 represented respec-

tively by and are eigenstates of the observable (A, δX , εX) in the sense of

Definition 1.13, and are copied by the δX operation.

Now, we quote the following standard result due to Browne[2] and provide a new dia-
grammatical proof:

Theorem 5.3. Let I be an input of the form:

n1︷ ︸︸ ︷
|0 . . . 0〉⊗

n2︷ ︸︸ ︷
|1 . . . 1〉⊗ · · · ⊗

nk−1︷ ︸︸ ︷
|0 . . . 0〉⊗

nk︷ ︸︸ ︷
|1 . . . 1〉,

and {n1, . . . , nk} ⊆ {0, 1, 2, 3, . . . } i.e. I is a product state of computational basis states.
Quantum Fourier transform run on I can be efficiently simulated on a classical computer.

Proof. In red-green calculus inputs of this form are product states consisting of:

|0〉 = |1〉 = .

We argue inductively that the result of performing QFT on such an input is a product state,
then Theorem 5.1 will give us the required result. Let α, β, γ and sum denote phases and
x, y, z, v ∈ {0, π}

• Base case: 2 qubits

(2.3,5.2)
=

(2.3)
=

(2.3,5.2)
=

=
(2.2,2.3,2.5,2.6)

=



if x = 0

if x = π

• Inductive step: Assuming the result holds for QFTn−1, let’s chow the result for QFTn.
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(2.3,5.2)
=

(2.3)
=

By the inductive hypothesis, the result of computing QFTn−1 is a product state, hence
the whole graph is a product state.

The fact, that the number of gates in the quantum circuit realising QFT is polynomial
in the number of input qubits is a standard QC result.[19] By the means of translation
provided earlier in this chapter, the size of the corresponding graph in red-green calculus
has the same order of magnitude as the size of the quantum circuit. Then, it is clearly
visible by the above computation that the number of rewrites per gate is constant. Hence,
the overall number of rewrites in the process is polynomial in the number of input qubits.

Also, by the above graphical argument that only used red-green calculus rules, the
resulting graph is disconnected and has the form of a product state and thus, we may
conclude by Theorem 5.1 that QFT is classically simulable on eigenstate inputs.

This shows that Z/X-calculus may be succesfully applied to reason about efficient clas-
sical simulation of quantum algorithms.

The results in Chapters 4 and 5 were achieved with aid of Quantomatic - a semi-
automated tool for reasoning about quantum system that is being developed in Oxford
by a team of researchers[16]. Quantomatic was also used to generate digraphs included in
those two chapters. Pictures in Chapter 1 are taken from [3] and those in Chapter 2 from
[17].

Further work based on the results presented here, includes showing completeness of
RGB with respect to Stab. An important stepping stone would be to provide a graphical
proof of Gottesmann-Knill theorem[23], a result on classical simulability of stabilizer cir-
cuits. Other topics include describing further quantum security protocols, especially those
that use all three complementary observables of a qubit and investigating the computational
complexity of rewriting digraphs.

The results obtained in this chapter, together with the applications to analysis of quan-
tum theories and quantum protocols considered here are only a fraction of the Quantum
Mechanical topics where graphical calculi based on categorical axiomatisation can be used.
But even on their own they show that Red-green and Red-green-blue calculi are powerful
and versatile tools for analysis of Quantum Computation.
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