
Logical and Topological Contextuality in
Quantum Mechanics and Beyond

Giovanni Carú
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Abstract

The main subjects of this thesis are non-locality and contextuality, two
fundamental features of quantum mechanics that constitute valuable
resources for quantum computation. Our analysis is based on Abram-
sky & Brandenburger’s sheaf theoretic framework, which captures both
these phenomena in a unified treatment and in a very general setting.
This high-level description transcends quantum physics and allows to
precisely characterise the notion of contextuality as the apparent para-
dox realised by data being locally consistent but globally inconsistent.
More specifically, we aim to develop a deeper understanding of so-
called logical forms of contextuality, i.e. situations where the phenom-
enon can be witnessed using purely logical arguments, disregarding
probabilities.

The sheaf theoretic description of logical contextuality has recently
inspired the development of a topological treatment of the phenomenon
based on sheaf cohomology. In this thesis, we embark on a detailed
analysis of the cohomology of contextuality, exposing key shortcom-
ings in the current methods, and introducing an (almost) complete
cohomological characterisation of logical forms of contextuality. More
specifically, we show that, in its current formulation, sheaf cohomology
does not constitute a complete invariant for contextuality, not even in
its strongest forms, and that higher cohomology groups cannot be used
to study the phenomenon. Then, we solve these issues by introducing
a novel construction, which derives refined versions of the presheaves
describing empirical models to expose their deeper extendability prop-
erties, resulting in a sheaf cohomological invariant which is applicable
to the vast majority of empirical models, and conjectured to work
universally.

We propose a general theory of contextual semantics using the lan-
guage of valuation algebras. In particular, we give a general definition
of contextual behaviour as a fundamental gap between local agree-
ment and global disagreement of information sources. Not only does
this formalism aptly capture and generalise the known instances of
contextuality beyond quantum theory, but it also provides inspiration
for further applications of the phenomenon, and paves the way for the
transfer of results and techniques between different fields. We give a
prime example of this potential by developing faster algorithms to de-
tect contextuality based on mainstream methods of generic inference.

Finally, we turn our attention back to instances of contextuality in
quantum physics, and study strong contextuality in multi-qubit states.
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We give a complete combinatorial characterisation of All-vs-Nothing
proofs of strong contextuality in stabiliser quantum mechanics. This
allows to produce the complete list of all stabiliser states exhibiting
this kind of contextuality, which consitututes an important resource in
certain models of quantum computation. Then, we extend our search
for strongly contextual behaviour beyond stabiliser states, and identify
the minimum quantum resources needed to realise strong non-locality.
Additional results include a partial classification of strongly non-local
models comprised of three-qubit states and local projective measure-
ments, and the introduction of a new infinite family of strongly non-
local three-qubit states.
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CHAPTER I

Introduction

1. General motivation

The advent of quantum physics marks one of the greatest scientific revolutions in hu-
man history. Sparked from the crisis of classical mechanics in the early 1900s, quantum
mechanics developed into what is arguably the most complete physical theory known to
date, and found far-reaching applications to countless areas of modern science. Quantum
chemistry, quantum optics, light-emitting diodes, superconducting magnets, the laser,
transistors and semiconductors, the microprocessor, medical and research imaging such
as electron microscopy and MRI are only some of the fields and inventions spawned
or heavily influenced by quantum mechanics. Despite this tremendous success, the ad-
vancement of the theory has been traditionally met with controversy and discomfort.
Although this trait is shared by many revolutionary processes in history, the dispute
over quantum theory, and particularly its foundations, stands out as being especially
intricate and difficult to resolve.

The reason is to be found in the theory’s highly counterintuitive character, which
ignited a profound physical and philosophical debate, originally animated by some of the
greatest physicists of the 20th century – Planck, Bohr, Heisenberg, Einstein, Schrödinger,
Von Neumann, Dirac, Pauli, Bell to name a few notable examples – and still extremely
lively to this day. This is because quantum mechanics challenged the foundations of
physics more than any other theory before. In fact, one could even say that some
aspects of the theory question the very idea of physical reality, and force us to reject our
fundamental perceptions of the world we live in.

Non-locality and contextuality lie at the heart of this disconcerting proposition.
When non-locality was first identified by Einstein, Podolsky and Rosen in their famous
EPR paradox [EPR35], it was treated as an obscure aspect of quantum physics, a
paradoxical trait that threatened the foundations of the theory itself. Indeed, non-
locality violates what was then a widely accepted criterion of reality, which essentially
requires a physical theory to assign well-defined predetermined values to every physical
quantity. In fact, the existence of non-local behavior was simply deemed impossible.
According to [EPR35], the only plausible explanation to what Einstein originally defined
as a “spooky action at a distance” (non-locality) was the existence of underlying hidden
elements of reality – or hidden variables – which would explain the illusory faster-than
light exchanges of information observed by EPR’s thought experiment. As a result, the
article concluded that quantum physics is fundamentally incomplete.

This claim had to be abandoned after the formulation of classic no-go theorems by
Bell [Bel64] and Kochen-Specker [KS67]. Indeed, these results show that non-locality
and the more general concept of contextuality are unavoidable aspects of any theory
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2 I. INTRODUCTION

which agrees with the predictions of quantum mechanics, elevating these phenomena
from a potential ‘bug’ of quantum physics to fundamental physical features. The EPR
paradox turned out not to be a paradox at all. It only showed how astonishingly un-
suitable our intuition and classical conception of physics are when dealing with Nature’s
most complex interactions.

Although Bell’s definite answer to the question of non-locality somewhat revived
what was then a stagnant debate on quantum foundations, the general scientific com-
munity largely ignored the issue and focused on using the undoubted and unparalleled
power of prediction of the new theory to develop novel fields and applications. Albeit a
full understanding of the foundations of quantum physics was far from being achieved
(and it still is) quantum theory was simply too good for physicists to care about its
completeness and its most controversial aspects.

In the 1980s, the birth of quantum computation utterly changed this attitude. Com-
puter scientists started to consider the peculiarities of quantum mechanics as valuable
resources to break through the limits of classical computation, information and cryptog-
raphy. The study of quantum foundations gained new relevance, and it now represents
a well-established research field in physics, computer science, and mathematics.

While the hardware technology for quantum computers is still at an early stage,
numerous potential applications of quantum mechanics to information processing have
been identified on a theoretical scale: remarkable new algorithms, such as Shor’s algo-
rithm to quickly factorise large numbers [Sho99] and Grover’s algorithm to efficiently
search in unsorted databases [Gro96], cryptographic schemes such as quantum key
distribution protocols [BB14, Eke91] and device-independent quantum cryptography
[MY98, VV14, MS16], and novel perspectives on computational complexity [Wat09].
Realising this potential would revolutionise computation and information theory, and the
benefits for the scientific community and the general public would be enormous.

While it is widely acknowledged that quantum computation offers significant advan-
tages over classical computation, a full grasp of what the specific aspects of quantum
theory enabling these advantages are is far from achieved. Many quantum computer
scientists identify the reason for this in a fundamental lack of knowledge concerning the
structure of quantum physics. In essence, ‘quantum computers operate in a manner so
different from classical computers that our techniques for designing algorithms and our
intuitions for understanding the process of computation no longer work’ [Sho03]. For
this reason, fundamental research on the most non-classical aspects of quantum physics,
such as entanglement, non-locality, contextuality and superposition, is necessary for the
development of the field.

Recent work by Raussendorf [Rau13] and Howard et al. [HWVE14] identified con-
textuality as essential ingredients of quantum computation, showing that these phenom-
ena are the pivotal source of power in the mainstream paradigms of measurement based
quantum computation [GC99, RB01b, RB01a, KLM01, RBB03, Nie03, Leu04,
RBB03, BBD+09, Rau13] and magic state distillation [BK05, Kni05, CAB12].
These results suggest that understanding contextuality is not only of fundamental im-
portance to the foundations of physics, as clarified above, but it is the key to potentially
inaugurate a new era of computation.
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2. Logical and topological aspects of contextuality

In 2011, Abramsky and Brandenburger introduced an abstract mathematical frame-
work based on sheaf theory to describe non-locality and contextuality, thereby providing
a common general theory for the study of these phenomena, which had been carried
out in a rather concrete, example-driven fashion until then [AB11a].1 This high-level
description showed that contextuality is not a feature specific to quantum mechanics,
but rather a general mathematical property. As such, it can be independently applied
to other areas of computer science not necessarily related to quantum theory. This
constitutes a remarkable observation, which motivates further research on contextual
behaviour outside of quantum physics.

In their work, Abramsky and Brandenburger presented a hierarchy of different
strengths of contextuality:

Probabilistic contextuality < Logical contextuality < Strong contextuality,

all of which arise naturally in quantum mechanics. While probabilistic contextuality
largely remains studied in relation to quantum theory, logical forms of contextuality
(i.e. logical and strong) have been particularly prolific in the establishment of con-
nections with other fields [Abr14b], with notable examples in relational databases
[Abr13a, Bar15a], constraint satisfaction problems [AGK13, ABdSZ17], natural
language semantics [AS14], and logical paradoxes [ABK+15, Kis16b, dS17]. Con-
trary to the probabilistic case, logical and strong contextuality can be witnessed at the
level of possibilities, thus exposing a deeper structure that turns out to be abundantly
observable across different fields. For this reason, although probabilistic contextuality
will play a substantial role in our study, this thesis will be mostly concerned with logical
forms of contextuality.

The sheaf theoretic description of contextuality exposes the phenomenon’s intrinsic
nature as a fundamental discrepancy between local consistency and global inconsistency
[ABK+15], which finds a compelling illustration in a famous artwork by M. C. Escher
portraying Penrose & Penrose’s never-ending staircase [PP58] (Figure I.1). If one fo-
cuses on a local portion of the staircase, the picture appears to be a perfectly consistent
description of reality. This is showed in Figure I.2, where the piece is split in four parts,
each giving a faithful representation of a portion of a real staircase. The local consistency
of Escher’s staircase resides in that the four parts of Figure I.2 are compatible with each
other: any local picture can be ‘glued’ to any other adjacent part to obtain a larger
figure which is still perfectly consistent. However, once we glue everything together, the
paradoxical aspect of the never-ending staircase immediately emerges, thus resulting in
a globally inconsistent picture. This is the essence of contextuality in the sheaf theoretic
framework: the impossibility of extending a locally compatible family of sections of a
space to a globally consistent picture.

The viewpoint offered by Escher’s lithograph suggests that contextuality has a spatial
connotation. Following this idea, we are interested in understanding it from a purely

1It shall be mentioned that other general approaches to contextuality have appeared in recent
years: Spekken’s contextuality of preparations and unsharp measurements [Spe05], the graph-theoretic
approach of Cabello, Severini and Winter [CSW14], and the combinatorial approach of Aćın et
al. [AFLS15].
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Figure I.1. M.C. Escher, detail from Klimmen en dalen (Ascending and
descending), 1960. Litograph, 35.6 cm × 28.6 cm

Figure I.2. Local consistency: individual parts of the staircase are self
consistent and pairwise compatible.

topological standpoint. In particular, it is natural to ask whether classic tools of topology
can be used to characterise the phenomenon. This hypothesis finds support in the work
of R. Penrose himself, who developed topological methods based on cohomology theory
to study impossible figures [Pen92] such as the never-ending staircase we just used to
describe the quintessential nature of contextuality. Moreover, similar techniques have
been extensively used to study the general problem of extending local properties to global
ones in sheaf theory.
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This thesis aims at achieving such a complete characterisation of logical forms of
contextuality using cohomology theory, following the works of Abramsky et al. on sheaf
cohomology [AMB12, ABK+15]. Once such a topological description is established,
we aim at extending the idea of local consistency vs global inconsistency to a higher level,
with the intent of developing a general theory of contextual semantics, able to capture
contextual behaviour in a variety of fields, including the aforementioned examples of
contextuality beyond quantum mechanics. Our goal is to use this general theory to
transfer methods and results from one field to the other, and to take advantage of these
connections to better understand contextuality, both in quantum theory and beyond.

3. Contributions

Here, we outline the main contributions of this thesis:

• We analyse the limits of the current sheaf cohomological methods for contextual-
ity. In particular, we characterise the structure of false negatives, and show that
the current cohomological description does not constitute a complete invariant
for strong contextuality, not even under strong symmetry and connectedness
assumptions on the measurement scenario, disproving a previous conjecture of
[AMB12]. We extend the theory of cohomological obstructions to higher co-
homology groups, giving a definite answer to speculations on their usefulness
to resolve the issue of false negatives: although higher obstructions do provide
more information on the topological structure of the model, they cannot be
employed to detect contextuality. We also introduce an alternative description
of the cohomology obstructions using F-torsors. This is presented in Chapter
III, whose content has been published in [Car17].
• An (almost) complete sheaf cohomological invariant for logical and strong con-

textuality is introduced. The invariant is applicable to the vast majority of
empirical models, including all the models appeared in the literature, and it
is conjectured to be valid in general. The issue of false negatives is solved by
introducing the novel constructions of line models and scenarios, which expose
the deeper local extendability properties of the presheaves describing empirical
models. The power of the invariant is demonstrated in a large number of exam-
ples, which include all the instances of false negatives known to date. This is
the subject of Chapter IV, which has been presented at the 15th International
Conference on Quantum Physics and Logic (QPL 2018). A pre-print is available
at [Car18].
• A general definition of contextual behaviour is introduced in the language of

valuation algebras [She89, SSS+90]. This novel description naturally spe-
cialises to all the instances of contextual behaviour observed so far, both within
and beyond quantum physics. Moreover, it extends the scope for contextuality
to a variety of other domains and allows to translate theorems, methods and
algorithms from one field to the other.
New algorithms for the detection of logical and strong contextuality are devel-
oped using the connection established in the previous paragraph. Such algo-
rithms are based on mainstream methods of generic inference [She89, SS91,
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Koh03, Pou08], and are proven to outperform the current algorithms, es-
pecially in the case of logical contextuality. This is presented in Chapter V,
whose content has been developed in collaboration with Samson Abramsky,
and partially published in [AC19].
• A complete characterisation of All-vs-Nothing (AvN) arguments for stabiliser

states is introduced. This is achieved thanks to the proof of the AvN triple
conjecture, formulated in [Abr14a, ABK+15]. This result allows to produce
an exhaustive list of strongly contextual multi-qubit stabiliser states, which
constitute fundamental resources for measurement based quantum computa-
tion [GC99, RB01b, RB01a, KLM01, RBB03, Nie03, Leu04, RBB03,
BBD+09, Rau13]. Moreover, it leads to other interesting structural results,
such as the reducibility of every AvN argument to Mermin’s proof of the strong
contextuality of the GHZ model [Mer90b, Mer90a]. This is the subject of
Chapter VI. The results have been presented in a joint paper with Samson
Abramsky, Rui Soares Barbosa and Simon Perdrix, published in [ABCP17].
• We identify the minimum quantum resources needed to realise strong non-

locality, and provide a partial classification of three-qubit states giving rise to
this phenomenon. We show that no two-qubit system, with any finite number of
local measurements, is sufficient. For three-qubit systems, we show that strong
non-locality can only be realised in the GHZ SLOCC class, and with equatorial
measurements. Within this class, we identify an infinite family of states not LU-
equivalent to the GHZ state that realise strong non-locality with finitely many
measurements. States in this class feature decreasing entanglement between
one qubit and the other two, which has to be compensated by an increasing
number of local measurements on the latter. This is the subject of Chapter
VII, whose results have been published in [ABC+17], in collaboration with
Samson Abramsky, Rui Soares Barbosa, Nadish de Silva, Kohei Kishida and
Shane Mansfield.

4. Statement of collaboration

The contents of Chapters III and IV have been completely and independently de-
veloped by the author. Chapter V is a joint collaboration with Samson Abramsky. The
results of Chapter VI are based on preliminary findings of the author’s Master’s disser-
tation [Car15] and a joint paper with Samson Abramsky presented as a poster at the
13th International Conference on Quantum Physics and Logic (QPL2016) [AC16]; the
final content of the Chapter is due to joint work with Samson Abramsky, Rui Soares
Barbosa and Simon Perdrix. Chapter VII is the result of a collaboration with Samson
Abramsky, Rui Soares Barbosa, Nadish de Silva, Kohei Kishida and Shane Mansfield.

5. Outline of the thesis

Chapter II presents some background on the sheaf-theoretic framework for non-
locality and contextuality, with particular attention to sheaf cohomology. In Chapter
III, we analyse the limits of the current cohomological framework for contextuality. The
complete cohomology invariant for non-locality and contextuality is presented in Chapter
IV. Chapter V introduces contextuality in valuation algebraic terms, and presents new



5. OUTLINE OF THE THESIS 7

algorithms to detect it. The complete characterisation of All-vs-Nothing arguments
for stabiliser states is presented in Chapter VI. Chapter VII establishes the minimum
quantum resources needed to realise strong non-locality. Finally, conclusions and possible
future research directions are discussed in Chapter VIII.





CHAPTER II

Background: the sheaf theoretic structure of contextuality

Summary

This chapter presents Abramsky & Brandenburger’s sheaf–theoretic de-
scription of non-locality and contextuality. This high-level mathematical
framework allows to study contextuality independently of quantum me-
chanics, and sets the ground for a topological analysis of these highly non-
classical phenomena. In particular, it allows the development of methods
to detect contextuality based on sheaf cohomology.

1. Overview

Although non-locality and contextuality have been traditionally studied in the con-
text of quantum mechanics, it is important to remark that the content of Bell’s [Bel64]
and Kochen–Specker’s [Bel66, KS67] theorems applies not just to quantum physics,
but to any theory that matches its predictions. In other words, no physical theory which
agrees with quantum mechanics can be local or non-contextual. For this reason, it is
desirable to describe these peculiar phenomena at an appropriate level of abstraction,
without presupposing quantum physics.

Instead of dealing with the typical elements of a quantum setting, such as states
and observables, our main subject of study will be empirical models, abstract structures
which embody the empirical results of an ideal experiment, regardless of its physical
implementation or theoretical interpretation.

As mentioned in the introduction, non-locality and contextuality can be elegantly
thought of as a fundamental discrepancy between local consistency and global incon-
sistency in geometrical figures. This rather heuristic definition finds a compelling the-
oretical counterpart in the language of sheaf theory [AB11a], a powerful high-level
mathematical framework, suited to study the extendability of local features to global
ones.

In this chapter, we will review the sheaf–theoretic structure of non-locality and con-
textuality. Particular attention will be given to the line of research involving the use
of cohomology theory to detect contextuality [AMB12, ABK+15, Car15, Car17,
Car18, ORBR17, OTR18, Aas18].

Outline of the chapter. In Section 2, we start by informally introducing the
main concepts through the basic concrete example of Bell’s model. In Section 3, a general
description of measurement scenarios is introduced, and the alternative viewpoint based
on abstract simplicial complexes is presented. We define empirical models abstractly

9
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using the language of sheaf theory in Section 4.4. Particular attention will be devoted to
possibilistic empirical models and their topological representation as bundle diagrams.
Section 5 defines non-locality and contextuality and introduces a hierarchy of different
strengths of these phenomena. Finally, in Section 6 we introduce sheaf cohomology as a
powerful method to detect contextuality.

2. A basic example

2.1. Measurement scenario. The best way to introduce the concept of empirical
model is to examine a concrete example. Consider an ideal experimental setting, where
two experimenters, Alice and Bob, perform measurements on a physical system. Suppose
Alice has two measurements a1 and a2 at her disposal. She can choose which one to
carry out, but she cannot perform them both simultaneously. Similarly, Bob can choose
between measurements b1 and b2. Furthermore, suppose that all these measurements
are dichotomic, i.e. they produce an outcome oA, oB ∈ {0, 1}.

At each run of the experiment, Alice and Bob choose a measurement to perform,
and record the outcome observed. Each possible choice of joint measurements is called a
measurement context or simply a context. In this particular scenario, the contexts
are

{a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}.
This measurement scenario is referred to as a (2, 2, 2) scenario, to indicate that there are
2 parties, each with 2 possible measurements, and 2 outcomes for each measurement.

The structure of this simple scenario can be effectively represented by a graph, as
shown in Figure II.1.

a1

b1

a2

b2

Figure II.1. A graphical representation of the measurement structure
of the (2, 2, 2) scenario. Each vertex represents a measurement, while
edges correspond to contexts.

Notice that such a representation is the same for all (2, 2, l) scenarios, as it does not
reflect the fact that each measurement is dichotomic. In order to add this element into the
picture, we introduce a fibre above each vertex, which represents the possible outcomes
for the corresponding measurement, as shown on the left–hand diagram of Figure II.2.
The result is a bundle-like picture, which will be used extensively throughout this thesis
to represent scenarios and empirical models alike, and will be presented in more detail
in Section 4.6.
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Figure II.2. On the left hand side, a bundle diagram representing a
(2, 2, 2) scenario. On the right, a (2, 2, 3) scenario.

2.2. Empirical model. At each run of the experiment, Alice and Bob register an
event, i.e. an assignment of outcomes to each of the measurements they have elected to
perform. Such an event can be represented by an element of the function set {0, 1}C ,
where C is the context determined by Alice’s and Bob’s choices of measurement. For
instance, the situation where Alice chooses to perform a1 and observes outcome 0, and
Bob chooses to perform b2 and obtains outcome 1 corresponds to the following event:

{a1 7→ 0, b2 7→ 1}.
By collecting the information on the joint outcomes of each run of the experiment,

one obtains a probability distribution over each event at any particular context {ai, bj},
i, j = 1, 2. More formally, the statistics of the experiment can be summarised by a
collection of distributions of the form

Prob(oA, oB | ai, bj)
which express the probability of Alice and Bob obtaining outcomes oA and oB when
choosing measurement ai and bj respectively. These probabilities intuitively constitute
what we call an empirical model, although the formal definition of this concept, given
in Section 4.4, is more general and allows to account for a much greater class of scenarios.

Table II.1. A representation of a general empirical model over a (2, 2, 2)
scenario as a probability table.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 Prob(0, 0 | a1, b1) Prob(1, 0 | a1, b1) Prob(0, 1 | a1, b1) Prob(1, 1 | a1, b1)

a1 b2 Prob(0, 0 | a1, b2) Prob(1, 0 | a1, b2) Prob(0, 1 | a1, b2) Prob(1, 1 | a1, b2)

a2 b1 Prob(0, 0 | a2, b1) Prob(1, 0 | a2, b1) Prob(0, 1 | a2, b1) Prob(1, 1 | a2, b1)

a2 b2 Prob(0, 0 | a2, b2) Prob(1, 0 | a2, b2) Prob(0, 1 | a2, b2) Prob(1, 1 | a2, b2)
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It is often convenient to present an empirical model as a probability table, such as
Table II.1. Each row of the table represents a context, while each column corresponds
to a joint outcome. The entries of the table are the empirically observed probabilities
that constitute the empirical model.

Examples. To clarify the concepts introduced thus far, we present two key exam-
ples of empirical models that will be thoroughly studied throughout this thesis. First,
consider the empirical model described in Table II.2.

Table II.2. Bell’s empirical model.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

This model is the key element of the CHSH proof [CHSH69, Bel87] of Bell’s the-
orem [Bel64], and constitutes, as we shall see in the next section, a prime example of
contextual behaviour in quantum mechanics. The probabilities in the table are obtained
by interpreting the measurement labels as particular single-qubit projective measure-
ments which have +1 eigenvectors separated by a π/3 angle in the XY-plane of the Bloch
sphere, and applying them to the Bell state:

∣∣Φ+
〉

:=
|00〉+ |11〉√

2
.

As mentioned in the introduction, our aim is to study non-locality and contextuality
independently of quantum physics. For this reason, we will deal with many instances of
empirical models that do not arise from quantum mechanics. For instance, the Popescu–
Rohrlich box model [PR94, Ras85, KT85], displayed in Table II.3, cannot be realised
by any choice of quantum state and observables.

Table II.3. The PR-box model.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1/2 0 0 1/2

a1 b2 1/2 0 0 1/2

a2 b1 1/2 0 0 1/2

a2 b2 0 1/2 1/2 0

2.3. Contextuality. From the point of view of classical physics, we are naturally
led to believe that when Alice and Bob perform their measurements and observe the
corresponding outcomes, they are simply looking at a portion of a predetermined assign-
ment of outcomes to all of the measurements, which is completely independent of their
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choice. In particular, at any given run of a (2, 2, 2) scenario, we assume that a1, b1, a2, b2
all have well-defined values, e.g.

(II.1) {a1 7→ 0, b1 7→ 0, a2 7→ 1, b2 7→ 1},
even though Alice and Bob can only observe two of them, say

{a1 7→ 0, b2 7→ 1}.
With this assumption, we expect the probabilities observed over many runs of the ex-
periment to be simply generated by a global probability distribution over all global as-
signments similar to (II.1), as shown with an example in Table II.4.

Table II.4. A probability distribution over global assignments on the
left gives rise to an empirical model on the right.

a1b1a2b2 Prob.
0000 1/8

0011 1/4

0100 1/4

1000 1/4

1010 1/8

Other 0

−→

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 3/8 3/8 1/4 0

a1 b2 3/8 3/8 1/4 0

a2 b1 3/8 3/8 1/4 0

a2 b2 5/8 1/8 0 1/4

Given an empirical model, it is natural to ask ourselves what is the global distribution
underlying the empirically observed probabilities. However, as it turns out, there exist
models where such a global distribution cannot be found. This phenomenon is called
non-locality or, more generally, contextuality.1

A proof of contextuality. Let us give a first example of a contextuality proof
based on the concept of logical Bell inequality [AH12], a formal counterpart of the
notion of Bell inequality [CHSH69], which is widely studied in the quantum literature
[Tsi80, Fin82, ADR82, KT85].

Suppose we have N propositional formulae ϕ1, . . . , ϕN . We think of the Boolean
variables appearing in each formula as empirically testable quantities. Thus, each ϕi
corresponds to a certain statement on the results of an experiment involving these quan-
tities. Given a probability distribution for the outcomes of the experiment, it is possible
to assign a probability pi to each formula ϕi representing its likelihood to be satisfied
by the experiment. Let Φ :=

∧N
i=1 ϕi and P := Prob(Φ). Then,

1− P = Prob(¬Φ) = Prob

(
N∨

i1

¬ϕi
)
≤

N∑

i=1

Prob(¬ϕ) =

N∑

i=1

(1− pi) = N −
N∑

i=1

pi.

(II.2)

1The precise definition of these two concepts will be given in Section 5. Until then, it is sufficient to
know that non-locality is a special case of contextuality, where the experimental setting in question is
multipartite as in the example we have just seen.
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Now, suppose ϕi cannot be all satisfied at the same time, then P = 0. Hence, inequality
(II.2) becomes

(II.3)

N∑

i=1

pi ≤ N − 1,

and constitutes an example of a logical Bell inequality. Let us consider again Bell’s
model presented in Table II.2. In fact, it is sufficient to focus only on a subset of the
entries, highlighted in Table II.5.

Table II.5. Some entries of the Bell’s model

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1/2 1/2

a1 b2 3/8 3/8

a2 b1 3/8 3/8

a2 b2 3/8 3/8

If we interpret the experimental outcomes 1, 0 as true and false respectively, each
event can be characterised by a propositional formula. For instance, the top left entry,
which corresponds to the event {a1 7→ 0, b1 7→ 0}, can be represented by the formula
ϕ : ¬a1 ∧ ¬b1. Following the same idea, one can associate to each row of Table II.5 a
formula describing the events in question:

ϕ1 : (¬a1 ∧ ¬b1) ∨ (a1 ∧ b1) ≡ a1 ⇔ b1

ϕ2 : (¬a1 ∧ ¬b2) ∨ (a1 ∧ b2) ≡ a1 ⇔ b2

ϕ3 : (¬a2 ∧ ¬b1) ∨ (a2 ∧ b1) ≡ a2 ⇔ b1

ϕ4 : (a2 ∧ ¬b2) ∨ (¬a2 ∧ b2) ≡ a2 ⊕ b2
It is straightforward to see that these formulas are jointly contradictory, in fact

a1
ϕ1⇐=⇒ b1

ϕ3⇐=⇒ a2
ϕ4⇐=⇒ ¬b2 ϕ2⇐=⇒ ¬a1.

The pairs of events highlighted in Table II.5 are mutually exclusive, thus the probability
assigned to each formula is given by the sum of the two probabilities of the corresponding
row, e.g. p1 = 1/2 + 1/2 = 1. Therefore,

4∑

i=1

pi = 1 +
6

8
+

6

8
+

6

8
=

13

4
> 3,

which is a violation of (II.3).
How is this possible? Each formula ϕi involves only a portion of the Boolean variables

in {a1, b1, a2, b2}, while Φ contains them all. The invalid step in the argument resides in
the assignment of a probability to Φ. Indeed, such an assignment can be made only if
there is a global assignment of probabilities to all of the variables simultaneously which
yields the empirically observed probabilities. The very fact that Bell’s model violates
inequality (II.3) indicates that such an assignment does not exist, and thus the model is
contextual.
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Contextuality and quantum computation. Despite being originally consid-
ered an obscure, paradoxical phenomenon that threatened the foundations of quantum
theory, contextuality has recently gained great relevance as a key resource for quantum
computation [Rau13, HWVE14, ABM17]. In order to give a taste of how contextu-
ality can be used to achieve faster computation, let us present a simple example based
on [AB09].

Suppose we have a classical computer, which is only capable of doing addition modulo
2. Of course, such a computer is very limited, and far from being classically universal.
Our goal is to show that this simple computer can be promoted to classical universality
by granting it access to a contextual resource.

Consider the empirical model partially displayed in Table II.6, based on a (3, 2, 2)-
scenario.2

Table II.6. Four rows of the GHZ model.

A B C 000 001 010 011 100 101 110 111
a1 b1 c1 1/4 0 0 1/4 0 1/4 1/4 0

a1 b2 c2 0 1/4 1/4 0 1/4 0 0 1/4

a2 b1 c2 0 1/4 1/4 0 1/4 0 0 1/4

a2 b2 c1 0 1/4 1/4 0 1/4 0 0 1/4

This model, known as the Greenberger-Horne-Zeilinger (GHZ) model [GHZ89,
GHSZ90], is obtained by applying Pauli measurements X and Y to the Greenberger-
Horne-Zeilinger (GHZ) state

|GHZ〉 :=
|000〉+ |111〉√

2
,

and will be studied more in detail in Section 5.2.
We will now show that, thanks to the GHZ model, the classical computer limited to

addition modulo 2 is capable of computing the OR function. Note that this is enough to
achieve universality, since negation is already available to the classical computer (it is
just an addition ⊕1), and these two gates are sufficient to compute any Boolean function.
We interpret bits as instructions for the three parties Alice, Bob and Charlie about which
measurements to choose. We interpet 0 as an instruction to perform their first respective
measurement, i.e.

0 7→ a1, b1, c1

and 1 for their second measurement, i.e.

1 7→ a2, b2, c2.

Now, given two input bits i1, i2, we let the classical computer calculate i1 ⊕ i2. Then,
the choices of measurement for Alice, Bob and Charlie are determined by 〈i1, i2, i1 ⊕ i2〉.
For instance, if the input bits are i1 = 0 and i2 = 1, the parties will choose to perform
measurements a1, b2 and c2 respectively.

2The complete information on the empirical model can be displayed in a table with 8 rows. For our
purposes, we will only need the ones presented in Table II.6.
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After the corresponding measurements are performed, the classical computer outputs
the sum oA ⊕ oB ⊕ oC of the three outcomes obtained. By looking at Table II.6, one
can see that the possible events of context {a1, b1, c1}, corresponding to the input bits
〈0, 0〉, are those whose sum of outcomes modulo 2 is 0. Therefore, the output of 〈0, 0〉
will be 0, regardless of the individual outcomes observed. For the other contexts, which
correspond to the remaining possible pairs of inputs, the possible events are those whose
sum of outcomes modulo 2 is 1, hence their output is 1. We conclude that the function
computed is indeed OR(i1, i2).

This simple example shows how the limited computational power of a simple ma-
chine can be improved by quantum resources. While this particular instance is of little
practical interest, it represents the starting point for a much more profound connection
between contextuality and the computational power of a particular model for quantum
computation, observed in [Rau13]. Indeed, the example we just presented is a nothing
but a simple measurement based quantum computation (MBQC), i.e. a process which
consists of preparing an entangled resource state – in this case the GHZ state – and per-
forming on it single qubit measurements selected by a classical linear co-processor. The
key finding of [Rau13], subsequently refined in [ABM17], is that all MBQCs which
compute a non-linear Boolean function with sufficiently high probability are contextual,
and that the probability of success increases with the amount of contextuality in the
computation.3 Since the MBQC model with suitable resource states achieves quantum
universality [GE07, VdNMDB06], this result strongly suggests that contextuality is
the key element of quantum theory which enables quantum computers to outperform
their classical counterparts, an observation supported by the earlier work of Howard et
al. [HWVE14], which established the importance of contextuality in the magic state
distillation model for quantum computing [BK05, Kni05, CAB12]. Although quan-
tum computation will not be directly investigated in this thesis, the crucial role played
by contextuality in this area constitutes a major motivation for a formal understanding
of this phenomenon.

3. Measurement scenarios

Guided by the example of Section 2, we now introduce a general definition of mea-
surement scenario that captures the structure of experimental settings in their most
general sense.

Definition II.1. A measurement scenario is a triple 〈X,M, (Om)m∈X〉, com-
prised of

• A finite set of measurements X.
• A measurement cover M⊆ P(X), whose elements are called contexts.
• A finite set of outcomes Om for each measurement m ∈ X.

Two or more measurements are said to be compatible if they are contained in a context.
The collection M is a cover, i.e. such that

⋃

C∈M
C = X,

3Contextuality in empirical models can be quantified via the so-called contextual fraction, which will
be reviewed in Section 10.1.1 of Chapter V.
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and it is assumed to be an antichain, i.e. such that, for all C,C ′ ∈M, if C ⊆ C ′, then
C = C ′.

A measurement scenario 〈X,M, (Om)〉 is said to be quantum realisable if one can
associate to each measurement label in X a quantum measurement in the same Hilbert
space such that measurements in the same context commute.

The set of measurements contains the labels of all the measurements considered in
the experiment. The measurement cover contains the contexts, i.e. the maximal sets of
jointly performable measurements. The antichain condition guarantees their maximality.
Finally, each set of outcomes Om represents the possible outcomes that measurement
m can produce. Note that, in many scenarios, the set of outcomes is the same for all
measurements. In this case, we shall denote by O the unique set of outcomes.

Example II.2.

• In the example of Section 2, the scenario is determined by the following ele-
ments:

– X = {a1, b1, a2, b2}.
– M = {{a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}}.
– O = {0, 1}.

• The (3, 2, 2) scenario underlying the GHZ model of Table II.6 is described as
follows:

– X = {a1, b1, c1, a2, b2, c2}.
– M = {{ai, bj , ck} | i, j, k = 1, 2}.
– O = {0, 1}.

• An abstract experimental setting can be described by any specification of mea-
surements and contexts, even in the absence of a clear physical interpretation
as in the concrete examples described above. For instance:

– X = {a, b, c, d, e, f, g}.
– M = {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {b, e, f}, {e, g}},
– O = {0, 1, 2, 3}.

is a valid scenario

3.1. Bell-type scenarios. Among the infinitely many kinds of scenarios we can
define, Bell-type scenarios deserve particular attention. These scenarios are a general
version of the experimental setting introduced in Section 2. The common feature of this
class of scenarios is their multi-partite character.

Definition II.3. A scenario 〈X,M, (Om)〉 is said to be Bell-type if

• The measurement set X can be partitioned into subsets {Xi}i∈I , where I labels
different ‘parts’ of the system, and Xi represents the measurements that can
be carried out at part i.
• The coverM consists of the contexts of the form {xi}i∈I , where xi ∈ Xi for all
i ∈ I. This corresponds to performing one and only one measurement for each
part of the system.

An important subclass of Bell-type scenarios are (n, k, l) scenarios, where n, k, l ∈
N. An (n, k, l) scenario is a Bell-type scenario where n parties have k measurements
available, each having l possible outcomes.
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3.2. Measurement scenarios and simplicial complexes. Measurement sce-
narios find an elegant representation in terms of abstract simplicial complexes
[AB11b, Bar14, Bar15a], a purely combinatorial description with a straightforward
geometrical interpretation.

Definition II.4. An (abstract) simplicial complex on a set of vertices V is a
collection Σ ⊆ Pfin(V ) such that

• ∅ ∈ Σ.
• For all v ∈ V , {v} ∈ Σ.
• Σ is downward closed: for all σ ∈ Σ and τ ⊆ V , if τ ⊆ σ, then τ ∈ Σ. This is

equivalent to saying that Σ =↓⊆Σ, where

↓⊆Σ := {τ ∈ Pfin(V ) | ∃σ ∈ Σ : τ ⊆ σ}
denotes the downward closure of Σ.

The elements of V are called the vertices of Σ. In general, the set of vertices of a
simplicial complex Σ is denoted by V (Σ). Subsets σ ∈ Σ are called faces or simplices.
Maximal faces under inclusion are called facets, and we denote by max Σ the set of facets
of Σ. The dimension of a face σ is defined by dim(σ) := |σ| − 1. The dimension of
Σ, denoted dim Σ is the maximum among the dimensions of its faces. For all q ≥ 0, we
denote by Σq the set of q–simplices:

Σq := {σ ∈ Pfin(X) | dim(σ) = q} ,

so that Σ =
⋃dim Σ
q=0 Σq.

Given a measurement scenario 〈X,M, (Om)〉, one can associate to it a simplicial
complex Σ with vertices in X defined by

Σ :=↓⊆M.

Conversely, every simplicial complex can be interpreted as the basis for a measurement
scenario. Indeed, given a simplicial complex Σ, one can define X := V (Σ), and M :=
max Σ. It is then sufficient to specify the outcome sets (Ox)x∈V (Σ) for each vertex to

obtain a well-defined scenario
〈
V (Σ),max Σ, (Ox)x∈V (Σ)

〉
.

Example II.5.

• We have already seen an example of a simplicial representation of a measure-
ment scenario in Figure II.1, where the simplicial complex describing a (2, 2, l)
scenario is pictured. The formal definition of the complex is

Σ = {∅, {a1}, {b1}, {a2}, {b2}, {a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}}.
• The (3, 2, 2) scenario onto which the GHZ model of Table II.6 is defined, corre-

sponds to the simplicial complex shown in Figure II.3.
• The definition of measurement scenario is extremely flexible and accomodates

all sorts of measurement compatibility structure. For instance, the simplicial
complex pictured in Figure II.4 corresponds to the abstract scenario introduced
at the end of Example II.2.
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a1a2

b1

b2

c1

c2

Figure II.3. Simplicial complex representation of a (3, 2, l) scenario: a
hollow octahedron.
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d

e

f

g

Figure II.4. A general simplicial complex which can be interpreted as
a measurement scenario.

This viewpoint can be further extended, and most of the theory presented in the
rest of this chapter can be equivalently formulated in terms of simplicial complexes,
simplicial maps, simplicial quotients and fibrations [Bar15a]. Although this framework
will not be discussed any further in this thesis, we will often use simplicial complexes
to graphically represent scenarios and empirical models in order to visually investigate
their contextual properties. In particular, we will largely take advantage of the bundle
diagram representation, which will be presented in Section 4.6.

4. Empirical models

In the previous section, we presented a general description of experimental settings.
Now, we introduce an abstract characterisation of the probabilistic results of such ex-
periments. The main concepts will be defined in the language of sheaf theory.

4.1. Sheaf theory. In simplest terms, a (pre)sheaf is a mathematical object suited
to track locally defined data associated to the open sets of a topological space. The data
can be restricted to smaller subsets and ‘glued’ together to build bigger structures. In
the area of contextuality, the data in question consist of probability distributions that
characterise the empirical results of an experiment. Due to the peculiar structure of
measurement scenarios, such data can only be defined locally to each context, and we
are left to determine whether these local data can be consistently and coherently merged
into a global probability distribution that explains them classically.
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Definition II.6. Let X be a topological space, and C a category. A C-valued
presheaf on X is a functor

F : Open(X)op −→ C,
where Open(X) denotes the poset category generated by the open sets of X, ordered
by inclusion.

• Given any open set U ⊆ X, the elements of F (U) are called local sections, or
simply sections at U . Elements of F (X) are called global sections.
• For each pair of open sets U ⊆ U ′ of X, the map

ρU
′

U := F (U ⊆ U ′) : F (U ′) −→ F (U)

is called a restriction map. If s ∈ F (U ′), its restriction ρU
′

U (s) to U ′ is often
denoted s|U , in analogy with function restriction.
• Two sections s ∈ F (U), s′ ∈ F (U ′) are said to be compatible if

s|U∩U ′ = s′|U∩U ′ .
By extension, a family {si ∈ F (Ui)}i∈I of sections of F is said to be compatible
if its members are pairwise compatible.
• A presheaf S : Open(X) → Set is said to be a subpresheaf of a presheaf
F : Open(X) → Set if S(U) ⊆ F (U) for all U ∈ Open(X), and they share
the same restriction maps.

Definition II.7. A sheaf onX is a presheaf F onX that satisfies the following prop-
erty: given an open cover U = {Ui}i∈I of X, and a compatible family {si ∈ F (Ui)}i∈I ,
there exists a unique global section g ∈ F (X) such that g|Ui = si for all i ∈ I.

The sheaf condition says that pairwise consistent local data can always be glued to
form global data in a unique way.

4.2. Events. Let us fix a measurement scenario 〈X,M, (Om)〉. An event occurs
when a set of compatible measurements is performed, and their outcomes are observed.
Formally, if U ⊆ X is a set of compatible measurements, an event over U is described
by a tuple in

∏
m∈U Om. If all the measurements share the same outcome set O, this

reduces to an element of OU . Events occur locally inside a context, and thus can be
effectively described by a sheaf.

Definition II.8. The sheaf of events of a scenario 〈X,M, (Om)〉 is the sheaf

E : P(X)op −→ Set

on the set X, seen as a discrete topological space, defined by

• For all U ⊆ X,

E(U) :=
∏

m∈U
Om.

• For all U ⊆ U ′ ⊆ X, the corresponding restriction map of E is given by cartesian
projection

E(U ⊆ U ′) := πE(U) :
∏

m∈U ′
Om −→

∏

m∈U
Om :: 〈om〉m∈U ′ 7−→ 〈om〉m∈U
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In the case of a unique outcome set O, the definition of E reduces to E(U) := OU , with
restriction maps coinciding with function restriction

E(U ⊆ U ′) : OU
′ −→ OU :: s 7−→ s|U

It is quite simple to see that E does satisfy the sheaf condition.

4.3. Event distributions. In order to define empirical models, we will need to
describe the concept of distribution at an appropriate level of generality. In particular,
we will relax the notion of probability, and allow distributions to be defined over an
arbitrary semiring.

Definition II.9. Let R be a semiring. An R-distribution on a set S is a function
d : S → R such that its support

supp(d) := {s ∈ S | d(s) 6= 0}

is finite and
∑

s∈S d(s) = 1. The R-distribution functor

DR : Set −→ Set

assigns to a set S the set DR(S) of R-distributions on S, and to any function f : S → T ,
the function4

DR(f) : DR(S) −→ DR(T ) :: d 7−→ λt.
∑

s∈S:
f(s)=t

d(s).

Definition II.10. The presheaf of event R-distributions DRE is defined as the
composition DR ◦ E . That is,

• For all U ⊆ X, DRE(U) is the set of R-distributions over E(U).
• For all U ⊆ U ′ ⊆ X, the corresponding restriction map of DRE is defined as

DRE(U ⊆ U ′) : DRE(U ′) −→ DRE(U) :: d 7−→ d|U ,

where, for all s ∈ E(U),

d|U (s) :=
∑

t∈E(U ′):
t|U=s

d(t).

Contrary to the sheaf of events, the presheaf DRE fails to satisfy the sheaf condi-
tion. In fact, as we shall see in Section 5, the impossibility of merging local probability
distributions to obtain a global one is a central aspect of the sheaf–theoretic definition
of non-locality and contextuality.

4The notation we use for the definition of DR(f) is borrowed from lambda calculus. The map λx.f(x)
is the map that takes x as an input and outputs f(x).
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4.4. Empirical models. As anticipated in the introductory sections of this chap-
ter, an empirical model is an assignment of a probability distribution for each context of
a measurement scenario. We require such probabilities to satisfy an additional compati-
bility property, which is a generlisation of no-signalling, or no-disturbance [GRW80].
In its traditional formulation, the no-signalling principle states that, given a Bell-type
scenario, the choice of measurement by one (or more) parties should not affect the proba-
bility distributions of the other parties. In the familiar setting of a (2, 2, 2) scenario, this
corresponds to the following statement: given Alice’s choice of measurement a ∈ {a1, a2},
her probability of observing outcome oA ∈ Oa should be independent of Bob’s choice of
measurement: ∑

oB∈Ob1

Prob(oA, oB | a, b1) =
∑

oB∈Ob2

Prob(oA, oB | a, b2)

This means that the probability distributions over the contexts {a, b1} and {a, b2}
marginalise to the same distribution on the intersection {a} = {a, b1} ∩ {a, b2}:

Prob(oA, oB | a, b1)|{a} = Prob(oA, oB | a, b2)|{a}, ∀oA, oB.
The requirement of no-signalling is due to the fact that we assume Alice and Bob (and
any other party involved in any Bell-type scenario) to be space-like separated in the
relativistic sense. In this case, a violation of no-signalling corresponds to faster-than-
light exchange of information between the parties, which contradicts the laws of special
relativity. It has been proved several times and with different techniques that the prob-
ability distributions predicted by quantum mechanics in Bell-type quantum scenarios do
not violate no-signalling [GRW80, Bus82, Jor83, Shi84, Red87, SB93, Ken95],
and it has been recently shown that the result can be naturally extended to arbitrary
quantum scenarios [AB11a], although the relativistic interpretation provided above fails
in the absence of a multipartite setting.

This discussion motivates the following definition:

Definition II.11. A (no-signalling) empirical model over a measurement scenario
〈X,M, (Om)〉 is a compatible family

{eC ∈ DRE(C)}C∈M.
Explicitly, it is a family of probability distributions eC over each context C ∈ M such
that

eC |C∩C′ = eC′ |C∩C′ ,
for any C,C ′ ∈M. If R = R≥0, the non–negative reals, we say that the empirical model
is probabilistic, if R = B, the Booleans, it is called possibilistic.

A probabilistic empirical model {eC}C∈M on a scenario Σ = 〈X,M, (Om)〉 is said
to be quantum realisable if Σ is quantum realisable and there exists a quantum state
|ψ〉 such that each probability distribution eC is given by the Born rule applied to |ψ〉.

By choosing different semirings R, one can define other various kinds of empiri-
cal models. Each class of models may present different contextuality properties. For
instance, the case where R = R allows for negative probabilities, which have been thor-
oughly studied in relation with quantum mechanics and proved to give rise to a fully
non-contextual theory [Wig32, Dir42, Moy49, Fey87, SR93, AB11a, AB14].
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4.5. Possibilistic models. Possibilistic models represent the main subject of study
of this thesis. Intuitively, they can be thought of as possibilistic collapses of probabilis-
tic models, where the values of the individual proabilities are neglected, and only the
information regarding which events are possible (i.e. with probability > 0) is taken into
account. More formally, a probabilistic model e = {eC ∈ DR≥0

E(C)}C∈M gives rise to
a possibilistic model ẽ = {ẽC ∈ DBE(C)}C∈M, where ẽC := χsupp(eC) : E(C) → B is the
indicator function of supp(eC). For instance, the PR-box model of Table II.3 collapses
to the possibility table II.7.

Table II.7. The possibilistic collapse of the PR-box model. Each event
labelled with a ‘1’ is possible; those labelled with a ‘0’ are impossible.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

However, possibilistic models do not solely arise in this form: there exist possibilistic
models that are not the possibilistic collapse of any probabilistic model, as shown in
[Abr13b, ABK+16]. This brings us to the following equivalent definition of possibilistic
models in sheaf theory.

Given a probabilistic model e = {eC}C∈M over a scenario 〈X,M, (Om)〉, its pos-
sibilistic collapse {ẽC}C∈M can be described as a subpresheaf Se of E , where, for each
subset U ⊆ X, Se(U) identifies the subset of possible events at U :

(II.4) Se(U) := {s ∈ E(U) | s|U∩C ∈ supp (eC |U∩C) ∀C ∈M} ⊆ E(U).

By abstracting from this situation, one can reformulate the definition of possibilistic
empirical model (Definition II.11) as follows:

Definition II.12. A possibilistic empirical model over a scenario 〈X,M, (Om)〉
is a subpresheaf S of E such that

(1) S(C) 6= ∅ for all C ∈M.

(2) S is flasque beneath the cover, i.e. the restriction map ρU
′

U = S(U ⊆ U ′) is
surjective whenever U ⊆ U ′ ⊆ C for some context C ∈M.

(3) Every compatible family on the cover {sC ∈ S(C)}C∈M induces a global section
g ∈ S(X) such that g|C = sC for all C ∈ M. Note that this section is unique
as S is a subpresheaf of the sheaf E .

Condition (1) ensures that there is at least one possible event at each context. Con-
dition (3) says that a family of possible events that agree on their common variables gives
rise to a possible global assignments of outcomes to each measurement, thus establishing
a correspondence between global sections and compatible families. Condition (2) is the
least trivial, and can be interpreted as a possibilistic version of no-signalling. Indeed, on
the usual bipartite scenario, if Alice chooses measurement a ∈ {a1, a2}, and we denote

U = {a}, U ′ = {a, b1} ∈ M and U ′′ = {a, b2} ∈ M, we know that both ρU
′

U and ρU
′′

U are
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surjective, as M 3 U ′ ⊇ U ⊆ U ′′ ∈ M. Therefore, a possible event {a 7→ oA} ∈ S(U)
arises as a restriction of both a possible event {a 7→ oA, b1 7→ oB} ∈ S(U ′) and a possible
event {a 7→ oA, b2 7→ oB} ∈ S(U ′′). This means that the event {a 7→ oA} is possi-
ble regardless of Bob’s choice of measurement, which corresponds to the statement of
no-signalling.

Another important consequence of the three conditions is that a possibilistic model
S is uniquely determined by its value on the contexts. Indeed, values S(U) for U ⊆ C
for some C ∈M are fixed by Condition 2, and Condition 3 determines the values for U
above the cover.

Let us list some examples of possibilistic empirical models. Both the PR-box (Ta-
ble II.7) and the GHZ model (Table II.6) are usually considered in their possibilis-
tic forms. Another important example of a possibilistic model is the Hardy model
[Har92, Har93], which is defined on a (2, 2, 2) scenario and presented in Table II.8.
This model is realisable in quantum mechanics and has been used to give a proof of
non-locality without inequalities.

Table II.8. The possibilistic Hardy model.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1 1 1 1
a1 b2 0 1 1 1
a2 b1 0 1 1 1
a2 b2 1 1 1 0

On more general non-Bell scenarios, a representative class of examples is that of
Kochen–Specker models [AB11a, MB13], of which the models used in the proof of
the Kochen–Specker theorem [KS67] are special cases.

Definition II.13. Let Σ := 〈X,M, O = {0, 1}〉 be a measurement scenario such
that its context all have the same cardinality. The Kochen–Specker (KS) model on
Σ is the possibilistic model S : Open(X)op → Set defined as follows: for all C ∈M,

S(C) := {s ∈ E(C) | o(s) = 1}
where, given an event s ∈ E(C) = OC ,

o(s) := |{m ∈ C | s(m) = 1}|.
That is, given any context C, the possible sections of S(C) are those that assign the
outcome 1 to exactly one measurement.

The simplest non-trivial example of a KS model is the Specker’s triangle [Spe60,
LSW11], defined on the non-Bell type scenario identified by X = {a, b, c} and M =
{{a, b}, {b, c}, {a, c}}, and presented in Table II.9.

4.6. Bundle diagrams. Possibilistic models can be effectively visualised by tak-
ing advantage of the simplicial complex description of measurement scenarios introduced
in Section 3.2 to construct bundle diagrams [ABK+15, Car17, BO18]. A bundle
diagram is comprised of two elements: a base space, constituted by the simplicial com-
plex representing the scenario, and a fibre which reproduces the possible events of the
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Table II.9. The Specker’s triangle model.

Contexts (0, 0) (1, 0) (0, 1) (1, 1)
{a, b} 0 1 1 0
{b, c} 0 1 1 0
{a, c} 0 1 1 0

empirical model. More specifically, given a scenario 〈X,M, (Om)〉 and its simplicial
representation Σ =↓⊆M, we let Σ lie as the ‘base’ of the diagram. Above each vertex
m ∈ X is a discrete fibre representing the set of its possible outcomes Om (see e.g.
Figure II.2). The sections of an empirical model S on 〈X,M, (Om)〉 can be visualised as
edges (or, more generally, faces) in the fibre. In Figure II.5, the bundle diagrams of the
Hardy model (Table II.8), the PR-box (Table II.3) and Specker’s triangle (Table II.9)
are depicted.
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Figure II.5. Bundle diagrams of the Hardy, PR-box and Specker’s tri-
angle models.

Of course, this graphical representation can be used only when the scenario is suf-
ficiently simple. For instance, the GHZ model of Table II.6 is hard to visualise due to
the 3-dimensionality of the base space, although a promising attempt has been made
in [BO18]. In spite of this, many of the models we will deal with are representable,
and bundle diagrams will prove to be a valuable tool to heuristically investigate their
contextual properties.

4.7. Modelisation of experimental data. The requirement of no-signalling is of
paramount importance for the development of the techniques presented in this thesis.
However, real experimental data are often noisy and may contain small traces of sig-
nalling in their distributions, due to measurement errors, influence of unwanted external
factors, or simply by the finiteness of the sample.5 It is thus important to clarify how
to model noisy experimental data in the strict theoretical framework we adopt in our
work.

5Note that, while the theory deals with probability distributions, actual experiments only provide
relative frequencies.
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Probabilistic empirical models can be alternatively represented as real vectors. Let
d :=

∑
C∈M |E(C)|. Given an empirical model e = {eC ∈ DR≥0

E(C)}C∈M on a scenario
Σ = 〈X,M, (Om)〉, one can rewrite it as a d-dimensional real vector Ve defined as
follows: for all C ∈M and sC ∈ E(C),

Ve[〈C, sC〉] := eC(sC).

Let NS(Σ) ⊆ Rd denote the set of no-signalling models over Σ, seen as vectors in Rd.
The points of NS(Σ) are those vectors V of non-negative real numbers satisfying the
normalisation equations, that is, for all C ∈M,

∑

sc∈E(C)

V[〈C, sC〉] = 1,

and the compatibility (or no-signalling) conditions: for all C,C ′ ∈M and t ∈ E(C ∩C ′),
∑

sC∈E(C):
sC |C∩C′=t

V[〈C, sC〉] =
∑

sC′∈E(C′):
sC′ |C∩C′=t

V[〈C, sC′〉],

which are all linear. Therefore, NS(Σ), being specified by a set of linear constraints, is
a polytope, called the no-signalling polytope of the scenario Σ [PBS11, Pop14].

With this premise, given a signalling empirical model e, seen as a vector Ve ⊆ Rd
obtained from noisy experimental data, one can choose its nearest element Vê on the no-
signalling polytope as a suitable modelisation of the experimental results. Then, all the
techniques discussed in this thesis can be applied to the no-signalling empirical model ê.

5. Non-locality and contextuality

The phenomenon of non-locality has been presented by Einstein, Podolsky and Rosen
[EPR35] as a paradoxical aspect of quantum mechanics which, in their view, proved
that a quantum state does not constitute a complete description of the state of a system.
Specifically, they showed that the postulates of quantum physics allow the measurement
of the position and momentum of a pair of entangled particles to violate Heisenberg’s un-
certainty principle [Hei27], unless the very act of measuring one particle instantaneously
affects the other. This ‘spooky action at a distance’ violates the laws of relativity, and
was consequently deemed a contradiction. Their proposed solution was to reinterpret
the probabilistic aspect of quantum predictions as a fundamentally incomplete knowl-
edge of reality, rather than a faithful ontological representation of the state of a system.
According to this viewpoint, measurements have deterministic well-defined outcomes, or
hidden variables, regardless of whether they are performed or not. Although these
values may not be accessible – hence the term hidden – they constitute the genuine
elements of reality of the system. Then, the probability distribution observed for each
measurement context in a quantum experiment simply arises as the marginal of a global
probability distribution over the hidden variables.

In sheaf theoretic terms, given a measurement scenario 〈X,M, (Om)〉, the canonical
set of hidden variables is the one of global sections of the sheaf E , i.e. global assignments
of outcomes to the measurements. This choice does not cause any loss of generality, as
justified in [AB11a] via a generalisation of a famous result by Fine [Fin82].
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A global section d ∈ DRE(X) of the presheaf DRE specifies a distribution over the
set E(X) of hidden variables. Thus, the requirement of non-locality can be formulated
as follows: given an empirical model {eC ∈ DR≥0

E(C)}C∈M over a Bell-type scenario
〈X,M, (Om)〉, there exists a global distribution d ∈ DR≥0

E(X) such that d|C = eC for
all C ∈M.

Bell’s no go theorem [Bel64] shows that no physical theory of local hidden variables
can reproduce the predictions of quantum mechanics, effectively establishing non-locality
as a fundamental feature of reality, rather than an undesired property of quantum me-
chanics. Kochen–Specker’s theorem [KS67] extended Bell’s result to measurements
scenarios involving non-local measurements, introducing the more general concept of
contextuality. By abstracting from these two key results, we are finally able to introduce
the definition of non-locality and contextuality in sheaf theoretic terms:

Definition II.14. Let e = {eC ∈ DRE(C)}C∈M be an empirical model over a
scenario 〈X,M, (Om)〉. We say that e is contextual if there is no global section d ∈
DRE(S) such that d|C = eC for all C ∈ M. We say that it is non-local if, in addition,
the scenario 〈X,M, (Om)〉 is Bell-type.

If R = B, we say that {eC}C∈M is possibilistically or logically contextual.6,7

Notice how non-locality arises as a special case of contextuality. This unified view
of the two phenomena is one of the key advantages of the sheaf theoretic approach.

5.1. A hierarchy of contextuality. So far, the only concrete example of a con-
textuality argument we have encountered is the one based on logical Bell inequalities of
Section 5, used to prove the non-locality of Bell’s model. Bell’s model is probabilistic,
and this aspect plays a crucial role in the argument, as it allows to associate proba-
bilities to the propositional formulae involved in the proof. However, there are some
cases where contextuality can be witnessed even at the level of possibilities, with purely
logical arguments. This type of contextuality arguments was developed by Heywood
& Redhead [HR83], Greenberger, Horne, Shimony, & Zeilinger [GHZ89, GHSZ90],
whose proof was subsequently simplified by Mermin [Mer90a, Mer90b], and Hardy
[Har92, Har93].

Since these proofs rely solely on the possibilistic structure of empirical models, the
kind of contextual behaviour observed appears to be somewhat stronger than the one
featured by Bell’s model. The high-level description provided by sheaf theory allows
to make this claim rigorous, and establish a clear hierarchy of different strengths of
contextuality.

In Section 4.5 we showed how probabilistic models give rise to possibilistic ones,
and how such models can be defined as subpresheaves of E . In Definition II.14, we
introduced a notion of contextuality both for probabilistic and possibilistic models. A
natural question to ask is what is the relation between the probabilistic contextuality of
a model {eC}C∈M, and the possibilistic contextuality of its collapse {ẽC}C∈M?

6The notion of possibilistic (or logical) contextuality will be equivalently reformulated in different
terms in Definition II.15, which is the one we will adopt for the rest of the thesis.

7When R = R≥0, we will sometimes call the model probabilistically contextual, to emphasise the
difference with possibilistic contextuality.
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Via the isomorphism BE(X) ∼= P(E(X)), a possibilistic global distribution d ∈
DBE(X) consistent with the collapse {ẽC}C∈M of a probabilistic model {eC}C∈M can
be identified with a set of global assignments that exactly restricts to the set of possible
local assignments at each context.

The existence of such a global section is clearly a weaker requirement than the exis-
tence of a probabilistic global section for {eC}C∈M, which in addition must marginalise
to the individual local probabilities. Thus, one can clearly see that possibilistic contex-
tuality implies probabilistic contextuality.

Possibilistic contextuality can also be rephrased in terms of subpresheaves of E by
formalising the discussion above on the role of a possibilistic global distribution. Let
Se : P(X)op → Set be the possibilistic model obtained by collapsing a probabilistic
model e = {eC}C∈M as in (II.4). Then, the set Se(X) of global sections contains all the
global assignments in E(C) that are consistent with e, i.e. such that their restriction to
every context C is in the support of eC . Possibilistic contextuality arises when Se(X) is
not large enough to account for all of the local events that e deems possible. In other
words, there exists (at least one) local section s ∈ Se(C) which does not extend to any
global section in Se(X), that is, for all g ∈ Se(X), g|C 6= s. This can be interpreted
as the fact that the locally observed event s cannot be explained by a classical hidden
variable.

In extreme cases, Se(X) could be empty. This means that none of the locally ob-
served events can be explained classically. We refer to this phenomenon as strong con-
textuality.

By abstracting the discussion above, we introduce the general definition of logical
and strong contextuality.

Definition II.15. Let S : P(X)op → Set be a possibilistic empirical model over a
scenario 〈X,M, (Om)〉. We say that S is

• Logically or possibilistically contextual, denoted LC(S), if there exists a
local section s ∈ S(C), with C ∈ M, such that s is not the restriction of any
global section in S(X). In this case, we say that S is logically or possibilistically
contextual at s, and write LC(S, s).
• Strongly contextual, denoted SC(S), if S(X) = ∅, or, equivalently, if LC(S, s)

for all local sections s ∈ S(C) for all contexts C ∈M.

From these definitions and the discussion above, it is clear that we have a hierarchy
of levels of contextuality:

Strong contextuality⇒ Logical contextuality⇒ (probabilistic) Contextuality

In the following list of examples is contained the proof of the strictness of these impli-
cations:

Example II.16.

• Bell’s model (Table II.2) is probabilistically contextual, as shown in Section
2.3, but it is not logically contextual. Indeed, its possibilistic collapse arises as
a restriction of the global distribution d ∈ DBE(X) defined as follows: for all
g ∈ E(X),

d(g) = 1 ⇐⇒ g(a1) + g(b1) = 0 mod 2.
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• The Hardy model is logically contextual. Indeed, the local section

s = {a1 7→ 0, b1 7→ 0} ∈ E({a1, b1})
cannot be extended to a global one. Indeed, a hypothetical global section
g ∈ E(X) consistent with the model and such that g|C = sC would satisfy
g(a1) = 0, and g(b1) = 0. By simply looking at the possibility table of the
model (Table II.8), we have

(II.5) g(b1) = 0 ⇒ g(a2) = 1 ⇒ g(b2) = 0 ⇒ g(a1) = 1,

which is a contradiction. However, the model is not strongly contextual, as it
contains the global section

{a1 7→ 1, b1 7→ 1, a2 7→ 0, b2 7→ 0} ∈ E(X).

• The GHZ model is strongly contextual. To see this, one can observe that the

Table II.10. Four rows of the GHZ model.

A B C 000 001 010 011 100 101 110 111
a1 b1 c1 1 0 0 1 0 1 1 0

a1 b2 c2 0 1 1 0 1 0 0 1

a2 b1 c2 0 1 1 0 1 0 0 1

a2 b2 c1 0 1 1 0 1 0 0 1

support of the model, displayed in Table II.10, is characterised by the following
equations in Z2:

a1 ⊕ b1 ⊕ c1 = 0,

a1 ⊕ b2 ⊕ c2 = 1,

a2 ⊕ b1 ⊕ c2 = 1,

a2 ⊕ b2 ⊕ c1 = 1.

It is sufficient to sum all these equations to obtain 0 = 1. This contradic-
tion shows that the model does not admit any global section, and is therefore
strongly contextual.

The very last proof of the strong contextuality of the GHZ state belongs to the
general class of All-vs-Nothing arguments to which the next section is devoted.

5.2. All-vs-Nothing arguments. Among the various proofs of contextual be-
haviour in quantum mechanics, a class of arguments dubbed All-vs-Nothing stands out
as being particularly abundant in the literature. All-vs-Nothing (AvN) arguments are
proofs of strong contextuality which rest on the observation that the possible local as-
signments of an empirical model satisfy a system of parity equations that admit no global
solution.

The first instance of an AvN argument is due to Mermin, who coined the term to de-
scribe his proof of the strong contextuality of the GHZ state [Mer90a, Mer90b], which
was presented in Example II.16. Since then, AvN arguments have been extensively used
to produce other examples of strongly contextual models in quantum physics [Wae14],
especially in stabiliser quantum mechanics [Got97].

In [ABK+15] Abramsky et al. proposed a generalisation of this class of proofs,
which takes into account systems of linear equations for any ring R, greatly enhancing
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the scope of their applicability both within and beyond quantum physics. Let us briefly
review this approach.

Let R be a ring, and consider a measurement scenario 〈X,M, R〉, where each mea-
surement produces an outcome in R

Definition II.17. An R-linear equation is a triple ϕ = 〈C, a, b〉, where C ∈ M,
a : C → R, and b ∈ R. We denote C = Vϕ. An event s ∈ E(C) satisfies ϕ if

∑

m∈C
a(m)s(m) = b.

This lifts to the level of systems of R-linear equations and sets of assignments: given
a system of equations Γ, let

M(Γ) := {s ∈ E(C) | s |= ϕ, ∀ϕ ∈ Γ}
denote the set of events in E(C) that satisfy every equation ϕ in Γ. Similarly, given a
set of events S ⊆ E(C), let

TR(S) := {ϕ | s |= ϕ, ∀s ∈ S}
be the set of equations satisfied by all events in S. With this premise, given an empirical
model S on 〈X,M, R〉, we may associate its R-linear theory to it, which readily leads
to the definition of an AvN argument:

Definition II.18. The R-linear theory of a model S is

TR(S) :=
⋃

C∈M
TR(S(C)) = {ϕ | s |= ϕ, ∀s ∈ S(Vϕ)} .

We say that S is AvN, written AvNR(S), if TR(S) is inconsistent. That is, if there is
no global assignment g : X → R such that g|Vϕ |= ϕ for all ϕ ∈ TR(S).

The inconsistency of the associated system of equations is in fact a proof of strong
contextuality for the model in question.

Proposition II.19 (Proposition 7 of [ABK+15]). An AvNR model is strongly con-
textual.

Proof. Suppose S is not strongly contextual. Then there exists g ∈ E(R) such that
g|C ∈ S(C) for all C ∈ M. It follows that, given any ϕ ∈ TR(S), g|Vϕ ∈ S(Vϕ), which
implies g|Vϕ |= ϕ. Thus TR is consistent. �

This result gives rise to the notion of AvN contextuality, which is strictly stronger
than strong contextuality [ABK+15].

5.3. Contextuality in bundle diagrams. Possibilistic forms of contextuality,
i.e. logical and strong, can often be graphically visualised in the bundle representa-
tion of empirical models. For instance, the simple argument used in Example II.16 to
show that the Hardy model is contextual can be reproduced geometrically, as shown in
Figure II.6. Section s = (a1, b1) 7→ (0, 0) is marked in red. A global section corresponds
to a closed loop around the bundle. In the central diagram of Figure II.6, we display
an attempt to extend the s to a closed loop, which follows the list of implications used
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Figure II.6. A topological visualisation of the contextual properties of
the Hardy model

in (II.5). One can clearly see that s cannot be extended to such a closed loop, thus we
conclude that the model is logically contextual at s.

The diagram on the right of Figure II.6 highlights in blue a global section consistent
with the model. This shows that the Hardy model is not strongly contextual. It is
sufficient to glance at the bundle diagram of the PR-box and the Specker’s triangle
displayed in Figure II.5 to see that these model do not contain any global section, and
therefore are strongly contextual.

Although the insight on contextuality provided by these bundle-like representations
of empirical models might simply look like a nice visualisation of the phenomenon with
little potential for general results, it does tell us something of pivotal importance for this
thesis, that is, it shows rather neatly that contextuality can be perceived as a purely
topological property. The fact that contextuality finds such a compelling description in
sheaf theory, which is ultimately a topological theory, can also be considered as evidence
for this. The simple idea of extending a local section to a closed loop will play a key role
in developing a complex topological apparatus suited to model and study contextuality.

5.4. Vorob'ev’s theorem. A natural question to ask concerning contextuality is
whether it is possible to characterise those measurement scenarios 〈X,M, (Om)〉 on
which one can define contextual empirical models. A classical result due to Vorob'-
ev [Vor62], and rewritten more generally in [Bar15a] to fit the sheaf–theoretic frame-
work, deals precisely with this problem. Vorob'ev’s theorem states that it is impossible
to witness contextuality on a scenario 〈X,M, (Om)〉 if and only if its simplicial com-
plex description Σ is acyclic in the database–theoretic sense of [BFM+81, BFMY83,
Fag83, FMU82]:8

Definition II.20. Let 〈X,M, (Om)〉 be a measurement scenario, and let Σ =↓⊆M
be its simplicial representation. For each context C ∈ M, i.e. each facet σC of Σ, we
denote by πC the set of vertices of Σ which belong to σC and not to any other facet.

πC := {x ∈ V (Σ) | (x ∈ τ ⇒ τ ⊆ σC), ∀τ ∈ Σ}

8Of course, this notion did not exist at the time of the formulation of Vorob'ev’s theorem, who
characterised the property rather imprecisely. The later introduction of the concept of acyclic databases
allowed to rephrase the theorem in the form we present here.
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If πC 6= ∅ for some C ∈ M, we say that there is a Graham-reduction step from Σ to
the subcomplex

Σ′ := Σ|V (Σ)\πC = {σ ∈ Σ | σ ∩ πC = ∅} = {σ \ πC | σ ∈ Σ}
comprised of all the vertices except the ones in πC . In this case, the Graham-reduction
from Σ to Σ′ is denoted by Σ  Σ′. The scenario is said to be acyclic if there is a
sequence of Graham-reduction steps

Σ =: Σ0  Σ1  · · · Σn = {∅}.
In Figure II.7 we illustrate an example of Grahm reduction in the case of both a

cyclic and acyclic cover. In red it is highlighted the vertex remove at each step.

     

   6= {∅}

 {∅}

Figure II.7. Example of a cyclic and acyclic scenario.

In the formulation of [Bar15a], Vorob'ev’s theorem is stated as follows:

Theorem II.21 (Vorob'ev’s theorem). Let 〈X,M, (Om)〉 be a scenario. Any proba-
bilistic or possibilistic empirical model defined on 〈X,M, (Om)〉 is non-contextual if and
only if Σ =↓⊆M is acyclic.

This key result will be further explored and refined in Chapter V.

6. The cohomology of non-locality and contextuality

The problem of extending local sections to global ones is well-studied in sheaf theory.
In fact, it is safe to say that this very question is the main motivation underpinning the
development of the theory and, more specifically, of sheaf cohomology.

Sheaf cohomology was originally introduced by Leray [Ler45] and later clarified
by the work of Koszul [Kos47a, Kos47b, Kos51], Cartan [Car49], Borel [Bor51]
and Serre [Ser55, Ser56, Ser57]. It found striking applications to classic problems in
algebraic topology, such as Weil’s proof of De Rham’s equations [Wei52], theorems A
and B for Stein manifolds [Ste40], proved by Cartan & Serre [CS48] and utilised to solve
the two Cousin problems [Cou95], and theorems A and B for coherent sheaves [Ser55].
All of these longstanding problems share a similar trait: they concern the extendability
of local features to global ones. This is exactly the kind of problem with which we are
dealing when studying contextuality, and it is therefore natural to use sheaf cohomology
to study this phenomenon.

A sheaf-cohomological framework suited to study logical forms of contextuality was
developed in [AMB12] and extended in [ABK+15, Car15, Car17, Car18]. In this
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thesis, we will adopt and refine this viewpoint. Although we will not go into details,
we shall mention that the cohomological approach to contextuality has been studied
using other kinds of cohomology, such as cyclic and order cohomology of effect al-
gebras [Rou17], simplicial cohomology [ORBR17], and group cohomology [Rau16,
ORBR17, OTR18], and now represents a well–established line of research.

6.1. Sheaf cohomology. General sheaf cohomology deals with presheaves of abelian
groups, and thus it is not immediately obvious how to apply it to study possibilistic
empirical models, which are merely presheaves of sets. This difficulty is overcome by
considering an AbGrp-valued presheaf which represents the model in a suitable way:

Definition II.22. Let S : P(X)op → Set be a possibilistic empirical model over a
scenario 〈X,M, (Om)〉. An AbGrp-valued presheaf F : P(X)op → AbGrp is said to
be an abelian representation of S if it is such that

(1) It satisfies conditions (1), (2) and (3) of Definition II.12.
(2) There exists an injection i : S ↪→ F with iC(s) 6= 0 ∈ F(C) for all C ∈ M and

for each s ∈ S(C).

An abelian representation of S simply embeds the local sections into an abelian
group. Condition (2) of the definition above ensures that none of the local sections of S
is mapped to the null element of the group, which is nothing but an artificial addition
to each set of local sections with no physical interpretation.

In practice, given a presheaf S, we use F := FRS as its representation, where R is
a ring,9 and FR : Set → AbGrp is the free functor on R, which maps a set X to the
group of formal R-linear combinations of its elements:

FR(X) :=

{∑

i∈I
λi · xi

∣∣∣∣∣ |I| <∞, λi ∈ R, xi ∈ X ∀i ∈ I
}
.

The restriction maps of F = FRS are obtained by linearly extending the ones of S. In a
slight abuse of notation, we will denote by ρU

′
U both the restriction maps of S and those

of F . The injection S ↪→ FRS is given by the following trivial collection of maps: for all
U ⊆ X,

iU : S(U) ↪→ FR(U) :: s 7→ 1 · s.
Although this might seem a minor alteration, this abelian approximation of empirical

models will play a crucial role in the existence of false negatives, an issue that will be
thoroughly analysed in Chapters III and IV.

The apparatus of sheaf cohomology is abstract and complex, but for our purposes
it is sufficient to consider its simplest form, namely Čech cohomology. This is due to
the fact that sheaf cohomology coincides with Čech cohomology whenever the presheaf
in question is defined on a paracompact space [God58]. The presheaves describing
empirical models are defined on a discrete space, which, in particular, is paracompact.
So we can limit ourselves to Čech cohomology without any loss of generality.

9Usually, R = Z or Z2.
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6.1.1. Čech cohomology.

Definition II.23. LetM⊆ Open(X) be a collection of open subsets of a space X.
A q-simplex of the nerve of M is a tuple σ = 〈C0, . . . , Cq〉 of elements of M with
non-empty intersection. The set of q-simplices of M is denoted

N (M)q :=
{
σ = 〈C0, . . . , Cq〉 ∈ Mq+1 | |σ| 6= ∅

}
,

where

|σ| :=
q⋂

i=0

Ci.

The collection of all simplices N (M) := {∅} ∪ ⋃q≥0N (M)q is essentially an abstract
simplicial complex with the added structure of an order for its faces.

Although this definition is completely general, in this thesis M will always be the
measurement cover of a scenario with measurement set X.

For all q ≥ 0 and each 0 ≤ j ≤ q+ 1, we define the boundary maps ∂j : N (M)q+1 →
N (M)q by

∂j(C0, . . . , Cq+1) := (C0, . . . , Cj−1, Ĉj , Cj+1, . . . , Cq+1),

where Ĉj is to denote that element Cj has been removed from the list.

Definition II.24. Let F : Open(X)op → AbGrp be a presheaf.10 The (aug-
mented) Čech cochain complex of F is defined as the sequence

0
δ−1:=0−−−−−→ C0(M,F)

δ0−−→ C1(M,F)
δ1−−→ . . . ,

where

• For each q ≥ 0,

Cq(M,F) :=
⊕

σ∈N (M)q

F(|σ|)

is the abelian group of q-cochains.
• For each q ≥ 0, the q-th coboundary map δq : Cq(M,F) → Cq+1(M,F) is

defined by

δq(ω)(σ) :=

q+1∑

j=0

(−1)jρ
|∂j(σ)|
|σ| (ω(∂jσ)),

where we have used the fact that |σ| ⊆ |∂j(σ)|. By convention, δ−1 := 0.

A straightforward calculation yields the following proposition.

Proposition II.25 ([AMB12]). For all q ≥ −1, δq+1 ◦ δq = 0.

Thus the object of the definition is indeed a cochain complex. Čech cohomology
Ȟ∗(M,F) is defined as the cohomology of this augmented cochain complex:

Definition II.26. Given a presheaf F : Open(X)op → AbGrp, we define, for all
q ≥ 0,

10In our case, F will always be an abelian representation of a possibilistic empirical model S.
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• The group of q–cocycles as

Zq(M,F) := ker(δq).

• The group of q–coboundaries as

Bq(M,F) := im(δq−1).

• The q–th Čech cohomology group of F as the quotient

Ȟq(M,F) := Zq(M,F)/Bq(M,F).

In our study, we will always assume that M is connected, which means that given
any C,C ′ ∈ M, there exists a sequence C = C0, . . . , Cn = C ′ such that Ci ∩ Ci+1 6= ∅
for all 0 ≤ i ≤ n− 1. Note that this assumption does not cause any loss of generality as
it is always possible to study contextuality in the individual connected components.

Proposition II.27 ([AMB12]). There is a one–to–one correspondence between co-
cycles in Z0(M,F) ∼= Ȟ0(M,F) and compatible families {rC ∈ F(C)}C∈M

6.1.2. Relative cohomology. We shall be concerned with extendability of local
sections at a fixed context C0 ∈M. For this reason, we define the relative cohomology
of F . To do so, we introduce two auxiliary presheaves. Firstly

F|C0 : Open(X)op → AbGrp :: U 7→ F(U ∩ C0).

The restriction to C0 yields a morphism of sheaves pC0 : F ⇒ F|C0 given by

pC0
U : F(U)→ F|C0(U) :: r 7→ r|C0∩U .

Each pC0
U is surjective as F is flasque beneath the cover and U ∩ C0 ⊆ C0 ∈ M. The

second presheaf is defined by FC̃0
(U) := ker(pC0

U ). To summarise, we have the following
exact sequence of presheaves

(II.6) 0 =⇒ FC̃0
=⇒ F pC0

==⇒ F|C0 ,

which can be lifted to cochains

0 −→ C0(M,FC̃0
) ↪−−−−→ C0(M,F)

⊕
C p

C0
C−−−−−→ C0(M,F|C0) −→ 0,

where exactness on the right follows by surjectivity of all the pC0
C .

6.2. Cohomology obstructions. The map δ0 can be correstricted to a map δ̃0 :=

δ0 |Z1(M,F) whose kernel is Z0(M,F) ∼= Ȟ0(M,F) and whose cokernel is isomorphic
to Ȟ1(M,F), and the same procedure can be applied to F|C0 and FC̃0

. Therefore, by
applying the snake lemma, we obtain the following diagram:
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Ȟ0(M,FC̃0
) Ȟ0(M,F) Ȟ0(M,F|C0)

0 C0(M,FC̃0
) C0(M,F) C0(M,F|C0) 0

0 Z1(M,FC̃0
) Z1(M,F) Z1(M,F|C0)

Ȟ1(M,FC̃0
) Ȟ1(M,F) Ȟ1(M,F|C0)

γC0

The homomorphism γC0 is called the connecting homomorphism relative to the
context C0. The following elementary result is introduced without proof in [AMB12].
We will give here a short proof for the purpose of introducing the isomorphism φ0, which
will be generalised in Chapter III.

Lemma II.28. Given a context C0 ∈M, we have

Ȟ0(M,F|C0) ∼= F(C0).

Proof. By Proposition II.27, elements of Z0(M,F|C0) ∼= Ȟ0(M,F|C0) are compat-
ible families of F|C0 . Thus by condition (3) of Definition II.12, for each s = 〈sC〉C∈M ∈
Z0(M,F|C0) there exists a unique global section, which we denote by φ0(s) ∈ F|C0(X) =
F(C0), that restricts to each element sC . This defines an assignment

φ0 : Ȟ0(M,F|C0) −→ F(C0),

whose inverse is

(II.7) ψ0 : F(C0) −→ Ȟ0(M,F|C0) :: s0 7→ 〈s0|C∩C0〉C∈M .

One can easily verify that these assignments are group homomorphisms. �
Thanks to this lemma, we can introduce the following definition:

Definition II.29. Let C0 be a context of a scenario 〈X,M, (Om)〉, and let F be an
abelian representation of a model S on the scenario. For any local section r0 ∈ F(C0),
the element

γC0(r0) ∈ Ȟ1(M,FC̃0
)

is called the cohomology obstruction of r0. With a slight abuse of terminology, given
a local section s0 ∈ S(C0), we will call its cohomology obstruction the element

γC0(iC0(s0)) ∈ Ȟ1(M,FC̃0
),

where i : S ↪→ F is the injection of Definition II.22.

The reason why it is called an obstruction is clarified by the following proposition:
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Proposition II.30 ([AMB12]). Let F be a an abelian representation of a model S
on a scenario 〈X,M, (Om)〉, let C0 ∈M be a context and r0 ∈ F(C0). Then, there exists
a compatible family {rC ∈ F(C)}C∈M such that rC0 = r0 if and only if the obstruction
of r0 vanishes, i.e. γC0(r0) = 0.

This results motivates the following definition, which is the cohomological counter-
part of Definition II.15.

Definition II.31. Let S be an empirical model on a scenario 〈X,M, (Om)〉, and
consider a local section s0 ∈ S(C0).

• S is cohomologically logically contextual at s0, denoted CLC (S, s0), if
γC0(s0) 6= 0. We say that S is cohomologically logically contextual, de-
noted CLC(S), if CLC (S, s) for some section s.
• S is cohomologically strongly contextual , denoted CSC (S), if CLC (S, s)

for all sections s.

The main result of [AMB12] provides a sufficient condition for an empirical model
to be contextual:

Theorem II.32. Let S be an empirical model on a scenario 〈X,M, (Om)〉. Given a
section s0 of S, we have

CLC(S, s0)⇒ LC(S, s0),

CSC (S)⇒ SC (S) .

Note that cohomology only provides a sufficient condition for contextuality, which, as
we shall see in detail in Chapter III, is not necessary in general. Although Proposition
II.30 says that cohomology gives rise to a complete invariant for the extendability of
local sections to global sections of an abelian presheaf F , this does not generalise to
sections of a presheaf of sets S. This is due to the fact that global sections of F are not
necessarily global sections of S. This aspect gives rise to false negatives, an issue which
will be extensively studied in Chapters III and IV.

Despite this, cohomology has been proved to correctly detect contextuality in a vari-
ety of models, including the GHZ model, the PR Boxes, the Peres–Mermin magic square
[Per90, Mer90b, Mer93], and all ¬GCD models [AB11a]. All these instances can
be shown to be part of the vast class of models admitting All-vs-Nothing arguments of
contextuality. In fact, in [ABK+15], it has been shown that cohomology does correctly
captures this very general kind of contextual behaviour. This constitutes the main moti-
vation underpinning our study, in the context of this thesis, of All-vs-Nothing arguments
in quantum mechanics, presented in Chapter VI.





CHAPTER III

The cohomology of contextuality:
extensions and limitations

Summary

This chapter illustrates new insights into different aspects of the appli-
cation of sheaf cohomology to the study of contextuality. Many of the
results presented here are limitative in character, and highlight impor-
tant shortcomings of the theory. In particular, we analyse the issue of
false negatives, and show that, in its present formulation, sheaf cohomol-
ogy does not constitute a complete invariant for strong contextuality, not
even under symmetry and connectedness restrictions on the measurement
cover, disproving a previous conjecture. We extend the theory by general-
ising cohomology obstructions to higher cohomology groups. Such higher
obstructions give rise to a refinement of the notion of cohomological con-
textuality: different ‘levels’ of contextuality are organised in a hierarchy
of logical implications. Finally, we present an alternative description of
the first cohomology group in terms of F-torsors, resulting in a new in-
terpretation of the obstructions.

1. Overview

The pioneering work on the application of sheaf cohomology to contextuality by
Abramsky, Barbosa & Mansfield [AMB12] – reviewed in Chapter II – presented a
sufficient condition for contextuality based on the concept of cohomology obstruction.
Although this method has been proved to correctly detect non-classical behaviour in a
variety of scenarios, the authors pointed out that it does not constitute a complete in-
variant for contextuality, as witnessed by the existence of false negatives. These findings
motivate further research on the actual power of detection of cohomological obstructions.

In this chapter, we illustrate new insights into the properties of sheaf cohomology
with the ultimate goal of understanding how false negatives arise. In particular, we aim
to give an answer to some of the open questions left by [AMB12, ABK+15]:

• Where does cohomological contextuality sit in the hierarchy of contextuality?
Theorem II.32 says that cohomological contextuality is a stronger property than
regular contextuality, but it does not fully characterise its position in the hier-
archy of contextuality reviewed in Chapter II. It would be especially desirable
to understand the relation between cohomological contextuality and strong con-
textuality. In this respect, it was conjectured in [AMB12, Conjecture 8.1] that,
despite the existence of false negatives, cohomology is a complete invariant for

39
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strong contextuality under suitable – though unspecified – assumptions on the
measurement scenario.
• Can higher cohomology groups be used to study contextuality?

The obstruction defined in [AMB12] is an element of the first Čech cohomology
group. In classical problems involving sheaf cohomology, as well as in the
related domain of obstruction theory [Whi40, Ste51, EM54], the cohomology
obstructions also arise in higher cohomology groups. Therefore, it is natural
to ask whether higher cohomology groups play any role in the detection of
contextual false negatives, as suggested in [ABK+15].
• Can obstructions be characterised independently of cohomology?

Cohomology obstructions are highly abstract concepts, and have little interpre-
tation in the physical setting of experimental scenarios. Can the same power
of detection be achieved through a more concrete description?

We outline our results:

• We disprove Conjecture 8.1 of [AMB12] by providing an explicit example of
an empirical model, defined on a simple (2, 2, 4) Bell-type scenario verifying
any reasonable form of connectedness and symmetry, which is strongly con-
textual yet cohomologically non-contextual. This counterexample clarifies the
hierarchical structure of contextuality, as shown in Figure III.3.

CSC

SC

CLC

LC

PC

?

Figure III.1. Hierarchy
proposed in [AMB12].

CSC

SC CLC

LC

PC

Figure III.2. Actual hierarchy.

Figure III.3. Hasse diagrams of the hierarchical structure of contextu-
ality as proposed in [AMB12], and proven in the present chapter.

• We generalise cohomology obstructions to higher cohomology groups. These
higher obstructions yield a refinement of the notion of cohomological contextu-
ality: for each q ≥ 0, we say that a model is q-cohomologically contextual if the
q-th obstruction does not vanish.
• We show that these new levels of contextuality are organised in a precise hier-

archy, described by the Hasse diagram of Figure III.4.
• We highlight a crucial limitation of higher obstructions, namely that they can-

not be applied to study contextuality in no-signalling empirical models.
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CSC2

CSC1 CLC2

CSC CLC1

SC CLC

LC

PC

Figure III.4. A Hasse diagram of the hierarchy of higher cohomology
obstructions introduced in this chapter

• We give a new description of the first cohomology group and, in particular, of
the cohomology obstructions, using F-torsors for an abelian representation F .

The content of this chapter has been published in [Car17].

Outline of the chapter. We start, in Section 2, by presenting a concrete example
of a cohomological false negative and studying the typical form of a false global section.
In Section 3 we introduce the counterexample to Conjecture 8.1 of [AMB12]. Section 4
presents the generalisation of cohomology obstructions to higher cohomology groups and
investigates its consequences. Finally, in Section 5, we present the alternative description
of cohomology obstructions as F-torsors.

2. False negatives in cohomology

We begin by introducing the issue of false negatives [AMB12], i.e. empirical models
whose contextuality is not properly detected by cohomology. Consider the Hardy model
S of Table II.8, and let us enumerate its possible sections as in Table III.1.

Table III.1. An enumeration of the possible sections of the Hardy model.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 s1 s2 s3 s4

a1 b2 s5 s6 s7

a2 b1 s8 s9 s10

a2 b2 s11 s12 s13

In Example II.16, we proved that the model is logically contextual at s1, as this
section cannot be extended to a global section. A topological visualisation of this proof
was provided in Figure II.6.
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Let F := FRS, where R is an arbitrary ring, and consider s1 as an element of
F({a1, b1}).1 Because the local sections of F are formal linear combinations of sections
of S, section s1 ∈ F({a1, b1}) can be extended to a global section of F , namely the one
corresponding to the following compatible family:

{s1, s6 − s7 + s5, s8, s12}.
Its compatibility can be easily verified: here, we only explicitly show the non-trivial step:

(s6 − s7 + s5)|{a1} = s6|{a1} − s7|{a1} + s5|{a1} = {a1 7→ 0} − {a1 7→ 1}+ {a1 7→ 1}
= {a1 7→ 0} = s1|{a1};

(s6 − s7 + s5)|{b2} = s6|{b2} − s7|{b2} + s5|{b2} = {b2 7→ 1} − {b2 7→ 1}+ {b2 7→ 0}
= {b2 7→ 0} = s12|{b2}.

By Proposition II.30, we conclude that γ(s1) = 0, which means that cohomology is
unable to detect the logical contextuality of the Hardy model, resulting in a false neg-
ative.2

A topological interpretation of this proof can be found in Figure III.5. Here, the
bundle diagram of the model is presented both in its 3-dimensional and planar form.
The planar representation is particularly handy to visualise false negatives, and will be
used extensively in Chapter IV. In order to recover the original diagram, it is sufficient
to ‘glue’ back together the two ends of the planar version.

1

0
1

00

1

a1

a2

b1

b2

0

1

a1 b1 a2 b2 a1

Figure III.5. A cohomological false negative for the Hardy model.

In the picture, section s1 is highlighted in red, whereas the global section containing it
is marked in blue. Notice that this is indeed a closed loop, but it features a ‘twist’ over
context {a1, b2}. Such a twisted loop is obviously not a valid global section of S.

The existence of such false negatives shows that sheaf cohomology does not constitute
a complete invariant for contextuality.

1Here, we used the injection i : S ↪→ F which, in this case, is given by the trivial embedding
s1 7→ 1 · s1. From now on, we will pass from any s ∈ S(C) to s := iC(s) ∈ F(C) without any comments.
With a slight abuse of notation, we will also denote s ∈ F(C) for iC(s).

2In [AMB12], the situation we have just described is usually referred to as a false positive. However,
we believe the term used here is more fitting as, after all, we are testing for contextuality.
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3. A false negative for strong contextuality

In [AMB12], it is brought to attention that, although cohomology can fail to detect
logical contextuality as in the case of the Hardy model, it is rather difficult to construct
a strongly contextual false negative. Indeed, cohomology is able to detect the strong
contextuality of a variety of well-known models, including GHZ states, PR Boxes, the
Peres–Mermin magic square, all ¬GCD models [AMB12], and the whole class of models
admitting All-vs-Nothing arguments [ABK+15].

The only cohomological false negative for strong contextuality that has appeared in
the literature [AMB12] is the Kochen-Specker model S for the cover

(III.1) {A,B,C}, {B,D,E}, {C,D,E}, {A,D,F}, {A,E,G}.
The false negative has been observed using FZ2S as an abelian representation for S. Let
us show how it arises.

In Table III.2, we introduce a list of variables in Z2 for each of the 15 possible sections
of the model to determine whether it is possible to construct a global section for the
abelian representation FZ2S, or, equivalently, a compatible family.

Table III.2. Variables for the possible sections of the Kochen-Specker
model on the cover (IV.18).

Contexts (1, 0, 0) (0, 1, 0) (0, 0, 1)
{A,B,C} a b c
{B,D,E} d e f
{C,D,E} g h i
{A,D,F} j k l
{A,E,G} m n o

The compatibility conditions of a presumed compatible family for F translate into
equations modulo 2. First of all, we have

a = j = m

b = d = g = c

e = h = k

f = i = n

Moreover,
a⊕ c = d⊕ f
a⊕ b = h⊕ i
b⊕ c = k ⊕ l

b⊕ c = n⊕ o
d⊕ f = j ⊕ l
d⊕ e = m⊕ o

g ⊕ i = j ⊕ l
g ⊕ h = m⊕ o
k ⊕ l = n⊕ o

From these equations it follows that

a = i = j = m = n = o

b = c = d = e = g = h = k = l

Thus, we can rewrite Table III.2 using the only two free variables a and b, as shown in
Table III.3. Thanks to this table, one can immediately verify that the model is strongly
contextual. Indeed, in order to construct a compatible family, we are only allowed to
choose one section per context to which we assign 1, while the others must be zero. By
simply looking at Table III.3 we can see that this is clearly impossible.
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Table III.3. Table III.2 rewritten given compatibility equations.

Contexts (1, 0, 0) (0, 1, 0) (1, 0, 0)
{A,B,C} a b b
{B,D,E} b b a
{C,D,E} b b a
{A,D,F} a b b
{A,E,G} a a a

However, if we let a = 1 and b = 0 we obtain the following cohomological compatible
family
{
s{A,B,C},A, s{B,D,E},E , s{C,D,E},E , s{A,D,F},A, s{A,E,G},A ⊕ s{A,E,G},E ⊕ s{A,E,G},G

}

where we have used the following notation for sections of a Kochen-Specker model: given
a context C and a measurement m ∈ C, the section sC,m is the section that maps m to
1 and every other x ∈ C to 0 [MB13].

The false negative we have just presented features a rather asymmetrical structure.
In particular “the existence of measurements belonging to a single context, namely F
and G, seems to be crucial” [AMB12] for the manifestation of the false negative. Due
to these limitations, the following conjecture was made:

Conjecture III.1 (Conjecture 8.1 of [AMB12]). Under suitable assumptions of
symmetry and connectedness of the cover, the cohomology obstruction is a complete
invariant for strong contextuality.

We introduce a counterexample to this conjecture. Consider the model S described
in Table III.4. This model is defined on a (2, 2, 4) Bell-type scenario, which is extremely

Table III.4. A possibilistic model on a (2, 2, 4) scenario. This model is
a counterexample to Conjecture III.1.

A B 00 01 10 02 20 03 30 11 12 21 13 31 22 23 32 33
a1 b1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
a1 b2 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1
a2 b1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1
a2 b2 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0

simple and verifies any reasonable form of symmetry and connectedness. The bundle
diagram of the model is presented on the left hand side of Figure III.6.

By carefully analysing the picture, one verifies that none of the sections can be
extended to a compatible family of S (i.e. a closed path containing one and only one
section per context), but each one of them is contained in a compatible family of F :=
FZS, namely a closed path similar to the one generating the false negative for the Hardy
model (cf Figure III.5). For instance, we show this feature by considering the section
s0 := (a1, b1) 7→ (0, 0): from the central diagram of Figure III.6 it appears clear that
this section is non-extendable to a compatible family of S, while the diagram on the
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Figure III.6. (Left) – The bundle diagram of S; (Center) – a visual
proof of strong contextuality: none of the local sections can be extended
to a closed loop; (Right) – a visual proof of false negativity: every section
is part of a twisted cohomology loop.

right-hand side shows that s0 is part of a compatible family for F , explicitly defined by

{s0, (a2, b1) 7→ (0, 0), (a2, b2) 7→ (0, 1),

[(a1, b1) 7→ (1, 1)]− [(a1, b1) 7→ (1, 0)] + [(a1, b1) 7→ (0, 0)]}.
The reader can verify that a false negative exists for all of the local sections in the model.
This task is made significantly simpler by considering the planar representation of the
bundle diagram of the model, presented in Figure III.7. Here, the reader can visually
verify both that every section cannot be extended to a closed loop (i.e. that S is strongly
contextual), and that every section is part of a compatible family for F . For instance,
we show another false negative for section (a1, b2) 7→ (0, 0).

a1 b1 a2 b2 a1

1

0

2

3

Figure III.7. The planar representation of the bundle diagram of S.
In blue, a cohomological false negative for the section (a1, b2) 7→ (0, 0),
marked in red.
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We conclude that this model is strongly contextual but not cohomologically contex-
tual (not even cohomologically logically contextual), essentially disproving Conjecture
8.1 of [AMB12].3

4. Extension to higher cohomology groups

The sheaf cohomological method developed in [AMB12] involves only the first Čech
cohomology group, which contains the obstructions. The existence of extreme false
negatives such as the one presented in the previous section motivates a deeper inspection
of the higher cohomology groups in search of information on how such extreme cases arise.
We will introduce here a generalisation of cohomology obstructions to higher-dimensional
cohomology groups.

Let F be an abelian representation of an empirical model S on a scenario 〈X,M, O〉.
Let q ≥ 0 be an integer and fix a context C0 ∈ M. To each section s0 ∈ F(C0) we
associate a q-relative cochain cqs0 ∈ Cq(M,F|C0) defined by

cqs0(ω) := s0|C0∩|ω|, ∀ω ∈ N (M)q.

This assignment determines a homomorphism ψq : F(C0)→ Cq(M,F|C0) which gener-
alises the isomorphism ψ0 of (II.7). Although ψq is not an isomorphism in general, it
is always injective, which means that different sections in F(C0) are mapped to distinct
elements of Cq(M,F|C0).

Lemma III.2. For each q ≥ 0, the homomorphism ψq is injective.

Proof. Let s0 ∈ ker(ψq). Then cqs0 = 0, thus in particular 0 = cqs0(C0, . . . , C0︸ ︷︷ ︸
q+1 many

) = s0.

Therefore, ker(ψq) = 0 and the homomorphism is injective. �

An important aspect of ψ0 is that its image lies in Z0(M,F|C0) ∼= Ȟ0(M,F|C0).
However, this is not necessarily the case in higher dimensions. The following lemma
shows that this feature is generalisable only in even dimensions.

Lemma III.3. Let q ≥ 0. The image of ψq is contained in Zq(M,F|C0) if and only
if q is even.

Proof. Let s0 ∈ F(C0). For any ω ∈ N (M)q+1, we have

δq
(
cqs0
)

(ω) =

q+1∑

k=0

(−1)kρ
|∂kω|
|ω|

(
cqs0(∂kω)

)
=

q+1∑

k=0

(−1)kρ
|∂kω|
|ω|

(
s0|C0∩|∂kω|

)

=

q+1∑

k=0

(−1)ks0|C0∩|ω| = s0|C0∩|ω| ·
q+1∑

k=0

(−1)k

The last sum is an alternating sum. Therefore, δq (cqs0) (ω) = 0 if and only if q is even. �

3The open-endedness of the statement of the conjecture leaves room for a small minority of special
cases where cohomology is indeed a full invariant of strong contextuality. An example is given in
[Man13], where it is shown that the conjecture is true for the extremely limited class of symmetric
Kochen-Specker models satisfying a condition due to Daykin and Häggkvist [DH81].
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Given a q ≥ 0, we can generalise the construction of the connecting homomorphism
γ to the order 2q. For each σ ∈ N (M)2q, the exact sequence (II.6) yields an exact
sequence

0
0−−→ FC̃0

(|σ|) := ker(pC0

|σ|) −→ F(|σ|)
p
C0
|σ|−−−→ F|C0(|σ|) −→ 0.

Surjectivity on the right is due to the fact that |σ| ∩ C0 ⊆ C0 for all σ, hence the map

pC0

|σ| is surjective since S is flasque beneath the cover.

We can sum these morphisms for every σ ∈ N (M)2q and lift exactness to the chain
level:

(III.2) 0
0−−→ C2q(M,FC̃0

) −→ C2q(M,F)

⊕
σ p

C0
|σ|−−−−−−→ C2q(M,F|C0) −→ 0.

Then, we take the correstriction δ̃2q of the 2q-th coboundary maps to Z2q+1 and obtain

0 C2q(M,FC̃0
) C2q(M,F) C2q(M,F|C0) 0

0 Z2q+1(M,FC̃0
) Z2q+1(M,F) Z2q+1(M,F|C0)

δ̃2q δ̃2q δ̃2q

Finally, we apply the snake lemma to this diagram and obtain the q-th connecting
homomorphism γ̃qC0

.

(III.3)

F(C0)

Z2q(M,FC̃0
) Z2q(M,F) Z2q(M,F|C0)

0 C2q(M,FC̃0
) C2q(M,F) C2q(M,F|C0) 0

0 Z2q+1(M,FC̃0
) Z2q+1(M,F) Z2q+1(M,F|C0)

Ȟ2q+1(M,FC̃0
) Ȟ2q+1(M,F) Ȟ2q+1(M,F|C0)

ψ2q

γ̃qC0

This construction naturally culminates in the following definition:
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Definition III.4. Let s0 ∈ F(C0). We define the q-th cohomological obstruc-
tionof s0 as the element

γqC0
(s0) := γ̃qC0

(ψ2q(s0)) ∈ Ȟ2q+1(M,F).4

The empirical model S underlying F is defined to be

• cohomologically logically q-contextual at a section s0, or CLCq(S, s0), if
γqC0

(s0) 6= 0. We say that S is cohomologically logically q-contextual if

CLCq(S, s) for some section s.
• cohomologically strongly q-contextual, or CSCq(S), if CLCq(S, s) for all s.

For q = 0 one recovers the original notion of cohomological contextuality, introduced in
Definition II.31.

Note that, due to parity arguments needed to achieve this definition, the cohomo-
logical obstruction is generalisable only to odd-dimensional cohomology groups.

In the case q = 0, Proposition II.30 tells us that the vanishing of the cohomological
obstruction is equivalent to the existence of a compatible family in F containing s0. The
analogous result for higher obstructions is the following:

Proposition III.5. Given a q ≥ 0, a context C0 ∈M and a local section s0 ∈ F(C0),
γqC0

(s0) = 0 if and only if there exists a family s ∈ Z2q(M,F) such that

(III.4) pC0

|σ|(s(σ)) = c2q
s0(σ) = s0|C0∩|σ| ∀σ ∈ N (M)2q.

Proof. γq(s0) = 0 ⇔ γ̃q(c2q
s0) = 0 ⇔ c2q

s0 ∈ ker(γ̃q). Since γ̃q is defined using the

snake lemma, it is part of an exact sequence. Therefore, c2q
s0 ∈ ker(γ̃q) if and only if there

exists a family s ∈ Z2q(M,F) such that (III.4) is verified. �

4.1. A hierarchy of cohomological obstructions. Remarkably, higher cohomol-
ogy obstructions are organised in a precise hierarchy of implications. In the following
proposition we show that, if an obstruction vanishes at order q ≥ 0, it must vanish at
any higher order q′ ≥ q.

Theorem III.6. Let F be an abelian presheaf representing an empirical model S on
a scenario 〈X,M, O〉. Let s0 ∈ F(C0). Then CLCq+1(S, s0)⇒ CLCq(S, s0) for all q ≥ 0.

Proof. We will show ¬CLCq(S, s0)⇒ ¬CLCq+1(S, s0). Suppose ¬CLCq(S, s0), that
is, γqC0

(s0) = 0. By Proposition III.5 there exists a family s ∈ Z2q(M,F) such that

pC0

|σ|(s(σ)) = c2q
s0(σ) for all σ ∈ N (M)2q. For all τ ∈ N (M)2q+2, we define

f(s)(τ) := ρ
|∂2q+1∂2q+2τ |
|τ | (s(∂2q+1∂2q+2τ)) = s(∂2q+1∂2q+2τ)||τ |.

Notice that f(s)(τ) ∈ F(|τ |), thus f(s) ∈ C2q+2(M,F). We can actually show that
f(s) is in Z2q+2(M,F) as follows. Given an arbitrary ν ∈ N (M)2q+3, we have

4Note that if q = 0 this definition coincides with the one of cohomological obstruction given before,
hence γ0

C0
= γC0 .
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δ2q+2(f(s))(ν) =

2q+3∑

k=0

(−1)kρ
|∂kν|
|ν| (f(s)(∂kν))

=

2q+3∑

k=0

(−1)kρ
|∂kν|
|ν| ρ

|∂2q+1∂2q+2∂kν|
|∂kν| (s(∂2q+1∂2q+2∂kν))

=

2q+3∑

k=0

(−1)kρ
|∂2q+1∂2q+2∂kν|
|ν| (s(∂2q+1∂2q+2∂kν))

=

2q+1∑

k=0

(−1)kρ
|∂2q+1∂2q+2∂kν|
|ν| (s(∂2q+1∂2q+2∂kν))

+ ρ
|∂2q+1∂2q+2∂2q+2ν|
|ν| (s(∂2q+1∂2q+2∂2q+2ν))

− ρ|∂2q+1∂2q+2∂2q+3ν|
|ν| (s(∂2q+1∂2q+2∂2q+3ν))

(III.5)

Notice that the last two terms of the sum cancel out since, trivially,

∂2q+2∂2q+2ν = ∂2q+2∂2q+3ν.

Hence,

δ2q+2(f(s))(ν)
(III.5)

=

2q+1∑

k=0

(−1)kρ
|∂2q+1∂2q+2∂kν|
|ν| (s(∂2q+1∂2q+2∂kν))

=

2q+1∑

k=0

(−1)kρ
|∂k∂2q+1∂2q+2ν|
|ν| (s(∂k∂2q+1∂2q+2ν)),

(III.6)

where the last equality is valid since now 0 ≤ k ≤ 2q + 1 and thus it is unimportant
whether we cancel the k-th term before or after having canceled the (2q+ 2)-th and the
(2q + 1)-th. We can now relabel ∂2q+1∂2q+2ν =: ν̃ ∈ N (M)2q+1 and obtain

δ2q+2(f(s))(ν)
(III.6)

=

2q+1∑

k=0

(−1)kρ
|∂kν̃|
|ν| (s(∂kν̃)) =

2q+1∑

k=0

(−1)ks(∂kν̃)||ν|

=

2q+1∑

k=0

(−1)k
(
s(∂kν̃)||ν̃|

)
||ν| =

(
2q+1∑

k=0

(−1)k
(
s(∂kν̃)||ν̃|

)
)
||ν|

=

(
2q+1∑

k=0

(−1)kρ
|∂kν̃|
|ν̃| (s(∂kν̃))

)
||ν| = δ2q(s)(ν̃)||ν| = 0||ν| = 0,

where the second-to-last equality is due to the fact that s ∈ Z2q(M,F).
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Let σ ∈ N (M)2q+2, and let σ̃ := ∂2q+1∂2q+2σ. We have

pC0

|σ|(f(s)(σ)) = f(s)(σ)||σ|∩C0
= s(∂2q+1∂2q+2σ)||σ|∩C0

= s(σ̃)||σ|∩C0
= s(σ̃)||σ̃|∩|σ|∩C0

=
(
s(σ̃)||σ̃|∩C0

)
||σ| =

(
pC0

|σ̃|(s(σ̃))
)
||σ| =

(
c2q
s0(σ̃)

)
||σ| =

(
s0||σ̃|∩C0

)
||σ|

= s0||σ̃|∩|σ|∩C0
= s0||σ|∩C0

= c2q+2
s0 (σ).

By Proposition III.5 this implies γq+1
C0

(s0) = 0. �

This result reveals the existence of an infinite number of levels of contextuality
organised in the following hierarchy:

CSC(S) CSC1(S) . . . CSCq(S) CSCq+1(S) . . .

CLC(S) CLC1(S) . . . CLCq(S) CLCq+1(S) . . .

III.6 III.6

III.6 III.6

4.2. Higher cohomology groups cannot be used to study contextuality.
Despite the successful refinement of the notion of cohomological contextuality, it turns
out that higher obstructions cannot be applied to the study of contextuality in no-
signalling empirical models:

Theorem III.7. No-signalling empirical models are cohomologically q-non-contextual
for any q > 0.

Proof. Consider an abelian presheaf F representing an empirical model S on a sce-
nario 〈X,M, O〉, where M := {Ci}i∈I . Let C0 ∈M be an arbitrary context, and sC0 ∈
F(C0) an arbitrary section. By no-signalling, there exists a family {sCi ∈ F(Ci)}i∈I
such that sCi |Ci∩C0 = sC0 |Ci∩C0 for all i. We define z ∈ C2(M,F) by the expression

z(ω) := s∂0∂2ω||ω| ∈ F(|ω|) ∀ω ∈ N (M)2.

More explicitly, given an ω := (Ci, Cj , Ck) ∈ N (M)2, we define

z(Ci, Cj , Ck) := sCj |Ci∩Cj∩Ck ∈ F(Ci ∩ Cj ∩ Ck).

Given a general σ := (Ci, Cj , Ck, Cl) ∈ N (M)3, we have

δ2(z)(σ) = z(Cj , Ck, Cl)||σ| − z(Ci, Ck, Cl)||σ| + z(Ci, Cj , Cl)||σ| − z(Ci, Cj , Ck)||σ|
= sCk ||σ| − sCk ||σ| + sCj ||σ| − sCj ||σ| = 0,

thus z ∈ Z2(M,F). Moreover, for any general ω = (Ci, Cj , Ck) ∈ N (M)2 we have

pC0

|ω|(z(ω)) = z(ω)||ω|∩C0
= sCj |Ci∩Cj∩Ck∩C0 =

(
sCj |Cj∩C0

)
|Ci∩Cj∩Ck∩C0

=
(
sC0 |Cj∩C0

)
||ω|∩C0

= sC0 ||ω|∩C0
= c2

sC0
(ω).

By Proposition III.5, this result implies γ1
C0

(sC0) = 0, and by Theorem III.6, we conclude
¬CLCq(S) for all q > 0. �
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This negative result puts an end to the discussion on the role of higher cohomology
in contextuality. However, it has been suggested that the implications of Theorem III.6
can potentially be used to study the signalling structure of empirical models [Kis16a].
We aim to investigate this aspect in future work.

5. An alternative description of the first cohomology group

Since higher cohomology groups cannot be used to infer information on how false
negatives arise, we devote the last section of this chapter to a detailed study of the
first cohomology group Ȟ1(M,FC̃0

). As explained in [AMB12], this group is of cru-
cial importance for the cohomological study of contextuality, as it contains all of the
obstructions to the existence of global sections. Its relevance has been also previously
highlighted by Penrose in his On the cohomology of impossible figures [Pen92] (see also
[PP58]), which presents “intriguing resemblances” with our study [ABK+15], as we
also pointed out in the introduction. Yet a full grasp of the nature of its elements is still
to be achieved. We propose here a description of Ȟ1 based on the notion of F-torsors,
as well as some considerations on the connecting homomorphism γ.

5.1. The connecting homomorphisms. The first step in understanding cohomo-
logical obstructions is studying the connecting homomorphisms. We present here some
insights on how the properties of γ can give us information on the type of contextuality
of an empirical model.

Proposition III.8. Let F be an abelian presheaf representing an empirical model S
on a scenario 〈X,M, O〉. The model is cohomologically strongly contextual if and only
if γC is injective for all C ∈M.

Proof. By Proposition II.30, S is cohomologically strongly contextual if and only
if γC(s) 6= 0 for all contexts C ∈M and all sections s ∈ F(C). This is equivalent to say
that ker(γC) = 0 for all C ∈M. �

Thanks to this result, we can give a lower bound for the cardinality of Ȟ1(M,FC̃0
)

in the case of cohomologically strongly contextual models:

CSC(S)⇒ |Ȟ1(M,FC̃0
)| ≥ |F(C0)|.

On the other hand, given a CLC∧¬CSC model, Proposition III.8 implies that there exist
two distinct sections that give rise to the same non-zero cohomological obstruction.

The injectivity of a single connecting homomoprhism is a sufficient condition for the
strong contextuality of an empirical model.

Proposition III.9. Let F be an abelian presheaf representing an empirical model S
on a scenario 〈X,M, O〉. If there exists a C0 ∈ M such that γC0 is injective, then S is
strongly contextual.

Proof. If S is not strongly contextual, there must exist a context C̄ ∈ M and a
section s ∈ S(C̄) that is extendable to a compatible family σ := {sC ∈ S(C)}C∈M.
Consider the section sC0 of this family. It is trivially an extendable local section since
it is part of the compatible family σ, thus ¬LC(S, sC0). By Theorem II.32, this implies
¬CLC(S, sC0) or, equivalently, γC0(sC0) = 0. F represents S, thus sC0 is non-zero in
F(C0), hence we conclude that ker(γC0) 6= 0, which means that γC0 is not injective. �
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Notice that these two propositions clarify how CSC is a stronger condition than SC:
we need all the connecting homomorphisms {γC}C∈M to be injective in order to conclude
that a model is CSC, but it is sufficient to have a single injective γC to conclude that it
is SC.

5.2. F-torsors. In this section, we review the concept of torsor relative to a pre-
sheaf. We will then proceed to show how to re-interpret cohomology obstructions as
torsors.

Definition III.10. Let F : Open(X)op → AbGrp be a presheaf of abelian groups
over a topological space X. An F-presheaf is a presheaf of sets T over X equipped
with a morphism of presheaves φ : F ×T ⇒ T such that, for each open U ⊆ X, the map

φU : F(U)× T (U)→ T (U) :: (g, t) 7→ g·t
is a left action of F(U) on T (U).

Given two F-presheaves T and T ′, a morphism of F-presheaves from T to T ′ is
a natural transformation ψ : T ⇒ T ′ such that ψU is equivariant for all open U ⊆ X.
That is, for all t ∈ T (U), for all g ∈ F(U),

ψU (g·t) = g·ψU (t).

An F-presheaf is a generalisation of the notion of G-presheaf (where G is a group),
also referred to as principal G-bundle or principal homogeneous space [Châ44, Châ46],
which has been proved to give rise to valuable alternative descriptions of elements of
the first cohomology group [LT58]. F-presheaves present a similar connection in the
case of sheaf cohomology [Dus75, Mil16], which we shall now adapt to fit the study of
contextuality. We start by introducing the concept of F-torsor.

Definition III.11. An F-torsor T is an F-presheaf such that

(1) There exists an open cover V of X that trivialises T , i.e. such that T (V ) 6= ∅
for all V ∈ V.

(2) The actions φU : F(U) × T (U) → T (U) are simply transitive. That is, for all
s, t ∈ T (U), there exists a unique g ∈ F(U) such that g·s = t.

The simplest example of F-torsor is the trivial F-torsor UF ,5 where the action is
simply given by g.U(h) := U(g + h). We denote by TrsF the set of isomorphism classes
of F-torsors. One can show that an F-torsor T is isomorphic to the trivial F-torsor if
and only if T (X) 6= ∅ [Mil16].

5.3. F-torsors and contextuality. In this final section, we adapt the discussion
carried out so far to fit the contextuality framework. Let F be an abelian presheaf
representing an empirical model S on a scenario 〈X,M, O〉, with M := {Ci}i∈I . Let

Trs(M,F) := {T ∈ TrsF | T is trivialised by M} ,
seen as a pointed set with the isomorphism class of the trivial F-torsor as distinguished
element. The following proposition clarifies the connection between F-torsors and the

5Here, U : AbGrp → Set denotes the forgetful functor. To avoid confusion, we will not explicitly
show its presence: the trivial F-torsor will be simply denoted by F .
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first Čech cohomology group containing the obstructions to the extension of local sec-
tions. This result is an adaptation of the well-known correspondence between torsors
and cohomology [Mil16].

Proposition III.12. There is a bijection of pointed sets6 Trs(M,F) ∼= Ȟ1(M,F).

Proof. Let T ∈ Trs(M,F). Because M trivialises T , we can arbitrarily choose a
collection {ti ∈ T (Ci)}i∈I . By simple transitivity, for all i, j ∈ I, there exists a unique
gij ∈ F(Ci ∩ Cj) such that gij·ti|Ci∩Cj = tj |Ci∩Cj . We also have

(gjk|Ci∩Cj∩Ck + gij |Ci∩Cj∩Ck)·ti|Ci∩Cj∩Ck = gjk|Ci∩Cj∩Ck· (gij·ti|Ci∩Cj) |Ci∩Cj∩Ck
= gjk|Ci∩Cj∩Ck· (tj |Ci∩Cj) |Ci∩Cj∩Ck
=
(
gjk·tj |Cj∩Ck) |Ci∩Cj∩Ck

= tk|Ci∩Cj∩Ck
= gik·ti|Ci∩Cj∩Ck ,

which implies gjk|Ci∩Cj∩Ck + gij |Ci∩Cj∩Ck = gki|Ci∩Cj∩Ck for all i, j, k ∈ I by the unique-

ness part of simple transitivity. This equation says that Ť , defined by Ť (Ci, Cj) := gij
for all i, j ∈ I, is a 1-cocycle, i.e. an element of Z1(M,F). Let

F : Trs(M,F)→ Ȟ1(M,F) :: T 7→ [Ť ].

In order to show that this map is well-defined, we need to prove that Ť is independent
of the choice of the family {ti}i∈I . Suppose we choose {t′i ∈ T (Ci)}i∈I instead, then we
obtain a family {g′ij ∈ F(Ci ∩ Cj)}i,j∈I as before. By simple transitivity, for each i ∈ I
there exists an element gi ∈ F(Ci) such that gi·t′i = ti. Thus, we obtain a family
H := {gi ∈ F(Ci)}i∈I . We have

(
g′ij + gi|Ci∩Cj

) ·t′i|Ci∩Cj = g′ij· (gi|Ci∩Cj·t′i|Ci∩Cj) = g′ij·ti|Ci∩Cj
= tj |Ci∩Cj , ∀i, j ∈ I.

On the other hand,
(
gj |Ci∩Cj + gij

) ·t′i|Ci∩Cj = gj |Ci∩Cj· (gij·t′i|Ci∩Cj) = gj |Ci∩Cj·t′j |Ci∩Cj
= tj |Ci∩Cj , ∀i, j ∈ I.

Again, by the uniqueness part of simple transitivity, this implies g′ij+gi|Ci∩Cj = gj |Ci∩Cj+
gij for all i, j ∈ I, which is equivalent to say δ0(H)(Ci, Cj) = g′ij − gij for all i, j ∈ I.

Consequently, it does not matter whether we define Ť (Ci, Cj) := gij or Ť (Ci, Cj) := g′ij
since these two 1-cocycles are cohomologous.

Notice that F maps the trivial F-torsor to 0 ∈ Ȟ1(M,F), thus it is a morphism of
pointed sets. To prove that F is a bijection, we introduce an inverse G : Ȟ1(M,F) →
Trs(M,F). Given [z] ∈ Ȟ1(M,F), we define the presheaf G([z]) : Open(X)op →
AbGrp as follows: for all U ⊆ X,

6The distinguished point of Trs(M,F) is the trivial F-torsor, whereas the one of Ȟ1(M,F) is 0.
The bijection maps one to the other.
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G([z])(U) :=

{
(ti)i ∈

⊕

i∈I
F(Ci ∩ U)

∣∣∣∣∣ ti|Ci,j∩U − tj |Ci,j∩U = z(Ci, Cj)|Ci,j∩U ,∀i, j ∈ I
}
,

where we have used the special notation Ci,j := Ci ∩ Cj for the sake of simplicity.
The restriction maps are given by

G([z])(U ⊆ U ′) :: (t′i)i∈I 7→ (t′i|Ci∩U )i∈I .

We define an F-action on G([z]) by the expression

g·(ti)i∈I := (ti − g|Ci∩U )i,

for any g ∈ F(U).
We need to show that G([z]) ∈ Trs(M,F). To do so, we prove that for any context

Cj ∈ M, there exists an isomorphism of F|Cj -presheaves F|Cj ⇒ G([z])|Cj (recall that
F denotes the trivial F-torsor). Consider a U ⊆ Cj . The map

hjU : F|Cj (U)→ G([z])|Cj (U) :: g 7→
(
z(Ci, Cj)|Ci∩Cj∩U − g|Ci∩Cj∩U

)
i∈I

is an isomorphism with inverse

kjU : G([z])|Cj (U)→ F|Cj (U) :: (ti)i∈I 7→ −tj .
In fact, hjU is equivariant since

g·hjU (h) = g· (z(Ci, Cj)|Ci∩Cj∩U − h|Ci∩Cj∩U)i∈I
=
(
z(Ci, Cj)|Ci∩Cj∩U − h|Ci∩Cj∩U − g|Ci∩Cj∩U

)

= hjU (U(g + h)) = hjU (g·h),

where the last action is the one of the trivial F-torsor. Moreover, kjU is indeed the inverse

of hjU :

hjU

(
kjU ((ti)i∈I)

)
= hU (−tj) =

(
z(Ci, Cj)|Ci∩Cj∩U + tj

)
i∈I = (ti − tj + tj)i∈I = (ti)i∈I ,

and

kjU (hjU (g)) = kU

((
z(Ci, Cj)|Ci∩Cj∩U − g|Ci∩Cj∩U

)
i∈I

)
= −z(Cj , Cj)|Cj∩U + g = g,

where the last equality is due to the fact that z is a 1-cocycle. Since F|Cj ∼= G([z])|Cj
for all contexts Cj , we know that G([z]) is an F-torsor trivialised by the measurement
cover M.

We also need to show that the definition of G is independent of the choice of the
representative z of the 1-cocycle [z]. Suppose we take a cohomologous 1-cocycle z′. Then
there exists a family h := {hi ∈ F(Ci)}i∈I such that z′(Ci, Cj)−z(Ci, Cj) = δ0(h). Then
we can define an isomorphism of F-torsors g([z]) ∼= g([z′]) induced by the maps

ψU : G([z])(U)→ G([z′])(U) :: (ti)i∈I 7→ (hi|Ci∩U + ti)i∈I .

In fact, this map is equivariant since

g·ψU ((ti)i∈I) = g· ((hi|Ci∩U + ti)i∈I) = (hi|Ci∩U + ti − g|Ci∩U )i∈I

= ψU
(
(ti − g|Ci∩U )i∈I

)
= ψU

(
g·(ti)i∈I) ,
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and its inverse is clearly

G([z′])(U)→ G([z])(U) :: (t′i)i∈I 7→ (t′i − hi|Ci∩U )i∈I .

We can finally show that G is the inverse of F .

• Let T ∈ Trs(M,F). We want to show that T ∼= G([Ť ]). Let U ⊆ X, and sup-
pose that Ť is defined with respect to the family {ti ∈ T (Ci)}i∈I . Consider an
element s ∈ T (U) and the induced family {si ∈ T (U ∩Ci)}i∈I := {s|Ci∩U}i∈I .7
By simple transitivity, for each i ∈ I there is a unique gi ∈ F(Ci∩U) such that
gi·si = ti|Ci∩U . This allows us to define the isomorphism

φU : T (U)→ G([Ť ])(U) :: s→ (gi)i∈I

We leave to the reader the rather simple verification of the fact it is actually
an isomorphism, but we explicitly show that it is equivariant. To see this, let
h ∈ F(U). We have φU (h·s) = (ki)i∈I , where, for all i ∈ I, ki is the unique
element in F(Ci ∩ U) such that ki·(h·s)|Ci∩U = ti|Ci∩U . More explicitly, ki is
the unique element such that

ki·(h|Ci∩U·si) = ti|Ci∩U ,
which is equivalent to

(ki + h|Ci∩U )·si = ti|Ci∩U .
On the other hand, h·φU (s) = h·(gi)i∈I = (gi − h|Ci∩U )i∈I . Since

(gi − h|U∩Ci)·(h|Ci∩U·si) = (gi − h|Ci∩U + h|Ci∩U )·si = gi·si = ti|Ci∩U ,
we conclude by simple transitivity that ki = gi − h|U∩Ci for all i ∈ I, which
leads to h·φU (s) = φU (h·s).
• Let [z] ∈ Ȟ1(M,F). We want to show that F (G([z])) = [z]. We construct the

family {tk ∈ G([z])(Ck)} given by tk := (z(Ci, Ck))i∈I and we use it to define
F (G([z])) by setting, for all i, j ∈ I, F (G([z]))(Ci, Cj) to be the unique element
gij ∈ F(Ci ∩ Cj) such that gij·tj |Ci∩Cj = ti|Ci∩Cj . Notice that

z(Cl, Ck)·tk|Cl∩Ck = z(Cl, Ck)·(z(Ci, Ck)|Ci∩Cl∩Ck)i∈I

= (z(Ci, Ck)|Ci∩Cl∩Ck − z(Cl, Ck)|Ci∩Cl∩Ck)i∈I

= (z(Ci, Cl))i∈I = tl|Cl∩Ck .
Therefore, by simple transitivity, gij = z(Ci, Cj) for all i, j ∈ I, proving
F (G([z])) = [z].

�

This bijection equips Trs(M,F) with a group structure. The addition of two F-
torsors is defined componentwise at each subset U ⊆ X by

G([z])(U) +G([w])(U) := G([z] + [w])(U)

7Note the similarities with the construction of cohomological obstruction in [AMB12], where we
take a no-signalling family for the initial section.
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for all [z], [w] ∈ Ȟ1(M,F). Clearly, the above bijection becomes an isomorphism of
abelian groups with respect to this addition.

This results implies that the elements of the first cohomology group Ȟ1(M,FC̃0
)

relative to a context C0 ∈ M (and, in particular, cohomological obstructions) can be
seen as isomorphism classes of FC̃0

-torsors trivialised by the measurement cover M.

Until now, elements of Ȟ1 could only be identified via the abstract equations imposed
by the rigid definition of cohomology. The reason why we believe the new description
might be more satisfactory, is that despite their seemingly sophisticated definition, tor-
sors are rather simple objects, as explained by Baez in [Bae09]. In the simplest terms,
an FC̃0

-torsor is the presheaf FC̃0
having lost its identity in each group FC̃0

(U), for

U ⊆ X. Rather than describing the local sections at each FC̃0
(U), it measures their dif-

ference. This aspect is particularly important for the purpose of studying contextuality
as it allows to effectively capture the non-compatibility of families of local sections by
evaluating their difference at the intersection of contexts.

Discussion

Sheaf cohomology is a powerful method for the detection of contextuality. However,
our work has highlighted some decisive limitations. In particular, we showed that it
cannot provide a full invariant for contextuality (neither logical nor strong), not even
under reasonably strong symmetry and connectedness assumptions. We proved that
cohomology obstructions can be naturally generalised to higher cohomology groups,
resulting in a new hierarchy of contextuality levels. However, nothing can be gained
from this refinement in the study of no-signalling empirical models.

It shall be mentioned that another approach to higher cohomology, based on the work
of Steenrod [Ste51] and Eilenberg [EM54] on obstruction theory, has been attempted
by the author. This method involves envisioning empirical models as simplicial fibrations
over the simplicial complexes describing the scenarios, as suggested in [Bar15b], and
use obstruction theory to study contextuality in the guise of a cross-section construction
problem. This perspective was developed by taking advantage of alternative description
of obstruction theory based on Potsnikov towers [Pos51], and their simplicial versions
[DK84, May92]. However, this method proved to be much more difficult to implement
as it requires models to be defined as Kan fibrations over Kan simplicial sets (rather than
simplicial complexes), due to the necessity of defining homotopy classes of the spaces in
question. This condition dramatically restricts the number of empirical models to which
the theory can be applied, and it does not appear to offer any advantage in terms of
false negatives.

The results of this chapter could potentially undermine our topological viewpoint on
contextuality, and demand further study in search for a complete cohomology invariant
for contextuality. Chapter IV will address this issue in detail with new methods and
constructions.

In the last section of this chapter, we have provided an alternative description of the
first cohomology group using F-torsors. Although this approach is still at a developing
stage, it allows to understand cohomological obstructions as a more concrete mathe-
matical entity. The torsor viewpoint also presents intriguing connections with gauge
theory [Wey29, YM54b, YM54a], which, in turn, appears to be the right framework
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to naturally formalise the concept of bundle diagram by describing empirical models as
principal bundles (see also [Cun19]). A discrete version of gauge theory, developed in
[Man87], also opens up the possibility of developing a different algebraic topological
method to detect contextuality, based on holonomy [Car26] rather than cohomology
[AK17]. This new perspective, which presents striking similarities with the work of Si-
mon [Sim83] on the application of holonomy theory to study classic topics in quantum
physics such as the Berry phase [Ber84] and the quantum adiabatic theorem [BF28],
is currently under development by the author in collaboration with Samson Abramsky.





CHAPTER IV

Towards a complete cohomological invariant
for non-locality and contextuality

Summary

This chapter introduces a cohomological invariant for non-locality and
contextuality which is applicable to the large majority of empirical models,
and conjectured to be complete. The issue of cohomological false negatives
introduced in Chapter III is solved by presenting a novel construction,
which derives the so-called line versions of empirical models, exposing
their deeper topological structure. The power of the invariant is demon-
strated in a large number of examples.

1. Overview

The limitations of the Čech cohomological approach to contextuality highlighted in
Chapter III motivate further research to achieve a complete topological invariant. Apart
from sheaf cohomology, a number of other cohomology theories have been proposed to
investigate contextual features, yet none of these frameworks have solved the issue of
false negatives satisfactorily. In [Rau16], Raussendorf introduced an approach to con-
textuality based on group cohomology, which was later expanded and integrated with
elements of simplicial cohomology in [ORBR17, OTR18]. This viewpoint is limited
to the class of arguments used in measurement based quantum computation [RB01b],
which is a particular subclass of all-vs-nothing arguments [Aas18], for which Čech co-
homology has already been proved to be a complete invariant [ABK+15]. The work of
Roumen [Rou17] made some important steps forward in the direction of a full invari-
ant. His approach, based on cyclic cohomology [Con81, Con83, Con85] and order
cohomology [FW98, Pul06] of effect algebras [FB94], gives rise to a false negative–free
obstruction. However, the result is obtained at the expense of the practical computabil-
ity of the cohomological invariant, which appears so complex that no application to
concrete empirical models has been presented yet.

In this chapter, we introduce a different viewpoint on models and scenarios, which
is particularly conductive for the application of the usual Čech cohomology framework.
In contrast with Chapter III, where the emphasis was put on sharpening cohomology
tools, here we focus on finding the best topological representation of empirical models
to prevent the occurrence of false negatives. This approach leads to the construction
of so-called line versions of models and scenarios, i.e. series of modified structures that

59
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capture the deeper topological properties of a presheaf by explicitly encapsulating the
extendability properties of its local sections.

The result is a complete sheaf cohomological invariant applicable to a very large
class of empirical models, whose power of detection can be easily tested in a variety
of situations, and whose practical computability is not compromised. Although it has
not been possible to prove that the invariant applies to all models, we conjecture it
works universally. Indeed, the class of models that could potentially escape the net is so
restricted that it has not been possible to produce an example of such a model, much
less a false negative for it.

We provide an exhaustive list of concrete examples where the line model construction
solves the issue of false negatives. This includes all of the problematic models presented
in Chapter III and many more.

The content of this chapter has been presented at the 15th International Conference
on Quantum Physics and Logic. A pre-print is available at [Car18].

Outline of the chapter. We start in Section 2 by introducing line models and
scenarios and present a number of examples. Section 3 investigates the contextual prop-
erties of line models. In Section 4 we focus on the special class of cyclic models and study
their structure. Section 5 presents a complete cohomological invariant for contextuality
over cyclic models, and demonstrates its power on a large number of examples, including
all the cohomological false negatives introduced in previous chapters. The invariant is
then extended to an extremely large class of models in Section 6, and demonstrated
on the remaining known false negatives. Finally, in Section 7, we show how the line
construction can be naturally extended to probabilistic empirical models.

2. Line models and scenarios

In this section, we introduce the construction of line models and scenarios. The
rationale behind their conception can be explained more easily through the following
concrete example.

2.1. A motivating example. We introduce another example of cohomological
false negative that will serve as a guide for the development of our strategy. Consider
the model described by Table IV.1, whose bundle diagram is depicted in Figure IV.1.

Table IV.1. A logically contextual empirical model.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1 0 0 1
a1 b2 1 0 1 1
a2 b1 1 0 0 1
a2 b2 0 1 1 0

By simply looking at the diagram, one can see that section s := (a1, b1) 7→ (1, 1),
highlighted in red, is not part of any compatible family, which means that the model is
logically contextual at s. However, given the abelian representation F := FZ2S of S, we
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1

0

a1 b1 a2 b2 a1

Figure IV.1. A cohomology false negative for section (a1, b1) 7→ (1, 1),
highlighted in red

can see that s is part of the compatible family

{s,(a2, b1) 7→ (1, 1) + (a2, b1) 7→ (1, 0) + (a2, b1) 7→ (0, 0),

(a2, b2) 7→ (0, 0), (a1, b2) 7→ (0, 1)},
which means that the model is not cohomologically logically contextual at s. The ‘false’
global section is highlighted in blue in Figure IV.1, featuring the typical ‘Z’-shaped path
of cohomological false negatives. For future reference, loops of this kind will be called
cohomology loops, or non-standard loops.

Now, suppose that, in the process of trying to extend s to form a closed loop, we
could ‘force’ the selection of section (a2, b1) 7→ (1, 1) for the context {a2, b1}. This would
disallow the ‘Z’ path higlighted in blue in Figure IV.1, which is ultimately responsible
for the existence of a false negative. It would then be possible to conclude that s cannot
be extended to a closed loop, even the ones allowed by linear combinations typical of
cohomology.

Our strategy will closely follow this idea. Instead of focusing on a single section, we
aim at capturing all the possible ways to extend a section to its immediately adjacent
contexts. To do this, we introduce the concept of line version of an empirical model,
a presheaf whose sections correspond to ‘forced’ extensions of local sections to adjacent
contexts. By repeating this construction a sufficient amount of times, it should be
possible to determine whether a section can be extended globally.

2.2. Line scenarios. In order to introduce line models, we will need to modify the
structure of the scenario on which the empirical model in question is defined. We recall
that the cover M of any scenario will always be assumed to be connected.

Definition IV.1. Let 〈X,M, (Om)〉 be a measurement scenario. We define the first
line scenario of 〈X,M, (Om)〉 as the scenario

〈X,M, (Om)〉(1) :=
〈
X(1),M(1), (O(1)

m )m∈X(1)

〉
.

where

• X(1) := M, i.e. the measurements of the line scenario are the contexts of the
original scenario.
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• If M contains a single context C, we let M(1) := {{C}}.1 Otherwise, we have
|M| ≥ 2, and define

M(1) :=
{
{C,C ′} ⊆ M | C 6= C ′ and C ∩ C ′ 6= ∅

}
.

That is, a context of the line scenario is a pair of intersecting contexts of the
original one.

• For all C ∈M, O
(1)
C := E(C), where E : P(X)op → Set is the sheaf of events of

〈X,M, (Om)〉.
Proposition IV.2. Let 〈X,M, (Om)〉 be a measurement scenario. Then its first

line scenario is well-defined.

Proof. First of all, note that X(1) is finite because X is finite. We clearly have
M(1) ⊆ P(X(1)). Hence, we only need to show that M(1) is a cover and an antichain.

If M contains a single context C, this is trivially verified. Indeed, M(1) = {{C}}, thus
the antichain condition is trivial. Moreover, we have

⋃
M(1) = {C} =M = X(1).

Now, suppose |M| ≥ 2. We have
⋃
M(1) =

⋃

C,C′∈M
C∩C′ 6=∅
C 6=C′

{C,C ′} =M = X(1).

Indeed,

• The inclusion
⋃M(1) ⊆ M = X(1) is trivial, given that each M ∈ M(1) is

included in M by definition.
• Let C ∈ M. Since |M| ≥ 2, there exists a distinct C ′ ∈ M. Since M is

connected, there exists a sequence C = C0, . . . Cn = C ′ such that Ci∩Ci+1 6= ∅,
hence C ∈ {C0, C1} ⊆

⋃M(1).

The antichain condition is also easily verifiable since any {C,C ′} ∈ M(1) has cardinality
2 by definition, thus inclusion implies equality. �

It is worth spelling out the definition of the sheaf of events of the first line scenario,
which we will denote by E(1).We have E(1) : P(X(1))op → Set, where, given a U ⊆ X(1),
we have

E(1)(U) :=
∏

C∈U
O

(1)
C =

∏

C∈U
E(C),

with restriction maps given by the obvious projections.
To have a better understanding of how the first line scenario is defined, we give an ex-

ample in Figure IV.2. On the left-hand side we show a simplicial complex representation
of the measurement cover

M = {{a, b, c}, {b, c, d}, {a, c, d}, {a, b, d}, {b, e, f}, {e, g}}
over the set X = {a, b, c, d, e, f, g}, already seen in Example II.5. On the right-hand

side, we have the simplicial representation of the cover M(1) of the first line scenario.

1This special case will never be used in practice, as clarified later in Remark IV.4.
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Notice that, despite the simplicial complex of the original scenario having dimension 2,

a

b

c

d

e

f

g

{a, b, c} {b, c, d}

{a, b, d}{a, c, d}

{b, e, f}

{e, g}

Figure IV.2. A measurement scenario (left) and its first line version
(right). Note that the tetrahedron {a, b, c, d} is hollow.

the complex of the first line scenario is a graph. This is due to the fact that the first
line scenario describes the 1-simplices of the nerve of the original scenario, and thus has
dimension 1. For this reason, all line scenarios are represented by a graph.

We will often need to repeat the procedure of modifying the original scenario into
its line version. This leads to the following recursive definition:

Definition IV.3. Let 〈X,M, (Om)〉 be a measurement scenario. For any k ∈ N, we

define the k-th line scenario of 〈X,M, (Om)〉, denoted by 〈X,M, (Om)〉(k) , as

〈X,M, (Om)〉(0) := 〈X,M, (Om)〉 ,
if k = 0, and

〈X,M, (Om)〉(k) :=
(
〈X,M, (Om)〉(k−1)

)(1)
,

if k ≥ 1. Proposition IV.2 ensures that all the higher-level line scenarios are well-defined.

The origin of the name line we use here is due to the fact that if we consider our
construction from a purely combinatorial standpoint, it appears to be a generalisation
of the line graph construction of graph theory [Whi32, Kra43, HN60] to the level of
simplicial complexes, as pointed out by Roberson [Rob18].2 The generalisation only
involves the first line scenario, where we transition from an abstract simplicial complex
describing M to a graph describing M(1). For any k ≥ 2, the two operations coincide:
the graph representingM(k) is exactly the line graph of the graph representingM(k−1).
Although this connection will not be explored much further in this thesis, it certainly
deserves additional investigation. In particular, it would be interesting to know whether
the existing computational methods for line graphs, e.g. the linear time algorithms for
line graph recognition of Roussopoulos [Rou73] and Lehot [Leh74], can be effectively
used to better understand contextuality.

We conclude this section with the following remark, which justifies slightly stricter
assumptions on the measurement cover of first line scenarios.

2In fact, earlier versions of our work used the term joint instead. We decided to change the name in
light of the connection with graph theory.
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Remark IV.4. Consider a scenario 〈X,M, (Om)〉. If there exists a k such that

M(k) contains a single context, then one can show that this necessarily implies that
〈X,M, (Om)〉 is acyclic in the database-theoretic sense of Section 5.4 of Chapter II.
By Vorob'ev’s theorem (Theorem II.21), we know that we cannot witness contexutal

behaviour in such a scenario. Therefore, from now on, we will always assume |M(k)| ≥ 2
for all k ≥ 0.

2.3. Line models. In this section we introduce the concept of line model and we
analyse some of its basic properties.

Definition IV.5. Let S be an empirical model on a scenario 〈X,M, (Om)〉. The

first line model S(1) is an empirical model on the first line scenario 〈X,M, (Om)〉(1),

defined as follows: for all U ⊆ X(1),

S(1)(U) :=

{
(sC)C∈U ∈

∏

C∈U
S(C)

∣∣∣∣∣ sC |C∩C′ = sC′ |C∩C′ ∀C,C ′ ∈ U
}
.

The restriction maps are inherited from E(1).

Note that, in particular, for elements C = {C,C ′} ⊆ M of the cover M(1), S(1)( C)
coincides with the following pullback:

S(1)( C) S(C)

y

S(C ′) S(C ∩ C ′)

ρC
C∩C′

ρC
′

C∩C′

Before we embark on a detailed analysis of line models, we point out an important
feature of compatible sections of S(1) which will be used throughout:

Lemma IV.6. Consider two distinct contexts C = {C,C ′}, D = {D,D′} in M(1)

with non-empty intersection (w.l.o.g. we assume C = D). Then, two sections s =

(sC , sC′) ∈ S(1)( C) and t = (tD, tD′) ∈ S(1)(D) are compatible if and only if sC = tD.

In particular, a compatible family for S(1) cannot contain two different local sections of
S over the same context of M.

Proof. We have

s|C∩D = (sC , sC′)|C∩D = (sC , sC′)|{C} = sC ,

t|C∩D = (tD, tD′)|C∩D = (tD, tD′)|{D} = tD.

Hence s|C∩D = t|C∩D if and only if sC = tD. �

The following proposition shows that the first line model is well defined.

Proposition IV.7. Let S be an empirical model. Then, S(1) is a well-defined em-
pirical model.



2. LINE MODELS AND SCENARIOS 65

Proof. First of all, note that S(1) is a subpresheaf of E(1). Indeed,

S(1)(U) ⊆
∏

C∈U
S(C) ⊆

∏

C∈U
E(C) = E(1)(U).

Now, we need to verify conditions 1, 2 and 3 of Definition II.12.

(1) Let C = {C,C ′} ∈ M(1). Because S is an empirical model, we know that
S(C) 6= ∅, given that C ∈ M. Let sC ∈ S(C). Since S is flasque beneath the

cover, and because C ∩ C ′ ⊆ C ′ ∈ M, the restriction map ρC
′

C∩C′ : S(C ′) →
S(C ∩ C ′) is surjective. Therefore, there exists sC′ ∈ S(C ′) such that

ρC
′

C∩C′(sC′) = sC′ |C∩C′ = sC |C∩C′ .
Hence, (sC , sC′) ∈ S(1)({C,C ′}).

(2) Let U ⊆ U ′ ⊆ C for some context C = {C,C ′} ∈ M(1). If U or U ′ are empty,
then the condition is trivially verified as ρU∅ is obviously surjective. If U = U ′
then ρU

′
U is the identity, which is also surjective. The only non–trivial case arises

when U ( U ′ = C. W.l.o.g., suppose U = {C} (the other case being U = {C ′}),
and let sC ∈ S(C). Because S is flasque beneath the cover, the restriction map

ρC
′

C∩C′ : S(C ′) → S(C ∩ C ′) is surjective. Hence, there exists an sC′ ∈ S(C ′)

such that sC′ |C∩C′ = sC |C∩C′ . Thus, (sC , sC′) ∈ S(1)( C), and

(sC , sC′)|U = (sC , sC′)|{C} = sC ,

which shows that ρU
′
U is surjective.

(3) Let F := {(sC , sC′) C}C∈M(1) be a compatible family3 for S(1), which means

that (sC , sC′) C ∈ S(1)( C) for all C ∈M(1), and

(sC , sC′)|C∩D = (sD, sD′)|C∩D

for all C = {C,C ′} and D = {D,D′} inM(1). The family F induces the global
section

g := (sC)C∈M ∈
∏

C∈M
S(C) ⊆ S(1)

(
X(1)

)
,

which is well-defined by Lemma IV.6. The fact that gC |C∩C′ = gC′ |C∩C′ for all

C,C ′ ∈M is trivially verified given that gC = sC and (sC , sC′) ∈ S(1)({C,C ′}).
�

We will often need to repeat the procedure of taking the first line model, which leads
to the following definition, reminiscent of Definition IV.3.

Definition IV.8. Let S be an empirical model on a scenario 〈X,M, (Om)〉. For

any k ∈ N, we define the k-th line model of S, denoted by S(k), as follows: if k = 0,
then S(0) := S. If k ≥ 1, then

S(k) :=
(
S(k−1)

)(1)
.

3A more precise notation would be
{

(sC , sC′){C,C′}
}
{C,C′}∈M(1) , but we will often use the one we

adopt here for the sake of simplicity.
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Proposition IV.7 guarantees that all the higher-level line models are well-defined
empirical models.

We end this section with two important remarks.

Remark IV.9. Consider an empirical model S on a scenario 〈X,M, (Om)〉. There
is a key subtlety in the definition of the line models of S which we will exploit in some of
the proofs in Section 4. Let C ∈M(k−1). The subtlety consists in the following equality,
which simply follows by definition:

(IV.1) S(k)({C}) = S(k−1)(C).

Consider two distinct contexts C = {C,C ′},D = {D,D′} ∈ M(k), such that C∩D 6= ∅.
W.l.o.g. we suppose C = D, so that C ∩ D = {C}. Suppose we have a section sC ∈
S(k)( C). Then, because of (IV.1), the restricted section

sC|C∩D = sC|{C}
can be seen both as an element of S(k)({C}), or, equivalently, as an element of S(k−1)(C).
In the latter case, we will denote the restricted section as

sC1
|C ∈ S(k−1)(C).

So, to summarise, sC|{C} ∈ S(k)({C}), while sC1
|C ∈ S(k−1)(C).

Remark IV.10. Let S be an empirical model on a scenario 〈X,M, (Om)〉. By

definition, the possible sections of S(1) are pairs of sections of S. Similarly, sections of
S(2) are pairs of pairs of sections of S. In general, sections of S(k) are pairs of pairs ...
of pairs (k times) of sections of S. For our purposes, given a section s of S, we will need

to list those sections of S(k) that contain s. To do this, we will use the flatten function,
whose name is borrowed from popular programming languages. This function takes a
section tC ∈ S(k)( C) (which is a pair of pairs ... of pairs (k times) of sections of S(k)) as

argument and returns a single set containing all the sections of S(k) that appear in tC.
For instance, for k = 3, we have

flatten [(((s1, s2), (s3, s4)), ((s5, s6), (s7, s8)))] = {s1, s2, s3, s4, s5, s6, s7, s8}
2.4. Interpretation and examples. In Section 2.1, we briefly sketched our strat-

egy to avoid false negatives, which consists of considering multiple compatible local
sections at the same time, instead of focusing on a single one. The notion of line model
embodies precisely this idea. As discussed above, local sections of the first line model of
an empirical model S are pairs of sections of S above adjacent contexts. This allows one
to ‘force’ the selection of the sections on adjacent contexts in the original model, thus
reducing the chances of the existence of a false negative. Higher-level line models further
refine this approach and allow to consider three, four, k compatible sections at the same
time. These statements will be made precise in Section 4, but it is worth giving some
examples that will guide us through the technical results.

Let us start by illustrating the first line model of the Hardy model, displayed in
Table II.8. Recall that X = {a1, a2, b1, b2}, M = {{a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}}
and Om = {0, 1} for all m ∈ X. Let C1 := {a1, b1}, C2 := {a1, b2}, C3 := {a2, b1} and

C4 := {a2, b2}. Then we have X(1) =M and

M(1) = {{C1, C2}, {C2, C4}, {C3, C4}, {C1, C3}}.
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In Table IV.2, we recall the enumeration of the sections of the Hardy model already
presented in Table III.1.

Table IV.2. An enumeration of the possible sections of the Hardy model.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 s1 s2 s3 s4

a1 b2 s5 s6 s7

a2 b1 s8 s9 s10

a2 b2 s11 s12 s13

Thanks to this notation, we can represent the planar bundle diagram for the first
line model of the Hardy model in Figure IV.3.

s1

s2

s3

s4

s1

s2

s3

s4

s5

s6

s7

s11

s12

s13

s8

s9

s10

C1 C2 C4 C3 C1

Figure IV.3. The first line model of the Hardy model. In red, the only
section containing s1 in the context {C1, C2}. In blue, a cohomology loop
containing s1.

Compare this to Figure III.5, where we highlighted in red section s1, which is not
part of any compatible family. Consider the context C = {C1, C2}: the only section at C
of the first line model containing s1 is (s1, s6), marked in red in Figure IV.3. Notice that
this section is not part of any compatible family in the line model either. In Figure III.5,
we provided a cohomology loop containing s1, which is responsible for the existence of
a false negative. Note that, in the case of the first line model, it is no longer possible to
create ‘Z’ shaped paths above a single context (this fact is not a coincidence, as we will
se in Lemma IV.29 and more generally in Theorem IV.31), however, it is still possible
to find a more complex cohomology loop containing (s1, s6), namely

{(s1, s6), (s6, s13)− (s5, s11) + (s5, s12), (s13, s9)− (s11, s9) + (s12, s8), (s8, s1)},
which is highlighted in blue in Figure IV.3.

Let us now consider the model of Table IV.1. In Table IV.3, we give an enumeration
of its possible sections. With this enumeration, we illustrate the first line model as a
planar bundle diagram in Figure IV.4. We have already shown that s2 is not part of
any compatible family, but it is part of a cohomology loop, which gives rise to a false
negative. In the line model, the only section over {C1, C2} containing s2 is (s2, s5). Note
that not only (s2, s5) is not part of any compatible family, but it appears not to be part
of any cohomology loop either. We have successfully removed the ‘Z’ path responsible
for the false negative. This fact accurately reflects the discussion on this model carried
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Table IV.3. An enumeration of the possible sections of the model IV.1.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 s1 s2

a1 b2 s3 s4 s5

a2 b1 s6 s7

a2 b2 s8 s9

s1

s2

s3

s4

C1 C2 C4 C3 C1

s8

s9s5

s6

s7 s2

s1

Figure IV.4. The first line model of the model given by Table IV.1. In
red, the section S

out in Section 2.1. By imposing the joint selection of s2 and s5, we have successfully
removed the false negative. A formal proof of this fact will be given in Section 4.

It is fairly easy to see that, because the first line model is logically contextual at
(s2, s5), which is the only section containing s2, the underlying model is logically con-
textual at s2. However, the relation between the contextual properties of line models
and the original ones may not be immediately clear. We will give all the details about
this question in the following section.

3. The contextuality of line models

By looking at the examples of the previous sections, a natural question to ask is:
what conclusions can we draw on an empirical model by looking at the contextuality
properties of its line models? The answer is given by the following results.

Proposition IV.11. Consider an empirical model S on a measurement scenario
〈X,M, (Om)〉. Let C ∈M and s ∈ S(C). The following are equivalent.

(1) The model S is logically contextual at s, i.e. LC(S, s).
(2) There exists a C ′ ∈M with C 6= C ′ and C ∩C ′ 6= ∅ such that, for all t ∈ S(C ′)

verifying t|C∩C′ = s|C∩C′, we have LC
(
S(1), (s, t)

)

(3) For all C ′ ∈ M with C 6= C ′ and C ∩ C ′ 6= ∅, for all t ∈ S(C ′) verifying

t|C∩C′ = s|C∩C′, we have LC
(
S(1), (s, t)

)
.

Proof. The fact that (3) implies (2) is trivial.

• (2) ⇒(1): Suppose ¬LC (S, s). Then, there exists a family F := {sC ∈
S(C)}C∈M, compatible for S, such that sC = s. We want to show that, for all
C ′ ∈M with C ∩ C ′ 6= ∅, there exists t ∈ S(C ′) verifying t|C∩C′ = s|C∩C′ such

that ¬LC
(
S(1), (s, t)

)
.
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Consider the family

F ′ :=
{

(sK , sK′) ∈ S(1)({K,K ′})
}
{K,K′}∈M(1)

.

This family is well-defined: (sK , sK′) is indeed in S(1)({K,K ′}) by compatibility

of F . Moreover, it is compatible for S(1) by its own definition and Lemma
IV.6, since we chose exactly one section for each context of M. Let C ′ ∈ M
with C ∩ C ′ 6= ∅, and consider t := sC′ ∈ S(C ′). Then (s, t) = (sC , sC′) ∈
F ′, which proves that t|C∩C′ = s|C∩C′ (as t = sC′ and s = sC). Moreover,

¬LC
(
S(1), (s, tC′)

)
, since t = sC′ is part of the compatible family F .

• (1) ⇒(3): Suppose there exists a C ′ with C ∩ C ′ 6= ∅, such that there exists a

t ∈ S(C ′), with t|C∩C′ = s|C∩C′ , verifying ¬LC
(
S(1), (s, t)

)
. This means that

there exists a family

F :=
{

(vK , vK′) ∈ S(1)({K,K ′})
}
{K,K′}∈M(1)

,

compatible for S(1), such that (vC , vC′) = (s, t). Consider the family F ′ :=
{vK ∈ S(K)}K∈M. This family contains precisely one local section for each
context ofM by connectedness of the cover. Moreover, each such global section
is well-defined by compatibility of F (see Lemma IV.6). Now, note that F ′ is
a compatible family for S. Indeed, given K,K ′ ∈ M, because (vK , vK′) ∈
S(1)({K,K ′}), we must have vK |K∩K′ = vK′ |K∩K′ . Therefore, because vC = s,
the section s is contained in the compatible family F ′, proving that ¬LC (S, s).

�

This proposition provides a characterisation of how logical contextuality propagates
through the line scenarios. This result has a much more elegant form when we turn
our attention to strong contextuality. Indeed, it turns out that strong contextuality is
completely preserved through the construction of line models:

Corollary IV.12. Let S be an empirical model on a scenario 〈X,M, (Om)〉. Then

S is strongly contextual if and only if S(1) is strongly contextual.

Proof. Recall that strong contextuality is equivalent to logical contextuality for all
the sections of the model. Suppose SC (S). Let C,C ′ ∈M be any two distinct contexts

such that C ∩ C ′ 6= ∅. Let (sC , tC′) ∈ S(1)({C,C ′}) be an arbitrary section. We want

to show that S(1) is logically contextual at (sC , tC′). Since S is strongly contextual, it
is in particular logically contextual at sC . By Proposition IV.11, this implies that, for
all C ′ ∈ M with C ∩ C ′ 6= ∅, for all t ∈ S(C ′) verifying t|C∩C′ = sC |C∩C′ , we have

LC
(
S(1), (sC , t)

)
. In particular, if we take t := tC′ , we have LC

(
S(1), (sC , tC′)

)
.

For the converse, suppose SC
(
S(1)

)
. Let C ∈ M and take an arbitrary section

s ∈ S(C). Let C ′ ∈ M such that C ∩ C ′ 6= ∅. Because SC(S(1)), we know that for all

t ∈ S(C ′) verifying t|C∩C′ = s|C∩C′ , we have LC
(
S(1), (s, t)

)
. By Proposition IV.11, we

conclude that LC (S, s). �

Proposition IV.11 motivates the following definition.
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Definition IV.13. Let S be an empirical model on a scenario 〈X,M, (Om)〉. Let

s ∈ S(C) be a local section at some context C ∈M, and k ≥ 1. We say that S is LC(k)

at s, and write LC(k)(S, s), if we have LC
(
S(k), t

)
for all local sections t of S(k) such that

s ∈ flatten(t) (cf. Remark IV.10).

By applying simple inductive arguments, we immediately have the following addi-
tional corollaries of Proposition IV.11:

Corollary IV.14. Let S be an empirical model on a scenario 〈X,M, (Om)〉. Let
C ∈M and s ∈ S(C). Then the following are equivalent:

(1) S is logically contextual at s, i.e. LC(S, s).
(2) There exists a k ≥ 1 such that LC(k)(S, s)
(3) LC(k)(S, s) for all k ≥ 1.

Corollary IV.15. Let S be an empirical model on a scenario 〈X,M, (Om)〉. The
following are equivalent:

(1) S is strongly contextual.

(2) There exists a k ≥ 1 such that S(k) is strongly contextual

(3) S(k) is strongly contextual for all k ≥ 0

Note that there is no need to extend Definition IV.13 to strong contextuality as this
would be equivalent to regular strong contextuality by Corollary IV.15.

4. Cyclic models and their properties

Before we prove the main results of the chapter, we will need to introduce the notions
of path, cycle, and cyclic model, and thoroughly inspect their properties. We start with
an important remark:

Remark IV.16. Let 〈X,M, (Om)〉 be a measurement scenario. By definition, for

each k ≥ 1, the contexts of M(k) are sets of contexts of M(k−1). In order to avoid
confusion between the contexts ofM(k) and those ofM(k−1) we will denote them using
different calligraphic styles. The typical hierarchy we will use is the following:

c ∈M(k−2) → C ∈M(k−1) → C ∈M(k) → C ∈M(k+1).

Note that the hierarchy will always be the same, but we will not fix a calligraphic style
for a specific k, as we will have to deal with many different cases.

4.1. Paths and cycles. Let us inspect some of the properties of line scenarios. We
start by introducing the notions of path and cycle.

Definition IV.17. Let 〈X,M, (Om)〉 be a measurement scenario and n, k ≥ 1. An

n-path for M(k) is a set D := {C1, . . . , Cn+1} ⊆ M(k−1) of n + 1 distinct contexts of

M(k−1) such that Ci ∩ Ci+1 6= ∅ for all 1 ≤ i ≤ n. It is called an (n + 1)-cycle if, in
addition, Cn+1∩C1 6= ∅. An n-path D is called chordal if there exist two non-consecutive
indices i, j, with {i, j} 6= {1, n+ 1}, such that Ci ∩ Cj 6= ∅.

We can think of an n-path for M(k) as a sequence of distinct vertices in the graph
generated by M(k). This corresponds to the graph-theoretic notion of simple path.
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Figure IV.5. Different types of paths for M(k). The grey graph repre-
sentsM(k). From left to right: a chordless 4-path, a chordal 4-path (chord
highlighted in red), a chordless 5-cycle and a chordal 5-cycle (chords high-
lighted in red).

Similarly, (chordal) cycles forM(k) correspond to (chordal) simple cycles in graph theory.
In Figure IV.5, we give some graphical examples.

Remark IV.18. In graph theory, a simple path can be equivalently described by the
sequence of edges connecting the vertices. Similarly, an n-path D• = {C1, . . . , Cn+1} ⊆
M(k−1) for M(k) can be specified by the set

D = {{C1, C2}, {C2, C3}, . . . , {Cn, Cn+1}} ⊆ M(k),

containing contexts of M(k), i.e. edges of the graph generated by M(k). The set D will
be referred to as the edge representation of the path D•. To avoid confusion, from now
on, we will denote D• for the vertex representation and D for the edge representation.
Notice that, while an n-path in vertex representation contains n+1 elements, an n-path
in edge representation only contains n elements. If D• is an (n+1)− cycle, then its edge
representation is

D = {{C1, C2}, {C2, C3}, . . . , {Cn, Cn+1}, {C1, Cn+1}} ⊆ M(k).

In this case, both the vertex and the edge representation contain (n+ 1) elements.

4.1.1. Special properties of 3-cycles. Cycles for M(k) of size 3 present some
peculiarities that deserve to be discussed in detail in order to avoid confusion. The reason
is that, although they are technically chordless, one of their edges could be seen as a chord
connecting the remaining two. A key aspect of chordless n-cycles forM(k) of size n ≥ 4,
which will be proved in Proposition IV.23, is that they must be generated by n-cycles
for M(k−1). This is not generally true for 3-cycles. Indeed, we could potentially have a
3-cycle D• = {C1, C2, C3} forM(k) which is generated by a star-shaped configuration of

the Ci’s, seen as edges of M(k−1), as shown in Figure IV.6.
We will refer to this kind of 3-cycles as non-proper 3 cycles for M(k). Any cycle

which is not a non-proper 3 cycle will be referred to as proper. A proper 3-cycle for
M(k) is pictured in Figure IV.7.

At the end of Section 2.2, we argued that line scenarios can be seen as a generalisation
of line graphs. In light of this connection, the peculiarities of 3-cycles we have just
described are not surprising. Indeed, Whitney’s isomorphism theorem [Whi32] shows
that any two connected graphs with isomorphic line graphs are isomorphic, with the
exception of the 3-cycle and the star graph on 4 vertices. In general, some of the results of
the following subsection can also be recovered as special cases of Whitney’s isomorphism
theorem. However, we shall not forget that the graphs describing line scenarios carry a
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C1 C2

C3

C1

C2

C3

M(k) M(k−1)

Figure IV.6. A non-proper 3-cycle D• = {C1, C2, C3} for M(k).

C1 C2

C3

M(k) M(k−1)

C3

C1 C2

Figure IV.7. A proper 3-cycle D• = {C1, C2, C3} for M(k).

richer structure given by measurements and contexts, which is important to retain for
our purposes. This motivates proving these results independently from graph theory.

4.2. Fundamental properties of paths and cycles. In this section, we will
present some key properties of paths and cycles that will play a crucial role in the proofs
of the main results of the chapter. The first proposition, for instance, shows that paths
and cycles are preserved when taking the line version of a scenario, in the sense that
they naturally give rise to paths and cycles in the new scenario.

Proposition IV.19. Let 〈X,M, (Om)〉 be a measurement scenario. Let k ≥ 1, and

let D := {C1, . . . , Cn} ⊆ M(k) be an n-path for M(k), where n ≥ 2. Then, the set

D = {K1, . . . ,Kn−1} := {{C1, C2}, {C2, C3}, . . . , {Cn−1, Cn}}
is a chordless (n− 1)-path for M(k+1). Moreover, if D is a cycle, then

D = {K1, . . . ,Kn} := {{C1, C2}, {C2, C3}, . . . , {Cn−1, Cn}, {Cn, C1}}
is a chordless n-cycle for M(k+1).

Proof. The elements of D are all distinct because the elements of D are all distinct.
Moreover, D ⊆ M(k) because Ci ∩ Ci+1 6= ∅ for all 1 ≤ i ≤ n − 1. If n = 2, then
clearly D = {K1} is a 1-path for M(k+1). Now, assume n > 2. We have Ki ∩ Ki+1 =
{Ci, Ci+1} ∩ {Ci+1, Ci+2} = {Ci+1} 6= ∅ for all 1 ≤ i ≤ n− 2, which shows that D is an
(n− 1)-path. If D is a cycle, we also have Kn ∩ K1 = {Cn, C1} ∩ {C1, C2} = {C1} 6= ∅,
which proves that D is an n-cycle. To prove that D is chordless, suppose by contradiction
that there exist two non-consecutive indices 1 ≤ i, j ≤ n− 1 (if D is a cycle we suppose
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1 ≤ i, j ≤ n and {i, j} 6= {1, n}), such thatKi∩Kj 6= ∅. Then {Ci, Ci+1}∩{Cj , Cj+1} 6= ∅,
which contradicts the fact that the Ci’s are all distinct. �

We define the notion of cyclic scenario.

Definition IV.20. A measurement scenario 〈X,M, (Om)〉 is called cyclic if M(1)

is a chordless cycle (in edge representation).

Remark IV.21. In Section 5.4 of Chapter II, we introduced the notion of acyclicity
of a measurement scenario. This concept should not be interpreted as the negation of the
notion of cyclicity introduced here, as the two do not coincide. To clarify the distinction,
consider the scenario of Figure IV.2. This scenario is cyclic in the Vorob'ev sense: after
having performed Graham reductions by removing vertices g, e and f , we are left with
an irreducible hollow tetrahedron spanned by vertices a, b, c, d. However, its first line
version, also depicted in Figure IV.2, is not a cycle in the graph-theoretic sense. Hence
the scenario is cyclic in the Vorob'ev sense, but non-cyclic in the sense introduced here.

Thanks to Proposition IV.19, we immediately have the following:

Proposition IV.22. Let 〈X,M, (Om)〉 be a cyclic scenario, and let n := |M|.
Then M(k) is a chordless n-cycle in edge representation for all k ≥ 1. In particular,

〈X,M, (Om)〉(l) is cyclic for all l ≥ 0.

Consider a measurement scenario 〈X,M, (Om)〉 and let k ≥ 2, n ≥ 2. Let D• :=

{C1, . . . , Cn+1} ⊆ M(k−1) be an n-path for M(k). By definition of a path, we know

that there exist k1, . . . kn ∈ M(k−2) such that {ki} = Ci ∩ Ci+1 for all 1 ≤ i ≤ n. Let

kn+1 ∈ M(k−2) be such that Cn+1 \ Cn = {kn+1}, and let k0 ∈ M(k−2) be such that
C1 \ C2 = {k0}. Notice that, if D• is a proper (n + 1)-cycle, then kn+1 = k0. With
this notation, we can prove the following proposition, which is almost a converse of
Proposition IV.19: it shows that any chordless n-path (resp. proper n-cycle) in the k-th
line scenario always comes from an (n + 1)-path (resp. n-cycle) on the (k − 1)-th line
scenario.

Proposition IV.23. Let 〈X,M, (Om)〉 be a measurement scenario, let k ≥ 2 and

2 ≤ n < |M(k−1)|. Let D• := {C1, . . . , Cn+1} ⊆ M(k−1) be a chordless n-path for M(k).
Then, the set

D• = {k0, k1, . . . kn+1} ⊆ M(k−2)

is an (n+ 1)-path for M(k−1).
From this result, it immediately follows that, if D• is a proper (n + 1)-cycle, since

k0 = kn+1, then D• = {k1, . . . , kn+1} ⊆ M(k−2) is an (n+ 1)-cycle for M(k−1).

Proof. Let us start by verifying that the ki’s are all distinct. Firstly, notice that
k0 6= kj for all 1 ≤ j ≤ n, since otherwise we would have C1 ∩ Cj+1 = {k0} 6= ∅, which
either contradicts the fact that {k0} = C1\C2 (when j = 1), or it contradicts the fact D•
is chordless (when j > 1). One can prove that kn+1 6= kj for all 1 ≤ j ≤ n in the same
way. Now, suppose there are two distinct indices 1 ≤ i, j ≤ n such that ki = kj . Then,
i and j are consecutive because otherwise we would have Ci ∩ Cj = {ki} 6= ∅, which
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contradicts the fact that D• is chordless. Thus, we only need to prove that ki 6= ki+1 for
all 1 ≤ i ≤ n− 1. Suppose by contradiction there exists an i such that ki = ki+1. Then

Ci ∩ Ci+1 = {ki} = {ki+1} = Ci+1 ∩ Ci+2,

which implies Ci ∩Ci+2 = {ki} 6= ∅, which contradicts the fact that D• is chordless. We
are only left to prove that consecutive ki’s intersect. Because the ki’s are all distinct,
we know that Ci = {ki−1, ki} for all 1 ≤ i ≤ n + 1. Since C1, . . . , Cn+1 ∈ M(k−1), this
implies ki−1 ∩ ki 6= ∅ for all 1 ≤ i ≤ n+ 1. �

Remark IV.24. Proposition IV.23 allows us to establish a conventional notation.
Suppose we have a chordless n-path D• := {C1, . . . , Cn+1} for M(k), with n ≥ 1 and
k ≥ 2. If D• is a cycle, we assume it is proper. Proposition IV.23 shows that we can
relabel the components c1

i , c
2
i of each Ci = {c1

i , c
2
i } in such a way that c2

i = c1
i+1 for

all 1 ≤ i ≤ n. If D• is a cycle, we also have c2
n+1 = c1

1. This notation will be used
extensively in many of the proofs of this chapter. To clarify how it is constructed, we
provide a graphical representation in Figure IV.8.4

. . .
C1 C2

C3 Cn Cn+1

c11 c21 = c12 c22 = c13 c23 = c14 c2n−1 = c1n c2n = c1n+1 c2n+1

. . .
C1 C2 C3 Cn Cn+1M(k)

M(k−1)

Figure IV.8. The standard notation for n-paths.

Suppose we have a cyclic scenario 〈X,M, (Om)〉, and a n-path D := {C1, . . . Cn} ⊆
M(k) forM(k), with n < |M|. BecauseM(1) is chordless, we know by Proposition IV.22

that M(k) is a chordless |M|-cycle. Thus, the path D must be chordless as well, as the

existence of a chord for D would imply the existence of a chord for M(k). Therefore,
we can use the notation of Remark IV.24 to formulate the following proposition, which
states that, for cyclic scenarios, an n-path for M(k) always comes from an (n+ 1)-path

in M(k−1).

Proposition IV.25. Let 〈X,M, (Om)〉 be a cyclic scenario, and let k ≥ 2, 2 ≤ n <
|M|. Let D := {C1, . . . Cn} ⊆ M(k) be an n-path for M(k). Then the set

(IV.2) D := {C1
1 , C

2
1 , C

2
2 , . . . , C

2
n}

is an (n+ 1)-path for M(k−1).

Proof. Rewrite the n-path D in vertex representation: D• = {C1
1 , C

2
1 , C

2
2 , . . . , C

2
n}.

Since 〈X,M, (Om)〉 is cyclic, we know by Proposition IV.19 that |M(k−1)| = |M| for

all k ≥ 1. Therefore, we have 2 ≤ n < |M(k−1)| and we can apply Proposition IV.23

to D• = {C1
1 , C

2
1 , C

2
2 , . . . , C

2
n} to conclude that D• := {k0, k1, . . . , kn+1} ⊆ M(k−2) is an

4In other words, we relabel the components of the Ci’s in such a way that k0 = c11 and ki = c2i for
all 1 ≤ i ≤ n+ 1, where k0, . . . kn+1 are defined as in Proposition IV.23
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(n+ 1)-path forM(k−1), where the element k0 is such that {k0} = C1
1 \C2

1 , the element
kn+1 is such that {kn+1} = C2

n \C2
n−1, and each ki is such that {ki} = C2

i ∩C2
i+1 for all

1 ≤ i ≤ n− 1. Now, notice that C1
1 = {k0, k1}, and C2

i = {ki−1, ki} for all 2 ≤ i ≤ n− 1.
Therefore, the edge representation of the (n+ 1)-path D• is in fact D defined in (IV.2).

�

5. The cohomology of cyclic models: a complete invariant

In this section we will formalise the intuitive idea discussed at the end of Section
2.4, and generalise it to prove that we can always find a cohomological witness for
contextuality in the line models of a cyclic empirical model.

5.1. Preliminaries. First of all, we need to introduce some preliminary definitions.
Let S be an empirical model on a measurement scenario 〈X,M, (Om)〉. We will choose,

as a representative for each line model S(k), the presheaf of abelian groups

(IV.3) F (k) := FZ2S(k) : P(X(k))op −→ AbGrp.

We can now formulate the following definition, which is a natural extension of Definition
IV.13 to account for cohomology.

Definition IV.26. Let S be an empirical model on a scenario 〈X,M, (Om)〉, with
representative F as in (IV.3). Let s be a local section of S. In view of the results of

Section 3, we say that S is CLC(k) at s, and write CLC(k)(S, s), if we have CLC(S(k), t)

for every local section t of S(k) such that s ∈ flatten(t).

We can use this definition to extend Theorem II.32 to line models:

Theorem IV.27. Let S be an empirical model. Given a section s of S, if there exists
a k ≥ 0 such that CLC(k)(S, s), then LC(S, s). Moreover, CSC(S(k))⇒ SC(S).

Proof. Suppose CLC(k)(S, s), i.e. CLC(S(k), t) for every local section t of S(k) such

that s ∈ flatten(t). By Theorem II.32, it follows that LC(S(k), t) for all t such that

s ∈ flatten(t). In other words, we have LC(k)(S, s) (cf. Definition IV.13). By Corollary
IV.14, this implies that S is logically contextual at s.

Now, suppose CSC(S(k)), then, by Theorem II.32, we have SC(S(k)). By Corollary
IV.15 we conclude that SC(S). �

We now introduce the notion of partial family.

Definition IV.28. Let S be an empirical model over a scenario 〈X,M, (Om)〉, and

n, k ≥ 1. An n-partial family for F (k) is a family
{
fC ∈ F (k)( C)

}
C∈D

over an n-path D = {C1, . . . , Cn} ⊆ M(k), which is compatible for F (k), and satisfies
the following conditions:

fC1
|C1

1
∈ S(k−1)(C1

1 ),(IV.4)

fCn |C2
n
∈ S(k−1)(C2

n),(IV.5)
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(cf. Remark IV.24 for notation). A partial family is called standard if there exists a

family {sC ∈ S(k)( C)}C∈D, compatible for S(k) such that

sC1
|C1

1
= fC1

|C1
1
,(IV.6)

sCn |C2
n

= fCn |C2
n
.(IV.7)

In this case, {sC ∈ S(k)( C)}C∈D is called a standard form of
{
fC ∈ F (k)( C)

}
C∈D.

Note that a 1-partial family for F (k) is simply a single section f ∈ F (k)( C) over a

context C ∈M(k), which verifies conditions (IV.4) and (IV.5).
We have introduced partial families in order to model the typical cohomology false

negative. Indeed, non-standard partial families are nothing but partial families of F (k)

(i.e. families of linear combinations of sections of S(k)) that cannot be replaced by simple

families of S(k), just like a cohomology false negative is a compatible family for F which
cannot be replaced by a compatible family of S. Conditions (IV.4) and (IV.5) simply
insure that the family always starts and ends at a single point, i.e. a local section of
S(k1). We give some graphical intuition on partial families in Figure IV.9, to clarify this
concept. Throughout the rest of the section, we will show how non-standard families
can be suppressed by applying the line model construction a sufficient amount of times.

C2 C3 C4

M(k)

C1 C2 C3 C4

M(k)

C1

Figure IV.9. Two examples of 4-partial families for F (k) (in blue) over

the 4-path {C1, C2, C3, C4} ⊆ M(k). On the left, a standard family, with
a standard form highlighted in red. On the right, a non-standard partial
family.

5.2. A complete cohomological invariant for contextuality in cyclic mod-
els. We will now show how to get rid of non-standard partial families. This procedure
will require a number of intermediate steps.

The following lemma is called the no-Z lemma because it formalises the idea, in-
troduced in Section 2.1, that first line models do not contain ‘Z’ shaped paths which
typically give rise to false negatives in cohomology.

Lemma IV.29 (No-Z lemma). Let S be an empirical model over a measurement

scenario 〈X,M, (Om)〉. Let k ≥ 1, and C = {C1, C2} ∈ M(k). Every 1-partial family

for F (k) over C of the form

(IV.8) fC = (s1, t1) + (s2, t1) + (s2, t2),
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(where si ∈ S(k−1)(C1), ti ∈ S(k−1)(C2) for all i = 1, 2) is standard.

Proof. Let fC be a 1-partial family defined by (IV.8). Because (s1, t1), (s2, t1) and

(s2, t2) are all in S(k)( C), we know that

(IV.9) s1|C1∩C2 = t1|C1∩C2 = s2|C1∩C2 = t2|C1∩C2

Therefore, (s1, t2) ∈ S(k)( C), and we have

(s1, t2)|C1 = s1 = s1 + 2 · s2︸ ︷︷ ︸
=0

= fC|C1

(s1, t2)|C2 = t2 = t2 + 2 · t1︸︷︷︸
=0

= fC|C2 ,

which correspond to conditions (IV.6) and (IV.7) (we have used the fact that the co-
efficients are in Z2, hence 2 = 0). This proves that (s1, t2) is the standard form of
fC. �

We will now generalise the no-Z lemma to all the 1-partial families for F (k). The
proof essentially consists of a recursive algorithm which takes a 1-partial family as input,
and outputs a standard form by repeatedly applying the no-Z lemma to the first three
segments of the partial family, which – we show – are always in a ‘Z’ shape.

Lemma IV.30. Let S be an empirical model on a scenario 〈X,M, (Om)〉, and let

k ≥ 1. All the 1-partial families for F (k) are standard.

Proof. A 1-partial family is a single section fC ∈ F (k)( C) over a single context C =

{C1, C2} ∈ M(k), which verifies conditions (IV.4) and (IV.5). We provide an algorithm

that constructs a standard form sC ∈ S(k)( C). Let us start by enumerating the possible

sections at C1 and C2 by denoting S(k−1)(C1) = {s1, s2, . . . , sn}, and S(k−1)(C2) =
{t1, t2, . . . , tm}. Let

I := {(i, j) ∈ [n]× [m] | (si, tj) ∈ S(k)( C)},
where [l] := {1, 2, . . . , l}. By definition of F (k), the section fC can be written as a formal

linear combination of sections in S(k)( C):

fC =
∑

(i,j)∈I

αij · (si, tj),

where αij ∈ Z2.

If fC ∈ S(k)( C), then we are done, as fC is already in standard form. Otherwise,

we know by (IV.4) that fC|C1 ∈ S(k−1)(C1). Therefore, we can assume w.l.o.g. that
fC|C1 = s1. Because of this, there exists a j1 ∈ [m] such that α1j1 = 1, and we can

assume w.l.o.g. that j1 = 1, which means that fC contains the section (s1, t1) ∈ S(1)( C)
in its summands, i.e.

(IV.10) fC = (s1, t1) +
∑

(i,j)6=(1,1)

αij(si, tj)

By equation (IV.5), we know that fC|C2 ∈ S(k−1)(C2) and we can denote fC|C2 = tl,
for some l ∈ [m]. If l = 1, then we can immediately return (s1, t1) as the standard form
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of fC. Otherwise we assume l 6= 1.

Claim 1. There exists an index i1 6= 1, i1 ∈ [n] , such that (i1, 1) ∈ I and αi11 = 1.
W.l.o.g. we let i1 = 2.

Proof Suppose ab absurdo αi1 = 0 for all 1 6= i ∈ [n] such that (i, 1) ∈ I. Then, given
(IV.10), we have

fC = (s1, t1) +
∑

i,j: j 6=1

αij(si, tj).

This implies

fC|C2 = t1 +
∑

i,j: j 6=1

αijtj ,

which always contains the summand t1 6= tl, and thus can never equal tl, which is a
contradiction. �

Claim 1 shows that fC always contains the summand (s2, t1), i.e.

(IV.11) fC = (s1, t1) + (s2, t1) +
∑

(i,j)6=(1,1)
(i,j)6=(2,1)

αij(si, tj).

Claim 2. There exists an index j2 ∈ [m], j2 6= 1, such that (2, j2) ∈ I and α2j2 = 1.
W.l.o.g. we let j2 = 2.

Proof Suppose by contradiction that α2j = 0 for all 1 6= j ∈ [m] such that (2, j) ∈ I.
Then, given (IV.11), we have

fC = (s1, t1) + (s2, t1) +
∑

(i,j)6=(1,1)
i 6=2

αij(si, tj).

This implies

fC|C1 = s1 + s2 +
∑

(i,j)6=(1,1)
i 6=2

αijsi,

which always contains the summand s2, and thus can never equal s1, which is a contra-
diction. �

Claim 2 shows that fC always contains the summand (s2, t2), i.e.

fC = (s1, t1) + (s2, t1) + (s2, t2) +
∑

(i,j)6=(1,1)
(i,j)6=(2,1)
(i,j)6=(2,2)

αij(si, tj).

Notice how the first three summands are exactly the same as in (IV.8). This means
that these first three ‘steps’ of the partial family fC are in a ‘Z’ shape. This allows us
to apply the no-Z lemma and substitute the Z with a section in S(k)( C), as shown in
Figure IV.10.
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...
...

C1 C2C

s1 t1

s2 t2

s3

sn

t3

tm

...
...

C1 C2C

s1 t1

s2 t2

s3

sn

t3

tm

Figure IV.10. A visualisation of the proof. On the left-hand side the
‘Z’ shape at the beginning of the partial family. On the right-hand side,
the substitution of the ‘Z’ with a section of S(k)( C).

In other words, by the no-Z lemma (Lemma IV.29), (1, 2) must be in I, and the

section (s1, t2) ∈ S(k)( C) is the standard form of the partial family (s1, t1) + (s2, t1) +
(s2, t2).

If l = 2, then (s1, t2) is the standard form of fC and we are done. Otherwise we can
re-input the partial family

f ′C := (s1, t2) +
∑

(i,j)6=(1,1)
(i,j)6=(2,1)
(i,j)6=(2,2)

αij(si, tj)

into the algorithm. Notice that this family has two non-zero coefficients less than the
original one, thus it strictly decreases in size. Therefore, the algorithm obviously termi-
nates as there is only a finite amount of sections. �

The following theorem is the key result of the chapter. It shows that, on cyclic
scenarios, all the n-partial families for F (k), where n ≤ k, can be replaced by a standard
form of the same size. In other words, any potential cohomological false negative of size
n ≤ k can be erased. This fact will lead us to a fundamental result, namely that, on
a cyclic scenario, it is sufficient to take the (|M| − 1)-th line model to remove every
cohomology false negative with certainty (Theorem IV.32).

Theorem IV.31. Let S be an empirical model on a cyclic scenario 〈X,M, (Om)〉.
Let k ≥ 1 and let n be such that n ≤ k and n < |M|. All the n-partial families for F (k)

are standard.

Proof. We will proceed by induction on k. The base case k = 1 is a special case of
Lemma IV.30. We will now suppose k ≥ 2.

Let P :=
{
fC ∈ F (k)( C)

}
C∈D be an n-partial family for F (k) over the n-path D =

{C1, . . . , Cn} ⊆ M(k). Notice that, for n = 1, the result follows directly from Lemma
IV.30. Suppose n ≥ 2. Because 〈X,M, (Om)〉 is cyclic, by Proposition IV.22 we know

thatM(k) is a chordless |M|-cycle. Moreover, D is not a cycle, since n < |M|. Thus we
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can use the notation of Remark IV.24. Let

D′ := {K1,K2, . . .Kn−1} = {C2
1 , C

2
2 , . . . C

2
n−1} ⊆ M(k−1).

Then D′ is an (n − 1)-path for M(k−1). Indeed, by Proposition IV.25 we know that

D′ ∪ {C1
1 , C

2
n} is an (n+ 1)-path for M(k−1).

Define a family P ′ :=
{
tKi ∈ F (k−1)(Ki)

}n−1

i=1
by

(IV.12) tKi := fCi |Ki ,
(cf. Remark IV.9).

Claim 1. The family P ′ is an (n− 1)-partial family for F (k−1).

Proof Let us start by proving that P ′ is compatible for F (k−1). Let 1 ≤ i ≤ n− 2. We
have

tKi |Ki∩Ki+1 = (fCi |Ki) |Ki∩Ki+1

(∗)
=
(
fCi |Ci∩Ci+1

)
|Ki∩Ki+1

(†)
=
(
fCi+1

|Ci∩Ci+1

)
|Ki∩Ki+1

(∗)
=
(
fCi+1

|Ki
)
|Ki∩Ki+1

= fCi+1
|Ki∩Ki+1 =

(
fCi+1

|Ki+1

)
|Ki∩Ki+1

= tKi+1 |Ki∩Ki+1 ,

where we have used the fact that Ci ∩ Ci+1 = {C2
i } = {Ki} in the equalities (∗) (cf.

Remark IV.9), and the fact that P is compatible for F (k) in equality (†). With the

usual notation Ki := {k1
i , k

2
i }, since {k1

1, k
2
1, k

2
2, . . . , k

2
n−1} is an n-path for M(k−2) by

Proposition IV.25, we know that k1
1 is the first vertex of the path, which means that

{k1
1} = C1

1 ∩ C2
1 . In view of Remark IV.9, we have

tK1 |k11 = (fC1
|K1) |k11 =

(
fC1
|C2

1

)
|k11 =

(
fC1
|C2

1

)
|C1

1∩C2
1

= fC1
|C1

1∩C2
1

=
(
fC1
|C1

1

)
|C1

1∩C2
1

=
(
fC1
|C1

1

)
|k11

Because fC1
|C1

1
∈ S(k−1)(C1

1 ) by condition (IV.4), we must have

(IV.13) tK1 |k11 =
(
fC1
|C1

1

)
|C1

1∩C2
1
∈ S(k−1)(k1

1),

hence P ′ satisfies (IV.4).
We prove (IV.5) essentially in the same way: we start by a simple observation,

namely that, because Kn−1 = C2
n−1, we have {Kn−1} = Cn−1 ∩ Cn. Therefore,

(IV.14) tKn−1 = fCn−1
|Kn−1 = fCn−1

|Cn−1∩Cn = fCn |Cn−1∩Cn = fCn |Kn−1 ,

where we have used the fact that P is compatible in the third equality. Now, with a
similar argument as before, given that {k2

n−1} = C2
n−1 ∩ C2

n, we have

tKn−1 |k2n−1

(IV.14)
=

(
fCn |Kn−1

)
|k2n−1

=
(
fCn |C2

n−1

)
|k2n−1

=
(
fCn |C2

n−1

)
|C2
n−1∩C2

n

= fCn |C2
n−1∩C2

n
=
(
fCn |C2

n

)
|C2
n−1∩C2

n
=
(
fCn |C2

n

)
|k2n−1

.
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Because fCn |C2
n
∈ S(k−1)(C1

1 ) by condition (IV.5), we must have

(IV.15) tKn−1 |k2n−1
=
(
fCn |C2

n

)
|C2
n−1∩C2

n
∈ S(k−1)(k2

n−1),

which means that P ′ satisfies (IV.5). �

Because P ′ is an (n− 1)-partial family for F (k−1), by inductive hypothesis, we know

that P ′ is standard. Let S := {sKi ∈ S(k−1)(Ki)}n−1
i=1 be a standard form of P ′, i.e. S is

compatible for S(k−1) and it is such that

sK1 |k11 = tK1 |k11 ,(IV.16)

sKn−1 |k2n−1
= tKn−1 |k2n−1

.(IV.17)

Consider the family G := {gCi ∈ S(k)( Ci)}ni=1, defined as follows:

gCi :=





(
fC1|C1

1

, sK1

)
if i = 1,

(
sKn−1 , fCn |C2

n

)
if i = n,

(sKi−1 , sKi) for all 2 ≤ i ≤ n− 1.

Claim 2. The family G is a standard form for P .

Proof First of all, we need to check that gCi is indeed an element of S(k)( Ci) for all
1 ≤ i ≤ n. We have

(
fC1
|C1

1

)
|C1

1∩K1
=
(
fC1
|C1

1

)
|C1

1∩C2
1

(IV.13)
= tK1 |k11

(IV.16)
= sK1 |k11 = sK1 |C1

1∩K1
.

Similarly,

(
fCn |C2

n

)
|Kn−1∩C2

n
=
(
fCn |C2

n

)
|C2
n−1∩C2

n

(IV.15)
= tKn−1 |k2n−1

(IV.17)
= sKn−1 |k2n−1

= sKn−1 |Kn−1∩C2
n

Finally, let 2 ≤ i ≤ n− 1. We readily have

sKi−1 |Ki−1∩Ki = sKi |Ki−1∩Ki

by the simple fact that S is compatible for S(k−1).
The fact that G satisfies equations (IV.6) and (IV.7) for P trivially follows from the

very definition of G, indeed

gC1
|C1

1
=

(
fC1|C1

1

, sK1

)
|C1

1
= fC1

|C1
1
;

gCn |C2
n

=
(
sKn−1 , fCn |C2

n

)
|C2
n

= fCn |C2
n
.

�
Thanks to this claim, we have successfully proved that P is standard. �

We can now introduce a complete cohomology characterisation of logical and strong
contextuality for cyclic scenarios:
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Theorem IV.32. Let S be an empirical model on a cyclic scenario 〈X,M, (Om)〉.
Let C ∈M and s ∈ S(C). Then,

LC(S, s)⇔ CLC(n)(S, s),
where n := |M| − 1. Moreover,

SC(S)⇔ CSC(S(n))

Proof. The implications CLC(n)(S, s) ⇒ LC(S, s) and CSC(S(n)) ⇒ SC(S) have
already been proven in Theorem IV.27.

To prove the converse, we will show that ¬CLC(n)(S, s) ⇒ ¬LC(S, s). Suppose

¬CLC(n)(S, s). By Definition IV.26, this implies that there exists a context C0 ∈ M(n)

and a section t ∈ S(n)( C0) such that s ∈ flatten(t) and ¬CLC(S(n), t). Thus, there exists
a compatible family

F :=
{
fC ∈ F (n)( C)

}
C∈M(n)

such that fC0
= t. Because 〈X,M, (Om)〉 is cyclic, we know by Proposition IV.22 that

M(n−1) is also cyclic. Theferefore,

M(n) = {C0, C1, . . . , Cn}
is a chordless |M|-cycle, which implies that {C1, . . . , Cn} is a chordless n-path (in edge

representation) for M(n). Let

P :=
{
fCi ∈ F (n)( Ci)

}n
i=1

.

Then P is a n-partial family for F (n), indeed it is compatible because F is compatible,
and we have, with the usual notation

fC1
|C1

1
= fC1

|C0∩C1

(∗)
= fC0

|C0∩C1
= t|C0∩C1

= t|{C1
1} = t|C1

1
∈ S(n−1)(C1

1 ),

and

fCn |C2
n

= fCn |Cn∩C0

(∗)
= fC0

|Cn∩C0
= t|Cn∩C0

= t|{C2
n} = t|C2

n
∈ S(n−1)(C2

n),

where we have used the fact that F is compatible in equalities (∗). By Theorem IV.31,
we know that P is standard. Thus there exists a compatible family

P ′ := {sCi ∈ S(n)( Ci)}ni=1

such that

sC1
|C1

1
= fC1

|C1
1

= t|C0∩C1
,

sCn |C2
n

= fCn |C2
n

= t|Cn∩C0
.

Therefore, the family

P ′ ∪ {t} = {sCi ∈ S(n)( Ci)}ni=1 ∪ {t}
is a compatible family for S(n) that contains t. Thus we have ¬LC(S(n), t), which means

that ¬LC(n)(S, s). It follows from Corollary IV.14 that S is not logically contextual at
s.

Suppose now ¬CSC(S(n)). Then there exists a section t of S(n) such that ¬LC(S(n), t).

Consider an arbitrary section s of S such that s ∈ flatten(t). Then we have ¬LC(n)(S, s),
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and we can apply the same argument used before to show that this implies ¬LC(S, s),
which in turn implies ¬SC(S). �

This theorem tells us that if we want to study the contextuality of a cyclic scenario
〈X,M, (Om)〉, it is sufficient to analyse the cohomology of its (|M|−1)-th line model to
assert with certainty which sections give rise to contextual behaviour. This is a major
step forward, as this method allows us to get rid of all the false negatives presented in
this thesis and many others, as we shall see in the rest of the chapter.

5.3. Examples. In this section we will show how this method applies to the false
negatives appeared in the literature, presented in the previous sections and chapters.

The model of Table IV.1. We have already shown that the model S presented
in Table IV.1 displays a cohomology false negative for the section s2 (cf. Table IV.3),

and suggested that it vanishes as soon as we consider its first line model S(1). We can
give a formal proof that this is true. In Figure IV.11 we present once again the bundle
diagram of the first line model, where we introduce variables a, b, c, d, e, f, g, h, i, j ∈ Z2

that represent the coefficients to give to every section of S(1) in order to construct a
compatible family for F (1).

C1 C2 C4 C3 C1

a

b

c

d

e

f

g

h

i

j

Figure IV.11. The bundle diagram of S(1) with the variables in Z2

corresponding to each section. The seciton s2, responsible for logical
contextuality (cf. Section 2.1) is highlighted in red.

The compatibility conditions of a presumed compatible family for F (1) can be sum-
marised in the following equations:

a = d,

b = e,

c = f,

d⊕ e = g,

f = h,

h = i,

g = j,

i = a,

j = b⊕ c.

Because the family must contain s2, which is marked in red in Figure IV.11, we must
have a = 1 and b = c = 0. It follows directly that e = f = h = i = 0 and that
d = g = j = 1. However, since j = b⊕ c, this leads to 1 = 0⊕0 = 0, which is obviously a
contradiction. We have just proved that the cohomology of S(1) does detect the logical
contextuality of S at s2.

Note that in this case, although |M| = 4, it was not necessary to take the third line
model of S to remove the false negative, as suggested by Theorem IV.32. Indeed, the
bound |M| − 1 is the one that gives us absolute certainty about the non-existence of a
false negative. However, as we have just shown, it might be sufficient to take a lower
level line model to remove any false negative from the model.
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The Hardy model. The Hardy model (cf. Table II.8) is perhaps the most well-
studied example of cohomological false negative for contextuality [AMB12, ABK+15,
Car17]. We have shown in Figure IV.3 that its first line model still results in a co-
homological false negative for the section s1, at which the Hardy model S is logically
contextual. In Figure IV.12, we present the bundle diagram of the second line model.

{C1, C2} {C2, C4} {C4, C3} {C3, C1} {C1, C2}C1 C2 C3 C4

Figure IV.12. The bundle diagram of the second line model of the
Hardy model. The red section is the only section of S(2) that contains
the original section s1. In blue, a false negative for the red section

Notice that, even in this case, we still have a compatible family for F (2) containing
the only section of S(2) over C1 that contains s1. Thus, we must consider the third
line model to get rid of the false negative. The third line model of the Hardy model
is presented in Figure IV.13, where we have highlighted in red the only section over
{C1,C2} containing s1.

C1 C2 C3 C4 C1

Figure IV.13. The bundle diagram of the third line model of the Hardy
model. The section marked in red is the only section containing s1.

Since |M| = 4, Theorem IV.32 assures that cohomology does detect contextuality at
the red section. This can be graphically checked by highlighting all the possible attempts
to extend the red section to a compatible family for F (4), as shown in Figure IV.14. In
particular, we show all the possibilities to extend the section starting from left to right.
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Note that the choice of direction is irrelevant, and the reader can verify that the same
is true if we try to extend right to left instead.

C1 C2 C3 C4 C1

Figure IV.14. It is impossible to extend the red section to a compatible
family for F (4).

This graphical proof can easily be converted into a formal proof following the same
idea as in the previous paragraph. Note that the fact that we had to consider the third
line model of the Hardy model in order to get rid of the false negative shows that the
bound |M| − 1 of Theorem IV.32 is tight.

The false negative for strong contextuality of Table III.4. The false nega-
tive presented in Chapter III (Table III.4) is particularly interesting because it concerns
all the sections of the model. Indeed, the model is cohomologically non-contextual de-
spite being strongly contextual. In other words, there is a cohomology false negative for
every single section of the model. In Figure IV.15, we depict the bundle diagram of the
first line model.

C1 C2 C4 C3 C1

Figure IV.15. The first line model S(1) of the false negative from Chap-
ter III. In blue, a compatible family for F (1).

Notice that, for each section, it is still possible to find a compatible family for F (1)

that contains it, giving rise to a false negative. For example, we have highlighted one
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such compatible family in blue, which constitutes a false negative for the contextuality
of the top section for the context {C1, C2}. Therefore, we need to consider the second
line model, whose bundle diagram is depicted in Figure IV.16 Even in this case, it is still

{C1, C2} {C2, C4} {C4, C3} {C3, C1} {C1, C2}C1 C2 C3 C4

Figure IV.16. The second line model of the false negative from Chapter
III. In blue, a compatible family for F (2).

possible to find a cohomology false negative for each section of the model (see e.g. the
blue loop highlighted in Figure IV.16).

In Figure IV.17 the bundle diagram of the third line model is shown. Once again,

C1 C2 C3 C4 C1

Figure IV.17. The third line model of the false negative from [Car17].

because |M| = 4, we know by Theorem IV.32, that cohomology detects contextuality at
every section of the model. This can be checked graphically. For example, in Figure IV.18
we show that it is never possible to extend the section marked in red to a compatible
family for F (3). The reader can verify that this is true for any section of the model.
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C1 C2 C3 C4 C1

Figure IV.18. A graphical proof of the fact that cohomology of F (3)

does detect contextuality at the section marked in red. This is true for
any section of the model.

6. Extending the invariant to general models

In the previous section, we have successfully defined a full cohomological invariant
for contextuality for all cyclic models. The goal of this section is to extend this result to
arbitrary models. In particular, will show that the invariant can be extended to a very
large class of scenarios. This result will lead us to conjecture that the invariant works
universally.

Although cyclic models constitute only a fraction of all the possible empirical models,
they play a crucial role in the study of contextuality. In Chapter II, we presented
Vorob'ev’s theorem (Theorem II.21), which states that the existence of ‘cycles’ in the
database theoretic sense of Definition II.20 is a necessary condition for contextuality.
As mentioned earlier, in Remark IV.21, the database-theoretic notion of cyclicity is not
strictly equivalent to the one we introduced in this chapter. However, it is easy to prove
that any non-acyclic cover in the sense of Definition II.20 must contain at least one
cyclic subcover in the sense defined here. The fact that the existence of cycles in the
cover is necessary for contextuality suggests that contextual features can be observed by
focusing uniquely on the cycles.

To convey this idea, we introduce here the notion of cyclic contextuality property
(CCP). The contextual features of models satisfying the CCP can always be recovered

by looking at cycles in the cover M(1).

Definition IV.33. Let S be an empirical model on a scenario 〈X,M, (Om)〉. We
say that S has the cyclic contextuality property (CCP) if, for each local section

s of S such that LC(S, s), there exists a cycle D• ⊆ M for M(1) (called a contextual
cycle of s) such that LC(S|D• , s), where S|D• is the model obtained by restricting S to
the subcover D•.
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Most empirical models satisfy the CCP. To give an idea of how common this property
is, it is sufficient to say that all the models that have appeared in the literature on the
sheaf description of contextuality share this property. It shall also be mentioned that
the author has not been able to find any example of an empirical model which does not
satisfy this property.

Remarkably, the cohomological invariant introduced in the previous sections can be
immediately extended to all models satisfying with the CCP.

Proposition IV.34. Let S be a model on a general scenario 〈X,M, (Om)〉, and
suppose S has the CCP. For all sections s of S, we have

LC(S, s)⇔ CLC(n−1)(S, s),
where n denotes the size of any contextual cycle of s.

Proof. The implication CLC(n−1)(S, s) ⇒ LC(S, s) follows from Theorem IV.27.
Now, suppose LC(S, s). Let D• ⊆M be a contextual cycle of s. By definition, we have
LC(S|D• , s). The model S|D• is defined on the cyclic scenario D•, thus we can apply

Theorem IV.32 to conclude that CLC(n−1)(S|D• , s), which readily implies CLC(n−1)(S, s).
�

Thanks to this simple proposition, we can extend Theorem IV.32 to models satisfying
the CCP over general scenarios. To prove this, we will need the following result:

Proposition IV.35. Let S be an empirical model on a scenario 〈X,M, (Om)〉. For
all k ≥ 0 and every section s of S, we have

CLC(k)(S, s)⇒ CLC(l)(S, s) ∀l ≥ k.
Similarly,

CSC(S(k))⇒ CSC(S(l)) ∀l ≥ k.
Proof. We are going to prove that ¬CLC(k+1)(S, s)⇒ ¬CLC(k)(S, s), and the result

will follow by induction. Suppose ¬CLC(k+1)(S, s). Then there exists a context C =

{C1, C2} ∈ M(k+1) and a section t = (t1, t2) ∈ S(k+1)( C) (where t1 ∈ S(k)(C1) and

t2 ∈ S(k)(C2)) such that s ∈ flatten(t) and ¬CLC(S(k+1), t). In particular, this means
that there exists a compatible family

F = {tK ∈ F (k+1)(K)}K∈M(k+1)

such that tC = t. Given a context C ∈ M(k) we know that there exists a C ′ ∈ M(k)

such that {C,C ′} ∈ M(k+1). Let uC := t{C,C′}|C . This is well-defined because, given a

different C ′′ ∈M(k) such that {C,C ′′} ∈ M(k+1), we have

t{C,C′′}|C
(∗)
= t{C,C′′}|{C} = t{C,C′′}|{C,C′}∩{C,C′′}

(†)
= t{C,C′}|{C,C′}∩{C,C′′}

= t{C,C′}|{C}
(∗)
= t{C,C′}|C ,

where we have used compatibility of F in (†), and applied what discussed in Remark
IV.9 in (∗). Thus we can define the family

F ′ := {uC ∈ F (k)(C)}C∈M(k) .
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We can show that F ′ is a compatible family for F (k) as follows: suppose C,C ′ ∈ M(k),
C 6= C ′ and C ∩ C ′ 6= ∅, then

uC |C∩C′ =
(
t{C,C′}|C

)
|C∩C′ = t{C,C′}|C∩C′ =

(
t{C,C′}|C′

)
|C∩C′ = uC′ |C∩C′ .

Now, because s ∈ flatten(t), we can suppose w.l.o.g. that s ∈ flatten(t1). Moreover, be-
cause tC = t = (t1, t2), we have uC1 = t1. Thus F ′ is a compatible family which contains

t1. We conclude that ¬CLC(S(k), t1), which implies ¬CLC(k)(S, s), as s ∈ flatten(t1).

The same argument can be used to prove that ¬CSC(S(k+1))⇒ ¬CSC(S(k)). �
From these two propositions, we immediately have the following theorem:

Theorem IV.36. Let S be a model on a scenario 〈X,M, (Om)〉, and suppose S has

the CCP. Let N denote the size of the largest cycle in M(1). We have

LC(S, s)⇔ CLC(N−1)(S, s),
for all section s of S. Moreover, we have

SC(S)⇔ CSC(S(N−1)).

This result shows that, if a model has the CCP, studying its contextuality is equiv-
alent to study the cohomological contextuality of its (N − 1)-th line model. In other

words, cohomological contextuality on S(N−1) is a full invariant for contextuality on the
original model. As in the case of cyclic scenarios, note that it might be possible to erase
cohomological false negatives for a particular model even at a lower level.

Obviously, we usually do not know a priori whether a model satisfies the CCP,
however, as we mentioned earlier, this property is extremely common among empirical
models, which means that this method is widely applicable. In the following section we
will give some examples to support this claim.

6.1. Examples.

A simple scenario. Let us start with the model displayed in Table IV.4. A

Table IV.4. The empirical model S.

Contexts (0, 0) (0, 1) (1, 0) (1, 1)
{a, b} 0 1 1 0
{a, d} 1 0 1 1
{b, c} 1 1 0 1
{b, d} 1 0 0 1
{c, d} 0 1 1 0

bundle diagram representation of the model can be found in Figure IV.19. By simply
looking at the diagram, it is easy to see that the section (b, d) 7→ (1, 1), marked in red,
cannot be extended to any compatible family for S. However, it can be extended to a
compatible family for F , as shown in blue.

Using the enumeration specified in Table IV.5, we can represent the first line model
S(1) as a bundle diagram in Figure IV.20.

Notice that section s10, marked in red, cannot be extended to a compatible family for
F (1) for the cycle {{b, d}, {b, c}, {c, d}} (all the possibilities to extend section (s8, s10),
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a b

cd

0

1

Figure IV.19. The bundle diagram of the model displayed in Table
IV.4. In blue is highlighted the cohomological false negative for the sec-
tion (b, d) 7→ (1, 1), marked in red.

Table IV.5. An enumeration of the sections of S. The model is logically
contextual at s10

Contexts (0, 0) (0, 1) (1, 0) (1, 1)
{a, b} s1 s2

{a, d} s3 s4 s5

{b, c} s6 s7 s8

{b, d} s9 s10

{c, d} s11 s12

{a, b}

{b, c}{c, d}

{a, d}

{b, d}

s1

s2

s3

s4

s5
s9

s10s11

s12

s6

s7

s8

Figure IV.20. The bundle diagram of S(1). In black, all the possibilities
to extend the only section on {{b, d}, {b, c} containing s10, i.e. (s8, s10),
to a cohomology loop on the cycle {{b, d}, {b, c}, {c, d}} by proceeding
clockwise. They all fail to be compatible.

by proceeding clockwise are highlighted in black). In particular, this means that the
cohomological false negative has been deleted. Note that in this case it was sufficient to
derive the first line model to avoid a false negative. The size of the largest cycle in this
scenario is 4, thus, in general, we would have to consider the third line model to remove
any false negative with absolute certainty.
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The Kochen-Specker model of [AMB12]. The only cohomological false neg-
ative on a non-cyclic model that has appeared in the literature is the Kochen-Specker
model for the cover

(IV.18) {A,B,C}, {B,D,E}, {C,D,E}, {A,D,F}, {A,E,G},
introduced in [AMB12]. We have already shown how the false negative arises in Section
3 of Chapter III. In particular, we assigned variables a, b, . . . , o ∈ Z2 for each of the
local sections of S and showed that compatibility constraints force these variables to be
organised as in Table III.3, which we report again here for clarity (Table IV.6)

Table IV.6. Table III.3 reported from Chapter III.

Contexts (1, 0, 0) (0, 1, 0) (1, 0, 0)
{A,B,C} a b b
{B,D,E} b b a
{C,D,E} b b a
{A,D,F} a b b
{A,E,G} a a a

By looking at this table, we were able to prove that S is strongly contextual. How-
ever, by letting a = 1 and b = 0 one obtains the following ‘false’ compatible family

{s{A,B,C},A, s{B,D,E},E , s{C,D,E},E , s{A,D,F},A,
s{A,E,G},A ⊕ s{A,E,G},E ⊕ s{A,E,G},G},

(IV.19)

which is a false negative for logical contextuality at sections s{A,B,C},A, s{B,D,E},E ,
s{C,D,E},E and s{A,D,F},A. An important aspect of this family, which we have not high-
lighted in Chapter III, is that the only other compatible families we have for F , namely
the ones obtained by setting a = 0, b = 1 or a = b = 1 in Table IV.6, do not give
rise to false negatives for any section of S. Indeed, each one of these families contains
exclusively sections of F that are not in S. Therefore, we only need to show that the
line model construction erases the unique false compatible family (IV.19) to conclude.

We will now show that it is sufficient to derive the first line model S(1) to remove
this false global secction. First of all, we represent the first line model using bundle
diagrams. For each context C = {c1, c2, c3} of M, there are exactly three possible

sections, namely sC,c1 , sC,c2 and sC,c3 . Therefore, for each vertex of M(1), there are
three distinct vertices in its fiber, which we will label with sC,c1 , sC,c2 and sC,c3 from
bottom to top (this labelling is not shown in the pictures for the sake of readability of
the diagrams). Using this convention, we have depicted the bundle diagram of the first
line model in Figure IV.21 (the colored vertices are only used as a visual reference).

In Figure IV.22, we give a different representation of the model by decomposing it
into two planar diagrams. The top diagram corresponds to the cycle that constitutes the
perimeter of the pentagon, while the bottom one corresponds to the star-shaped cycle
in the centre. The colored circles in the fibers represent the four sections for which we
have a cohomological false negative in the original model, as explained at the bottom of
the picture. In the same picture, we have also introduced variables

a, b, . . . , y, z, ã, b̃, . . . , ũ, ṽ
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{A,B,C}

{B,D,E}

{C,D,E}

{A,D, F}

{A,E,G}

Figure IV.21. The bundle diagram of the first line model of the Kochen-
Specker model on the cover (IV.18).

f i n s

x

c̃ h̃ m̃ r̃

a

b
c

d

e

g

h

j

k

l

m

o

p

q

r

t

u

v

w

y

z

ã

b̃ d̃ ẽ

f̃

g̃

ĩ

j̃

k̃

l̃

ñ

õ

p̃

q̃

s̃

t̃

ũ

ṽ

{A,B,C}

{A,E,G}{A,B,C}

{A,B,C}

{A,B,C}{C,D,E}

{C,D,E} {A,E,G}{A,D, F}

{A,D, F}

{B,D,E}

{B,D,E}

s{A,B,C},A s{B,D,E},E s{C,D,E},E s{A,D,F},A

Figure IV.22. The Kochen-Specker model of [AMB12] decomposed in
two cyclic planar diagrams. The top diagram corresponds to the perime-
ter of the pentagon; the bottom diagram refers to the central ‘star’. We
introduce one variable in Z2 for each section of the model.
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in Z2 for each of the possible sections of the first line model. We will now show that the
cohomological false negative no longer exists. To do so, we list all the equations imposed
by compatibility conditions, which can be obtained from the diagram of Figure IV.22:

a⊕ d = g

b⊕ e = h

c = f

a⊕ d = õ

b⊕ e = p̃⊕ q̃
c = m̃⊕ ñ

a⊕ d = ĩ⊕ l̃
b⊕ e = j̃

c = h̃⊕ k̃
a⊕ b = r̃

c = s̃⊕ ũ
d⊕ e = t̃⊕ ṽ
a⊕ b = s

c = t⊕ v
d⊕ e = u⊕ w
a⊕ b = x⊕ y

c = z ⊕ ã
d⊕ e = b̃

f = i⊕ j
g = k

h = l ⊕m
f = b1

g = x⊕ z
h = y ⊕ ã
f = h̃⊕ ĩ
g = j̃

h = k̃ ⊕ l̃
f = h̃⊕ k̃
g = ĩ⊕ l̃
h = j̃

f = m̃⊕ ñ
g = õ

h = p̃⊕ q̃
i⊕ l = n

k = o⊕ p
j ⊕m = q ⊕ r
i⊕ l = r̃

k = s̃⊕ t̃
j ⊕m = ũ⊕ ṽ
i⊕ l = m̃⊕ p̃

k = õ

j ⊕m = ñ⊕ q̃
i⊕ j = b̃

k = x⊕ z
l ⊕m = y ⊕ ã
i⊕ j = c̃⊕ d̃

k = ẽ⊕ f̃
l ⊕m = g̃

n = s

o⊕ q = t⊕ u
p⊕ r = v ⊕ w

n = h̃⊕ ĩ
o⊕ q = j̃

p⊕ r = k̃ ⊕ l̃
n = c̃⊕ l̃

o⊕ q = g̃

p⊕ r = d̃⊕ f̃
n = m̃⊕ p̃

o⊕ p = õ

q ⊕ r = ñ⊕ q̃

n = r̃

o⊕ r = s̃⊕ t̃
q ⊕ r = ũ⊕ ṽ

s = x⊕ y
t⊕ v = z ⊕ ã
u⊕ w = b̃

s = r̃

t⊕ v = s̃⊕ ũ
u⊕ w = t̃⊕ ṽ

s = c̃⊕ ẽ
t⊕ w = g̃

v ⊕ w = d̃⊕ f̃
s = h̃⊕ ĩ

t⊕ u = j̃

v ⊕ w = k̃ ⊕ l̃
b̃ = c̃⊕ d̃

x⊕ z = ẽ⊕ f̃
y ⊕ ã = g̃

x⊕ y = r̃

z ⊕ ã = s̃⊕ ũ
b̃ = t̃⊕ ṽ

c̃⊕ ẽ = h̃⊕ ĩ
g̃ = j̃

d̃⊕ f̃ = k̃ ⊕ l̃
h̃⊕ k̃ = m̃⊕ ñ
ĩ⊕ l̃ = õ

j̃ = p̃⊕ q̃
m̃⊕ p̃ = r̃

õ = s̃⊕ t̃
ñ⊕ q̃ = ũ⊕ ṽ
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With the aid of a computer, we can easily find the solutions to this system of equa-
tions. The free variables are a, b, i, o, ã, c̃, m̃, s̃ and t̃, and we must have

c = f = g = h = k = n = s = b̃ = g̃ = j̃ = õ = r̃ = a⊕ b
j = l = a⊕ b⊕ i
p = q = a⊕ b⊕ o
u = v = a⊕ b⊕ t
y = z = a⊕ b⊕ ã
d̃ = ẽ = h̃ = l̃ = a⊕ b⊕ c̃
ñ = p̃ = a⊕ b⊕ m̃
t̃ = ũ = a⊕ b⊕ s̃

(IV.20)

Consider section s{A,B,C},A of the original model (marked with a red circle in Figure

IV.22). The only section of S(1) at the context {{A,B,C}, {A,E,G}} ∈ M(1) that
contains s{A,B,C},A is s := (s{A,B,C},A, s{A,E,G},A), whose corresponding variable is s. If
we impose s = 1 and t = u = v = w = 0, we can see that these values are not consistent
with the constraints (IV.20) imposed by compatibility of a presumed compatible family
for cohomology. Indeed, we have

0 = u = a⊕ b⊕ t = s⊕ t = 1⊕ 0 = 1.

This means that section s = (s{A,B,C},A, s{A,E,G},A) cannot be extended to a compatible

family for F (1). In other words, the cohomological false negative for s{A,B,C},A has
vanished.

In the same way, (s{B,D,E},E , s{C,D,E},E) is the only section of S(1) at the context

{{B,D,E}, {C,D,E}} ∈ M(1) that contains both s{B,D,E},E and s{C,D,E},E . The cor-
responding variable is h, and if we impose h = 1 and g = f = 0, we have an immediate
contradiction since h = f = g by (IV.20). Thus we conclude, using the same argument
as before, that the cohomological false negative for the contextuality of S at sections
s{B,D,E},E and s{C,D,E},E has vanished.

Finally, to show that we have removed the false negative for s{A,D,F},A, it is suf-

ficient to argue that (s{A,D,F},A, s{A,E,G},A) is the only section of S(1) at the context

{{A,D,F}, {A,E,G}} ∈ M(1) that contains it. The corresponding variable is n, and if
we impose n = 1, o = p = q = r = 0, we have

0 = p = a⊕ b⊕ o = n⊕ o = 1⊕ 0 = 1,

which is again a contradiction.

7. Probabilistic line models

We conclude this chapter by showing that the line model construction can be nat-
urally generalised to probabilistic empirical models. Although the cohomological tech-
niques at our disposal cannot be used to study probabilistic contextuality, we still believe
the construction deserves to be further investigated as, just like in the possibilistic case,
it exposes the hidden structure of local extendability properties of probabilistic models.
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Suppose we have a probabilistic empirical model e = {eC ∈ DRE(C)}C∈M on a
measurement scenario 〈X,M, (Om)〉. We define the first line model of e as follows:

Definition IV.37. The first line model of e is the probabilistic model e(1) =

{e(1)
C }C∈M(1) on the scenario 〈X,M, (Om)〉(1), where, for each C = {C1, C2}, the distri-

bution e
(1)
C : E(1)( C) = E(C1)× E(C2)→ R is defined as follows:

(IV.21) e
(1)
C (s, t) :=

{
eC1 (s)eC2 (t)

I if s|C1∩C2 = t|C1∩C2 and I 6= 0

0 otherwise,

where I := eC1 |C1∩C2(s|C1∩C2) = eC2 |C1∩C2(t|C1∩C2).

The following proposition shows that the first line model is a well-defined empirical

model over 〈X,M, (Om)〉(1).

Proposition IV.38. Let e be a probabilistic empirical model over a measurement

scenario 〈X,M, (Om)〉. Then, e(1) is a well-defined model on 〈X,M, (Om)〉(1). More-

over, the following is true for all C = {C1, C2} ∈ M(1):

e
(1)
C |C1 = eC1

e
(1)
C |C2 = eC2 ,

(IV.22)

in other words, we recover the original model by marginalising the first line model to the
original contexts.5

Proof. We will start by proving equations (IV.22), and the result will follow im-
mediately after. Let C = {C1, C2}. Let

U := C1 \ C2, V := C1 ∩ C2, W := C2 \ C1.

Then, C1 = U t V and C2 = W t V . Thus,

eC1 ∈ DRE(U t V ) ∼= DR(E(U)× E(V )),

eC2 ∈ DRE(W t V ) ∼= DR(E(W )× E(V )).

Moreover,

E(1)( C) = E(C1)× E(C2) = E(U t V )× E(V tW ) ∼= E(U)× E(V )× E(V )× E(W ).

With this premise, one can rewrite the definition (IV.21) of e
(1)
C as a map

e
(1)
C : E(U)× E(V )× E(V )× E(W ) −→ R

given by

e
(1)
C (u, v, v′, w) :=

{
eC1 (u,v)eC2 (v,w)

eC1 |V (v) if v = v′ and eC1 |V (v) 6= 0

0 otherwise.

5The proper notation for equations (IV.22) should be e
(1)
C |{Ci}, for i = 1, 2. However, since

E(1)({C1}) = E(C1) by definition, we can see e
(1)
C |{Ci} both as an element of DRE(1)({Ci}) and as

an element of DRE(Ci) (cf. Remark IV.9). The notation we use here is to emphasise the latter interpre-
tation.
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For any (u, v) ∈ E(U)× E(V ), with eC1 |V (v) 6= 0, we have

e
(1)
C |C1(u, v) =

∑

(v′,w)∈E(1)(C2)

e
(1)
C (u, v, v′, w) =

∑

w∈E(W )

e
(1)
C (u, v, v, w)

=
∑

w∈E(W )

eC1(u, v)eC2(v, w)

eC1 |V (v)
=
eC1(u, v)

eC1 |V (v)

∑

w∈E(W )

eC2(v, w)

=
eC1(u, v)

eC1 |V (v)
eC2 |V (v) =

eC1(u, v)

eC1 |V (v)
eC1 |V (v) = eC1(u, v).

and for eC1 |V (v) = 0, both sides are zero. Similarly, we prove that e(1)|C2 = eC2 , to

complete the proof of equations (IV.22). From this, it immediately follows that e
(1)
C is a

distribution, indeed
∑

s∈E(1)( C)

e
(1)
C (s) =

∑

s∈E(1)( C)
s|∅=∗

e
(1)
C (s) = e

(1)
C |∅(∗) =

(
e

(1)
C |C1

)
|∅(∗) = eC1 |∅(∗)

=
∑

s∈E(C1)
s|∅=∗

eC1(s) =
∑

s∈E(C1)

eC1(s) = 1.

Compatibility of e(1) is also a consequence of equations (IV.22), indeed, given two inter-
secting contexts C1 = {C1

1 , C
2
1} and C2 = {C1

2 , C
2
2},

(IV.23) e
(1)
C1
|C1∩C2

= e
(1)
C1
|{C2

1} = e
(1)
C1
|C2

1
= eC2

1
= e

(1)
C2
|{C2

1} = e
(1)
C2
|C1∩C2

�

7.1. The contextuality of probabilistic line models. We investigate the con-
textual properties of line models.

Lemma IV.39. Let

D : E(1)(X(1)) = E(1)(M) =
∏

C∈M
E(C) −→ R

be a global distribution for e(1) = {e(1)
C }C∈M(1). Then, D

(
〈sC〉C∈M

)
= 0 for all 〈sC〉C∈M

such that {sC}C∈M is non-compatible for E with respect to M.

Proof. Suppose {sC}C∈M is non compatible for E with respect toM, which means
that there exist C,C ′ ∈M such that sC |C∩C′ 6= sC′ |C∩C′ . Because of this, we must have

C ∩ C ′ 6= ∅. Therefore, {C,C ′} ∈ M(1), and we have

D|C(sC , sC′) = e
(1)
C (sC , sC′) = 0,

where the last equality follows directly from (IV.21). Thus,

0 = D|C(sC , sC′) =
∑

〈pC〉∈E(1)(M)
pC=sC
pC′=sC′

D
(
〈pC〉C∈M

)
︸ ︷︷ ︸

≥0

.
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From this equation, it follows that

D
(
〈pC〉C∈M

)
= 0 ∀ 〈pC〉 ∈ E(1)(M) s.t. pC = sC and pC′ = sC′ .

In particular, D(〈sC〉C∈M) = 0. �
The following result shows that contextuality is preserved under the line model con-

struction:

Theorem IV.40. Let e = {eC}C∈M be a probabilistic empirical model. If e is con-

textual, then e(1) = {e(1)
C }C∈M(1) is contextual.

Proof. Suppose e(1) is non-contextual. Then, there exists a global distribution

D :
∏

C∈M
E(C) −→ R

such that D|C = e
(1)
C for all C ∈M(1). We define the following map:

d : E(X) −→ R :: s 7−→ D(〈s|C〉C∈M)

We will now prove that d|C = eC for all C ∈M.
Thanks to Lemma IV.39, we can show that d|C = D|{C} for all C ∈M. Indeed, for

a given t ∈ E(1)({C}) = E(C), we have

(IV.24) D|{C}(t) =
∑

〈tC〉∈E(1)(M)
tC=t

D(〈tC〉) IV.39
=

∑

〈tC〉∈E(1)(M)
tC=t

{tC}comp.

D(〈tC〉)

Because E is a sheaf, for each compatible family {tC}C∈M there exists a unique p ∈ E(X)
such that p|C = tC for all C ∈M. Thus, we have

D|{C}(t)
(IV.24)

=
∑

〈tC〉∈E(1)(M)
tC=t

{tC}comp.

D(〈tC〉) =
∑

p∈E(X)
p|C=t

D(〈p|C〉)

=
∑

p∈E(X)
p|C=t

d(p) = d|C(t)

(IV.25)

Now, let C ∈ M. By the usual assumptions, there exists a C ′ ∈ M such that
C ∩ C ′ 6= ∅, which means that C := {C,C ′} ∈ M(1), and we have

d|C
(IV.25)

= D|{C} = (D|C) |{C} = e
(1)
C |{C}

(IV.22)
= eC .

Finally, we can show that d is a distribution using the same argument as in (IV.23):

d|∅ = (d|C) |∅ = eC |∅ = 1,

where C is any context inM. We conclude that d is a global section for e, which means
that e is non-contextual. �

Note that the converse of this theorem is not true. In fact, it is easy to see from
the results of the previous sections that it is not even true in the case of possibilistic
empirical models.
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Discussion

The line model construction has successfully solved the issue of false negatives for
a very large class of empirical models, namely those that satisfy the CCP. This result
represents a major step forward in the direction of a complete topological characterisation
of possibilistic and strong contextuality.

There are strong indications suggesting that the cohomological invariant introduced
in this chapter is not limited to models satisfying the CCP, but can be extended to all
empirical models. In order to give rise to a false negative, a model S on a scenario
〈X,M, (Om)〉 would have to satisfy all of the following:

(1) S is contextual.
(2) 〈X,M, (Om)〉 is non-cyclic.
(3) S does not satisfy the CCP.
(4) S gives rise to a cohomology false negative in all its line versions at all its

sections.

In particular, conditions (3) and (4) seem particularly difficult to be simultaneously
satisfied. We already argued that it is extremely difficult, if not impossible, to identify a
contextual model that does not have the CCP. On top of this, the model would need to
feature a false negative at each of its sections which is preserved through all of its line
models. For this reason, we put forward the following conjecture:

Conjecture IV.41. Given a general model S on a scenario 〈X,M, (Om)〉, there
exists a k ≥ 0 such that

LC(S, s)⇔ CLC(k)(S, s),
for all sections s of S. In other words, the cohomology of line models represents a full
invariant for contextuality.

The proof of this conjecture remains an open question.



CHAPTER V

Contextuality and generic inference:
a theory of disagreement

Summary

The goal of this chapter is to establish a strong link between two appar-
ently unrelated topics: the study of conflicting information in the formal
framework of valuation algebras, and the phenomena of non-locality and
contextuality. In particular, we show that these highly non-classical phe-
nomena are mathematically equivalent to a general notion of disagree-
ment. This result generalises previously observed connections between
contextuality, relational databases and constraint satisfaction problems,
and further proves that contextuality is not a phenomenon limited to
quantum mechanics, but pervades various domains of mathematics and
computer science. The connection allows to translate theorems, meth-
ods and algorithms between different fields. We take advantage of this
strong interaction to develop new algorithms of generic inference for the
detection of non-locality and contextuality, which outperform the current
methods.

1. Overview

The high level of generality provided by the sheaf theoretic description of contextual-
ity has sparked the establishment of a number of significant and unexpected connections
with other apparently unrelated fields. Indeed, the elemental idea of contextuality as a
discordance between local consistency and global inconsistency is so powerful and flex-
ible to be abundantly observable even outside of the scope of quantum physics. The
sheaf-theoretic definition of contextuality has been linked to relational database theory
[Abr13a, Bar15a], robust constraint satisfaction [AGK13, ABdSZ17], natural lan-
guage semantics [AS14], logical paradoxes [ABK+15, Kis16b, ABCP17, dS17], and
other fields [Abr14b]. This profusion of examples motivates the search for a general the-
ory of contextual semantics, an all-comprehensive approach able to capture the essence
and structure of contextual behaviour.

In this chapter, we propose such a general framework, based on the idea of dis-
agreement between information sources. A natural theory to model concepts such
as information and knowledge is the one of valuation algebras, introduced by Shenoy
[She89, SSS+90]. These abstract structures mirror the fundamental properties one
naturally attributes to the notion of knowledge and capture an extremely wide range
of instances, including relational databases [KS96], constraint satisfaction problems
[KS00] and propositional logic [She94, KHM99]. Therefore, not only does the theory

99
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developed in this chapter naturally specialises to the aforementioned examples of con-
textuality outside quantum mechanics, but it allows to witness this phenomenon in a
much larger class of fields, ranging from belief potentials to predicate logic, from linear
systems to probability distributions.

The purpose of this chapter is to introduce a general vocabulary for contextual
behaviour, based on the notion of disagreement, which can then be used to translate
theorems, methods and algorithms from one field to the other. The generality of the
valuation algebraic framework makes the scope for potential new results extremely wide.

The problem of detecting disagreement can be effectively modelled as an inference
problem. Inference problems have been studied extensively in the literature, and nu-
merous algorithms have been specifically developed to solve them. In particular, the
paradigm of local computation – introduced by Spiegelhalter and Lauritzen [SL88] to
solve inference problems in Bayesian networks – has proven particularly effective, and
was consequently generalised to the valuation framework by the work of Shafer and
Shenoy [She89, SS91], Kohlas [Koh03], and Pouly [Pou08, Pou10], who collectively
developed the theory of generic inference. In this chapter, we will take advantage of
generic inference to develop faster algorithms to detect contextuality.

The content of this chapter has been developed in collaboration with Samson Abram-
sky, and has been partially published in [AC19].

Outline of the chapter. In Section 2, we introduce valuation algebras and in-
ference problems. Sections 3 and 4 are devoted to the presentation of a large amount of
examples of valuation algebras. In Section 5, we present the connection between valua-
tion prealgebras and sheaf theory. A general definition of disagreement is presented in
Section 6, along with some key examples. Section 7 established the connection between
contextuality and the general notions of local and global disagreement. In Section 8,
we show that, in many relevant valuation algebras, detecting disagreement is in fact an
inference problem, and introduce the concept of complete disagreement. Section 9 deals
with the connection between disagreement and logical forms of contextuality. Finally,
in Section 10, we take advantage of the general theory developed so far to develop new
algorithms of generic inference to detect contextuality, and study their performance.

2. Valuation algebras and generic inference

We will adopt the language of valuation algebras, a general framework suited to model
concepts such as knowledge and information, as well as their fundamental properties.

2.1. Valuation prealgebras.

Definition V.1. Let V be a set of variables. A valuation prealgebra over V is a
set Φ equipped with two operations:

(1) Labelling: Φ→ P(V ) :: φ 7→ d(φ).
(2) Projection: Φ× P(V )→ Φ :: (φ, S) 7→ φ↓S , for all S ⊆ d(φ),

such that the following axioms are satisfied:

(A1) Projection: Given φ ∈ Φ and S ⊆ d(φ),

d
(
φ↓S
)

= S.
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(A2) Transitivity : Given φ ∈ Φ and S ⊆ T ⊆ d(φ),
(
φ↓T

)↓S
= φ↓S .

(A3) Domain: Given φ ∈ Φ,

φ↓d(φ) = φ.

The elements of a valuation prealgebra are called valuations. A set of valuations is
called a knowledgebase. A set of variables D ⊆ V is called a domain. The domain
of a valuation φ is the set d(φ).

Intuitively, a valuation φ ∈ Φ represents information about the possible values of a
finite set of variables d(φ) = {x1, . . . xn} ⊆ V , which constitutes the domain of φ. For
any finite set of variables S ⊆ V , we denote by

ΦS := {φ ∈ Φ | d(φ) = S}
the set of valuations with domain S. Thus,

Φ =
⋃

S⊆V
ΦS .

The projection operation can be interpreted as the natural process of focusing infor-
mation over a set of variables to the subset relevant for a given problem. In other
words, projecting a valuation φ to a subset S ⊆ d(φ) corresponds to disregarding the
information carried by φ on variables in d(φ) \ S, which are assumed to be irrelevant.

2.2. Valuation algebras. Another important aspect of information is that local
pieces of knowledge can be combined to achieve a better collective understanding of all
the variables involved. This additional operation gives rise to the notion of valuation
algebra.

Definition V.2. Let V be a countable set of variables. A valuation algebra over
V is a valuation prealgebra Φ equipped with the additional combination operation:

−⊗− : Φ× Φ −→ Φ :: (φ, ψ) 7→ φ⊗ ψ.
We require combination to satisfy the following axioms:

(A4) Commutative Semigroup: (Φ,⊗) is associative and commutative.
(A5) Labelling : For all φ, ψ ∈ Φ,

d(φ⊗ ψ) = d(φ) ∪ d(ψ)

(A6) Combination: For φ, ψ ∈ Φ, with d(φ) = S, d(ψ) = T and U ⊆ V such that
S ⊆ U ⊆ S ∪ T ,

(φ⊗ ψ)↓U = φ⊗ ψ↓U∩T

The motivation behind axioms (A4) and (A5) can be easily explained intuitively:
(A4) states that if information comes in pieces, the order of their combination should
not affect the overall result. On the other hand, (A5) says that the combination of
two pieces of information yields knowledge on the variables contained in the union of
their domains. The combination axiom appears to be more subtle. Assume we have
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some knowledge about a domain in order to answer a given question. Then, (A6) states
how the answer is affected if a new information piece is added. The new information
can either be fully aggregated with the existing knowledge, and then projected to the
specified domain, or first strapped of its irrelevant parts and then combined with the
rest. These two are equivalent.

2.3. Information algebras. Besides axioms (A1)–(A6), it is often desirable to
add some additional postulates, which collectively give rise to the notion of information
algebra.

Definition V.3. Let Φ be a valuation algebra over a set of variables V .

• We say that Φ has neutral elements if it satisfies
(A7) Commutative monoid : For each S ⊆ V , there exists a neutral element

eS ∈ ΦS such that

φ⊗ eS = eS ⊗ φ = φ

for all φ ∈ ΦS . Such neutral elements must satisfy the following identity:

eS ⊗ eT = eS∪T

for all subsets S, T ⊆ V .
• We say that Φ has null elements if it satisfies
(A8) Nullity : For each S ⊆ V there exists a null element zS ∈ ΦS such that

φ⊗ zS = zS ⊗ φ = zS .

Moreover, for all S, T ⊆ V such that S ⊆ T , we have, for each φ ∈ ΦT ,

φ↓S = zS ⇐⇒ φ = zT .

• We say that Φ is idempotent if it satisfies
(A9) Idempotency : For all φ ∈ Φ and S ⊆ d(φ), it holds that

φ⊗ φ↓S = φ

• If Φ satisfies axioms (A7)–(A9), it is called an information algebra

The rationale behind these additional axioms is intuitively clear. Neutral elements
correspond to ‘irrelevant information’, in the sense that they do not improve any other
information we combine them with. Null elements, on the other hand, can be interpreted
as destructive information, i.e. knowledge that corrupts any other valuation to the point
of making it useless. Idempotency is the signature axiom of qualitative or logical, rather
than quantitative, e.g. probabilistic, information. It says that counting how many times
we have a piece of information is irrelevant.

2.4. Inference problems. If we consider valuations as pieces of information, we
are naturally drawn to formulate the classic problem of extracting relevant knowledge
about a given query out of a certain knowledgebase. In the valuation algebra theory,
such a task is called an inference problem, and is formally defined as follows:
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Definition V.4. Given a valuation algebra Φ, a knowledgebase {φ1, . . . , φn} ⊆ Φ,
and a set of domains D = {D1, . . . , Dk}, with Di ⊆ d(φ1⊗· · ·⊗φn), we call an inference
problem the task of computing

φ↓Di = (φ1 ⊗ · · · ⊗ φn)↓Di , ∀1 ≤ i ≤ k.
The valuation φ = (φ1 ⊗ · · · ⊗ φn) is called joint valuation or objective function,
while each domain Di is called a query. If |D| = 1 the problem is called a single-query
inference problem, otherwise it is called multi-query.

Before listing some examples, we need to introduce the concepts of frame and tuple.
Consider a set of variables V = {x1, x2, . . . }. For each variable x ∈ V , we denote by
Ωx its frame, which can be thought of as a set of possible values for the variable x. A
tuple with finite domain S ⊆ V is a function

x : S −→
∐

x∈S
Ωx

that assigns to each v ∈ S a value x(v) ∈ Ωv. Note that, a tuple x : S → ∐
x∈S Ωx can

be seen as an element of

ΩS :=
∏

x∈S
Ωx

For this reason, we will often write x ∈ ΩS and refer to such a tuple using the term
S-tuple. Just like valuations, tuples can also be projected. Given an S-tuple x and a
subset T ⊆ S, we denote by x↓T the tuple πT (x) ∈ ΩT , where πT denotes the cartesian

projection.1

3. Basic examples

Both the present section and the next are devoted to the introduction of an ex-
haustive list of examples of valuation and information algebras. The reason for such an
extensive catalog of examples is to demonstrate the versatility of the valuation algebraic
framework, which will consequently allow the reader to grasp the generality of the results
presented in this chapter. This first section introduces the most elementary examples
constituting the building blocks of our general discussion. We leave to the reader the
verifications of all the axioms of a valuation algebra for each example (some of the proofs
can be found in [PK12] and [Koh12]).

Indicator functions. An indicator function i with domain S ⊆ V identifies a
subset U ⊆ ΩS . More specifically, i is a map i : ΩS → {0, 1} defined by

i(x) =

{
1 if x ∈ U.
0 if x /∈ U.

Combination is defined as follows: given two indicator functions i1, i2 with domains S
and T respectively, for all x ∈ ΩS∪T ,

i1 ⊗ i2(x) := i1(x↓S ) · i2(x↓T ) = min
{
i1(x↓S ), i2(x↓T )

}
.

1We have used the different notation (·)↓(−)
for the projection of tuples to distinguish it from the

projection (·)↓(−) of valuation algebras.
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Given an indicator i with domain S, a subset T ⊆ S, and a T -tuple x ∈ ΩT , we define
the projection of i to T by maximisation:

(V.1) i↓T (x) := max
y∈ΩS\T

i(x,y).

For each S ⊆ V , the neutral element eS ≡ 1 is the function that assigns 1 to each x ∈ ΩS .
The null element of ΦS is the constant function zS ≡ 0, which assigns 0 to each x ∈ ΩS .
It can be easily shown that this algebra is idempotent, which implies that it constitutes
an information algebra.

We can use tables as a handy representation of indicators. Indeed, an indicator
function with domain S can be seen as an |S|-dimensional table with |ΩS | entries in
{0, 1}. This is shown in the following example, which also introduces the first instance
of an inference problem.

Example V.5. Suppose we have a set of variables V = {a1, b1, a2, b2} with frames
Ωx := {0, 1} for all x ∈ V . Suppose we have the following indicator functions:

i1 :=

a1 b1
0 0 1
0 1 1
1 0 1
1 1 1

i2 :=

a1 b2
0 0 0
0 1 1
1 0 1
1 1 1

i3 :=

a2 b1
0 0 0
0 1 1
1 0 1
1 1 1

i4 :=

a2 b2
0 0 1
0 1 1
1 0 1
1 1 0

We are interested in solving the following inference problem:

(i1 ⊗ i2 ⊗ i3 ⊗ i4)↓{a2,b2}.

Notice that we already have information about the query {a2, b2} given by the indicator
i4. However, we want to take into account all the available knowledge to give a precise
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answer. We have

i1 ⊗ i2 ⊗ i3 ⊗ i4 =

a1 b1 a2 b2
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

From here, we can compute

(i1 ⊗ i2 ⊗ i3 ⊗ i4)↓{a2,b2} =

a2 b2
0 0 0
0 1 1
1 0 1
1 1 0

Notice that the final result is different from i4. This can be interpreted as an incon-
sistency in the information shared by i1, i2, i3, i4 on the variables a2, b2. This kind of
inconsistency corresponds to the more general notion of disagreement, which will be
defined later, in Section 6. The careful reader will have noticed that the valuations
taken into account in this example correspond to the possibilistic distributions over the
four contexts of the Hardy model. This is a hint of what we will present in the next
sections: a formal description of contextuality as a particular case of general notion of
disagreement.

Relational databases. Consider the data table V.1, taken from [Abr13a].

Table V.1. A simple data table from [Abr13a]

branch-name account-no customer-name balance
Cambridge 10991-06284 Newton 2,567.53

Hanover 10992-35671 Leibniz 11,245.75
. . . . . . . . . . . .

We identify the list of attributes

{branch-name, account-no, customer-name, balance}
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labelling the columns of the table. In the language of valuation algebras, attributes
correspond to variables. Each entry of the table is a tuple specifying a value for each of
the attributes. Thus, the full table is nothing but a set of tuples, which corresponds to
the notion of relation in database theory. A database normally consists of a set of such
relations.
Abstracting from this example, given a set of attributes V , we define a relation over
S ⊆ V as a set R ⊆ ΩS . The domain of R, often called schema of R in database
theoretic terms, is then d(R) = S. Combination is given by the natural join: Let R1

and R2 be two relations with domain S and T respectively, then

R1 ⊗R2 := R1 on R2 = {x ∈ ΩS∪T | x↓S ∈ R1 ∧ x↓T ∈ R2}.
Given a relation R with domain d(R) = S, and a subset T ⊆ S, we define projection as
follows:

(V.2) R↓T := {x↓T | x ∈ R}.
For each S ⊆ V , we define the neutral element as eS := ΩS . On the other hand, the null
element is defined as zS := ∅. One can verify that this algebra is idempotent, and thus
constitutes an information algebra.

Example V.6. Let us give an example of a simple inference problem. Consider a
database comprised of three relations R1,2,3 which collect information about the geo-
graphical locations of cities and countries:

R1 =

continent country
Europe UK
America USA
Europe FRA

Asia CHI
. . . . . .

R2 =

country city
FRA Paris
GER Frankfurt
ESP Valencia
ITA Milan
. . . . . .

R3 =

continent city
Europe Paris
Africa Algeri
Asia Beijing

America Miami
. . . . . .

Now, suppose that whoever collected the data did not address the issue of different cities
having the same name, so that R1,2,3 may contain the following sub-relations:

R̃1 =
continent country
America CAN
Europe UK

R̃2 =
country city

CAN London
UK Boston

R̃3 =
continent city
Europe London
America Boston

where R̃3 contains information about the cities of London (UK) and Boston (USA),

while R̃2 refers to the smaller cities of London, Ontario (CA), and Boston, Lincolnshire

(UK). Then, if we combine R̃1 with R̃2, we obtain.

R̃1 ⊗ R̃2 =
continent country city
America Canada London
Europe UK Boston

By combining this with R̃3 we obtain an empty table, that is R̃1 ⊗ R̃2 ⊗ R̃3 = ∅. Just
like in the example of the previous paragraph on indicator functions, this fact can be
interpreted as disagreement among the different sources of information, which in this
case is clearly generated by the issue of different cities with the same name. This kind
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of inconsistency, i.e. the non-existence of a global relation is precisely the notion that
was proven to be equivalent to contextuality in [Abr13a, Bar15a]. In fact, notice how

the database comprised of R̃1,2,3 can be visually represented as a bundle diagram which
is equivalent to the one of the Specker’s triangle (Figure II.5), as shown in Figure V.1.
One of the goals of this chapter is to extend this connection to the more general level of

Cont.

Country

City

America

Europe London

Boston
CAN

UK

Figure V.1. A bundle representation of the database {R̃1,2,3}. Equiva-
lent to the Specker’s triangle (Figure II.5).

valuation algebras.

Remark V.7. The valuation algebra of relational databases is in fact equivalent to
the one of indicator functions. Indeed, a relation R ⊆ ΩS in ΦS can be interpreted as
an indicator function via the following map

(V.3) fS : P(ΩS) −→ 2ΩS :: R 7−→ iR,

where iR(x) = 1 if and only if x ∈ R. Moreover, the maps fS preserve both composition
and projection, i.e. for all R1 ∈ ΦS and R2 ∈ ΦT ,

fS∪T (R1 ⊗R2) = fS(R1)⊗ fT (R2),

and, for all R ∈ ΦS and T ⊆ S,

fT (R↓T ) = (fS(R))↓T .

Therefore, all the operations coincide, and the two valuation algebras are equivalent.

Semiring valuation algebras. Let 〈R,+, ·, 0, 1〉 be a commutative semiring and
V a set of variables. A semiring valuation with domain S ⊆ V is a function

φ : ΩS −→ R.

We define the three operation as follows:

(1) Labelling : d : Φ→ P(V ), with d(φ) = S if φ ∈ ΦS .
(2) Combination: ⊗ : Φ × Φ → Φ, where, for all φ, ψ ∈ Φ and x ∈ Ωd(φ)∪d(ψ), we

have

(φ⊗ ψ)(x) := φ
(
x↓d(φ)

)
· ψ
(
x↓d(ψ)

)
.
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(3) Projection: ↓: Φ× P(V ) → Φ, where, for all φ ∈ Φ, T ⊆ d(φ) and x ∈ ΩT , we
have

φ↓T (x) :=
∑

y∈ΩS\T

φ(x,y).

The resulting valuation algebra is idempotent only when R is idempotent. For instance,
when R = B, in which case it coincides with the one of indicator functions. The neutral
element eS ≡ 1 is the function that assigns 1 to each x ∈ ΩS . The null element zS ≡ 0
is the 0-function.

Semiring valuations are often referred to as arithmetic potentials, or R-potentials.
In the case where R = R≥0, the corresponding valuation algebra is the one of proba-
bility potentials.

Set potentials - belief functions. Set potentials are a general framework useful
to model information in the presence of uncertainty. Similarly to the case of semiring
valuation algebras, one can define a valuation algebra of set potentials for every choice
of a semiring. Let R be a semiring. Given a set of variables V , a set potential with
domain d(m) = S ⊆ V is a map

m : P(ΩS) −→ R

We can define the combination of two set potentials m1 and m2 with domains S and T
respectively as follows: for all U ⊆ ΩS∪T ,

m1 ⊗m2(U) :=
∑

W⊆ΩS ,X⊆ΩT
WonX=U

m1(W ) ·m2(X).

Given a set potential m and a subset T ⊆ d(m), we define, for all U ⊆ ΩT ,

m↓T (U) :=
∑

W⊆ΩS
W↓T =U

m(W ),

where W↓T = {x↓T | x ∈ W}. Similarly to arithmetic potentials, this valuation algebra
is idempotent only when R is idempotent. The neutral element eS for a subset S ⊆ V
is defined as follows: for all U ⊆ ΩS ,

eS(U) := δU,ΩS =

{
1 if U = ΩS

0 otherwise.

The null element is the constant function zS ≡ 0, which assigns 0 to each subset U ⊆ ΩS .
In the special case where R = R≥0, set potentials are called belief functions (infer-

ence over belief functions is also known as Dempster–Shafer theory [Dem08, Sha76]).

4. Advanced examples: language and models

A special class of examples, which deserves particular attention, is the one arising
from logic. In this section, we will start by presenting the valuation algebras associated
to propositional logic. Then, we will generalise this example to a vast class of algebras
arising from general notions of language and models.
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4.1. Propositional logic. Often, information concerns the truth value of logical
propositions. This is the main focus of propositional logic, which can be elegantly
captured by the framework of valuation algebras. Let us start by briefly reviewing some
of the basic definitions.

4.1.1. Syntax and semantics. Let P := {p1, p2, . . . } be a countable set of propo-
sitional symbols. The language of propositional logic LP over P consists of well-formed
formulae (wff), defined as follows:

(1) Each element pi ∈ P and the symbols >, ⊥ are wffs and are called atomic.
(2) If ϕ is a wff, then ¬ϕ is a wff.
(3) If ϕ and ψ are wffs, then ϕ ∧ ψ is a wff
(4) If ϕ is a wff and pi ∈ P , then (∃pi)ϕ is a wff.

Every wff is generated from atomic formulae via a finite number of applications of rules
2,3 and 4. For convenience, the following operations are customarily added to the lan-
guage:

• ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
• ϕ→ ψ := ¬ϕ ∨ ψ
• ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

For each subset Q ⊆ P of the symbols, one can define the language LQ ⊆ LP by simply
replacing P by Q in rule (1).2

The semantics of the language is represented by valuations, i.e. maps v : P → {0, 1}.
Valuations can be extended to propositional formulae v̂ : LP → {0, 1} with the following
rules:

(1) v̂(>) = 1 and v̂(⊥) = 0
(2) v̂(pi) = v(pi) for all pi ∈ P

(3) v̂(¬ϕ) =

{
1 if v̂(ϕ) = 0

0 if v̂(ϕ) = 1

(4) v̂(ϕ ∧ ψ) =

{
1 if v̂(ϕ) = 1 and v̂(ψ) = 1

0 otherwise

(5) v̂((∃p)ϕ) = v̂(ϕ[p/>] ∨ ϕ[p/ ⊥])

where ϕ[p/q] denotes the formula obtained by replacing all occurrencies of the symbol
p in ϕ by >. We say that a valuation v satisfies a propositional formula ϕ if v̂(ϕ) = 1.
Then, v is called a model of ϕ, and we write v |= ϕ.

We define, for every set Γ of formulas, the set of models for the formulae contained
in Γ:

M(Γ) := {v : v |= ϕ, ∀ϕ ∈ Γ}.
In a similar way, for each set S of valuations, let

T(S) := {ϕ : v |= ϕ, ∀v ∈ S}
denote the set of formulae satisfied by all the valuations in S. Both M and T can be
seen as order reversing maps between the powerset of LP and the one of valuations:

2Note that we explicitly do not require the same for rule (4), so that, if φ ∈ LQ only contains
variables in Q and pi1 , . . . , pin ∈ P \Q, then ∃pi1 . . . pinϕ is still a formula of LQ.
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P(LP ) P (P(LP )) .

M

T

Together, M and T constitute a Galois connection, which describes the relation between
syntax and semantics [EKMS92]:

Definition V.8. Given two partially ordered sets A and B, an (antitone) Galois
connection between A and B is a pair 〈f, g〉 of order-reversing maps f : A → B, g :
B → A such that a ≤ g ◦ f(a) for all a ∈ A, and b ≤ f ◦ g(b) for all b ∈ B.

4.1.2. The information algebra of propositional information. We shall
now introduce an information algebra suited to describe propositional logic.

Consider the lattice L of finite subsets of P . We interpret each element Q ⊆ P of
L as a question regarding the truth values of the propositions pi ∈ Q.

Given a valuation v : P → {0, 1} and a subset Q ∈ L, the restriction v|Q : Q→ {0, 1}
is called an interpretation of the language LQ ⊆ LP . We denote by IQ the set of possible
interpretations of LQ. For w ∈ IQ and a wff ϕ of LQ, we write w |=Q ϕ if w = v|Q
and v |= ϕ for some v : P → {0, 1}. Then, we extend the definitions of M and T to
interpretations: for all subsets Q ⊆ P and Γ ⊆ LQ, let

MQ(Γ) := {w ∈ IQ : w |=Q ϕ, ∀ϕ ∈ Γ}.
Similarly, for all S ⊆ IQ, let

TQ(S) := {ϕ ∈ LQ : w |=Q ϕ, ∀w ∈ S}.
Once again, the operators MQ and TQ constitute a Galois connection.

The subsets of IQ are called information sets, and they constitute a valuation
algebra with the following operations:

• Labelling : Given an information set M ⊆ IQ, its label is defined to be

d(M) = Q.

• Combination: For all M1 ⊆ IQ and M2 ⊆ IU , let

M1 ⊗M2 := M1 onM2 = {w ∈ IQ∪U : w|Q ∈M1 ∧ w|U ∈M2}.
• Projection: Given an information set M and a domain Q ⊆ d(M), we define

M↓Q := {w|Q : w ∈M}.
The neutral elements of the algebra are the sets eQ := IQ, while the null elements are
zQ := ∅. The algebra is clearly idempotent, hence it is an information algebra.

4.1.3. Algebra of sentences. In addition to the algebra of propositional infor-
mation sets, one can define an information algebra of propositional formuale.

Suppose we have two information sets M1,M2 of the form M1 = MQ(Γ1) and M2 =
MU (Γ2) for Γ1 ⊆ LQ and Γ2 ⊆ LU . Then, the formulae of Γ1 and Γ2 can be seen as
sentences of the language LQ∪U , enabling us to define the vacuous extension of M ⊆ IQ
to Q ∪ U :

M↑Q∪U := {w ∈ IQ∪U : w|Q ∈M}.
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It is easy to see that, for M = MQ(Γ), we have M↑Q∪U = MQ∪U (Γ). Therefore,

M1 ⊗M2 = M↑Q∪U1 ∩M↑Q∪U2 = MQ∪U (Γ1) ∩MQ∪U (Γ2) = MQ∪U (Γ1 ∪ Γ2).

Moreover, if M = MU (Γ) for some set of formulae Γ ∈ LU , we have, for all Q ⊆ U ,

M↓Q = {w|Q : w ∈MU (Γ)} = MQ((∃pi1 , . . . , pin)Γ)

where U \Q = {pi1 , . . . pin}, and (∃pi1 , . . . , pin)Γ := {(∃pi1 , . . . , pin)ϕ : ϕ ∈ Γ}. In other
words, projection corresponds to existential quantification of the original information.

This observation is the key to the definition of an algebra of sentences associated to
the algebra of information sets. Indeed, to each M = MQ(Γ) of IQ one can associate
its theory TQ(M) = TQ(MQ(Γ)). Because TQ and MQ constitute a Galois connection,
one can show that the operator CQ := TQ ◦MQ is a closure operator , i.e. it satisfies the
following:

Γ ⊆ CQ(Γ),

Γ1 ⊆ Γ2 =⇒ CQ(Γ1) ⊆ CQ(Γ2),

CQ(CQ(Γ)) = CQ(Γ).

For this reason, subsets Γ ⊆ LQ of the form Γ = CQ(Γ) are called closed. The algebra
of formulae is thus in fact an algebra of closed sets of sentences, with the following
operations.

• Labelling : Given a closed set of formulae Γ ⊆ LQ, we define

d(Γ) := Q.

• Combination: Given two closed sets Γ1 ⊆ LQ and Γ2 ⊆ LU , we define

Γ1 ⊗ Γ2 := CQ∪U (Γ1 ∪ Γ2).

• Projection: For Γ ⊆ LU and Q ⊆ U , let

Γ↓Q := CQ((∃pi1 . . . pin)Γ),

where U \Q = {pi1 . . . pin}.
The neutral elements of this algebra are the tautologies eQ := CQ(∅), while the null
elements are zQ := LQ. The combination operation is idempotent, thus the algebra of
sentences is an information algebra.

4.2. General languages. The concepts of language and model encountered in
propositional logic can be seen in more general terms. A language L could be sim-
ply defined as a set of possible sentences, without considering their syntactic structure.
Similarly, information can be seen as the set of possible answers M (or models) to a set
of questions in L, regardless of the way such answers are formulated. In order to capture
the idea of a model m ∈ M being an answer to s ∈ L, we assume a binary relation
|=⊆ L × M. Much of the structure of propositional information can be recovered in
this general setting. This idea is expressed, in the valuation algebra literature, through
the concept of context.3 A context is a triple 〈L,M, |=〉 and its function is to express

3This term shall not be confused with the notion of context in contextuality.
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information carried by sentences. Given a set of sentences S ⊆ L and a set of models
M ⊆M, we define:

M(S) := {m ∈M : m |= s, ∀s ∈ S},
T(M) := {s ∈ L : m |= s, ∀m ∈M}.

As before, M and T constitute a Galois connection, and thus their composition C :=
T ◦M is a closure operator.

In propositional logic, we have a family of contexts {〈LQ,MQ, |=Q〉}Q⊆P } which
are linked together by restriction of interpretations and embeddings of formulae. We
will now introduce a generic construction which abstracts this situation and extends it
to general languages. Let us start by introducing the concept of tuple system, which
subsumes the properties of interpretations in propositional logic.

Definition V.9. A tuple system over P(V ), where V is a set of variables, is a
set T equipped with two operations d : T → P(V ) and ↓: T × P(V )→ T satisfying the
following axioms:

(T1) If Q ⊆ d(t), then d(t↓Q) = Q.

(T2) If Q ⊆ U ⊆ d(t), then
(
t↓U
)
↓Q

= t↓Q .

(T3) If d(t) = Q, then t↓Q = t.
(T4) For d(t) = Q, d(u) = U such that t↓Q∩U = u↓Q∩U , there exists g ∈ T such that

d(g) = Q ∪ U , g↓Q = t and g↓U = u.
(T5) For d(t) = Q and Q ⊆ U , there exists g ∈ T such that d(g) = U and g↓Q = t.

Apart from cartesian tuples, which constitute the most basic instance of a tuple
system, many other frameworks can be captured by this notion. Here are two examples
which are relevant for our study:

Example V.10. As mentioned above, propositional interpretations constitute a tuple
system. Let T be the set of all interpretation of language of propositional logic LP . Given
an interpretation w ∈ IQ ⊆ T , we define d(w) := Q, while the operation ↓ coincides with
function restriction. We will leave to the reader the verification of axioms (T1)-(T5).

Example V.11. A more complex example of a tuple system is the one of distributions
over a semiring. Let R be a semiring, and suppose we have a set of variables V with
frames Ωv for each v ∈ V . Let T :=

⋃
U⊆V DR(ΩU ) be the set of all R-distributions over

tuples on subsets of V . We shall now prove that T is a tuple system.
The domain d(D) of a distribution D ∈ DR(ΩU ) is defined to be U , whereas projec-

tion ↓ is defined as follows: for all Q ⊆ U and D ∈ DR(ΩU ), for all x ∈ ΩQ,

D↓Q(x) :=
∑

y∈ΩU :
y↓Q=x

D(y).

Axioms (T1)-(T5) can be verified as follows:
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(T1): Let D ∈ DR(ΩU ), and Q ⊆ U . We have |supp(D↓Q)| <∞ by definition of D↓Q
and the fact that |supp(D)| <∞. Moreover,

∑

x∈ΩQ

D↓Q(x) =
∑

x∈ΩQ

∑

y∈ΩU
y↓Q=x

D(y) =
∑

y∈ΩU

D(y) = 1.

Therefore, D↓Q(x) ∈ DR(ΩQ), which means that d(D↓Q(x)) = Q.
(T2): Let D ∈ DR(ΩS), and Q ⊆ U ⊆ S. For all x ∈ ΩQ,

(
D↓U

)
↓Q

(x) =
∑

y∈ΩU
y↓Q=x

D↓U (y) =
∑

y∈ΩU
y↓Q=x

∑

z∈ΩS
z↓U=y

D(z)

=
∑

z∈ΩS
z↓Q=x

D(z) = D↓Q(x)

(T3): Let D ∈ DR(ΩQ). For all x ∈ ΩQ,

D↓Q(x) =
∑

y∈ΩQ
y↓Q=x

D(y) = D(x).

(T4): The proof of this axiom coincides with the proof of equations (IV.22) in Propo-
sition IV.38, up to minor alterations.

(T5): Let D ∈ DR(ΩQ), and Q ⊆ U . Let x ∈ ΩQ. By axiom (T5) of the tuple
system of cartesian tuples, we know that there exists a tuple gx ∈ ΩU such that
gx
↓Q

= x. This gives us a subset S := {gx}x∈ΩQ ⊆ ΩU . We define a distribution

G : ΩU → R as follows: for all y ∈ ΩU ,

G(y) :=

{
D(x) if y = gx ∈ S
0 otherwise.

Then, G is a distribution, indeed
∑

y∈ΩU

G(y) =
∑

gx∈ΩU

G(gx) =
∑

x∈ΩQ

D(x) = 1.

Moreover, for all z ∈ ΩQ,

G↓Q(z) =
∑

y∈ΩU :
y↓Q=z

G(y) =
∑

gx∈S:
gx
↓Q

=z

G(gx) = G(gz) = D(z).

The general concept of tuple system is the key to the generalisation of the algebra
of propositional information sets and propositional formulae.

4.2.1. Information algebra of general information sets. Suppose M is a
tuple system over a set of variables V . For each subset S ⊆ V we define

MS := {m ∈M : dM(m) = S}.
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The valuation algebra structure of propositional information sets introduced in Section
4.1 can be generalised. We call an information set a subset M ⊆ MQ for some Q ⊆ V .
Given two information sets M1 ⊆MQ and M2 ⊆MU , we define their combination

M1 ⊗M2 := {m ∈MQ∪U : m↓Q ∈M1 ∧m↓U ∈M2}.
Projection of an information set M ⊆MU to a subset Q ⊆ U is given by

M↓Q := {m↓Q : m ∈M}.
The labelling function d is defined in the obvious way (i.e. d(M) = Q ⇔ Q ∈ MQ).
The algebra is idempotent and has both neutral elements eQ = MQ, and null elements
zQ = ∅ for all Q ⊆ V . It is thus an information algebra.

Example V.12.

• The valuation algebra of relational databases can be seen as a special case of
the algebra we have just defined. The tuple system in question is the one of
cartesian tuples: MS := ΩS .
• The propositional information algebra is based on the tuple system of interpre-

tations, introduced in Example V.10. In this case, MS = IS .
• By taking the tuple set of semiring distributions defined in Example V.11, we

obtain the information algebra of information sets constituted by

MS = DR(ΩS),

where S ⊆ V .

4.2.2. Information algebra of general sentences. Given a tuple-system, and
assuming the existence of a language expressing information in it, it is often possible to
construct an algebra of formulae associated to the algebra of general information sets.
In this paragraph, we list the necessary conditions for its definition.

Let M be a tuple-system over a set of variables V . For all Q ⊆ V , we assume the
existence of a language LQ to express information in MQ. More specifically, we suppose
a sequence of logical contexts

{〈LQ,MQ, |=Q〉}Q⊆V .
Moreover, we assume that these nested logical contexts are related by embeddings which
preserve information in the following sense: for all Q ⊆ U ⊆ V we require the existence
of an embedding fQ,U : LQ −→ LU such that the pair 〈fQ,U , gU,Q〉, where

gU,Q : MU −→MQ :: m 7−→m↓Q ,

constitutes an infomorphism, i.e. it satisfies

(V.4) m |=U fQ,U (s)⇐⇒ gU,Q(m) |=Q s, ∀m ∈MU ,∀s ∈ LQ.
Notice that this condition is satisfied in particular for propositional logic, where fQ,U :
LQ ↪→ LU is simply the inclusion. Indeed, trivially, if ϕ ∈ LQ,

w |=U ϕ⇐⇒ w|Q |=Q ϕ.

The definition of the algebra of propositional sentences of Section 4.1.3 rests on
existential quantification. In order to replicate this structure, we will require the general
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language LV to be equipped with a generalised existential quantifier, which maintains
part of the basic semantic interpretation of ∃ in propositional logic.

The quantifier ∃ of propositional logic behaves as follows: given subsets Q ⊆ U ⊆ V
such that U \Q = {pi1 , . . . , pin}, it turns a formula ϕ ∈ LU into a formula of LQ, namely
(∃pi1 , . . . , pin)ϕ. Morevoer, the following property holds: for all interpretations w ∈ IU
and formulae ϕ ∈ LU , we have

(V.5) w |=U ϕ⇐⇒ w|Q |=Q (∃pi1 , . . . , pin)ϕ.

By abstracting from this, we will require a general language LV to be equipped with
a quantifier §, which, given Q ⊆ U , turns a sentence s ∈ LU into §Q s ∈ LQ. In addition,
§ must satisfy the following properties:

(1) For all Q ⊆ U ⊆ V , for all models m ∈MU and sentences s ∈ LU ,

m |=U s⇐⇒m↓Q |=Q §Q s

(2) For all Q ⊆ U ⊆ V , for all models m ∈MQ and sentences s ∈ LQ,

m |=Q §Q fQ,U (s)⇐⇒m |=Q s

Property (1) is simply the generalisation of (V.5). Property (2) translates to a complete
tautology in the case of propositional logic,4 but needs to be stated for general models
and languages, where the embeddings f may have a more complex structure.

We are finally ready to introduce an algebra of sentences for the family

(V.6) {〈LQ,MQ, |=Q〉 , f, g, §}
by generalising the discussion carried out in Section 4.1.3. The valuations of the algebra
are closed sets of sentences S ⊆ LQ. This means that S = CQ(S), where CQ = TQ ◦MQ

denotes the closure operator associated to the context 〈LQ,MQ, |=Q〉. Combination is
defined as follows: given S1 ⊆ LQ and S2 ⊆ LU , we have

S1 ⊗ S2 := CQ∪U (fQ,Q∪U (S1) ∪ fU,Q∪U (S2)) .

Given a set of sentences S ⊆ LU , projection to a subdomain Q ⊆ U is given by

S↓Q := CQ(§Q S).

This algebra is clearly idempotent, and it has both neutral elements eQ := CQ(∅), and
null elements zQ := LQ. It is thus an information algebra.

4.3. Examples. Apart from propositional logic, there are many frameworks whose
information structure can be described in this general sense. Here are some examples.

Predicate logic. Many logical frameworks outside of propositional logic share the
same basic structure. We show here how predicate logic can be treated in this abstract
sense, and refer the reader to [WM99] for further examples in the domain of logic.

The vocabulary of predicate logic comprises a countable set of variables V :=
{x1, x2 . . . }, a countable set of predicate symbols P := {p1, p2, . . . }, the logical con-
stants > and ⊥, the connectors ∧,¬, and the existential quantifier ∃. To each pi we
associate its rank rank(pi) ∈ N. Formulae of predicate logic are obtained by applying a
finite amount of times the following rules:

4In this case, since fQ,U (ϕ) = ϕ, and ϕ only contains variables in Q, there are no variables over
which to quantify, thus the statement reduces to m |=Q ϕ⇔m |=Q ϕ.
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(1) >, ⊥ and all strings of the form pixi1 . . . xiρ , where ρ = rank(pi), are formulae.
(2) If ϕ is a formula, then ¬ϕ and (∃xi)ϕ are formulae.
(3) If ϕ and ψ are formulae, then ϕ ∧ ψ is a formula.

The predicate language is the set L of all formulae. For each subset Q ⊆ V , the language
LQ ⊆ L is the language where only variables from Q are allowed.

Let R = 〈U,R1, R2, . . . 〉 be a relational structure. This means that U is a nonempty

set called universe, and each Ri ⊆ U rank(pi) is a relation of arity rank(pi). A valuation is
a sequence v = (vi)

∞
i=1 of elements of the universe (i.e. vi ∈ U for all i). We denote by

Uω the set of all possible valuations, end denote

v⇒i := {u ∈ Uω : uj = vj , ∀j 6= i}.
Just like in the case of propositional logic, valuations are used to assign truth values

v̂(ϕ) ∈ {0, 1} to each formula in ϕ ∈ L. More specifically, we have

(1) v̂(>) = 1 and v̂(⊥) = 0.

(2) v̂(pixi1 . . . xiρ) =

{
1 if (vij )

ρ
j=1 ∈ Ri,

0 otherwise.

(3) v̂(¬ϕ) =

{
1 if v̂(ϕ) = 0,

0 if v̂(ϕ) = 1.

(4) v̂((∃xi)ϕ) =

{
1 if there exists u ∈ v⇒i s.t. û(ϕ) = 1,

0 otherwise.

(5) v̂(ϕ ∧ ψ) =

{
1 if v̂(ϕ) = 1 and v̂(ψ) = 1,

0 otherwise.

We say that a valuation v ∈ Uω is a model of a formula ϕ ∈ L in the structure R
if v̂(ϕ) = 1, and write v |= ϕ. This defines a context 〈L, Uω, |=〉. Moreover, for each
subset S ⊆ V we have a context

〈
LS , US , |=S

〉
, given by projecting valuations onto S.

Clearly, US constitutes a tuple system with cartesian projection. Furthermore, for all
Q ⊆ U ⊆ V , we have LQ ⊆ LU . Thus we can define the embedding fQ,U : LQ ↪→ LU
simply as the inclusion map, and it is easy to check that the infomorphism condition
(V.4) is verified. Therefore, we can define the valuation algebra of predicate information
sets.

Since L is equipped with the quantifier ∃, which readily verifies conditions (1) and
(2), one can define the algebra of predicate sentences as explained above.

Linear systems. Let K be a field and V = {x1, x2, . . . , xn} a set of variables.
For each subset W = {xi1 , . . . , xim} ⊆ V , the language LW is constituted by all linear
equations e over variables contained in W :

e :=




m∑

j=1

λjxj = bj


 ,

where λj , bj ∈ K for all 1 ≤ j ≤ m. Models s = 〈s1, . . . , sm〉 ∈ Km are m-tuples
valued in K. The relation s |=W e means that s is a solution to the equation e. These
notions define a context 〈LW ,MW , |=W 〉 for each subset W ⊆ V . Clearly, MW is a tuple
system, with projection given by simple cartesian projection. Moreover, since LQ ⊆ LU
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for all Q ⊆ U , we can define a sequence of embeddings fQ,U : LQ ↪→ LU that can be
easily proved to verify condition (V.4). Therefore, we can define the valuation algebra
of information sets as explained above.

Although uncommon, it is possible to equip the language L with an existential
quantifier verifying conditions (1) and (2). This allows the definition of an associated
algebra of sentences for linear equations.

Linear inequalities. The same discussion holds for linear inequalities. Given
a field K and a finite set of variables V = {x1, . . . , xn}, we define, for each W =
{xi1 , . . . , xim} ⊆ V the language LW , constituted by linear inequalities over variables
contained in W :

i :=




m∑

j=1

λjxj ≤ bj




where λj , bj ∈ K for all q ≤ j ≤ m. The same conclusions about the valuation algebras
associated to linear equations hold for linear inequalities.

Constraint satisfaction problems. Constraint satisfaction problems (CSP) are
particularly useful to model various kinds of problems in mathematics and computer
science thanks to their general and versatile formulation. A CSP is a triple 〈X,D,C〉,
where X = {x1, . . . xn} is a set of variables, D = {D1, . . . Dn} is the set of the respective
domains5 of values, and C = {c1, . . . cm} is a set of constraints. Each variable xi can
take values in its domain Di. A constraint ci ∈ C is a pair 〈Ti, Ri〉, where Ti :=

{xi1 , . . . , xik} ⊆ X and Ri is a k-ary relation R ⊆ ∏k
j=1Dij . The set Ti is also called

the scheme of ci, and it is denoted by scheme(ci), whereas Ri := rel(ci).
An evaluation of the variables is a map from a subset of the variables S ⊆ X

v : S −→
∐

xi∈S
Di.

that assigns to each variable xj ∈ S a value v(xj) in its domain Dj . Such a map can be
seen as an element of

DS :=
∏

xi∈S
Di.

For each S ⊆ X, we define MS to be the set of all evaluations on S, i.e. MS := DS . The
associated language LS is defined by

LS := {ci ∈ C : scheme(ci) ⊆ S}.
We say that an evaluation v of the variables in S satisfies a constraint c = 〈T,R〉, if
v↓S∩T ∈ R. An evaluation is called consistent when it does not violate any constraint. It
is called complete if it includes all variables in X. It is called a solution if it is consistent
and complete.

Satisfiability of a constraint defines a relation |=S for each subset S ⊆ X: given
v ∈MS and c ∈ LS ,

v |=S c⇐⇒ S ∩ scheme(c) = ∅ or v↓S∩scheme(c)
∈ rel(c).

5This shall not be confused with the term domain of the valuation algebra formalism. Rather, the
domain of a variable in this setting is analogue to the concept of frame in valuation algebras.
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Thus we obtain a sequence of contexts 〈LS ,MS , |=S〉. Moreover, because MS = DS

is a tuple system, and LQ ⊆ LU for all Q ⊆ U , we can trivially define embeddings
fQ,U : LQ ↪→ LU , which satisfy the informorphism condition (V.4). Thus, we can define
the algebra of information sets as described above.

5. Valuation algebras and sheaf theory

Remarkably, many of the properties of valuation algebras can be effectively captured
by sheaf theory. Just like presheaves deal with the restriction and localisation of topo-
logical structures and their extendability through a ‘gluing’ process, valuation algebras
model the focus of knowledge and information, and represent the natural framework to
study how local information can be extended through a ‘combination’ process.

A valuation prealgebra Φ on a set of variables V is nothing but a presheaf over the
discrete space V :

(V.7) Φ : P(V )op −→ Set,

where Φ(S) := ΦS , and

Φ(S ⊆ T ) := ρTS : ΦT −→ ΦS :: φ 7−→ φ↓T .

Indeed, by (A3), we have, for all S ⊆ V and for all φ ∈ ΦS ,

ρSS(φ) = φ↓S = φ↓d(φ) (A3)
= φ,

and, by (A2), for all S ⊆ T ⊆ U ⊆ V and φ ∈ ΦU ,

ρTS ◦ ρUT (φ) =
(
φ↓T

)↓S (A2)
= φ↓S = ρUS (φ).

This sheaf-theoretic perspective allows us to capture the restriction or localisation of
the information carried by a valuation algebra. We conclude that a valuation algebra is
simply a presheaf (V.7) equipped with a combination operation which satisfies axioms
(A4)-(A6). Unfortunately, combination cannot generally be characterised in categorical
terms. However, there exist some general constructions which will play a central role in
our study, as we shall see in Section 8.2.

5.1. Examples. In many concrete cases, the presheaf Φ can be decomposed into a
sequential composition of functors. Before presenting a few examples, let us introduce
some definitions. Let V be a set of variables, the frame functor Ω : P(V )op → Set is
defined as follows: for all U ⊆ U ′ ⊆ V , we have

Ω(U) := ΩU ,

Ω(U ⊆ U ′) :=
(

projU
′

U : ΩU ′ −→ ΩU :: x 7−→ x↓U

)
.

Secondly, for all semirings 〈R,+, ·, 0, 1〉, we define the functor FR : Set→ Set as follows:
for all sets X, and every function f : X → Y , we have

FR(X) := {φ : X → R},
FR(f) : FR(X) −→ FR(Y ) :: φ 7−→ λy.

∑

x∈X
f(x)=y

φ(x).
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With this premise, we can analyse the functorial structure of the examples of Sections
3 and 4:

• Indicator functions: The valuation prealgebra of indicator functions on a set of
variables V , with frames Ωx for each x ∈ V , can be described by the presheaf
I, which is defined by the following composition of functors:

I : P(V )op
Ω−−→ Set

FB−−−→ Set,

• Relational databases: Given a set of attributes V , we can describe the valuation
prealgebra of relational databases as the presheaf R, defined as follows:

R : P(V )op
Ω−−→ Set

P−−→ Set.

Remark V.13. The functor P and FB are naturally isomorphic. Indeed,
the natural transformation η : P ⇒ FB defined, for all sets U and all subsets
Q ⊆ U , by

ηU (Q) := λu.

{
1 if u ∈ Q
0 if u /∈ Q.

can be easily proved to be an isomorphism. This equivalence translates into
a natural isomorphism I ∼= R, which encodes in category theoretic terms the
equivalence between the valuation prealgebra of indicator functions and the one
of relational databases outlined in Remark V.7.

• Semiring valuation algebras: Given a commutative semiring R and a set of vari-
ables V , the R-semiring valuation prealgebra can be described by the following
composition:

SRR : P(V )op
Ω−−→ Set

FR−−−→ Set.

In particular, we see that in the case where R = B, this valuation prealgebra
coincides with the one of indicator functions.
• Belief functions: Given a commutative semiring R and a set of variables V , the

valuation prealgebra of set potentials is represented by the following composi-
tion:

BFR : P(V )op
Ω−−→ Set

P−−→ Set
FR−−−→ Set

• Language and models: Let V be a set of variables, and suppose we have a
context system 〈L,M, |=〉. We define the model functor M : P(V )op → Set as
follows: for all Q ⊆ U ⊆ V ,

M(Q) := MQ,

M(Q ⊆ U) :=
(
rUQ : MU →MQ :: x 7→ x↓Q

)

where x↓Q denotes the projection of the tuple system M.6

– Information sets: The valuation prealgebra of information sets for the
context system 〈L,M, |=〉 is described by the following presheaf:

IS : P(V )op
M−−→ Set

P−−→ Set.

6Notice that the functor M is just a general version of the functor Ω. M coincides with Ω when the
tuple system is constituted by cartesian tuples.
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– Algebra of sentences: Suppose 〈L,M, |=, f, g, §〉 is a general family of nested
logical contexts as in (V.6). We define the category of languages Lng as
the poset category whose objects are languages LQ for Q ⊆ P , ordered
by inclusion. Then, the prealgebra of sentences associated to 〈L,M, |=〉 is
defined as follows:

AS : P(V )op
L−−→ Lngop

CP−−−→ Set,

where L(Q) := LQ for all Q ⊆ P , L(Q ⊆ U) := (LQ ⊆ LU ) for all
Q ⊆ U ⊆ P , and CP denotes the closed subsets functor, which is defined
as follows:

CP(LQ) := {CQ(S) : S ⊆ LQ}
CP(LQ ⊆ LU ) : CP(LU )→ CP(LQ) :: CU (S) 7→ CQ(§Q S).

where CQ denotes the closure operator of 〈LQ,MQ, |=Q〉, and § is the quan-
tifier of L.

6. A theory of disagreement

Inference problems are the main subject of study in the valuation algebra literature,
as they capture the very essence of information as a carrier of knowledge used to answer
specific questions. However, such problems do not take into account another fundamental
concept related to knowledge: disagreement. A solution to an inference problem is
nothing but the most informative answer one can get on a specific question given the
available information, regardless of the quality of the sources. This means that if some
of the sources provide incorrect or incomplete information, the solution of the problem
will be corrupted. In other words, disagreement between the different sources will lead
to a less informative answer. In this chapter we will show how to model disagreement
in valuation algebra knowledgebases using the sheaf-theoretic description introduced in
the previous section. Later on, we will link this discussion with the study of non-locality
and contextuality.

6.1. Defining disagreement. Consider a valuation algebra Φ, on a set of variables
V , and let K := {φ1, . . . , φn} be a knowledgebase. We let Ci := d(φi), and M :=
{Ci}ni=1.

A natural way to say that φ1, . . . , φn agree is to say that there exists a valuation
γ ∈ ΦX such that

(V.8) γ↓Ci = φi, ∀1 ≤ i ≤ n.
Concretely, this means that the information carried by each individual valuation φi
comes as a restriction of a ‘truth’ valuation which is implicitly agreed upon by all the
sources. Given this premise, we say that φ1, . . . , φn disagree if such a global valuation
γ does not exist.

In sheaf theoretic terms, for any subset U ⊆ X, each valuation φ ∈ ΦU is a local
section at U , while a valuation γ ∈ ΦX is a global section. Therefore, saying that
φ1, . . . , φn agree is equivalent to say that there exists a global section for the family
{φ1, . . . , φn}.



6. A THEORY OF DISAGREEMENT 121

6.1.1. Local disagreement. Notice that a necessary condition for (V.8) to hold
is that

(V.9) φ
↓Ci∩Cj
i = φ

↓Ci∩Cj
j , ∀1 ≤ i, j ≤ n,

indeed,

φ
↓Ci∩Cj
i

(V.8)
=
(
γ↓Ci

)↓Ci∩Cj (A4)
= γ↓Ci∩Cj

(A4)
=
(
γ↓Cj

)↓Ci∩Cj (V.8)
= φ

↓Ci∩Cj
j

This is to say that, if there is agreement between the sources, then, in particular, each
pair of sources agree on their common variables. Condition (V.9) defines the notion
of local agreement. Local agreement of valuations φ1, . . . φn corresponds to the sheaf
theoretic notion of compatibility. Therefore, it makes sense to introduce the following
definition:

Definition V.14. Let Φ be a valuation algebra on a set of variables V . A lo-
cally agreeing knowledgebase is a compatible family {φCi}ni=1 for the presheaf Φ :
P(V )op → Set. We say that the φC ’s agree globally if there is a global section
γ ∈ Φ(X) such that γ|C = φC for all C ∈ M. Such a global section is called a truth
valuation.

6.2. Examples. Local agreement between sources is clearly easier to verify in real
world scenarios than global disagreement. If two sources are directly in contradiction
with each other, such an inconsistency should be immediately apparent. In [ZG18], a
sheaf-theoretic framework for the study of such direct contradictions is introduced. For
instance, the following example – taken from real sources – is given:

Example V.15. Let us consider breast cancer screening guidlines from three different
accredited sources:

(1) Screening with mammography and clinical breast exam annually
(2) Biennal screening mammography is recommended
(3) Women aged 50 to 54 years should get mammograms every year. Women aged

55 years and older should switch to mammograms every 2 years [...]

We can represent the information provided by these medical bodies as a knowledge-
base of the information algebra of relational databases. We have the variables {a, e, f}
representing age intervals, exam type and exam frequency respectively. The frames
for each variable are Ωa = {54−, 54+}, Ωe = {MG,CBE}, Ωf = {Y, 2Y}. Each source
i = 1, 2, 3 from the example can be described by 3 relations Ri such that d(R1,2) = {e, f}
and d(R3) = {a, e, f}, defined by

R1 = {〈M,Y〉 , 〈CBE,Y〉},
R2 = {〈M, 2Y〉},
R3 = {

〈
54−,M,Y

〉
,
〈
54+,M,Y

〉
}.

It is easy to see that, for instance, the three sources do not agree locally on which exam
to undergo. Indeed,

R
↓{e}
1 = {M,CBE} 6= {M} = R

↓{e}
2,3

However, it is not always the case that locally-agreeing information leads to global
agreement as defined in (V.8). Such inconsistencies are much more subtle and difficult
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to detect, and they will constitute the main subject of our discussion. An example of
locally agreeing sources which do not agree globally can be obtained by slightly tweaking
the previous example.

Example V.16. Suppose the guidelines are now as follows:

(1) Screening with mammography annually, clinical breast exam annually or bian-
nually

(2) Women aged 50 to 54 years should get mammograms. Women aged 55 years
and older should switch to clinical breast exams

(3) Women aged 50 to 54 years should undergo an exam every year. Women aged
55 years and older should be examined every 2 years

In this case we have

R1 = {〈M,Y〉 , 〈CBE,Y〉 , 〈CBE, 2Y〉},
R2 = {

〈
54−,M

〉
,
〈
54+,CBE

〉
},

R3 = {
〈
54−,Y

〉
,
〈
54+, 2Y

〉
},

with d(R1) = {e, f}, d(R2) = {a, e} and d(R3) = {a, f}. It is easy to see that all these
sources agree locally, i.e. they do not directly contradict each other. However, we can
show that they globally disagree. Indeed, the only global section of the presheaf induced
by K = {R1, R2, R3} is

G := {
〈
M,Y, 54−

〉
,
〈
CBE, 2Y, 54+

〉
},

and we have
G↓d(R1) = {〈M,Y〉 , 〈CBE, 2Y〉} 6= R1.

We can easily represent visualise this knowledgebase as a bundle diagram, pictured in
Figure V.2. In this case, the facets of the base complex are the domains of R1,2,3, and
the fibers represent the frames of each variable.

Exam

Frequency

Age

M

CBE
Y

2Y

54+

54−

Figure V.2. The knowledgebase {R1, R2, R3} represented as a bundle
diagram. The red edge, which represents tuple 〈CBE,Y〉, is not part of
any global valuation
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The parallelism with contextuality is evident. This is another instance of a database
which does not admit a universal relation, a property that has been proved to be equiv-
alent to contextuality in [Abr13a]. We have already encountered a similar instance of
global disagreement in Example V.6.

The main focus of this chapter will be to study locally agreeing sources that disagree
globally and show that such a discrepancy is mathematically equivalent to the notion
of contextuality. Then, we will use this connection to translate theorems, methods and
algorithms from one framework to the other.

Let us show other examples of locally agreeing valuations that are globally disagree-
ing, to prove how widespread this phenomenon is in various domains of mathematics.

Example V.17. Consider the following system of linear equations in Z2:

e1 := (x1 ⊕ x2 ⊕ x3 = 1)

e2 := (x1 ⊕ y2 ⊕ y3 = 0)

e3 := (y1 ⊕ x2 ⊕ y3 = 0)

e4 := (y1 ⊕ y2 ⊕ x3 = 0)

(V.10)

Let V := {x1,2,3, y1,2,3} denote the set of variables involved and consider the valuation
algebra of information sets arising from linear equations discussed in Section 4. For all
1 ≤ i ≤ 4, let φi denote the set of solutions to the equation ei. In other words,

φi :=Md(ei)(ei), ∀1 ≤ i ≤ 4.

Then, we can see that |d(φ)i ∩ d(φj)| = 1 for all 1 ≤ i, j ≤ 4 (i.e. each equation has
exactly one variable appearing in common with any other equation), and

φ
↓d(φ)i∩d(φj)
i = {0, 1},

where we have identified 0 and 1 with the tuples d(φ)i∩d(φj) 7→ 0 and d(φ)i∩d(φj) 7→ 1
respectively. Therefore, the knowledgebase K = {φ1, . . . , φ4} agrees locally. However,
it is easy to see that system (V.10) is inconsistent. Indeed, since each variable appears
twice on the right hand side, the sum of all the equations yields 0 = 1. Therefore, there
is no global section for the knowledgebase K. We can see that, in the case of linear
euqations, global agreement corresponds to the existence of a solution.

Example V.18. Consider the following problem. We want to colour a political map
of the geographical region surrounding Malawi using 3 colours – say red, green and
yellow – with the condition that adjacent countries should be coloured differently. A
blank map is pictured in Figure V.3.

We can model this problem as a CSP. The set of variables X is constituted by a
variable for each of the 5 countries in the map, i.e.

X = {MOZ,MWI,TZA,ZMB,ZWE}
The domain for each variable is the set of colours we can attribute to the country,
i.e. D = {g, r, y}, and it is the same for each variable. Let

S := {〈g, r〉 , 〈g, y〉 , 〈r, y〉}.
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Zambia

Mozambique

Tanzania

Malawi

Zimbabwe

Figure V.3. A blank map of the geographical region surrounding Malawi.

There are 8 constraints ci, 1 ≤ i ≤ 8 defined by rel(ci) = S for all 1 ≤ i ≤ 8 and

T1 = {MOZ,MWI}, T2 = {MOZ,TZA}, T3 = {MOZ,ZMB}, T4 = {MOZ,ZWE},
T5 = {MWI,TZA}, T6 = {MWI,ZWE}, T7 = {TZA,ZMB}, T8 = {ZMB,ZWE},

where Ti = scheme(ci) for all 1 ≤ i ≤ 8. Consider the valuation algebra of information
sets for CSPs defined in Section 4. The knowledgebase for this problem is constituted
by 8 valuations {φi}8i=1 defined by

φi :=MTi(C) = {v ∈ DTi : v |=Ti cj , ∀1 ≤ j ≤ 8}.

For instance

φ1 = {〈MOZ,MWI〉 7→ 〈g, r〉 , or 〈g, y〉 , or 〈r, y〉}.
It is easy to see that all the valuations agree locally, indeed, for all 1 ≤ i, j ≤ 8, we
either have Ti ∩Tj = ∅, in which case local agreement is trivially satisfied, or Ti ∩Tj has
exactly one element t, and we have

φ
↓Ti∩Tj
i = {t 7→ g or r or y} = φ

↓Ti∩Tj
j .

However, the φi’s disagree globally. Indeed, if there was a valuation γ which projects
onto each φi, it would imply that there is a solution to the CSP, and thus a colouring
of the map using only three colours. It is easy to see that this is not the case by simply
looking at the constraint graph (cf. Figure V.4) of the problem, and conclude that its
chromatic number is 4.

Example V.19. To cite an example from logic, consider the the famous liar’s para-
dox, which consists of the sentence

S : S is false.
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MWI

TZA

ZMB MOZ

ZWE

Figure V.4. The constraint graph of the CSP. A 4-colouring of the
graph is shown. The chromatic number of the graph is 4.

We can generalise this to a liar cycle of length n, i.e. a sequence of statements:

S1 : S2 is true,

S2 : S3 is true,

...

Sn−1 : Sn is true,

Sn : S1 is false.

These statements can be modelled as a series of formulae in propositional logic. Let
V := {s1, . . . , sn} be a set of variables, each representing one of the statements Si above.
The n liar cycle can be rewritten as follows:

s1 ↔ s2

s2 ↔ s3

...

sn−1 ↔ sn

sn ↔ ¬s1

(V.11)

We define the following valuations:

φn :=M{s1,sn}(sn ↔ ¬s1) = {v :: 〈s1, sn〉 7→ 〈1, 0〉 or 〈0, 1〉},
and for all 1 ≤ i ≤ n− 1,

φi :=M{si,si+1}(si ↔ si+1) = {v :: 〈si, si+1〉 7→ 〈0, 0〉 or 〈1, 1〉}.
It is easy to see that the φi’s agree locally. Indeed, both 0 and 1 are valid assignments for
a single variable, which is the most two valuations can have in common. On the other
hand, the fact that the liar cycle gives rise to a paradox means that the valuations do not
agree globally. Indeed, a global assignment of truth values to each s1, . . . , sn consistent
with equations (V.11) is impossible, as they collectively yield s1 ↔ ¬s1. A more formal
proof of this will be given in Section 9, when we will have the tools to characterise global
truth functions for the algebra in question.
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The same situation can be described using the information algebra of propositional
formulae. For all 1 ≤ i ≤ n− 1, let

φi := C{si,si+1}({si ↔ si+1}),
and

φn := C{s1,sn}({sn ↔ s1}),
where, we recall, CQ = TQ ◦MQ is the closure operator. Then, by definition of C, each
φi contains all the formulae satisfied by the valuations v :: 〈si, si+1〉 7→ 〈0, 0〉 or 〈1, 1〉,
i.e.

φi = {si ↔ si+1, si → si+1, si+1 ↔ si, (si → si+1) ∧ (si+1 ↔ si), . . . },
and similarly for φn. Now, the knowledgebase {φ1, . . . , φn} agrees locally, indeed, for all
1 ≤ i ≤ n− 1,

φ
↓{si,si+1}∩{si+1,si+2}
i = φ

↓{si+1}
i = C{si+1} (∃si {si ↔ si+1, si → si+1, si+1 ↔ si, . . . })

= T{si+1}({v : si+1 7→ 0 or 1})
= {si+1,¬si+1}
= C{si+1}(∃ si+2{si ↔ si+1, si → si+1, si+1 ↔ si, . . . })
= φ

↓{si,si+1}∩{si+1,si+2}
i+1 .

One can prove in the same way that φ
↓{s1,sn}∩{s1,s2}
n = φ

↓{s1,sn}∩{s1,s2}
1 . However, once

again, the paradoxical nature of the liar cycle corresponds to the fact that one cannot
find a global truth valuation for this knowledgebase. This will be proved formally in
Section 8.4.

7. Disagreement and contextuality

After having introduced a general concept of disagreement and presented many ex-
amples of locally agreeing knowledgebases that disagree globally ranging from relational
databases to propositional logic, it is now time to reveal the link between contextuality
and disagreement underpinning the theory presented thus far. We have purposely kept
the connection implicit until now, so as to show how the theory of disagreement can be
developed completely independently of the concept of contextuality.

No-signalling and local agreement. Let e = {eC ∈ DRE(C)}C∈M be an empir-
ical model over a measurement scenario 〈X,M, (Om)〉. Let us take X as a set of variables
on which to build a suitable valuation algebra. As a first note, it is straightforward to
show that the sheaf of event E coincides with the frame functor Ω : P(X)op → Set,
where, for each measurement m ∈ X, its frame is given by Ωm := Om.7

We can interpret each eC as a valuation of the algebra Φ of R-potentials. From
this viewpoint, the empirical model e is nothing but a knowledgebase of Φ. Then, the
property of no-signalling corresponds precisely to local agreement. Thus, to summarise,
one can think of an empirical model as a locally agreeing knowledgebase of Φ.

7From now on, we will use E and Ω interchangeably. In particular, a local section in E(U) = ΩU can
be denoted either as a function s ∈ E(U), or as a tuple x ∈ ΩU , in which case the restriction is denoted

ρU
′

U (x) = x↓U .



8. DISAGREEMENT, COMPLETE DISAGREEMENT AND INFERENCE PROBLEMS 127

Contextuality and global disagreement. By considering no-signalling empir-
ical models as locally agreeing knowledgebases of the algebra of R-potentials, a striking
connection with the theory of disagreement arises: non-locality and contextuality are
just a special instance of a locally agreeing knowledgebase which disagrees globally:

Theorem V.20. Let e = {eC}C∈M be an empirical model. Then e is contextual if
and only if the locally-agreeing knowledgebase K = {eC}C∈M ⊆ Φ disagrees globally.

Proof. If e is non-contextual, then there exists a global distribution d : E(X) →
R such that d|C = eC for all C ∈ M. Hence d is a global truth valuation for the
knowledgebase K. Conversely, suppose K agrees globally, which means that there exists
a global R-potential d : ΩX = E(X) → R such that d↓C = eC for all C ∈ M. The only
thing we need to prove is that d is an R-distribution, i.e. that it is normalised. Let ∗
denote the unique ∅-tuple and let C ∈M be an arbitrary context. We have:

∑

g∈E(X)

d(g) =
∑

g∈E(X):
g↓∅=∗

d(g) = d↓∅(∗) =
(
d↓C
)↓∅

(∗) = (eC)↓∅(∗)

=
∑

s∈E(C):
s↓∅=∗

eC(s) =
∑

s∈E(C)

eC(s) = 1.

�
Therefore, from a structural perspective, these counterintuitive phenomena of quan-

tum physics are equivalent to all of the examples introduced in Section 6, and any
instance of local agreement vs global disagreement arising from the valuation algebra
framework.

This result is a major generalisation of the connections observed in [Abr13a, Bar15a]
and [AGK13, ABdSZ17], which are limited to relational databases and CSPs respec-
tively. It further proves that contextuality is not a phenomenon limited to quantum
physics, but it is a general concept which pervades various domains, most of which are
completely unrelated to quantum mechanics.

This connection can be further explored and expanded to take into account different
kinds of contextuality, such as possibilistic and strong.8 In order to do this, we need
to further refine the notion of valuation algebra, and identify particular structures that
will turn the problem of detecting disagreement in an inference problem, as shown for
instance by the basic examples V.5 and V.6 in Section 3. This will be the main focus of
the next section.

8. Disagreement, complete disagreement and inference problems

Studying global disagreement amounts to looking for a global truth, which is shared
by all the sources of information. It is thus natural to ask whether it is possible to
recover it from the collective information of the sources and the structure of the valuation

8Possibilistic contextuality is actually already captured by the connection we have just presented as,
we recall, possibilistic models are compatible families {eC ∈ DBE(C)}C∈M. However, we would like to
rephrase this result using the terminology of Definition II.12, where possibilistic empirical models are
defined as presheaves S : P(X)op → Set. We will do this formally in Section 9.
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algebra. It turns out that, in a variety of situations, the global truth valuation can appear
only in one form, which makes the problem of finding it significantly easier and, crucially,
equivalent to an inference problem. In order to prove this, we will need to introduce the
concept of an ordered valuation algebra.

8.1. Ordered valuation algebras. Given a valuation algebra Φ on a set of vari-
ables V , and two valuations φ, ψ ∈ ΦS for some S ⊆ V , one could raise the following
question: how does the information carried by φ compare to the one carried by ψ? In
other words, is there a way of quantifying the amount of information represented by a
valuation? The answer to this question is given by extending the present framework
to the one of ordered valuation algebras [Hae04]. An ordered valuation algebra is a
valuation algebra equipped with a completeness relation �, which aims to capture how
informative a valuation is with respect to others.

Definition V.21. Let Φ be a valuation algebra with null elements on a set of
variables V . Then, Φ is an ordered valuation algebra if there exists a partial order
� on Φ such that the following additional axioms are verified:

(A10) Partial order : For all φ, ψ ∈ Φ, φ � ψ implies d(φ) = d(ψ). Moreover, for every
S ⊆ V and Ψ ⊆ ΦS , the infimum inf(Ψ) exists.

(A11) Null element : For all S ⊆ V , we have

inf(ΦS) = zS .

(A12) Monotonicity of combination: For all φ1, φ2, ψ1, ψ2 ∈ Φ such that φ1 � φ2 and
ψ1 � ψ2 we have

φ1 ⊗ ψ1 � φ2 ⊗ ψ2.

(A13) Monotonicity of projection: For all φ, ψ ∈ Φ, if φ � ψ then

φ↓S � ψ↓S

for all S ⊆ d(φ) = d(ψ).

It can be shown that all the instances of valuation algebras presented in the previous
sections can be ordered. We list the definitions of the partial orders in each case (some
of the proofs can be found in [Koh12]).

• Indicator functions: Given i1, i2 ∈ ΦS , we have

i1 � i2 ⇐⇒ supp(i1) ⊆ supp(i2).

• Semiring valuation algebras and set potentials: Given two arithmetic potentials
φ, ψ : ΩS → R, we define

φ � ψ ⇐⇒ φ(x) ≤ ψ(x), ∀x ∈ ΩS .

Similarly, given two set potentials m1,m2 ∈ ΦS ,

m1 � m2 ⇐⇒ m1(U) ≤ m2(U), ∀U ⊆ ΩS .

• General information sets: relational databases, propositional logic, etc.: In all
these cases, the order is simply given by inclusion. That is, for information sets
M1,M2 ∈ ΦQ, we have

M1 �M2 ⇔M1 ⊆M2.
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In particular, for relations R1, R2 ∈ ΦS ,

R1 � R2 ⇔ R1 ⊆ R2.

• Algebra of sentences: The order structure in all algebras of sentences given by
any context is also induced by inclusion. However, the order is reversed, i.e. ,
given two sets of sentences Γ1,Γ2 ∈ ΦQ, we have

Γ1 � Γ2 ⇔ Γ2 ⊇ Γ1.

Indeed, we have already shown that the least informative element inf(ΦQ) = zQ
is the whole language LQ.

Once again, we can incorporate some of the axioms in the structure of the presheaf (V.7)
by simply rewriting it as

Φ : P(V )op −→ Pos,

where Pos denotes the category of posets and monotone maps. To be more precise, one
could write Φ : P(V )op → C, where C is the full subcategory of Pos whose objects are
monoids with a complete meet-semilattice structure which is compatible with multipli-
cation (this would capture all the axioms except for (A11)). We will not pursue this
idea for the sake of simplicity.

8.2. A general construction for composition. An interesting aspect brought
to light by the order structure of valuation algebras is that the composition laws of many
algebras are uniquely characterised by the same categorical construction.

Let Φ be an ordered valuation prealgebra, viewed as a presheaf. Thanks to the
universal property of products of the category Set, we have, for all S, T ⊆ V , the
following diagram:

Φ(S) Φ(S)× Φ(T ) Φ(T )

Φ(S ∪ T )

π1 π2

ρS∪TS ρS∪TT

〈ρS∪TS ,ρS∪TT 〉

This leads to the following definition:

Definition V.22. An adjoint valuation algebra is an ordered valuation algebra
Φ such that its combination operation ⊗ is the right adjoint of the map

〈
ρS∪TS , ρS∪TT

〉
,

defined in the diagram above. In this case, ⊗ is the unique map satisfying the following
conditions:

idΦ(S∪T ) ≤ ⊗ ◦
〈
ρS∪TS , ρS∪TT

〉
,(V.12)

〈
ρS∪TS , ρS∪TT

〉
◦ ⊗ ≤ idΦ(S)×Φ(T ),(V.13)

where ≤ is the pointwise order inherited by the partial order � of the algebra.
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Let Φ be an adjoint valuation algebra. Condition (V.12) means the following: for all
S, T ⊆ V , and any φ ∈ ΦS∪T ,

(V.14) φ � φ↓S ⊗ φ↓T .

On the other hand, condition (V.13) means that for all φ ∈ ΦS and ψ ∈ ΦT , the following
two equations hold:

(φ⊗ ψ)↓S � φ,
(φ⊗ ψ)↓T � ψ.

(V.15)

A large portion of the valuation algebras encountered in the first sections of the
chapter are in fact adjoint valuation algebras, as we shall now prove:

Proposition V.23. The information algebra of general information sets and its
associated algebra of sentences (cf. Sections 4.2.1 and 4.2.2) are adjoint information
algebras.

Before proceding with the proof, let us recall that this result is extremely widely
applicable: it includes relational databases, propositional information, propositional sen-
tences, linear equations, linear inequalities, constraint satisfaction problems and many
more.

Proof. Suppose 〈L,M, |=, f, g, §〉 is a general family of nested logical contexts as in
(V.6). We start by proving the proposition for the algebra of general information sets:

• Let M ⊆MQ∪U , where Q,U ⊆ V .

M↓Q ⊗M↓U = {x↓Q : x ∈M} ⊗ {x↓U : x ∈M}
=
{
v ∈MQ∪U : there exist x,y ∈M s.t. (v↓Q = x↓Q) ∧ (v↓U = y↓U )

}
.

Then, clearly, M ⊆M↓Q ⊗M↓U .
• Now, let M1 ⊆MQ and M2 ⊆MU . We have

(M1 ⊗M2)↓Q = {v ∈MQ∪U : (v↓Q ∈M1) ∧ (v↓U ∈M2)}↓Q

=
{
v↓Q : v ∈MQ∪U ∧ (v↓Q ∈M1) ∧ (v↓U ∈M2)

}
⊆M1.

One proves that (M1 ⊗M2)↓U ⊆M2 in the same way.

This concludes the proof for the algebra of information sets. Let us now prove the result
for the associated algebra of sentences:

• Let S ⊆ LQ∪U be a closed set of sentences, i.e. CQ∪U (S) = S. We want to show

that S � S↓Q ⊗ S↓U . This is equivalent to

S ⊇ S↓Q ⊗ S↓U .

By definition,

S = CQ∪U (S) = {ϕ ∈ LQ∪U : m |=Q∪U ϕ, ∀m s.t. m |=Q∪U S}.
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Moreover,

S↓Q ⊗ S↓U = CQ(§Q S)⊗ CU (§U S)

= CQ∪U (fQ,Q∪U (CQ(§Q S)) ∪ fU,Q∪U (CU (§U S)))

= {ϕ ∈ LQ∪U : m |=Q∪U ϕ, ∀m ∈MQ∪U

s.t. m |=Q∪U fQ,Q∪U (CQ(§Q S)) ∪ fU,Q∪U (CU (§U S))}

(V.16)

Now, let ϕ ∈ S↓Q⊗S↓U . Let m ∈MQ∪U be such that m |=Q∪U S. We want to
show that m |=Q∪U ϕ. By (V.16), it is sufficient to prove that

(V.17) m |=Q∪U fQ,Q∪U (CQ(§Q S)) ∪ fU,Q∪U (CU (§U S)).

We have

(V.17) ⇐⇒
{

m |=Q∪U fQ,Q∪U (CQ(§Q S)),

m |=Q∪U fU,Q∪U (CU (§U S)).

(V.4)⇐⇒
{

m↓Q |=Q CQ(§Q S),

m↓U |=U CU (§U S).

⇐⇒
{

m↓Q |=Q §Q S,

m↓U |=U §U S,

and this is true by property (1) of the definition of §, since m |=Q∪U S by
hypothesis.
• Let S1 ⊆ LQ and S2 ⊆ LU be closed sets. We want to show that (S1 ⊗ S2)↓Q �
S1 and (S1 ⊗ S2)↓U � S2, which are equivalent to

(S1 ⊗ S2)↓Q ⊇ S1,

(S1 ⊗ S2)↓U ⊇ S2.

By definition,

(S1 ⊗ S2)↓Q = CQ (§Q (CQ∪U (fQ,Q∪U (S1) ∪ fU,Q∪U (S2)))

= {ϕ ∈ LQ : m |=Q ϕ, ∀m ∈MQ s.t.

m |=Q §Q (CQ∪U (fQ,Q∪U (S1) ∪ fU,Q∪U (S2))}
Let ϕ ∈ S1. Let m ∈MQ be such that

(V.18) m |=Q §Q (CQ∪U (fQ,Q∪U (S1) ∪ fU,Q∪U (S2))) .

We want to prove that m |=Q ϕ. Let v ∈MQ∪U be such that

(V.19) v |=Q∪U fQ,Q∪U (S1) ∪ fU,Q∪U (S2)

Then, in particular, v |=Q∪U fQ,Q∪U (ϕ). This implies

fQ,Q∪U (ϕ) ∈ CQ∪U (fQ,Q∪U (S1) ∪ fU,Q∪U (S2)),

and thus, by (V.18),

m |=Q §Q fQ,Q∪U (ϕ).
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From here, we can conclude that m |=Q ϕ by property (2) of the definition of

§. This concludes the proof of S1 ⊆ (S1 ⊗ S2)↓Q. The other inequality can be
shown in the same way.

�

8.2.1. Constructing a truth valuation. The most important aspect of adjoint
valuation algebras is that, given a globally agreeing knowledgebase, it is possible to
construct a truth function by combining the information in the knowledgebase. This is
proved in the following proposition, which generalises Proposition 2.3 in [Abr13a].

Proposition V.24. Let Φ be an adjoint valuation algebra on a set of variables V .
Let K = {φ1, . . . , φn} ⊆ Φ be a knowledgebase. Let

(V.20) γ =
n⊗

i=1

φi.

Then φ1, . . . , φn agree globally if and only if γ↓d(φi) = φi. In this case, γ is the most
informative of all the possible truth valuations.

Proof. Suppose δ ∈ ΦV is a truth valuation for K, i.e. δ↓d(φi) = φi for all 1 ≤ i ≤ n.
Since Φ is adjoint, we have

δ
(V.14)

�
n⊗

i=1

δ↓d(φi) =
n⊗

i=1

φi = γ

Moreover, because projection is monotone by axiom (A13), we have

φi � δ↓d(φi)
(A13)

� γ↓d(φi)
(V.15)

� φi.

Thus γ is a truth valuation for K. �

8.3. Detecting disagreement is an inference problem. Thanks to Proposition
V.24, the quest for a global truth valuation becomes a much easier task. This, in turn,
makes the problem of detecting disagreement significantly simpler. In fact, we can refor-
mulate it using the now familiar concept of inference problem. Given a knowledgebase
{φ1, . . . , φn}, it is sufficient to solve the problem

(V.21) (φ1 ⊗ · · · ⊗ φn)↓d(φi)

for all 1 ≤ i ≤ n. Then, the knowledgebase agrees globally if and only if the solution to
each problem is φi.

Example V.25. Consider the inference problem for indicator functions introduced
in Example V.5. In our computations, we showed that

(i1 ⊗ i2 ⊗ i3 ⊗ i4)↓{a1,b1} 6= i1.

Thus we can immediately conclude that the valuations i1, . . . , i4 disagree globally.
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8.4. Complete disagreement. Let φ1, φ2 ∈ Φ be two valuations of an adjoint
information algebra Φ, and let d(φ1) = S, d(φ2) = T , with S ∩ T 6= ∅. To say that φ1

and φ2 disagree amounts to say that not all the information carried by φ1 and φ2 can be
preserved by combining them. However, some of this information is preserved, namely
the quantities ψ1 := (φ1 ⊗ φ2)↓S and ψ2 := (φ1 ⊗ φ2)↓T . Indeed, ψ1 � φ1 and ψ2 � φ2

represent exactly the portion of information on which the original valuations do agree.
This can be easily shown by arguing that ψ1 and ψ2 agree on their common variables:

ψ↓S∩T1 =
(

(φ1 ⊗ φ2)↓S
)↓S∩T

= (φ1 ⊗ φ2)↓S∩T =
(

(φ1 ⊗ φ2)↓T
)↓S∩T

= ψ↓S∩T2 .

However, there may be situations where ψ1 and ψ2 are null elements of the algebra. This
corresponds to a situation where φ1 and φ2 disagree completely. In this case, we have

φ1 ⊗ φ2 = zS∪T .

The liar cycle of Example V.19 gives a compelling example of complete disagreement.
Let us compute the global valuation γ :=

⊗n
i=1 φn. We have

n−1⊗

i=1

φi = {v ∈ IV : v(〈s1, . . . , sn〉) = 〈0, 0, . . . , 0〉 or 〈1, 1, . . . , 1〉}

Hence,

γ = {v ∈ IV : v(〈s1, . . . , sn〉) = 〈0, 0, . . . , 0〉 or 〈1, 1, . . . , 1〉}
⊗
{
v ∈ I{s1,sn} : v(〈s1, sn〉) = 〈1, 0〉 or 〈0, 1〉

}
= ∅ = zV .

Hence, we conclude that the knowledgebase in question disagrees completely, despite
agreeing locally.

In light of this discussion, we introduce the following definition:

Definition V.26. Let Φ be an information algebra, and consider a knowledgebase
{φ1, . . . , φn} over a set of variables V . We say that φ1, . . . , φn disagree completely if
γ :=

⊗n
i=1 φi = zV , or, equivalently by axiom (A8), if there exists a 1 ≤ i ≤ n such that

(φ1 ⊗ · · · ⊗ φn)↓d(φi) = zd(φi),

One can easily show that the knowledgebases of Examples V.6, V.17 and V.18 all
disagree completely.

8.4.1. Probabilistic contextuality and complete disagreement. Back in
Section 7, we showed that probabilistic contextuality is an instance of disagreement.
Here, we show that it can also be seen as an instance of complete disagreement by
considering a different valuation algebra.

Suppose we have an empirical model {eC ∈ DRE(C)}C∈M on a measurement sce-
nario 〈X,M, (Om)〉. We encode the locally observed probability distributions eC into
a knowledgebase for the adjoint valuation algebra of information sets for the tuple sys-
tem of probability distributions introduced in Example V.12. The knowledgebase is
constituted by single element sets containing the probabilities eC :

K := {{eC}}C∈M.
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Note that this knowledgebase agrees locally, indeed, for all C,C ′ ∈M,

{eC}↓C∩C
′

= {e↓C∩C′C } = {eC |C∩C′}
(∗)
= {eC′ |C∩C′} = {e↓C∩C′C } = {eC}↓C∩C

′
,

where we have used no-signalling in equality (∗).
By Proposition V.29, a global truth valuation γ for K exists if and only

γ =
⊗

C∈M
{eC} = {d ∈ DRE(X) : d↓C = eC , ∀C ∈M}.

Therefore, a hypothetical global truth is a set containing all the possible global proba-
bility distributions that marginalise to the empirically observed ones. By definition, the
model {eC}C∈M is contextual if and only if γ = ∅ = zX , where, we recall, zX denotes
the null element of the valuation algebra. Thus, we have just proved the following:

Proposition V.27. Let {eC ∈ DRE(C)}C∈M be an empirical model on a scenario
〈X,M, (Om)〉. The model is contextual if and only if K disagrees completely.

9. Disagreement and possibilistic forms of contextuality

The notions of disagreement and complete disagreement for adjoint information alge-
bras allow to extend the connection with contextuality observed in Section 6 to the level
of logical and strong contextuality. Just like in the case of probabilistic contextuality,
a logically contextual empirical model can be seen as a locally agreeing knowledgebase
which disagrees globally. In this case, the valuation algebra in question is the one of
indicator functions.

Let S : P(X)op → Set be an empirical model on a scenario 〈X,M, (Om)〉. We
associate to it the following knowledgebase

K := {iS(C) ∈ IC}C∈M,
where iS(C) : E(C) = ΩC → {0, 1} is the indicator function of the set S(C) ⊆ E(C) =
ΩC .

Lemma V.28. The knowledgebase K agrees locally.

Proof. Let x ∈ E(C ∩ C ′) = ΩC∩C′ . We have

i↓C∩C
′

S(C) (x) = max
y∈E(C\C′)

iS(C)(x,y) =

{
1 if ∃y ∈ E(C \ C ′) : 〈x,y〉 ∈ S(C),

0 otherwise.

=

{
1 if x ∈ S(C ∩ C ′)
0 otherwise

= iS(C∩C′)

where the penultimate equality follows from the fact that S is flasque beneath the cover,

and C ∩ C ′ ⊆ C ∈ M. With the same argument we show that i↓C∩C
′

S(C′) = iS(C∩C′), and

we conclude
i↓C∩C

′

S(C) = iS(C∩C′) = i↓C∩C
′

S(C′) ,

which means that K agrees locally. �
This proposition reiterates the idea, introduced in Section 7, that empirical models

correspond to locally agreeing knowledgebases.
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Proposition V.29. The knowledgebase K disagrees globally if and only if S is log-
ically contextual. It disagrees completely if and only if S is strongly contextual.

Proof.

• Suppose K disagrees globally. Let γ :=
⊗

C∈M iS(C). By Proposition V.24,

there exists a context C0 ∈ M such that γ↓C0 6= iS(C0). By Proposition V.23,

this implies γ↓C0 ≺ iS(C0), which means that there exists a local section x ∈
S(C0) such that γ↓C0(x) � iS(C0)(x). Hence, γ↓C0(x) = 0 and iS(C0)(x) = 1.
We will now show that S is logically contextual at x. Suppose ¬LC(S,x) by
contradiction. Then there exists a global section g ∈ S(X) such that g↓C0

= x.

Because g ∈ S(X), g↓C ∈ S(C) for all C ∈M, which means that iS(C)(g
↓C) = 1

for all C ∈M. Therefore,

γ(g) =
∏

C∈M
iS(C)(g↓C ) = 1.

This implies

γ↓C0(x) = γ↓C0(g↓C0
) = max

y∈ΩX
y↓C0

=g↓C0

γ(y) = 1

which is a contradiction.
Now, Suppose S is logically contextual at a section x ∈ S(C0). We have

(V.22) γ↓C0(x) = max
y∈ΩX
y↓C0

=x

γ(y) = max
y∈ΩX
y↓C0

=x

∏

C∈M
iS(C)(y↓C ).

Suppose by contradiction γ↓C0(x) = 1. By (V.22), there exists a y ∈ ΩX =
E(X) such that y↓C ∈ S(C) and y↓C0

= x. By condition 3 of the definition of

a possibilistic empirical model, this implies that y ∈ S(X), which means that
it is a global section containing x. Thus, we reach a contradiction as we have
just proved ¬LC(S,x).
• We will now prove that K disagrees completely if and only if S is strongly

contextual. Recall that the null element of the algebra is the zero function
zX ≡ 0. We have

¬SC(S)⇔ ∃g ∈ E(X) : iS(C)(g↓C ) = 1 ∀C ∈M
⇔ ∃g ∈ E(X) : γ(g) =

∏

C∈M
iS(C)(g↓C ) = 1⇔ γ 6≡ 0.

�
9.1. Detecting logical and strong contextuality is an inference problem.

Thanks to Proposition V.29 and the results of the previous sections, we can easily trans-
late the problem of detecting logical and strong contextuality into inference problems.
This aspect is particularly important as it allows to develop new algorithms for the de-
tection of contextuality based on efficient generic inference methods, as we shall see in
Section 10.

The following proposition follows immediately from Proposition V.29 and the results
of Sections 8.3 and 8.4:
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Proposition V.30. Let S : P(X) → Set be an empirical model over a scenario
〈X,M, (Om)〉. Then

• The model S is logically contextual if and only if there exists a C ∈ M such
that

(V.23)

(⊗

C∈M
iS(C)

)↓C
6= iS(C)

• The model S is strongly contextual if and only if, for all C ∈M,

(V.24)

(⊗

C∈M
iS(C)

)↓C
= zC .

It follows that, in order to determine whether a model S is strongly contextual, one
has to solve a single inference problem. On the other hand, to determine whether S is
logically contextual, one has to solve anywhere from 1 to |M| distinct problems.

10. Inference algorithms for contextuality

From a computational perspective, the problem of detecting non-locality and con-
textuality is highly complex. This aspect has been highlighted in a recent paper by
Abramsky, Gottlob & Kolaitis, which shows that recognising non-locality in n-partite
Bell-type scenarios is NP-complete [AGK13]. Despite this, computational explorations
of contextual behaviour [Man13, MB12] have proven useful for various tasks, such as
the classification of logically non-local quantum states [AC14], and the partial character-
isation of strongly non-local 3-qubit quantum states [ABC+17], which will be presented
in Chapter VII. For this reason, it is highly desirable to improve the complexity of current
algorithms for the identification of contextuality.

The translation of the question of searching for non-locality and contextuality in
the form of an inference problem, expressed in Proposition V.30, paves the way for the
application of efficient inference algorithms to test for these phenomena.

In this section, we introduce new algorithms for logical and strong contextuality
based on mainstream methods of generic inference. Although it is impossible to precisely
characterise their complexity for general contextuality – as it highly depends on the
structure of the measurement scenario – we show that they significantly outperform
current methods for non-locality, most notably in its logical form, in (n, k, l) scenarios.

10.1. Current algorithms and their complexity. Current algorithms for the
detection of non-locality and contextuality rely mostly on solving linear systems of equa-
tions. Let us briefly review how such systems are constructed.

Given a scenario Σ = 〈X,M, (Om)〉, one defines its incidence matrix M, which
describes the way global events restrict to local events. The rows of M are indexed by⊔
C∈M E(C), i.e. the local events at each context, while its columns are indexed by E(X),

the global events. For all C ∈M, sC ∈ E(C) and g ∈ E(X), let

M[〈C, sC〉 , g] :=

{
1 if g|C = sC ,

0 otherwise.
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Let R be a semiring and consider an empirical model e = {eC ∈ DRE(C)}C∈M on Σ.
We represent it as an

∑
C∈M |E(C)|-dimensional vector with coefficients in R, defined

as follows: for all C ∈M and sC ∈ E(C),

Ve[〈C, sC〉] := eC(sC).

We augment both M and Ve into M′ and V′e by adding an extra row, every entry of
which is 1 ∈ R.9 Finally, we introduce an |E(X)|-dimensional vector of unknowns X. A
result of [AB11a] shows that the solutions to the system

(V.25) M′X = V′e

correspond bijectively to global sections for e. Therefore, determining whether e is
contextual amounts to establish whether (V.25) has any solution.

10.1.1. Probabilistic and strong contextuality for probabilistic models.
For probabilistic empirical models, i.e. when R = R≥0, we add to (V.25) the condition
X ≥ 0 and solve over R. The computational complexity of establishing whether a linear
system in R with n variables has any solution has a complexity of O(nε), with ε ≥ 2.
The best known bound is ε = 2.373, achieved by Williams’ improved version [Wil12]
of the Coppersmith–Winograd algorithm [CW90]. By applying this method to solve
(V.25), one obtains an algorithm for the detection of probabilistic contextuality with
complexity10

(V.26) O (|E(X)|ε) .
In the case of an (n, k, l) Bell-type scenario, we have |E(X)| = lnk. Thus, the complexity
of detecting probabilistic non-locality is

(V.27) O
(
lεnk
)
.

This method can be improved to enable the computation of the contextual fraction of
an empirical model [ABM17], which not only allows to determine whether a model
exhibits probabilistic contextuality, but also quantifies the amount of non-classicality
present in its distributions. In order to determine the contextual fraction, one relaxes
system (V.25) into the following linear programming problem:

(V.28)

Find c ∈ R|E(X)|

maximising 1 · c
subject to Mc ≤ Ve

and c ≥ 0

While solutions to (V.25) correspond to global sections for e, this problem merely looks
for subdistributions11 c compatible with e, i.e. such that c|C(sC) ≤ eC for all C ∈
M. These subdistributions can be interpreted as non-contextual ‘approximations’ of e.
Hence, a solution c to (V.28) is nothing but the best possible classical approximation

9This procedure is needed to ensure that the solutions to the system (V.25), presented later, are
normalised.

10The extra condition X ≥ 0 can be proven not to influence the overall complexity of establishing
whether the system has any solution.

11A subdistribution is a the same as a distribution, except for the requirement of normalisation.
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to the model e. Its weight w(c) constitutes the non-contextual (or non-local) fraction
NCF(e) of the model:

NCF(e) = w(c) :=
∑

C∈M
sC∈E(C)

c(sC) ∈ [0, 1]

The contextual (or non-local) fraction is then defined to be CF(e) := 1−NCF(e). A key
result of [ABM17] shows that a model e is probabilistically contextual if and only if
CF(e) > 0, and it is strongly contextual if and only if CF(e) = 1. Hence this method can
be used to detect both probabilistic and strong contextuality.

There are many methods to solve linear programming problems. In 2018, Cohen,
Lee & Song presented a new improved path-following interior point algorithm for linear
programming which has the same complexity as matrix multiplication [CLS18]. To the
author’s knowledge, this is the best known algorithm in terms of worst-case running
time. Therefore, solving (V.28) has the same complexity as solving (V.25). Hence the
complexities introduced in (V.26) and (V.27) apply both to probabilistic and strong
contextuality. However, it is important to remark that, for strong contextuality, this
statement is only valid for probabilistic empirical models. If we are required to recognise
strongly contextual behaviour in a possibilistic model whose probabilistic structure is
unknown (or does not exist), solving system (V.25) for R = B is the only viable option.
This brings us to the next section:

10.1.2. Logical and strong contextuality for possibilistic models. In the
presence of a possibilistic empirical model, that is when R = B, the system of equations
(V.25) takes the form of a boolean satisfiability (SAT) problem, which is notoriously
difficult to solve, as it constitutes the first known instance of NP-complete problem
[Coo71, Lev73]. The complexity of solving a SAT problem with n clauses is O

(
2δn
)
,

where δ > 0 (the best known runtime has δ = 0.386 [Sch99, PPSZ05]). The SAT
problem generated by (V.25) has

∑
C∈M |E(C)| clauses, thus the worst-case complexity

of detecting contextuality on a general scenario 〈X,M, (Om)〉 is

O
(

2δ·(
∑
C∈M |E(C)|)

)
.

Consequently, the complexity of detecting logical and strong non-locality for a possibilis-
tic model on an (n, k, l) scenario is

(V.29) O
(

2δ·(kl)
n
)
,

which is extremely inefficient. It is therefore natural to ask whether this method can be
improved. On this subject, Mansfield & Fritz proved that polynomial time algorithms
can be implemented for all (2, k, 2) and (2, 2, l) scenarios, but also conjectured the general
problem for (n, k, l) scenarios to be NP-hard [MF12, AGK13, Sim18].

10.2. Inference algorithms. In the following sections, we propose a different ap-
proach to the question of detecting contextuality. It is based on methods of generic
inference which rest on the idea of local computation, a scheme that involves combining
information at the local level of the relevant variables for the query.

Before focusing on the solutions of problems (V.23) and (V.24), which are central
to the identification of non-classical behaviour, we are going to present these methods
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in complete generality. For this purpose, we introduce a general single-query inference
problem which will serve as a model for the discussion carried out in the following pages.

Let Φ be a valuation algebra, and K = {φ1, . . . , φm} ⊆ Φ a knowledgebase. We will
consider the following problem:

(V.30) (φ1 ⊗ · · · ⊗ φm)↓D,

where D ⊆ d (φ1 ⊗ · · · ⊗ φm).

10.3. The fusion algorithm. The fusion algorithm [She92] is the simplest method
for the solution of inference problems. It rests on the idea of sequentially eliminating
those variables that do not appear in the query of the problem, a procedure inspired by
traditional dynamic programming [BB72]. The process of variable elimination can be
formally defined as follows:

Definition V.31. Let Φ be a valuation algebra on a set of variables V . Given a
valuation φ ∈ Φ and a variable x ∈ d(φ) we define the elimination of variable x from
φ to be

φ−x := φ↓d(φ)\x.

We will take advantage of the following property of variable elimination, proved in
Theorem 3.1 of [PK12]: given a knowledgebase K, eliminating a variable x only affects
those valuations in K whose domain contains x. That is,

(⊗
K
)−x

=


 ⊗

φ∈K: x∈d(φ)

φ



−x

⊗


 ⊗

φ∈K: x/∈d(φ)

φ


 .

Consequently, once an elimination sequence for the variables not in the query is estab-
lished, these variables can be eliminated locally where they appear. This is significantly
more efficient than combining all the information in K before eliminating the irrelevant
variables. Following this intuition, one obtains a simple procedure to solve (V.30) which
consists of the following steps:

(1) Define an enumeration of the variables to be eliminated: {x1, . . . , xn}.
(2) For each xi,

(a) Combine all the valuations that contain variable xi into a new valuation
ψ.

(b) Eliminate xi from ψ.
(c) Update K by erasing all the valuations involved in the process and replac-

ing them with ψ.
(3) Once all the variables have been eliminated, return the combination of what is

left.

The fusion method is described more formally in Algorithm 1.

10.4. The complexity of the fusion algorithm. Unfortunately, it is impossible
to characterise the complexity of the fusion algorithm in general as it highly depends on
the definition of combination and projection of the algebra in question. For our purposes,
we will restrict ourselves to the algebra of indicator functions over a set of variables V .
In this case, combining valuations φ1, . . . , φk involves going through each element of ΩS ,
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Algorithm 1 General fusion algorithm

Input: {φ1, . . . , φm}, D
Output: (φ1, . . . , φm)↓D

1: procedure
2: Ψ← {φ1, . . . , φm}
3: for x ∈ ⋃i d(φi) \D do
4: Γ← {φi ∈ Ψ | x ∈ d(φi)}
5: ψ ←⊗

Γ
6: Ψ← (Ψ \ Γ) ∪ {ψ−x}
7: end for
8: return

⊗
Ψ

9: end procedure

where S =
⋃k
i=1 d(φi), and performing elementary operations. Thus, the complexity of

combining φ1, . . . , φk is bounded by O(d|S|), where d := maxx∈V |Ωx| denotes the size

of the largest frame. Indeed, |ΩS | =
∏
v∈S |Ωv| ≤ d|S|. Similarly, one proves that the

complexity of projection of a valuation with domain S is also bounded by O(d|S|).
Now, suppose we have an elimination sequence {x1, . . . , xn} for the solution of the

general inference problem (V.30) using the fusion algorithm. When variable xi is elim-
inated, the algorithm combines all valuations whose domain contain xi. Thus, if mi

valuations contain xi before iteration i, its elimination requires mi − 1 combinations
and one variable elimination.12 Hence, by denoting T := d(φ1 ⊗ · · · ⊗ φm), the total
complexity of the fusion process is given by

(V.31) O


 ∑

i∈T\D

mi · d|Si|

 ,

where
Si :=

⋃

φ∈K:
xi∈d(φ)

d(φ)

is the union of all domains containing xi. In order to keep track of the size of Si for
each iteration i, it is convenient to graphically represent its functioning in the form of a
graph, as proposed by Shenoy in [She96].

10.4.1. Graphical representation of the fusion algorithm. Suppose we ap-
ply the fusion algorithm to the inference problem (V.30). Let L0 := {d(φi)}mi=1 denote
the list of domains of the valuations in K. Given a sequence {x1, . . . , xn} of variables to
be eliminated, we progressively build a labelled undirected graph (V,E, λ), where V is
the set of nodes, E is the set of edges, and λ : V→ P (

⋃m
i=1 d(φi)) is a labelling function.

The purpose of this graph is to describe the amount of operations needed at each step
of the fusion algorithm according to the specified elimination sequence.

We assume the graph to be empty at the start, i.e. V = E = ∅. At the i-th iteration
of the algorithm, when variable xi is eliminated in the fusion process, we compute the

12The complexity of variable elimination can be easily proved to equal the complexity of projection.
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union Si of all domains that contain xi, that is

(V.32) Si :=
⋃

S∈Li−1:
xi∈S

S

Then, we let
Li := (Li−1 \ {S ∈ Li−1 : xi ∈ S}) ∪ {Si \ {xi}},

and define a new node i of the graph with label λ(i) := Si. This node is tagged with a
colour and added to the graph. Then, we go through every other coloured node v ∈ V
of the graph: if v contains variable xi, then we remove its colour and we add an edge
(i, v) ∈ E. This process is repeated until all the variables have been eliminated, and
corresponds to the for cycle of Algorithm 1. The final combination

⊗
Ψ is represented by

adding one last coloured node labelled by D and connecting it to all remaining coloured
nodes. Finally, all colours are removed.

It can be shown that, for any elimination sequence, the resulting graph is in fact a
tree. More specifically, it is a join tree [PK12]:

Definition V.32. A labelled tree (V,E, λ) is a join tree if for any two nodes i, j ∈ V
and x ∈ λ(i) ∩ λ(j), x ∈ λ(k) for all nodes k on the path between i and j.

In the interest of time, we will not list here any general examples of the construction
of join trees associated with fusion processes (a large number of instances can be found
in [She96, PK12]). However, we will present examples specific to the application of
the fusion algorithm to detecting contextuality in Sections 10.5.4 and 10.8.3.

10.4.2. Complexity considerations. The join tree associated to a run of the
fusion algorithm based on a certain elimination sequence describes the functioning of
the algorithm and keeps track of the complexity of the combinations performed at each
iteration by labelling the corresponding node with Si, whose cardinality plays a central
role in (V.31). The size of these labels is bounded by maxi∈V |λ(i)|, a quantity which is
usually expressed through the concept of treewidth:

Definition V.33. The treewidth of a join tree (V,E, λ) is given by

ω := max
i∈V
|λ(i)| − 1.

The treewidth of an inference problem, denoted by ω∗, is the minimum treewidth
over all join trees created from all possible elimination sequences.13

At any iteration of the fusion algorithm, the locally computed valuation ψ is rein-
serted in the current knowledgebase of the algorithm (Ψ in Algorithm 1). Thus, we
have ∑

i∈T\D

mi ≤ m+ |T \D| ≤ m+ |T |.

Given (V.31), these observations collectively determine an overall complexity of

(V.33) O
(
(m+ |T |) · dω+1

)
.

13The decrement of 1 in this definition is due to technical reasons which are not relevant for the
purpose of this chapter (see [PK12] for details).
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Of course, this complexity highly depends on the elimination sequence chosen. An
optimal elimination sequence minimises the treewidth of the corresponding join tree,
and yields an optimal complexity of

(V.34) O
(

(m+ |T |) · dω∗+1
)
.

10.5. A fusion algorithm for contextuality. Thanks to the connection between
contextuality and inference problems implemented in the previous sections, the fusion
algorithm can be naturally adapted to detect logical and strong contextuality in empirical
models. By proposition V.30, the detection of both logical and strong contextuality rests
on the solution of the following inference problem for the valuation algebra of indicator
functions:

(V.35)

(⊗

C∈M
iS(C)

)↓C
.

The following algorithms are based on solving (multiple copies of) (V.35) using the fusion
algorithm.

10.5.1. Strong contextuality. In order to determine whether a model S on a
scenario 〈X,M, (Om)〉 is strongly contextual, it is sufficient to solve inference problem
(V.35) for an arbitrary context C ∈ M, and check whether the answer is zC . In the
interest of reducing complexity, it is convenient to take the largest context in M, as it
minimises the amount of variables to be eliminated. Given this premise, we present the
fusion method for strong contextuality in Algorithm 2.

Algorithm 2 Fusion algorithm for strong contextuality

Input: S, 〈X,M, (Om)〉
Output: SC(S).

1: procedure
2: Ψ← {iS(C)}C∈M
3: C ← largest context of M
4: for m ∈ X \ C do
5: Γ← {iS(C) | m ∈ C}
6: ψ ←⊗

Γ
7: Ψ← (Ψ \ Γ) ∪ {ψ−m}
8: end for
9: if

⊗
Ψ = zC then return true

10: else return false

11: end if
12: end procedure

10.5.2. Logical contextuality. The fusion method for logical contextuality, pre-
sented in Algorithm 3, is slightly more complicated. In this case, one needs to solve the
inference problem (V.35) for multiple contexts C ∈ M until a solution different from
iS(C) is found. If such a solution is not found after having solved the problem for all
C ∈M, we can conclude that the model is not logically contextual.
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Algorithm 3 Fusion algorithm for logical contextuality

Input: S, 〈X,M, (Om)〉
Output: LC(S).

1: procedure
2: Ψ← {iS(C)}C∈M
3: for C ∈M do
4: for m ∈ X \ C do
5: Γ← {iS(C) | m ∈ C}
6: ψ ←⊗

Γ
7: Ψ← (Ψ \ Γ) ∪ {ψ−m}
8: end for
9: ΨC ←

⊗
Ψ

10: if ΨC 6= iS(C) then return true

11: end if
12: end for
13: return false

14: end procedure

10.5.3. The complexity of the fusion algorithm for contextuality. Con-
sider a general measurement scenario Σ := 〈X,M, (Om)〉, and let O ∈ (Om)m∈X denote
its largest outcome set. Using (V.33), the complexity of detecting strong contextuality
of an empirical model on Σ using the fusion algorithm is

(V.36) O
(
(|M|+ |X|) · |O|ω+1

)
,

For logical contextuality, a worst-case factor of |M| must be added to account for
the for cycle of line 3 in Algorithm 3:

(V.37) O
(
|M| · (|M|+ |X|) · |O|ω+1

)
.

Unfortunately, it is impossible to bound ω in general as it greatly depends on the
structure of the measurement scenario and the elimination sequence chosen. However, it
turns out that we can compute the optimal treewidth ω∗ in the case of (n, k, l) scenarios,
as we shall see in the following section.

10.5.4. The complexity of the fusion algorithm for non-locality in (n, k, l)
scenarios. Let Σ = 〈X,M, O〉 be an (n, k, l) Bell-type scenario. By definition, X is
partitioned into subsets {Xi}ni=1. We will adopt the following notation: for all 1 ≤ i ≤ n,

Xi := {1i, 2i, . . . , ki},
so that ij denotes the i-th measurement for the j-th party.

Let S be an empirical model on Σ. Both Algorithms 2 and 3 are based on the
solution of (V.35). W.l.o.g. we assume C = {11, 12, . . . , 1n}, and propose the following
elimination sequence:

(V.38) 21, 31, . . . , k1, 22, 32, . . . , k2, . . . , 2n, 3n, . . . , kn.

Let us build the join tree corresponding to this sequence. At the beginning of the
algorithm, we have L0 =M.
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• Elimination of 21:

S1 = {21} ∪
n⋃

i=2

Xi

L1 = {{i1, . . . , in} ∈ M | i1 6= 21} ∪
{

n⋃

i=2

Xi

}

We add the first node of the join tree, labelled with S1, and tagged with a
colour:

{21} ∪
⋃n

i=2Xi

• Elimination of 31:

S2 = {31} ∪
n⋃

i=2

Xi

L2 = {{i1, . . . , in} | i1 6= 21, 31} ∪
{

n⋃

i=2

Xi

}

Another node is added to the tree. The first node does not contain variable 31,
thus no edge is added, and no colour is removed:

{21} ∪
⋃n

i=2Xi {31} ∪
⋃n

i=2Xi

• Elimination of 41, . . . , k1: The same procedure is repeated until iteration k− 1,
where variable k1 is eliminated:

Sk−1 = {k1} ∪
n⋃

i=2

Xi

Lk−1 = {{11, i2 . . . , in}} ∪
{

n⋃

i=2

Xi

}

At this point, the tree is just a collection of k − 1 disjoint coloured nodes:

{21} ∪
⋃n

i=2Xi {31} ∪
⋃n

i=2Xi {k1} ∪
⋃n

i=2Xi

• Elimination of 22:

Sk = {11} ∪
n⋃

i=2

Xi

Lk = {{11, i2, . . . , in} | i2 6= 22} ∪
{

n⋃

i=2

Xi \ {22}
}
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The node associated with this iteration is connected to all the preceding nodes,
since they all contain variable 22. Consequently, all their colours are removed:

{21} ∪
⋃n

i=2Xi {31} ∪
⋃n

i=2Xi {k1} ∪
⋃n

i=2Xi

{11} ∪
⋃n

i=2Xi

• Elimination of 32:

Sk+1 = {11} ∪
n⋃

i=2

Xi \ {22}

Lk+1 = {{11, i2 . . . , in} | i2 6= 22, 32} ∪
{

n⋃

i=2

Xi \ {22, 32}
}

The node corresponding to this iteration is connected to the previous since its
label contains variable 32:

{21} ∪
⋃n

i=2Xi {31} ∪
⋃n

i=2Xi {k1} ∪
⋃n

i=2Xi

{11} ∪
⋃n

i=2Xi

{11} ∪
⋃n

i=2Xi \ {22}

• Elimination of 42, . . . , kn: The construction of the join tree for the remaining
variables is straightforward: each node is connected to the one corresponding
to the previous iteration, and the labels are strictly decreasing in size. The
complete join tree is pictured in Figure V.5.

The treewidth of this join tree is ω = k(n−1). It is crucial to remark that any elimination
sequence gives rise to a join tree with a treewidth of a at least k(n − 1). Indeed, the
elimination of any variable ij ∈ Xj at the beginning of the algorithm gives rise to a node
labelled by

{ij} ∪
⋃

l 6=j
Xl.

We conclude that ω∗ = k(n−1), which means that elimination sequence (V.38) is optimal
for the solution of problem (V.35).

Thanks to this discussion we obtain the following optimised complexities for Algo-
rithms 2 and 3:
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{21} ∪
⋃n

i=2Xi {31} ∪
⋃n

i=2Xi {k1} ∪
⋃n

i=2Xi

{11} ∪
⋃n

i=2Xi

{11} ∪
⋃n

i=2Xi \ {22}

{11, 12, k2} ∪
⋃n

i=3Xi

{11, 12} ∪
⋃n

i=3Xi

{11, 12, . . . , 1n, kn}

{11, 12, . . . , 1n}

1 2 k − 1

k

k + 1

2k − 2

2k − 1

n(k − 1)

n(k − 1) + 1

k(n− 1) k(n− 1) k(n− 1)

k(n− 1)

k(n− 1)− 1

k(n− 2) + 2

k(n− 2) + 1

n

n− 1

Figure V.5. The join tree corresponding to a solution of (V.35) using
elimination sequence (V.38). The blue numbers indicate the iteration of
each node, while the red numbers display their width.

• By (V.36), the optimal complexity of determining whether a model S on an
(n, k, l) scenario is strongly non-local using Algorithm 2 is:

(V.39) O
(

(kn + kn) · lk(n−1)+1
)

= O
(
kn · lk(n−1)+1

)
.

• By (V.37), the optimal complexity of determining whether S is logically non-
local using 3 is:

(V.40) O
(
kn(kn + kn) · lk(n−1)+1

)
= O

(
k2n · lk(n−1)+1

)
.

By comparing these results to (V.27) and (V.29), we conclude that both these algo-
rithms are significantly faster than the current state of the art, reviewed in Section 10.1.
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The improvement is particularly substantial for logical contextuality, as well as strong
contextuality for possibilistic models whose probabilistic structure is unknown.

10.6. Message passing schemes and the collect algorithm. In this section,
we introduce a different viewpoint on local computation which eventually leads to a
second algorithm for the detection of contextuality based on the collect algorithm for
single-query inference problems.

The fundamental difference between the collect algorithm and the fusion algorithm
is that the join tree construction is separated from the inference process. In the case of
fusion, the join tree is simply a description of the functioning of the algorithm. Instead,
the collect algorithm requires the construction of a join tree first, and then functions as
a message-passing process, guided by the structure of the tree. The key advantage is
that performance may potentially be boosted by choosing a suitable join tree. Let us
present some details on what ‘suitable’ means in this case.

10.6.1. Covering join trees. The join tree associated with a run of the fusion
algorithm satisfies the following property, which simply follows from (V.32): for each
element φi of the knowledgebase of the inference problem, there exists a node j of the
tree such that d(φi) ⊆ λ(j). Thanks to this feature, one can assign each knowledgebase
factor to the first node of the join tree containing its domain. Of course, some nodes
may contain more than one valuation, while others may remain empty. Assuming the
valuation algebra in question has neutral elements, we shall assign valuation eλ(j) to each
of the empty nodes j. Furthermore, if a node contains multiple knowledgebase factors,
they shall be combined into a unique valuation. As a result, we obtain a join tree such
that each node i ∈ V contains exactly one valuation ψi, where d(ψi) ⊆ λ(i). Each ψi has
to be intepreted as the initial content of node i.

With this premise, the fusion process can be interpreted as a message-passing scheme
[SS90], where nodes act as virtual processors that communicate by exchanging messages.
At each iteration of the algorithm, the corresponding node receives a valuation by its
predecessors, combines it with its initial content, eliminates its designated variable, and
sends the result to its unique neighbor corresponding to a later step of the process. More
precisely, at step i of the algorithm, when variable xi is eliminated, node i contains
valuation ηi (which consists of its initial information ψi combined with all messages sent
to i by its predecessors), then it computes η−xii and sends the result to its immediate

successor, or child node ch(i). The child node, in turn, will compute ηch(i)⊗η−xii and set
it as its current value. This process is reiterated until the last node, which will eventually
contain the solution to the inference problem.

The idea of a message-passing scheme for the solution of an inference problem can be
implemented independently from the join tree structure imposed by the fusion process.
For this purpose, we introduce the general notion of covering join tree, which embodies
the same characteristics of the join trees associated to the fusion algorithm, yet only
depends on the inference problem.

Definition V.34. Let T := (V,E, λ) be a join tree.

• T is said to cover domains S1, . . . , Sm if for all 1 ≤ i ≤ m there exists a node
j ∈ V such that Si ⊆ λ(j).
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• T is a covering join tree for the inference problem (φ1 ⊗ · · · ⊗ φm)↓D if it
covers the query14 D and the knowledgebase domains d(φ1), . . . , d(φm).

In the covering join tree associated to the fusion algorithm, the node numbering is
determined by the elimination sequence. This fact plays a key role in establishing the
sending and receiving nodes of a message. If a join tree is constructed independently
from the fusion process, such a numbering has to be imposed artificially. To achieve this,
one identifies a node covering the query as the root node and assigns the number |V| to
it. Then, each edge is ‘directed’ towards the root node, and it is possible to establish
an order of the nodes such that, if j is a node on the path from i to |V |, then i < j.
This enumeration, in turn, determines the notions of parent node, child node, leaf and
separator :

Definition V.35. Let T = (V,E, λ) be a covering join tree for an inference problem,
and assume its nodes are ordered as described above.

• The parents of a node i ∈ V are defined by the set

pa(i) := {j ∈ V | j < i and (i, j) ∈ E}.
• Nodes without parents are called leaves
• The child ch(i) of a node i < |V| is the unique node j ∈ V such that (i, j) ∈ E

and i < j.
• The separator sep(i) of a node i < |V| is the set

sep(i) := λ(i) ∩ λ(ch(i)).

We now have all the necessary tools for the definition of the collect algorithm.

10.6.2. The collect algorithm. Broadly speaking, the collect algorithm is the
most general and efficient method for the solution of single-query inference problems. It
presupposes a covering join tree for the inference problem, numbered according to the
procedure described above.

Given a such a tree for the problem (φ1 ⊗ · · · ⊗ φm)↓D, we determine a covering
assignment a : {1, . . . ,m} → V such that d(φi) ⊆ λ(a(i)) for all 1 ≤ i ≤ m. Then, to
each node i ∈ V, we associate the valuation

(V.41) ψ
(1)
i := eλ(i) ⊗

⊗

j:a(j)=i

φj ,

called the initial content of node i. This is simply a translation of what discussed
in the message-passing interpretation of the fusion algorithm: at the beginning of the
procedure, each node contains the combination of all the valuations whose domain is

covered by its label. The addition of eλ(i) simply ensures that d
(
ψ

(1)
i

)
= λ(i).

With this premise, the collect algorithm can be simply described by the following
three rules:

• Each node sends a message to its child after it has received all messages from
its parents. Hence leaves send their messages right away.

14Note that D can contain more than one query. This definition thus applies to multi-query inference
problems as well.
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• After having received a message, the node updates its current content by com-
bining it with the incoming message.
• When a node is ready to send, it computes its message by projecting its current

content on its separator. Then, it sends the message to its child.

In order to keep track of the content of the nodes at each step of the algorithm, we will

denote by ψ
(j)
i the content of node i before step j. The algorithm functions as follows:

(1) For each vertex i = 1, . . . , |V|,
(a) Node i computes the message

µi→ch(i) := ψ
(i)↓sep(i)

i .

(b) This message is sent to the child node ch(i)
(c) The child node ch(i) combines the message with its current content:

ψ
(i+1)
ch(i) = ψ

(i)
ch(i) ⊗ µi→ch(i).

All other node contents remain unchanged:

ψ
(i+1)
j = ψ

(i)
j , ∀j 6= i.

(2) Return the content ψ
(|V|)
|V| of the root node restricted to the query.

In [PK12] (Theorem 3.6), it is formally proven that
(
ψ

(|V|)
|V|

)↓D
is indeed the solution of

the inference problem. The collect procedure is described more formally in Algorithm 4.

Algorithm 4 General collect algorithm

Input: {φ1, . . . , φm}, D,
(

V,E, λ,
{
ψ

(1)
i

}
i∈V

)

Output: (φ1, . . . , φm)↓D

1: procedure
2: for i = 1, . . . , |V| do

3: µi→ch(i) ←
(
ψ

(i)
i

)↓sep(i)
.

4: ψ
(i+1)
ch(i) ← ψ

(i)
ch(i) ⊗ µi→ch(i).

5: end for

6: return
(
ψ
|V|
|V|

)↓D

7: end procedure

10.7. The complexity of the collect algorithm. The separation of the join tree
construction procedure from the local computation process is the key to the potentially
reduced complexity of the collect algorithm. Just like in the case of the fusion algo-
rithm, the treewidth of the join tree determines the size of the largest combination to
be performed, which is the dominant complexity factor dω+1. However, the number of
join tree nodes is no longer strictly related to m and |T | as in (V.33). In Algorithm
4, each node combines all incoming messages from its parents. Because |E| = |V| − 1,
this implies that a total of |V| − 1 combinations are performed, to which we add a total
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of |V| − 1 projections to the separators needed to define each message, plus the final
projection onto the query. As a result, we obtain a factor of 2(|V| − 1) + 1, which yields
a total complexity of

(V.42) O
(
|V| · dω+1

)
.

Note that this complexity does not take into account the computation of the initial
content of each node according to (V.41), which may significantly increase the running
time of the algorithm.

Since the fusion algorithm gives rise to a covering join tree for the inference problem,
the collect algorithm is at least as efficient as the fusion process. However, depending
on the inference problem, it might be possible to construct a more efficient covering
join tree, thus reducing the complexity of the method. For this reason, the construction
of covering join trees for inference problem becomes of fundamental importance, and
constitutes a broad research field by itself [Ros70, BB72, AK91, CM94, HL99]. It
shall be noted, though, that the dominant factor dω+1 in (V.42) for the worst case cannot
be improved from (V.33). Indeed, it has been proven that for any covering join tree of
a given treewidth there always exists an elimination sequence for the fusion algorithm
that produces a join tree with the same treewidth [Arn85, DP89].

10.8. A collect algorithm for contextuality. Just like the fusion algorithm, the
collect method can be applied to detect both logical and strong contextuality.

10.8.1. Strong contextuality. Let S be a model on a scenario 〈X,M, (Om)〉.
Once again, the strategy is to use the collect algorithm to solve (V.35), and check whether
the result is zC . Of course, one has to construct a covering join tree for (V.35) first, and

compute the initial content ψ
(1)
i of each node. This task depends on the measurement

scenario, and it is thus impossible to provide any specific guidelines other than the
aforementioned general heuristics on the construction of covering trees.

Once a covering tree (V,E, λ) for (V.35) is provided and a covering assignment a :
M→ V is determined, one computes the initial content of each node using combination
of indicator functions, following (V.41):

ψ
(i)
i = eλ(i) ⊗

⊗

C∈M:
a(C)=i

iS(C).

The collect procedure for the detection of strong contextuality can now be presented in
Algorithm 5. By (V.42), the algorithm has a complexity of

(V.43) O
(
|V| · |O|ω+1

)
,

where O denotes the largest outcome set.

10.8.2. Logical contextuality. The detection of logical contextuality is slightly
more complex. In this case, the problem requires solving multiple copies of (V.35), and
thus takes the form of a multi-query inference problem, where the queries are contained
in M. Therefore, one can use a covering join tree for the multi-query problem

(⊗

C∈M
iS(C)

)↓M
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Algorithm 5 Collect algorithm for strong contextuality

Input: S, 〈X,M, (Om)〉,
(

V,E, λ,
{
ψ

(1)
i

}
i∈V

)
covering join tree for (V.35)

Output: SC(S)
1: procedure
2: for i = 1, . . . , |V| do

3: µi→ch(i) ←
(
ψ

(i)
i

)↓sep(i)
.

4: ψ
(i+1)
ch(i) ← ψ

(i)
ch(i) ⊗ µi→ch(i).

5: end for

6: if
(
ψ

(|V|)
|V|

)↓C
= zC then return true

7: else return false

8: end if
9: end procedure

to solve each copy of the problem, with one caveat: the ordering of the tree has to be
changed at each iteration to guarantee that the root note contains the current query.
This is simply achieved by redirecting the edges of the tree towards the new root node,
and defining a new order following the same procedure as before. With this premise, the
collect algorithm for logical contextuality can be presented in Algorithm 6. By (V.42),

Algorithm 6 Collect algorithm for logical contextuality

Input: S, 〈X,M, (Om)〉,
(

V,E, λ,
{
ψ

(1)
i

}
i∈V

)
covering join tree for (V.35)

Output: LC(S)
1: procedure
2: for i = |V|, |V| − 1, . . . , 1 do
3: Re-order the tree, imposing i = |V|.
4: for j = 1, . . . , |V| do

5: µj→ch(j) ←
(
ψ

(j)
j

)↓sep(j)
.

6: ψ
(j+1)
ch(j) ← ψ

(j)
ch(j) ⊗ µj→ch(j).

7: end for
8: for C ∈M covered by j do

9: if
(
ψ
|V|
|V|

)↓C
6= iS(C) then return true

10: end if
11: end for
12: Cancel re-ordering.
13: end for
14: return false

15: end procedure

this procedure has a complexity of

(V.44) O
(
|M| · |V| · |O|ω+1

)
.
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10.8.3. The complexity of the collect algorithm for non-locality in (n, k, l)-
scenarios. In order to give a more concrete example for Algorithms 5 and 6 and their
complexity, we consider once again the problem of detecting non-locality in (n, k, l) sce-
narios. Let Σ = 〈X,M, O〉 be an (n, k, l) Bell-type scenario. Consider the following
covering join tree for problem (V.35), where C = {11, . . . , 1n}. The order of the nodes
is displayed in blue.

{21} ∪
⋃n

i=2Xi {31} ∪
⋃n

i=2Xi {k1} ∪
⋃n

i=2Xi

{11} ∪
⋃n

i=2Xi

1 2 k − 1

k

Note that this tree is optimal both in terms of its width and number of nodes. Indeed,
it has width ω = k(n − 1) – which we proved to be optimal in Section 10.5.4 – and
only k nodes, which is clearly the minimal amount needed to cover all contexts without
increasing ω.

Each node covers kn−1 contexts. Thus, in order to compute their initial content, one
has to perform (kn−1 − 1) combinations for each of the k nodes, which costs

(V.45) O
(
k
((
kn−1 − 1

)
lω+1

))
= O

(
kn · lk(n−1)+1

)
.

We can now evaluate the complexity of Algorithms 5 and 6:

Strong contextuality. By (V.43), the collect algorithm requires O
(
k · lk(n−1)+1

)

operations. By adding these to (V.45), we obtain an overall complexity of

O
(
kn · lk(n−1)+1

)
,

which coincides with the complexity of the fusion algorithm for strong contextuality
(V.39). We conclude that, in this case, nothing is gained by using the collect algorithm
over fusion.

Logical contextuality. Algorithm 6 essentially runs the collect procedure k times
(in the worst case scenario), each with a different root node. At the end of every iteration,
there is an additional for cycle (lines 8-11), which performs one projection for each of
the contexts covered by the current root node. Each node covers kn−1 contexts, hence
for each of the k runs we have the usual complexity (V.42) of performing the collect
procedure plus an additional kn−1 · lω+1 operations, leading to a total of

O
(
k
(
k · lω+1 + kn−1 · lω+1

))
= O

(
kn · lk(n−1)+1

)
.

The addition of the complexity of computing the initial contents (V.45) does not change
the result, hence this is the overall complexity of detecting logical non-locality using
the collect method. Therefore, the collect algorithm for logical non-locality is strictly
more efficient than the fusion algorithm, and further improves the current complexity of
(V.29).
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Discussion

We have presented a general definition of different forms of disagreement between
information sources in the abstract framework of valuation algebras. In particular, we
identified three kinds of disagreement: local, global and complete, and presented many
examples of each of them using different valuation algebras. A particular attention has
been given to instances of knowledgebases which agree locally but disagree globally.
By recovering part of the valuation algebraic formalism in sheaf-theoretic terms, we
showed that contextuality is simply a special case of such a knowledgebase, where the
valuation algebra in question is the one of R-potentials, while strong contextuality is a
special case of complete disagreement for the algebra of indicator functions. This result
is a vast generalisation of the previously observed connections between contextuality
and relational databases, constraint satisfaction problems, and logical paradoxes, and
constitutes a promising attempt to establish a general theory of contextual semantics.
The main advantage of such an abstract and flexible treatment is that it significantly
widens the scope for the observation of contextual behaviour, and could potentially lead
to the transfer of results and methods for disagreement across the many different fields
captured by the valuation algebraic framework.

We have only started to explore this potential by applying methods of generic in-
ference to develop algorithms for contextuality, and we firmly believe that much more
can be done in this direction. For instance, one could hope to extend the cohomological
invariant for contextuality developed in Chapter IV to a general invariant for disagree-
ment in valuation algebras, which could then be used to study e.g. the solvability of
constraint satisfaction problems such as graph colourability, or to detect inconsistencies
in large databases. Another possible research path would be to generalise Vorob'ev’s
theorem to the level of valuation algebras, so as to recover as special cases both its
original formulation concerning probability distributions, and its translation in terms of
contextuality (Theorem II.21). Then, one could translate the result to other valuation
algebras, and establish new interesting connections.

In the last part of the chapter, we listed two methods for the detection of logical
forms of contextuality based on popular algorithms of generic inference: the fusion and
collect algorithms. We showed that these techniques outperform current algorithms over
(n, k, l) scenarios, especially for logical contextuality. Although the collect algorithm
is arguably the most efficient known method for general inference problem, there are
countless other techniques which may offer better runtime on specific scenarios. We
shall investigate this possibility in future work.





CHAPTER VI

A complete characterisation of All-vs-Nothing arguments
for stabiliser states

Summary

All-vs-Nothing arguments constitute an important class of proofs of con-
textuality in quantum mechanics. Since their first appearance in the works
of Mermin, other examples have subsequently been presented, most no-
tably in stabiliser quantum mechanics, where they are routinely used to
produce instances of strongly contextual quantum states. However, no
general method of identifying the states giving rise to this kind of proofs
was known until now. In this chapter, we take advantage of the general
formulation of AvN arguments by Abramsky et al. to give a complete char-
acterisation of the stabiliser states giving rise to AvN arguments, which
can be used to produce an exhaustive list of strongly contextual multi-qubit
states. This is achieved through a combinatorial characterisation of AvN
arguments, the AvN triple Theorem, whose proof makes use of the theory
of graph states. This leads to other surprising structural results, such as
that every AvN argument can essentially be reduced to Mermin’s original
proof.

1. Overview

Quantum physics provides many examples of strong contextuality. Among the first
to observe this phenomenon was Mermin, who proved the GHZ state to be strongly
contextual using the argument reviewed in Example II.16, which he dubbed ‘all-vs-
nothing’ due to the sharp contrast between the 0% classical probability of a certain
event to occur versus its 100% quantum probability [Mer90a, Mer93].

Mermin’s original formulation has been recently abstracted and generalised by Abram-
sky and coworkers into the formal definition of AvN arguments, reviewed in Section 5.2
of Chapter II [ABK+15]. The class of models admitting this kind of contextuality
proofs has been subsequently shown to present suitable topological properties, both in
the setting of sheaf cohomology described in this thesis [ABK+15, Aas18], and the one
proposed by Okay et al. [ORBR17]. For this reason, we are interested in understanding
how such models arise in Nature.

One of the key results of [ABK+15] is that this high-level description can be conve-
niently adapted to prove strong contextuality for a large class of states in quantum theory,
notably in stabiliser quantum mechanics [Got97]. AvN contextual stabiliser states have
recently gained considerable interest as a fundamental resource for quantum comput-
ing, particularly in the setting of measurement based quantum computation (MBQC)

155
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[GC99, RB01b, RB01a, KLM01, RBB03, Nie03, Leu04, RBB03, BBD+09,
Rau13]. Contextual behaviour of this kind is also known to be necessary for increasing
computational power in certain models of MBQC with restricted classical co-processing
[Rau13]. We have already encountered an example of this in Section 2.3 of Chapter
II, where we reviewed a result by Anders & Browne on how the GHZ state empowers
a linear classical co-processor to implement the non-linear OR function [AB09]. This
finding was subsequently extended by Dunjko, Kapourniotis & Kashefi [DKK16], who
showed that strong non-locality also enables the function to be implemented in a secure
delegated way.

These celebrated results motivate a thorough investigation of the stabiliser world in
search for states that give rise to AvN arguments for strong contextuality. Although
some general constructions to produce instances of AvN contextuality have been intro-
duced before [GTHB05, Wae14], a method to identify all such states is yet to be
presented. In this chapter, we solve this problem by providing a complete characterisa-
tion of AvN arguments for stabiliser states. This leads to a computational method to
generate myriad examples of strongly contextual models in quantum mechanics, as well
as the corresponding proofs of their contextuality. Let us briefly outline our results:

• We show that generalised AvN arguments on stabiliser states can be completely
characterised by AvN triples, proving part of what was previously known as the
AvN triple conjecture [Abr14a]. AvN triples are triples of elements of the Pauli
group on n qubits satisfying various combinatorial properties. The presence of
such a triple in a stabiliser group was proven in [ABK+15] to be a sufficient
condition for AvN contextuality. We show that the converse of this statement
is also true for the case of maximal stabiliser subgroups, or, equivalently, for
stabiliser states. This is achieved by adopting the language of graph states
[SW01b, HDE+06], which is particularly suited to model stabiliser states.
This new description of AvN arguments leads to a surprising structural result
concerning the way such arguments arise:
• We prove that any AvN argument on an n-qubit stabiliser state can be re-

duced to an AvN argument only involving three qubits which are local Clifford-
equivalent to the tripartite GHZ state. This conclusion seems to suggest that
the GHZ state is somewhat ‘universal’ among stabiliser states admitting AvN
proofs of contextuality.
• We present a computational method to generate all AvN arguments for n-qubit

stabiliser states, based on the characterisation introduced above. Notice that we
do not limit ourselves to identifying the AvN contextual states, but we provide
an exhaustive list of actual AvN proofs of contextuality for each of them.

The content of this chapter has been developed in collaboration with Samson Abram-
sky, Rui Soares Barbosa and Simon Perdrix, and has been published in [ABCP17].

Outline of the chapter. In Section 2, we review Mermin’s original All-vs-Nothing
argument. Section 3 introduces the stabiliser formalism and shows how stabiliser sub-
groups induce XOR theories, which can be used to derive AvN arguments for the cor-
responding stabiliser states. The characterisation of AvN arguments is introduced in
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Section 4, where the AvN triple theorem is proved using graph states. Finally, in Sec-
tion 5, we present the applications of the theorem and illustrate the computational
method to generate AvN triples.

2. Mermin’s proof

Before embarking in a detailed analysis of All-vs-Nothing arguments in stabiliser
quantum mechanics, it is convenient to review Mermin’s original proof of the strong
contextuality of the GHZ state in this specific setting.

We start by definiting the Pauli operators, dichotomic one-qubit local observables
corresponding to measuring spin in the x, y, and z axes, with eigenvalues ±1:

X :=

(
0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
∈M2(C)

These matrices are self-adjoint, have eigenvalues ±1, and satisfy the following relations:
for all P,Q ∈ {X,Y, Z},

P 2 = I,

PQ = −QP.(VI.1)

Consider a tripartite experimental setting where each party i = 1, 2, 3 can choose to
perform a Pauli measurement in {Xi, Yi} on the i-th qubit of the GHZ state1

|GHZ〉 :=
1√
2

(|000〉+ |111〉).

Once measurement Pi ∈ {Xi, Yi} is executed, experimenter i obtains the eigenvalue
P̄i ∈ {±1} as outcome. By direct calculation we can show that the following holds:

X1 ⊗X2 ⊗X3 |GHZ〉 = |GHZ〉 .
In other words, one could say that the operator X1⊗X2⊗X3 stabilises the GHZ state.
This implies that the expected value of measuring X at each site is

〈GHZ| X1 ⊗X2 ⊗X3 |GHZ〉 = 1.

Consequently, since the eigenvalues of any joint measurement are the products of eigen-
values at each site, we conclude that

X̄1 · X̄2 · X̄3 = 1,

where X̄i = ±1 denotes the eigenvalue produced after measurement Xi is performed.
Using the isomorphism {+1,−1,×} ∼= {0, 1,⊕}, we rewrite this equation in the following
form:

X̄1 ⊕ X̄2 ⊕ X̄3 = 0.

This means that the possible joint events of the corresponding context of the underlying
empirical model are the ones with an even number of 1’s.

A similar argument can be applied to the joint measurement X1 ⊗ Y2 ⊗ Y3. In this
case the GHZ state is anti-stabilised :

X1 ⊗ Y2 ⊗ Y3 |GHZ〉 = (−1) · |GHZ〉 .
1The subscript i for a Pauli measurement Pi has the only purpose of distinguishing the same mea-

surement performed by different parties
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It follows that the outcomes obtained by each party when measuring X1⊗Y2⊗Y3 must
satisfy

X̄1 ⊕ Ȳ2 ⊕ Ȳ3 = 1.

By repeating the same discussion for Y1 ⊗ X2 ⊗ Y3 and Y1 ⊗ Y2 ⊗ X3 we obtain the
following system of equations:

X̄1 ⊕ X̄2 ⊕ X̄3 = 0 Ȳ1 ⊕ X̄2 ⊕ Ȳ3 = 1

X̄1 ⊕ Ȳ2 ⊕ Ȳ3 = 1 Ȳ1 ⊕ Ȳ2 ⊕ X̄3 = 1,

This system characterises the entries of the corresponding 4 contexts of the possibilistic
GHZ model, displayed in Table VI.1 (cf. Table II.6).

1 2 3 000 001 010 011 100 101 110 111
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
X1 X2 X3 1 0 0 1 0 1 1 0
X1 Y2 Y3 0 1 1 0 1 0 0 1
Y1 X2 Y3 0 1 1 0 1 0 0 1
Y1 Y2 X3 0 1 1 0 1 0 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table VI.1. A partial table for the support of the GHZ model.

It is straightforward to see that this system is inconsistent. Indeed, if we sum all the
equations, we obtain 0 = 1, as each variable appears twice on the left-hand side. This
means that it is impossible to find a global assignment {X1, Y1, X2, Y2, X3, Y3} → {0, 1}
consistent with the model, showing that the GHZ state is strongly contextual.

3. The stabiliser world

We shall now show how the general definition of AvN arguments presented in Section
VI of Chapter II naturally specialises to the setting of stabiliser quantum mechanics
[Got97, NC00, Cav14]. Let us start by introducing the Pauli n-group, which embodies
the algebraic properties of multi-partite local measurements:

Definition VI.1. Let n ≥ 1 be an integer. The Pauli n-group Pn is comprised of
elements of the form

α(P1, . . . , Pn),

where (Pi)
n
i=1 is an n-tuple of Pauli operators, Pi ∈ {X,Y, Z, I}, with global phase

α ∈ {±1,±i}. Elements of Pn will be denoted by bold capital letters P = α(Pi)
n
i=1.

Multiplication is defined by

α(P1, . . . , Pn)β(Q1, . . . , Qn) = γ(R1, . . . , Rn),

where PiQi = γiRi, γ = αβ(
∏
i γi). The unit is I := (Ii)

n
i=1.

The group Pn acts on the Hilbert space of n-qubits Hn := (C2)⊗n via the action

(VI.2) α(Pi)
n
i=1 · |ψ〉 := αP1 ⊗ · · · ⊗ Pn |ψ〉 .

Elements of the Pauli n-group shall be interpreted as n-partite local measurements.
In other words, a Pauli P ∈ Pn determines, up to phase, a context of an n-partite
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measurement scenario where each party can perform X,Y, Z or I on their respective
qubit of shared a state.

In this chapter, we shall be concerned with scenarios whose set of contexts is deter-
mined by a subgroup of Pn. More specifically, we are interested in studying the empirical
model arising from the application of joint measurements in a subgroup S ≤Pn to an
n-qubit state which is stabilised under (VI.2) by all elements of S. This leads to the
definition of stabiliser subspaces and subgroups:

Definition VI.2. Given a subgroup S ≤ Pn, the stabiliser of S is the linear
subspace

VS := {|ψ〉 ∈ Hn | P· |ψ〉 = |ψ〉 , ∀P ∈ S} ⊆ Hn.
Similarly, given a subspace V ⊆ Hn, the stabiliser of V is the subgroup

SV :=
{
P ∈Pn | P· |ψ〉 = |ψ〉 , ∀ |ψ〉 ∈ V

}
.

A subgroup S ≤ Pn that stabilises a non trivial subspace of Hn is called a stabiliser
subgroup. That is to say, S ≤Pn is a stabiliser subgroup if and only if VS is non-trivial.

This definition establishes a Galois connection

SG(Pn) SS(Hn),

between subgroups of Pn and subspaces of Hn, both ordered by inclsion, which underpins
the following well-known relation between the rank of a subgroup S ≤ Pn and the
dimension of VS [NC00]:

(VI.3) rank(S) = k ⇔ dim(VS) = 2n−k.

In particular, when S is a maximal stabiliser subgroup, i.e. k = n, we have dimVS = 1.
Hence, S stabilises a unique state, up to global phase.

Definition VI.3. We call a state stabilised by a maximal subgroup S ≤ Pn a
stabiliser state.

Let us conclude this section by presenting the following elementary result of stabiliser
theory, which will be used throughout:

Proposition VI.4. Let S ≤Pn be a stabiliser subgroup.

(1) The elements of S have global phase ±1.
(2) S is abelian.

Proof. Let us start by observing that −I /∈ S. Indeed, −I ∈ S implies |ψ〉 = − |ψ〉
for all |ψ〉 ∈ VS , which contradicts the non-triviality of VS . This, in turn, immediately
leads to a proof of (1): let P = α(Pi)

n
i=1 ∈ S, if α = ±i, we have P2 = α2(Ii)

n
i=1 =

−(Ii)
n
i=1 = −I. In order to prove (2) note that, by (VI.1) and (1), two elements P,Q ∈ S

either commute or anti-commute. Suppose by contradiction that they anticommute, and
let |ψ〉 ∈ VS . We have

|ψ〉 = Q |ψ〉 = QP |ψ〉 = −PQ |ψ〉 = − |ψ〉 .
Thus |ψ〉 = 0, which contradicts the non-triviality of VS . �
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3.1. Stabiliser subgroups induce XOR theories. Consider a quantum measure-
ment scenario where n parties share an n-qubit state and can each choose to perform a
local Pauli operator X, Y , or Z on their respective qubit. The set of measurements is
thus X =

⊔n
i=1{Xi, Yi, Zi}, and the contexts are subsets of X that contain at most one

element for each index i, establishing an (n, 3, 2) Bell-type scenario.2 In analogy with
Mermin’s proof, we will now show how elements of the Pauli group that stabilise a state
generate parity conditions for the possible joint outcomes of the corresponding empirical
model.

Let P = α(Pi)
n
i=1 ∈ Pn be an element of the Pauli n-group and |ψ〉 ∈ Hn a state

stabilised by P. By Proposition VI.4, we have α = ±1. Then,

α(P1 ⊗ · · · ⊗ Pn) |ψ〉 = |ψ〉
and so |ψ〉 is an α-eigenvector of P1⊗· · ·⊗Pn. Consequently, the expected value satisfies

〈ψ|P1 ⊗ · · · ⊗ Pn|ψ〉 = α.

This means that, given n qubits prepared on the state |ψ〉, any joint outcome s ∈ Zn2
resulting from measuring Pi at each qubit i must have even (resp. odd) parity when
α = 1 (resp. α = −1). Therefore, to any stabiliser group S ≤Pn we associate an XOR
theory

TZ2 (S) := {ϕP | P ∈ S},
where, if P = (−1)a(Pi)

n
i=1 with a ∈ Z2,

ϕP :=




⊕

i∈{1,...,n}
Pi 6=I

P̄i = a


 .

Given a stabilser subgroup S ≤Pn, we are interested in the empirical model arising from
applying measurements in S to a state in VS . In this case, the possible local sections at
each contexts P ∈ S are completely determined by solutions to ϕP, hence the model is
independent of the chosen state of VS .

The definition of the theory TZ2 (S) allows us to translate the general notion of an
AvN empirical model (Definition II.18) to the specific case of stabiliser subgroups:

Definition VI.5. We say that S is AvN if TZ2 (S) is inconsistent.

These scenarios give rise to the same empirical model, since the possible events at a
context P are completely characterised as solutions to ϕP. The following proposition is
a direct consequence of Proposition II.19:

Proposition VI.6. Given an AvN subgroup S ≤ Pn and any state |ψ〉 ∈ VS, the
n-partite empirical model realised by |ψ〉 under the Pauli measurements in S is strongly
contextual.

Indeed, the inconsistency of TZ2 (S) implies the impossibility of finding a global
assignment compatible with the support of the empirical model.

2In this chapter, we will temporarily denote the set of measurements by X in order to avoid confusion
with the Pauli measurement X.



4. CHARACTERISING AVN ARGUMENTS 161

4. Characterising AvN arguments

Using the general theory of AvN arguments for stabiliser states reviewed in the last
section, we present a characterisation of AvN arguments based on the combinatorial
concept of an AvN triple [ABK+15].

4.1. AvN triples. Since AvN subgroups give rise to strongly contextual empirical
models, we are naturally interested in characterising this property. In [ABK+15], this
problem is addressed by introducing the notion of AvN triple. Here, we rephrase the
definition in slightly more general terms:

Definition VI.7 (cf. [ABK+15, Definition 3]). An AvN triple in Pn is a triple
〈E,F,G〉 of elements of Pn with global phases ±1 that pairwise commute and that
satisfy the following conditions:

(1) For each i = 1, . . . , n, at least two of Ei, Fi, Gi are equal.
(2) The number of i such that Ei = Gi 6= Fi, all distinct from I, is odd.

Note that the only difference with respect to the original definition from [ABK+15]
is that we allow elements of an AvN triple to have global phase −1.

A key result from [ABK+15] is that AvN triples provide a sufficient condition for
All-vs-Nothing proofs of strong contextuality. A similar argument shows that this is still
true for the slightly more general notion of AvN triple.

Theorem VI.8 (cf. [ABK+15, Theorem 4]). Any subgroup S of Pn containing an
AvN triple is AvN.

Proof. Let 〈E,F,G〉 be an AvN triple in Pn, where E = (−1)a(Ei)
n
i=1, F =

(−1)b(Fi)
n
i=1 and G = (−1)c(Gi)

n
i=1, with a, b, c ∈ Z2. We denote by NF the number of

i’s such that Ei = Gi 6= Fi and Ei, Fi, Gi 6= I, which is odd by (2). The global phase of
H := EFG is given by

(−1)a+b+c+NF = (−1)a⊕b⊕c⊕1.

Indeed, we get a local phase −1 for each of the NF indices where Ei = Gi 6= Fi, since
EiFiGi = −EiGiFi = −Fi. Thus, if we consider the four equations corresponding to
these elements in the XOR theory of the subgroup, summing their right-hand sides yields
a⊕ b⊕ c⊕ (a⊕ b⊕ c⊕ 1) = 1. On the other hand, by 1, we have {Ei, Fi, Gi} = {Pi, Qi}
with at least two elements equal to Pi. Thus, by (VI.1), the product EiFiGi will be Qi
up to a phase, and so, as this is absorbed into the global phase, Hi = Qi. This means
that each column of the four equations contains 2 Pi’s and 2 Qi’s. Therefore, summing
all the four equations we obtain 0 = 1. �

It was conjectured in [Abr14a] that the presence of an AvN triple in a stabiliser
subgroup is also necessary for the existence of an All-vs-Nothing proof of strong con-
textuality. This is the AvN triple conjecture. The intuition is that short AvN proofs
suffice, and it is based on the observation that any AvN argument that has appeared in
the literature can be seen to come down to exhibit an AvN triple. We will now prove
the conjecture for the case of maximal stabiliser subgroups or, equivalently, for stabiliser
states by taking advantage of the graph state formalism, which is briefly reviewed in the
following subsection.
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4.2. Graph states. Graph states are special types of multi-qubit states that can
be represented by a graph.

Definition VI.9. Let G = (V,E) be an undirected graph. For each u ∈ V , consider

the element Gu = (G
(u)
v )v∈V ∈P|V | with global phase +1 and components

(VI.4) G(u)
v =





X if v = u

Z if v ∈ N (u)

I otherwise,

where N (u) denotes the neighborhood of u, i.e. the set of all the vertices adjacent to
u. The graph state |G〉 associated to G is the unique3 state stabilised by the subgroup
generated by these elements,

(VI.5) SG = 〈{Gu | u ∈ V }〉 .
One of the key properties of graph states is their generality with respect to stabiliser

states, as stated in the following theorem due to Schlingemann [Sch02]. Recall the
definition of the local Clifford (LC) group on n qubits

Cn1 := {U ∈ U(2n) | UPnU
† = Pn},

where U acts by conjugation on elements of Pn via the representation of α(Pi)
n
i=1 as

the operator αP1 ⊗ · · · ⊗ Pn. Two states |ψ〉 , |ψ′〉 ∈ Hn are said to be LC-equivalent
whenever there is a U ∈ Cn1 such that |ψ′〉 = U |ψ〉.

Theorem VI.10 ([Sch02, GKR02]). Any stabiliser state |S〉 is LC-equivalent to

some graph state |G〉, i.e. |S〉 = U |G〉 for some LC unitary U ∈ C
|V |
1 .

An instance of this result will be particularly important for our discussion. Consider
the n-partite GHZ state

|GHZ(n)〉 =
1√
2

(|0〉⊗n + |1〉⊗n).

We apply a local Clifford transformation consisting of a Hadamard unitary

H :=
1√
2

(
1 1
1 −1

)

at every qubit of GHZ except the k-th one (where 1 ≤ k ≤ n can be chosen arbitrarily)
to obtain

|ψ〉 =
1√
2

(|+ · · ·+ 0k + · · ·+〉 + |− · · · − 1k − · · ·−〉) .

The stabiliser group of |ψ〉 is generated by the elements E,F1,F2, . . . ,Fk−1,Fk+1, . . . ,Fn,
where

Ei =

{
X if i = k

Z if i 6= k
and F ji =





X if i = j

Z if i = k

I otherwise

3Uniqueness follows from (VI.3) since there is an independent generator for each vertex.
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By definition of a graph state, this list of stabilisers coincides with the star graph cen-
tred at the vertex corresponding to the k-th qubit (Figure VI.1). Since k was chosen
arbitrarily, all the graph states corresponding to star graphs on n vertices and different
centres are LC-equivalent.

Figure VI.1. Example of a star graph G = (V,E) with |V | = 9. The
graph state |G〉 is LU-equivalent to the 9-partite GHZ state.

Another important property of graph states is that they allow to characterise LC-
equivalence between them by a simple operation on the underlying graphs. This is the
notion of local complementation, introduced by Bouchet in [Bou93]

Definition VI.11. Given a graph G = (V,E) and a vertex v ∈ V , the local com-
plement of G at v, denoted by G ? v, is obtained by complementing the subgraph of
G induced by the neighborhood N (v) of v and leaving the rest of the graph unchanged.

The following theorem is due to Van den Nest, Dehaene, and De Moor [VdNDDM04]
(see also [HDE+06]).

Theorem VI.12 ([VdNDDM04, Theorem 3]). By local complementation of a graph
G = (V,E) at some vertex v ∈ V one obtains an LC-equivalent graph state. Moreover,
two graph states |G〉 and |G′〉 are LC-equivalent if and only if the corresponding graphs
are related by a sequence of local complementations, i.e.

G′ = G ? v1 · · · ? vn
for some v1, . . . vn ∈ V .

Thanks to this theorem, we can show that the n-partite GHZ state is LC-equivalent
both to the state corresponding to the star graph (cf. Figure VI.1), and the one corre-
sponding to the complete graph on n vertices. Indeed, it is sufficient to choose a vertex
v of the complete graph and apply a local complementation to it to obtain a star graph
centred at v, as illustrated in Figure VI.2.

4.3. The AvN triple theorem and its consequences. In this section, we prove
the theorem characterising AvN arguments on stabiliser states.

Firstly, we need to make some observations. Note that the Born rule is invariant
under any unitary action acting simultaneously on the measurement by conjugation and
on the state. Therefore, if we have a quantum realisable empirical model specified by a
state |ψ〉 and a set of measurements X, then given any unitary U , the empirical model
specified by the state U |ψ〉 and the set of measurements UXU † = {UAU † | A ∈X} is
equivalent to the original one, in the sense that it assigns the same probabilities, which
of course implies that it has the same contextuality properties.
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Figure VI.2. The star graph centred at a vertex v, marked in red, can
be obtained from the complete graph by local complementation at the
vertex v.

In the particular case when |ψ〉 is a stabiliser state for the subgroup S ≤ Pn, and
U is a LC-operation, then the state U |ψ〉 is a stabiliser state for the subgroup USU † =
{UPU † | P ∈ S}.

An important fact we shall need is that AvN triples are sent to AvN triples by such
LC operations. The reason is that LC operations are composed of local unitaries that
act as permutations on the set {±X,±Y,±Z}, and therefore preserve all the conditions
of Definition VI.7.

We now show that AvN triples fully characterise All-vs-Nothing arguments for sta-
biliser states, and that a tripartite GHZ state is always responsible for the existence of
such an AvN proof of strong contextuality.

Theorem VI.13 (AvN Triple Theorem). A maximal stabiliser subgroup S of Pn is
AvN if and only if it contains an AvN triple. The AvN argument can be reduced to one
concerning only three qubits. The state induced by the subgraph for these three qubits is
LC-equivalent to a tripartite GHZ state.

Proof. Sufficiency follows from Proposition VI.8. So, suppose that the maximal
stabiliser subgroup S is AvN. Let |ψ〉 be the stabiliser state corresponding to S. Since
any stabiliser state is LC-equivalent to a graph state by Theorem VI.10, and since LC
transformations preserve AvN triples, we can suppose without loss of generality that |ψ〉
is a graph state |G〉 induced by a graph G = (V,E), and consequently that S = SG as
in (VI.5).

Given that the empirical model obtained from the state |G〉 and local Pauli operators
is strongly contextual, there must exist at least one vertex u with degree at least 2,
i.e. |N (u)| ≥ 2. Indeed, if G has no such vertex, G is a union of disconnected edges
and vertices, which implies that |G〉 is a tensor product of 1-qubit and 2-qubit states,
which do not present strongly contextual behaviour for any choice of local measurements
[BMT05, ABC+17].

Let u ∈ V have degree ≥ 2 and let v, w be two distinct vertices in N (u). We have
two possible cases:
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(1) There is an edge between v and w. Then, in accordance with (VI.4), the
elements Gu,Gv,Gw of SG have the form:4

(VI.6)
Gu : Xu Zv Zw [I or Z on all other qubits]
Gv : Zu Xv Zw [I or Z on all other qubits]
Gw : Zu Zv Xw [I or Z on all other qubits],

which are easily seen to constitute an AvN triple.
(2) There is no edge between v and w. Then, we have

Gu : Xu Zv Zw [I or Z on all other qubits]
Gv : Zu Xv Iw [I or Z on all other qubits]
Gw : Zu Iv Xw [I or Z on all other qubits]

and the elements 〈Gu,GuGv,GuGw〉 form an AvN triple:

Gu : Xu Zv Zw [I or Z on all other qubits]
GuGv : Yu Yv Zw [I or Z on all other qubits]
GuGw : Yu Zv Yw [I or Z on all other qubits].

Notice that in both cases the AvN argument is reduced to just three qubits. Moreover, by
the discussion at the end of the previous subsection, we know that the state corresponding
to the subgraph induced by u, v, w in either of these two cases is LC-equivalent to a
tripartite GHZ state: in Case 1 we have a complete graph on three vertices, while in
Case 2 we have a star graph centred at u. �

The second part of the above result means that the essence of the contradiction is
witnessed by looking at only three qubits. In fact, in the contexts being considered, the
experimenters at the remaining n − 3 parties either perform no measurement or a Z
measurement. We could imagine that, in trying to build a consistent global assignment
of outcomes in Z2 to all the measurements, each of these n − 3 parties i is allowed to
freely choose a value 0 or 1 for the variable Z̄i. Then, the equations for the variables
representing the measurements of the remaining three parties would be those of the
usual GHZ argument, up to flipping an even number of the values on the right-hand
side. In terms of the state, we can use the partial inner product operation described
e.g. in [SW10]5 to apply the eigenvectors corresponding to the chosen values for the
other n − 3 parties to |G〉, resulting in a three-qubit pure state which is LC-equivalent
to the GHZ state.

From this theorem, we immediately obtain the following corollaries:

Corollary VI.14. A graph state |G〉 is strongly contextual if and only if G has a
vertex of degree at least 2.

Corollary VI.15. Every strongly contextual 3-qubit stabiliser state is LC-equivalent
to the GHZ state.

The graph theoretic arguments used in the proof of the AvN triple theorem present
some similarities to the techniques developed in [GTHB05] to derive Bell inequalities

4The notation in (VI.6) indicates that G
(u)
u = X, G

(u)
v = G

(u)
w = Z, and G

(u)
z is either Z or I for

every other vertex z ∈ V \ {u, v, w}, and analogously for the other lines.
5This is actually the application of a linear map to a vector under Map-State duality [AC08].
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that are maximally violated by some graph states. In fact, Corollary VI.14 also fol-
lows from Theorem 1 in [GTHB05]. However, it is important to note that the AvN
triple theorem goes beyond the graph state formalism to expose the underlying algebraic
structure of AvN arguments, which ultimately rests on AvN triples.

Let us present some examples to clarify the statement of Theorem VI.13.

Example VI.16. Cluster states are a fundamental resource in measurement-based
quantum computation [AB09, RB01b, Rau03, RBB02]. The 4-qubit 2-dimensional
cluster state is described by the graph in Figure VI.3.

1 2

3 4

Figure VI.3. The 4-qubit 2-dimensional cluster-state.

Its stabiliser group S is generated by the following elements of P4:

G1 : X1 Z2 Z3 I4

G2 : Z1 X2 I3 Z4

G3 : Z1 I2 X3 Z4

G4 : I1 Z2 Z3 X4

The stabiliser group S contains the following 4 AvN triples, corresponding to the triples
of qubits highlighted in Figure VI.4:

(VI.7)

G1 : X1 Z2 Z3 I4

G1G2 : Y1 Y2 Z3 Z4

G1G3 : Y1 Z2 Y3 Z4

G2 : Z1 X2 I3 Z4

G2G1 : Y1 Y2 Z3 Z4

G2G4 : Z1 Y2 Z3 Y4

G3 : Z1 I2 X3 Z4

G3G1 : Y1 Z2 Y3 Z4

G3G4 : Z1 Z2 Y3 Y4

G4 : I1 Z2 Z3 X4

G4G2 : Z1 Y2 Z3 Y4

G4G3 : Z1 Z2 Y3 Y4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Figure VI.4. Qubits generating the AvN triples of (VI.7). Each triple
of qubits is LC-equivalent to GHZ.

Example VI.17. Consider the graph state |G〉 represented in Figure VI.5.
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1 2

3 4

Figure VI.5. A general graph G.

Its stabiliser S is generated by the following elements of P4:

G1 : X1 Z2 Z3 Z4

G2 : Z1 X2 I3 Z4

G3 : Z1 I2 X3 Z4

G4 : Z1 Z2 Z3 X4

and contains the following AvN triples:

(VI.8)

G1 : X1 Z2 Z3 Z4

G3 : Z1 I2 X3 Z4

G4 : Z1 Z2 Z3 X4

G1 : X1 Z2 Z3 Z4

G2 : Z1 X2 I3 Z4

G4 : Z1 Z2 Z3 X4

G1 : X1 Z2 Z3 Z4

G1G2 : Y1 Y2 Z3 I4

G1G3 : Y1 Z2 Y3 I4

G4 : Z1 Z2 Z3 X4

G4G2 : I1 Y2 Z3 Y4

G4G3 : I1 Z2 Y3 Y4

which correspond to the triples of qubits illustrated in Figure VI.6.

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Figure VI.6. Qubits generating the AvN triples of (VI.8). Each triple
of qubits is LC-equivalent to GHZ.

5. Applications

In this section we take advantage of the characterisation introduced above to develop
a computational method to identify all the possible AvN arguments.

5.1. Counting AvN triples. We start by introducing an alternative definition of
AvN triple.

Definition VI.18 (Alternative Definition of AvN triple). An AvN triple in the Pauli
n-group Pn is a triple 〈E,F,G〉 with global phases ±1, such that

(1) For each i = 1, . . . , n, at least two of Ei, Fi, Gi are equal.
(2) The number NG of i’s such that Ei = Fi 6= Gi, all distinct from I, is odd.
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(3) The number NE of i’s such that Ei 6= Fi = Gi, all distinct from I, is odd.
(4) The number NF of i’s such that Ei = Gi 6= Fi, all distinct from I, is odd.

The equivalence of the two definitions follows directly from the following lemma.

Lemma VI.19. Let n ≥ 3. Suppose E,F,G ∈Pn have global phase ±1 and are such
that for each i = 1, . . . , n, at least two of Ei, Fi, Gi are equal. Then E,F,G commute
pairwise if and only if NE ,NF and NG have the same parity.

Proof. Given two arbitrary elements H,K ∈Pn we have

HK = (−1)N(H,K)KH,

where

N (H,K) := |{i | Hi 6= Ki ∧ Hi,Ki 6= I}|.
Thus, E and F commute if and only if N (E,F) is even. By hypothesis, for each i, at
least two of Ei, Fi, Gi are equal, hence

N (E,F) = |{i | Gi = Ei 6= Fi ∧ Ei, Fi, Gi 6= I}|+ |{i | Ei 6= Fi = Gi ∧ Ei, Fi, Gi 6= I}|
= NF + NE .

Therefore,

E,F commute ⇔ NE and NF have the same parity.

Similarly,

F,G commute ⇔ NF and NG have the same parity

E,G commute ⇔ NE and NG have the same parity,

and the result follows. �

Note that this new definition can be used to derive an alternative proof of the fact
that any AvN triple for n-partite states can be reduced to an AvN triple that only
involves 3 qubits, in accordance with Theorem VI.13. Indeed, given an AvN triple
〈E,F,G〉 in Pn, since NG,NE ,NF are odd, we can always choose 3 indices 1 ≤ i1, i2, i3 ≤
n such that

Ei1 = Fi1 6= Gi1 , Ei2 6= Fi2 = Gi2 , Ei3 = Gi3 6= Fi3

Clearly, the elements of the triple restricted to these indices constitute an AvN triple in
P3 and therefore an AvN argument.

The rationale for introducing Definition VI.18 is that it allows to better understand
AvN triples from a computational perspective. We show a first example by providing a
closed formula for the number of AvN triples in Pn.

Proposition VI.20. Let n ≥ 3. The number of AvN triples in Pn is given by

8 ·




1
2

(n+[n])−1∑

k=1

(
n

2k + 1

)(
k + 1

k − 1

)
· 62k+1 · 22n−2k−1


 ,

where [n] ∈ Z2 denotes the parity of n.
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Proof. The factor of 23 = 8 corresponds to the possible choices of global phase ±1
for each element in the triple.

By Definition VI.18, an AvN triple 〈E,F,G〉 is essentially determined by three odd
numbers NE ,NF ,NG. Their sum S := NE + NF + NG ≤ n can be seen as the number of
columns of the triple that play an active part in the AvN argument. Let us compute the
amount of AvN triples having S “relevant” columns. We start by counting the number
of solutions to the equation

NE + NF + NG = S,

where NE ,NF ,NG, S are all odd numbers. Let k, e, f, g ≥ 0 be integers such that S =
2k + 1 and Ni = 2i+ 1 for i = E,F,G. We have

NE + NF + NG = S ⇔ 2e+ 1 + 2f + 1 + 2g + 1 = 2k + 1 ⇔ e+ f + g = k − 1

One can show6 that the number of solutions to this equation is
(
k+1
k−1

)
. By condition (1)

of Definition VI.18 we must choose two observables in {X,Y, Z} (the order counts) in
each of the S relevant columns, for a total of 62k+1 possibilities. Finally, there are 8
possible configurations of each of the remaining n− S non-relevant columns, namely

I
I
I

P
P
P

P I I
I P I
I I P

P P I
P I P
I P P

where P has to be chosen in {X,Y, Z} for a total of (3·7+1)n−S = 22n−2k−1 possibilities.
Hence, the number of AvN triples in Pn having S = 2k + 1 relevant columns is

NS :=

(
k + 1

k − 1

)
· 62k+1 · 22n−2k−1.

Now, the amount of odd numbers of relevant columns S ≤ n that we can select is given
by

1
2

(n+[n])−1∑

k=1

(
n

2k + 1

)
,

and the result follows. �

5.2. Generating AvN triples. We devote this last section to the presentation of
a computational method to generate all the AvN triples contained in Pn. Until now, we
only had a rather limited number of examples of quantum-realisable models featuring
All-vs-Nothing proofs of strong contextuality. Thanks to the AvN triple theorem VI.13,
the technique we introduce allows us to find all such models for a sufficiently small n.

Check vectors [NC00] are a useful way to represent elements of Pn in a computation-
friendly way:

Definition VI.21. Given an element P := α(Pi)
n
i=1 ∈Pn, its check vector r(P)

is a 2n-vector

r(P) = (x1, x2, . . . , xn, z1, z2, . . . , zn) ∈ Z2n
2

6This can be easily done e.g. by stars and bars [Fel68]
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whose entries are defined as follows

(xi, zi) =





(0, 0) if Pi = I

(1, 0) if Pi = X

(1, 1) if Pi = Y

(0, 1) if Pi = Z.

Every check vector r(P) completely determines P up to phase (i.e. r(P) = r(αP)
for all α ∈ {±1,±i}). We can use this representation to express the conditions for an
AvN triple. More specifically, we represent an AvN triple, up to the global phases of
each of its elements, as a matrix M ∈ M3×2n(Z2) whose rows are the check vectors of
each element of the triple. Condition 1 of Definition VI.18 can be rewritten as

(VI.9) ∀1 ≤ j ≤ n. ∃i, k ∈ {1, 2, 3}.
{
Mi,j = Mk,j

Mi,n+j = Mk,n+j

The numbers NE ,NF ,NG can also be easily computed. For instance, NG equals the
cardinality of the set

{i ∈ {1, 2, 3} |M1,j = M3,j ∧M1,n+j = M3,n+j ∧ (M1,j 6= M2,j ∨M1,n+j 6= M2,n+j)

∧ (M1,j 6= 0 ∨M1,n+j 6= 0) ∧ (M2,j 6= 0 ∨M2,n+j 6= 0) }
Hence, in order to find all the AvN triples in Pn we need to solve the following problem:

Find all M ∈M3×2n(Z2)

such that M verifies (VI.9),

NG, NE , and NF are odd,

which is easily programmable.
An implementation of this method using Mathematica [WR14] can be found in

[Car16], where we present the algorithm and the resulting list of all 216 AvN triples
in P3 and all 19008 AvN triples in P4, disregarding the choice of global phases ±1 for
each element – in order to get the total number of AvN triples from Proposition VI.20,
note that these numbers need to be multiplied by a factor of 8 to account for the choice
of these global phases. By Theorem VI.13, this list generates all the possible AvN
arguments for 3-qubit and 4-qubit stabiliser states.

Discussion

The recent formalisation and generalisation of All-vs-Nothing arguments in stabiliser
quantum mechanics [ABK+15] allowed us to study their properties from a purely math-
ematical standpoint.

Thanks to this framework, we have introduced an important characterisation of
AvN arguments for stabiliser states based on the combinatorial concept of AvN triple
[ABK+15], leading to a computational technique to identify all such arguments. It
remains an open question whether the AvN triple conjecture still holds for non-maximal
stabiliser subgroups. We aim to investigate this question in future work.

The graph state formalism, which played a crucial rôle in the proof of the AvN triple
theorem, also allowed us to infer an important structural feature of AvN arguments,
namely that any such argument can be reduced to an AvN proof on three qubits, which is
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essentially a standard GHZ argument. This result shows in particular that the GHZ state
is the only 3-qubit stabiliser state, up to LC-equivalence, admitting an AvN argument
for strong contextuality.

Our computations provide a very large number of quantum-realisable strongly con-
textual empirical models admitting AvN arguments. These new models could potentially
find applications in quantum information and computation, as well as contributing to the
ongoing theoretical study of strong contextuality as a key feature of quantum mechanics.

The results of this chapter shall also be considered as part of the wider line of research
focusing on characterising the quantum states that give rise to possibilistic forms of
non-locality and contextuality. For instance, a major step forward in the classification
of multi-partite pure states generating logically contextual empirical models has been
made by Abramsky & Constantin in [AC14]. A natural question to ask in light of
the conclusions of this chapter is whether it is possible to achieve a similar result for
strong contextuality, i.e. a complete characterisation that goes beyond stabiliser quantum
mechanics to include general n-qubit states. As it turns out, this question is considerably
harder than the one addressed in [AC14], even for n = 3. Some decisive progress in this
direction will be presented in the next chapter, where we analyse the minimum quantum
resources needed to achieve maximal degrees of strong non-locality.





CHAPTER VII

Minimum quantum resources for strong non-locality

Summary

We analyse the minimum quantum resources needed to realise strong non-
locality, as exemplified e.g. by the classical GHZ construction. We show
that no two-qubit system, with any finite number of local measurements,
can realise strong non-locality. For three-qubit systems, we show that
strong non-locality can only be realised in the GHZ SLOCC class, and
with equatorial measurements. However, we show that in this class there
is an infinite family of states not LU-equivalent to the GHZ state that
realise strong non-locality with finitely many measurements. These states
have decreasing entanglement between one qubit and the other two, ne-
cessitating an increasing number of local measurements on the latter.

1. Overview

In this chapter, our aim is to analyse the minimum quantum resources needed to
realise strong non-locality. The results of Chapter VI show that this phenomenon can
be observed in experimental settings involving one-qubit local Pauli measurements on
n-qubit stabiliser states, for n ≥ 3. Here, we extend the scope of our search for strongly
non-local behaviour beyond stabiliser quantum mechanics, and study general n-qubit
states subject to single-qubit local measurements. Our focus on qubits is motivated by
a result of Heywood and Redhead [HR83], which proves that strong non-locality can
be achieved with a bipartite system, but with a qutrit on each site.

Let us summarise our conclusions:

• Our first result is limitative in character. We show that strong non-locality can-
not be realised by a two-qubit system with any finite number of local measure-
ments. Thus no bipartite Bell-type experiment with finitely many measurement
settings can realise strong non-locality using a two-qubit state as a resource.

There is a subtle counterpoint to this in a result from [BKP06], which shows
that using a maximally entangled bipartite state, and an infinite family of local
measurements, strong non-locality is achieved “in the limit” in a suitable sense.
More precisely, as more and more measurements from the family are used, the
local fraction – the part of the behaviour which can be accounted for by a
local model (see Section 10.1.1 of Chapter V) – tends to 0, or equivalently the
non-local fraction tends to 1. There is an interesting connection to this in our
results for the tripartite case.

173
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However, there is a practical advantage in being able to witness strong non-
locality with a fixed finite number of measurements. If one wishes to design
an experimental test for maximal non-locality, it is desirable that one can in-
crease precision, i.e. increase the lower bound on the non-local fraction, without
needing to expand the experimental setup – in particular, the number of mea-
surement settings required to be performed – but rather by simply performing
more runs of the same experiment.
• Having shown that strong non-locality cannot be realised in the two-qubit case,

we turn to the analysis of three-qubit systems. Of course, we know by the re-
sults of Chapter VI that strong non-locality can be achieved in this case. Our
aim is to analyse for which states, and with respect to which measurements,
can strong non-locality be achieved. We use the classification into Stochas-
tic local operations and classical communication (SLOCC) classes for tripar-
tite qubit systems from [DVC00]. According to this analysis, there are two
maximal SLOCC classes, the GHZ and W classes. Below these, there are the
degenerate cases of products of an entangled bipartite state with a one-qubit
state, e.g. AB−C. By the previous result, these degenerate cases cannot realise
strong non-locality. We furthermore show that no state in the W class can
realise strong non-locality, for any choice of finitely-many local measurements.
• This leaves us with the GHZ SLOCC class. We use the detailed description

of this class as a parameterised family of states from [DVC00]. We first show
that any state in this class witnessing strong non-locality with finitely many
local measurements must satisfy a number of constraints on the parameters.
In particular, the state must be balanced in the sense that the coefficients in
its unique linear decomposition into a pair of product states have the same
complex modulus. We furthermore show that only equatorial measurements
need be considered (the equators being uniquely determined by the state) – no
other measurements can contribute to a strong non-locality argument.
• Having thus narrowed the possibilities for realising strong non-locality consid-

erably, we find a new infinite family of models displaying strong non-locality
using states within the GHZ SLOCC class that are not LU-equivalent to the
GHZ state. The states in this family start from GHZ and tend in the limit to
the state |Φ+〉⊗ |+〉 in the AB–C class with maximal entanglement on the first
two qubits, and in product with the third. This family is actually closely related
to the construction from [BKP06] in which an increasing number of measure-
ments on a bipartite maximally entangled state eventually squeezes the local
fraction to zero in the limit. Our family is obtained by adding a third qubit to
this setup, with two available local measurements, and some entanglement be-
tween the first two qubits and the third one, thus allowing strong non-locality
to be witnessed with a finite number of measurements. There is a trade-off
between the number of measurement settings available on the first two qubits
– and, consequently, the lower bound for the non-local fraction these measure-
ments can witness – and the amount of entanglement necessary between the
third qubit and the original two.
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The content of this chapter has been developed in collaboration with Samson Ar-
bamsky, Rui Soares Barbosa, Nadish de Silva, Kohei Kishida and Shane Mansfield. The
results have been published in [ABC+17].

Outline of the chapter. Section 2 summarises some background material on
non-locality and entanglement classification of three-qubit states, Section 3 shows that
strong non-locality cannot be witnessed by two-qubit states and a finite number of local
measurements; Section 4 does the same for three-qubit states in the SLOCC class of W;
Section 5 deals with states in the SLOCC class of GHZ, deriving conditions on these
necessary for strong non-locality; Section 6 presents the family of strong non-locality
arguments using states in the GHZ-SLOCC class.

2. Background

2.1. Quantum models and scenarios. In this chapter, we shall be concerned
only with (n, k, 2) Bell-type scenarios. More specifically, our ideal n-partite scenario
will be of the form 〈X,M, O〉, where X = X1 t · · · t Xn, and O = {±1} to model
the outcome of a single-qubit observable. Joint measurement in X will be denoted as
tuples m = 〈m1, . . . ,mn〉 ∈ X1 × · · · × Xn, since they are determined by a choice of
measurement for each of the n-parties (so M∼=

∏n
i=1Xi).

Given any joint measurement m ∈ M, the corresponding set of events E(m) is
isomorphic to On, thus the empirical models considered in this chapter will be of the
form

{
em ∈ DR≥0

(On)
}
m∈M. Given a vector of outcomes o = 〈o1, . . . , on〉 ∈ On, the

probability em(o) of obtaining the joint outcomes o upon performing the measurements
m at each site will often be denoted as follows:

em(o) = Prob(o|m) = Prob(o1, . . . , on|m1, . . . ,mn).

Since we are interested in studying strong non-locality, we shall be particularly
concerned with finding global assignments g =

⊔n
i=1 gi :

⊔n
i=1Xi −→ O, where each

gi is a map gi : Xi → O. We recall that such a global assignment is compatible
with a probabilistic model {em}m∈M if and only if, for any choice of measurements
m = 〈m1, . . . ,mn〉 ∈ M, we have

em(g(m)) = Prob(g(m)|m) = Prob(g1(m1), . . . , gn(mn)|m1, . . . ,mn) > 0,

where g(m) = 〈g1(m1), . . . , gn(mn)〉.
The Bloch sphere representation of one-qubit pure states will be useful: assuming a

preferred orthonormal basis {|0〉 , |1〉} of C2, we shall use the notation

|θ, ϕ〉 := cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉

for any θ ∈ [0, π] and ϕ ∈ [0, 2π).
Any single-qubit projective measurement is fully determined by specifying such a

normalised vector in C2, namely the pure state corresponding to the +1 eigenvalue or
outcome. Hence, the set of local measurements for a single qubit is labelled by

LM = [0, π]× [0, 2π)
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The quantum measurement determined by (θ, ϕ) ∈ LM has eigenvalues O = {+1,−1}
with the eigenvector corresponding to outcome o ∈ O given by:

|θ, ϕ 7→ o〉 :=

{
|θ, ϕ〉 if o = +1

|π − θ, ϕ+ π〉 if o = −1

Throughout this chapter, we shall be considering the n-partite measurement sce-
nario with Xi = LM for every site. Measurement contexts correspond to a choice
of single qubit measurements for each of the n sites, represented by a tuple (θ,ϕ) =
〈(θ1, ϕ1), . . . , (θn, ϕn)〉. Performing all the measurements of a context in parallel yields
an outcome o = 〈o1, . . . , on〉 ∈ On. The vector corresponding to this outcome is denoted

|θ,ϕ 7→ o〉 := |θ1, ϕ1 7→ o1〉 ⊗ · · · ⊗ |θn, ϕn 7→ on〉 .
We shall also find it useful to write

|θ,ϕ〉 := |θ1, ϕ1〉 ⊗ · · · ⊗ |θn, ϕn〉 = |θ,ϕ 7→ 〈+1, . . . ,+1〉〉
for the vector corresponding to the joint outcome assigning +1 at every site.

An n-qubit state |ψ〉 determines an empirical model e|ψ〉 for this measurement sce-
nario:

e
|ψ〉
(θ,ϕ)(o) = Prob|ψ〉(o1, . . . , on|(θ1, ϕ1), . . . , (θn, ϕn)) := | 〈θ,ϕ 7→ o|ψ〉 |2.

We are concerned with checking for strongly non-local behaviour on such a model. This
amounts to checking for the existence of maps gi : LM −→ O for each site such that for
any choice of measurements (θ,ϕ), the corresponding outcome has positive probability:

e(θ,ϕ)(g(θ,ϕ)) = Prob|ψ〉(g1(θ1, ϕ1), . . . , gn(θn, ϕn)|(θ1, ϕ1), . . . , (θn, ϕn))

= | 〈θ,ϕ 7→ g(θ,ϕ)|ψ〉 |2 > 0.

Given that these are quantum probabilities, we can rephrase this condition in terms of
non-vanishing amplitudes: 〈θ,ϕ 7→ g(θ,ϕ)|ψ〉 6= 0.

The following fact will be used throughout. Suppose we want to check the consistency
with the empirical model of a given global assignment g =

⊔n
i=1 gi. If this assignment

satisfies

(VII.1) ∀i ∈ {1, . . . , n}. gi(θ, ϕ) = −gi(π − θ, ϕ+ π),

that is, measurements with +1 eigenstates diametrically opposed in the Bloch spehere
(i.e. measurements that are the negation of each other) are assigned opposite outcomes,
then

|θ, ϕ 7→ gi(θ, ϕ)〉 =

{
|θ, ϕ〉 if gi(θ, ϕ) = +1

|π − θ, ϕ+ π〉 if gi(θ, ϕ) = −1 (⇔ gi(π − θ, ϕ+ θ) = +1)

meaning that |θ,ϕ 7→ g(θ,ϕ)〉 =
∣∣θ′,ϕ′

〉
with gi(θ

′
i, ϕ
′
i) = +1 for all i. In other words,

should we wish to calculate the amplitude for a joint outcome o on a given context
(θ,ϕ), we may equivalently calculate the amplitude for the joint outcome 〈+1, . . . ,+1〉
on a new context (θ′,ϕ′) obtained by substituting θi 7→ π − θi and ϕi 7→ π + ϕi for all
i such that oi = −1. Therefore, it suffices to verify the equation 〈θ,ϕ 7→ g(θ,ϕ)|ψ〉 6= 0
for all contexts whose measurements are all assigned +1. Indeed, the same is true if
(VII.1) is relaxed to simply say that gi(π−θ, ϕ+π) = −1⇒ gi(θ, ϕ) = +1. Incidentally,
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even though we shall not need this fact, note that if there is any global assignment
consistent with the model, there will be one that satisfies (VII.1), for this would only
require a subset of the conditions.

We conclude this subsection with two observations regarding these particular quan-
tum empirical models. First, note that local unitaries (LU) on the state don’t affect
non-locality, or indeed strong non-locality, of the resulting empirical model. This follows
from the fact that by moving from the Schrödinger to the Heisenberg picture, we may
equivalently leave the state fixed and apply the corresponding unitaries to the sets of
available local measurements. Since the available local measurements are all the pro-
jective one-qubit measurements, a local unitary, which can be seen as a rotation of the
Bloch sphere, merely maps this set to itself. Secondly, if we are dealing with a product
state of n-qubits, |ψ〉 = |ψ1〉⊗· · ·⊗|ψn〉, then the resulting empirical model is necessarily
local. This is because the probabilities factorise:

Prob|ψ〉(o|(θ,ϕ)) = |〈θ,ϕ 7→ o|ψ〉|2 =

∣∣∣∣∣
n∏

i=1

〈θi, ϕi 7→ oi|ψi〉
∣∣∣∣∣

2

=

n∏

i=1

|〈θi, ϕi 7→ oi|ψi〉|2 .

2.2. SLOCC classes of three-qubit states. A classification of multipartite quan-
tum states by their degree of entanglement is given by the notion of LOCC (local op-
erations and classical communication) equivalence [BBPS96, Nie99, KLM99]. A
protocol is said to be LOCC if it is of the following form: each party may perform
local measurements and transformations on their system, and may communicate mea-
surement outcomes to the other parties, so that local operations may be conditioned
on measurement outcomes anywhere in the system. A state |ψ1〉 is LOCC-convertible
to a state |ψ2〉 if there exists a LOCC protocol that deterministically produces |ψ2〉
when starting with |ψ1〉. Intuitively, such a protocol cannot increase the degree of en-
tanglement and so we think of |ψ1〉 as being at least as entangled as |ψ2〉. The notion
of LOCC-convertibility defines a preorder1 on multipartite states that in turn yields a
notion of LOCC-equivalence of states: the states |ψ〉 and |φ〉 are LOCC-equivalent when
|ψ〉 is LOCC-convertible to |φ〉 and vice versa. The LOCC-convertibility preorder then
naturally defines a partial order on the collection of LOCC equivalence classes of states.

A coarser classification of multipartite quantum states is given by relaxing the re-
quirement that our conversion protocols succeed deterministically to the requirement
that they succeed with non-zero probability [BPR+00]. The previous paragraph holds
true for SLOCC (stochastic LOCC) mutatis mutandis. Note that equivalence of two
states under LU transformations implies their SLOCC-equivalence. More generally, two
states are SLOCC-equivalent if and only if they are related by an invertible local operator
(ILO) [DVC00].

Dür, Vidal, and Cirac [DVC00] classified the SLOCC classes of three-qubit systems
and found there to be exactly six classes (see Figure VII.1). The GHZ and W states are
representatives of the two maximal, non-comparable classes. Three intermediate classes
are characterised by bipartite entanglement between two of the qubits, which are in a
product with the third. Finally, the minimal class is given by product states.

1A preorder is a reflexive and transitive relation; i.e. it is like a partial order except that it can deem
two distinct elements equivalent.
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GHZ W

A-BC B-AC C-AB

A-B-C

Figure VII.1. Hasse diagram of the partial order of three-qubit
SLOCC classes.

By the last observation in the previous section, it is obvious that a state in the A–B–
C class cannot realise non-locality, and that the case of a state in one of the intermediate
classes can be reduced to that of the two qubits that are entangled. Hence, we shall first
discuss strong non-locality for two-qubit states and then proceed in turn to each of the
maximal SLOCC classes of three-qubit states, W and GHZ.

3. Two-qubit states are not strongly non-local

Every two-qubit state can be written, up to LU, uniquely as

(VII.2) |ψ〉 = cos δ |00〉+ sin δ |11〉 ,
where δ ∈ [0, π4 ]. The state (VII.2) is either: the product state |00〉, which is obviously
non-contextual since it is separable, when δ = 0; or an entangled state in the SLOCC
class of the Bell state |Φ+〉 = 1√

2
(|00〉+ |11〉), when δ > 0.

Theorem VII.1. Two-qubit states do not admit strongly non-local behaviour.

Proof. This proof rests on defining an explicit global assignment g : LMtLM→ O
consistent with the possible events of the empirical model. More specifically, the map g
is obtained by assigning outcome +1 to one hemisphere of the Bloch sphere, and −1 to
the other, with special conditions on the poles and a slight asymmetry between the two
parties.

We start by computing the amplitude 〈θ,ϕ|ψ〉 of measuring (θ,ϕ) = 〈(θ1, ϕ1), (θ2, ϕ2)〉
on the general state (VII.2) and obtaining joint outcome 〈+1,+1〉:

〈θ,ϕ|ψ〉 = cos δ cos
θ1

2
cos

θ2

2
+ sin δ sin

θ1

2
sin

θ2

2
e−i(ϕ1+ϕ2)

Since δ = 0 gives rise to a product state, we will assume δ 6= 0.
We define the following maps:

g1 : LM −→ O :: (θ, ϕ) 7−→
{

+1 if θ = π or
(
θ 6= 0 and ϕ ∈

[
−π

2 ,
π
2

))

−1 if θ = 0 or
(
θ 6= π and ϕ ∈

[
π
2 ,

3π
2

))

g2 : LM −→ O :: (θ, ϕ) 7−→
{

+1 if θ = π or
(
θ 6= 0 and ϕ ∈

(
−π

2 ,
π
2

])

−1 if θ = 0 or
(
θ 6= π and ϕ ∈

(
π
2 ,

3π
2

])

and let g := g1 t g2 : LMtLM −→ O be a global assignment. A graphical representation
of the map g can be found in Figure VII.2.
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|0〉

|1〉

|0〉

|1〉

ϕ = 0

ϕ = π
2

ϕ = −π
2

ϕ = π

g1 g2

ϕ = −π
2

ϕ = π
2

ϕ = 0ϕ = π

Figure VII.2. Graphical representation of the global assignment g. The
shaded region corresponds to the measurements mapped to +1 by g.

Let (θ,ϕ) be a context whose individual measurements are mapped to +1 by g (see
Section 2.1 for why this is sufficient). In particular, it holds that θ1, θ2 6= 0. Since δ 6= 0,
we have

s := sin δ sin
θ1

2
sin

θ2

2
> 0 and c := cos δ cos

θ1

2
cos

θ2

2
≥ 0.

If θ1 = π or θ2 = π, then c = 0, which implies 〈θ,ϕ|ψ〉 = se−i(ϕ1+ϕ2) 6= 0. Otherwise,

ϕ1 ∈
[
−π

2 ,
π
2

)
, ϕ2 ∈

(
−π

2 ,
π
2

]
and 〈θ,ϕ|ψ〉 = c+ se−i(ϕ1+ϕ2) is the sum of a positive real

number and a non-zero complex number. For it to be zero, the latter must be real and
negative, hence

ϕ1 + ϕ2 = π mod 2π,

which cannot be satisfied in the domain of ϕ1, ϕ2. �

4. W-SLOCC states are not strongly non-local

A general state in the SLOCC class of the W state |W〉 = 1√
3
(|001〉+ |010〉+ |100〉)

can be written, up to LU, as

(VII.3) |ψ
W
〉 =
√
a|001〉+

√
b|010〉+

√
c|100〉+

√
d|000〉,

where a, b, c ∈ R>0 and d := 1− (a+ b+ c) ∈ R≥0. Indeed, we can obtain |ψ
W
〉 from |W〉

by applying the following ILO to |W〉:
(√

a
√
b

0
√
c

)
⊗
(√

3 0

0
√

3b√
a

)
⊗ I.

In order to prove that W-SLOCC states are not strongly non-local, we will need the
following lemma, which generalises the argument used in the proof of Theorem VII.1 to
show that the amplitude could not be zero.

Lemma VII.2. Let z1, . . . , zm ∈ C, and r ∈ R≥0. If

(VII.4)
m∑

i=1

zi + r = 0,
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then one of the following holds: (i) z1 = · · · = zm = r = 0; (ii) there exists a zk ∈ R<0;
(iii) there exists 1 ≤ k, l ≤ m such that Arg(zk) ∈ (0, π) and Arg(zl) ∈ (−π, 0).

Proof. If all the zi are real, then, since r is non-negative, we must have either (i)
or (ii). Now, suppose there is a 1 ≤ k ≤ m such that Im(zk) 6= 0. By (VII.4), we have∑n

i=1 Im(zi) = 0. Thus,
∑

i 6=k
Im(zi) = −Im(zk) ⇔

∑

i 6=k
|zi| sin(Arg(zi)) = −|zk| sin(Arg(zk)).

Hence, there exists at least one l 6= k for which the sign of Im(zl) is opposite to that of
Im(zk), which implies that zl and zk are in different sides of the real axis, implying the
condition about Arg(zl) and Arg(zk). �

Theorem VII.3. States in the SLOCC class of W do not admit strongly non-local
behaviour.

Proof. Similarly to the bipartite case of Theorem VII.1, the key idea of the proof
is the definition of a global assignment g : LM t LM t LM → O whose restriction
to each context is contained in the support of the model. Once again, g is obtained
by partitioning the Bloch sphere into two hemispheres to which are assigned different
outcomes, with asymmetric polar conditions across the parties.

We start by computing the amplitude 〈θ,ϕ|ψ
W
〉 of measuring (θ,ϕ) on the general

state (VII.3) and obtaining joint outcome 〈+1,+1,+1〉:

〈θ,ϕ|ψ
W
〉 =
√
a

(
cos

θ1

2
cos

θ2

2
sin

θ3

2
e−iϕ3

)

︸ ︷︷ ︸
=:z3∈C

+
√
b

(
cos

θ1

2
cos

θ3

2
sin

θ2

2
e−iϕ2

)

︸ ︷︷ ︸
=:z2∈C

+
√
c

(
cos

θ2

2
cos

θ3

2
sin

θ1

2
e−iϕ1

)

︸ ︷︷ ︸
=:z1∈C

+
√
d

(
cos

θ1

2
cos

θ2

2
cos

θ3

2

)

︸ ︷︷ ︸
=:r∈R≥0

.

(VII.5)

Define the following functions:

h = g1 = g2 : LM −→ O :: (θ, ϕ) 7−→
{

+1 if θ = 0 or (θ 6= π and ϕ ∈ (−π, 0])

−1 if θ = π or (θ 6= 0 and ϕ ∈ (0, π])

g3 : LM −→ O :: (θ, ϕ) 7−→
{

+1 if θ = π or (θ 6= 0 and ϕ ∈ (−π, 0])

−1 if θ = 0 or (θ 6= π and ϕ ∈ (0, π])

and let g := h t h t g3 : LM t LM t LM −→ O be a global assignment. The map g is
graphically represented in Figure VII.3.

Let (θ,ϕ) be a context whose individual measurements are mapped to +1 by g. In
particular, θ1, θ2 6= π and θ3 6= 0. Since a > 0, we have

|z3| =
√
a cos

θ1

2
cos

θ2

2
sin

θ3

2
> 0,

which implies z3 6= 0. Now, if θ3 = π, then z1 = z2 = r = 0 and 〈θ,ϕ|ψ
W
〉 = z3 6= 0.
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φ = 0

φ = π

φ = −π
2

φ = π
2

|1〉

|0〉 |0〉

|1〉

φ = 0

φ = −π
2

φ = π
2

h g3

φ = π

Figure VII.3. Graphical representation of the global assignment g. The
shaded region corresponds to the measurements mapped to +1 by g.

Otherwise, θ3 6= π and ϕ3 ∈ (−π, 0], implying that Arg(z3) = −ϕ3 ∈ [0, π). For
i = 1, 2, we either have θi = 0 or ϕi ∈ (−π, 0], implying that zi = 0 or Arg(zi) = −ϕi ∈
[0, π). Using Lemma VII.2, we conclude that 〈θ,ϕ|ψ

W
〉 6= 0: (i) fails because z3 6= 0,

while (ii) and (iii) fail because Arg(zi) ∈ [0, π) whenever zi 6= 0. �

5. Strong non-locality in the SLOCC class of GHZ

5.1. The n-partite GHZ state and local equatorial measurements. Before
we tackle the general case of GHZ-SLOCC states, we consider the GHZ state itself. We
show that equatorial measurements are the only relevant ones in the study of strong
non-locality for this state. In fact, this holds for the general n-partite GHZ state,

|GHZ(n)〉 :=
1√
2

(
|0〉⊗n + |1〉⊗n

)
,

and consequentely, in light of the remark towards the end of Section 2.1, for any state
in its LU class. In the next section, we generalise this result to arbitrary states in the
SLOCC class of the tripartite GHZ state, and study conditions for strong non-locality
within this class.

Theorem VII.4. Any strongly non-local behaviour of |GHZ(n)〉 can be witnessed
using only equatorial measurements. That is, there is a global assignment g consistent
with the model e|GHZ(n)〉 in all contexts that are not exclusively composed of equatorial
measurements.

Proof. The proof is achieved using a construction of a global assignment simi-
lar to the ones previously discussed. First, we derive the formula for the amplitude
〈θ,ϕ|GHZ(n)〉 of measuring (θ,ϕ) and obtaining joint outcome 〈+1, . . . ,+1〉:

〈θ,ϕ|GHZ(n)〉 =
1√
2

(
n∏

i=1

cos
θi
2

+ e−i
∑n
i=1 ϕi

n∏

i=1

sin
θi
2

)
.

Consider the function

h : LM −→ O :: (θ, ϕ) 7−→
{

+1 if θ ∈
[
0, π2

]

−1 if θ ∈
(
π
2 , π

]
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i.e. h assigns +1 to the equator and the northern hemisphere, and −1 to the southern
hemisphere. Let g :=

⊔n
i=1 h :

⊔n
i=1 LM −→ O. We show that this global assignment

is consistent with the probabilities at all contexts that include at least a non-equatorial
measurement.

Let (θ,ϕ) be a context whose measurements are mapped to +1 by g. In particular,
θi ≤ π

2 for all i. If 〈θ,ϕ|GHZ(n)〉 = 0, then

n∏

i=1

cos
θi
2

= −e−i(
∑n
i=1 ϕi)

n∏

i=1

sin
θi
2

Taking the modulus of both sides and dividing the right-hand by the left-hand side
yields:

n∏

i=1

tan
θi
2

= 1

which is verified if and only if θi = π
2 for all 1 ≤ i ≤ n. �

5.2. Balanced GHZ-SLOCC states and local equatorial measurements. A
general state in the SLOCC class of the GHZ state can be written, up to LU, as

(VII.6) |ψ
GHZ
〉 =
√
K(cos δ |000〉+ sin δeiΦ |ϕ1〉 |ϕ2〉 |ϕ3〉),

where K = (1 + 2 cos δ sin δ cosα cosβ cos γ cos Φ)−1, and

|ϕ1〉 = cosα |0〉+ sinα |1〉 , |ϕ2〉 = cosβ |0〉+ sinβ |1〉 , |ϕ3〉 = cos γ |0〉+ sin γ |1〉 ,
for some δ ∈ (0, π/4], α, β, γ ∈ (0, π/2], and Φ ∈ [0, 2π). Indeed, |ψ

GHZ
〉 is obtained from

|GHZ〉 via the ILO

√
2K

(
cos δ sin δ cosαeiΦ

0 sin δ sinαeiΦ

)
⊗
(

1 cosβ
0 sinβ

)
⊗
(

1 cos γ
0 sin γ

)
.

In order to prove the results of this section, it is convenient to describe |ψ
GHZ
〉 in a

slightly different form. By applying local unitaries, we can rewrite it as

(VII.7) |ψ
GHZ
〉 =
√
K(cos δ |vλ1〉 |vλ2〉 |vλ3〉+ sin δeiΦ |wλ1〉 |wλ2〉 |wλ3〉),

where

(VII.8) |vλ〉 = |λ, 0〉 = cos
λ

2
|0〉+ sin

λ

2
|1〉 , |wλ〉 = |π − λ, 0〉 = sin

λ

2
|0〉+ cos

λ

2
|1〉

for some λi ∈ [0, π2 ), i = 1, 2, 3. The action of this LU can be thought of as choosing a new
orthonormal basis for each qubit: a graphical illustration of this process can be found
in Figure VII.4. A key advantage of this LU-equivalent description of a general state
in the GHZ SLOCC class is that the equator of the i-th qubit’s Bloch sphere coincides
with the great circle that bisects the i-th components of the two unique product states
that form a linear decomposition of the state. Note that any state in the GHZ SLOCC
class thus uniquely defines an equator in each Bloch sphere. It is to the measurements
lying on these that we refer as being equatorial.
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|0〉

|1〉

|0′〉

|1′〉

|ϕ〉

λ

|1〉

|0′〉

|1′〉

|v〉 = |0〉

|w〉 = |ϕ〉

|0〉

|1〉

|ϕ〉

λ

Figure VII.4. Choice of a new basis {|0′〉 , |1′〉} for each qubit that
allows the state to be described in the form (VII.7).

Definition VII.5. We say that a state in the GHZ SLOCC class is balanced if
the coefficients in its unique linear decomposition into a pair of product states have the
same complex modulus – when the state is written in the form (VII.7), this corresponds
to having δ = π

4 , hence cos δ = sin δ = 1√
2
.

Lemma VII.6. Let |vλ〉 and |wλ〉 be given as in (VII.8), with λ ∈ [0, π/2), and
consider a measurement (θ, ϕ) with θ ∈ [0, π/2), i.e. with +1 eigenstate in the ‘northern
hemisphere’. Then | 〈θ, ϕ|vλ〉 | > | 〈θ, ϕ|wλ〉 |.

Proof. We have

| 〈θ, ϕ|vλ〉 | > | 〈θ, ϕ|wλ〉 | ⇔
∣∣∣∣cos

θ

2
cos

λ

2
+ sin

θ

2
sin

λ

2
e−iϕ

∣∣∣∣ >
∣∣∣∣cos

θ

2
sin

λ

2
+ sin

θ

2
cos

λ

2
e−iϕ

∣∣∣∣

⇔
∣∣∣∣1 + tan

λ

2
tan

θ

2
e−iϕ

∣∣∣∣ >
∣∣∣∣tan

λ

2
+ tan

θ

2
e−iϕ

∣∣∣∣ ,

where, for the last step, we divide both sides by cos λ2 cos θ2 , which is never 0 since

λ, θ ∈ [0, π/2). Let x := tan λ
2 and y := tan θ

2 , then

|1 + xye−iϕ| > |x+ ye−iϕ| ⇔ |1 + xy(cosϕ− i sinϕ)| > |x+ y(cosϕ− i sinϕ)|
⇔ 1 + 2xy cosϕ+ x2y2 > x2 + 2xy cosϕ+ y2

⇔ 1 + x2y2 − x2 − y2 > 0⇔ (1− x2)(1− y2) > 0

and this is always verified since x, y ∈ [0, 1) by the definition of the domains of θ and
λ. �

We use this lemma to generalise Theorem VII.4 to arbitrary states in the SLOCC
class of the tripartite GHZ state.

Theorem VII.7. A state in the SLOCC class of GHZ that displays strong non-
locality must be balanced. Moreover, any such strongly non-local behaviour can be wit-
nessed using only equatorial measurements.

Proof. The proof of this theorem can be derived by taking advantage of the special
properties of balanced states and combining them with the argument used for Theorem
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VII.4. As before, we compute the amplitude 〈θ,ϕ|ψ
GHZ
〉:

〈θ,ϕ|ψ
GHZ
〉 =
√
K

(
cos δ

3∏

i=1

〈θ,ϕ|vλi〉+ sin δeiΦ
3∏

i=1

〈θ,ϕ|wλi〉
)

Take h : LM −→ O as defined in the proof of Theorem VII.4 and let g := h t h t h. We
claim that g is consistent with the empirical probabilities at all contexts that include at
least a non-equatorial measurement.

Let (θ,ϕ) be a context whose measurements are all mapped to +1 by g. In particular,
θi ≤ π

2 for i = 1, 2, 3. If 〈θ,ϕ|ψ
GHZ
〉 = 0, then

cos δ
3∏

i=1

〈θ,ϕ|vλi〉 = − sin δeiΦ
3∏

i=1

〈θ,ϕ|wλi〉 ,

and taking the complex modulus of both sides,

cos δ
3∏

i=1

| 〈θ,ϕ|vλi〉 | = sin δ
3∏

i=1

| 〈θ,ϕ|wλi〉 |

Since δ ∈ (0, π/4] we have cos δ ≥ sin δ, with equality iff δ = π
4 . By Lemma VII.6, we

conclude that this equation can only be satisfied if δ = π
4 (i.e. the state is balanced) and

θi = π
2 for i = 1, 2, 3 (i.e. all the measurements are equatorial). �

5.3. Further restrictions. The theorem above allows us to reduce the scope of
our search for strongly non-local behaviour in the SLOCC class of GHZ to: (i) balanced
states, i.e. those of the form

|Bλ,Φ〉 :=

√
K

2
(|vλ1〉 |vλ2〉 |vλ3〉+ eiΦ |wλ1〉 |wλ2〉 |wλ3〉),

determined by a tuple λ = 〈λ1, λ2, λ3〉 ∈
[
0, π2

)3
and a phase Φ, where |vλ〉 and |wλ〉 are

given as in (VII.8); (ii) local equatorial measurements in the sense defined above, i.e.
those with +1 eigenstate

|ϕ〉 :=
∣∣∣π
2
, ϕ
〉

=
1√
2

(|0〉+ eiϕ |1〉)

for ϕ ∈ [0, 2π). Given this premise, we are interested in understanding when the ampli-
tude function 〈ϕ|Bλ,Φ〉 is 0. We have:

〈ϕ|Bλ,Φ〉 = 0⇔
3∏

i=1

〈ϕi|vλi〉+ eiΦ
3∏

i=1

〈ϕi|wλi〉 = 0

⇔
3∏

i=1

〈ϕi|wλi〉 = −e−iΦ
3∏

i=1

〈ϕi|vλi〉

⇔
3∏

i=1

〈ϕi|wλi〉 = −e−iΦ
3∏

i=1

e−iϕi〈ϕi|wλi〉(VII.9)
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⇔
3∏

i=1

eiϕi 〈ϕi|wλi〉 〈ϕi|wλi〉
−1

= −e−iΦ

⇔
3∏

i=1

eiϕi
( 〈ϕi|wλi〉
| 〈ϕi|wλi〉 |

)2

= −e−iΦ

⇔
3∑

i=1

(ϕi + 2Arg 〈ϕi|wλi〉) = π − Φ mod 2π

where to get (VII.9) we use

〈ϕ|vλ〉 =
1√
2

(
cos

λ

2
+ sin

λ

2
e−iϕ

)
=
e−iϕ√

2

(
cos

λ

2
eiϕ + sin

λ

2

)
= e−iϕ〈ϕ|wλ〉.

and for the last step we take the argument of two complex numbers of norm 1. Defining

β(λ, ϕ) := ϕ+ 2Arg 〈ϕ|wλ〉 = ϕ− 2 arctan

(
sin λ

2 sinϕ

cos λ2 + sin λ
2 cosϕ

)
,

we can rewrite the condition above as

(VII.10) 〈ϕ|Bλ,Φ〉 = 0 ⇔
3∑

i=1

β(λi, ϕi) = π − Φ mod 2π

Proposition VII.8. If λ1 + λ2 + λ3 >
π
2 , the state |Bλ,0〉 does not admit strongly

non-local behaviour.

Proof. We start by showing that the map β(λ, ϕ), seen as a function of ϕ, is strictly
increasing for all λ ∈

[
0, π2

)
. To see this, it is sufficient to compute the derivative:

∀λ ∈
[
0,
π

2

)
, ϕ ∈ [0, 2π).

∂

∂ϕ
β(λ, ϕ) =

cosλ

1 + cosϕ sinλ
.

This is strictly positive since cosλ > 0 and cosϕ sinλ > −1 since 0 ≤ sinλ < 1.
Now, define a function h : [0, 2π) −→ O by

h(ϕ) :=

{
+1 if ϕ ∈

(
−π

2 ,
π
2

]

−1 if ϕ ∈
(
π
2 ,

3π
2

]

and let g := ht ht h. Take a context ϕ whose measurements are assigned +1 by g, i.e.
ϕi ∈

(
−π

2 ,
π
2

]
. Using the fact that β(λ,−) is increasing, we have

∣∣∣∣∣
3∑

i=1

β(λi, ϕi)

∣∣∣∣∣ ≤
3∑

i=1

|β(λi, ϕi)| ≤
3∑

i=1

β
(
λi,

π

2

)
=

3∑

i=1

(π
2
− λi

)
=

3π

2
−

3∑

i=1

λi

<
3π

2
− π

2
= π.

Consequently,
∑3

i=1 β(λi, ϕi) 6= π mod 2π, hence by (VII.10), 〈ϕ|Bλ,0〉 6= 0 as required.
�
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6. A family of strongly non-local three-qubit models

Theorem VII.9. Let m ∈ N>0 and N := 2m an even number. Consider the tripartite
measurement scenario with X1 = X2 = {0, . . . , N − 1} and X3 =

{
0, N2

}
. The empirical

model determined by the state
∣∣B〈0,0,λN 〉,0

〉
, where λN := π

2 − π
N , with the measurement

label i at each site interpreted as the local equatorial measurement cos iπN σX + sin iπ
N σY

(i.e. the measurement with +1 eigenstate
∣∣π

2 , i
π
N

〉
), is strongly non-local.

Proof. This proof rests on deriving, using the algebraic structure of Z2N , a (condi-
tional) system of linear equations over Z2 that must be satisfied by any global assignment
consistent with the possible events of the empirical model, yet does not admit any solu-
tion. This seems to be closely related to an AvN argument, but does not quite fit this
setting. The reason is that the system of linear equations that a global assignment g
must satisfy depends on the value that g assigns to a particular measurement. In that
sense, this could be seen as a conditional version of an AvN argument.

Consider a context 〈i, j, k〉 ∈ X1 ×X2 ×X3, with i, j ∈ {0, . . . , N − 1}, k ∈ {0,m},
and a triple of outcomes 〈ai, bj , ck〉 ∈ Z3

2 for the measurements in the context.2 From
equation (VII.10), we know that measuring 〈i, j, k〉 and obtaining outcomes 〈ai, bj , ck〉
has probability zero if and only if

(VII.11) β
(

0, i
π

N
+ aiπ

)
+ β

(
0, j

π

N
+ bjπ

)
+ β

(π
2
− π

N
, k
π

N
+ ckπ

)
= π mod 2π

With simple computations, we can show that β(0, ϕ) = ϕ for all ϕ ∈ [0, 2π), and that

(VII.12) β
(π

2
− π

N
, c0π

)
= c0π and β

(π
2
− π

N
,
π

2
+ cmπ

)
= (−1)cm

π

N
.

An arbitrary global assignment is defined by choosing outcomes for all the measure-
ments in X1 tX2 tX3:

a0, . . . , aN−1, b0, . . . , bN−1, c0, cm ∈ Z2.

By (VII.11) and (VII.12), such an assignment is consistent with the probabilities of the
empirical model at every context if and only if

{
i πN + aiπ + j πN + bjπ + c0π 6= π mod 2π ∀i, j ∈ {0, . . . , N − 1}
i πN + aiπ + j πN + bjπ + (−1)cm π

N 6= π mod 2π ∀i, j ∈ {0, . . . , N − 1}
We will proceed to show that this system admits no solution, which implies strong
non-locality. By identifying the group

{
k πN | k ∈ Z2N

}
with Z2N , we can equivalently

rewrite {
i+ aiN + j + bjN + c0N 6= N mod 2N ∀i, j
i+ aiN + j + bjN + (−1)cm 6= N mod 2N ∀i, j

⇔
{
i+ j +N(ai ⊕ bj ⊕ c0) 6= N mod 2N ∀i, j
i+ j + (−1)cm +N(ai ⊕ bj) 6= N mod 2N ∀i, j

2For this proof, we have relabelled +1,−1,× as 0, 1,⊕, just like we did for the AvN arguments of
Chapter VI
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⇔




ai ⊕ bj ⊕ c0 = 0 ∀i, j s.t. i+ j = 0

ai ⊕ bj ⊕ c0 = 1 ∀i, j s.t. i+ j = N

ai ⊕ bj = 0 ∀i, j s.t. i+ j + (−1)cm = 0

ai ⊕ bj = 1 ∀i, j s.t. i+ j + (−1)cm = N.

⇔




a0 ⊕ b0 ⊕ c0 = 0

ai ⊕ bN−i ⊕ c0 = 1 ∀i s.t. 1 ≤ i ≤ N − 1

ai ⊕ bN−i−1 = 1 ∀i s.t. 0 ≤ i ≤ N − 1 if cm = 0

a0 ⊕ b1 = 0

a1 ⊕ b0 = 0 if cm = 1

ai ⊕ bN+1−i = 1 ∀i s.t. 2 ≤ i ≤ N − 1

Since N = 2m is even, if we sum all the N equations from the first two lines we obtain

N−1⊕

i=0

ai ⊕
N−1⊕

j=0

bj = 1.

On the other hand, if we sum any of the other two groups of N equations we get

N−1⊕

i=0

ai ⊕
N−1⊕

j=0

bj = 0,

showing that the system is unsatisfiable regardless of whether cm = 0 or cm = 1. �

This new family of strongly non-local three-qubit systems is tightly connected to
a construction on two-qubit states due to Barrett, Kent, and Pironio [BKP06]. In
particular, our empirical models restricted to the first two parties coincide, up to a
rotation of the equatorial measurements, to those used in [BKP06]. The local fraction of
these bipartite empirical models tends to zero as the number of measurements increases,
but obviously none of them are strongly non-local. Despite the lack of strong non-locality
in the bipartite systems constructed in [BKP06], we show that it is possible to witness
strongly non-local behaviour with a finite amount of measurements by adding a third
qubit with some entanglement, and only two local measurements – Pauli X and Y –
available on it. An interesting aspect is that there is a trade-off between the number
of measuring settings available on the first two qubits and the amount of entanglement
between the third qubit and the system comprised of the other two.

We illustrate this by computing the bipartite von Neumann entanglement entropy
between the first two qubits and the third, i.e. the von Neumann entropy of the reduced
state of

∣∣B〈0,0,λ〉,0
〉

corresponding to the third qubit, as a function of λ. Let ρABC denote
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the density matrix of
∣∣B〈0,0,λ〉,0

〉
. The reduced density matrix corresponding to the third

qubit is

ρC(λ) = TrAB[ρABC ] = 〈00|ABρABC |00〉
AB

+ 〈11|ABρABC |11〉
AB

=
1

2

(
1 2 cos λ2 sin λ

2
2 cos λ2 sin λ

2 1

)
.

The eigenvalues of ρC(λ) are ε±(λ) := 1
2(1 ± sinλ). Hence, by rewriting ρC(λ) in its

eigenbasis, we can easily compute the von Neumann entropy SC as a function of λ:

SC(λ) := −Tr [ρC(λ) log2 ρC(λ)] = −ε+(λ) log2 ε+(λ)− ε−(λ) log2 ε−(λ)

The plot of the function SC(λ) is shown in Figure VII.5. Notice that the entangle-

��� ��� ���

���

���

���

���

���

Figure VII.5. Von Neumann entanglement entropy between the third
qubit of

∣∣B〈0,0,λ〉,0
〉

and the other two as a function of λ.

ment entropy is maximal, i.e. equal to 1, when N = 2, in which case λ2 = 0 and so∣∣B〈0,0,λ2〉,0
〉

= |GHZ〉. This corresponds to the usual GHSZ argument with Pauli mea-
surements X,Y for each qubit. On the other hand, S(λ) becomes arbitrarily small as
N →∞, when λN → π

2 and
∣∣B〈0,0,λN 〉,0

〉
approaches the state |Φ+〉 ⊗ |+〉, which has no

entanglement between the first two qubits and the third.

Discussion

Our analysis of strong non-locality for three-qubit systems has been quite extensive.
We shall discuss a number of directions for further research.

(1) First, it remains to complete our classification of all instances of three-qubit
strong non-locality.

(2) The family of strongly non-local models introduced in Section 6 does not fit the
framework of AvN arguments exactly. Nevertheless, our proof of strong non-
locality does make essential use of the algebraic structure of Z2N (or the circle
group), in what amounts to a conditional version of an AvN argument. One
may wonder whether a similar property will hold for all instances of three-qubit
strong non-locality.

(3) This family also highlights an inter-relationship between non-locality, entan-
glement and the number of measurements available, and raises the question of
whether this is an instance of a more general relationship.
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(4) Finally, while the present results provide necessary conditions for strong non-
locality in three-qubit states, the more general question of characterising strong
non-locality of n-qubit states, where little is known about SLOCC classes, re-
mains open.





CHAPTER VIII

Conclusion

In this thesis, we have aimed to develop a solid understanding of the mathematical
structure of logical forms of contextuality, both in quantum physics and in more general
terms. This analysis has been conducted following four different research paths: the
study of non-locality and contextuality as a topological property (Chaptets III and IV),
the search for instances of contextual behaviour outside of quantum mechanics (Chapter
V), the development of new techniques to detect contextuality (Chapters III-V), and the
study of logical forms of contextuality exhibited by multi-qubit states (Chapters VI and
VII). Our work in each of these areas has led to the establishment of interesting new
results and novel perspectives.

The outcomes of Chapter III, despite their restrictive trait, represent an impor-
tant step forward in understanding the cohomology theory developed in [AMB12,
ABK+15]. The investigation of the structure of false negatives carried out here is
the key element leading to the refinement introduced later, in Chapter IV. This study
has brought in its wake new developments of the sheaf cohomology framework, such as
the hierarchy of higher cohomology obstructions and the reinterpretation of the usual
obstructions as F-torsors. Although these results are not immediately useful for the
purposes of this thesis, they offer new theoretical insights on the general question of ex-
tending local sections of a presheaf to global ones. In particular, we identify the following
possible research directions that may be worth exploring:

• Although higher obstructions cannot be used to study contextuality, they do
carry information concerning the local extendability of sections. It would be
interesting to determine whether these can be used to study signalling instead.
In particular, one might hope to infer new structural results on models that
violate the no-signalling condition. Examples of such models are considered,
for instance, in the “contextuality by default” framework [DKC16], which is
particularly suited to model contextual behaviour in psychology experiments.
• More generally, it would be interesting to determine whether higher obstruc-

tions may be used to characterise the extendability of local sections of arbitrary
presheaves. Since higher cohomology groups play a substantial role in general
obstruction theory [Ste51, EM54], which concerns the extendability of con-
tinuous maps in topology, it seems reasonable to envision applications of the
hierarchy presented in this thesis to study the extendability properties of any
given presheaf.
• The new perspective on cohomology obstructions provided by F-torsors is still

to be explored. This formalism presents intriguing connections with gauge
theory, which seems to be the natural framework to formally capture the bundle
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diagram description of empirical models. More specifically, one might hope to
reach a compelling definition of empirical models as principal bundles, and
apply alternative tools of topology, such as holonomy theory, to characterise
contextuality.

In Chapter IV, we have presented a complete cohomology invariant for non-locality
and contextuality, showing that, in most cases, these phenomena can be fully charac-
terised using topological tools. We proved that the invariant works for a very large class
of empirical models, which includes all the known instances of false negatives. However,
there is still considerable margin for improvement. We believe future research efforts
should be directed towards completing the following tasks:

• Proving Conjecture IV.41. This is certainly the main open question left by
Chapter IV. A crucial step to achieve this result is understanding the cyclic
contextuality property (CCP). A thorough analysis of this property would either
rule out the existence of any model violating it, or lead either to the key to the
proof of the conjecture, or to a counterexample.
• Developing computational methods based on sheaf cohomology to detect con-

textuality. Computational algebraic topology has been increasingly used in
various fields of science, where sheaf cohomology and particularly persistent
(co)homology [ELZ02, CZCG05] have found remarkable applications to ar-
eas as diverse as image analysis [BEK10, CIdSZ08], signal analysis [PH15],
fractal geometry [MS12], viral evolution [CCR13] and bacteria classification
[OD16]. It is thus natural to seek to develop new topological algorithms, based
on the cohomology invariant introduced in this thesis, to search for contextual
behaviour in large datasets.

In Chapter V, we have introduced a general definition of contextuality using the
flexible language of valuation algebras, which allows to conveniently capture its nature
as a fundamental gap between local agreement and global disagreement in information
sources, in analogy with the topological interpretation of local consistency vs global
inconsistency. This new formulation has provided a common theory for the examples of
contextual behaviour outside quantum mechanics observed in previous work [Abr13a,
AGK13, AS14], and thus constitutes a promising attempt to develop a general theory
of contextual semantics. Moreover, it provides inspiration for the potential establishment
of numerous other examples of contextuality beyond quantum theory, which may arise
in any of the countless domains whose essence can be captured by valuation algebras.
This potential remains largely unexplored, and shall be investigated in future research.
In addition, we plan to take advantage of the formalism to translate theorems and
results about disagreement across different valuation algebras. Our goal is both to
develop new techniques for the study of contextual behaviour, as exemplified e.g. by
the algorithms presented in this thesis, and to find new applications of the current
contextuality-detection methods. For instance, consider Example V.18, where we showed
that the unsolvability of a graph colouring problem is mathematically equivalent to
contextuality. This connection could be exploited to translate general results on graph
colourability to contextuality: to mention an example, although hardly relevant, the
four-colour theorem can be rephrased as a statement about the contextuality of certain
models defined over scenarios whose simplicial complex representation is a non-planar
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graph. On the other hand, the same connection could lead to the development of a
cohomology theory to study graph colourability, following the methods introduced in
Chapter IV.

The new algorithms for the detection of logical forms of contextuality developed at
the end of Chapter V are a prime example of the usefulness of the valuation algebraic
framework. By translating the problem of recognising contextual behaviour into an
inference problem, we have been able to take advantage of the theory of generic inference
to construct new methods to detect logical and strong contextuality. We also proved
that these algorithms have better worst-case complexity than the current state of the
art for the detection of non-locality in (n, k, l) scenarios. Unfortunately, due to time
constraints, we have not been able to implement them in a programming language. This
will be one of the prime goals of our future research on the subject.

After having explored logical forms of contextuality from a highly general and ab-
stract viewpoint, the two last chapters of the thesis focus on contextuality as a purely
quantum phenomenon. The results presented here offer new perspectives and potential
resources for quantum computation, with a large number of new examples of multi-
qubit states exhibiting strong contextuality. In Chapter VI, we introduced a complete
characterisation of All-vs-Nothing arguments for stabiliser states, which is expressed
through the combinatorial concept of AvN triple. This has allowed to describe a general
method to identify all instances of All-vs-Nothing contextuality for stabiliser states on
any number of qubits. This result may be of particular interest for the development
of measurement based quantum computation, which makes use of strongly contextual
stabiliser states as fundamental resources to achieve faster computation. Moreover, it
has led to the establishment of a new structural result, namely that any AvN argument
can essentially be reduced to Mermin’s original proof of the strong contextuality of the
GHZ state. We identify two possible improvements of the results presented here:

• Extending the characterisation from maximal stabiliser subgroups – which cor-
respond to stabiliser states – to arbitrary stabiliser subgroups. We believe this
could be achieved by taking advantage of graph codes [SW01a], a natural
generalisation of the graph state formalism used to prove our main result.
• Implementing efficient algorithms to solve the problem of generating AvN triples.

The Mathematica code we use in [Car16] is powerful enough to generate exam-
ples up to 5 qubits in a reasonable time. However, if we plan to find examples
for a higher number of qubits, faster algorithms need to be introduced.

Finally, in Chapter VII, we determine the minimum quantum resources needed to
achieve strong non-locality, and provide a partial characterisation of the three-qubit
states that exhibit this peculiar kind of contextuality. We show that strong non-locality
cannot be realised by any two-qubit system with any finite number of local measure-
ments, and prove that for 3-qubit systems, it can only arise in models involving states
in the GHZ SLOCC class and equatorial measurements, along with additional minor
restrictions. Within this class of models, we identify a new infinite family of models dis-
playing strong non-locality using states that are not LU-equivalent to the GHZ state. An
interesting aspect of this class of states is that there is a trade-off between the number of
measurement settings available on the first two qubits and the amount of entanglement
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between the third qubit and the first two. Let us list some possible directions for future
research:

• First and foremost, the classification of all three-qubit states exhibiting strong
non-locality remains to be completed.
• The similarities between the family of strongly non-local states introduced in

this chapter and the scenarios considered in [BKP06] suggests a possible appli-
cation for experimental tests of contextual behaviour. In [BKP06], it is shown
that the contextual fraction of the empirical model obtained by applying certain
single-qubit measurements to the Bell state can be pushed arbitrarly close to 1
by increasing the number of measurements allowed for each party. This means
that experimental bounds for non-locality can be improved by allowing more
measurements to be performed. Our family of strongly non-local states suggests
that a similar experimental programme can be implemented by introducing a
third qubit with some entanglement with the Bell state instead.
• More generally, it would be interesting to understand the precise relation be-

tween non-locality, entanglement and the number of measurements allowed at
each site.
• Finally, it remains to extend the search for strongly non-local behaviour beyond

three-qubit states. This task seems particularly ambitious, since none of the
techniques implemented in this theory can be naturally generalised to any higher
number of qubits due to a fundamental lack of knowledge about their infinitely
many SLOCC classes.
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[BMT05] Gilles Brassard, André Allan Méthot, and Alain Tapp, Minimum entangled state dimen-
sion required for pseudo-telepathy, Quantum Information & Computation 5 (2005), no. 4,
275–284.

[BO18] Kerstin Beer and Tobias J Osborne, Contextuality and bundle diagrams, 2018, Eprint
available at arXiv:1802.08424 [quant-ph].

[Bor51] Armand Borel, Cohomologie des espaces homogènes, Séminaire Bourbaki 1 (1948-1951).
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[Car17] Giovanni Carù, On the cohomology of contextuality, Proceedings 13th International Con-

ference on Quantum Physics and Logic, Glasgow, Scotland, 6-10 June 2016 (Ross Duncan
and Chris Heunen, eds.), Electronic Proceedings in Theoretical Computer Science, vol.
236, Open Publishing Association, 2017, Eprint available at arXiv:1701.00242 [quant-ph],
pp. 21–39.
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Section A, vol. 89, 1946, pp. 40–49.
[CHSH69] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt, Proposed ex-

periment to test local hidden-variable theories, Physical Review Letters 23 (1969), no. 15,
880–884.

[CIdSZ08] Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian, On the local
behavior of spaces of natural images, International Journal of Computer Vision 76 (2008),
no. 1, 1–12.

[CLS18] Michael B Cohen, Yin Tat Lee, and Zhao Song, Solving linear programs in the current
matrix multiplication time, 2018, Eprint available at arXiv:1810.07896 [quant-ph].

[CM94] Andrés Cano and Seraf́ın Moral, Heuristic algorithms for the triangulation of graphs,
International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, Springer, 1994, pp. 98–107.

[Con81] A Connes, Spectral sequence and homology of currents for operator algebras, Math.
Forschungsinst. Oberwolfach Tagungsber 41 (1981), no. 81, 27–9.

[Con83] Alain Connes, Cohomologie cyclique et foncteurs Extn, CR Acad. Sci. Paris Sér. I Math
296 (1983), no. 23, 953–958.

[Con85] , Non-commutative differential geometry, Publications Mathématiques de l’Institut
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[Kos47a] Jean-Louis Koszul, Algebre-sur les opérateurs de dérivation dans un anneau, Comptes
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Ω Frame functor
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Trs(M,F) Set of elements in TrsF which are trivialised by M
TrsF Set of isomorphism classes of F-torsors
D Cycle in edge representation
d(φ) Domain of a valuation φ
eS Neutral element of a valuation algebra for domain S
FR Free functor on a ring R.
O Unique set of outcomes
O(q) q-th line scenario outcome set
Om Set of outcomes for measurement m.
X Set of measurements
zS Null element of a valuation algebra for domain S
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abelian representation, see empirical model,
possibilistic, abelian representation of33

acyclicity (Vorob'ev), see scenario, acyclic32
All-vs-Nothing argument, 30, 160
antichain, 17
AvN contextuality, 30, 160
AvN triple conjecture, 161

balanced state, 183
belief function, 108
Bell state, 12
Bell’s model, 12
bundle diagram, 24, 30

planar representation, 42

(augmented) Čech cochain complex, 34
Čech cohomology, 35
check vector, 169
closure operator, 111
coboundary, 35

coboundary map, 34
cochain, 34
cocycle, 35
cohomological q-th contextuality, see

contextuality, cohomological contextuality,
higher cohomological logical and strong
contextuality48

cohomological contextuality, see contextuality,
cohomological logical and strong
contextuality37

cohomology obstruction, 36
higher cohomology obstruction, 48

connecting homomorphism, 36, 47, 51
constraint satisfaction problem (CSP), 117
context, 10, 16
context (valuation algebras), 111
contextual cycle, see cycle over a line scenario,

contextual cycle87
contextual fraction, 16, 138
contextuality, 27

cohomological logical contextuality, 37

higher cohomological logical contextuality,
48

cohomological strong contextuality, 37
higher cohomological strong contextuality,

48
hierarchy, 28, 40
LC(k)-type contextuality, 70
possibilistic contextuality, 27, 28
strong contextuality, 28

cover, 16
connected, 35

cycle over a line scenario, 70
chordal cycle, 70
contextual cycle, 87
proper cycle, 71

cyclic contextuality property (CCP), 87

disagreement (valuation algebras), 120
complete disagreement, 133
global disagreement, 120
local disagreement, 121

domain (valuation algebras), see valuation,
domain of101

empirical model, 11, 22
possibilistic, 23

abelian representation of, 33
probabilistic, 22
quantum realisable, 22

event, see also sheaf of events, 11, 20

F-presheaf, 52
F-torsor, 52
false negative, 42, 44, 60
frame functor, 118
fusion algorithm, 139

fusion algorithm for contextuality, 142

Galois connection, 110
Graham-reduction, 32
graph state, 162
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Greenberger-Horne-Zeilinger (GHZ) model, 15,
27, 29, 43

Greenberger-Horne-Zeilinger (GHZ) state, 15

Hardy model, 24, 42, 66, 105
hidden variable, 26
hierarchy of contextuality, see contextuality,

hierarchy28
higher cohomological contextuality, see

contextuality, cohomological contextuality,
higher cohomological logical and strong
contextuality48

indicator function, 103
inference problem, 103

joint valuation of, 103
multi-query, 103
single-query, 103
treewidth of, 141

infomorphism, 114
information algebra, 102
information set, 114

information set of CSPs, 118
information set of linear inequalities, 117
information set of linear systems, 117
predicate information set, 116
propositional information set, 110

invertible local operator (ILO), 177

join tree, 141
covering assignment, 148
covering join tree, 148
node of, 141
treewidth of, 141

knowledgebase, 101
Kochen–Specker (KS) model, 24, 43

line graph, 63, 71
line model, 64, 65
k-th line model, 65
first line model, 64
probabilistic line model, 95

line scenario, 61, 63
k-th line scenario, 63
first line scenario, 61

local Clifford (LC) group, 162
local complementation, 163
Local operations and classical communication

(LOCC) class, 177
logical Bell inequality, 14
logical contextuality, see possibilistic

contextuality28

measurement, 10, 16

compatible measurements, 16
equatorial, 182

measurement context, see context10
measurement cover, see cover16
measurement scenario, see scenario16

natural join, 106
nerve, 34
no-signalling, 22

no-signalling polytope, 26
no-Z lemma, 76
node of a join tree, 141

child node, 148
leaf, 148
parent node, 148
separator of, 148

non-locality, 27, 27

partial family, 75
standard, 76

path over a line scenario, 70
chordal path, 70
edge representation of, 71
vertex representation of, 71

Pauli group, 158
Peres–Mermin magic square model, 43
planar representation, see bundle diagram,

planar representation42
Popescu–Rohrlich (PR)-box, 12, 23, 43
possibility table, 23
presheaf, 20

compatible family of, 20
compatible sections of, 20
flasque beneath the cover, 23, 47
of a valuation algebra, 118
of event R-distributions, 21
restriction map of, 20
section of, 20

global, 20
subpresheaf, 20

probability table, 12

q-th cohomology obstruction, see cohomology
obstruction, higher cohomology
obstruction48

R-distribution, 21
R-distribution functor, 21

R-linear equation, 30
R-linear theory, 30
R-potential, 108
relational database, 105

attribute of, 105
relative cohomology, 35
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scenario, 16
(n, k, l)-type, 17
acyclic (Vorob'ev), 32
Bell-type, 17
cyclic (line), 73
quantum realisable, 17

set of measurements, 16
set of outcomes, 16
sheaf, 20

of events, 20
sheaf cohomology, 32
simplicial complex, 18

dimension of, 18
face of, 18

dimension of, 18
facet of, 18
vertex of, 18

Specker’s triangle model, 24, 107
stabiliser state, 159
stabiliser subgroup, 159
stabiliser subspace, 159
Stochastic local operations and classical

communication (SLOCC) class, 177
subpresheaf, see presheaf, subpresheaf20

treewidth, 141
truth valuation, 121
tuple system, 112

of cartesian tuples, 112
of probability distributions, 112
of propositional interpretations, 112

Vorob'ev’s theorem, 32
valuation

domain of, 101
valuation algebra, 101

adjoint valuation algebra, 129
combination operation of, 101
idempotent valutation algebra, 102
labelling operation of, 100
neutral elements of, 102
null elements of, 102
ordered valuation algebra, 128
semiring valuation algebra, 107
valuation algebra of formulae, 110
valuation algebra of information sets, 110,

114
valuation algebra of probability potentials,

108
valuation algebra of set potentials, 108
variable elimination, 139
variable of, 101

frame of, 103
tuple of, 103

valuation prealgebra, 100

XOR-theory, 160
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