
Word problems on string diagrams
Antonin Delpeuch

New College
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Michaelmas 2021

Abstract
String diagrams are graphical representations of morphisms in various sorts
of categories. The mathematical results which establish their soundness and
completeness provide an elegant bridge between algebra and topology, equating a
certain class of topological deformations to the equational theory of an algebraic
structure. Beyond this conceptual appeal they also are practical tools to reason
in the corresponding categories, making it easy to build intuition about the
combinatorics of morphisms and efficiently communicate proofs to peers. Finally,
they provide data structures to encode morphisms and manipulate them with
computer programs such as proof assistants. Our contributions to the field
explore three main directions.

First, we define a new class of string diagrams that we call sheet diagrams
and prove their soundness and completeness for morphisms in free bimonoidal
categories. This makes it possible to use string diagrams in situations involving
two monoidal structures, one distributing over the other.

Second, the bulk of our work consists in studying how string diagram isotopy
can be checked computationally. This is done by providing algorithms or hardness
results for a particular class of decision problems, called word problems. Those
word problems consist in determining whether two given diagrams can be related
via a sequence of isotopy moves, whose nature depends on the algebraic structure
at hand. We provide algorithms for the word problems for monoidal categories (or
equivalently 2-categories or bicategories) and double categories. We also provide
a hardness result for the word problem for braided monoidal categories, showing
that this word problem is at least as hard as the unknotting problem, for which
no polynomial-time solution is known to date.

Finally, we give a taste of how those techniques can be applied to real-world
systems. We show how bimonoidal categories model the data transformation
workflows offered by OpenRefine, an open source data wrangler focused on tabular
data. This model has guided a refactoring of the architecture of the tool and
suggests user interfaces to manipulate those workflows.

Word problems on string diagrams

Antonin Delpeuch
New College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Michaelmas 2021

Acknowledgements

It reads perhaps a bit bland, but it is true: my DPhil would likely not have been
possible without the support of many people. This section is here to thank them,
in no particular order. I want to thank Jamie for his tireless help and for believing
in me even when I felt stuck in an impasse. I am also very grateful to my other
supervisors Bob and Sam for helping me through the last steps of this journey.

I was lucky to be surrounded by eclectic, kind and open-minded fellow DPhil
students, researchers and support staff in the Quantum Group. I thank them for
their continuous help throughout these few years. I am immensely grateful to my
friends from the Oxford University Ceilidh Band who welcomed me with open arms
in their beautiful folky world. My friends from the British Human Power Club
were also essential in keeping me insane throughout the degree. I thank my fellow
activists from the Committee for the Accessibility of Publications in Sciences and
Humanities, and all the signatories of the “No free view? No review!” pledge,1 who
helped me sustain a minimal viable faith in academia for the last few years. I am
very grateful to my OpenRefine friends and colleagues for their patience while I
write about abstract nonsense, and I look forward to working more with them now
that this thesis has seen the light of day. I thank the courageous friends who went
through earlier versions of this thesis and suggested many improvements.

I thank my friends of Kanthaus for their awesomness. And finally I thank my
parents and siblings for their impatience to see this thesis in print.

Institutional

This DPhil was supported by a scholarship from the Engineering and Physical
Sciences Reseach Council (EPSRC) and a Scatcherd European Scholarship from
the University of Oxford.

1https://nofreeviewnoreview.org/

https://nofreeviewnoreview.org/

Abstract

String diagrams are graphical representations of morphisms in various sorts of cate-
gories. The mathematical results which establish their soundness and completeness
provide an elegant bridge between algebra and topology, equating a certain class of
topological deformations to the equational theory of an algebraic structure. Beyond
this conceptual appeal they also are practical tools to reason in the corresponding
categories, making it easy to build intuition about the combinatorics of morphisms
and efficiently communicate proofs to peers. Finally, they provide data structures
to encode morphisms and manipulate them with computer programs such as proof
assistants. Our contributions to the field explore three main directions.

First, we define a new class of string diagrams that we call sheet diagrams and
prove their soundness and completeness for morphisms in free bimonoidal categories.
This makes it possible to use string diagrams in situations involving two monoidal
structures, one distributing over the other.

Second, the bulk of our work consists in studying how string diagram isotopy
can be checked computationally. This is done by providing algorithms or hardness
results for a particular class of decision problems, called word problems. Those word
problems consist in determining whether two given diagrams can be related via
a sequence of isotopy moves, whose nature depends on the algebraic structure at
hand. We provide algorithms for the word problems for monoidal categories (or
equivalently 2-categories or bicategories) and double categories. We also provide
a hardness result for the word problem for braided monoidal categories, showing
that this word problem is at least as hard as the unknotting problem, for which
no polynomial-time solution is known to date.

Finally, we give a taste of how those techniques can be applied to real-world
systems. We show how bimonoidal categories model the data transformation
workflows offered by OpenRefine, an open source data wrangler focused on tabular
data. This model has guided a refactoring of the architecture of the tool and
suggests user interfaces to manipulate those workflows.

Contents

1 Introduction 1
1.1 Graphical representations in mathematics 1
1.2 State of the art . 3
1.3 Overview of our contributions . 4
1.4 Structure of this thesis . 6

2 Background 9
2.1 Monoidal categories . 10

2.1.1 Weak monoidal categories 10
2.1.2 Strict monoidal categories 14

2.2 String diagrams . 15
2.2.1 Diagrams as mathematical objects 18
2.2.2 Joyal and Street’s soundness and completeness theorem . . . 21
2.2.3 Computing with string diagrams 22

2.3 Variants of monoidal categories . 24
2.3.1 Symmetric monoidal categories 24
2.3.2 Cartesian categories . 26
2.3.3 Braided monoidal categories 28
2.3.4 Bicategories and 2-categories 31
2.3.5 Higher categories . 33

3 Bimonoidal categories 37
3.1 Introduction . 38
3.2 Bimonoidal categories . 41
3.3 Sheet diagrams . 42

3.3.1 Bimonoidal signatures . 42
3.3.2 Defining sheet diagrams . 47
3.3.3 Isomorphisms of sheet diagrams 54
3.3.4 Data structures for sheet diagrams 62

3.4 Baez’s conjecture . 64
3.5 Applications to dataflow programs 65

3.5.1 Categorical semantics of dataflow 67

vii

viii Contents

3.5.2 Overview of OpenRefine . 67
3.5.3 Elementary model of OpenRefine workflows 69
3.5.4 Model of OpenRefine workflows with facets 71
3.5.5 Semantics and completeness 76

4 Word problems 83
4.1 Introduction . 84
4.2 Non-symmetric monoidal categories 86

4.2.1 Combinatorial encoding of string diagrams 87
4.2.2 Termination . 93
4.2.3 Upper bound on reduction length 103
4.2.4 Confluence . 106
4.2.5 Computing normal forms . 107
4.2.6 Extension to disconnected diagrams 112
4.2.7 Linear-time solution to the word problem in the connected case126
4.2.8 Recumbent isotopy . 131

4.3 Double categories . 133
4.3.1 Double categories . 135
4.3.2 Free double categories . 138
4.3.3 Translation to 2-categories 141
4.3.4 Partial tilings . 143
4.3.5 Word problem . 151
4.3.6 Conclusion . 151

4.4 Braided monoidal categories . 152
4.4.1 Background . 153
4.4.2 Reducing the unknotting problem to the braided pivotal word

problem . 157
4.4.3 Reducing the unknotting problem to the braided monoidal

word problem . 160
4.4.4 Conclusion . 168

Appendices

A Coherence axioms of bimonoidal categories 173
A.1 Axioms of a bimonoidal functor . 177

Bibliography 179

1
Introduction

This chapter presents the scientific context and summarizes how our contributions

articulate with it. We only aim to give a high-level overview. Readers who are

unfamiliar with the concepts mentioned here can find precise definitions in Chapter 2.

1.1 Graphical representations in mathematics

As pictured in popular culture, mathematics is all about writing arcane formulae

and solving equations. Of course, in mathematical education, diagrams play an

essential role in Euclidean geometry exercises and graphs are extensively used in

real analysis, for instance. But many fields such as algebra or logic are perceived

as mostly textual worlds.

This external perception of mathematics is fostered by some traditions in

mathematical research communities. If graphical representations are to be used

as part of a research project, they are too often treated as informal sketches that

authors keep for themselves. Authors tend to communicate their proofs textually

instead, the main goal being that a cautious reader can check the correctness of a

proof almost mechanically, even if they lack the intuition behind it. This tendency is

exacerbated by publishing constraints, as typesetting figures still is a time-consuming

process. Diagrams also take away some precious space in articles which must often

1

2 1.1. Graphical representations in mathematics

fit in length constraints specified in pages. This reluctance for figures contributes

to the image of mathematics as a dry, inaccessible and arrogant field.

String diagrams are particular sorts of diagrams used in category theory. Not

only can they be used to build up intuition about a problem, but also act as a full-

blown replacement for the traditional formula-based syntax to denote morphisms.

One can therefore define structures and prove properties about them using string

diagrams directly, without having to translate the expressions involved to formulae.

Furthermore, some fundamental equations of widely used algebraic structures have

a particularly compelling graphical counterpart. This is the case, for instance, for

the exchange law for monoidal categories (Figure 1.1a) or the elimination of units

and counits in an adjunction (Figure 1.1b). This unexpected outbreak of topology

in an algebraic context is a sign that the said algebraic structures are natural

and worth studying. It is also a great opportunity to challenge the textual habits

of mathematical communication, by using diagrams as a primary communication

medium and not just an illustrative one.

=

(a) Exchange law in monoidal categories

==

(b) Elimination of units and counits for
adjunctions

Figure 1.1

Beyond those useful features, string diagrams have the additional advantage

of fostering interdisciplinary exchanges and applications. It is not uncommon for

two different communities to rely on the same mathematical structures but use

different names for them. This fragmentation comes at a cost, caused by the missed

opportunities to reuse results and tools and exchange ideas more broadly. Analogies

between domains can be easier to detect when they manifest themselves by a visual

similarity between the diagrams used. Of course, one must be careful in checking

that such similarities are not vacuous, so as to avoid drawing hasty parallels.

1. Introduction 3

1.2 State of the art

String diagrams were introduced independently by Hotz (1965) and Joyal and Street

(1988, 1991). Both established the equivalence between the equational theory of

monoidal categories and a class of transformations of planar diagrams. This result

is often referred to as a coherence theorem, but we prefer to call it a soundness

and completeness theorem to avoid the confusion with results establishing that all

pairs of morphisms of a certain sort are equal. After this seminal theorem, other

soundness and completeness results have been proved, in more or less generality, for

other sorts of categories. For instance, Shum (1994) gave such a result for tortile

categories and Joyal et al. (1996) for traced monoidal categories. Selinger (2010)

wrote a celebrated survey of results of this sort, which we do not reproduce here.

Interestingly, many of the results presented by Selinger have only been established

in special cases, and some are even conjectured entirely. That does not prevent

the category theory community to rely on these diagrams extensively in practice.

It would be tempting to denounce this state of affairs as being dangerous, with

researchers building up results on uncertain foundations. We will argue here that

this is actually a healthy practice for the community. Indeed, while the use of

string diagrams in scientific communication does rely on their correctness, this

dependency is subtly different to that of a theorem explicitly invoked in a proof.

String diagrams are generally used as convenience methods, as the authors would

also be able to write down morphisms using formulae and be explicit about where

each equality comes from. Authors use string diagrams as a language, with the

expectation that their readers also master and trust this language. This is analogous

to textual forms of communication, where the reader is also assumed to be able to

master the language and to resolve ambiguities, abuses of notation or ellipsis for

instance. The possibility to use a diagrammatic language even if the corresponding

soundness and completeness theorem has not been established yet is also important

because it encourages notational creativity, a healthy ingredient to help build

up intuitions about new structures and overcome bureaucratic conventions which

distract from the actual content.

4 1.3. Overview of our contributions

Our work is not just concerned with soundness and completeness theorems

for string diagrams. We are also interested in computational questions, and more

specifically in the word problem for categorical structures. By this, we mean the

decision problem consisting of determining if two morphism expressions in some

categorical structure are equal up to the axioms of this structure. In this domain, we

are only aware of few results, probably because the algebraic definitions themselves

are still too recent to have attracted much computational attention.

The closest results we are aware of study word problems for higher categories.

The foundational work of Burroni (1993) establishes the link between the word

problem for an algebraic structure and the path problem in the next dimension.

Later, Makkai (2005) showed decidability of the word problem for higher cells in

strict ω-categories. His algorithm was recently implemented by Forest (2021). As

we will sketch in Section 2.3.5, the fact that many flavours of monoidal categories

arise as truncations of higher categories could mean that Makkai’s result implies

decidability of the word problem for all the structures listed in the periodic table.

Unfortunately, strict ω-categories do not follow the periodic table, as the notion of

equality is too strict for that. For instance, a braided monoidal category cannot

be recast as the 2-cells and 3-cells of an ω-category which is 2-degenerate.

Recently, there has been sustained activity in the development of computer

proof assistants for string diagrams, including Quantomatic (Dixon et al., 2010),

Globular (Bar et al., 2016) and its successor homotopy.io (Heidemann et al., 2019).

These tools let users derive isotopies between string diagrams by incrementally

performing moves using a graphical interface, but lack methods to discover chains

of those steps. Our string diagram isotopy algorithm could yield a geometrical

notion of “tactic” for such a proof assistant, automatically finding isotopies between

diagrams, or rearranging diagrams to normal form.

1.3 Overview of our contributions

Our contributions are threefold. The first chapter is concerned with bimonoidal

categories, for which we offer a new string diagram calculus. The main theorem

1. Introduction 5

equates our category of sheet diagrams with the free bimonoidal category generated

by a bimonoidal signature:

Theorem 3.41. The category of sheet diagrams on a signature Σ is bimonoidally

equivalent to the free bimonoidal category on Σ.

In other words, the diagrammatic language we propose is sound and complete

for the structure of bimonoidal categories. A corollary of this theorem is a simpler

proof of Baez’s conjecture that the groupoid of finite sets and bijections is bi-initial

in the 2-category of bimonoidal categories. We also present SheetShow, a web-based

sheet diagram renderer which can generate two-dimensional projections of sheet

diagrams from a purely combinatorial encoding of their geometry.

Then, we show how those diagrams can be used to give a complete axiomatization

of a certain class of programs, inspired by the data model of a popular data

wrangling tool, OpenRefine:

Theorem 3.48. Let d, d′ be sheet diagrams representing dataflow programs, both

with one input sheet and one output sheet. Then d = d′ by our axiomatization if

and only if given any valuation, d and d′ induce the same functions.

Our last chapter collects complexity results on word problems for various sorts

of categories. The first section is concerned with non-symmetric monoidal categories

and shows that their word problem is tractable:

Theorem 4.71. The word problem for free monoidal categories, without equations

imposed on the generators, can be solved in quadratic time in the number of edges

and vertices of the diagram.

We then extend this theorem to double categories:

Theorem 4.104. The word problem for free double categories, without equations

imposed on the generators, can be solved in quadratic time in the number of edges

and vertices of the diagram.

6 1.4. Structure of this thesis

The proof of this theorem relies on a translation from free double categories

to free 2-categories, which is of interest of its own:

Theorem 4.103. A double signature can be translated to a signature for a 2-

category, such that any morphism expression in the free double category can be

translated to a morphism expression in the corresponding free 2-category. Moreover,

this translation preserves equivalence.

Finally, we tackle the word problem for braided monoidal categories and show

that it is at least as hard as the unknotting problem, for which no polynomial

algorithm is known to date:

Theorem 4.142. The unknotting problem can be polynomially reduced to the word

problem for free braided monoidal categories, without equations imposed on the

generators.

1.4 Structure of this thesis

Chapter 2 defines notions which are used throughout the thesis and aims to do

so without assuming much background knowledge beyond elementary category

theory. Definitions which we assume to be known can be found in Borceux

(1994) for instance.

Chapter 3 gathers our results about bimonoidal categories. Section 3.3 defines

sheet diagrams and proves their soundness and completeness for bimonoidal cate-

gories. Those results are being reviewed for the Compositionality journal (Comfort

et al., 2020). Section 3.5 applies those string diagrams to provide an axiomatization

of faceted dataflow programs. This part was presented at the Applied Category

Theory 2019 conference (Delpeuch, 2019). It is worth noting that the application

came before the theory: indeed, the diagrams were first used informally, in the

particular case of our axiomatization of dataflow programs. They were then

generalized to offer a complete calculus for bimonoidal categories.

Chapter 4 is independent of Chapter 3 and gathers our three results on word

problems. Section 4.2 covers the case of monoidal categories (and equivalently,

1. Introduction 7

2-categories). Section 4.3 extends the result to double categories by establishing

the translation mentioned above. Finally, Section 4.4 gives the hardness result for

the word problem for braided monoidal categories. This last section is independent

of the first two. Each section in this chapter is taken from a corresponding article,

respectively Delpeuch and Vicary (2018) (to appear in Logical Methods in Computer

Science), Delpeuch (2020) (published in Theory and Applications of Categories)

and Delpeuch and Vicary (2021) (to appear in the proceedings of the Applied

Category Theory 2021 conference).

8

2
Background

Contents
2.1 Monoidal categories . 10

2.1.1 Weak monoidal categories 10
2.1.2 Strict monoidal categories 14

2.2 String diagrams . 15
2.2.1 Diagrams as mathematical objects 18
2.2.2 Joyal and Street’s soundness and completeness theorem 21
2.2.3 Computing with string diagrams 22

2.3 Variants of monoidal categories 24
2.3.1 Symmetric monoidal categories 24
2.3.2 Cartesian categories . 26
2.3.3 Braided monoidal categories 28
2.3.4 Bicategories and 2-categories 31
2.3.5 Higher categories . 33

This chapter gives a general introduction to the research domain. The string

diagrams that are at the centre of this work represent morphisms in various sorts of

categories, which we present in this chapter. Rather than aiming for completeness

in their treatment, the goal is to give a sense of why these notions are so useful

and pervasive in many applications of category theory, and to motivate the work

by highlighting certain aspects of these concepts.

9

10 2.1. Monoidal categories

2.1 Monoidal categories

A category can be thought of as a family of typed processes (or functions, trans-

formations) which can be composed together. Two processes (called morphisms)

can only be composed if their types are compatible: the domain of the downstream

process and the codomain of the upstream process must be the same objects.

This built-in type safety is useful in many ways, but lacks the ability to represent

processes with multiple inputs or outputs. From a programming perspective,

functions must be able to consume multiple arguments and potentially return

multiple values too. The notion of a monoidal category is one possible way to model

this multiplicity, and is arguably the most widespread in applied category theory.

Other approaches include operads (May, 1972) and polycategories (Szabo, 1975).

2.1.1 Weak monoidal categories

Informally, a monoidal category is a category in which objects can be concatenated.

A process with multiple inputs will be represented as a morphism whose domain is

the concatenation of the input objects. The concatenation of the input objects is

itself an object. To turn this into a precise definition, we define a binary operator ⊗

on the objects, and require that it is associative and unital up to isomorphism. The

precise definition was proposed by Mac Lane (1963) and refined by Kelly (1964).

Definition 2.1. A monoidal category C is a category equipped with a bifunctor

_⊗ _ : C × C → C such that ⊗ is associative up to natural isomorphism αA,B,C :

(A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) and has an object I ∈ C for which ⊗ is unital up

to natural isomorphisms ρA : A ⊗ I → A and λA : I ⊗ A → A. In addition, the

triangle and pentagon equations below are required to hold.
(A⊗ I)⊗B A⊗ (I ⊗B)

(triangle equation)

A⊗B

αA,I,B

ρA⊗1B 1A⊗λB

2. Background 11

((A⊗B)⊗ C)⊗D (A⊗B)⊗ (C ⊗D)

(pentagon equation)

(A⊗ (B ⊗ C))⊗D A⊗ (B ⊗ (C ⊗D))

A⊗ ((B ⊗ C)⊗D)

αA⊗B,C,D

αA,B,C⊗1D αA,B,C⊗D

αA,B⊗C,D 1A⊗αB,C,D

The isomorphism α is called the associator and ρ, λ are called unitors.

Let us show how this definition materializes with a concrete example. The

category Set of sets and functions is monoidal for the cartesian product ×. Given

sets A,B,C, we have an isomorphism (A×B)×C ' A×(B×C) given by ((a, b), c) 7→

(a, (b, c)). This isomorphism is natural and satisfies the pentagon equation. The

product has a unit {?}, the one-element set, with isomorphisms ρA : (a, ?) 7→ a

and λA : (?, a) 7→ a. The isomorphisms are again natural and satisfy the triangle

equation. The last important condition to check is that _× _ : Set× Set→ Set

is a functor. Indeed, a monoidal product does not just define a monoid structure

on the objects, but also on the morphisms. Requiring it to define a bifunctor (i.e. a

functor whose domain is a product category) translates into the following properties:

1A ⊗ 1B = 1A⊗B (2.1)

(g ◦ f)⊗ (h ◦ k) = (g ⊗ h) ◦ (f ⊗ k) (2.2)

Equation 2.2 is called the bifunctoriality equation or exchange law, and holds as

long as the left-hand side is defined (in which case the right-hand side automatically

is). In the case of Set and the cartesian product, the product of two functions

f : A→ B and g : C → D is f × g : A× C → B ×D which is simply defined by

(f × g)(a, c) = (f(a), g(c)) for all (a, c) ∈ A× C. Checking the equations above for

this particular monoidal product is a good way to understand the meaning of the

conditions, in particular for the bifunctoriality equation which can look a little cryptic

at first. This completes our proof that the cartesian product defines a monoidal

12 2.1. Monoidal categories

structure on Set. More generally, if a category has products (in the sense of “limits

of diagrams with two objects”) then they form a monoidal structure in the same way.

Monoidal products are more general than categorical products, however. The

canonical example for this is perhaps the category Vect of vector spaces and linear

maps (over C, for instance). The tensor product of vector spaces defines a monoidal

structure on Vect, with the one-dimensional vector space I being the unit. This

is interesting because the monoidal structure does not come from a categorical

product, as can be seen from the fact that there cannot exist a map δ : A→ A⊗A

such that δ(v) = v ⊗ v for all v ∈ A, as long as dimA > 0. Such a duplication map

would exist if the monoidal structure came from categorical products. The monoidal

category (Vect,⊗, I) is the basis of categorical quantum mechanics (Abramsky

and Coecke, 2004) and this is made possible by the fact that monoidal structures

do not assume copying or discarding to be possible.

Interestingly, there can be multiple monoidal structures on the same category.

For instance, Set has another monoidal structure given by the disjoint union. Given

two sets A,B one can form their disjoint union A t B = {1} × A ∪ {2} × B. We

have again an isomorphism (A t B) t C ' A t (B t C) given by

(1, (1, a)) 7→ (1, a)

(1, (2, b)) 7→ (2, (1, b))

(2, c) 7→ (2, (2, c))

The isomorphism is natural, associative and satisfies the pentagon equation. Sim-

ilarly, the empty set is the unit for the disjoint union and the corresponding

isomorphisms satisfy the required conditions. The bifunctoriality of the disjoint

union can also be verified. Similar to the previous case, this is an instance of

a more general fact: in a category with all coproducts, coproducts also form

a monoidal structure.

The fact that both the cartesian product and the disjoint union are distinct

instances of this notion of monoidal structure on the same category shows why

monoidal structures are so pervasive. We have used two very different ways to

2. Background 13

combine two objects together, and they still satisfy all the conditions required by

the definition. In applications of category theory, monoidal structures can indeed be

used in all sorts of situations: whether arguments are resources that are consumed

or can be freely duplicated, whether arguments are all supplied to a function at

once or one at a time, and so on. So although it is customary to use the ⊗ symbol

to denote a monoidal structure, one should not forget that this structure is a priori

much more general than the multiplicative conjunction of linear logic. See Clark

et al. (2008); Coecke (2010); Ghani et al. (2016) for examples of applications of

monoidal categories in linguistics, quantum physics and game theory respectively.

Category theory is often used to give semantics to syntaxes. This generally

takes the form of functors from a syntactic category to a semantic category, which

is a particular model of the theory. This requires the appropriate notion of functor,

which must preserve properties of the syntax. Typically, monoidal structures are a

priori not preserved by functors, hence the need for the following notion.

Definition 2.2. Let (C,⊗, I) and (D,⊕, O) be monoidal categories and F : C → D

a functor between them. The functor F is monoidal (or strong monoidal)

when there exists a natural isomorphism ηA,B : F (A⊗B) ' F (A)⊕ F (B) and an

isomorphism ι : F (I) ' O, such that the following diagrams commute:

F ((A⊗B)⊗ C) F ((A⊗ (B ⊗ C))

F (A⊗B)⊕ F (C) F (A)⊕ F (B ⊗ C)

(F (A)⊕ F (B))⊕ F (C) F (A)⊕ (F (B)⊕ F (C))

F (αC)

ηA⊗B,C ηA,B⊗C

ηA,B⊕1F (C) 1F (A)⊕ηB,C

αD

F (I ⊗ A) F (A) F (A⊗ I) F (A)

F (I)⊕ F (A) O ⊕ F (A) F (A)⊕ F (I) F (A)⊕O

F (λC)

ηI,A

F (ρC)

ηA,I

ι⊕1F (A)

λD

1F (A)⊕ι

ρD

Note that a functor is monoidal with respect to specified monoidal structures,

which is important since categories can have multiple monoidal structures as

we have seen earlier.

14 2.1. Monoidal categories

2.1.2 Strict monoidal categories

When composing morphisms in a monoidal category, one often needs to insert

associators (αA,B,C) or unitors (ρA, λA). This means that we need to track how

our objects are bracketed at each stage of the composite and where the units are.

This bookkeeping is a bit of a burden: in practice, mathematicians rarely make the

structural isomorphisms explicit, since they distract from the real content. The

problem is that a priori, the way we insert associators and unitors can change the

overall value of a composite. The notion of a strict monoidal category solves this

problem by requiring all the structural isomorphisms to be equalities.

Definition 2.3. A strict monoidal category C is a category equipped with a

bifunctor _⊗_ : C ×C → C such that ⊗ is strictly associative and has a unit I ∈ C.

In this notion, the associativity and unitality of the monoidal product are

equalities rather than isomorphisms. Strict monoidal categories are monoidal

categories, because we can take the associators and unitors to be identities and all the

required conditions are met automatically. When a monoidal category is not strict

(or not assumed to be strict), we often describe it as a weak monoidal category.

Although many interesting monoidal categories are not strict, Mac Lane’s

coherence theorem provides a way to turn them into strict categories, in the

following sense:

Theorem 2.4 (Mac Lane, 1963). Every monoidal category is monoidally equivalent

to a strict monoidal category.

This is one of the many possible formulations of this theorem, another common

formulation being that in a free monoidal category, all pasting diagrams made out

of associators, unitors and identities commute. This means that when working

with a monoidal category, we can avoid having to manipulate associators and

unitors in expressions by translating them to the corresponding strict monoidal

category. We will extensively use this fact in the rest of this work, assuming strict

monoidal structures in most of our results.

2. Background 15

2.2 String diagrams

Even with associators and unitors being identities, monoidal categories give rise to

a rich equational theory. For instance, given morphisms a, b : I → I (also called

scalars), we have the following derivation, known as the Eckmann-Hilton argument:

a ◦ b = (a⊗ 1I) ◦ b (unitality of ⊗) (2.3)

= (a⊗ 1I) ◦ (1I ⊗ b) (unitality of ⊗) (2.4)

= (a ◦ 1I)⊗ (1I ◦ b) (bifunctoriality) (2.5)

= a⊗ (1I ◦ b) (unitality of ◦) (2.6)

= a⊗ b (unitality of ◦) (2.7)

= (1I ◦ a)⊗ b (unitality of ◦) (2.8)

= (1I ◦ a)⊗ (b ◦ 1I) (unitality of ◦) (2.9)

= (1I ⊗ b) ◦ (a⊗ 1I) (bifunctoriality) (2.10)

= b ◦ (a⊗ 1I) (unitality of ⊗) (2.11)

= b ◦ a (unitality of ⊗) (2.12)

The derivation reveals multiple issues with the representation of morphisms as

terms to reason about equivalence. First, the rewriting strategy used to derive the

equality is not obvious: one needs to introduce identities by unitality in creative

ways in steps 1, 2, 6 and 7. Therefore, it seems difficult to obtain a terminating

and confluent rewriting system which would somehow normalize expressions in this

presentation. Second, the bifunctoriality equation only holds when the domains

and codomains of the morphisms involved are compatible: one cannot, in general,

replace any expression (g ⊗ k) ◦ (f ⊗ j) by (g ◦ f)⊗ (k ◦ j). Thus, we are required

to keep track of the domains and codomains of all sub-expressions involved to

understand which axiom can be applied. In the example above all domains and

codomains are the monoidal unit I so the bifunctoriality equation could always

be applied, but this is not true in general.

16 2.2. String diagrams

Rather than using textual formulae to represent morphisms, we can use string

diagrams. The diagrams are graphical representations of morphisms in a monoidal

category, which were proposed independently by Hotz (1965) and Joyal and

Street (1988, 1991). We first give an informal introduction to the notation with

a few examples.

A morphism f : A⊗ B ⊗ C → D ⊗ E is represented by a vertex in the plane,

with the edges above it corresponding to factors of its domain, and the edges

below being factors of its codomain:

f

A B C

D E

Throughout this thesis, morphisms will be read top-down as above. It is worth

noting that some authors draw string diagrams bottom-up or left-to-right instead.

For morphisms with the monoidal unit I as domain or codomain, the corresponding

string diagrams do not have any edges on the corresponding side.

The identity morphism 1A is represented as a straight line, which conveys the idea

that the morphism simply forwards its input to its output, without interfering with it:

A

A

Given two morphisms f , g represented as string diagrams, we can obtain the string

diagram for the composites f ◦ g (assuming compatible domains and codomains)

and f ⊗ g as follows:

f ◦ g 7→
f

g

(a) Sequential composition

f ⊗ g 7→ f g

(b) Parallel composition

2. Background 17

This is where string diagrams become useful, by exploiting two dimensions

instead of one in the textual notation. The crucial observation is that with this

notation, the bifunctoriality equation 2.2 becomes a simple matter of equating

two different bracketings for the same diagram:

f2 g2

f1 g1

(
(

)
) =

f2 g2

f1 g1

Figure 2.2: The bifunctoriality equation in string diagrams

We will see in the next section that beyond this particular case, one can

actually forget how a particular diagram was built up, thanks to the guarantee

that any other sequence of composites leading to the same picture will have the

same meaning as a morphism.

To build up intuition about these diagrams, we give a few examples. Assume

we have the following morphisms and objects:

f : I → A⊗B ⊗ C

g : A→ E

h : C ⊗D → F ⊗G

k : B ⊗ F → I

We can form the following string diagram:

f

g h

k

D

E G

Note how the particular shape of each edge is unimportant: we choose to bend

edges to allow for a compact diagram layout, but that does not change the meaning

18 2.2. String diagrams

of the diagram as long as edges “flow vertically” (meaning that their projection on

the vertical axis is injective). Note the representation of morphism f (respectively

k) which does not have any input (respectively no output).

Finally, we give the graphical equivalent of the Eckmann-Hilton argument given

at the beginning of this section:

a
b =

a
b = a b = a

b
= a

b

Figure 2.3: The Eckmann-Hilton argument in string diagrams

We hope that this representation provides a much clearer argument than

the derivation using terms, showing why the presence of the second dimension

introduced by the tensor product makes it possible to invert the order in which

two scalars are composed.

2.2.1 Diagrams as mathematical objects

A crucial aspect of string diagrams is that they should be taken more seriously than

illustrative pictures sketched on the back of an envelope. They are meant to provide

a rigorous syntax for morphisms, as formal as terms. To support this, we need to

give a mathematical definition of what string diagrams are, provide translations

from terms to diagrams, and conversely. As a prerequisite to the definitions, we

need some vocabulary around syntactic notions.

Definition 2.5. A monoidal signature Σ is given by a set of object symbols

Ob Σ, a set of morphism symbols Mor Σ and domain and codomain functions

dom, cod : Mor Σ→ (Ob Σ)∗, where (Ob Σ)∗ is the set of finite words on Ob Σ.

2. Background 19

For instance, we can define a monoidal signature Σ as:

Ob Σ = {A,B,C}

Mor Σ = {f, g}

dom(f) = [A,A]

cod(f) = [C]

dom(g) = [C]

cod(g) = [A,B]

A monoidal signature can be interpreted in a monoidal category, in the following way.

Definition 2.6. A monoidal interpretation i of a monoidal signature Σ into

a monoidal category (C,⊗, I) is given by a function i0 : Ob Σ → Ob C and a

function i1 : Mor Σ → Mor C such that for each morphism symbol f ∈ Mor Σ,

dom i1(f) = i0(dom f) and cod i1(f) = i0(cod f) (where i0 is extended to lists of

object symbols by taking their monoidal product in C).

A monoidal interpretation i : Σ→ C can be composed with a monoidal functor

F : C → D, giving a monoidal interpretation of Σ into D. With this notion, we

are now equipped to discuss free monoidal categories.

Definition 2.7. A monoidal category (C,⊗, I) is free on a monoidal signature Σ

via a monoidal interpretation i : Σ→ C when for any monoidal interpretation i′ of Σ

into a monoidal category (D,⊕, O), there exists a monoidal functor from F : C → D

such that i′ = F ◦ i, and F is unique up to natural monoidal isomorphism.

See Joyal and Street (1988) for a more categorical and elegant definition of this

notion and for the definition of a natural monoidal isomorphism (which is called a

tensor transformation there). As always with notions of free algebraic structures,

it is a consequence of this definition that there is a unique free monoidal category

for a given signature, up to monoidal equivalence.

We are now ready to define string diagrams as topological objects, following Joyal

and Street (1991). The full definition relies on a fairly long chain of definitions

20 2.2. String diagrams

which we do not reproduce here as it would be relatively tedious and uninformative.

In the following definition, a and b are real numbers which correspond to the vertical

positions of the input and output boundaries of the diagram.

Definition 2.8 (Joyal and Street, 1991). A recumbent (or progressive) plane

diagram is an embedded graph Γ ↪→ [a, b]× R (see Joyal and Street (1991)) such

that the projection of any edge on the vertical axis is injective.

In the definition above, Γ is a topological graph and [a, b] × R a section of

the plane it gets embedded into.

Definition 2.9. A string diagram on a monoidal signature Σ is a recumbent

plane diagram where the vertices are annotated by morphism generators from Σ

and wires are annotated by object generators, such that for each vertex the wires

connected to it are annotated by the objects specified by the domain and codomain

of the generator.

We can then associate to any string diagram d a corresponding morphism v(d) in

the free monoidal category on Σ. This is achieved by breaking down a diagram into

basic blocks of either generators or identities and composing them sequentially or in

parallel according to how the basic blocks are laid out. The requirement for edges to

be injective along the vertical axis ensures that there are no “cups” or “caps” which

would not be interpretable without adjoints. The bifunctoriality equation and the

associativity and unitality of compositions ensure that the resulting morphism does

not depend on the order in which the blocks are composed, as shown in Figure 2.2.

The details of this construction can be found in Joyal and Street (1988, 1991).

This interpretation gives us a translation from string diagrams to terms repre-

senting a morphism in a monoidal category. For the converse direction, the previous

section shows that any term can be inductively translated to a diagram.

2. Background 21

2.2.2 Joyal and Street’s soundness and completeness the-
orem

The main result establishing the usefulness of string diagrams is the invariance of

the interpretation as a morphism up to topological deformations.

Definition 2.10 (Definition 5 in Joyal and Street, 1988). A deformation of

recumbent graphs is a deformation h : Γ× [0, 1]→ [a, b]×R of planar graphs (see

Definition 2.8) such that the image Γ(t) of h(−, t) is recumbent for all t ∈ [0, 1]. A

deformation of string diagrams is a deformation of the underlying recumbent

graph, such that the annotating objects remain identical throughout the deformation.

We can then state the invariance of the interpretation v defined in the previous sec-

tion:

Theorem 2.11 (Theorem 3 in Joyal and Street, 1988). If h : Γ×[0, 1]→ [a, b]×R is

a deformation of string diagrams then the value v(Γ(t)) is independent of t ∈ [0, 1].

The converse of the theorem is also true: if two expressions are equal as

morphisms via the axioms of monoidal categories, then their string diagrams can be

related by a deformation. Concretely, the result means that instead of manipulating

terms to represent morphisms, we can simply rely on string diagrams to derive

equalities in monoidal categories. For instance, Figure 2.3 can be taken not just as a

depiction of the proof that a◦b = b◦a for scalars, but an actual derivation on its own.

To finish this section, we give another view on Joyal and Street’s theorem.

What this theorem says is that string diagrams provide a syntax for monoidal

categories. We can state this in a more categorical way, using the notion of free

monoidal category generated by a signature.

Theorem 2.12. The free monoidal category on a monoidal signature Σ has lists

of object symbols from Σ as objects and string diagrams annotated with morphism

symbols from Σ as morphisms, such that the boundaries of the string diagrams match

the domains and codomains specified by the signature. Composition and tensor are

respectively given by vertical and horizontal pasting, associators and unitors are

identities.

22 2.2. String diagrams

Another way to define the free monoidal category on a signature would be

to freely generate object and morphism expressions as required by the axioms of

monoidal categories, and quotient by the required equations. Therefore, stating

that the free monoidal category can be defined as above in terms of string diagrams

underlines their suitability as a syntax for monoidal categories.

2.2.3 Computing with string diagrams

While the diagrammatic representation is easy to manipulate at an intuitive level,

one can argue that the associated topological notions are relatively complicated

and precisely describing the objects involved is tedious. Graphical objects also seem

harder to encode in a computer, making them of little use to solve the word problem.

In fact, it is possible to encode a string diagram more efficiently than by listing

the explicit positions of its vertices and the trajectories of its edges. This relies

on the notion of general position:

Definition 2.13. A string diagram is in general position when none of its

vertices share the same height.

Any string diagram can be deformed slightly to be in a general position.

Lemma 2.14 (Joyal and Street, 1988). Given a string diagram Γ, there exists a

diagram Γ′ in general position and a deformation of recumbent diagrams between Γ

and Γ′.

Proof. If two vertices are at the same height, then they can be slightly perturbed

such that one is above the other. This can be done for each pair of vertices with

recumbent transformations.

Any string diagram in general position can be cut up in slices, each of which

contains exactly one generator.

Lemma 2.15. Given a string diagram in general position Γ containing n vertices,

there exist heights h1, . . . , hn+1 such that there is exactly one vertex between hi and

hi+1.

2. Background 23

Proof. Let us call y1 < · · · < yn the heights of the n vertices in Γ. Any choice of hi
such that h1 < y1 < h2 < · · · < hn < yn < hn+1 satisfies the property.

A diagram in general position can be decomposed as a sequence of horizontal

slices, each of which contains exactly one node, as below.

One can therefore encode the geometry of such a diagram as follows:

• The number of wires crossing the input boundary;

• The list of slices, each of which can be described by the following data:

– The number of wires passing to the left of the node in the slice. We call

this the offset;

– The number of input wires consumed by the node;

– The number of output wires produced by the node.

For the sample diagram above, this gives us the following encoding (with inputs

at the top of the diagram):

inputs: 1

slices:

- offset: 0

inputs: 1

outputs: 2

- offset: 1

inputs: 1

outputs: 2

- offset: 0

24 2.3. Variants of monoidal categories

inputs: 2

outputs: 1

On top of this geometrical structure, one can specify the object associated

with each wire and the morphism associated with each vertex. We will use this

computational structure in Chapter 4 in our solution to the word problem for

monoidal categories.

2.3 Variants of monoidal categories

Monoidal structures come in all sorts of flavours and variants, and we review a few

of them in this section. Some are monoidal structures with additional properties,

while some are related to monoidal categories in a looser sense.

2.3.1 Symmetric monoidal categories

Many if not most of the monoidal structures of interest in applied category theory

are symmetric, in the following sense.

Definition 2.16. A monoidal category (C,⊗, I) is symmetric when there is a

natural isomorphism sA,B : A⊗ B → B ⊗ A such that s−1
A,B = sB,A and satisfying

the hexagon1 identities:

σA,B⊗C = (1B ⊗ σA,C) ◦ (σA,B ⊗ 1C)

σA⊗B,C = (σA,C ⊗ 1B) ◦ (1A ⊗ σB,C)

Monoidal categories are often used as theories of resources (objects) and processes

(morphisms) and it is common that the precise location or order of the resources

consumed or produced by a morphism do not matter. In such cases it is natural

to use a symmetric monoidal structure.

The string diagrams defined in the previous section can be adapted to the

additional structure of symmetric monoidal categories. Concretely, it simply
1The name comes from the fact that when stated as commutative diagrams in the context of

weak monoidal categories, they have six sides.

2. Background 25

A B C

g

f

B B C

A B C

g

f

B B C

Figure 2.4: Two isomorphic symmetric monoidal string diagrams.

amounts to giving a special representation to the swap morphism sA,B : A⊗B →

B ⊗ A, and adapting the notion of isotopy so that it captures the properties

satisfied by this morphism. A string diagram in a symmetric monoidal category

is given in Figure 2.4. The string diagram on the left represents the morphism

(1B ⊗ γC,B) ◦ (1B ⊗ f ⊗ 1B) ◦ (γA,B ⊗ g), where f : A ⊗ A → C, g : C → A ⊗ B,

and where γA,B : A ⊗ B → B ⊗ A is the symmetry.

Definition 2.17. A symmetric monoidal string diagram on a symmetric

monoidal signature Σ is an anchored progressive polarised diagram of Σ in the sense

of Joyal and Street (1991).

In the example signature Σ above, one can draw the string diagrams of Figure 2.4.

Definition 2.18. An isomorphism of symmetric monoidal string diagrams φ : D →

D′ is an anchored isomorphism of progressive polarised diagrams in the sense of

Joyal and Street (1991).

The two example diagrams in Figure 2.4 are isomorphic. Given a monoidal

signature Σ, one can form a category Fs(Σ) whose objects are (Ob Σ)∗ and morphisms

are isomorphism classes of symmetric monoidal string diagrams on Σ.

Theorem 2.19 (Joyal and Street, 1991; Selinger, 2010). A well-formed equation

between morphisms in the language of symmetric monoidal categories follows from the

axioms of symmetric monoidal categories if and only if it holds, up to isomorphism

26 2.3. Variants of monoidal categories

of diagrams, in the graphical language. In other words, Fs(Σ) is the free symmetric

monoidal category on Σ.

Note that the objects of the free symmetric monoidal category, Ob(Σ)∗, corre-

spond to elements of the free monoid on the object symbols of the signature. (The

fact that the set of finite words is the free monoid can be seen as a one-dimensional

analogue of the previous theorem.)

2.3.2 Cartesian categories

Another common feature of monoidal categories is the ability to duplicate or

discard resources, typically when those resources are immaterial. In such cases,

the monoidal category at hand is likely cartesian.

Definition 2.20 (Fox, 1976). A cartesian category is a symmetric monoidal

category C equipped with a natural family of symmetric comonoids (δA : A →

A⊗A,⊥A : A→ I) such that δA⊗B = (1A⊗sA,B⊗1B)◦ (δA⊗ δB) and the monoidal

unit I is terminal. If these conditions are satisfied one may write the product as ×

instead of ⊗.

The comultiplication δA is the copying map and the counit ⊥A is the discarding

map. It can be checked that this definition of a cartesian category is equivalent to

the usual one, where the product is defined as the limit of a two-point diagram (Fox,

1976; Heunen and Vicary, 2012). The idea behind defining a cartesian category

as a symmetric monoidal category with extra structure is to obtain a graphical

calculus for cartesian categories, by extending our string diagrammatic syntax to

include the additional structure and properties.

In Figure 2.5 we represent the copying and discarding maps as explicit operations.

The equations they satisfy can then be stated graphically in Figure 2.6. The presence

of the monoidal symmetry in these axioms explains why cartesian categories are

necessarily symmetric.

2. Background 27

= =

(a) Copying is unital for discarding

=

(b) Copying is associative

α

...

= ...

(c) Operations without outputs discard in-
puts

=

(d) Copying is symmetric

α

=
α α

(e) Copying the output of an operation

=

(f) Copying a pair

Figure 2.6: Axioms of a cartesian structure in a symmetric monoidal category.

(a) Copying (b) Discarding

α

...

...

(c) Arbitrary operation

Figure 2.5: Generators of a cartesian structure in a symmetric monoidal category.

String diagrams for cartesian categories are essentially directed acyclic graphs,

and this graph-based representation is used in countless fields and implemented by

many software packages. For instance, Figure 2.7 shows a compositing workflow

in Blender3D2, where the graph-based representation of the image transformation

pipeline is manipulated directly by the user. In this representation, each output

port of a morphism can have multiple edges connected to it: this is an alternative

to using explicit copying morphisms, as we have done in the string-diagrammatic

presentation given earlier, but both syntaxes are clearly equivalent.

2https://www.blender.org/

https://www.blender.org/

28 2.3. Variants of monoidal categories

Figure 2.7: Constructing an image by composing modules in Blender3D.3

2.3.3 Braided monoidal categories

Another variant of monoidal categories that we find of interest are braided monoidal

categories, which were introduced by Joyal and Street (1986, 1993). They are

arguably not as common as symmetric monoidal categories in applied settings, but

still find applications in, for instance, topological quantum computation. Their

study is also motivated by the fact that they arise naturally in higher-categorical

contexts, as we will explain in Section 2.3.5.

We assume the context of a strict monoidal structure but again, there exist weak

versions of the following definitions, and coherence theorems show their equivalence

with the strict definitions that we adopt here (Theorem 4 in Joyal and Street (1986)).

Definition 2.21. A braided monoidal category C is a monoidal category

(C,⊗, I) equipped with a natural isomorphism σA,B : A⊗B → B ⊗A, satisfying the

hexagon identities:

σA,B⊗C = (1B ⊗ σA,C) ◦ (σA,B ⊗ 1C)

σA⊗B,C = (σA,C ⊗ 1B) ◦ (1A ⊗ σB,C)
3Taken from https://docs.blender.org/manual/en/latest/compositing/introduction.

html, CC BY-SA.

https://docs.blender.org/manual/en/latest/compositing/introduction.html
https://docs.blender.org/manual/en/latest/compositing/introduction.html

2. Background 29

A B

B A

(a) String diagram for σA,B

B A

A B

(b) String diagram for σ−1
A,B

Figure 2.8: Representation of braid morphisms as string diagrams.

AB ⊗ C

=

A B C
A⊗BC

=

A B C

Figure 2.9: The hexagon identities represented as string diagrams.

We use string diagrams for monoidal categories to represent morphisms in

braided monoidal categories. Figure 2.8 shows the representation of the braid

morphism and its inverse. Figure 2.9 shows the representation of the hexagon

identities with this convention.

The soundness and completeness theorem of string diagrams for monoidal

categories can be extended to the case of braided monoidal categories (Joyal and

Street, 1991). This requires adapting again the notion of a string diagram, which

is now three-dimensional, and the corresponding class of isotopies. We state the

soundness and completeness theorem as formulated by Selinger (2010):

Theorem 2.22 (Theorem 5 in Selinger, 2010). A well-formed equation between

morphisms in the language of braided monoidal categories follows from the axioms

of braided monoidal categories if and only if it holds in the graphical language up to

isotopy in 3 dimensions.

= =

(a) Reidemeister 2 move (σ is an iso)

. . .

. . .

. . .

= . . .

. . .

. . .

(b) Pull-through move (naturality of σ)

Figure 2.10: Equalities satisfied by braid morphisms.

30 2.3. Variants of monoidal categories

=

Figure 2.11: Two isotopic diagrams in a braided monoidal category.

.

k − 1 strings n− k − 1 strings

(a) Representation of σk

=

(b) Representation of Equation 2.13

Figure 2.12: Graphical representation for the braid group.

The combinatorics of string braidings have been studied extensively, but more

often from the perspective of group theory than category theory. The braid group

was introduced by Artin (1947).

Definition 2.23. The braid group on n strands Bn is the free group generated by

generators σ1, . . . , σn−1 with equations

σkσk+1σk = σk+1σkσk+1 for 1 ≤ k < n− 1 (2.13)

σiσj = σjσi for j − i > 1 (2.14)

With this formalism, an element of the group represents a braid on n strings,

while σk represents a positive braiding of the adjacent strings k and k + 1, with

no change on other strings. Its inverse σ−1
k is the negative braiding on the same

strings. Figure 2.12 shows how generators and equations of the braid group can

be represented graphically. Equation 2.13 is called the Reidemeister type 3 move

(or Yang-Baxter equation). It can be seen that it is a particular case of the pull-

through move of Figure 2.10b, where the morphism being pulled through is a

braid itself. Equation 2.14 corresponds to the exchange moves which hold in

any monoidal category.

We can make the connection between this group-theoretic presentation and

braided monoidal categories more precise. Given a monoidal signature, one can

2. Background 31

generate the free braided monoidal category on it. By Theorem 2.22, this is

the category of braided string diagrams whose vertices and edges are labelled by

generating objects and morphisms respectively. Note that we are not imposing

any additional equation between the generators: the only equations which hold

are those implied by the braided monoidal structure itself.

Proposition 2.24 (Joyal and Street, 1993). The free braided monoidal category B

generated by the signature ({A}, ∅) is the braid category, i.e. B(An, An) = Bn, the

group of braids on n strands.

Proof. This can be seen in string diagrams: a morphism in B can only be made

of identities, and positive and negative braids. As a string diagram in a monoidal

category, it can be drawn in general position, in which all braids appear at different

heights. This can therefore be decomposed as a sequential composition of slices

containing exactly one positive or negative braid. The number of wires between

each slice remains constant given that braids and identities always have as many

outputs as inputs: let us call this number n. Each of these slices corresponds to a

generator or generator inverse in Bn. As explained above, the equations holding in

B(An, An) and Bn are the same, hence the equality.

Therefore, braided monoidal categories generalize the braid group by allowing

for other morphisms than braids and identities.

2.3.4 Bicategories and 2-categories

So far we have listed a few notions which are special cases of monoidal categories.

Let us now turn to a generalization of the notion: bicategories.

Definition 2.25. A bicategory C consists of:

• A collection Ob C of 0-cells.

• For each pair of objects A,B ∈ Ob C, a category C(A,B) whose objects are

the 1-cells with domain A and codomain B. Given two 1-cells f, g : A→ B,

the morphisms between them in C(A,B) are called 2-cells with domain f and

codomain g, respectively.

32 2.3. Variants of monoidal categories

• For each object A ∈ Ob C, a distinguished 1-cell 1A : A→ A.

• For all objects A,B,C ∈ Ob C a composition functor _ ◦ _ : C(B,C) ×

C(A,B)→ C(A,C).

• Natural isomorphisms witnessing the unitality of the composition functor:

1B ◦ _ ' 1C(A,B) and _ ◦ 1A ' 1C(A,B) for all objects A,B ∈ C.

• Natural isomorphisms similarly witnessing the associativity of the composition

functor.

The associators and unitors are required to satisfy the pentagon and triangle equations

as in the definition of monoidal categories.

One example of a bicategory is Cat, the bicategory whose 0-cells are categories

with functors as 1-cells and natural transformations as 2-cells. In fact, one can

check that the natural isomorphisms required in the last two points of the definition

are identities in this particular example. This motivates a stricter definition:

Definition 2.26. A 2-category is a bicategory whose composition functor is strictly

unital and associative.

The reason why we are interested in bicategories and 2-categories is that they

generalize monoidal categories, in the following sense.

Proposition 2.27. Let C be a bicategory with a single 0-cell: Ob C = {?}. Then

one can form a monoidal category whose objects are the 1-cells Ob C(?, ?) and

morphisms are the 2-cells of C. The composition of morphisms is given by the

composition in C(?, ?) and the monoidal product is given by the composition functor

in the definition above. Conversely, any monoidal category defines a bicategory in

an analogous way.

Similarly, 2-categories with a single object correspond to strict monoidal cate-

gories. Interestingly, the string diagrams for monoidal categories can be generalized

to obtain string diagrams for 2-categories or bicategories. Instead of drawing

2. Background 33

A

B C

D

E

f

g

h

k l

⇓ α 7→

h g f

l k

α

E

D A

BC

Figure 2.13: Obtaining a string diagram by duality from a commutative diagram.

diagrams to represent morphisms, we now draw diagrams for 2-cells. In the diagrams,

nodes correspond to 2-cells, edges to 1-cells and regions to 0-cells. Therefore, the

only difference is that we need to annotate the regions with our string diagrams

with 0-cells, which is often done by colouring the regions. By doing so, we ensure

that we make it syntactically impossible to compose two 1-cells with incompatible

domains and codomains. In comparison, monoidal categories make it possible to

consider the monoidal product of any two objects or any two morphisms.

In a sense, 2-categories also shed additional light on string diagrams by relating

them to the classical pasting diagrams that category theorists generally use. Given a

commutative diagram for a 2-cell, the corresponding string diagram can be obtained

by taking the dual of the commutative diagram, as in Figure 2.13.

2.3.5 Higher categories

The notions of 2-category or bicategory suggest iterations of the idea: adding 3-cells

to get 3-categories or tricategories, adding 4-cells to get tetracategories, and so

on. They are called higher categories, as they consist of many layers of cells piling

up on top of each other. The definitions are fairly involved, and we will not use

them directly in our work, so we keep this section informal. The aim is only to

convey the motivation behind some of our other results. Let us assume that we

have a notion of n-category, for n ≥ 0, which has 0-cells up to n-cells, similar to

the case of 2-categories from the previous section. In particular, a 1-category is

just a category, and a 0-category only has a collection of 0-cells, so it is essentially

a set without any other structure. Just as we considered 2-categories which had

34 2.3. Variants of monoidal categories

k \n 0 1 2 3
0 set category 2-category 3-category
1 {?} monoid monoidal cat. monoidal 2-cat.

2
... {?} comm. monoid braided monoidal cat.

3
... {?} comm. monoid

4
... {?}

Figure 2.14: The periodic table of n-categories.

only one 0-cell, we can do the same for higher categories. In fact, one can consider

not just n-categories which have only one 0-cell: we can ask the first few layers

of cells to all be trivial. More precisely:

Definition 2.28. An n-category C is k-degenerate if it has only one p-cell for all

0 ≤ p < k.

Just as a 2-category with only one 0-cell is a monoidal category, a k-degenerate

n-category induces an (n − k)-category D by shifting k-cells down: the k-cells

of C are the 0-cells of D, and so on. This (n − k)-category has extra structure

induced by the n-categorical structure. With this principle in mind, one can try to

determine (or simply guess) what the induced structure is depending on n and k.

This gives rise to the so-called periodic table of n-categories. Figure 2.14 gives a

reduced version of it, which can be extended in various ways. Just like the periodic

table of chemical elements, its contents were originally guessed and establishing

the corresponding theorems can be a significant amount of work. Even stating the

results properly is in itself non-trivial, since the desired result is generally not just

about a correspondence between instances of the notions involved, but also the

functors between them, the natural transformations between those, and so on.

Despite the difficulty in making its predictions fully precise and verified, the

periodic table is of interest to us as a resource to discover variants of monoidal

categories which somehow arise naturally, as simple cases of more complicated

structures. Studying the word problem for the categories mentioned in the table is

a way to approach the word problem for higher categories from simpler cases. In

2. Background 35

particular, hardness or undecidability results on categories found in the periodic

table would then directly transfer to more general versions of those categories.

In terms of applications, the results then let us better understand what sort of

automation one can hope for, in the context of proof assistants for higher categories

such as homotopy.io (Heidemann et al., 2019).

36

3
Bimonoidal categories

Contents

3.1 Introduction . 38
3.2 Bimonoidal categories . 41
3.3 Sheet diagrams . 42

3.3.1 Bimonoidal signatures 42
3.3.2 Defining sheet diagrams 47
3.3.3 Isomorphisms of sheet diagrams 54
3.3.4 Data structures for sheet diagrams 62

3.4 Baez’s conjecture . 64
3.5 Applications to dataflow programs 65

3.5.1 Categorical semantics of dataflow 67
3.5.2 Overview of OpenRefine 67
3.5.3 Elementary model of OpenRefine workflows 69
3.5.4 Model of OpenRefine workflows with facets 71
3.5.5 Semantics and completeness 76

The first four sections in this chapter are taken from the article Sheet diagrams
for bimonoidal categories (Comfort et al., 2020), under review for the Com-
positionality journal. The last section is taken from the article A complete
language for faceted dataflow programs (Delpeuch, 2019), presented at the
Applied Category Theory 2019 conference.

37

38 3.1. Introduction

3.1 Introduction

The previous chapter made the case for string diagrams as a convenient and rigorous

syntax for morphisms in monoidal categories. However convenient this syntax might

be, it is limited by the expressivity of the monoidal structure. It is common to

work in settings where two monoidal structures are used; however, monoidal string

diagrams are by definition a syntax for one particular monoidal structure. And

a priori, there is no reason why one might expect that more than one monoidal

structures interact well with each other. However, there are certain instances when

there is some sort of useful interaction between both monoidal structures.

In this chapter we focus our attention to a particular type of distributivity

between two monoidal structures on a category. Bimonoidal categories (also known

as rig categories) are categories with a monoidal structure ⊗ and a symmetric

monoidal structure ⊕, with natural isomorphisms

δA,B,C : A⊗ (B ⊕ C)→ (A⊗B)⊕ (A⊗ C)

δ#
A,B,C : (A⊕B)⊗ C → (A⊗ C)⊕ (B ⊗ C)

called distributors, distributing ⊗ over ⊕ from the left and the right, satisfying

certain coherence laws. Many well-known categories have such a structure, for

example Set with disjoint unions and cartesian products, or Vect with direct

sums and tensor products. Some informal attempts have been made at drawing

string diagrams for such categories. Consider for instance the following linear

map, a morphism in Vect:

A⊗B f−→ (C ⊗D)⊕ (C ⊗D) 1C⊗D⊕γC,D−−−−−−−→ (C ⊗D)⊕ (D ⊗ C) g−→ E

where γC,D : C ⊗D → D ⊗ C is the symmetry for ⊗. Authors have used various

informal conventions to represent such a morphism as a diagram:

3. Bimonoidal categories 39

g

f

E

A B

(a) Duncan (2009)

g

f

E

A B

+

(b) James and Sabry (2012)

B

E

g

f

A

(c) Staton (2015)

These conventions all communicate the structure of a morphism to readers, but

do not a priori enjoy a soundness and completeness theorem. In this chapter we

develop the formal theory of diagrams for bimonoidal categories (also known as rig

categories, semiring categories). We provide a definition of the class of diagrams

(that we call sheet diagrams), their deformations and a soundness and completeness

theorem for them. Our sheet diagrams follow the three-dimensional style used by

Staton (2015), retrospectively justifying their use as formal reasoning tools. The

central theorem for this result is as follows:

Theorem 3.41. The category of sheet diagrams on a signature Σ is bimonoidally

equivalent to the free bimonoidal category on Σ.

Sheet diagrams represent morphisms in a bimonoidal category in a normal form,

as a “sum of products” with ⊗ pushed to the inside and ⊕ pushed to the outside

by the distributors, similar to the normal form of a polynomial, or disjunctive

normal form in logic. This is intended as a compromise, making sheet diagrams

both easier to visualise and also easier to typeset, in return for which the tensor

product of sheet diagrams is a rather complicated derived operation. It seems

also likely that one could define a class of string diagrams which does not require

normalizing objects as a sum of products, but this would also come with significant

difficulties and is therefore left for future work.

Given that our diagrams are three-dimensional, it is natural to wonder whether

they could be related to other classes of three-dimensional diagrams already known,

such as those for Gray categories (Hummon, 2012). In fact, our diagrams cannot

40 3.1. Introduction

be recast as surface diagrams for Gray categories because their boundaries are

not necessarily globular. We could consider surface diagrams for double monoidal

categories (which have not been formally defined to the best of our knowledge),

which do not require globularity. While it might be possible to recast our sheet

diagrams as such surface diagrams, the benefit of doing so is not immediately clear as

no coherence theorem for such diagrams is known and some composition operations

of those cubical surface diagrams would not make sense in the bimonoidal case.

Bimonoidal categories have found applications in a variety of fields: probability

theory (Fritz and Perrone, 2018), quantum information (Staton, 2015), dataflow

computations (see Section 3.5), game theory (Hedges, 2018), and reversible compu-

tation (James and Sabry, 2012). They are also studied in K-theory (Guillou, 2009;

Gomez, 2009). Sheet diagrams could potentially be used in each of these fields, but

one important obstacle for using these diagrams is the difficulty of typesetting and

manipulating them. We introduce a web-based tool called SheetShow,1 which renders

sheet diagrams as vector graphics based on a purely combinatorial description

of their geometry. We give an overview of the data structures of this tool in

Section 3.3.4, which are based on our data structures for monoidal categories

laid out in Section 2.2.3.

A corollary of this theorem is a simpler proof of Baez’s conjecture that the

groupoid of finite sets and bijections is bi-initial in the 2-category of bimonoidal cate-

gories.

Finally, we show how those diagrams can be used to give a complete axiomati-

zation of a certain class of programs, inspired by the data model of a popular data

wrangling tool, OpenRefine. The central theorem for this section states soundness

and completeness of our axiomatization:

Theorem 3.48. Let d, d′ be sheet diagrams representing dataflow programs, with

one input sheet and one output sheet. Then d = d′ by our axiomatization if and

only if given any valuation, d and d′ induce the same functions.
1Available at https://wetneb.github.io/sheetshow/ (web app) and https://github.com/

wetneb/sheetshow (source code)

https://wetneb.github.io/sheetshow/
https://github.com/wetneb/sheetshow
https://github.com/wetneb/sheetshow

3. Bimonoidal categories 41

Beyond this result, the motivation for this axiomatization is to open up possi-

bilities to visualize and manipulate workflows more easily in the tool itself. Work

to implement this in the OpenRefine tool is ongoing.

3.2 Bimonoidal categories

Definition 3.1. A bimonoidal category, or rig category, is a category C with

a monoidal structure (C, ·, I) and a symmetric monoidal structure (C,⊕, O) with

natural isomorphisms called the left and right distributors:

δA,B,C : A(B ⊕ C)→ AB ⊕ AC

δ#
A,B,C : (A⊕B)C → AC ⊕BC

and isomorphisms called the left and right annihilator:

λ∗A : OA→ O

ρ∗A : AO → O

satisfying the coherence conditions given in Appendix A.

For instance, Set is bimonoidal when equipped with the monoidal structures

(Set,×, {?}) and (Set,t, ∅), where × is the cartesian product and t is the disjoint

union. Similarly, Vectk (the category of vector spaces on a field k) is bimonoidal

for (Vect,⊗, k) and (Vect,⊕, O).

One important question when defining categorical structures such as this one

is whether they satisfy coherence. By coherence, we mean that any two parallel

morphisms generated by the structural isomorphisms δ, δ#, λ∗, ρ∗ and those of the

monoidal structures are equal. For bimonoidal categories, this unfortunately does

not hold. The symmetry of (C,⊕, O) makes this impossible, as the isomorphisms

γA,A and 1A ⊕ 1A are parallel and distinct.

However, a restricted form of coherence for bimonoidal categories was proved

by Laplaza (1972). It applies when the domain (or equivalently codomain) of

the parallel pair of morphisms is regular, which essentially means that no two

42 3.3. Sheet diagrams

occurrences of the same object generator can be swapped by a symmetry. We will

make this precise in Section 3.3.1 as Theorem 3.13. We finish this section with

a semi-strictification theorem for bimonoidal categories.

Definition 3.2. A bimonoidal category is left-semistrict (resp. right-semistrict)

if both monoidal structures are strict and δ#
A,B,C (resp. δA,B,C) is an identity for all

A,B,C. It is semistrict if it is either left- or right-semistrict.

Note that we cannot reasonably require a bimonoidal category to be both left-

and right-semistrict at the same time. Indeed, if both distributors are identities,

then by coherence axiom (IV) in Appendix A, one can deduce that the symmetry

of (C,⊕, O) would be equal to the identity, which is undesirable. However, partial

strictification is always possible, as the following theorem establishes.

Theorem 3.3 (Guillou, 2009). Any bimonoidal category is equivalent to a semistrict

one.

The aim of the following section is to characterize the free bimonoidal category

on a signature as a certain category of diagrams quotiented by certain topological

equivalences. In a sense, this will generalize the results of Joyal and Street (1991)

for monoidal categories and for symmetric monoidal categories, as the diagrammatic

calculi for both non-symmetric and symmetric monoidal categories can be recovered

as special cases of our sheet diagram calculus.

3.3 Sheet diagrams

3.3.1 Bimonoidal signatures

Given a set X, let R(X) denote the set of expressions generated by the two

binary operators · and ⊕, the two nullary symbols I and O, and elements of X

as nullary symbols. For instance, R(X) contains expressions such as A · (O ⊕ B)

or A · (B ⊕ (I ⊕ A)). In other words, R(X) is the set of bimonoidal object

expressions on generators X.

3. Bimonoidal categories 43

Definition 3.4. A bimonoidal signature Σ consists of a set Ob Σ of object

symbols, a set Mor Σ of morphism symbols, together with domain and codomain

functions dom, cod : Mor Σ→ R(Ob Σ). We write f : dom(f)→ cod(f).

One can then give a tautological definition of the free bimonoidal category

such a signature generates.

Definition 3.5. Given a bimonoidal signature Σ, define the free bimonoidal

category Σ that it generates: the objects of Σ are given by R(Ob Σ); the morphisms

are equivalence classes of morphism expressions built out of Mor Σ, structural iso-

morphisms from Definition 3.1 and identities quotiented by the axioms of bimonoidal

categories.

This definition is not particularily easy to work with, since morphism expressions

can easily get cluttered with structural isomorphisms due to the interplay between

the three binary operations involved: ◦, · and ⊕. By defining sheet diagrams for

bimonoidal categories, we will provide a more practical description of Σ, where the

bimonoidal axioms are interpreted as topological deformations.

Similarly, Definition 3.4 is the most general form of a bimonoidal signature,

but again not the most convenient to work with. Just like monoidal signatures

normalize the domains and codomains of their morphism symbols by forgetting

the bracketing of their products, we will introduce a similar normalization for

bimonoidal signatures. First, by Theorem 3.3 we can assume up to equivalence that

both the additive and multiplicative monoidal structures are strict. We therefore

omit the associators and unitors in what follows.

Definition 3.6. An expression φ ∈ R(X) is normalized when it is a sum of

products of generators (elements of X). Each summand can have no factors (in

which case the summand is simply I) and the sum can have no summands, in

which case φ = O. A bimonoidal signature is normalized when all its domains and

codomains of morphism symbols are normalized.

44 3.3. Sheet diagrams

For any bimonoidal signature, we want to define a normalized version of it. This

requires a bit more care than in the monoidal case because there can be multiple ways

to normalize an object expression. For instance, the expression (A⊕B)(C ⊕D) is

equivalent to two normalized forms: AC⊕AD⊕BC⊕BD and AC⊕BC⊕AD⊕BD.

Definition 3.7. For any expression A ∈ R(X) we define its normal form N(A) =⊕
iAi where Ai are products, by induction:

• N(O) = O

• N(I) = I

• N(A⊕B) = N(A)⊕N(B)

• N(A · B) = ⊕
i

⊕
j AiBj, where N(A) = ⊕

iAi and N(B) = ⊕
j Bj with Ai,

Bj products of generators.

For example, N((A ⊕ B)(C ⊕ D)) = AC ⊕ AD ⊕ BC ⊕ BD.

Definition 3.8. Let A1, . . . , Ap and B1, . . . , Bq be object expressions. We define

an isomorphism ∆p,q : (⊕iAi)(
⊕
j Bj)→

⊕
i

⊕
j AiBj by repeated application of the

distributor δ. Formally, the definition is by induction on p and q:

• For p = 0, ∆0,q = λ∗⊕jBj
: O(⊕j Bj)→ O

• For p = 1, ∆p,q is obtained by repeated applications of the distributor δ. More

precisely:

– For p = 1 and q = 0, ∆1,0 = ρ∗A1 : A1O → O

– For p = 1 and q > 0,

∆1,q : A1(⊕q
j=1Bj) = A1(⊕q−1

j=1 Bj ⊕Bq)
δ

A1,
⊕q−1

j=1 Bj ,Bq

−−−−−−−−−→ A1
⊕q−1
j=1 Bj ⊕ A1Bq

∆1,q−1⊕1A1Bq−−−−−−−−→ ⊕q−1
j=1 A1Bj ⊕ A1Bq

= ⊕q
j=1A1Bj

3. Bimonoidal categories 45

• For p > 1, (⊕iAi)(
⊕
j Bj)→δ (⊕p−1

i=1 Ai)(
⊕
j Bj)⊕ Ap(

⊕
j Bj). We can apply

∆p−1,q on the left-hand side and ∆1,q on the right-hand side.

Definition 3.9. For any object expression A ∈ R(X) we define its normalization

morphism nA : A→ N(A) by induction:

• nO = 1O

• nI = 1I

• nA⊕B = nA ⊕ nB

• nA·B = ∆p,q ◦ (nA · nB) where p and q are the number of summands in N(A)

and N(B) respectively.

Note that every normalization morphism is an isomorphism.

Definition 3.10. Given any bimonoidal signature Σ, we can build a normalized

signature N(Σ) where all domains and codomains are normalized by N :

ObN(Σ) = Ob Σ

MorN(Σ) = {f ′ : N(dom f)→ N(cod f) | f ∈ Mor Σ}

Theorem 3.11. For any bimonoidal signature Σ, the categories Σ and N(Σ) are

bimonoidally isomorphic.

Proof. We define a functor U : Σ → N(Σ), which is the identity on objects and

translates a morphism in Σ to N(Σ), by structural induction on the morphism

expression as follows. For the base case, for any φ in Mor Σ, define U(φ) :=

n−1
codφ ◦φ′ ◦ndomφ. Moreover, for any object A, define U(1A) := 1A as required. And

similarly, for all the structural natural isomorphisms of a bimonoidal category, define

U(δA,B,C) := δA,B,C , U(δ#
A,B,C) := δ#

A,B,C and so on. For the inductive case, consider

some morphisms φ1 : A → B, φ2 : B → C in Σ for which U(φ1) and U(φ2) are

already defined. Then define U(φ2 ◦ φ1) := U(φ2) ◦ U(φ1). Similarly, consider some

morphisms φ1 : A→ B, φ2 : C → D in Σ for which U(φ1) and U(φ2) are already

defined. Then define U(φ1 ⊕ φ2) := U(φ1)⊕ U(φ2) and U(φ1 · φ2) := U(φ1) · U(φ2).

46 3.3. Sheet diagrams

Similarly, define a functor V : N(Σ)→ Σ which is the identity on objects and

whose definition on objects is completely analogous, by structural induction on

the signature of MorN(Σ) and the axioms of a bimonoidal category. For the base

case, this functor takes generators to V (φ′) := ncodφ ◦ φ ◦ n−1
domφ. The rest of the

induction is defined as before.

The only thing left to prove is that the two assignments between Σ and N(Σ)

are well-defined; as they preserve the bimonoidal structure and are inverse to each

other by construction. That is to say, we have to show that they preserve the

equivalence relations on morphisms induced by the axioms of a bimonoidal category.

But since both assignments only replace generators by expressions, the equivalence

relation induced by the bimonoidal structure is automatically preserved. The two

functors are bimonoidal (in the sense of Appendix A.1) and mutually inverse.

As a consequence, we will only consider normalized signatures in what follows,

as this will not restrict the generality of our results. Let us now turn to coherence.

As mentioned earlier, coherence does not hold for bimonoidal categories in general,

but only when some conditions on their domain (or equivalently codomain) are met.

Definition 3.12 (Laplaza, 1972). An object A ∈ Ob Σ is regular when all the

summands in N(A) are distinct (they are all different lists of generators) and for

each summand of N(A), its factors are all different (it is a product of distinct

generators).

For instance, AB ⊕BA is regular, but AB ⊕ AB and AA⊕ AB are not. Note

that the second condition (each summand being a product of distinct generators)

was required by Laplaza because they assumed the multiplicative monoidal structure

to be symmetric. We only assume the additive structure to be symmetric, so this

condition should be superfluous in our case. We keep it for the sake of accurate

citation as we will be able to accommodate this artificial restriction later on, when

using the following theorem:

Theorem 3.13 (Laplaza, 1972). Let A, B be regular objects of Σ. For all morphisms

f, g : A→ B generated by structural isomorphisms of Σ, f = g.

3. Bimonoidal categories 47

We finish this section with a lemma on the normalization function N .

Lemma 3.14. For all objects A,B,C ∈ Ob Σ,

N(A ·N(B · C)) = N(N(A ·B) · C)

Proof. Let N(A) = ⊕
iAi, N(B) = ⊕

j Bj, N(C) = ⊕
k Ck. Then

N(A ·N(B · C)) = N(A · (B · C))

=
⊕
i

⊕
j,k

Ai(BjCk)

=
⊕
i,j

⊕
k

(AiBj)Ck

= N((A ·B) · C)

= N(N(A ·B) · C)

3.3.2 Defining sheet diagrams

In this section, we assume a fixed normalized bimonoidal signature Σ. Because

bimonoidal categories are symmetric monoidal categories for their additive structure,

we can already use string diagrams for symmetric monoidal categories to reason

about bimonoidal categories. Such a diagrammatic language treats the multiplicative

structure as opaque, but we will see in this section how to extend the language

to take the second monoidal structure into account as well.

The first step consists in defining a monoidal signature which we will use for

our symmetric monoidal diagrams.

Definition 3.15. The monoidal signature Γ is given by

Ob Γ = (Ob Σ)∗

Mor Γ = (Mor Σ ∪ {1A|A ∈ Ob Σ})∗

dom[f1, . . . , fn] = N [dom(f1) · . . . · dom(fn)]

cod[f1, . . . , fn] = N [cod(f1) · . . . · cod(fn)]

where dom(1A) = cod(1A) = A.

48 3.3. Sheet diagrams

We are slightly abusing notation in the previous definition: The normalized

domains and codomains are sums of products, which we interpret as lists of lists,

that is, as lists of object symbols of Γ.

The signature Γ generates a symmetric monoidal category C for the additive

structure. Object generators are multiplicative products of bimonoidal generators,

therefore objects in C are sums of products of bimonoidal generators.

Similarly, morphism generators in Γ are multiplicative products of morphism

generators in Σ, except that we also allow for identities to be part of the product.

The domain of a morphism generator is obtained by normalizing the product of

the domains of its components.

For instance, consider object generators A,B,C,D and bimonoidal morphism

generators f : A ⊕ AB → C and g : BD → A ⊕ D. We can form f · 1C ·

g ∈ Mor Γ. Its domain is N((A ⊕ AB) · C · BD) = ACBD ⊕ ABCBD and its

codomain is N(C · C · (A⊕D)) = CCA⊕ CCD. When drawn as a string diagram

generator, it looks as follows:

f · 1C · g
ACBD ABCBD

CCDCCA

This is not very informative, since only the additive monoidal structure is

reflected by the diagram. The multiplicative structure is left unanalyzed because

it is internal to the object and morphism generators.

To fix this issue, we extrude our monoidal diagram into a sheet diagram. Edges

of our monoidal diagram become sheets, and vertices become seams. On the

sheets, we can draw wires whose connectivity reflects which factor of the morphism

generator they are coming from:

A

D

C

B

g

D

C

C

D

C

B
A

f

C

C

B
A

3. Bimonoidal categories 49

Informally, each factor of the morphism generator corresponds to a node on

the seam, in the same order. These nodes are represented here by small black

spheres, except for the middle one which corresponds to an identity, which we leave

unmarked. This idea can be generalized to arbitrary diagrams. This section defines

these diagrams and the associated class of topological transformations.

Definition 3.16. Let [f1, . . . , fn] ∈ Mor Γ and let dom[f1, . . . , fn] = ⊕p
j=1

⊗qj

k=1 Ajk

be its domain. For each j, k we define the origin of Ajk in [f1, . . . , fn] as the index

1 ≤ i ≤ n such that Ajk occurs in dom fi. If Ajk occurs in the domain of more than

one morphism factor, this can be made unambiguous by adding indices to the object

symbols involved in the domains before normalization. Similarly, the origin of an

object symbol in the codomain of a morphism generator is defined.

Definition 3.17. Given a symmetric monoidal string diagram S on Γ, a sheet

diagram D for S is a collection of topological manifolds with boundaries in R3:

• for each vertex v ∈ R2 of S, there is a seam {v}× [0, 1] ⊂ R3. Let [f1, . . . , fn]

be the morphism generators associated with v. For each i we pick an xvi ∈ (0, 1)

such that xv1 < · · · < xvn and add a node (v, xvi), which is included in the

vertex’s seam;

• for each edge e ⊂ R2 of S, there is a sheet e× [0, 1] ⊂ R3. Let pe : [0, 1]→ R2

be a parametrization of e from source to target (top down). Let [Ae1, . . . , Aen]

be the type associated to e in S. For each i we pick a parametrized segment

γei : [0, 1] → [0, 1] which gives rise to a wire wei : t ∈ [0, 1] → pe(t) × γei(t)

included in the sheet for edge e. We require that for all t ∈ (0, 1) and i < j,

γei(t) < γej(t).

Furthermore, we require the following conditions:

1. In S, if an edge e connects to a vertex v from above (into its domain), then

for all wires wei on the sheet corresponding to e in D, γei(1) = xvj where j is

the origin of Aei in the domain of v;

50 3.3. Sheet diagrams

2. In S, if an edge e connects to a vertex v from below (out of its codomain),

then for all wires wei on the sheet corresponding to e in D, γei(0) = xvj where

j is the origin of Aei in the codomain of v.

The skeleton of D is S. The set of sheet diagrams on Γ is denoted by D(Γ).

Let us consider an example of a sheet diagram.

g · 1F

f

BCDA

HF

(a) A string diagram S on Γ.

DA

F

f

C

g

H

B

(b) A sheet diagram based on S.

Obtaining a sheet diagram from a string diagram only requires picking node

positions on each seam, and trajectories of the wires on each sheet, such that the

two boundary conditions are satisfied. The geometry of the seams and sheets is

directly inherited from that of the string diagram itself. The boundary conditions

ensure proper typing of the diagram. Geometrically, there is a projection from

a sheet diagram to its skeleton.

Note that nothing interesting happens on sheets themselves: wires flow vertically,

without being able to cross, from the bottom seam to the top seam of the sheet

(or the diagram boundaries). However, for seams which have only one input

sheet and one output sheet, we will use the convention of not drawing the seam

between the two sheets, informally treating them as the same sheet. This makes

it possible to draw monoidal string diagrams for the multiplicative product “on

the sheets”. In the following example we mark the seams with dashed red lines,

which will be omitted in the future:

3. Bimonoidal categories 51

(a) Skeleton (b) Sheet diagram

Definition 3.18. Let D be a sheet diagram. Its domain domD is the domain of

its skeleton, and similarly for its codomain codD.

Definition 3.19. Let D1 and D2 be sheet diagrams such that codD1 = domD2.

The sheet diagram D2 ◦ D1 is constructed by stacking D1 on top of D2, binding

sheets and wires at the boundary with linear interpolation.

◦ =

Figure 3.4: Example of composing sheet diagrams with ◦.

Definition 3.20. Let D1 and D2 be sheet diagrams. The sheet diagram D1 ⊕D2 is

constructed by adjoining D2 to the right of D1.

Note that we have S(D2 ◦D1) = S(D2) ◦ S(D1) and S(D1 ⊕D2) = S(D1)⊕ S(D2).

⊕ =

Figure 3.5: Example of composing sheet diagrams with ⊕.

To obtain a bimonoidal category of sheet diagrams, the last binary operation

we need to define is the tensor product. This is more intricate since it is not

naturally represented by the structure of the skeleton. We start by defining the

52 3.3. Sheet diagrams

whiskering of a diagram with an object, in other words a tensor product where

one of the factors is an identity.

Definition 3.21. Let A ∈ Ob Σ and D be a sheet diagram. The left whiskering

of D by A, denoted by A ·D, is obtained from D by:

• adding a node nv on each seam corresponding to vertex v in S(D), before all

other nodes on the seam;

• adding a wire we on each sheet corresponding to edge e in S(D), before all

other wires on the seam;

• replacing all symmetries γU,V in S(D) by the whiskered symmetry γAU,AV ;

such that if sheet e connects to seam v, wire we connects to node nv. We have

A ·D : N(A · domD)→ N(A · codD). The right whiskering is defined similarly,

placing the new nodes and wires after the existing ones instead.

E ·
B

C

A

D

=
B

C

A

E

E

D
E

Figure 3.6: Example of the left whiskering of a sheet diagram.

We now turn to the general definition of the tensor product. We first need to

define a family of isomorphisms to reorder summands.

Definition 3.22. Let p, q ∈ N and X1, . . . , Xp, Y1, . . . , Yq ∈ Ob Γ. We define an

isomorphism

EXY :
p⊕
i=1

q⊕
j=1

XiYj →
q⊕
j=1

p⊕
i=1

XiYj

which reorders the summands as indicated by the commutation of sums, by repeated

application of the symmetry for ⊕.

The definition of the tensor product of arbitrary diagrams exploits the exchange

law to express it as a composition of whiskered diagrams.

3. Bimonoidal categories 53

Definition 3.23. Let f : ⊕iAi →
⊕

j Bj and g : ⊕k Ck →
⊕

lDl be sheet diagrams,

where Ai, Bj, Ck, Dl ∈ Ob Γ. We can define the tensor product of D1 and D2 as:

f ⊗ g := E−1
BD ◦ (

⊕
l

fDl) ◦ EAD ◦ (
⊕
i

Aig)

:
⊕
i

⊕
k

AiCk →
⊕
j

⊕
l

BjDl

B1

A1

f

B2

A2

⊗
D1

C1

g

D2

C2

=

D1

C1
g

D2B1

C2A1

f

D1B1

C1A1

g

D2B2

C2A2

f

B2

A2

Figure 3.7: Example of the tensoring sheet diagrams.

Note that we made a choice here: f ⊗ g could have equivalently been defined

as (⊕j Bjg) ◦ E−1
BC ◦ (⊕k fCk) ◦ EAC . In the next section, we will define a class

of isotopies which will let us relate the two expressions (Lemma 3.38). Before

that, we introduce one last product, that of morphism generators, for which we

do not need to resort to whiskering.

Definition 3.24. Let f : ⊕k Ak →
⊕

lBl and g : ⊕pCp →
⊕
qDq ∈ Mor Γ. They

are both lists of morphism generators in Σ or identities: [f1, . . . , fn] and [g1, . . . , gm].

We define their tensor as

[f1, . . . , fn, g1, . . . , gm]

In other words we concatenate the lists of generators and identities that compose

them.

54 3.3. Sheet diagrams

Lemma 3.25. For all f, g ∈ Mor Γ, dom fg = N((dom f)(dom g)) and cod fg =

N((cod f)(cod g)).

Proof. This is a direct consequence of the associativity of N (Lemma 3.14) and the

definition of domains and codomain in Γ (Definition 3.15).

3.3.3 Isomorphisms of sheet diagrams

We begin with a lemma on isomorphisms of symmetric monoidal string diagrams.

Lemma 3.26. Given an anchored isotopy of progressive diagrams between diagrams

S1 and S2, there is an open graph isomorphism φ between the open graphs defined

by S1 and S2. In other words there are bijections between their sets of nodes, their

sets of edges, and those respect the adjacency relations.

Definition 3.27. Given sheet diagrams D1, D2 with domD1 = domD2 and codD1 =

codD2, a regular isotopy of sheet diagrams from D1 to D2 is given by an

anchored isotopy of progressive polarised diagrams α : S(D1)→ S(D2), which gives

an open graph isomorphism φ by Lemma 3.26, as well as:

• for each node nvi on a seam v in D1, a continuous map x∗vi : [0, 1] → [0, 1]

such that x∗vi(0) = xvi and x∗vi(1) = xφ(v)i, where nφ(v)i ∈ D2;

• for each wire wei on a sheet e in D1, a continuous isotopy γ∗ei : [0, 1]× [0, 1]→

[0, 1] such that γ∗ei(0, t) = γei(t) and γ∗ei(1, t) = γφ(e)i(t) for all t ∈ [0, 1], where

wφ(e)i ∈ D2

Finally, at each time t ∈ [0, 1], the sheet diagram made of the skeleton α(t), the

node positions x∗vi(t) and the wire paths γ∗ei(t) is required to be a valid sheet diagram.

Lemma 3.28. Regular isotopy of sheet diagrams preserve their interpretations as

bimonoidal morphisms.

Proof. As the interpretation of a sheet diagram D is the interpretation of its skeleton

S(D), this is a simple consequence of Theorem 2.19.

3. Bimonoidal categories 55

However, regular isotopy of sheet diagrams does not capture the entire equa-

tional theory of bimonoidal categories: the exchange law for the multiplicative

monoidal structure is missing. For instance, the following diagrams have the same

interpretation, but they are not regularly isotopic:

C

E

f

DA

B

g

A

g

C

E

f

DA

B

g

A

Their interpretations are equal by the exchange rule for the multiplicative product:

(1B · f) ◦ ((g · 1C)⊕ (g · 1D)) = (1B · f) ◦ (g · (1C⊕D))

= (g · 1E) ◦ (1A · f)

Therefore, we need to broaden our class of isomorphisms to capture multiplica-

tive exchange too.

Definition 3.29. Let f : ⊕iAi →
⊕

j Bj and g : ⊕k Ck →
⊕

lDl be morphism

generators in Γ (diagrams with a single seam), where Ai, Bj, Ck, Dl ∈ Ob Γ. A

tensor merge from α = E−1
BD ◦ (⊕l fDl) ◦ EAD ◦ (⊕iAig) to β = fg is a function

γ : [0, 1]→ D(Σ) (where D(Σ) is the set of sheet diagrams on Σ) such that:

• γ(0) = α and γ(1) = β;

• for all 0 < t < 1, the restriction of γ on [0, t) is a regular isotopy of sheet

diagrams

• for each seam s ∈ α, limt→1 s(t) is the unique seam of β;

• for each sheet s ∈ α with one end on the boundary of the diagram, limt→1 s(t)

is the unique sheet in β connected to the same boundary at the same ordinal

position;

56 3.3. Sheet diagrams

• for each sheet s ∈ α not connected to the boundary, limt→1 s(t) is the unique

seam of β;

• for each node n ∈ α on a seam s, limt→1 n(t) is a node in the unique seam of

β, with the same ordinal position;

• for each wire w on a sheet s ∈ α that connects to the boundary, limt→1w(t)

is a wire on limt→1 s(t) with the same ordinal position.

Similarly, one can define a tensor merge from (⊕j Bjg) ◦ E−1
BC ◦ (⊕k fCk) ◦ EAC

to fg. Finally, a tensor explosion γ : α → β is a tensor merge in reverse, i.e.

when t 7→ γ(1− t) is a tensor merge.

For example, the following are steps of a tensor merge:

C

E

f

DA

B

g

A

g

(a) γ(0)

g g

f

C

E

DA

B

A

(b) γ(1
2)

g f

C

E

DA

B

A

(c) γ(1)

We can extend the notions of tensor merges and tensor explosions to wider

contexts, where the seams to merge or explode are parts of a larger diagram. To

that end, we use the notion of sheet diagram with a hole, which is simply a sheet

diagram where an occurrence of another sheet diagram has been removed. We

denote by C(x) such a diagram, where x is a free variable, and by C(α) the sheet

diagram obtained by inserting the sheet diagram α in place of the hole.

Definition 3.30. Let γ : α → β be a tensor merge and C(x) be a sheet diagram

with a hole, such that C(α) is a valid sheet diagram. Since α and β have the

same domain and codomain, C(β) is also a valid sheet diagram. The function

C(γ) : [0, 1]→ C(Σ) defined by C(γ) : t 7→ C(γ(t)) is called a tensor merge in

context. Similarly, we define tensor explosions in context.

3. Bimonoidal categories 57

Lemma 3.31. For all tensor merges or explosions in context C(γ) : C(α)→ C(β),

C(α) and C(β) are equal as bimonoidal morphisms.

Proof. By Definition 3.29, the start and end diagrams of tensor merges or explosions

are equal by multiplicative exchange. By composition, this extends to contexts.

We can now define our most general notion of isotopy for sheet diagrams.

Definition 3.32. A bimonoidal isotopy between sheet diagrams D1, D2 is a

function γ : [0, 1] → D(Σ) such that γ(0) = D1, γ(1) = D2 and for all t ∈ [0, 1],

there exists ε > 0 such that on [t − ε, t], γ is either a regular isotopy or a tensor

merge, and on [t, t+ ε], γ is either a regular isotopy or a tensor explosion.

Lemma 3.33. Bimonoidal isotopy preserves the interpretation of diagrams.

Proof. Since [0, 1] is connected, it is enough to show that the interpretation of

γ(t) is locally constant for all t ∈ [0, 1]. By Lemma 3.28, the interpretation is

constant during regular isotopies and by Lemma 3.31, tensor merges and explosions

in context also preserve interpretation.

Lemma 3.34. Composition, sum and tensor of sheet diagrams all respect bimonoidal

isotopy.

Proof. Given two sheet diagrams α, β and bimonoidal isotopies γ : α → α′, γ′ :

β → β′, we obtain a bimonoidal isotopy from α ⊕ β to α′ ⊕ β′ by first running γ

while β stays still, then running γ′ while α′ stays still. Note that we do not run

both transformations in parallel because our definition of bimonoidal isotopy only

allows for one tensor merge or explosion at a time. The case for the composition

of diagrams is similar. By Definition 3.23, the diagram α⊗ β contains in general

multiple copies of α and β: we obtain an isotopy by running γ on each copy of α in

sequence, and then γ′ on copies of β.

Definition 3.35. The category of sheet diagrams D(Σ) has sums of products

of object symbols from Σ as objects, and equivalence classes of sheet diagrams

under sheet diagram isotopy as morphisms. Domains and codomains are given

58 3.3. Sheet diagrams

by Definition 3.18, composition by Definition 3.19. It has a symmetric monoidal

structure ⊕ given by Definition 3.20.

To equip D(Σ) with a multiplicative monoidal structure, we need to show that

our tensor product (Definition 3.23) satisfies the exchange law. Tensor merges

and explosions are only defined for morphism generators in Γ (single seams),

not arbitrary diagrams, so we cannot just use one tensor merge followed by one

tensor explosion in general.

Lemma 3.36. Any diagram f ∈ D(Σ) can be written in general position, such

that no two seams or additive symmetries are at the same height, up to bimonoidal

isotopy. It can therefore be expressed as a sequential composition of slices, which

are sums of at most one seam or additive symmetry and a finite number of identities.

Proof. This is a straightforward generalization of the same result for symmetric

monoidal string diagrams, which can be found in Joyal and Street (1991).

Lemma 3.37. Let f : ⊕iAi →
⊕
j Bj and g : ⊕k Ck →

⊕
lDl be slices, where

Ai, Bj, Ck, Dl ∈ Ob Γ. Then there is a bimonoidal isotopy between E−1
BD ◦ (⊕l fDl) ◦

EAD ◦ (⊕iAig) and (⊕j Bjg) ◦ E−1
BC ◦ (⊕k fCk) ◦ EAC.

Proof. We proceed by induction on the sum of numbers of identities in the summands

of f and g. When there are no identities in f or g, there are three cases. If both

f and g are seams, then the two expressions are isotopic via a tensor merge and

explosion by construction. If both f and g are symmetries, then the two expressions

only consist of symmetries and identities which induce the same permutation of

the summands of their domain, so they are isotopic. Finally, if one of f and g is a

seam and the other is a symmetry, let us assume by symmetry that f = γA1,A2 and

g is a seam. The isotopy holds by pull through moves:

3. Bimonoidal categories 59

D1

C1
g

D2A2

C2A1

D1A2

C1A1

g

D2A1

C2A2

A1

A2

=

D1

C1

g

D2A2

C2A1

D1A2

C1A1

g

D2A1

C2A2

A1

A2

Notice that in this transformation nothing interesting is happening on the third

dimension: in the future, we will resort to two-dimensional string diagrams for such

isotopies.

Now for the inductive case, assume there is an identity in f = 1A1 ⊕ f ′. The

isotopy holds as follows:

f ′D1 f ′D2

A1g A2g A3g

=
f ′D1 f ′D2

A1g A2g A3g

=
A2g A3gA1g

f ′D1 f ′D2
=

A1g A2g A3g

f ′D1 f ′D2

The second equality uses the induction hypothesis on f ′ and g, other steps are

60 3.3. Sheet diagrams

regular isotopies.

Lemma 3.38. Let f : ⊕iAi →
⊕
j Bj and g : ⊕k Ck →

⊕
lDl be sheet diagrams,

where Ai, Bj, Ck, Dl ∈ Ob Γ. Then there is a bimonoidal isotopy between E−1
BD ◦

(⊕l fDl) ◦ EAD ◦ (⊕iAig) and (⊕j Bjg) ◦ E−1
BC ◦ (⊕k fCk) ◦ E−1

AC.

Proof. Up to a regular isotopy, we can assume that f and g are in general position

and therefore expressed as a sequential composition of slices. We can then apply

Lemma 3.37 repeatedly, exchanging neighbouring slices of f and g until all slices of

f are below all slices of g.

Lemma 3.39. D(Σ) can be equipped with a monoidal structure (D(Σ),⊗, I), given

on objects by A⊗B = N(A ·B) and on morphisms by Definition 3.23

Proof. The product on objects is unital (N(A·I) = N(I ·A) = N(A)) and associative

by Lemma 3.14. By Lemma 3.38, the exchange law for ⊗ is satisfied, hence the

result.

Lemma 3.40. D(Σ) is bimonoidal with (⊗, I) distributing over (⊕, O) .

Proof. The monoidal structure (D(Σ),⊕, O) is given by Theorem 2.19, and the

monoidal structure (D(Σ),⊗, I) is given by Lemma 3.39.

Since N((A⊕B)C) = N(AC)⊕N(BC), we can define:

δ#
A,B,C : (A⊕B)⊗ C → A⊗B ⊕B ⊗ C = 1N(AC)⊕N(BC)

For δA,B,C : A ⊗ (B ⊕ C) → A ⊗ B ⊕ A ⊗ C, decompose N(A) = ⊕
iAi with

Ai ∈ Ob Γ. We have

N(A(B ⊕ C)) =
⊕
i

N(Ai(B ⊕ C)) =
⊕
i

N(AiB)⊕N(AiC)

N(AC)⊕N(BC) =
⊕
i

N(AiB)⊕
⊕
i

N(AiC)

Therefore we define δA,B,C as the reordering map (composition of symmetries) from⊕
iN(AiB)⊕N(AiC) to ⊕iN(AiB)⊕⊕iN(AiC).

Since N(OA) = N(AO) = O for all A, we define λ∗ : O ⊗ A → O and

ρ∗A : AO → O as 1O (the empty sheet diagram).

3. Bimonoidal categories 61

We now need to check the coherence axioms of Appendix A. Let us consider the

first axiom:
A(B ⊕ C) AB ⊕ AC

(I)

A(C ⊕B) AC ⊕ AB

δA,B,C

1Aγ
′
B,C

γ′AB,AC

δA,C,B

In D(Σ), all sides of this square are composites of the additive symmetry γ.

Therefore, it is sufficient to check that both paths induce the same permutation,

by coherence for symmetric monoidal categories. Equivalently, one can also use

coherence for regular objects of bimonoidal categories (Theorem 3.13) by choosing

A, B and C as sums of generators all distinct. One can then obtain commutation

for the general case by instantiation (substituting the generators by the actual

summands). The other axioms can be treated in similar ways:

• (I), (V), (VI), (VIII), (IX) hold by bimonoidal coherence for regular objects;

• (III) holds since δ# = 1 and γA,B1C = γ′AC,BC by definition;

• (IV) simplifies thanks to δ# = 1 and holds by monoidal coherence for (⊕, O)

• (VII) simplifies thanks to δ# = 1 and holds by monoidal coherence for (⊗, I)

• (X), (XII), (XIII), (XIV), (XVI), (XVII), (XVIII) hold as all sides equal 1O

• (XIX), (XX), (XXI), (XXII) hold as all sides are identities

• (XXIII) and (XXIV) hold as δI,A,B = 1A⊕B = δ#
A,B,I

Theorem 3.41. D(Σ) and Σ are bimonoidally equivalent, i.e. D(Σ) is the free

bimonoidal category on Σ.

62 3.3. Sheet diagrams

Proof. The interpretation of diagrams is a well-defined function [·] : D(Σ)→ Σ by

Lemma 3.33 and is a bimonoidal functor by construction. For the reverse direction,

by freeness of Σ there is a unique bimonoidal functor F : Σ→ D(Σ) mapping each

generator in Σ to its representation in D(Σ).

Σ D(Σ)
F

[·]

Let us show that these form an equivalence. First, F ◦[·] is the identity on objects and

morphism generators and therefore by induction it is the identity on all morphisms.

Second, [·] ◦ F is not the identity but nA : A → N(A) is a natural isomorphism

from the identity to [·] ◦ F . Its naturality can be shown by induction on f :

A B

N(A) N(B)

f

nA nB

F (f)

For f a generator, the vertical sides are identities (by assumption that domains and

codomains of generators are normalized, from Section 3.3.1). For f a structural

isomorphism, the square commutes by regular coherence. By induction, it holds for

all morphisms.

3.3.4 Data structures for sheet diagrams

In this section we give a short primer on the declarative format used to represent

diagrams in SheetShow2, the tool we used to render all sheet diagrams in this chapter.

Sheet diagrams in bimonoidal categories are obtained by extruding symmetric

monoidal string diagrams for the additive monoidal structure (C,⊕, O). Therefore,

our data structure for bimonoidal diagrams is based on that for monoidal diagrams,

laid out in Section 2.2.3.

A bimonoidal diagram is described by:
2Available at https://wetneb.github.io/sheetshow/ and https://github.com/wetneb/

sheetshow (source)

https://wetneb.github.io/sheetshow/
https://github.com/wetneb/sheetshow
https://github.com/wetneb/sheetshow

3. Bimonoidal categories 63

• The number of input sheets, and the number of input wires on each of these

input sheets;

• The slices of the bimonoidal diagram, which are seams between sheets. They

are each described by:

– The number of sheets passing to the left of the seam. We call this, again,

the offset;

– The number of input sheets joined by the seam;

– The number of output sheets produced by the seam;

– The nodes present on the seam.

Each seam can have multiple nodes on it. Each of these can connect to some

wires on each input sheet (not necessarily the same number of wires for each input

sheet) and similarly for output sheets. We describe them with the following data:

• The number of wires passing through the seam without touching a node, to

the left of the node being described. We call this the offset of the node;

• For each input sheet, the number of wires connected to the node;

• For each output sheet, the number of wires connected to the node.

For instance:
inputs: [1, 2, 1, 1]
slices:
- offset: 2

inputs: 2
outputs: 2
nodes:
- offset: 0

inputs: [1, 1]
outputs: [2, 2]

- offset: 1
inputs: 1
outputs: 2
nodes:
- offset: 0

inputs: [1, 1]
outputs: [1]

64 3.4. Baez’s conjecture

Again, additional metadata can be added on the geometry to annotate it

with labels, types, and represent symmetries for the additive and multiplicative

structures. For more details about these, consult SheetShow’s documentation:

https://sheetshow.readthedocs.org/en/latest/.

3.4 Baez’s conjecture

Recently, a conjecture attributed to Baez was confirmed by Elgueta (2020), who

showed that the groupoid of finite sets and bijections is bi-initial in the 2-category

of bimonoidal categories. The category of finite sets has indeed a bimonoidal

structure, where disjoint union of sets is the monoidal addition and cartesian

product is the monoidal multiplication.

This result can also be obtained via string diagrams. Indeed, the free bimonoidal

category on an empty signature, ∅, is bi-initial. This is a direct consequence of

the universal property: any bimonoidal functor from ∅ to a bimonoidal category

C is determined (up to equivalence) by the image of the generators of ∅, but

there are no such generators.

Therefore, to prove Baez’ conjecture it is enough to characterize the free

bimonoidal category on an empty signature. By Theorem 3.41, ∅ is bimonoidally

equivalent to D(∅). The objects of D(∅) are finite sums of the multiplicative

monoidal unit. The morphisms of D(∅) are string diagrams on the empty signature.

We can analyze the geometry of such string diagrams. All the sheets in such

diagrams are empty: they cannot have any wires on them, since those wires would

need to be annotated by an object from the signature. Similarly, the diagrams

do not contain any seams, since each seam contains at least one node which is

annotated by a morphism generator. Therefore, the diagrams are only made of

identities of empty sheets and additive symmetries.

https://sheetshow.readthedocs.org/en/latest/

3. Bimonoidal categories 65

Figure 3.11: A sheet diagram on the empty signature.

Hence, a morphism in D(∅) induces a permutation of its domain, which is

equal to its codomain. Furthermore, morphisms in D(∅) are equivalence classes

of string diagrams up to bimonoidal equivalence. Two string diagrams induce the

same permutation of their common domain when their skeletons are isomorphic as

symmetric monoidal diagrams, and therefore when the diagrams are in bimonoidal

equivalence. Therefore, the category D(∅) is equivalent to the groupoid of finite

sets, hence the result.

3.5 Applications to dataflow programs

In this section, we give one application of bimonoidal categories in the domain of data

processing. This is the application that motivated our work on sheet diagrams, as

we first used those diagrams informally to data transformation pipelines. Therefore,

this section follows the narrative of (Delpeuch, 2019), but it has been reformulated

to use bimonoidal categories and the sheet diagrams we have just developed.

In the dataflow paradigm, data processing pipelines are built out of modular

components which communicate via some channels. This is a natural architecture

to build concurrent programs and has been studied in many variants, such as

Kahn process networks (Kahn, 1974), Petri nets (Petri, 1966; Kavi et al., 1987),

the LUSTRE language (Halbwachs et al., 1991) or even UNIX processes and

pipes (Walker et al., 2009). Each of these variants comes with its own requirements

on the precise nature of these channels and operations: for instance, sorting a

66 3.5. Applications to dataflow programs

stream requires the module to read the entire stream before writing the first value

on its output stream, which violates a requirement called monotonicity in Kahn

process networks, but is possible in UNIX. Categorical accounts of these process

theories have been developed, for instance for Kahn process networks (Stark, 1991;

Hildebrandt et al., 2004) or Petri nets (Pratt, 1991; Meseguer et al., 1992).

In this section, we give categorical semantics to programs in Extract-Transform-

Load (ETL) software. These three words refer to the three main steps of most

projects carried out with this sort of system. Typically, the user extracts data from

an existing data source such as a comma-separated values (CSV) file, transforms

it to match a desired schema (for instance by normalizing values, removing faulty

records, or joining them with other data sources), and loads it into a more structured

information system such as a relational or graph database. In other words, ETL

tools let users move data from one data model to another. Because the original

data source is typically less structured and not as well curated as the target data

store, these operations are also refered to as data cleansing or wrangling.

ETL tools typically let users manipulate their data via a collection of operations

which can be configured and composed. The way operations can be composed, as

well as the format of the data they act on, represent the main design choice for

these tools: it will determine what sort of workflow they can represent naturally

and efficiently. We will focus here on the tabular data model popularized the

OpenRefine software (Huynh et al., 2019), a widely used open source tool popular

in the linked open data and data journalism communities.3 We give a self-contained

description of the tool in Section 3.5.2.

We propose a complete categorical axiomatization for this data model, using a

bimonoidal category. Using sheet diagrams, this gives rise to a three-dimensional

diagrammatic language for the workflows, generalizing the widespread graph-based

representation of dataflow pipelines. The semantics and the complete axiomatization

provided make it possible to use this model to reason about workflow equivalence

using intuitive graphical rules.
3See http://openrefine.org/, we encourage viewing the videos or trying the software directly,

although this section should be readable with no previous knowledge of the tool.

http://openrefine.org/

3. Bimonoidal categories 67

This has very concrete applications: at the time of writing, OpenRefine has a

very limited interface to manipulate workflows, where the various operations used

in the transformation are combined in a simple list. Graph-based representations

of workflows are already popular in similar tools but are not expressive enough to

capture OpenRefine’s model, due to the use of facets, which dynamically change the

route followed by data records in the processing pipeline depending on their values.

Our approach solves this problem by giving a natural graphical representation

which can be understood with no knowledge of category theory, making it amenable

to implementation in the tool itself.

3.5.1 Categorical semantics of dataflow

Symmetric monoidal categories model an elementary sort of dataflow pipelines,

where the flow is acyclic and deterministic. This is well known in the applied

category theory community: for instance, Coecke (2010) illustrates it by modelling

cooking recipes by morphisms in such categories.

Informally, in a symmetric monoidal category C, objects of C are stream types

and morphisms are dataflow pipelines binding input streams to output streams.

Pipelines can be composed sequentially, binding the outputs of the first pipeline to

the second, or in parallel, obtaining a pipeline from both inputs to both outputs. The

difference between food and data is that discarding the latter is not frowned upon:

data streams can be discarded and copied, which makes the category cartesian.

3.5.2 Overview of OpenRefine

Let us now get into more detail about how OpenRefine works. Loading a data

source into OpenRefine creates a project, which consists of a simple data table: it is

a collection of rows and columns. To each row and column, a value (possibly

null) is associated.

The user can then apply operations on this table. Applying an operation will

change the state of the table, usually by performing the same transformation for

each row in the table. Example of operations include removing a column, reordering

68 3.5. Applications to dataflow programs

Family name Given name Donation
Green Amanda 25e
Dawson Rupert 12e
de Boer John 40e
Tusk Maria 3e

(a) The initial state of the project.
Family name Given name Full name Donation
Green Amanda Amanda Green 25e
Dawson Rupert Rupert Dawson 12e
de Boer John John de Boer 40e
Tusk Maria Maria Tusk 3e

(b) Applying an operation to create the Full name column.
Family name Given name Full name Donation
GREEN Amanda Amanda Green 25e
DAWSON Rupert Rupert Dawson 12e
DE BOER John John de Boer 40e
TUSK Maria Maria Tusk 3e
(c) Applying an operation to capitalize the Family name column.

α

β

Fa
mi
ly
na
me

Gi
ven

na
me

Do
na
tio
n

Fa
mi
ly
na
me

Gi
ven

na
me

Fu
ll n

am
e

Do
na
tio
n

(a)

(b)

(c)

(d) The workflow represented as a string diagram. Opera-
tion α is concatenation, operation β is capitalization.

Figure 3.12: Example of an OpenRefine project in its successive states, with the
corresponding string diagram.

3. Bimonoidal categories 69

columns, normalizing the case of strings in a column or creating a new column

whose values are obtained by concatenating the values in other columns. Users can

configure these operations with the help of an expression language which lets them

derive the values of a new column from the values in existing columns.

Unlike spreadsheet software, such expressions are fully evaluated when stored in

the cells that they define: at each stage of the transformation process, the values in

the table are static and will not be updated further if the values they were derived

from change in the future. For instance, in the sample project of Figure 3.12, the

first operation creates a Full name column by concatenating the Given name and

Family name columns. Applying a second operation to capitalize the Family name

column does not change the values in the Full name column.

Another difference with spreadsheet software, where it is possible to reference

any cell in the expression defining a cell, is that OpenRefine’s expression language

only lets the user access values from the same row. For instance, in the same

example project of Figure 3.12, spreadsheet software would make it easy to compute

the sum of all donations in a final row. This is not possible in OpenRefine as

this would amount to computing the value of a cell from the value of other

cells outside its own row.

In other words, operations in OpenRefine are applied row-wise and are stateless:

no state is retained between the processing of rows. It is therefore simple to

parallelize these operations, as they amount to a pure map on the list of rows.

This is a simplification: in reality, there are violations of these requirements

(for instance, OpenRefine offers a sorting operation, and a records mode which

introduces a restricted form of non-locality). Due to the limited space we do

not review these violations here.

3.5.3 Elementary model of OpenRefine workflows

So far, OpenRefine fits neatly in the dataflow paradigm presented in Section 3.5.1.

One can view each column of a project as a data stream, which can be assigned a

type t ∈ T : in our example project, the first two columns are string-valued and the

70 3.5. Applications to dataflow programs

third contains monetary values. These data streams are synchronous: the values

they contain are aligned to form rows. An operation α ∈ O can be seen as reading

values from some columns and writing new columns as output. Because of the

synchronicity requirement, an operation really is just a function from tuples of

input values on the columns it reads to values on the column it writes.

The schema of a table, which is the list of its column types, can be naturally

represented by the product of the objects representing its column types. In the

example of Figure 3.12, the initial table is therefore represented by S × S ×M ,

where S is the type of strings and M of monetary values. Let us call α : S×S → S

the first concatenation operation and β : S → S the second capitalization operation.

Figure 3.12d shows a string diagram which models the workflow of Figure 3.12.

Definition 3.42. The category E of table schema and elementary OpenRefine

workflows between them is the free cartesian category generated by a set of datatypes

D as objects and a set of operations O as morphisms.

This modelling of OpenRefine workflows makes it easy to reason about the

information flow in the project. It is possible to rearrange the operations using

the axioms of a cartesian category to show that two workflows produce the same

results. We could add some generating equations between composites of the

generating operations, such as operations which commute even when executed

on the same column for instance.

Without loss of generality, we can assume that the generating operations all

have a single generating datatype as codomain, as the cartesian structure makes it

possible to represent generic operations as composites of their projections. Under

these conditions, morphisms of E can be rewritten to a normal form, illustrated

in Figure 3.13.

Lemma 3.43. Any morphism m ∈ E can be written as a vertical composite of three

layers: the first one only contains copying and discarding morphisms, the second

only symmetries and the third only generating operations (identities are allowed at

each level).

3. Bimonoidal categories 71

β α =

β α α operations

exchanges

copying and discarding

Figure 3.13: A diagram in E and its normal form.

All three slices in the decomposition above can be further normalized: for

instance, the cartesian slice can be expressed in left-associative form, the exchange

slice is determined by the permutation it represents, and the operation slice can

be expressed in right normal form, as we will see in Section 4.2. This gives a

simple way to decide the equality of diagrams in E . Of course, deciding equality in

a free cartesian category just amounts to comparing tuples of terms in universal

algebra. We are only formulating it as a graphical rewriting procedure to lay

down the methodology for the next section, where we develop a more elaborate

model of OpenRefine workflows. For this model too, we will obtain a graphical

method to decide the equality of diagrams, which is also be related to a term-based

representation in the proof of Theorem 3.48.

3.5.4 Model of OpenRefine workflows with facets

One key functionality of OpenRefine that we have ignored so far is its facets. A

facet on a column gives a summary of the value distribution in this column. For

instance, a facet on a column containing strings will display the distinct strings

occurring in the column and their number of occurences. A numerical facet will

display a histogram, a scatterplot facet will display points in the plane, and so on.

Beyond the use of facets to analyze distributions of values, it is also possible

to select particular values in the facet, which selects the rows where these values

are found. It is then possible to run operations on these filtered rows only. So far

72 3.5. Applications to dataflow programs

our operations ran on all rows indiscriminately, so we need to extend our model

to represent operations applied to a filtered set of rows.

We assume from now on a set F of filters in addition to our set of operations O.

Each filter f ∈ F is associated with an object Tf ∈ E , the type of data that it filters

on. Each filter can be thought of as a boolean expression that can be evaluated

for each value v ∈ Tf , determining if the value is included or excluded by the filter.

The type Tf is not required to be atomic: for instance, in the case of a scatterplot

filter, two numerical columns are read (one for each dimension of the scatterplot).

Definition 3.44. Let F be the free co-cartesian category generated as follows. We

denote by [A1, . . . , An] the product of objects A1, . . . , An in F to distinguish it from

the product × in E. For each object T ∈ E, [T] ∈ F is a generator. Morphism

generators are:

(i) For each morphism α ∈ E(T, U), there is a generator [α] : [T]→ [U].

(ii) For each filter f and object U ∈ E, there is a generator [f × U] : [Tf × U]→

[Tf × U, Tf × U].

For each object T ∈ E, we call JT : [T, T] → [T] and ET : [] → [T] the

comultiplication and counit provided by the co-cartesian structure.

The axioms satisfied by these generators are stated graphically in Figure 3.15,

with the notations introduced in Figure 3.14. In addition to these axioms, we require

that [g] ◦ [f] = [g ◦ f] (which is tautological graphically). In other words, E embeds

into F functorially (but that functor is not monoidal).

The definition above can be interpreted intuitively as follows. An object in E

represents the schema of a table (the list of types of its columns). An object of F is

a list of objects of E , so it represents a list of table schemata. As will be made clear

by the semantics defined in the next section, a morphism in F : [U, V] 7→ [W,Z]

should be thought of as a function mapping disjoint tables of respective schemata U

and V to disjoint tables of respective schemata W or Z, and row-wise so: depending

on its values, a row can end up in either of the output tables. This makes it therefore

3. Bimonoidal categories 73

possible to represent filters as morphisms triaging rows to disjoint tables. A filter

[f × U] operates on tables of schema Tf × U , and only reads values from the first

component to determine whether to send the row to the first or second output table.4

This treatment of a boolean predicate A→ 2 as a morphism A→ A+A is similar to

that of effectus theory (Cho et al., 2015). The comultiplication JT is a union, merges

two tables of identical schemata together.5 The counit ET is the empty table.

Proposition 3.45. The category F is bimonoidal, with the additive monoidal

structure being the co-cartesian structure of F , and the multiplicative structure

defined on objects by [A1, . . . , An]× [B1, . . . , Bm] = [A1×B1, . . . , A1×Bm, . . . , An×

B1, . . . , An × Bm] and on morphisms as in Definition 3.23. Furthermore, it is

cartesian too, making it a distributive category.

Proof. Just like for sheet diagrams, we have defined the multiplicative product such

that objects are always normalized, which is forced on us by the way we defined

F , by freely generating a co-cartesian structure on top of a cartesian structure.

Therefore, the definition of the distributors is similar: the distributor δ[A]× [B,C] '

[A×B,A×C] is the identity, and the distributor δ′ : [A,B]× [C] ' [A×C,B×C]

consists of symmetries.

To show that F is cartesian, define the projection π1 : [A,B]× [C,D]→ [A,B]

by
C DA

A

CA DB

B

B

One can check that this satisfies the required properties.

This shows that F is monoidal with its monoidal structures being respectively

cocartesian and cartesian. This is known in the literature as a distributive category.
4The requirement to whisker our generators Tf by arbitrary objects comes from the two-step

definition of our category, using two free constructions. It could be avoided with a free generation
in a single shot.

5In this model, row order does not matter in this model: tables are sets of rows.

74 3.5. Applications to dataflow programs

D

B

α

C

A

(a) Operation [α] : [A×B]→ [C ×D]

U

U

UTf

f

Tf

Tf
(b) Filter [f×U] : [Tf×U]→ [Tf×U, Tf×U]

T

T

T

(c) Union JT : [T, T]→ [T]

T

(d) Empty table: ET : []→ [T]

Figure 3.14: Generators of F .

f =

(a) Merging a filter immediately does noth-
ing

g

f

g

= f

g

f

(b) Filters commute even with a common
column

f

α α
=

f

α

(c) Disjoint filters and operations commute

f =
f

(d) Copying and filtering commute

f

f

= f =
f

f

(e) Filters do not modify data

Figure 3.15: Axioms of F .

We could alternatively have constructed F as a free distributive category, to the

cost of making the relationship between the two models less clear.

We can therefore represent morphisms in F as sheet diagrams as shown in

Figure 3.14. Figure 3.15 states the relations satisfied by these generators using

this convention.

OpenRefine workflows with filters can be represented by morphisms F . For

3. Bimonoidal categories 75

the converse, we first show that morphisms of F can be represented in normal

form thanks to the following decomposition.

Lemma 3.46. Let m ∈ F([A], [B]) be a morphism with one input sheet and one

output sheet. There exists a decomposition m = z ◦ y ◦ x ◦ [w] such that w ∈ E, x

only contains filters, y only contains discarding morphisms, and z only contains

unions.

Proof. First, any empty tables ET in the diagram can be eliminated as co-cartesian

units, just like discarding morphisms can be eliminated in the cartesian case

(Section 3.5.3).

We then move all operations, copy morphisms and exchanges in E up to the

first sheet. Operations and copy morphisms can be moved past unions and empty

tables by the properties of the co-cartesian structure. Although Equation 3.15c

can only be used for operations and filters applied to disjoint columns, it can be

combined with Equation 3.15d to commute any operation and filter, possibly leaving

discarding morphisms behind:

f

α
=

f

α

= f

α

= f
α α

=
f

α

This lets us push all operations up, obtaining the first part of the factorization:

m = φ ◦ [w] with w ∈ E and φ consists of filters, unions, discarding morphisms and

exchanges in F .

Unions can be moved down by naturality, obtaining m = z ◦ φ′ ◦ [w] where

φ′ only consists of filters, discarding morphisms and exchanges in F . Then, all

exchanges in φ′ can be moved down by naturality and absorbed by z. Finally, all

discarding morphisms can be moved down past the filters using Equation 3.15c.

This decomposition can be used to show that all such morphisms arise from

OpenRefine workflows, despite the fact that some generators cannot be interpreted

as such individually. As stated, this lemma does not provide normal forms yet, as

76 3.5. Applications to dataflow programs

the order of filters in x is not determined. We will see in the proof of Theorem 3.48

how this can be addressed.

3.5.5 Semantics and completeness

We can give set-valued semantics to E and F and obtain completeness theorems

for our axiomatization of OpenRefine workflows.

Definition 3.47. A valuation V is given by:

(i) a set V (T) for each basic datatype T ∈ E;

(ii) a function V (α) : V (A)→ V (B) for each generator α ∈ E(A,B), where V (A)

is the cartesian product of the valuations of the basic types in A;

(iii) a subset V (f) ⊂ V (Tf) for each filter f .

Any valuation V defines a functor V ∗ : F → Set as follows:

V ∗([A× · · · ×B, . . . , C × · · · ×D]) = (V (A)× · · · × V (B) t · · · t (V (C)× · · · × V (D))

V ∗([α]) = V (α)

V ∗([f × U]) = ((x, u) 7→ inji(x, u)) with i = 1 if x ∈ V (f) else i = 2

V ∗([JT]) = (inji(x) 7→ x)

V ∗([ET]) = (the initial morphism from the empty set)

Using the decomposition of Lemma 3.46, we can then show the completeness of

our axiomatization for these semantics:

Theorem 3.48. Let d, d′ ∈ F([A], [B]) be diagrams. Then d = d′ by the axioms of

F if and only if V ∗(d) = V ∗(d′) for any valuation V .

The proof of this theorem is given below. Broadly speaking, it goes by building

a valuation where values are syntactic terms, such that a value encodes its entire

own history through the processing pipeline. These syntactic values are associated

with contexts which record the validity of filter expressions. The decomposition

of Lemma 3.46 is then used to compute normal forms for diagrams, which can

3. Bimonoidal categories 77

be related to the evaluation of the diagram with the syntactic valuation. These

normal forms can be computed using a simple diagramatic rewriting strategy, so

this also solves the word problem for this signature.

Proof. We can check that all equations of Figure 3.15 preserve the semantics under

any valuation, so if two diagrams are equivalent up to these axioms, then their

interpretations are equal. For the converse, let us first introduce a few notions. We

use a countable set of variables V = {x1, x2, x3, . . . }.

Definition 3.49. The set Θ of terms is defined inductively: it contains the variables

V , and for each an operation symbol α ∈ O of input arity n and output arity p, it

contains the terms α(t1, . . . , tn)[1], . . . , α(t1, . . . , tn)[p]. These terms represent the

projections of the operation applied to the input terms.

The set Θn of terms over n variables is the set of terms where only variables

from {x1, . . . , xn} are used. Given t ∈ Θn and u1, . . . , un ∈ Θm we can substitute

simultaneously all the xi by ui, which we denote by t[u1, . . . , un]. For instance,

let t = α(β(x1, x3)[2], x1)[1] and u1 = x3, u2 = x4 and u3 = γ(x1)[3]. Then

t[u1, u2, u3] = α(β(x3, γ(x1)[3])[2], x3)[1].

Definition 3.50. An atomic filter formula (AFF) over n variables is given by

a filter symbol f and terms t1, . . . , ta ∈ Θn where a is the arity of f . It is denoted

by f(t1, . . . , ta) and represents the boolean condition evaluated on the given terms.

We denote by Φ the set of all atomic filter formulae. Similarly, Φn is the set of

AFF over n variables.

Definition 3.51. A conjunctive filter formula (CFF) over n variables is a

given by a finite set A ⊂ Φn × B of pairs of atomic filter formulae and booleans,

called clauses, such that no atomic filter formula appears with both booleans. Such

a set represents the conjunction of all its clauses, negated when their associated

boolean is false.

78 3.5. Applications to dataflow programs

Two CFF A and B are disjoint if they contain the same atomic filter formula

with opposite booleans. Otherwise, we can form the conjuction A ∧B, which is the

CFF with clauses A ∪B.

We denote by ∆ the set of CFF and ∆n that of those over n variables. A CFF is

represented as a conjuctive clause in boolean logic, such as f(x1, α(x3, x2)[1])∧g(x3).

Definition 3.52. A truth table t on n variables and p outputs, denoted by

t : n→ p, is a finite set of cases c ∈ ∆n ×Θp
n, such that all the CFF are pairwise

disjoint. This represents possible values for an object, depending on the evaluation

of some filters.

Truth tables t, t′ both on n variables and p outputs are disjoint if all the

CFF involved are pairwise disjoint. The union of two disjoint truth tables t, t′,

denoted by t ∪ t′, is the union of their cases. The composition of truth ta-

bles t : n → p and t′ : p → q, denoted by t; t′, is formed of the cases (ci ∧

c′j, u
′
j,1[ui,1, . . . , ui,p], . . . , u′j,q[ui,1, . . . , ui,p]) for all (ci, ui) ∈ t and (c′j, u′j) such that

ci and cj are compatible.

A collection of truth tables (ti : n→ p)i forms a partition if the CFF in them

are all disjoint and their disjunction is a tautology. The projection of a truth table

t with p outputs on its k-th component, 1 ≤ k ≤ k, denoted by t[k], is given by the

cases (ci, ui,k) for (ci, ui) ∈ t. The product of truth tables t : n→ p and t′ : n→ q,

denoted by t⊗ t′ : n→ p+ q, is given by the cases (ci ∧ c′j, ui, u′j) for all (ci, ui) ∈ t

and (c′j, u′j) ∈ t′ such that ci and cj are compatible. Two truth tables t, t′ : n → p

are equivalent, denoted by t ∼ t′, if all the cases in t⊗ t′ have value tuples of the

form (v1, . . . , vp, v1, . . . , vp).

One can check that all the properties and operations on truth tables defined above

respect the equivalence relation ∼: we will therefore work up to this equivalence in

the sequel. We can represent truth tables by their list of cases:

f(x1) ∧ g(γ(x2)[1]) 7→ (x3, α(x1, x1)[1])

f(x1) ∧ g(γ(x2)[1]) 7→ (x2, α(x1, x1)[1])

f(x1) 7→ (β(x2, x3)[2], x1)

3. Bimonoidal categories 79

With the syntactic objects just defined, we can now define semantics for F that

are independent of any valuation. The morphisms will be families of truth tables,

which can interpret the generators of F .

Definition 3.53. The category T is a symmetric monoidal category with Ob(T) =

N∗ (lists of natural numbers) and where the monoidal product is given by concatena-

tion. A morphism t ∈ T ([a1, . . . , an], [b1, . . . , bm]) is a collection ti,j of truth tables,

1 ≤ i ≤ n and 1 ≤ j ≤ m, such that ti,j is of type ai → bj, and for each i, (ti,j)j is

a partition. Furthermore, we require that m > 0 unless n = 0.

Given morphisms t : [a1, . . . , an]→ [b1, . . . , bm] and u : [b1, . . . , bm]→ [c1, . . . , cp],

the composite t;u is given by (t;u)i,k = ⋃
1≤j≤m(ti,j;uj,k).

The tensor product of t : [a1, . . . , an] → [b1, . . . , bm] and u : [c1, . . . , cp] →

[d1, . . . , dq] is the morphism v : [a1, . . . , an, c1, . . . , cp] → [b1, . . . , bm, d1, . . . , dq]

defined by vi,j = ti,j for i ≤ n and j ≤ p, vi,j = ui−n,j−m for i > n and j > p, and

the empty truth table otherwise.

The identity 1 on [a1 . . . , an] is given by 1i = > 7→ (x1, . . . , xn).

D

B

α

C

A

7→
(> 7→ (α(x1, x2)[1], α(x1, x2)[2]))

U

U

UTf

f

Tf

Tf

7→
(f(x1) 7→ (x1, x2)) (f(x1) 7→ (x1, x2))

T

T

T

7→
(> 7→ x1) (> 7→ x1)

T
7→ (empty truth table)

Figure 3.16: Definition of P : F → T .

There is a functor P : F → T defined on objects by P ([A1 × · · · × An]) = [n] and

on morphisms by Figure 3.16. One can check that it respects the axioms of F .

80 3.5. Applications to dataflow programs

Lemma 3.54. The functor P is faithful.

Proof. We show this by relating the image P (d) of a diagram to its decomposition

given by Lemma 3.46. As such, this decomposition does not give a normal form,

as the order of the filters remains unspecified. However, successive filters can be

swapped freely:

f

g

= g

f

g

=
f

g

f

Let us pick an arbitrary order on Φ, the set of atomic filter formulae. In a diagram

d decomposed by Lemma 3.46 as z ◦ y ◦ x ◦ [w], Each occurence of a filter in x

can be associated with an AFF defined by the filter symbol for the filter and the

term obtained from the wires read from w. Commuting filters as above does not

change their corresponding AFF. Therefore, this determines an order on the filters

occurring in x. We can rearrange the filters so that f appears above g if their

corresponding AFFs are ordered accordingly. This will add new exchanges and

unions in x, but we can use Lemma 3.46 a second time to push these to their part

of the decomposition, as this procedure does not reorder the filters.

The rest of the decomposition can be normalized too: unions can be normalized

by associativity, and any discarding morphism that is present in all sheets of y and

discards a wire not read by any filter in x can be pushed up into w, which can be

normalized as a morphism in E .

From such a normalized decomposition, we can read out the truth table P (d)

directly. Each sheet in y corresponds to a case of P (d), whose condition is determined

by the conjunction of all the AFFs of the filters leading to it, with the appropriate

boolean depending on the side of the filter they are on. Therefore, if P (d) = P (d′),

then d = d′.

3. Bimonoidal categories 81

Definition 3.55. The syntactic valuation S is defined as follows. For each

basic datype T , S(T) = Θ× 2Φ + {⊥}. In other words, a value can be either a term

together with a context of true atomic filter formulae, or an inconsistent value ⊥.

For each facet f , S(f) : (C, t) 7→ f(t) ∈ C: a facet is true if it belongs to the

context.

For each operation α : T1 × · · · × Tn → U1 × · · · × Um,

(α) : ((C, t1), . . . , (C, tn)) 7→ ((C, α(t1, . . . , tn)[1], . . . , α(t1, . . . , tn)[m]))

anything else 7→ ⊥

There is a functor Π : T → Set, defined on objects by Π([n1, . . . , np]) =

(Θ× 2Φ + {⊥})n1 t · · · t (Θ× 2Φ + {⊥})np . Given a morphism t : n→ p, we define

Π(t)(inji(x)) as follows. If x contains any ⊥ or if the contexts in it are not all equal,

then Π(t)(inji(x)) = inj1((⊥, . . . ,⊥)).6 Otherwise, as the truth tables (ti,j)j form a

partition, there is a single case (C, y) in all of them such that the associated CFF

is true in the common context C. Let j be the output index of its truth table: we

set Π(t)(inji(x)) = injj(y[x]). One can check that this defines a monoidal functor.

Lemma 3.56. The functor Π is faithful.

Proof. For simplicity, let us concentrate on the case of morphisms t, t′ : [n]→ [p]:

this is the only case that is actually needed to prove the completeness theorem,

and the general case is similar. If Π(t) = Π(t′), then consider t ⊗ t′ : n → 2p.

For each case (f, u, u′) ∈ t ⊗ t′, with f a CFF and u, u′ tuples of terms, (f, u) =

Π(t)(f, x1, . . . , xn) = Π(t′)(f, x1, . . . , xn) = (f, u′), so u = u′. Therefore, t ∼ t′.

Finally, combining Lemma 3.54 and Lemma 3.56, we obtain that Π◦P : F → Set

is faithful. But in fact Π ◦ P = S∗, the functor arising from the valuation S. So, if

two diagrams d, d′ ∈ F give equal interpretations under any valuation V , then it is

in particular the case for V = S, and by faithfulness of S∗, d = d′.
6This is possible because we have assumed that codomains of morphisms in T are nonempty

except for the identity on the monoidal unit.

82 3.5. Applications to dataflow programs

We conjecture that this result generalizes to arbitrary morphisms in F , with

multiple input and output tables. However, all OpenRefine workflows have one

input and one output table, so the theorem already covers these.

4
Word problems

Contents
4.1 Introduction . 84
4.2 Non-symmetric monoidal categories 86

4.2.1 Combinatorial encoding of string diagrams 87
4.2.2 Termination . 93
4.2.3 Upper bound on reduction length 103
4.2.4 Confluence . 106
4.2.5 Computing normal forms 107
4.2.6 Extension to disconnected diagrams 112
4.2.7 Linear-time solution to the word problem in the connected

case . 126
4.2.8 Recumbent isotopy . 131

4.3 Double categories . 133
4.3.1 Double categories . 135
4.3.2 Free double categories 138
4.3.3 Translation to 2-categories 141
4.3.4 Partial tilings . 143
4.3.5 Word problem . 151
4.3.6 Conclusion . 151

4.4 Braided monoidal categories 152
4.4.1 Background . 153
4.4.2 Reducing the unknotting problem to the braided pivotal

word problem . 157
4.4.3 Reducing the unknotting problem to the braided monoidal

word problem . 160
4.4.4 Conclusion . 168

83

84 4.1. Introduction

4.1 Introduction

As we have seen in Chapter 2, equivalence of string diagrams is a geometrical notion,

with two string diagrams being equivalent (that is, representing equal morphisms of

the corresponding monoidal category) just when their string diagram representations

are related by some kind of isotopy. For instance, for monoidal categories, two

string diagrams are equivalent when there is a recumbent isotopy between them.

This captures exactly the equational theory of free monoidal categories, without

imposing any extra relation on the generators. Despite the wide applicability of

string diagrams and their implementation in various software packages, there are

no general results about the complexity of deciding equivalence of string diagrams.

Understanding this problem is a prerequisite for many applications and is also a

way to learn interesting facts about the combinatorics of those objects.

In this chapter, we will study various decision problems of this form: given

two string diagrams, determine if they are isotopic and therefore represent the

same morphisms. Those decision problems are called word problems, because they

are generally expressed not in terms of diagrams but of formulae (hence word)

in some algebraic structure. Given that translating between the string diagram

representation and the term representation is a relatively simple process, the

complexity results we obtain on string diagrams generally extend to term-based

representations in a straightforward way.

It is worth noting that in many contexts, word problems consist in deciding

the equality in some algebraic structure freely generated by some generators and

relations between them. For instance, a fundamental result in computer science is

that the word problem for monoids is undecidable, meaning that equality in a finitely

generated and finitely presented monoid is in general undecidable (Post, 1947).

In our case, we will only address the case of word problems where no additional

relations are imposed on generators: the only equalities which hold are those

imposed by the ambient algebraic structure. The reason behind this choice is that

4. Word problems 85

the algebraic structures we are concerned with are much richer than, say, monoids,

so those simpler word problems are already worth studying on their own. Moreover,

as soon as we allow arbitrary relations in the signatures which generate our free

categories, the word problem becomes undecidable precisely for the same reason that

the general word problem for monoids is undecidable (since the composition operator

◦ defines a monoid structure on the endomorphisms of any object in a category).

Outline We start this chapter by our first result in this field, providing algorithms

for the word problem for monoidal categories.

Theorem 4.71. The word problem for free monoidal categories, without equations

imposed on the generators, can be solved in quadratic time in the number of edges

and vertices of the diagram.

We then show how this approach can be extended to double categories.

Theorem 4.104. The word problem for free double categories, witout equations

imposed on the generators, can be solved in quadratic time in the number of edges

and vertices of the diagram.

Finally, the last section gives a hardness result for the word problem for braided

monoidal categories.

Theorem 4.142. The unknotting problem can be polynomially reduced to the word

problem for free braided monoidal categories, without equations imposed on the

generators.

Implementations We did not attempt to implement any of the algorithms

described in this thesis, as our interest in these decision problems mostly comes

from an interest in determining their complexity from a theoretical standpoint, rather

than developing applications out of those algorithms. That being said, we are aware

of one implementation of our results on non-symmetric monoidal categories (de Felice

et al., 2020), although they do not implement Theorem 4.71 but the conceptually

simpler approach consisting in applying right exchanges until reaching a normal form.

86 4.2. Non-symmetric monoidal categories

(a) Disconnected (b) Connected (c) Boundary-
connected

Figure 4.1: Connectedness for string diagrams

→∗R ∗
R←

Figure 4.2: Two connected diagrams with the same right normal form

4.2 Non-symmetric monoidal categories

This section is taken from the article Normalization for planar string diagrams
and a quadratic equivalence algorithm (Delpeuch and Vicary, 2018), to appear
in Logical Methods in Computer Science.

In this section we take a first look at the complexity of the general equivalence

problem for planar string diagrams1 (henceforth simply diagrams), without addi-

tional axioms. This does not include all the features used by some applications of

string diagrams (for example, braided monoidal categories which will be covered

in Section 4.4), but it is already a nontrivial setting, and lays the groundwork

for more elaborate settings.

Our main results are as follows. We write v for the number of vertices in a

diagram, and e for the number of edges; also, we say that a diagram is connected

when there is a path in the diagram between any two vertices, and boundary-

connected when it is either connected, or every vertex has a path in the diagram

to a boundary. See Figure 4.1 for examples of these notions.
1As seen in the first chapter, by Joyal and Street Joyal and Street (1991), this corresponds

to the word problem for monoidal categories which are free on a given generating set of objects
and morphisms. Furthermore, our results extend immediately to bicategories which are free on a
given set of generating 1- and 2-morphisms, but we prefer to keep the discussion at the level of
monoidal categories.

4. Word problems 87

• For boundary-connected diagrams, we build a rewrite strategy that generates

the equality relation, show it is strongly normalizing (Theorem 4.23), show it

terminates after O(v3) steps (Theorem 4.29), show the normal forms can be

constructed in O(ve) time (Theorem 4.40), and show equality can be decided

in O(v + e) time (Corollary 4.80).

• For general diagrams, with no constraints on connectivity, we use the above

results to derive a scheme that decides equality in O(ve) time (Theorem 4.71).

• We show that the recumbency property listed above is unnecessary; that is,

we show that two diagrams are recumbent isotopic, and hence equal, just

when they are isotopic (Theorem 4.82).2 This proves a conjecture of Selinger

(2010).

This final result is attractive, since in practice the recumbency property is con-

straining, forcing the entire diagram to remain essentially “vertical” through-

out the isotopy.

4.2.1 Combinatorial encoding of string diagrams

Our complexity results will be based on the combinatorial representation of string

diagrams sketched in Section 2.2.3. In this section we give a more precise definition

of the data structure involved and its properties, analyzing the cost of some basic

operations on string diagrams. We will use the RAM model, used for instance

by Hopcroft and Wong (1974), which assumes constant time random access to the

working memory and constant time arithmetic operations on integers. This is a

widespread model, which closely matches the architecture of today’s computers,

despite the fact that arithmetic operations on unbounded integers would not be

implementable in constant time. We discuss the implications of this feature in

Sections 4.2.6 and 4.2.7.
2This has a nice expression in categorical terms (Corollary 4.84): it says that for a monoidal

signature Σ, the embedding functor from the free monoidal category on Σ to the free pivotal
category on Σ is faithful.

88 4.2. Non-symmetric monoidal categories

As exposed in Section 2.2.3, the main idea is that a diagram is cut into slices

given by Lemma 2.15, and each slice can be described by the following data:

• the number of wires at the top and bottom of the slice (which we will not

directly encode as they are redundant with the neighbouring slices);

• the number of input and output wires for the generator in the slice;

• the horizontal position of the generator, described for instance by the number

of wires passing to the left of the generator;

• the generator morphism itself, denoted by an identifier taken from the

signature. For our purposes this will be omitted to simplify the presentation,

as our results are applicable to any signature.

This encoding scheme serves as a formal combinatorial foundation for our results,

although we will build most of our arguments at a more intuitive level with the

corresponding graphical diagrams.

We give an example of a diagram, together with its encoding, in Figure 4.3.

Note that in this example diagram, and in the other diagrams in the paper, we use

small circles for the vertices, rather than boxes which are sometimes seen.

Definition 4.1. Given n ∈ N, we define the interval JnK = {0, . . . , n− 1}, a totally

ordered set.

Definition 4.2. A diagram D is given by:

• S(D), its number of source edges;

• N(D), its height;

• For all n ∈ JN(D)K, H(D,n), the vertex offset at height n;

• For all n ∈ JN(D)K, I(D,n), the number of inputs at height n;

• For all n ∈ JN(D)K, O(D,n), the number of outputs at height n.

4. Word problems 89

From this data, we can deduce the number of edges at any horizontal level in

the diagram. At the top boundary this is simply given by S(D), and then as we

browse the diagram towards the bottom end, each slice removes I(D,n) and adds

O(D,n) edges. We define this formally as follows.

Definition 4.3. For a diagram D, we define ∆(D,n) = O(D,n)− I(D,n) for all

n ∈ JN(D)K.

Definition 4.4 (Wires at each level). For a diagram D, we define W (D, 0) = S(D)

and W (D,n+ 1) = W (D,n) + ∆(D,n) for all n ∈ JN(D)K.

The data structure we have defined so far lets us encode ill-defined diagrams,

which happens when a given diagram slice does not contain enough edges for the

next vertex to consume as inputs.

Definition 4.5. A diagram D is valid when for all n ∈ JN(D)K, we have

W (D,n) ≥ H(D,n) + I(D,n).

We now formalize the right and left exchange moves illustrated in Figure 4.4. All

that needs to be checked is that the two vertices with adjacent heights share

no common edges.

Definition 4.6. For n ∈ JN(D) − 1K, a diagram D admits a left exchange

move at height n when H(D,n+ 1) ≥ H(D,n) +O(D,n), and admits a right

exchange move at height n when H(D,n) ≥ H(D,n+ 1) + I(D,n+ 1). A right

reduction is a series of right exchange moves.

S(D) = 2 N(D) = 3
H(D, 0) = 1 I(D, 0) = 1 O(D, 0) = 2
H(D, 1) = 2 I(D, 1) = 0 O(D, 1) = 1
H(D, 2) = 0 I(D, 2) = 1 O(D, 2) = 0

Figure 4.3: Example of a diagram D together with its encoding.

90 4.2. Non-symmetric monoidal categories

.

. . .

. . .

. . .

. . .

→R
L←

.

. . .

. . .

. . .

. . .

Figure 4.4: Right and left exchanges as rewrites on diagrams.

Definition 4.7. For a diagram D which admits a left or right exchange move at
height n ∈ JN(D) − 1K, its left exchange Ln(D) or right exchange Rn(D),
respectively, is defined to be identical to D, except at heights n, n+ 1 as follows:

H(Ln(D), n) = H(D,n+ 1)−∆(D,n)
I(Ln(D), n) = I(D,n+ 1)
O(Ln(D), n) = O(D,n+ 1)

H(Ln(D), n+ 1) = H(D,n)
I(Ln(D), n+ 1) = I(D,n)
O(Ln(D), n+ 1) = O(D,n)

H(Rn(D), n) = H(D,n+ 1)
I(Rn(D), n) = I(D,n+ 1)
O(Rn(D), n) = O(D,n+ 1)

H(Rn(D), n+ 1) = H(D,n) + ∆(D,n+ 1)
I(Rn(D), n+ 1) = I(D,n)
O(Rn(D), n+ 1) = O(D,n)

Lemma 4.8. For a valid diagram D which admits a left (or right) exchange move

at height n, its left exchange Ln(D) (or right exchange Ln(D)) is a valid diagram.

Proof. D be a valid diagram which admits a right exchange at height n. We show

that that Rn(D) is valid again. The case of a left exchange is analogous.

We need to check that for each height k ∈ JN(Rn(D))K, we have H(Rn(D), k) +

I(Rn(D), k) ≤ W (Rn(D), k).

For k < n or k > n + 1, H(Rn(D), k) = H(D, k), I(Rn(D), k) = I(D, k) and

W (Rn(D), k) = W (D, k) so the inequality holds as D is valid.

For k = n, by definition of Rn(D) we have H(Rn(D), n) + I(Rn(D), n) =

H(D,n + 1) + I(D,n + 1). As D admits a right exchange at height n, this is

bounded by H(D,n), so a fortiori W (D,n).

For k = n+ 1, H(Rn(D), n+ 1) + I(Rn(D), n+ 1) = H(D,n) +O(D,n+ 1)−

I(D,n + 1) + I(D,n). Since D is valid, this is bounded by W (D,n) + O(D,n +

1)− I(D,n+ 1) = W (Rn(D), n+ 1).

4. Word problems 91

It is a consequence of Theorem 2.11 that right and left exchanges preserve the

meaning of the diagram. With respect to our data structure described here, it

is clear that the following operations can be performed in constant time, since

they involve computing fixed formulae over the natural numbers, and testing a

fixed number of inequalities:

• checking whether a left or right exchange is admissible at a given height;

• given an admissible left or right exchange, computing the rewritten diagram

in place.

Furthermore, the memory space needed to represent a diagram is linear in the

number of vertices. We will use these observations as building blocks for our

complexity arguments in the main part of the paper.

We write →R (respectively →L) for the relation on diagrams given by a single

right exchange (respectively left exchange). Figure 4.4 shows what those relations

look like in general. We illustrate some interesting cases of these exchange moves.

In degenerate cases where u and v have no inputs or outputs, it can be possible to

apply two right exchanges in sequence to the same pair of vertices:

u
v →R

v
u →R

u
v

Furthermore, if there are no edges at all, then right exchanges can be applied indef-

initely, which corresponds to the Eckmann-Hilton argument shown in Section 2.2.

v
u

→R
u
v

→R →R . . .v
u

Throughout this chapter we will use a braid notation to represent right reductions

(series of right exchanges), such as in Figure 4.6 or Figure 4.7. These braidings

represent the trajectories of the vertices as the reduction progresses, seen from the

right-hand side of the diagram. Each crossing in the braid diagram corresponds

to an exchange of two nodes in the string diagram.

92 4.2. Non-symmetric monoidal categories

Converting between representations of morphisms

The combinatorial encoding given in this section can be rendered into an actual

diagram. Generating such a representation from our encoding involves computing

suitable planar layouts for the vertices and edges respecting all the properties of

this class of topological graphs. Various algorithms can be used to this end. In

this work we use a simple layout strategy that enforces a constant vertical spacing

between diagram levels and a constant horizontal spacing between the wires at each

level.3 Each level is horizontally centered based on the number of wires that cross

it. Vertices are horizontally centered between their input and output ports. An

example of such a rendered diagram can be found in Figure 4.3.

It is also possible to convert a morphism expression, i.e. a term denoting a

morphism, into a combinatorial encoding of its string diagram in linear time.

Theorem 4.9. Two morphisms expressions denote the same morphism if and only

if the corresponding diagrams are related by a series of exchanges.

Proof. Theorem 2.11 shows that two morphism expressions denote the same mor-

phism if and only if their string diagrams are related by a deformation of recumbent

graphs. Therefore we only need to show that string diagrams are related by a

deformation if and only if their combinatorial encodings are related by a series of

exchanges.

If two diagrams are related by a series of exchanges, they represent the same

morphism as exchanges preserve denotation.

Conversely, let h be a deformation between diagrams Γ and Γ′ in generic position,

with h(0) = Γ and h(1) = Γ′. We can assume that h(t) is always in generic position

except for a finite number of t ∈ (0, 1): if it is not the case, translate each vertex vi
vertically by εi, uniformly for all t ∈ [0, 1]. The εi can be chosen to make sure no

vertices remain at the same height for a non-trivial interval t ∈ [u, v].

Furthermore, we can make sure that when h(t) is not in generic position, only

two vertices in h(t) are at the same height. If this is not the case, the deformation
3It is simple enough to be programmed in LATEX, so that our string diagrams are generated

with this rendering process, directly from their combinatorial encodings.

4. Word problems 93

can be modified to satisfy this condition by picking delays ηi for each vertex vi, and

delaying the movement of each vertex vi by ηi over the course of the transformation.

Again, the delays can be chosen collectively to ensure that at most two vertices

occupy the same height at a given time.

Let t1 < · · · < tk be the instants at which h(t) is not in generic position. For

any other t ∈ [0, 1] the combinatorial encoding of h(t) is defined. By connectedness,

the combinatorial encoding of h(t) is constant for t ∈ (ti, ti+1) so this defines a

sequence of diagrams D0, . . . , Dk. Since at most one pair of vertices exchange

heights around instant ti, Di and Di+1 are related by a single exchange move or are

equal. This gives the required sequence of exchanges between the source and target

diagrams.

Therefore, solving the word problem for free monoidal categories can be done

by providing an algorithm to determine if two diagrams can be related by a series

of exchanges. We will first show that right reductions form a terminating and

confluent rewriting strategy on connected diagrams. Termination will be shown

in Section 4.2.2 and confluence in Section 4.2.4.

4.2.2 Termination

To prove termination of right reductions on connected diagrams, we first introduce

the class of linear diagrams. The general case of connected diagrams will then directly

follow from our results on linear diagrams. In fact, we will see in Lemma 4.30

that linear diagrams exhibit the longest reductions.

Definition 4.10. A diagram with n vertices is linear if it is connected, acyclic and

has only two leaves (vertices connected to only one edge). We identify its vertices

with the indices 1, . . . , n such that 1 and n are the leaves, and k is connected to

k − 1 and k + 1 for all 1 < k < n.

As the name indicates, linear diagrams have a path-like shape (since they are

connected and cannot contain any branching). Figure 4.5 gives an example of a

94 4.2. Non-symmetric monoidal categories

2
4

1
3

5

Figure 4.5: Example of a linear diagram, with final vertices in red

Figure 4.6: A collapsible reduction and its collapsed counterpart

linear diagram. The choice of the start and end of the indexing is arbitrary, as it can

be reversed. We therefore assume that linear diagrams come with a chosen order.

Definition 4.11. In a linear diagram with n vertices, n ≥ 2, the final vertices are

the vertices n− 1 and n.

Definition 4.12. In a linear diagram, the final interval is the set of vertices

whose height is between the heights of the final vertices, including the final vertices

themselves. If the final interval only consists of the final vertices, the diagram is

collapsible.

In Figure 4.5, vertices 1 and 3 are in the final interval, as well as the final

vertices themselves, vertices 4 and 5.

Definition 4.13. A right reduction is collapsible when its source and target are

collapsible, and any exchange between a non-final vertex v and a final vertex f1

is immediately followed or preceded by an exchange between v and the other final

vertex f2. In other words, all non-collapsible steps of the reduction are isolated.

We call these reductions collapsible because as the final vertices move syn-

chronously, they can be merged together: this defines a reduction on a shorter linear

diagram. Figure 4.6 shows an example of a collapsible reduction with the final

vertices in red, and the corresponding collapsed reduction on the shorter diagram.

4. Word problems 95

(a) A funnel with collapsible source (b) A funnel with collapsible target

Figure 4.7: Example of funnels

Definition 4.14. Given a collapsible reduction on a linear diagram l of size n, the

corresponding collapsed reduction is obtained by erasing vertex number n in l.

Definition 4.15. A right reduction of string diagrams r : A →∗R B is called a

funnel when:

• each non-final vertex is exchanged at most once with a final vertex.

• if an exchange involves non-final vertices u and v, then both u and v are

exchanged with a final vertex in the course of the rewrite, and these two final

vertices are different.

We are especially interested in the cases where the source or target of the funnel

is collapsible, as in Figure 4.7. The name funnel comes from the shape of these

reductions when depicted as braids: these are reductions where the final vertices

converge or diverge from each other.

The following lemmas will establish various properties of funnels that we will

need for the decomposition of Lemma 4.21.

Lemma 4.16. Let r : A →∗R B be a funnel with A collapsible and e : B→R C be a

right exchange of two non-final vertices u and v that are not touched by r. Then the

reduction r; e : A →∗R B→R C can be rearranged as e′; r′ : A→R B
′ →∗R C, where

e′ exchanges u and v in A, and r′ is a funnel.

Proof. As u and v are not touched by r, the two reductions commute directly.

96 4.2. Non-symmetric monoidal categories

Lemma 4.17. Let r : A →∗R B be a funnel reduction where A or B is collapsible.

Then, the trajectory of all non-final vertices is monotone in r, meaning that they

trajectory does not contain both moves that make them go up and moves that make

them go down.

Proof. Let us assume by symmetry that the source A of the reduction is collapsible.

Consider an exchange of non-final vertices u and v in r. By definition, u and v

are exchanged with two different final vertices over the course of r. Because A is

collapsible, this means that both u and v have entered the final interval earlier in the

reduction, by being exchanged with the bottom and top final vertices (respectively).

Figure 4.8 shows the general position of such an exchange.

u

v

(a) The general position of an exchange
of final vertices in r.

(b) Relative horizontal positions of
nodes in r

Figure 4.8: Horizontal position of non-final nodes in a funnel.

As all the exchanges involved are right exchanges, u and v are on different sides

of the final edge when they are exchanged: u is on the left and v is on the right of

the final edge. This means that u necessarily goes up and v goes down. As this

applies to all exchanges of non-final vertices, this means that the trajectory of both

vertices is monotone.

Definition 4.18. An interval right exchange i : A →∗R B is a right reduction

swapping a vertex x and a set of consecutive vertices v1, . . . , vk which is adjacent to

x in A and B. The vertex x is exchanged first with v1, then v2, up to vk.

An interval right exchange looks like this:

... ...

4. Word problems 97

Lemma 4.19. Let r : A →∗R B be a funnel reduction with A collapsible and

e : B→R C be an exchange of a non-final vertex v with a final vertex f2, such

that v is exchanged with the other final vertex f1 in r. This gives a reduction

path r; e : A →∗R B→R C. A reduction of the same length can be obtained:

i; r′ : A →∗R D →∗R C where r′ is a funnel reduction and i exchanges v with the

final interval in A.

Proof. By symmetry let us assume that f1 is the highest final vertex, and f2 is the

lowest. Somewhere in r, v enters the final interval by being exchanged with f1. By

Lemma 4.17, the trajectory of v in r is monotone. In fact, because v ends up being

adjacent to f2 in B, v is exchanged exactly once with each non-final vertex that is

exchanged with f2 over the course of r.

Exchanges that do not involve v can be divided in two blocks: the ones that are

on the right of the trajectory of v, and the ones that are on the left. The block on

the right commutes with e because the vertices they exchange are disjoint, so we

can permute the two.

left block

right block
v
f1
f2

e

We now need to pull the block on the left through the exchanges involving v.

Notice that v is the first vertex to be exchanged with f1 over the course of r. This is

because all other such vertices cannot be exchanged with v in f and v is adjacent to

f2 in B. Thus, the block on the left does not contain any exchange involving f1: it

only contains exchanges involving non-final vertices or f2. By successive application

of the Reidemeister type III move (which pulls one exchange through two other

exchanges), we can therefore pull the left block through the trajectory of v.

Lemma 4.20. Let r : A →∗R B be a funnel reduction with A collapsible, followed

by an exchange e : B→R B
′ of two non-final vertices u, v such that both vertices are

98 4.2. Non-symmetric monoidal categories

exchanged with the same final vertex f in r. Then, the sequence r; e can be rewritten

as e′; r′ : A→R A
′ →∗R B′ where e′ exchanges u and v in A, and r′ is a funnel.

Proof. We show that e can be pulled through all exchanges involving u or v in r.

By symmetry, we will assume that the final vertex f exchanged with u and v is the

lowest one, and that u is the vertex below v in B.

By induction, consider the last exchange in r that involves one of u or v and

another vertex x. Because the trajectories of u and v always go up by Lemma 4.17,

the trajectory of x goes down. As u and v are adjacent in B, this last exchange must

be between u and x, and x must have been exchanged previously with v. Moreover,

this previous exchange is necessarily the last one involving v (otherwise any later

exchange with y would require a later exchange between y and u). Therefore, e can

be pulled through the last exchanges involving u and v.

x
v
u

r e

→
x
v
u

e′ r′

We perform these pull-through moves inductively, which eventually moves e′ at the

beginning of the reduction. The subsequent exchange the same nodes as r in the

same order, so they form a funnel.

Finally, the following lemma decomposes reductions on linear diagrams into two

parts: a collapsible part and a funnel part. This decomposition is illustrated by

Figure 4.11. As a collapsible reduction can be seen as a reduction on a shorter linear

diagram, this will let us work inductively on the size of the linear string diagram.

Lemma 4.21. Let r : A →∗R B be a reduction with A collapsible. Then r can be

rearranged and decomposed as

c; f : A →∗R X →∗R B

with c collapsible and f a funnel.

4. Word problems 99

Proof. We construct the decomposition into collapsible and funnel parts by induction

on the length of the rewrite r. For length 0, the result is clear. For length 1, there

are two cases: if the exchange touches a final vertex, then it goes in the funnel part

of the decomposition, otherwise it forms the collapsible part.

Assume we have a rewrite of length k + 1. Use the induction hypothesis to

decompose the first k exchanges:

c; f ; z : A →∗R X →∗R B′→R B

with c collapsible and f a funnel.

If f ; z is also a funnel, then this gives us the required decomposition. Otherwise,

this funnelity can fail for multiple reasons.

First, it can be that z exchanges a final vertex v with a non-final vertex w that

is already exchanged with a final vertex in f . In this case, by Lemma 4.19, we

can rearrange f ; z into i; f ′ where f ′ is a funnel and i exchanges v with the final

interval. As the domain of i is collapsible, i is collapsible itself so we have the

required decomposition.

Second, it can be that z exchanges two non-final vertices that are not exchanged

with any final vertex in f . In this case, by Lemma 4.16, z commutes with f : we

obtain c; z; f : A →∗R X→R X
′ →∗R B, and c; z is collapsible so we have the

required decomposition.

It cannot be the case that only one of the two non-final vertices z exchanges

has been previously exchanged with a final vertex in f . This is because the heights

of all vertices which have been exchanged with a final vertex lie in the final interval,

and all other non-final vertices are outside the final interval.

Third, it can be that z exchanges two non-final vertices that are both exchanged

in f with a final vertex. In this case, as we have assumed that f ; z is not final, it

must be the vertices were exchanged with the same final vertex. We can therefore

apply Lemma 4.20 and rearrange the rewrite into e′; f ′ with e′ exchanging the same

non-final vertices as z and f ′ funnel. As e′ is collapsible, this gives the required

decomposition.

100 4.2. Non-symmetric monoidal categories

Finally, it cannot be the case that z exchanges the two final vertices, as final

vertices can never be exchanged together since they are connected by an edge.

Lemma 4.22. Let r : A →∗R B be a right reduction on a linear diagram. Then r

can be extended on some side such that its domain or codomain is collapsible.

Proof. Our strategy to extend r depends on the topology of the final vertices. We

know that vertex n is connected solely to n− 1 and that n− 1 is connected to both

n− 2 and n. Here are the possible ways these connections can happen:

(a) (b) (c) (d) (e) (f)

The orientation of the edges involved is preserved by the reductions so the same

situation is observed in both A and B.

Consider situation (a). If the terminal layout B is not collapsible, non-final

nodes are present between n and n− 1. Some of them are on the left side of the

edge connecting the final vertices and the others are on the right-hand side. Any

two such nodes which are not on the same side of the final edge can be exchanged,

so by appending a right reduction to r we can ensure that all the ones on the left

are just below n−1, and all the ones on the right are just above n. Then, by adding

further right exchanges, we can move these non-final nodes outside the final interval,

leading to a collapsible configuration. This is illustrated in Figure 4.10a. In the

situation illustrated in Figure 4.10b, we choose instead to prepend right exchanges

before r: this is necessary to expel vertices nested inside the cap outside the final

interval. The other cases are similar: in each of them, we can either prepend or

append right exchanges to obtain a collapsible configuration.

We can now show termination of right reductions. A finer analysis of the bound

obtained on the length of reductions is presented in Section 4.2.3.

Theorem 4.23. Right reductions are terminating on connected diagrams.

4. Word problems 101

Proof. We first show termination for linear diagrams. Notice that the length of a

funnel reduction on a linear diagram of size n is bounded by F (n) = O(n2). This is

because exchanges involving final vertices happen at most O(n) times and exchanges

involving only non-final vertices happen at most once per pair of non-final vertices

by Lemma 4.17.

(a) Reducing a diagram to its normal form

collapsible funnel
(b) Decomposition from Lemma 4.21

Figure 4.11: Decomposition into collapsible and funnel reductions

We can now define a bound B(n) on the length of right reductions on linear

→ →

(a) Appending right exchanges

→→

(b) Prepending right exchanges

Figure 4.10: Extending a reduction so that one end is collapsed

102 4.2. Non-symmetric monoidal categories

diagrams of size n, by induction on n. Consider such a reduction r. By Lemma 4.22,

we can assume that one end of r is collapsible (by making r potentially longer).

By Lemma 4.21, we can decompose r into a funnel part f and a collapsible part

c. The collapsible part c gives rise to a collapsed reduction c′, whose length is

bounded by B(n− 1) by induction. Because an exchange involving the last vertex

in the shorter diagram corresponds to two exchanges in the longer diagram, we

obtain |c| ≤ 2B(n − 1). By the observation above, |f | ≤ F (n). Hence, |r| ≤

2B(n− 1) + F (n) =: B(n). This shows termination of right reductions on linear

diagrams.

We now move to the general case of connected diagrams. Assume by contradiction

that there is an infinite reduction on a connected diagram. By the pigeonhole

principle, there is a pair of vertices that are exchanged infinitely often. Consider

a simple path between these two vertices and erase all vertices not visited by this

path. The infinite reduction on the connected diagram induces an infinite reduction

on the linear diagram, which contradicts termination on linear diagrams.

Some diagrams are not connected as graphs but all their vertices are connected

to a boundary. Theorem 4.23 can be extended to these cases.

Definition 4.24. A diagram D is boundary-connected if it is connected or all

vertices in D are connected to one of the two boundaries of the diagram.

Figure 4.12a shows a diagram that is not connected (it has three connected

components) but which is boundary-connected, since each component contains

an open wire. Each vertex is therefore connected to either the top or bottom

boundary of the diagram via these open wires.

(a) The original diagram D

t

b

(b) The transformed diagram D′

Figure 4.12: Adding nodes on the boundaries to make a diagram connected

4. Word problems 103

Corollary 4.25. Right reductions on boundary-connected diagrams are terminating.

Proof. Let D be boundary-connected. Consider the diagram D′ obtained from D

by adding two vertices b, t at the bottom and top boundaries, and adding two edges

from b to t on each side of the diagram, as in Figure 4.12. Every edge connected

to the boundary in D is connected to one of b, t in D′, so D′ is connected. Any

right reduction on D induces a reduction of the same length on D′, therefore right

reductions on D terminate.

4.2.3 Upper bound on reduction length

Beyond termination, we can use the same proof techniques to derive an asymptotic

bound on reduction length. We first introduce a parametric cost on exchanges

of linear diagrams:

Definition 4.26. Given a reduction r on a linear diagram of size n and an integer

w, the cost of r at weight w is X + wY , where X is the number of exchanges not

involving vertex number n in r and Y is the number of exchanges involving vertex

n in r.

Lemma 4.27. The maximum cost at weight w of a funnel with a collapsible end is

f(n,w) = O(n2 + wn), where n is the length of the linear diagram.

Proof. A funnel contains two types of exchanges. Those with final vertices account

for at most n− 2 exchanges, because there is at most one for each non-final vertex.

The ones with only non-final vertices are bounded by O(n2) as any pair of non-final

vertices is exchanged at most once by Lemma 4.17. The bound follows from the

definition of the cost.

Theorem 4.28. The maximum cost of a right reduction on a linear diagram is

O(n3 + w · n2), where n is the size of the diagram.

Proof. Let g(n,w) = ∑n
k=1 f(k, w + n − k). We show that g(n,w) bounds the

cost of any right reduction on a linear diagram of size n. By Lemma 4.27, the

desired bound will follow. We work by induction on n. For n ≤ 1, no right

104 4.2. Non-symmetric monoidal categories

exchanges can be performed, so the bound holds. Consider a reduction r : A →∗R B

on a linear diagram of size n. By Lemma 4.22, we can assume that A or B is

collapsible (up to an extension which increases the cost of r). By Lemma 4.21, we

can rearrange the exchanges in r to obtain a funnel and a collapsible reduction. By

definition, the cost of the funnel part is bounded by f(n,w). For the collapsible

part, consider the reduction induced by merging the final vertices together: this

gives a reduction on a diagram of size n − 1. Each exchange involving the last

vertex in this induced reduction corresponds to an exchange of both final vertices

in the original reduction, which has cost w + 1. Therefore, by induction, the cost of

the collapsible part is bounded by g(n− 1, w + 1). We therefore obtain the bound

g(n− 1, w + 1) + f(n,w) = g(n,w) on the cost of r at weight w.

Theorem 4.29. The maximum length of a reduction on a diagram of size n vertices

is O(n3).

Proof. By the same argument as Corollary 4.25 we can assume that the diagram is

connected. Consider a connected string diagram D with v vertices. Pick a spanning

tree on D and let D′ be the string diagram obtained from D by removing all edges

which are not in the spanning tree. Any reduction rD on D induces a reduction of

the same length rD′ on D′, so it is enough to bound the length of rD′ .

Pick an arbitrary vertex of D′ as root for the tree and consider a depth-first

search of D′ from that root. This defines an envelope on the tree, which can be

seen as a linear diagram L if we duplicate the nodes every time they are visited

(see Figure 4.13). The length of this diagram is linear in the number of edges in

D′, which is linear in the number of vertices in D (since D′ is a tree, it has one less

edge than vertices, and its vertices are those of D).

The right reduction rD′ on D′ translates to a right reduction rL on L, where

exchanging vertices x and y corresponds to exchanging all the copies of x and y in

the same way. Therefore |rD′ | ≤ |rL|. By Theorem 4.28, |rL| = O(l3) where l is the

number of vertices in L. We also have that l = O(n), as the linear envelope follows

4. Word problems 105

each edge twice and the number of vertices in D′ is one more than its number of

edges. Combining this all, we obtain

|rD| ≤ |rD′ | ≤ |rL| = O(l3) = O(n3)

therefore obtaining the required bound.

This asymptotic bound on reduction length is attained by a class of spiral-shaped dia-

grams:

S2 = S3 = S4 =

S5 = →∗R

Lemma 4.30. For all n, the diagram Sn right reduces to its normal form in
(
n
3

)
steps.

Proof. A reduction of Sn to its normal form starts with n − 2 exchanges of one

end with the rest, followed by the reduction for Sn−1 where the end weighs one

more vertex. Therefore, the cost of a right reduction of Sn to its normal form is

s(n,w) = w(n− 2) + s(n− 1, w + 1). We also have s(2, w) = 0 for all w. From this

we obtain

s(n,w) = (n− 1)(n− 2)(n− 3 + 3w)
6

(a) A connected diagram D (b) A spanning tree D′ on D (c) A linear diagram L ob-
tained from D′

Figure 4.13: Transforming a connected diagram to a linear diagram

106 4.2. Non-symmetric monoidal categories

which gives
(
n
3

)
for w = 1.

4.2.4 Confluence

Lemma 4.31. The right reduction relation is locally confluent.

Proof. Let F,G,H be diagrams with GR ← F →R H. If the two pairs of nodes

exchanged in the two branches are disjoint, then the exchanges commute and we

can close the diagram in one step: we have H→R K and G→R K. Otherwise, the

rewriting patterns overlap. There are nodes u, v and w in F , such that u and v

are adjacent and are exchanged to obtain G, and v and w are adjacent and are

exchanged to obtain H. The situation looks like this:

u

v

w

u

v

w

u

v

w

u

v

w u

v

wu

v

w

R R

RR

R R

As u and v can be exchanged in F , there is no edge from the output of v to the

input of u, and any edge going from the output of w to the input of u has to pass to

the left of v. As v and w can be exchanged in F , there is no edge from the output

of w to the input of v, and any edge going from the output of w to the input of u

has to pass to the right of v, which is impossible by the previous observation, so

there is no edge from w to u. Therefore, w and u can be exchanged both in G and

H. In the resulting diagrams, we can then exchange (v, w) and (u, v) respectively,

which closes the diagram. Note that the braids representation of both sides of the

diagram correspond to the Reidemeister type 3 move.

Theorem 4.32. Right reductions are confluent and therefore define normal forms

for diagrams under the equivalence relation induced by exchanges.

4. Word problems 107

Proof. By Theorem 4.29 the reduction is terminating and by Lemma 4.31 it is

locally confluent, so by Newman’s lemma, right reductions are confluent. Therefore,

the right normal form for a given diagram can be obtained by applying any legal

right exchanges until a normal form is reached.

4.2.5 Computing normal forms

It follows from Theorem 4.32 and Theorem 4.29 that applying the right reduction

rewrite strategy allows us to find normal forms in O(v4) time, where v is the

number of vertices: we perform O(v3) exchanges, each of which can be found

and performed in O(v) time. In this section we show that this complexity can

be improved, giving a procedure which constructs the normal form directly in

O(ve) time, where e is the number of edges.

Let D be a connected diagram in right normal form and v ∈ D be a vertex. We

analyze how a new vertex l can be added to D by connecting it to v only, such

that l becomes a leaf in the new diagram. First, we need to choose whether to

connect l to the domain or codomain of v. Assume for instance that we connect

it to the domain of v. If v has k edges in its domain before the addition, there

are k + 1 possible positions for the new edge between l and v. Assume that such

a position is chosen. The height of the vertex l in the new diagram must also be

chosen, as shown in Figure 4.14. The following lemma shows that there is only one

such choice such that the new diagram is in right normal form.

Lemma 4.33. Let D′ be a diagram obtained from D (where D is as above in

normal form) by adding a leaf l connected to a vertex v ∈ D, at a determined side

l

v

l

v

l

v

Figure 4.14: Possible vertical positions to grow a leaf l on v. Only the central diagram
is in right normal form.

108 4.2. Non-symmetric monoidal categories

(domain or codomain) and position between existing edges on that side. There is

a unique vertical position of l such that D′ is in right normal form. Furthermore

the horizontal position of l at this height is determined by the position between the

existing edges of v that we grow it from.

Proof. Let us first show that there is a vertical position for l such that D′ is in

right normal form. First, pick an initial vertical position for l, such as the position

immediately above or below v (depending on the orientation of the connection

between v and l). Then, normalize by applying right exchanges. All the right

exchanges involve l: otherwise, by contradiction, consider the first exchange not

involving l. Removing l from its domain gives us D again (because the relative

positions of vertices in D has not changed), and the exchange still applies to this

diagram, which contradicts normality of D. This shows the existence of the vertical

position and uniqueness follows from confluence.

This observation already gives us a way to construct the right normal form of

any acyclic connected diagram. For any tree, we can remove one leaf, compute the

right normal form of the remaining tree recursively, and add the leaf at the height

given by the lemma. However, this does not let us normalize cycles yet.

Definition 4.34. A simple face in a string diagram is a simple edge loop whose

inner region does not contain any other vertex or edge. (An edge loop is simple

when no edge appears twice in the loop, and each vertex is visited at most once in

the loop.)

Definition 4.35. Let p be an oriented path in a diagram. For each vertex v visited

by p, we define the winding number of v as follows:

+1 −1 +1 −1 0 0

Definition 4.36. Given a simple face in a diagram D and an edge e in the face, the

mountain range starting on e is the sequence of partial sums of winding numbers

when visiting the face in direct rotation, starting from e.

4. Word problems 109

Figure 4.15 gives an example of a mountain range for an edge in a simple face.

Because a cycle forms a closed loop in the plane, the winding numbers of its vertices

sums up to two when visited in direct rotation. This means that a mountain range

always stops two levels higher than it started.

Definition 4.37. An edge in a simple face is eliminable if the mountain range

starting from it never reaches 0 after the first step.

For instance, the edge above is eliminable, but its predecessor is not because

the mountain range starts with a valley that goes at level −1 and then 0.

Lemma 4.38. In any simple face there are exactly two eliminable edges.

Proof. Pick an edge in the face and draw the mountain range ω for it. Let m be

the minimum level it reaches after the first step. As ω starts at 0, m ≤ 1. Consider

the last edge to reach m, we will denote it by e1. The part of ω to the right of e1

never goes below m + 1 by definition. When drawing the mountain range for e1,

the part of ω to the left of e1 is shifted upwards by 2, so this part never goes below

2−m ≥ 1 when drawn as part of the mountain range for e1. So e1 is eliminable.

Similarly, consider the last edge e2 to reach 1 in the mountain range starting from

e1: it is also eliminable for the same reason. These are the only two edges which

satisfy the criterion.

Lemma 4.39. Let D be a connected diagram in right normal form and e be an

eliminable edge in a simple face of D. Then the diagram D′ obtained from D by

removing e is in right normal form.

(a) An edge in a face
(b) The montain range for this edge

Figure 4.15: Example of a chosen edge in a face and its mountain range

110 4.2. Non-symmetric monoidal categories

Proof. Consider such an edge. We first analyze what it means to be eliminable in

geometrical terms. Let us call u the starting point of e and v its end point. We

know that e is immediately followed by a left turn (winding number +1) at v. The

next vertex where a rotation happens w also has winding number +1 (otherwise the

number of rotations from e to the edge after w would be null). By symmetry let us

assume that e points upwards when travelling in the direct orientation on the face.

There are three sorts of right exchanges that could potentially be enabled by

removing e.

Exchanging u and v The first one would be exchanging the endpoints of e

together, but this is impossible because of the left turn on v which imposes a

horizontal ordering: no such right exchange can be made.

Exchanging u or v with another vertex x The second one would be exchanging

one of the endpoints of e with another vertex. This other vertex must be in the

interval between the endpoints (otherwise the exchange was already possible before).

That is not possible for v because of the left turn on this vertex. For u, this would

require having another vertex x immediately to the left of e with no edge linked

from below. We will see in a later paragraph that this is not possible.

Exchanging two vertices x, y distinct from u and v Finally, the third case

consists in exchanging two nodes x and y between u and v, x immediately to the

left of e with no edge linked from below, and y immediately to the right of e with

no edge from above. We will show that no such x exists.

u

w

v

e
x

y

4. Word problems 111

Ruling out the existence of x Because e is the right boundary of the face, such

an x must be a part of the boundary of the face. As part of this cycle, it has two

edges coming from above. Browsing the cycle in the direct orientation can visit x

in two directions: from left to right or from right to left.

If x is visited from left to right, this contradicts the fact that x is immediately

to the left of e, because the interior of the face is contained between the two edges

linked to x.

If x is visited from right to left, consider the path from w to x. It starts upwards

and ends downwards, so it has odd winding number. As x itself is a right turn, this

number cannot be negative: otherwise, travelling from e to the edge following x

would have null or negative winding number, contradicting the assumption that e

is eliminable. So, the path from w to x has positive winding number, and therefore

one edge in this path is located between x and e, which contradicts the fact that x

is immediately to the left of e.

Theorem 4.40. The right normal form of a boundary-connected string diagram in

free monoidal categories can be computed in time O(ve) where v is the number of

vertices and e is the number of edges.

Proof. Again we can restrict our attention to the case of connected diagrams thanks

to the reduction of Figure 4.12. We construct the right normal form of any connected

string diagram by induction on the number of edges. The initial case (no edge) is

clear.

Given a diagram D, there are two cases. We can check in O(v) if D has a leaf, in

which case we remove this leaf and obtain a diagram D′ with one less edge that we

can inductively normalize. Then, by Lemma 4.33, we can deduce the right normal

form for D, by inserting back the leaf at the unique spot which makes the diagram

normalized. Such a spot can be found in O(v) by applying right exchanges on the

leaf as long as they are admissible. If D does not have any leaf, then it contains a

cycle (acyclic graphs necessary have leaves) and so it has a simple face (pick a cycle

and iteratively narrow it until it is a simple face). In that case, by Lemma 4.38,

112 4.2. Non-symmetric monoidal categories

there are two eliminable edges in this face. These can be identified in O(v) thanks

to the characterization via mountain ranges. We can remove one of them, obtaining

diagram D′′, and inductively normalize D′′. By uniqueness of the normal form for

D′′ and by Lemma 4.39, the normal form for D′′ can be obtained by normalizing D

and then removing the edge. So the normal form for D can be reconstructed from

the normal form for D′′ by adding the edge back. This can also be computed in

O(v). We therefore obtain a normalizing algorithm with e induction steps, each of

which takes O(v) time, so the overall complexity is O(ve).

4.2.6 Extension to disconnected diagrams

The connectivity requirement is crucial to obtain termination of right reductions

and therefore the right normal forms on which we relied on for our results. In this

section, we extend our results to arbitrary diagrams. Our approach is to define

a complete invariant for the exchange rule.

In general, a diagram can contain multiple connected components. Because we

are dealing here with non-symmetric monoidal categories, the way these components

nest into each other’s faces matters as this tree structure is preserved by exchanges.

As the transformation described in Figure 4.12 is still applicable to disconnected

diagrams, we consider a diagram D without input or output edges (S(D) = 0

and W (D,N(D)) = 0).

Definition 4.41. For each level h ∈ JN(D)+1K, we define symbols (sh,k)0≤k≤D.N(h).

The symbol sh,k is the spot at height h and position k, which represents the empty

space between the kth and k + 1th edge at level h (including diagram boundaries

for the extrema).) Similarly, we define symbols (ph,k)1≤k≤D.N(h). The symbol ph,k
represents the intersection of the kth edge that crosses level h and level h itself: we

call this a place. Vertices of the diagram are places too, and we represent the vertex

between heights h and h+ 1 as vh.

Definition 4.42. Two spots sh,k and sh+1,k′ are adjacent when either k = k′ and

H(D, h) ≥ k or k + ∆(D, h) = k′ and H(D, h) + I(D, h) ≤ k.

4. Word problems 113

Graphically, two spots are adjacent if they lie in neighbouring slices and they are

in the same region of the diagram seen as a planar graph. We will formally define

this notion of region by taking the connected closure of this adjacency relation.

Definition 4.43. A face is a connected component of spots for the adjacency

relation defined above.

Definition 4.44. Two places ph,k and ph+1,k′ at consecutive levels are adjacent if they

are on the same edge. Formally, this happens when either k = k′ and H(D, h) > k,

or k + ∆(D, h) = k′ and H(D, h) + I(D, h) ≤ k. H(D, h) ≤ k < H(D, h) + I(D, h)

and H(D, h) ≤ k′ < H(D, h) +O(D, h). A place ph,k and a vertex v′h are adjacent

when Two places ph,k, ph,k′ at the same level are adjacent if H(D, h) ≤ k, k′ <

H(D, h) + I(D, h) or H(D, h− 1) ≤ k, k′ < H(D, h− 1) +O(D, h− 1).

Definition 4.45. A component is a connected component of places for the

adjacency relation defined above.

Lemma 4.46. Any exchange D → D′ induces bijections φF and φC between the

faces and components of D and D′.

Proof. Let n and n+ 1 be the levels exchanged. By symmetry we can assume it is a

right exchange. Let us define φC by mapping each spot inD to a spot inD′, such that

the adjacency relation is respected. Let sh,k be a spot. If h ≤ n or h > n+1 (the spot

lies in a slice that is untouched by the exchange) then φC(sh,k) = sh,k. Otherwise,

h = n+ 1. If k ≤ H(D,n+ 1) (the spot lies to the left of both nodes exchanged)

then φC(sn+1,k) = sh,k again. If k > H(D,n) + I(D,n) (the spot lies to the right of

both nodes exchanged) then φC(sn+1,k) = sh,k−∆(D,n)+∆(D,n+1). If k > H(D,n+ 1)

and k < H(D,n + 1) + I(D,n + 1) (the spot lies in one of the input branches of

the node at height n + 1) then φC(sn+1,k) = sn,k (the spot just above). Similarly

if k > H(D,n) and k < H(D,n) +O(D,n) then φC(sn+1,k) = sn+2,k+∆(D,n+1) (the

spot just below). Finally, if k ≥ H(D,n+ 1) + I(D,n+ 1) and k ≤ H(D,n) then

φC(sn+1,k) = sn,k−∆(D,n)+∆(D,n+1)). In each of these cases one can check that φC
preserves the adjacency relationship for spots. The mapping for places φF can be

defined similarly.

114 4.2. Non-symmetric monoidal categories

Definition 4.47. Given a level h, a spot sh,k and a place ph,k′ are neighbours if

k = k′ or k + 1 = k′. Furthermore, spots sh,0 and sh,W (D,h) are neighbours of the

boundary.

Lemma 4.48. There is a unique face containing spots which are neighbours of the

boundary. We denote it by f0.

Proof. Any neighbour of the boundary is adjacent to the neighbours of the boundary

above and below it. By assumption, there is only one spot at the source and target

levels. Therefore, all neighbours of the boundary are connected together.

Definition 4.49. A component c neighbours a face f when there is a place p ∈ c

neighbouring a spot s ∈ f . We denote it by c♦f .

Neighbourhood is preserved by exchanges, in the following sense:

Lemma 4.50. Let d, d′ be diagrams where d′ is obtained from d by exchanges. The

bijections between faces and components of d and d′ induced by the exchanges respect

the neighbourhood relation.

Proof. It suffices to show that any neighbourhood relation that holds between slices

affected by an exchange also holds in the exchanged diagram. This can be achieved

by simple inspection of the definition of neighbourhood and adjacency on spots and

places.

Definition 4.51. Given a level h, two spots sh,k and sh,k′ are over-connected

if they are connected by a path of spots which never go below level h. Similarly,

over-connectivity is defined for places too.

Note that the term over should be understood visually: this means that the

path goes through levels whose numerical indices are actually lower than h, not

higher. Figure 4.16 shows an example of diagram where connected vertices are

not over-connected. Over-connectivity is an equivalence relation on spots at the

same level, and similarly for places.

4. Word problems 115

Figure 4.16: Over-connectivity on an example. Each blue path shows stays above the
level h so each of them witnesses that their start and end points are over-connected.
However, the start and end of the first blue path are not over-connected to the start and
end of the second blue path, although they are connected.

Lemma 4.52. Given a level h, assume that two distinct spots sh,k and sh,k′ are

over-connected. Furthermore, assume that ∀k < i < k′, sh,i is over-connected to

neither sh,k nor sh,k′. Then the places ph,k and ph,k′−1 are over-connected.

Proof. By induction on the distance h from the top of the diagram. The property

holds trivially for the topmost slice as no two spots are over-connected at this level.

Assuming it holds at level h and consider spots sh+1,k and sh+1,k′ over-connected.

If they are both connected to the same spot sh,k then all places between them are

over-connected, so the result holds. Otherwise, they are connected to different spots

sh,k0 and sh,k′0 respectively which are over-connected. Let sh,i1 , . . . , sh,iq be the spots

between sh,k0 and sh,k′0 which are over-connected to sh,k0 and sh,k′0 . Each of these

spots are not connected to any spot at level h+ 1, so the places neighbouring them

are all connected via the same morphism between level h and h+ 1. In particular,

ph,i1−1 and ph,iq are neighbours.

Apply the induction hypothesis to the pairs (sh,k0 , sh,i1) and (sh,iq , sh,k′0): ph,k0

and ph,i1−1 are over-connected and so are ph,iq and ph,k′0−1. Therefore ph,k0 and

ph,k′0−1 are over-connected.

Lemma 4.53. Let f be a face, f 6= f0. There is a component c such that for each

level h containing a spot in f , the place to the left of the first spot in f at level

h and the place to the right of the last spot in f at level h are both in c. Such a

component c is therefore unique. We say that c encloses f , denoted by f ≺ c.

116 4.2. Non-symmetric monoidal categories

Proof. First, consider the highest level h0 where f occurs. All spots in f at h0 are

not connected to any spot at the higher level, so their neighbouring places are all

connected to the morphism above. Let c be their common component. For any

further level h we prove the result by induction. Consider the first and last spots

sh,k, sh,k′ which belong to f at level h. We show that ph,k−1 belongs to c. Showing

that so does ph,k′ is similar. Let sh−1,k0 be the leftmost spot neighboured by sh,k at

level h− 1. If sh−1 is the first spot sh,k0 in f at h− 1, then by induction ph−1,k0−1

belongs to c and is connected to ph,k−1, so ph,k−1 belongs to c. Otherwise, let

sh−1,i1 , . . . , sh−1,ip be the spots in f to the left of sh−1,k0 . We can apply Lemma 4.52

to sh−1,ip and obtain that ph−1,ip and ph−1,k0−1 are connected. Furthermore, the

sh−1,i1 , . . . sh−1,ip are not neighbours of any spots at level h, so the edges separating

them are all connected to the same vertex between h and h − 1. So ph−1,ip and

ph−1,i1−1 are neighbours, and finally ph−1,k0−1 and ph−1,i1−1 are connected. By

induction, ph−1,i1−1 belongs to c, so so does ph−1,k0−1.

Definition 4.54. Given a face f , a spot s ∈ f is maximal if it is at the highest

level where spots of f occur. Similarly, it is minimal if it is at the lowest level where

spots of f occur.

Note that a face can have multiple maximal or minimal spots.

Lemma 4.55. Maximal and minimal spots in a face only neighbour the enclosing

component, or the boundary in the case of the root face.

Proof. This is a direct consequence of the proof of Lemma 4.53.

Definition 4.56. Let f be a face. For each component c neighbour of f such that c

does not enclose f , we say that f encloses c, denoted by c ≺ f .

The enclosure relation is preserved by exchanges as follows:

Lemma 4.57. φF and φC respect ≺, i.e. f ≺ c ⇔ φF (f) ≺ φC(c) and c ≺ f ⇔

φC(c) ≺ φF (f).

4. Word problems 117

Proof. By Lemma 4.50 and because c ≺ f ⇔ c♦f ∧ ¬(f ≺ c), it is enough to show

preservation of f ≺ c.

Let d→R d
′ be a right exchange, f be a face in d enclosed by c. Let sh ∈ f be a

maximal spot in f , and sl ∈ f be a minimal spot in f . If sh is untouched by the

exchange, then it is still maximal in φF (f), and φC(c) is still the only component

neighboured by φF (f) at sh’s slice, so we have φF (f) ≺ φC(c). Similarly, if sl is

untouched by the exchange, φF (f) ≺ φC(c). If both sl and sh are touched by the

exchange, then they are equal in d and f neighbours only c in d. By Lemma 4.50,

φF (f) neighbours only φC(c). As φF (f) is not the root face in d′, φF (f) ≺ φC(c).

We next introduce an order on the faces enclosed by a component c. Let N(c)

be the right normal form of c, seen as a standalone diagram. The right reduction

from c to N(c) induces a bijection between the faces of c and those of N(c).

Given two faces f, f ′ in N(c), consider the leftmost maximal spots sh,k, sh′,k′

of f and f ′. We order f and f ′ by lexicographic order on the pairs (h, k), (h′, k′).

This defines an order < on faces of N(c) and therefore on faces of c.

Definition 4.58. We inductively define the structural tree of faces and com-

ponents. Given a face f , T (f) = {T (c)|c component enclosed by f}. Given a

component c, let f1, . . . , fn be the set of faces enclosed by c, ordered with the order

defined above. We set T (c) = (N(c), T (f1), . . . , T (fn)). Finally, the structural tree

T (D) of the entire diagram is T (f0).

To make sure that this tree is finite, we must make sure that none of its nodes

is a child of itself.

Lemma 4.59. ≺ is well-founded.

Proof. A diagram contains a finite number of components and faces. It is therefore

enough to show that given a component c, it is impossible that c ≺ · · · ≺ c. We first

show that if c ≺ f ≺ c′, then at each level h where f appears, then for any place

ph,k ∈ c there are places ph,a, ph,b ∈ c′ with a < k < b. This is a simple consequence

of Lemma 4.53. Then, by induction, we extend this to the transitive closure of ≺,

which shows the result.

118 4.2. Non-symmetric monoidal categories

Lemma 4.60. T (D) is invariant under exchanges.

Proof. By Lemma 4.57, ≺ is invariant under exchanges. The order on the faces

enclosed by a given component is also invariant as it is defined on the right normal

form of the component.

Completeness of the structural tree

We show that the structural tree T (D) of a diagram is a complete invariant for ex-

changes:

Theorem 4.61. Two diagrams D, D′ with no inputs and outputs are equivalent if

and only if T (D) = T (D′).

If D and D′ are equivalent then T (D) = T (D′) by Lemma 4.60. To prove

the converse, we introduce a few notions of diagram surgery, to manipulate

components and faces.

Definition 4.62. Given a diagram D and a spot s ∈ D, the injection of a closed

diagram D′ at s, denoted by IDs (D′), is obtained by inserting D′ in place of s in D.

Concretely, this means that the vertices of D′ are inserted at the slice of s, shifted

to the right by the number of edges to the left of s. Formally, IDs (D′) is defined as

follows:

S(IDs (D′)) = S(D)

N(IDs (D′)) = N(D) +N(D′)

H(IDs (D′), h) =

H(D, h) if h < a

H(D′, h− a) + k if a ≤ h < b

H(D, h−N(D′)) if b ≤ h

I(IDs (D′), h) =

I(D, h) if h < a

I(D′, h− a) if a ≤ h < b

I(D, h−N(D′)) if b ≤ h

O(IDs (D′), h) =

O(D, h) if h < a

O(D′, h− a) if a ≤ h < b

O(D, h−D′.N) if b ≤ h

where s = sa,k and b = a+N(D′).

4. Word problems 119

s

(a) The diagram D with a
spot s ∈ D

(b) The diagram D′
(c) The diagram IDs (D′)

Figure 4.17: Injection of a diagram in a face.

By abuse of language, if x ∈ D′ is a place, spot, face or component, then we

denote again by x the corresponding place, spot, face or component in IDs (D′),

as this is unambiguously defined.

Lemma 4.63. Let D be a diagram and s, s′ ∈ D be spots in the same face f ∈ D.

For all closed diagram D′, IDs (D′) ' IDs′ (D′).

Proof. Let us assume s and s′ are adjacent. Let v be the vertex between the two

slices containing s and s′. The vertices of D′ in Is(D′) can be successively exchanged

with v, leading to IDs′ (D′), which shows that IDs (D′) ' IDs′ (D′). By induction, this

can be repeated for any adjacency path between two spots in the same face.

Bearing in mind that this is only defined up to exchange, we can therefore write

IDf (D′) to inject D′ anywhere in the face f .

Lemma 4.64. Injection respects exchanges on the outer and inner diagrams: If

D ' D′ and C ' C ′, then for any face f ∈ D and its corresponding face f ′ ∈ D′,

IDf (C) ' ID
′

f ′ (C ′).

Proof. Any exchange C →R C
′ translates into a single exchange IDf (C)→R I

D
f (C ′).

So, by induction, if C ' C ′, then IDf (C) ' IDf (C ′). To show that injection respects

equivalence on the outer diagram, let s ∈ f and consider a single rewriting step

120 4.2. Non-symmetric monoidal categories

D →R D
′. If s is not in the slice between the two vertices u and v being exchanged

in D, then it corresponds to a spot s′ ∈ D′. We have s′ ∈ f ′ and IDs (C)→R I
D′
s′ (C)

in one step again. Otherwise, N(D′) exchanges are required to move u past D′, one

to exchange u and v, and N(D′) again to move v past D′. So IDs (C) ' ID
′

s (C). So

injections are compatible with exchanges both on the inner and outer diagram.

Definition 4.65. Let D be a diagram and c ∈ D be a component. The erasure of

c in D, denoted by D − c, is the diagram obtained by removing from D any vertex

from c or its sub-components.

Lemma 4.66. Let D be a diagram and c ∈ D be an acyclic component. Then there

is a face f ∈ D − c such that D ' ID−cf (c).

Proof. Pick a vertex r ∈ c: we will consider c as a tree rooted in r. By induction

on this tree, we are going to gather all vertices around r, meaning that the heights

of these vertices in the diagram form an interval.

Say that a vertex v ∈ c is collapsed if the set of diagram heights of the vertices

in its subtree form an interval. For any v ∈ c, we show that D is equivalent to a

diagram D′ where v is collapsed and such that the vertical order of vertices which

are outside this subtree is preserved in D′.

If v is a leaf, it is always collapsed. Consider the case where v has children

u1, . . . , un. Because c is acyclic, it is possible to exchange each child ui with any

vertex on a slice between ui and v, so we can assume that the vertical positions of v

and u1, . . . , un form an interval. By induction, each ui can be successively collapsed

without changing the vertical order of vertices which are not in the subtree of ui.

Once this is done, the vertical position of vertices in the subtrees of the ui and

v form an interval, so v is collapsed. By doing so we have preserved the vertical

ordering of vertices outside the subtree of v.

Therefore, there is a D′ where r is collapsed. Let c′ be the component correspond-

ing to c in D′. Let f ′ ∈ D′ be the face enclosing c′ in D′. We have ID′−c′f ′ (c′) = D′.

By invariance of injection up to exchanges (Lemma 4.64), ID′−c′f ′ (c′) ' ID−cf (c) for

some the corresponding face f ∈ D − c.

4. Word problems 121

Definition 4.67. Let D be a diagram and f ∈ D be a face that does not neighbour

the boundary. The erasure of f in D, denoted by D − f , is the diagram obtained

by removing all spots in f and descendant faces. Formally, let P (h, i, j) = |{sh,k|i ≤

k < j, sh,k ∈ f ′ ≺∗ f}|. Then D − f is defined as follows:

S(D − f) = S(D)

N(D − f) = N(D)

H(D − f, h) = H(D, h)− P (h, 0, H(D, h) + 1)

I(D − f, h) =
1 if I(D, h) = 0 and P (h,H(D, h), H(D, h)) = 1
I(D, h)− P (h,H(D, h) + 1, H(D, h) + I(D, h) + 1)
otherwise

(D − f).O(h) =
1 if O(D, h) = 0 and P (h+ 1, H(D, h), H(D, h) + 1) = 1
O(D, h)− P (h+ 1, H(D, h) + 1, H(D, h) +O(D, h) + 1)
otherwise

One can check that this defines a valid diagram.

f

(a) A face f in diagram D (b) The diagram D − f

Lemma 4.68. Let s ∈ D be a spot. Then for any closed diagram c and face f ∈ c,

IDs (c− f) = IDs (c)− f .

Proof. This can be checked directly from the definitions of injections and erasures.

122 4.2. Non-symmetric monoidal categories

Lemma 4.69. Let D be a diagram and f ∈ D be a face. For any diagram

D′ ' D − f , there is a diagram D0 ' D such that D′ = D0 − f .

Proof. By induction on the length of the equivalence between D′ and D − f ,

consider an exchange on D − f , exchanging vertices at height n and n + 1. By

symmetry we can assume it is a right exchange, and therefore H(D − f, n) ≥

H(D−f, n+1)+I(D−f, n+1). We show that H(D,n) ≥ H(D,n+1)+I(D,n+1),

enabling a right exchange at the same heights in D. Applying this right exchange

will give us D0.

Let us first show that H(D,n) ≥ H(D,n+ 1). Indeed, assume by contradiction

that H(D,n) < H(D,n + 1). We have P (n + 1, 0, H(D,n + 1) + 1) = P (n +

1, 0, H(D,n) + 1) + P (n + 1, H(D,n) + 1, H(D,n + 1) + 1). Because the wires

to the left of H(D,n) run undisturbed at levels n and n+ 1, we also have P (n+

1, 0, H(D,n) + 1) = P (n, 0, H(D,n) + 1). Therefore P (n + 1, 0, H(D,n + 1) +

1) = P (n, 0, H(D,n) + 1) + P (n+ 1, H(D,n) + 1, H(D,n+ 1) + 1). Furthermore,

P (n+ 1, H(D,n) + 1, H(D,n+ 1) + 1) ≤ H(D,n+ 1)−H(D,n), as can be seen

from the definition of P . Combining these, we get:

H(D − f, n+ 1) = H(D,n+ 1)− P (n, 0, H(D,n) + 1)− P (n+ 1, H(D,n) + 1, H(D,n+ 1) + 1)

≥ H(D,n+ 1)− P (n, 0, H(D,n) + 1)− (H(D,n+ 1)−H(D,n))

= H(D − f, n)

So H(D − f, n + 1) ≥ H(D − f, n) which contradicts the exchangeability as-

sumption in D − f . Hence H(D,n) ≥ H(D,n+ 1). We can therefore decompose

P (n, 0, H(D,n)+1) = P (n, 0, H(D,n+1)+1)+P (n,H(D,n+1)+1, H(D,n)+1).

Now, let us show that H(D,n) ≥ H(D,n+ 1) + I(D,n+ 1). By contradiction

again, we assume that H(D,n) < H(D,n+ 1) + I(D,n+ 1). Then, substracting

P (n+ 1, 0, H(D,n+ 1) + 1) from both sides we get

H(D,n) + P (n+ 1, 0, H(D,n+ 1) + 1) < H(D − f, n+ 1) + I(D,n+ 1)

. By the decomposition above this is equivalent to

H(D− f, n) +P (n,H(D,n+ 1) + 1, H(D,n) + 1) < H(D− f, n+ 1) + I(D,n+ 1)

4. Word problems 123

And by the fact that I(D,n+ 1) ≤ I(D−f, n) +P (n,H(D,n+ 1) + 1, H(D,n) + 1),

we get

H(D − f, n) ≥ H(D − f, n+ 1) + I(D − f, n)

. This shows that the right exchange is admissible on D and completes the proof.

Lemma 4.70. Let D be a diagram and c ∈ D be an arbitrary component (not

necessarily acyclic this time). Then there is a spot s ∈ D− c such that D ' ID−cs (c).

Proof. Let f1, . . . , fk be all the faces enclosed by c. Consider D′ = D − f1 · · · − fk.

Let c′ be the component corresponding to c in D′: as a diagram, c′ = c− f1 · · · − fk.

As c′ does not enclose any face, c′ is acyclic. By Lemma 4.66, we can gather c′

in one spot: there is s ∈ D′ − c′ such that D′ ' ID
′−c′

s (c′). (In fact, because all

the faces removed from D to obtain D′ are enclosed by c, D′ − c′ = D − c.) Then,

by Lemma 4.69, there is a D0 ' D such that D0 − f1 · · · − fk = ID
′−c′

s (c′). By

Lemma 4.68, ID′−c′s (c′) = ID
′−c′

s (c−f1 · · ·−fk) = ID
′−c′

s (c)−f1 · · ·−fk. Therefore, we

obtain D0−f1 · · ·−fk = Is(c)−f1 · · ·−fk and finally D0 = ID
′−c′

s (c) = ID−cs (c).

We can now prove Theorem 4.61, showing the completeness of the structural

tree for exchanges.

Proof. Let C,D be diagrams such that T (C) = T (D).

To each node n of T (C) we can associate diagrams Cn (respectively Dn) obtained

by erasing vertices not contained in the subtree below n in C (respectively D). We

show by induction on n that Cn ' Dn.

If n is a leaf face node, then both Cn and Dn are empty diagrams and are

therefore equivalent. If n is a leaf component node, then both Cn and Dn are acyclic

connected diagrams with identical right normal forms, so they are equivalent.

If n is an internal face node, let {c1, . . . , cm} be its child components. By

induction their corresponding diagrams in C and D are pairwise equivalent. We

can apply Lemma 4.70 for each of them and express both C and D as iterated

injections of the ci in the empty diagram: therefore Cn ' Dn.

124 4.2. Non-symmetric monoidal categories

If n is an internal component node, let (f1, . . . , fm) be its child faces. Again,

by induction their corresponding diagrams in C and D are pairwise equivalent.

Moreover, the components corresponding to n in C and D have the same right

normal form F . We can therefore obtain both C and D as iterated injections of the

fi in the faces of F , in the designated order. Therefore Cn ' Dn, which completes

the proof.

Word problem

We show how to compute the structural tree of a diagram, and therefore solve

the word problem in the general case. Algorithm 1 scans the diagram in one

pass and computes simultaneously the components and faces of the diagram, as

well as the inclusion relation between them. Components and faces are defined

as equivalence classes of places and spots under an adjacency relation, so we use

two union-find data structures to represent them.

Algorithm 1 Algorithm to compute the faces, components, and relations between
them.
initialize union-find data structures F for faces and C for components
initialize parent pointer arrays PF for faces and PC for components
for h = 0 to N(D) do

for k = 0 to W (D, h) do
if sh,k adjacent to sh−1,k and to sh−1,k−∆(D,h−1) then

union(F (h− 1, k), F (h− 1, k −∆(D, h− 1)))
F (h, k)← F (h− 1, k)

else if sh,k adjacent to sh−1,k only then
F (h, k)← F (h− 1, k)

else if sh,k adjacent to sh−1,k−∆(D,h−1) only then
F (h, k)← F (h− 1, k −∆(D, h− 1))

else
F (h, k)← a fresh face id
PF (h, k)← (h− 1, H(D, h− 1))

end if
end for
for k = 0 to W (D, h)− 1 do

Update components similarly
end for

end for

4. Word problems 125

Unions of faces are performed when scanning vertices with no output. Each of

them costs O(log∗ f), where f is the number of faces of the diagram and log∗ is the

log-star function. So total cost of all unions of faces is O(v log∗ f). Scanning the

diagram with the two loops takes O(ve) operations, and checking if two spots or

places are adjacent takes constant time. Therefore, the computation of the faces,

components and their relations can be done in O(ve).

Then, we apply the algorithm of Theorem 4.40 to compute the right normal

form of each component, which can be done again in quadratic time.

Finally, the structural tree of the diagram is converted to an integer recursively

in Algorithm 2, where we assume a coding function χ injectively mapping any tuple

of integers to an integer (using an appropriate encoding). As the structural tree is

a complete invariant for diagram equivalence, we obtain the following theorem.

A note of caution about this last step is that it does rely pretty crucially on

the encoding of large data structures into integers and exploits the fact that the

computational model lets us compare unbounded integers for free in constant time,

which could be unrealistic for practical purposes. For implementations, this can

be mitigated using hashing techniques which let compare large data structures

quickly on average, rejecting different structures quickly and only resorting to full

comparison when the hashes are equal.

Algorithm 2 Algorithm to recursively compute an integer representation for a
structural tree.
if n is a face node then

compute the integer representation of its children components recursively;
sort the list of children components as l return χ(l)

end if
if n is a component node with normalized root component c then

sort the children faces by order of introduction in the normalized component c
compute the integer representation of the children faces recursively as l,

preserving the order; return χ(c, l)
end if

Theorem 4.71. The word problem for string diagrams in a monoidal category can

be solved in O(ve), where v is the number of vertices and e is the number of edges.

126 4.2. Non-symmetric monoidal categories

4.2.7 Linear-time solution to the word problem in the
connected case

In this section we show how the word problem can be solved in linear time for

boundary-connected diagrams via a reduction to the problem of map isomorphism.

In the disconnected case, the components enclosed in a face can spin around each

other, so comparing two faces amounts to comparing their sets of components.

Therefore, there is little hope to extend this result to the disconnected case.

We first recall some background notions of topological graph theory. We refer the

interested reader to (Mohar and Thomassen, 2001) for a more in-depth treatment

of these notions.

Background on planar maps

A multigraph is a set of vertices V and of edges E where each edge e ∈ E is

associated with a set of one or two vertices V (e). In other words it is an undirected

graph where multiple edges can exist between two vertices, and loops are allowed.

A planar map is a discrete representation of the embedding of a connected

multigraph (seen as a topological space) in a surface.

Definition 4.72. A map is a set Ω of darts (or half-edges) and two permutations

x and y of Ω such that x2 = 1, x has no stationary point, and the permutation

group G generated by x and y is transitive (for any a, b ∈ Ω there is g ∈ G such

that g(a) = b).

x = (1 2)(3 4)(5 6)(7 8)(9 10)

y = (2 10 7)(4 8 6)(1 3 5 9)

(a) A planar map given by two permutations

a c

b

d

1
2

3
4

5
6

7 8

9
10

(b) Graphical representation where darts are
numbered half-edges

4. Word problems 127

Two maps are isomorphic when there is a bijection between their sets of darts

respecting the permutations x and y of both maps.

In a map m, the cycles of x are called edges of m. The cycles of y are called

faces of m. The cycles of xy are called vertices. The Euler characteristic of m is

χ(m) = v − e+ f

where v is the number of vertices, e of edges and f of faces. A map m is

planar if χ(m) = 2.

Any embedding of a multigraph in the plane gives rise to a planar map.

Theorem 4.73. Jones and Singerman (1978) Any two embeddings of a multigraph

in the plane are isotopic if and only if the corresponding planar maps are isomorphic.

Theorem 4.74. Hopcroft and Wong (1974) Determining if two planar maps are

isomorphic can be decided in linear time.

Again, the same note of caution about the comparison of unbounded integers in

constant time applies to the latter result, but hashing should provide a satisfactory

implementation in practice.

Our goal is to reuse this last result to solve the word problem for connected

string diagrams. However, the word problems for string diagrams and for planar

maps do not match: Figure 4.20 shows two string diagrams which are isotopic as

planar maps but not equivalent as string diagrams.

6=

Figure 4.20: Two non-equivalent string diagrams which are isotopic as maps

128 4.2. Non-symmetric monoidal categories

Directed planar maps

Maps are embeddings of undirected multigraphs. In this section, we introduce

an analogous notion for directed multigraphs. A directed multigraph is a set of

vertices V and a set of edges E, each edge being associated to a pair of vertices

(s, t) (its source and target). A directed multigraph is connected if it is connected

as an undirected multigraph.

Definition 4.75. A directed map is a map (Ω, x, y) together with a choice of

distinguished darts D ⊆ Ω such that exactly one dart in each cycle of x belongs to

D.

Two directed maps are isomorphic when they are isomorphic as maps and further-

more the bijection respects the distinguished darts. Similarly to Figure 4.20, there

are directed maps which are isomorphic as undirected maps but not as directed maps.

Given a directed planar map M , we can define a planar map ι(M) by replac-

ing each directed edge by an undirected graph which encodes the direction of

the original edge:

7→

Proposition 4.76. Two directed planar maps M ,M ′ are isomorphic if and only if

the undirected planar maps ι(M) and ι(M ′) are isomorphic.

Proof. If M and M ′ as isomorphic then clearly so are ι(M) and ι(M ′). Conversely,

assume that ι(M) and ι(M ′) are isomorphic maps via an isomorphism φ. Say that

a vertex v ∈ ι(M) is a loop root if a loop is rooted on v. Given the definition of ι,

the image ι(u) of a vertex u ∈ M cannot be a loop root, as any loop on u in M

is translated to non-loop edges in ι(M). Therefore, there is a bijection between

the loop roots of ι(M) and the edges of M . As loop roots are preserved by graph

isomorphism, φ induces a bijection between the loop roots of ι(M) and ι(M ′), so

we have a bijection ψ between the edges of M and M ′. This bijection in turn

determines a directed graph isomorphism between M and M ′. For instance the

4. Word problems 129

source vertex of an edge can be recovered from its loop root u: follow the edge which

comes after the loop, when browsing incident edges of u in clockwise order. Similarly

the target vertex can be recovered. Finally, as φ is a map isomorphism, the cyclic

order of edges around vertices is preserved, so ψ is a directed map isomorphism

between M and M ′.

Corollary 4.77. Testing whether two acyclic directed planar maps are isomorphic

can be done in linear time.

Proof. The translation via ι can be computed in linear time so the problem reduces to

deciding undirected planar map isomorphism, which is linear by Theorem 4.74.

Proposition 4.78. Two embeddings of connected directed multigraphs in the plane

are isotopic if and only if the corresponding directed maps are isomorphic.

From string diagrams to maps

We translate any string diagram D to a directed planar map γ(D) by replacing

each vertex by the gadget below. The original edges coming from D inherit their

orientation from the string diagram (top to bottom), and we add two dangling

edges for each vertex. These additional dangling edges are useful for vertices

with only inputs or only outputs by blocking any cyclic permutation of these

edges around the vertex.4

. . .

. . .

7→

. . .

. . .

7→

Figure 4.21: Translation of a string diagram to a directed map.

Theorem 4.79. Any two connected diagrams are equivalent if and only if the

induced directed maps are isomorphic.
4These dangling edges are only useful for vertices with only inputs or only outputs but we

choose to add them to all vertices for the sake of uniformity.

130 4.2. Non-symmetric monoidal categories

Proof. Exchanges on connected diagrams preserve the translation to directed maps

so any two equivalent connected diagrams are mapped to isomorphic directed maps.

For the converse direction, we can therefore assume that the two diagrams D,D′

are in right normal form. Let φ be the map isomorphism between the corresponding

directed maps γ(D), γ(D′). First, γ(D) and γ(D′) have the same number of vertices

and so do D and D′. Call n the number of vertices of D.

We prove by induction on n that D = D′. We reuse the induction technique

introduced in Section 4.2.5: diagram D contains a leaf or a face.

If D contains a leaf l, this leaf is mapped to a vertex γ(l) connected to three

edges. As φ(γ(l)) is also connected to three edges, there is a leaf l′ ∈ D′ such that

γ(l′) = φ(γ(l)). Because φ is an isomorphism of directed maps, the orientations

of l and l′ are the same: they are both single-input or both single-output vertices.

Moreover, they are connected to their parent vertices at the same position in their

list of inputs or outputs, thanks to the auxiliary edges added in the translation.

Consider the diagrams E and E ′ obtained from D and D′ by removing l and l′

respectively. These diagrams are in right normal form. The isomorphism φ induces a

map isomorphism between γ(E) and γ(E ′) so by induction E = E ′. By Lemma 4.33,

D = D′.

If D contains a face f , this face is mapped to a face γ(f) in γ(D). The face

φ(γ(f)) is itself the image of a face f ′ ∈ D′. Because φ preserves edge orientations,

the mountain ranges of f and f ′ are equal. Let e be an eliminable edge in f and

let e′ be the preimage of φ(γ(e)) in f ′. By equality of the mountain ranges, e′ is

also eliminable in f ′. By Lemma 4.39, removing e from D and e′ from D′ gives

diagrams F and F ′ both in right normal form. Again we can apply the induction

hypothesis to F and F ′, so F = F ′, and therefore D = D′.

Corollary 4.80. The word problem for connected string diagrams can be solved in

linear time.

Proof. The translation γ from string diagrams to directed planar maps can be

computed in linear time. The decision problem therefore reduces to the word

4. Word problems 131

(a) A recumbent plane diagram (b) A locally recumbent plane diagram

Figure 4.22: Examples of topological diagrams.

problem for acyclic directed planar maps, which is solvable in linear time by

Corollary 4.77.

4.2.8 Recumbent isotopy

Joyal and Street’s theorem relating diagram deformations to the axioms of monoidal

categories (Theorem 2.11) requires the deformations to be recumbent. This means

that at each stage of the deformation, the diagram’s edges must remain upright,

as shown in Figure 4.22. It was conjectured by Selinger (Selinger, 2010) that the

recumbency condition can be weakened. For this weakening, the requirement that

all wires must flow vertically can be dropped, but we must keep the requirement

that wires stay connected to their endpoints from the same side. Figure 4.23 shows

a counter-example for the conjecture without this last condition.

6=

Figure 4.23: Arbitrary planar isomorphism does not respect morphism equality.

We now show how our reduction from string diagrams to planar maps can be

used to prove Selinger’s conjecture, generalizing Joyal and Street’s Theorem 2.11.

To extend this result to disconnected diagrams, we only need to extend the notion

of directed map to disconnected cases.

Definition 4.81. A disconnected planar map is defined recursively as a tree,

as follows.

• A face node is a set of component nodes (possibly empty).

132 4.2. Non-symmetric monoidal categories

• A component node is a planar map m, an outer face f0 ∈ m and face nodes

for each face f 6= f0 of m.

A disconnected planar map is given by its root face node, which has finite depth.

As this definition mirrors that of the structural tree of a diagram (Definition 4.58),

it is straightforward to extend the translation of Section 4.2.7 to translate any

diagram D to a disconnected planar map.

Equivalence of disconnected planar maps is defined by point-wise equivalence of

the planar maps involved. By completeness of the structural tree for string diagrams

(Theorem 4.61), two string diagrams are equivalent if and only if the corresponding

disconnected planar maps are equivalent. For this reason, Theorem 4.73 can be

extended to the disconnected case: two disconnected planar maps are equivalent

if and only if their embeddings in the plane are isotopic. We therefore obtain

the following theorem:

Theorem 4.82. Two string diagrams are equivalent if and only if their translations

as disconnected planar maps from Section 4.2.7 are isotopic.

This generalizes Joyal and Street’s result in the way hinted by Selinger’s conjecture:

the isotopy is unconstrained, although some gadgets have been added to enforce

the preservation of the order of inputs and outputs around vertices.

This generalization has a clean statement in terms of planar pivotal monoidal

categories (Selinger, 2010, Section 4.2). The coherence theorem for their graphical

calculus is stated as follows (Selinger, 2010, Theorem 4.14).

Theorem 4.83 (Coherence for pivotal categories). A well-formed equation between

morphisms in the language of pivotal categories follows from the axioms of pivotal

categories if and only if it holds in the graphical language up to planar isotopy.

We write monoidal signature for the generating data for a monoidal category which

is free on objects and morphisms, and given a monoidal signature Σ, we write M(Σ)

for the free monoidal category on Σ, and P(Σ) for the free pivotal category on Σ.

Combining Theorems 4.82 and 4.83 then yields the following.

4. Word problems 133

Corollary 4.84. Given a monoidal signature Σ, the obvious embedding functor

F : M(Σ)→ P(Σ) is faithful.

Proof. For A,B ∈ Ob(M(Σ)) and morphisms f, g : A→ B, Theorem 4.83 says that

F (f) = F (g) just when the string diagrams for f and g are isotopic. But then by

Theorem 4.82, we also have f = g, and hence faithfulness.

4.3 Double categories

This section is taken from the article The word problem for double categories
(Delpeuch, 2020), published in Theory and Applications of Categories.

In this section we turn our attention to double categories (Ehresmann, 1963).

Similarly to 2-categories and bicategories, those offer an axiomatization of the

composition of planar structures, with two composition operations corresponding to

the two dimensions of the plane. Informally, one can describe double categories by

the shape of their string diagrams. Unlike 2-categories where the edges are required

to flow along a specified direction (usually vertically), 2-cells in double categories

can connect to both horizontal and vertical wires. Therefore they not only have a

vertical domain and codomain, but also a horizontal domain and codomain. These

definitions are made precise in Section 4.3.1.

α

(a) A morphism in a 2-category.

α

(b) A morphism in a double category.

At a first glance, double categories could be considered a more natural categorical

axiomatization of planar systems, since they treat the two dimensions of the plane in

a dual, interchangeable way. In comparison, the vertical and horizontal compositions

in 2-categories are intrinsically different, forcing diagrams to flow in a specified

direction. However, this uniform behaviour in two dimensions comes at a cost

known as the pinwheel problem. Concretely, this problem manifests itself in the

fact that not all planar arrangements of 2-cells can be composed, even if all local

134 4.3. Double categories

compatibility conditions are satisfied. For a diagram to be interpreted as a 2-cell

it must be binary composable and this can fail if the diagram contains a so-called

pinwheel, represented later in Figure 4.25.

A lot of work has already been dedicated to characterizing which arrangements of

2-cells can be composed in a double category, using order-theoretic representations

of these arrangements (Dawson and Paré, 1993; Dawson, 1995). In this work, we

focus instead on the word problem for 2-cells in double categories. Given two

binary composable diagrams, we want to determine whether they represent the

same 2-cell or not. Dawson et al. (2004) have studied this problem in the case of

free extensions of double categories, showing for instance that the word problem

can become undecidable with the addition of a single free 2-cell.

We study the word problem for free double categories, meaning that no equations

are imposed on the generators. The only equations relating expressions in this

context are the axioms of double categories. We introduce a correspondence between

a free double category and a free 2-category, for which the word problem was solved

in the previous chapter. We obtain as a result a quadratic time algorithm to

determine if two double category diagrams are equivalent (Theorem 4.104).

Our solution to the word problem for double categories relies on a reduction to

the word problem for 2-categories. Here again, the translation used is of its own

interest, as it establishes a tight relation between the combinatorics of 2-categories

and that of double categories. In fact, we will argue in Section 4.3.6 that free

2-categories should in a sense be preferred to free double categories, as they are

simpler, equally expressive and do not suffer from the pinwheel problem.

The idea of the correspondence is very simple. In order to simulate the horizontal

wires of a double category in a 2-category, we simply “rotate the string diagrams

by π
4”. In Section 4.3.3, we make this correspondence precise and show that it

respects the notions of equivalences on both structures. This lets us solve the word

problem for free double categories in Section 4.3.5.

α t7−→ α

4. Word problems 135

This correspondence between free double categories and free 2-categories is

motivated by the word problem but is of interest in its own right: it shows that one

does not gain much by considering a free double category instead of the corresponding

free 2-category. Reasoning in a 2-category avoids the pinwheel problem entirely as

the validity of a string diagram in this structure can be checked locally. Section 4.3.6

shows how the translation could be extended to diagrams which include pinwheels,

giving them a meaning in the free 2-category. This has also practical implications:

one can use the translation to reason about double categories in proof assistants such

as homotopy.io (Heidemann et al., 2019) which use a globular notion of n-category.

4.3.1 Double categories

Definition 4.85. Let C be a category. An internal category in C consists of the

following data:

• a pair of objects M,O, that we think of as the sets of morphisms and objects

• morphisms d, c ∈ C(M,O), intuitively the domain and codomain functions

• a morphism ι ∈ C(O,M), taking an object to its identity map;

• a morphism µ ∈ C(P,M), where P is the pullback (which is therefore required

to exist) of M d−→ O
c←− M . This represents the multiplication of compatible

pairs of morphisms.

These morphisms are required to satisfy equalities, which correspond to the axioms

of a category (associativity and unitality of composition, as well as equations for

the domains and codomains of identities and composites).

The definition above is chosen such that an internal category in Set is a small

category. The purpose of this concept is that its generality makes it possible to

interpret it in other categories.

Definition 4.86. A double category is an internal category in Cat, the category

of small categories.

https://homotopy.io/

136 4.3. Double categories

This definition is concise and this conciseness justifies the interest in this

structure, which was originally introduced by Ehresmann (1963). However, it is of

little help to build intuition about the nature of such an object, so let us unfold

its content. A double category consists of an object category O and a morphisms

categoryM, with functors D,C :M→ O, I : O →M and M : P → M where

P is defined as above. We will call

• objects of O as objects of the double category;

• morphisms of O as vertical morphisms of the double category;

• objects ofM as horizontal morphisms of the double category;

• morphisms ofM as 2-cells of the double category.

Initially, it can seem confusing that objects ofM are thought of as morphisms.

The reason for this is that by forgetting morphisms, i.e. taking the image of

our internal category via the forgetful functor Cat→ Set, we obtain an internal

category in Set, i.e. a small category. We will call this the horizontal category

of the double category. As its morphisms are the objects ofM, this justifies their

name. These horizontal morphisms have as domains and codomains objects of O.

These objects are also involved in another category, namely O itself, that we will

call the vertical category of the double category.

Any 2-cell α has two horizontal morphisms as domain and codomain, domM(α)

and codM(α) as a morphism ofM. We will call these the horizontal domain and

codomain of α. Furthermore, it is associated by the internal category structure

to D(α) and C(α), which are vertical morphisms. We will therefore call these

the vertical domain and codomain of α. Finally, the functoriality of D and

C ensures that for instance D(domM(α)) = domO(D(α)) and similarly for C and

cod. This suggests the representation of α as a square:

4. Word problems 137

A B

E F

α

domM(α)

codM(α)

D(α) C(α)

Although this diagram is similar to commutative diagrams used in category

theory, we stress that it is here used in a more general sense, as composing horizontal

and vertical morphisms does not make sense in general.

The 2-cells in a double category can be composed in two different ways. First,

as morphisms ofM, two 2-cells can be composed if they have compatible horizontal

domain and codomain. We call this the vertical composition. Second, the

functor M defines a composition for 2-cells with compatible vertical domains and

codomain, and we call this the horizontal composition. These compositions

can be represented with diagrams:

A B

U V

α ◦ β

dom(α ◦ β)

cod(α ◦ β)

D(α ◦ β) C(α ◦ β) =

A B

E F

U V

β

α

dom(β)

cod(α)

D(β) C(β)

D(α) C(α)

A B

U V

M(α, β)

dom(M(α, β))

cod(M(α, β))

D(M(α, β)) C(M(α, β))=

A B

E F

U

V

α β

dom(α)

cod(α)

D(α) C(β)

dom(β)

cod(β)

The functoriality of M ensures that these two compositions are compatible:

(α ? δ) ◦ (β ? γ) = (α ◦ β) ? (δ ◦ γ) for all 2-cells such that both sides of the equation

138 4.3. Double categories

are defined. This means that the following diagram is unambiguous:

A B C

D E F

G H I

β γ

α δ

Given that the horizontal and vertical compositions are also associative, it is

natural to represent composite 2-cells as tilings of rectangles in the plane, with

the appropriate conditions on edges to ensure compatibility between the composed

2-cells. Dawson and Pare (1993) have shown that if there are two ways to interpret

such a tiling as a tree of horizontal and vertical compositions, then the resulting

2-cells will be equal. However, there exist tilings which satisfy the local compatibility

conditions but do not arise from the horizontal and vertical compositions. The

minimal example of this is known as the pinwheel and is shown in Figure 4.25.

Figure 4.25: A pinwheel diagram, which cannot be expressed as a binary composite.

It was then shown by Dawson (1995) that this is essentially the only obstacle to

composition of diagrams in double categories.

4.3.2 Free double categories

Double categories are rich objects and defining them therefore requires some care.

Given horizontal and vertical categories with the same objects, and a set of generating

tiles whose boundaries are chosen from the horizontal and vertical categories, we

want to generate the free double category on these tiles.

One simple approach to generate such a double category would be to use its

definition as internal category object in Cat, and simply internalize the definition

of a free category on a graph. A graph object in Cat is called a double graph and

4. Word problems 139

is essentially a double category without identities and compositions. Interpreted in

Cat, the construction which defines a free category object from a graph object does

give a double category, but as pointed out by Dawson and Paré (2002) this imposes

important restrictions on the boundaries of the generating tiles: they must be

generating morphisms of the resulting vertical and horizontal categories. Therefore,

all generated composites have a grid-like shape:

Dawson and Paré (2002) propose a more general construction which allows

identities as cell boundaries. To do so they use the notion of reflexive graph: it

is a directed graph with designated loops on each vertex. One can define the

free category generated by a reflexive graph, where the loops are interpreted as

identities. Internalized in Cat, this gives rise to the notion of double reflexive

graph which generates a double category. This makes it possible to use generators

which have identities as boundaries:

As this is still not as general as it could be, Fiore et al. (2008) introduces the

notion of double derivation scheme. A double derivation scheme is a double graph

whose horizontal and vertical objects form categories. Therefore, generating a

double category from a double derivation scheme makes it possible to use arbitrary

boundaries for the generating cells. The main difference with the previous approaches

is that the notion of double derivation scheme does not arise by internalizing in

140 4.3. Double categories

Cat a notion formulated in the internal language of categories. Moreover a double

derivation scheme can also introduce algebraic equations between expressions,

quotienting the generated structure accordingly. In our case, no such equations

are used, so we give a simpler description of the construction.

Definition 4.87. A double signature S = (A,H, V, C) is given by:

• a set of objects A;

• a set of generating horizontal morphisms H;

• a set of generating vertical morphisms V ;

• a set of generating 2-cells C.

Furthermore each h ∈ H is associated with dom h, codh ∈ A and similarly for

V . This defines free categories H∗ and V ∗. Each α ∈ C is associated with

compatible vertical and horizontal domains and codomains domhα, codhα ∈ H∗

and domvα, codvα ∈ V ∗. The required compatibility is dom domhα = dom domvα

and three other similar equations.

The set of 2-cells of the double category generated by this data is generated

inductively from the generators in C, vertical and horizontal identities. From

these generators we take the closure by vertical and horizontal composition of

compatible cells: this gives us the set of 2-cell expressions on the signature. To

obtain the set of 2-cells, we quotient by unitality and associativity of the vertical

and horizontal compositions and by the exchange law. Furthermore, horizontal and

vertical identities on identity morphisms (depicted as empty 2-cells) are equated.

These are precisely the laws of double categories, hence this defines the free double

category Sd on the given data.

Expressions in double categories can be drawn as string diagrams (Myers, 2016),

and in the sequel we will use the terms “expression” and “diagram” interchangeably.

4. Word problems 141

Here is an example of a series of equivalences between expressions of 2-cells, drawn

as string diagrams:

∼ ∼ ∼ ∼

We draw horizontal wires in red, this will help us to to distinguish them from

vertical wires in the next section. We also omit region colors as they are irrelevant

for equivalences and do not play any role in the word problem.

Our goal in this work is to propose an alternate representation for 2-cells,

making it possible to decide whether two expressions of 2-cells are equivalent

under these axioms.

4.3.3 Translation to 2-categories

Double categories can be seen as a generalization of 2-categories, as a 2-category is

a double category where all vertical morphisms are identities. Given the inherent

duality in double categories, a 2-category can also be seen as a double category

with identity horizontal morphisms.

In this section, we show how a free double category can conversely give rise

to a free 2-category. Our goal is to reuse the algorithms for the word problem

in 2-categories developed in the previous chapter.

Definition 4.88. Given a double signature S = (A,H, V, C), we define the 2-

category S2 as the free 2-category generated by:

• objects a ∈ A;

• 1-morphisms h : dom h → codh for h ∈ H and vop : cod v → dom v for

v ∈ H;

• 2-morphisms α : domhα ◦ (domvα)op → (codvα)op ◦ codhα

142 4.3. Double categories

Note that the vertical generators are reversed in the 2-category, making it possi-

ble to compose the horizontal and vertical domains together, and similarly for

the codomain.

Definition 4.89. Let φ be a 2-cell expression in Sd. We inductively define its

translation t(φ) as a morphism in S2(domhφ ◦ (domv φ)op, (codv φ)op ◦ codhφ):
α 7→ α

generator

µ ν 7→
µ

ν
horizontal composition

ν

µ

7→
µ

ν
vertical composition

7→
horizontal identity

7→
vertical identity

Lemma 4.90. The translation t respects the axioms of double categories, i.e. it

extends to a map from 2-cells in Sd to 2-cells in S2.

Proof. One can check that unitality and associativity are respected. The exchange

law in double categories translates to the exchange law in 2-categories:

µ ν

α β

7→7→

'

µ

α

ν

βµ

α

ν

β

4. Word problems 143

Note that our translation is a simple function, as we could not find a way to

frame it as a suitable sort of functor. We argue that this is constrained on us by the

problem at hand, which is precisely about relating different algebraic structures.

Our goal is to show the converse: if the translations of two expressions in Sd
are equivalent as morphisms in S2, then so are their antecedents in Sd. To do so,

we need to construct a reverse translation, from diagrams in the free 2-category

to diagrams in the free double category.

4.3.4 Partial tilings

To provide an inverse to the translation t, let us first introduce a necessary condition

on a diagram in S2 to be in the image of t.

Definition 4.91. A diagram φ ∈ S2 is admissible if its domain is of the form

vop;h and its codomain is of the form h′; v′op.

For all ψ ∈ Sd, t(ψ) is admissible. Conversely, for all admissible φ ∈ S2, we want

to construct a corresponding tiling. To do so, we introduce the notion of partial

tiling as an incomplete diagram in the free double category.

Definition 4.92. Let n ≥ 1, and h, h1, . . . , hn ∈ H∗ and v, v1, . . . , vn ∈ V ∗. Assume

that hi is not an identity for i > 1 and vi is not an identity for i < n.

A partial tiling of type h, v → h1, v1, . . . , hn, vn is a subdivision of the following

shape into rectangles:

v

h

vnhn

vn−1hn−1

h1
v1

h2
v2

. .
.

Each of the rectangles in the subdivision is attributed a generator α ∈ C or a vertical

or horizontal identity, such that the horizontal and vertical domains and codomains

match on each edge.

144 4.3. Double categories

α

β

δ

ν

µ

γ

α

β

δ
ν

µ

γ

Figure 4.26: Examples of partial tilings.

The definition above is purposefully left at a rather intuitive level as a precise

topological definition would rather obscure the purpose of the concept. We think

of a partial tiling as some upper-left corner of a 2-cell in a double category. We

will therefore draw partial tilings just like string diagrams for double categories,

as in Figure 4.26.

Definition 4.93. Two partial tilings are equivalent when they can be related by a

series of applications of these rules (where α can be an identity itself):

α ' α ' α

α
' α '

α

as well as continuous translations of horizontal or vertical boundaries in the

subdivision. We denote this equivalence by '.

For instance, the two partial tilings in Figure 4.26 are equivalent.

In the special case where n = 2, h1 and v2 are identities and h = h2, v =

v2, and assuming dom h = dom v, there is an empty partial tiling of type

h, v → 1cod v, v, h, 1codh:

4. Word problems 145

Another special case are partial tilings of type h, v → h1, v1 which have a

rectangular shape. In this case, we can interpret them as 2-cells, but only if

they are binary composable.

Lemma 4.94. A partial tiling of type h, v → h1, v1 is binary composable if it can

be obtained by repeated application of the horizontal and vertical composition from

generators. In this case, it represents a 2-cell in Sd, and its meaning is invariant

under equivalence of partial tilings.

Proof. If a diagram is binary composable then by the general associativity result

of Dawson and Pare (1993), it can be interpreted as a 2-cell in Sd which does

not depend on the order of composition chosen. Then, equivalences of partial

tilings correspond to unitality of identities when interpreted in a binary composable

diagram, so the 2-cell is invariant under these equivalences.

Definition 4.95. Let h be an horizontal morphism in Sd. It can be uniquely

decomposed as a composition of generators h = h1 ◦ · · · ◦ hk. We define the length

of h as |h| = k. Let 0 ≤ i < k and 1 ≤ j < k. We say that h′ = hi+1 ◦ · · · ◦ hj is a

factor at index i of h. Similar notions are defined for vertical morphisms.

For instance, the factors at index 0 of a morphism h are its prefixes.

Definition 4.96. Let m be a partial tiling of type h, v → h1, v1, . . . , hn, vn and let

α : h′, v′ → h′′, v′′ be a generator. A gluing position of α on m is one of the

following:

• if h′ is a prefix of h1, then (0, 0, 0) is a gluing position;

146 4.3. Double categories

• if h′ is a factor of h1 at index i > 0 and v′ is an identity, then (0, i, 0) is a

gluing position;

• if v′ is a prefix of vn, then (n, 0, 0) is a gluing position;

• if v′ is a factor of vn at index i > 0 and h′ is an identity, then (n, 0, i) is a

gluing position;

Furthermore, for all 1 ≤ k < n:

• if v′ is a prefix of vk and h′ is a prefix of hk+1, then (k, 0, 0) is a gluing

position;

• if v′ is a factor of vk at index i and h′ is an identity, then (k, 0, i) is a gluing

position;

• if h′ is a factor of hk+1 at index i and v′ is an identity, then (k, i, 0) is a

gluing position.

For each gluing position p we define the gluing of α to m, denoted by m ?p α, by

the partial tiling obtained by adjoining α at the designated position, and adding any

necessary identity to satisfy the condition of Definition 4.92.

Figure 4.27 shows all the possible gluing positions. Figure 4.28 shows how a

generator can be glued at multiple positions on a partial tiling and how identities can

be used to ensure that the resulting arrangement has non-identity inner boundaries.

Definition 4.97. Let φ be a diagram in the free 2-category S2. We assume that the

domain of φ is of the form vop;h with v and h paths of generators from S.

Let l ∈ N be a level in φ and h1; vop
1 ; . . . ;hn; vop

n be the type of the diagram at

this height, where v1 and hn can possibly be identities unlike the others elements of

the sequence.

We associate to this data a partial tiling pk(φ) : h, v → h1, v1, . . . , hn, vn, by

induction on k. If k = 0, pk(φ) is the empty partial tiling of type v, h→ 1, v, h, 1.

Otherwise, let α be the generator between levels k − 1 and k. We define pk(φ) as

4. Word problems 147

(a) p = (0, 0, 0) (b) p = (0, i, 0)
(c) p = (n, 0, 0) (d) p = (n, 0, i)

(e) p = (k, 0, 0) (f) p = (k, 0, i) (g) p = (k, i, 0)

Figure 4.27: Possible gluing positions. When the second or third component of the
position is not null, an identity cell is added.

m =
β

δ

α = α

m ?(1,0,0) α =
β α

δ
m ?(2,0,0) α =

β

δ α

Figure 4.28: Example of gluings of a generator on a partial tiling.

the gluing of α on pk−1(φ) at the position indicated by the connection of α to the

level k − 1 of φ.

Finally we define p(φ) as pf (φ) for f the final level of φ.

The construction relies on the following two lemmas:

Lemma 4.98. Let α be the generator between slices k and k+ 1 in φ, a diagram in

S2. If α has at least one input wire, this determines a unique gluing position g of α

on pk(φ).

Proof. Each wire crossing level k in φ corresponds to an open wire on the boundary

of pk(φ), either in a vertical or horizontal boundary depending on the colour of the

wire.

Let vop;h be the domain of α.

148 4.3. Double categories

By assumption, at least one of v, h is not an identity. Assume first that v is not

an identity. As no horizontal inner boundaries of pk(φ) are identities, as required

by Definition 4.92, any contiguous sequence of red wires in φ corresponds to a

contiguous sequence of wires on some vertical boundary vi of pk(φ).

Let j be such that v is a factor at index j in vi. One can then check that (i, 0, j)

is a valid gluing position for α on pk(φ).

Similarly, if h is not an identity, then the corresponding wires in φ determine a

unique occurrence of h in a vertical boundary hi of pk(φ), and by denoting by j the

index of h in hi, this determines the gluing position (i− 1, j, 0).

Lemma 4.99. Let again α be the generator between slices h and h + 1 in φ, a

diagram in S2. If α has no input wire, meaning that its domain is the identity, then

this determines either one or two gluing positions of α on ph(φ). If there are two

such positions l, l′ then ph(φ) ?l α ' ph(φ) ?l′ α.

Proof. Let h1; vop
1 ; . . . ;hn; vop

n be the type of the diagram at height h. Again, each

wire in this sequence corresponds to an open wire on the boundary of pk(φ). The

wires passing to the left of α in φ determine a position in this sequence where the

generator α is inserted. The gluing positions depend on this position.

If α is bordered by two horizontal wires on each side (respectively two vertical

wires), this determines a unique gluing position (k, i, 0) (respectively (k, 0, i)) as

in the previous lemma. Similarly, if α neighbours a vertical wire on its left and a

horizontal wire on its right, this determines a unique gluing position (k, 0, 0) as in

the previous lemma.

The remaining cases are when α neighbours a horizontal wire on its left and a

vertical wire on its right, when α does not have any wire on its left and a vertical

one on its right, when it has a horizontal wire on its left and none on its right,

or when there are no wires neither on the left or the right of α. In this case this

determines two gluing positions l = (k, i, 0) and l′ = (k + 1, 0, j), and Figure 4.29

shows how ph(φ) ?l α ' ph(φ) ?l′ α in this case.

4. Word problems 149

β

α
'

β

α
'

β

α
β ?(0,1,0) α = = β ?(1,0,1) α

Figure 4.29: Two equivalent gluing positions in Lemma 4.99.

h = 0

h = 1

h = 2

h = 3

h = 4

α

β

γ

δ

p0(φ) =

p1(φ) =

α

p2(φ) =

α

β

p3(φ) =

α

β

γ

p4(φ) =

α

β

γ

δ

Figure 4.30: Inductive construction of p(φ).

Lemma 4.100. For all 2-cell diagrams µ, ν ∈ S2 such that µ

ν
is defined,

p(µ

ν
) ' p(µ) p(ν) .

Similarly, if µ

ν
is defined, then p(µ

ν
) '

p(ν)

p(µ)
.

Proof. By duality let us prove the result for the first case, horizontal composition.

Let φ = µ

ν
. Let h be the level between µ and ν in φ.

Assume first that the red edge connecting µ and ν is not empty (it is not an

identity vertical morphism). Then ph(φ) = p(µ) and p(φ) is obtained from

150 4.3. Double categories

ph(φ) by gluing on it the generators in ν. Since the vertical codomain of µ passes to

the left of ν, these generators are glued on positions (k, i, j) with k > 0. Performing

these gluings on an empty diagram gives p(ν), so p(φ) is equivalent to the required

double diagram.

If there is no red edge connecting µ to ν then ph(φ) = p(µ) and p(φ) is

obtained from ph(φ) by gluing the generators in ν on the second part of its vertical

codomain, so it can again be rewritten into the required form by unitality.

Lemma 4.101. For any 2-cell diagram φ ∈ Sd, p(t(φ)) ' φ.

Proof. By induction on φ. If φ is a generator or the identity, the result holds.

If φ is a horizontal or vertical composition, then we use Lemma 4.100 and the

induction hypothesis of the composed diagrams:

p(t(µ ν)) = p(t(µ)

t(ν)
) ' p(t(µ)) p(t(ν)) ' µ ν

Lemma 4.102. Let φ, φ′ be admissible diagrams in S2 with φ ∼ φ′. Then p(φ) '

p(φ′).

Proof. By induction we can assume that φ and φ′ are related by a single exchange,

swapping the generators between levels h− 1, h and h+ 1. Let α be the generator

between levels h− 1 and h and β the one between h and h+ 1. It suffices to check

that ph−1(φ) ?l α?l′ β ' ph−1(φ) ?m β ?m′ α where l, l′ are the gluing positions for the

generators in φ and m,m′ are their counterparts in φ′. By a tedious case analysis

one can check that because the generators at these slices can be exchanged, this

ensures that the induced gluing positions are disjoint, such that the equivalence

above either holds trivially (the partial tilings being syntactically equal) or via

equivalences analogous to those of Figure 4.29.

Theorem 4.103. The translation t respects the axioms of double categories, and

conversely, if any two diagrams in its image are equivalent, then so are their

antecedents.

4. Word problems 151

Proof. The forward direction is established by Lemma 4.90 and the backward one

by Lemma 4.102.

4.3.5 Word problem

We can use the translation defined in the previous section to solve the word

problem for double categories:

Theorem 4.104. Let S be a double signature. The word problem for 2-cells in the

free double category Sd can be solved in O(ve), where v is the number of generators

in the expressions and e the number of connecting edges between them.

Proof. Given two diagrams φ, φ′ in Sd, we can compute their translation t(φ), t(φ′)

in linear time. Then, we can check if these diagrams are equivalent as 2-cells in

S2 using the algorithm of Delpeuch and Vicary (2018), in O(ve). As p is faithful

(Lemma 4.102), this determines if φ and φ′ are equivalent in Sd.

4.3.6 Conclusion

We have solved the word problem for free double categories by reducing it to the

word problem for free 2-categories.

Interestingly, our translation p from the free 2-category to the free double

category works for all admissible diagrams, and admissibility is a simple condition

on the domain and codomain. We are not requiring any global condition such

as binary composability on the 2-cell. As a consequence, this translation p can

produce tilings which are not binary composable.

7→ γ

α

β

δ

ε

α

β

γ

δ

ε

152 4.4. Braided monoidal categories

It is therefore tempting to extend the forward translation t to double category

diagrams which are not binary composable. By the characterization of Dawson

(1995) of non-composable diagrams, it is sufficient to translate the two pinwheels: by

induction, all diagrams could then be interpreted. However, there could potentially

be multiple ways to decompose a diagram as a tree of binary and pinwheel composites,

so to define t properly we would need an equivalent of the general associativity

result of Dawson and Pare (1993) with pinwheel composition. That would only

be possible given an appropriate notion of equivalence, which would amount to

developing a notion of “double category with pinwheels”. This does not strike

us as a particularly useful notion as it would be rather complicated, with four

different composition operators and many axioms to relate their applications, only

to represent planar systems.

What this really means is that free 2-categories already provide the appropriate

notion of “free double category with pinwheel composites”, in the sense that they

capture the desired combinatorics with a much simpler axiomatization.

This fact has been observed at an intuitive level by Reutter and Vicary (2019)

who modeled biunitary connections in a 2-category rather than a double category,

by using the same rotation. They noticed that biunitaries forming a pinwheel

pattern could be composed into a new biunitary. As double categories are not

equipped with such a composition, a 2-categorical model provides a more useful

representation. Modelling biunitaries in double categories would artificially forbid

pinwheel composites which are actually allowed physically. We suspect that other

uses of double categories, for instance in computer science (Bruni et al., 2002),

could be recast in 2-categories without loss of expressivity, as they do not rely

on the exclusion of pinwheel composites.

4.4 Braided monoidal categories

This section is taken from the article The word problem for braided monoidal
categories is unknot-hard (Delpeuch and Vicary, 2021), presented in the Applied
Category Theory 2021 conference.

4. Word problems 153

In this section, we turn our attention to the word problem for braided monoidal

categories. Unlike the previous sections in this chapter, we do not propose an

algorithm deciding equality, but instead show that this word problem seems to

be a difficult one. More precisely we show that it is at least as hard as the

unknotting problem.

The unknotting problem consists in determining whether a knot can be untied

and was first formulated by Dehn (1910). The decidability of this problem remained

open until Haken (1961) gave the first algorithm for it. As of today, no polynomial

time algorithm is known for it.

One reason why we are interested in braided monoidal categories is that they

are a particularly natural sort of categories, in the sense that they arise as doubly

degenerate Gray categories (Gurski and Cheng, 2011), as explained in Section 2.3.5.

Studying the word problem for them is therefore a first step towards understanding

the word problem for weak higher categories, for which little is known to date.

4.4.1 Background

As explained in Section 2.3.3, braided monoidal categories generalize the braid

groups, in the sense that the category of braids can be obtained as the free braided

monoidal category on a single object and no generating morphism. The word

problem for the braid group itself is well understood:

Theorem 4.105. The word problem for the braid group Bn can be solved in

polynomial time: given two strings of generators and generator inverses, one can

determine if they represent the same braid in quadratic time in the length of the

strings l (for a fixed n).

See Dehornoy (2007) for a review of the various techniques which can be used

to achieve this complexity. It seems hard to generalize any of these to the case

of braided monoidal categories.

Intuitively, the word problem for braided monoidal categories is harder than

the one for the braid group because of the existence of other morphisms which

154 4.4. Braided monoidal categories

can block the interaction between braids. Because of these additional morphisms,

string diagrams in braided monoidal categories can look knotted and the equivalence

problem for them intuitively becomes harder. In this section we make this intuition

more precise, by showing that the equivalence problem for braided monoidal

categories is at least as hard as the unknotting problem.

Braided pivotal categories

Definition 4.106. In a monoidal category C, an object A ∈ C has a left adjoint

B ∈ C (or equivalently, A is the right adjoint of B) when there are morphisms

A B
and B A such that the yanking equations (or zigzag equations) are

satisfied:
B

B

=
B

B

A

A

=
A

A

Definition 4.107. A monoidal category C is left autonomous if every object

A ∈ C has a left adjoint ∗A. A monoidal category C is right autonomous if

every object A ∈ C has a right adjoint A∗. A category that is both left and right

autonomous is simply called autonomous.

Lemma 4.108. Any braided monoidal category that is left autonomous is also right

autonomous (and therefore autonomous).

Proof. See Section 4.4.5 (Braided Autonomous Categories) of Selinger (2010).

Definition 4.109. A strict pivotal category is a monoidal category where every

object A has identical left and right adjoints.

In a braided pivotal category, for each object A there is an object B with the

following morphisms:

A B B A

B A A B

such that all four yanking equations are satisfied.

4. Word problems 155

Figure 4.31: An oriented knot as a morphism in ROTang.

Definition 4.110 (Freyd and Yetter, 1989). ROTang is the free braided pivotal

category generated by an object represented by the symbol “↑”. We denote by “↓” its

adjoint.

As the notations suggest, the wires of string diagrams in ROTang can be

associated with an upwards or downwards orientation. We adopt the following

representation for the morphisms arising from the pivotal structure:

↑ ↓ ↓ ↑

↓ ↑ ↑ ↓

With this convention, we can represent any oriented knot, i.e. any embedding of

an oriented loop in R3, as a morphism in ROTang, as in Figure 4.31. In fact, this

representation is more than a convention, as the following theorem shows:

Definition 4.111 (Definition 2.4 in Freyd and Yetter (1989)). A tangle is a

rectangular portion of a knot diagram. We say that two tangles are equal if there is

a regular isotopy carrying one to the other in such a way that corresponding edges

of the diagram are preserved set-wise.

Theorem 4.112 (Theorem 3.5 in Freyd and Yetter (1989)). ROTang is the

category of oriented tangles up to regular isotopy.

This means that two morphisms f, g ∈ ROTang are equal if and only if

their string diagrams, considered as oriented tangles in three-dimensional space

as defined above, are regularly isotopic. Regular isotopy is a more restrictive

sort of isotopy than the notion generally used in knot theory, as the following

morphisms are distinct in ROTang:

6= 6=

156 4.4. Braided monoidal categories

Figure 4.32: Some knot diagrams.

The move that equates them is called the Reidemeister type I move, which is

therefore not admissible for the string diagrams of ROTang.

Definition 4.113. A morphism f ∈ ROTang is an (oriented) knot if its string

diagram has a single connected component.

The unknotting problem

In this section we give a brief overview of the unknotting problem and some

complexity results about it.

Definition 4.114. A topological knot is the embedding of a loop in R3. Two knots

K1, K2 are in knot isotopy if there is an orientation-preserving homeomorphism

h of R3 such that h(K1) = h(K2). A knot diagram is the projection of a knot

on a plane, such that no two crossings happen at the same place. Additionally, the

diagram records the relative position of the strands at each crossing.

All knots considered here will be required to be tame, i.e. knot isotopic to a

polygonal knot. This gets rid of some pathological cases.

Some example knot diagrams are given in Figure 4.32. The Reidemeister moves

are local transformations of knot diagrams which are divided in three categories, as

shown in Figure 4.33. Note that in addition to these moves, all planar isotopies are

implicitly allowed, without restricting the direction of strands in any way (unlike

the recumbent isotopies of string diagrams).

Theorem 4.115 (Reidemeister). Two knot diagrams represent knot-isotopic knots

if and only if they are related by a sequence of Reidemeister moves.

4. Word problems 157

= =

(a) Reidemeister type I

= =

(b) Reidemeister type II

=

(c) Reidemeister type III

Figure 4.33: Reidemeister moves.

Knot diagrams can be encoded in various ways, for instance as four-valent planar

maps where vertices are crossings and edges are parts of strands. This makes it

possible to formulate decision problems about knots and study their complexity.

Definition 4.116. The unknotting problem Unknot is the decision problem to

determine if a knot is knot-isotopic to the unknot. In other words, it consists in

determining whether there exists a series of Reidemeister moves which eliminates

all crossings in a given knot diagram.

This problem was first formulated by Dehn (1910) and its decidability remained

open until Haken (1961) found an algorithm for it. The problem has since attracted

a lot of attention, and we give a summary of the latest results about it.

Theorem 4.117 (Lackenby, 2015). There exists a polynomial P (c) such that for all

knot diagram K of the unknot with c crossings, there is a sequence of Reidemeister

moves unknotting it, whose length is bounded by P (c).

Corollary 4.118. Unknot lies in NP.

Theorem 4.119 (Lackenby, 2019). Unknot lies in co-NP.

Recently, Lackenby announced a quasi-polynomial time solution to Unknot,

but the corresponding article has not been made public to date. No polynomial

time algorithm for this problem is known so far.

4.4.2 Reducing the unknotting problem to the braided
pivotal word problem

Despite the discrepancy between knot isotopy, used in the unknotting problem, and

the regular isotopy used in ROTang, we will show that the unknotting problem

158 4.4. Braided monoidal categories

can be reduced to the word problem in ROTang. This will show that the word

problem for ROTang is at least as hard as the unknotting problem. This section

is dedicated to this result.

Writhe and turning number

The main differences between the unknotting problem and the word problem for

ROTang is that in the latter, knots are oriented and the Reidemeister type I

move is not allowed. Because of this, we will see in this section that we can

associate a quantity called writhe to diagrams in ROTang, which is preserved

by all the axioms of this category.

Definition 4.120. The writhe (or framing number) W (f) of a diagram f ∈

ROTang is the sum of the valuations W (b) for each braiding b which appears in f :

W () = +1 W () = −1

Definition 4.121. The turning number (or winding number) T (f) of a

morphism f ∈ ROTang is the sum of the local turning numbers which appear in f :

T (
↑ ↓

) = +1 T (
↓ ↑

) = −1 T (
↓ ↑

) = −1 T (
↑ ↓

) = +1

The turning number is well-defined because the axioms of ROTang respect the

turning number, making it independent of the particular diagram considered.

Theorem 4.122 (Trace, 1983). Let f, g ∈ ROTang be two knots. Then there

is a regular isotopy between f and g if and only if f and g are knot-isotopic,

W (f) = W (g) and T (f) = T (g).

This means that to reduce the unknot problem to the word problem for ROTang,

we simply need to be able to tweak diagrams to adjust their writhe and turning

number without changing their knot-isotopy class. This is what the following

section establishes.

4. Word problems 159

Unknotting in braided pivotal categories

Lemma 4.123. Given a writhe w and a turning number t such that 2w + t is a

multiple of 4, we can construct a morphism f ∈ ROTang(↑, ↑) such that W (f) = w

and T (f) = t, and f is knot-isotopic to the identity.

Proof. We first define the following morphisms in ROTang(↑, ↑):

a = b = c = d =

They have the following invariants:

W (a) = +1 W (b) = −1 W (c) = +1 W (d) = −1

T (a) = +2 T (b) = −2 T (c) = −2 T (d) = +2

Let w, t ∈ Z such that 2w + t is a multiple of 4. We construct the required

morphism f ∈ ROTang(↑, ↑) by composition of a, b, c and d using the fact that

W (g ◦ h) = W (g) +W (h) and T (g ◦ h) = T (g) + T (h) for all g, h ∈ ROTang(↑, ↑).

Let p = 2w+t
4 . If p is positive, we start by p copies of a, otherwise −p copies of b.

Then, let q = 2w−t
4 . If q is positive, we continue with q copies of c, otherwise −q

copies of d. One can check that the composite has the required writhe and turning

number.

Corollary 4.124. The knot isotopy problem can be reduced to the word problem

for ROTang.

Proof. Given two knots k, l represented as crossing diagrams in the plane, pick

an orientation for them and turn them into morphisms f, g ∈ ROTang. We can

compute the writhe and turning number of f and g in polynomial time.

As noted by Trace (1983), for any oriented knot f , 2W (f)+T (f)
2 is odd. In other

words there are p, q ∈ Z such that 2W (f)+T (f) = 4p+2 and 2W (g)+T (g) = 4q+2.

Therefore, 2(W (f)−W (g)) + (T (f)− T (g)) = 4(p− q). By Lemma 4.123, we can

160 4.4. Braided monoidal categories

therefore construct a morphism h ∈ ROTang(↑, ↑) such that W (h) = W (f)−W (g)

and T (h) = T (f)− T (g), and such that h is knot-isotopic to a straight wire.

Therefore, we can insert h on any strand of g, obtaining a morphism g′ which

represents the same knot as g, such that W (g) = W (f) and T (g) = T (f). By by

Theorem 4.122, f and g′ are knot-isotopic if and only if they are equal as morphisms

of ROTang. This completes the proof.

4.4.3 Reducing the unknotting problem to the braided
monoidal word problem

So far, Corollary 4.124 only reduces the unknot problem to the word problem for

ROTang while our goal is to reduce it to the word problem for braided monoidal

categories. The category ROTang can be presented as a free braided monoidal

category, but that requires additional equations between the generators representing

the caps and cups. In this section, we show how these equations can be eliminated

too. We call unknot diagram any knot diagram which is knot-isotopic to the unknot.

Definition 4.125. The category CC is the free braided monoidal category generated

by objects {↑, ↓} and morphisms { , , , }.

It is important to note that no equations are imposed between the morphism

generators, unlike in ROTang. Therefore, there exists a functor from CC to

ROTang, mapping the generators of CC to the corresponding units and counits

in ROTang, but the reverse mapping would not be functorial.

Cap-cup cycles

In this section we introduce a more precise invariant than the turning number: the

sequence of caps and cups encountered while following the strand of a knot.

Definition 4.126. A cap-cup cycle is a finite sequence of elements in { , , , }

considered up to cyclic permutation, such that caps and cups alternate. The turning

number of a cap-cup cycle is the sum of the turning numbers of its elements, defined

as in Definition 4.121.

4. Word problems 161

The cap-cup cycle is intended to replace the turning number in a context where

eliminating caps and cups using the adjunction equations is not allowed.

Definition 4.127. Given a knot f ∈ CC, its cap-cup cycle ccc(f) can be obtained

by starting from any strand in f , following it in the direction indicated by its type

and recording all the caps and cups encountered until one travels back to the starting

point. This cycle is invariant under all axioms of a braided monoidal category.

For instance, the knot of Figure 4.31 has cap-cup cycle (, , ,).

Lemma 4.128. For all knot diagrams f ∈ CC, ccc(f) is of even length, and

T (ccc(f)) = T (f).

Lemma 4.129. For all cap-cup cycles c such that T (c) = ±2, one can construct a

knot diagram f ∈ CC without any crossings, such that ccc(f) = c.

Proof. By induction on the length of the cycle c. If |c| = 2, then c = (,) or

c = (,), both of which can be realized by the composite of both elements.

If |c| > 2, then there is an element x ∈ c such that T (x) = +1 and another element

y ∈ c with T (y) = −1. One can also assume that they are adjacent in c. Indeed,

if all elements x ∈ c with T (x) = +1 are such that the elements on their left and

right also have a positive turning number, then by propagating this, all elements in

the cycle have a positive turning number, which is a contradiction.

Consider the cycle c′ obtained by removing x and y from c. By induction,

construct a knot diagram f ′ ∈ CC such that the cap-cup cycle of f ′ is c′. Now, at

the point where we removed x and y, we can insert in f ′ a zigzag corresponding to

x and y (in the order they appeared in c), which gives us the required knot.

To generalize this lemma to knot diagrams with crossings, we introduce a new

notion of cap-cup cycle where each cap or cup can carry its own writhe.

Definition 4.130. The set of twisted cap-cups is T := { , , , }×

Z.

162 4.4. Braided monoidal categories

(a) (, 2) (b) (,−1) (c) (, 0) (d) (,−2)

Figure 4.34: Examples of twisted cap-cups

We think of a pair (c, w) ∈ T as a cap-cup c composed with braids such that

the writhe of the resulting morphism is w. Figure 4.34 gives a few examples

of twisted cap-cups.

Definition 4.131. The turning number of a twisted cap-cup (c, w) ∈ T is defined

as T ((c, w)) = (−1)|w|t(c). The writhe of a twisted cap-cup is W ((c, w)) = w. The

signature of a twisted cap-cup is S((c, w)) = c if w is even, and c with a flipped

wire orientation if w is odd.

The signature of a twisted cap-cup is essentially obtained by applying Reide-

meister type I moves to the twisted cap-cup until no crossing remains. Therefore,

this preserves the domain and codomain of the morphism.

Definition 4.132. A twisted cap-cup cycle is a finite sequence of twisted cap-

cups up to cyclic permutation, such that caps and cups alternate. The turning

number of a cap-cup cycle is the sum of the turning numbers of its elements, and

similarly for its writhe.

Definition 4.133. Given a twisted cap-cup cycle c we define a cap-cup cycle U(c)

obtained by forgetting the writhe component in each twisted cap-cup. We also define

a cap-cup cycle S(c) obtained by taking the signature of each twisted cap-cup in the

cycle.

Lemma 4.134. Let c be a twisted cap-cup cycle such that T (c) = ±2. One

can construct an unknot diagram R(c) ∈ CC such that W (R(c)) = W (c) and

ccc(R(c)) = U(c).

4. Word problems 163

Proof. First, notice that for all twisted cap-cup cycle c, T (S(c)) = T (c). So if

T (c) = ±2 then T (S(c)) = ±2 and we can apply Lemma 4.129 to S(c), obtaining a

morphism f such that ccc(f) = S(c). Now we obtain another knot diagram R(c)

by replacing each cap and cup of f by the twisted cap-cup in c it was generated

from. This is possible because taking the signature of a twisted cap-cup preserves

the domain and codomain of the corresponding morphism. We therefore obtain

W (R(c)) = W (c) and ccc(R(c)) = U(c) as required.

Lemma 4.135. Let c be a cap-cup cycle and w ∈ Z such that w+ T (c)
2 is odd. Then

we can construct an unknot diagram f(c, w) ∈ CC such that W (f(c, w)) = w and

ccc(f(c, w)) = c.

Proof. We can view c as a twisted cap-cup cycle where all the writhe components

are null. We will transform c to incorporate the writhe w in the writhe components

of the cycle.

First, consider the case where T (c) = ±2. By assumption, w is therefore even.

We can pick any element (a, b) of c and replace it by (a, b + w), giving us a new

twisted cap-cup cycle c′. We have T (c′) = T (c) = ±2, so we can apply Lemma 4.134,

giving the required morphism R(c′) =: f(c, w).

Second, if T (c) = 0. By assumption, w is odd. Again, take any element (a, b) in

c and replace it by (a, b + w). This changes the turning number of that element,

negating its sign. Therefore, the turning number of the new twisted cap-cup cycle

is ±2, and we are back to the previous case.

Third, if |T (c)| > 2. By symmetry let us assume T (c) > 2. We work by induction

on T (c). There are at least two elements of c with turning number +1, let them be

(a, b) and (a′, b′). We replace them by (a, b+ 1) and (a′, b′−1) respectively. We have

t((a, b+ 1)) = t((a′, b′ − 1)) = −1 so this reduces the turning number by 4, keeps

the writhe unchanged and keeps U(c) unchanged. So we can obtain the required

morphism by induction.

164 4.4. Braided monoidal categories

The following lemma establishes that the way the writhe is spread on the elements

of a twisted cap-cup cycle does not actually matter. The writhe can be transferred

between any two elements without resorting to Reidemeister 1 or zigzag elimination.

Lemma 4.136. Let c, c′ be twisted cap-cup cycles such that W (c) = W (c′), T (c) =

T (c′) = ±2 and U(c) = U(c′). Then R(c) is isotopic to R(c′) via the axioms of

braided monoidal categories.

Proof. We define a relation � on twisted cap-cup cycles: c�c′ when c′ can be obtained

from c by replacing two consecutive elements (a, b), (c, d) by (a, b− 1), (c, d+ 1).

Let c, c′ be twisted cap-cup cycles as in the lemma. We first show that if c � c′

then R(c) is isotopic to R(c′) as a braided monoidal morphism.

If T ((a, b)) = −T ((c, d)) then the sequence (a, b), (c, d) is realized in R(c) as

follows, up to vertical and horizontal symmetries:

(a, b)

(c, d)

where the morphisms are composed of a single cap or cup, followed by braids to

obtain the desired writhe. We have the following isotopy:

(a, b)

(c, d)

=

(a, b− 1)

(c, d)

=

(a, b− 1)

(c, d)

=

(a, b− 1)

(c, d)

=
(a, b− 1)

(c, d+ 1)

Note that the first and last equalities are not Reidemeister I moves: they can simply

be expressed as unboxing the composite morphisms (a, b) and (c, d+ 1), possibly

with the help of Reidemeister II moves to create braids when required. This shows

that R(c) is isotopic to R(c′) as braided monoidal morphism.

4. Word problems 165

If T ((a, b)) = T ((c, d)) then the sequence (a, b), (c, d) is realized in R(c) as

follows, again up to vertical and horizontal symmetries:

(c, d)

(a, b)

=

(c, d)

(a, b)

The dashed area in the left-hand side represents the rest of the knot. Because by

construction we know that it does not cross the wire passing on its left, nor is it

connected with anything else, we can abstract it away as a simple morphism taking

one wire as input and one wire as output, as in the right-hand side. Then:

(c, d)

(a, b)

=

(c, d)

(a, b− 1)

=

(c, d)

(a, b− 1)

=

(c, d+ 1)

(a, b− 1)

So again R(c) is isotopic to R(c′).

So the � relation respects braided monoidal isotopy. But now, by assumption

W (c) = W (c′) and U(c) = U(c′). By a sequence of � steps one can transfer the

writhe of any element of c to any other element. So c and c′ are related by a series

of � steps, so they are equal as braided monoidal morphisms.

Bridge isotopy

In this section, we introduce a notion of knot isotopy which forbids the elimination

of caps and cups, but still allows Reidemeister I moves.

Definition 4.137. A knot diagram k ∈ CC is in bridge position if all caps

appear above of all cups in its string diagram. The number of caps (or equivalently

cups) is called the bridge number of the diagram.

166 4.4. Braided monoidal categories

(a) A knot diagram not in bridge posi-
tion

(b) An equivalent diagram in bridge
position

Figure 4.35: Bridge position

For instance, all knot diagrams of Figure 4.32 are in bridge position. Figure 4.35

shows a knot diagram that is not in bridge position and an equivalent diagram in

bridge position. The following lemma shows that any knot diagram can be put in

bridge position without cancelling any zigzag, as illustrated by Figure 4.35.

Lemma 4.138. Any knot diagram k ∈ CC can be expressed in bridge position via

the axioms of braided monoidal categories.

Proof. While there is a cap or cup that is not on the first or last slice of the diagram,

pull the cup down or pull the cap up using the pull-through move (naturality of

the braid). This move can be executed regardless of the surroundings of the cap or

cup.

Note that bridge positions are not unique and there are generally multiple pull-

through moves available to pull a cap or cup towards the boundary of the diagram.

Definition 4.139 (Otal, 1982; Jang et al., 2019). A bridge isotopy between two

knot diagrams in bridge position is a sequence of moves (including Reidemeister I)

such that at each step the diagram is in bridge position.

Note that because cups and caps are required to stay apart throughout the

isotopy, the bridge number of the diagram is preserved by bridge isotopy.

Theorem 4.140 (Otal, 1982). Let K,K ′ be two diagrams of the unknot in bridge

position, with equal bridge number. Then they are in bridge isotopy.

4. Word problems 167

Unknotting with braided monoidal categories

We can now combine the results above to establish a polynomial time reduction be-

tween the unknotting problem and the word problem for braided monoidal categories.

Lemma 4.141. Let k be a diagram of the unknot. Then it is braided monoidal

isotopic to f(ccc(k),W (k)).

Proof. Recall that f(ccc(k),W (k)) is the diagram of the unknot constructed in

Lemma 4.135 so that its cap-cup cycle and writhe match that of k.

First, the bridge number of k and f(ccc(k),W (k)) are equal since ccc(f(ccc(k),W (k))) =

ccc(k). So by Theorem 4.140, the two diagrams are in bridge isotopy. This is not

quite enough for us since this bridge isotopy might contain Reidemeister I moves,

which are not allowed in braided monoidal isotopy.

To get rid of those Reidemeister I moves, we follow the same approach as

Theorem 4.122. First, we view all caps and cups present at all stages of the isotopy

as twisted cap or cups with a null writhe component. Then, scanning the knot-

isotopy from start to end, we replace Reidemeister I moves by identities (when the

Reidemeister I move cancels a braiding) or by Reidemeister II moves (when the

Reidemeister I move introduces a braiding). Doing so, we bundle up the leftover

braid with the cap or cup in the writhe component of the twisted cap-cup.

→ becomes

(a, b)

→
(a, b+ 1)

Since the isotopy is a bridge isotopy, caps and cups never get cancelled so adding

this writhe component does not prevent any further step of the isotopy.

After this transformation, the target of the isotopy might have some addi-

tional writhe components on some caps and cups. But the original target was

f(ccc(k),W (k)), which was defined as R(c), the realization of a twisted cap-cup

cycle c. So the new target can also be seen as the realization of another twisted

cap-cup cycle c′, which has identical writhe and cap-cup cycle, because it is in

braided monoidal isotopy with the source. Therefore, we can apply Lemma 4.136

168 4.4. Braided monoidal categories

and obtain a braided monoidal isotopy between the new target of our isotopy and

f(ccc(k),W (k)), completing the proof.

Theorem 4.142. The unknotting problem can be polynomially reduced to the word

problem for braided monoidal categories.

Proof. Given a knot diagram k, we convert it to a braided monoidal word problem

as follows. First, we orient it in an arbitrary way, obtaining a morphism k′ ∈

ROTang. We compute its writhe W (k′) and cap-cup cycle ccc(k′). Then we

compute f(ccc(k′),W (k′)). All these steps can be done in polynomial time. A

summary of those steps on a concrete example is given in Figure 4.36. Finally, the

corresponding word problem is to determine whether k and f(ccc(k′),W (k′)) are in

braided monoidal isotopy. If they are, then k is the unknot. If they are not then by

Lemma 4.141, k is knotted.

Corollary 4.143. The word problem for the 3-cells of free Gray categories is at

least as hard as the unknotting problem.

Proof. Implied by the characterization of doubly degenerate Gray categories as

braided monoidal categories (Gurski and Cheng, 2011).

4.4.4 Conclusion

We have established a connection between two areas. On one side, word problems

arising naturally in category theory, which have not been studied much from a

computational perspective so far. On the other side, the unknotting problem, which

has been studied by knot theorists for more than a century.

Our hope with this connection is to make it evident that much more work is

required on word problems in category theory, especially if we hope to develop

practical proof assistants for higher categories. To our knowledge, no algorithm

for the braided monoidal word problem is known to date. Although we do not

see an obvious way to get one, it seems intuitively clear that given two equivalent

braided monoidal diagrams, there is no point introducing large quantities of new

4. Word problems 169

(a) Initial knot diagram (b) Oriented knot as a morphism in
ROTang

+

+ +

+

−

−

(c) Computing the writhe: +2 in this case

(, , , , ,)

(d) The cap-cup cycle

((, 0), (, 0), (, 1),

(, 1), (, 0), (, 0))

(e) The twisted cap-cup cycle of
Lemma 4.135

+

+

(f) The realization of Lemma 4.134

Figure 4.36: Entire process of detecting knotedness using a solution to the braided
monoidal word problem

170 4.4. Braided monoidal categories

crossings to prove that they are equivalent. There should be a way to bound the

number of steps of equivalence proofs, and similar results exist for knots (Coward

and Lackenby, 2014).

Conjecture 4.144. The word problem for 3-cells of Gray categories (and hence

cells of braided monoidal categories) is decidable.

Again, the word problem we mean here is deciding the equality of morphisms up

to the axioms of Gray categories and nothing else. Note that the naive algorithm

consisting in exploring all expressions reachable from a given expression does not

terminate, since the Reidemeister II move can be applied indefinitely. This makes

approaches such as that of Makkai (2005) inapplicable. Furthermore, it is possible

that the word problem becomes undecidable at a higher level, perhaps for similar

reasons that the isotopy of four-dimensional manifolds is undecidable (Markov,

1958; Boone et al., 1968).

Another natural question arising from our work is whether the problem of

knot equivalence could be reduced to the word problem for braided monoidal

categories. Knot equivalence is the problem of determining if two knot diagrams

represent the same knot. In this context, it seems more difficult to suppress

the need for the yanking equations, so our results do not seem to adapt easily

to this more general case.

Appendices

171

A
Coherence axioms of bimonoidal categories

The following coherence axioms are taken from Laplaza (1972). Their axioms (II)

and (XV) were removed as they only apply to symmetric bimonoidal categories. In

the following, the monoidal structure (C, ·, I) has coherence isomorphisms

αA,B,C : A(BC)→ (AB)C

λA : IA→ A

ρA : AI → A

and the monoidal structure (C,⊕, O) has coherence isomorphisms

α′A,B,C : A⊕ (B ⊕ C)→ (A⊕B)⊕ C

λ′A : O ⊕ A→ A

ρ′A : A⊕O → A

γ′A,B : A⊕B → B ⊕ A

173

174 A. Coherence axioms of bimonoidal categories

A(B ⊕ C) AB ⊕ AC

(I)

A(C ⊕B) AC ⊕ AB

δA,B,C

1Aγ
′
B,C

γ′AB,AC

δA,C,B

(A⊕B)C AC ⊕BC

(III)

(B ⊕ A)C BC ⊕ AC

δ#
A,B,C

γ′A,B1C γ′AC,BC

δ#
B,A,C

(A⊕ (B ⊕ C))D AD ⊕ (B ⊕ C)D AD ⊕ (BD ⊕ CD)

(IV)

((A⊕B)⊕ C)D (A⊕B)D ⊕ CD (AD ⊕BD)⊕ CD

α′A,B,C1D

δ#
A,B⊕C,D 1AD⊕δ#

B,C,D

α′AD,BD,CD

δ#
A⊕B,C,D δ#

A,B,D⊕1CD

A(B ⊕ (C ⊕D)) AB ⊕ A(C ⊕D) AB ⊕ (AC ⊕ AD)

(V)

A((B ⊕ C)⊕D) A(B ⊕ C)⊕ AD (AB ⊕ AC)⊕ AD

1Aα
′
B,C,D

δA,B,C⊕D 1AB⊕δA,C,D

α′AB,AC,AD

δA,B⊕C,D δA,B,C⊕1AD

A(B(C ⊕D)) A(BC ⊕BD) A(BC)⊕ A(BD)

(VI)

(AB)(C ⊕D) (AB)C ⊕ (AB)D

αA,B,C⊕D

1AδB,C,D δA,BC,BD

αA,B,C⊕αA,B,D

δAB,C,D

(A⊕B)(CD) A(CD)⊕B(CD)

(VII)

((A⊕B)C)D (AC ⊕BC)D (AC)D ⊕ (BC)D

δ#
A,B,CD

αA⊕B,C,D αA,C,DαB,C,D

δ#
A,B,C1D δ#

AC,BC,D

A((B ⊕ C)D) A(BD ⊕ CD) A(BD)⊕ A(CD)

(VIII)

(A(B ⊕ C))D (AB ⊕ AC)D (AB)D ⊕ (AC)D

1Aδ
#
B,C,D

αA,B⊕C,D

δA,BD,CD

αA,B,DαA,C,D

δA,B,C1D δ#
AB,AC,D

A. Coherence axioms of bimonoidal categories 175

A(C ⊕D)⊕B(C ⊕D) (AC ⊕ AD)⊕ (BC ⊕BD)

((AC ⊕ AD)⊕BC)⊕BD

(AC ⊕ (AD ⊕BC))⊕BD

(A⊕B)(C ⊕D) (IX)

(AC ⊕ (BC ⊕ AD))⊕BD

((AC ⊕BC)⊕ AD)⊕BD

(A⊕B)C ⊕ (A⊕B)D (AC ⊕BC)⊕ (AD ⊕BD)

δA,C,DδB,C,D

α′AC⊕AD,BC,BD

α′−1
AC,AD,BC⊕1BD

(1AC⊕γ′AD,BC)⊕1BD

δ#
A,B,C⊕D

δA⊕B,C,D α′−1
AC,BC,AD⊕1BD

δ#
A,B,Cδ

#
A,B,D

α′AC⊕BC,AD,BD

(X): λ∗O = ρ∗O : O ⊗O → O

O(A⊕B) OA⊕OB

(XI)

O O ⊕O

λ∗A⊕B

δO,A,B

λ∗A⊕λ
∗
B

λ′O

(A⊕B)O AO ⊕BO

(XII)

O O ⊕O

ρ∗A⊕B

δ#
A,B,O

ρ∗A⊕ρ
∗
B

λ′O

(XIII): ρO = λ∗O : OI → O

(XIV): λO = ρ∗O : IO → O

O(AB) (OA)B

(XVI)

O OB

αO,A,B

λ∗AB λ∗A1B

λ∗B

176 A. Coherence axioms of bimonoidal categories

A(OB) (AO)B

(XVII)

AO OB

O

αA,O,B

1Aλ
∗
B ρ∗A1B

ρ∗A λ∗B

A(BO) AO

(XVIII)

(AB)O O

1Aρ
∗
B

αA,B,O ρ∗A

ρ∗AB

A(O ⊕B) AO ⊕ AB

(XIX)

AB O ⊕ AB

δA,O,B

1Aλ
′
B

ρ∗A⊕1BA

λ′AB

(O ⊕B)A OA⊕BA

(XX)

BA O ⊕BA

δ#
O,B,A

λ′B1A λ∗A⊕1BA

λ′BA

A(B ⊕O) AB ⊕ AO

(XXI)

AB AB ⊕O

δA,B,O

1Aρ
′
B

1AB⊕ρ∗A

ρ′AB

(A⊕O)B AB ⊕OB

(XXII)

AB AB ⊕O

δ#
A,O,B

ρ′A1B 1AB⊕λ∗B

ρ′AB

I(A⊕B) IA⊕ IB

(XXIII)

A⊕B

δI,A,B

λA⊕B λA⊕λB

(A⊕B)I AI ⊕BI

(XXIV)

A⊕B

δ#
A,B,I

ρA⊕B ρA⊕ρB

Figure A.1: Coherence axioms

A. Coherence axioms of bimonoidal categories 177

A.1 Axioms of a bimonoidal functor

Definition A.1. (Elgueta, 2020, Def. 2.5.1) A (strong) bimonoidal functor between

bimonoidal categories (C, ·C, IC,⊕C, OC) and (D, ·D, ID,⊕D, OD) is a functor F :

C → D, isomorphisms

ε· : ID → F (IC) ε⊕ : OD → F (OC)

and natural isomorphisms

µ·A,B : F (A) ·D F (B)→ F (A ·C B) µ⊕A,B : F (A)⊕D F (B)→ F (A⊕C B)

So that (F, η·, µ·) is a strong monoidal functor from (C, ·C, IC) to (D, ·D, ID), (F, η⊕, µ⊕)

is a strong monoidal functor from (C,⊕C, OC) to (D,⊕D, OD), where the following

diagrams also commute:

FA ·D F (B ⊕C C)

µ·
A,B⊕CC

��

1F A·Dµ⊕B,C // FA ·D (FB ⊕C FC)
δDF A,F B,F C// FA ·D FB ⊕D FA ·D FC

µ·A,B⊕
Dµ·A,C

��
F (A ·C (B ⊕C D))

F (δCA,B,C)
// F (A ·C B ⊕C A ·C D)

µ⊕
A·CB,A·DC

// F (A ·C B)⊕D F (A ·C C)

FA ·D FOC

µ·
A,OC

��

1F A·Dε⊕ // FA ·D OD
ρ∗,DO // OD

F (A ·C OC)
ρ∗,CO

// FOC

ε⊕
// OD

F (A⊕C B) ·D FC

µ·
A⊕CB,C

��

µ⊕
A,B
·D1F C

// (FA⊕C FB) ·D FC
δ#,D

F A,F B,F C// FA ·D FC ⊕D FB ·D FC

µ·A,C⊕
Dµ·B,C

��
F ((A⊕C B) ·C C))

F (δ#,C
A,B,C

)
// F (A ·C C ⊕C B ·C C)

µ⊕
A·CC,B·DC

// F (A ·C C)⊕D F (B ·C C)

FOC ·D FA
µ·

OC ,A
��

ε⊕·D1F A // OD ·D FA
λ∗,DO // OD

F (OC ·C A)
λ∗,CO

// FOC

ε⊕
// OD

178

Bibliography

Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In
LICS Proceedings, pages 415–425. IEEE Computer Society, 2004.
doi:10.1109/lics.2004.1319636. arXiv:quant-ph/0402130.

Emil Artin. Theory of braids. Ann. of Math, 48(2):101–126, 1947. doi:10.2307/1969218.

Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: An online proof assistant
for higher-dimensional rewriting. LMCS, December 2016.
doi:10.23638/LMCS-14(1:8)2018. arXiv:1612.01093.

W. W. Boone, W. Haken, and V. Poénaru. On Recursively Unsolvable Problems in
Topology and Their Classification. In H. Arnold Schmidt, K. Schütte, and H. J. Thiele,
editors, Studies in Logic and the Foundations of Mathematics, volume 50 of
Contributions to Mathematical Logic, pages 37–74. Elsevier, 1968.
doi:10.1016/S0049-237X(08)70518-4.

Francis Borceux. Handbook of Categorical Algebra, volume Volume 1 of Encyclopedia of
Mathematics and Its Applications 50-51, 53 [i.e. 52]. Cambridge University Press,
1994. ISBN 0-521-44178-1 978-0-521-44178-0 0-521-44179-X 0-521-44180-3.

Roberto Bruni, José Meseguer, and Ugo Montanari. Symmetric monoidal and cartesian
double categories as a semantic framework for tile logic. Mathematical Structures in
Computer Science, 12(1):53–90, February 2002. ISSN 1469-8072, 0960-1295.
doi:10.1017/S0960129501003462.

Albert Burroni. Higher-dimensional word problems with applications to equational logic.
Theoretical Computer Science, 115(1):43–62, July 1993. ISSN 0304-3975.
doi:10.1016/0304-3975(93)90054-W.

Kenta Cho, Bart Jacobs, Bas Westerbaan, and Abraham Westerbaan. An Introduction
to Effectus Theory. arXiv:1512.05813 [quant-ph], December 2015. arXiv:1512.05813.

Stephen Clark, Bob Coecke, and Mehrnoosh Sadrzadeh. A compositional distributional
model of meaning. In Proceedings of the Second Quantum Interaction Symposium
(QI-2008), pages 133–140, 2008.

Bob Coecke. Quantum Picturalism. Contemporary Physics, 51(1):59–83, January 2010.
ISSN 0010-7514, 1366-5812. doi:10.1080/00107510903257624. arXiv:0908.1787.

Cole Comfort, Antonin Delpeuch, and Jules Hedges. Sheet diagrams for bimonoidal
categories. arXiv:2010.13361 [math], December 2020. arXiv:2010.13361.

179

https://doi.org/10.1109/lics.2004.1319636
http://arxiv.org/abs/quant-ph/0402130
https://doi.org/10.2307/1969218
https://doi.org/10.23638/LMCS-14(1:8)2018
http://arxiv.org/abs/1612.01093
https://doi.org/10.1016/S0049-237X(08)70518-4
https://doi.org/10.1017/S0960129501003462
https://doi.org/10.1016/0304-3975(93)90054-W
http://arxiv.org/abs/1512.05813
https://doi.org/10.1080/00107510903257624
http://arxiv.org/abs/0908.1787
http://arxiv.org/abs/2010.13361

180 Bibliography

Alexander Coward and Marc Lackenby. An upper bound on Reidemeister moves.
American Journal of Mathematics, 136(4):1023–1066, 2014. ISSN 1080-6377.
doi:10.1353/ajm.2014.0027.

R. Dawson and R. Paré. Characterizing tileorders. Order, 10(2):111–128, June 1993.
ISSN 1572-9273. doi:10.1007/BF01111295.

R. J. M. Dawson, R. Paré, and D. A. Pronk. Free extensions of double categories.
Cahiers de topologie et géométrie différentielle catégoriques, 45(1):35–80, 2004.

Robert Dawson. A forbidden-suborder characterization of binarily-composable diagrams
in double categories. Theory and Applications of Categories [electronic only], 1:
146–155, 1995. ISSN 1201-561X.

Robert Dawson and Robert Pare. General associativity and general composition for
double categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 34
(1):57–79, 1993.

Robert Dawson and Robert Paré. What is a free double category like? Journal of Pure
and Applied Algebra, 168(1):19–34, March 2002. ISSN 0022-4049.
doi:10.1016/S0022-4049(01)00049-4.

Giovanni de Felice, Alexis Toumi, and Bob Coecke. Discopy: Monoidal categories in
Python. arXiv preprint arXiv:2005.02975, 2020. doi:10.4204/EPTCS.333.13.
arXiv:2005.02975.

M. Dehn. über die topologie des dreidimensionalen raumes. Mathematische Annalen, 69:
137–168, 1910. doi:10.1007/BF01455155.

Patrick Dehornoy. Efficient solutions to the braid isotopy problem. arXiv:math/0703666,
March 2007. doi:10.1016/j.dam.2007.12.009. arXiv:math/0703666.

Antonin Delpeuch. A complete language for faceted dataflow programs. In
arXiv:1906.05937 [Cs, Math], Electronic Proceedings in Theoretical Computer Science,
Oxford, June 2019. Open Publishing Association. doi:10.4204/eptcs.323.1.
arXiv:1906.05937.

Antonin Delpeuch. The word problem for double categories. Theory and Applications of
Categories, 35:1–18, 2020. ISSN 1201-561X. arXiv:1907.09927.

Antonin Delpeuch and Jamie Vicary. Normalization for planar string diagrams and a
quadratic equivalence algorithm. to appear in Logical Methods in Computer Science,
April 2018. arXiv:1804.07832.

Antonin Delpeuch and Jamie Vicary. The word problem for braided monoidal categories
is unknot-hard. arXiv:2105.04237 [math], May 2021. arXiv:2105.04237.

Lucas Dixon, Ross Duncan, and Aleks Kissinger. Open Graphs and Computational
Reasoning. Electronic Proceedings in Theoretical Computer Science, 26:169–180, June
2010. ISSN 2075-2180. doi:10.4204/EPTCS.26.16. arXiv:1007.3794.

https://doi.org/10.1353/ajm.2014.0027
https://doi.org/10.1007/BF01111295
https://doi.org/10.1016/S0022-4049(01)00049-4
https://doi.org/10.4204/EPTCS.333.13
http://arxiv.org/abs/2005.02975
https://doi.org/10.1007/BF01455155
https://doi.org/10.1016/j.dam.2007.12.009
http://arxiv.org/abs/math/0703666
https://doi.org/10.4204/eptcs.323.1
http://arxiv.org/abs/1906.05937
http://arxiv.org/abs/1907.09927
http://arxiv.org/abs/1804.07832
http://arxiv.org/abs/2105.04237
https://doi.org/10.4204/EPTCS.26.16
http://arxiv.org/abs/1007.3794

Bibliography 181

Ross Duncan. Generalized Proof-Nets for Compact Categories with Biproducts. In
Simon Gay and Ian Mackie, editors, Semantic Techniques in Quantum Computation,
pages 70–134. Cambridge University Press, Cambridge, 2009. ISBN 978-1-139-19331-3.
doi:10.1017/CBO9781139193313.004. arXiv:0903.5154.

Charles Ehresmann. Catégories structurées. Annales scientifiques de l’École Normale
Supérieure, 80(4):349–426, 1963.

Josep Elgueta. The groupoid of finite sets is biinitial in the 2-category of rig categories.
arXiv:2004.08684 [math], April 2020. arXiv:2004.08684.

Thomas M Fiore, Simona Paoli, and Dorette Pronk. Model structures on the category of
small double categories. Algebraic & Geometric Topology, 8(4):1855–1959, October
2008. ISSN 1472-2739, 1472-2747. doi:10.2140/agt.2008.8.1855.

Simon Forest. Computational Descriptions of Higher Categories. Theses, Institut
Polytechnique de Paris, January 2021.

Thomas Fox. Coalgebras and cartesian categories. Communications in Algebra, 4(7):
665–667, January 1976. ISSN 0092-7872. doi:10.1080/00927877608822127.

Peter J Freyd and David N Yetter. Braided compact closed categories with applications
to low dimensional topology. Advances in Mathematics, 77(2):156–182, October 1989.
ISSN 00018708. doi:10.1016/0001-8708(89)90018-2.

Tobias Fritz and Paolo Perrone. Bimonoidal Structure of Probability Monads. Electronic
Notes in Theoretical Computer Science, 341:121–149, December 2018. ISSN 15710661.
doi:10.1016/j.entcs.2018.11.007. arXiv:1804.03527.

Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game
theory. arXiv:1603.04641 [cs], March 2016. arXiv:1603.04641.

Jose Manuel Gomez. From fibered symmetric bimonoidal categories to symmetric
spectra. arXiv:0905.3156 [math], May 2009. arXiv:0905.3156.

Bertrand Guillou. Strictification of categories weakly enriched in symmetric monoidal
categories. arXiv:0909.5270 [math], September 2009. arXiv:0909.5270.

Nick Gurski and Eugenia Cheng. The periodic table of n-categories II: Degenerate
tricategories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 52(2):45,
2011.

W. Haken. Theorie der Normalflächen. Acta Math., 105:245–375, 1961.
doi:10.1007/BF02559591.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, 1991.
ISSN 00189219. doi:10.1109/5.97300.

Jules Hedges. Morphisms of Open Games. Electronic Notes in Theoretical Computer
Science, 341:151–177, December 2018. ISSN 1571-0661.
doi:10.1016/j.entcs.2018.11.008.

https://doi.org/10.1017/CBO9781139193313.004
http://arxiv.org/abs/0903.5154
http://arxiv.org/abs/2004.08684
https://doi.org/10.2140/agt.2008.8.1855
https://doi.org/10.1080/00927877608822127
https://doi.org/10.1016/0001-8708(89)90018-2
https://doi.org/10.1016/j.entcs.2018.11.007
http://arxiv.org/abs/1804.03527
http://arxiv.org/abs/1603.04641
http://arxiv.org/abs/0905.3156
http://arxiv.org/abs/0909.5270
https://doi.org/10.1007/BF02559591
https://doi.org/10.1109/5.97300
https://doi.org/10.1016/j.entcs.2018.11.008

182 Bibliography

Lukas Heidemann, Nick Hu, and Jamie Vicary. Homotopy.io. 2019.
doi:10.5281/zenodo.2540764.

Chris Heunen and Jamie Vicary. Lectures on categorical quantum mechanics. Computer
Science Department. Oxford University, 2012.

Thomas T. Hildebrandt, Prakash Panangaden, and Glynn Winskel. A relational model of
non-deterministic dataflow. Mathematical Structures in Computer Science, 14(5):
613–649, October 2004. ISSN 0960-1295, 1469-8072. doi:10.1017/S0960129504004293.

J. E. Hopcroft and J. K. Wong. Linear Time Algorithm for Isomorphism of Planar
Graphs (Preliminary Report). In Proceedings of the Sixth Annual ACM Symposium on
Theory of Computing, STOC ’74, pages 172–184, New York, NY, USA, 1974. ACM.
doi:10.1145/800119.803896.

Guenter Hotz. Eine Algebraisierung des Syntheseproblems von Schaltkreisen I.
Elektronische Informationsverarbeitung und Kybernetik, 1(3):185–205, 1965.

Benjamin Taylor Hummon. Surface Diagrams for Gray-Categories. PhD thesis, UC San
Diego, 2012.

David Huynh, Tom Morris, Stefano Mazzocchi, Iain Sproat, Martin Magdinier, Thad
Guidry, Jesus M. Castagnetto, James Home, Cora Johnson-Roberson, Will Moffat,
Pablo Moyano, David Leoni, Peilonghui, Rudy Alvarez, Vishal Talwar, Scott
Wiedemann, Mateja Verlic, Antonin Delpeuch, Shixiong Zhu, Charles Pritchard, Ankit
Sardesai, Gideon Thomas, Daniel Berthereau, and Andreas Kohn. OpenRefine. 2019.
doi:10.5281/zenodo.595996.

Roshan P. James and Amr Sabry. Information effects. ACM SIGPLAN Notices, 47(1):
73–84, January 2012. ISSN 0362-1340. doi:10.1145/2103621.2103667.

Yeonhee Jang, Tsuyoshi Kobayashi, Makoto Ozawa, and Kazuto Takao. Stabilization of
bridge decompositions of knots and bridge positions of knot types (The theory of
transformation groups and its applications). RIMS Kokyuroku, 2135:23–28, 2019.

Gareth A. Jones and David Singerman. Theory of Maps on Orientable Surfaces.
Proceedings of the London Mathematical Society, s3-37(2):273–307, September 1978.
ISSN 00246115. doi:10.1112/plms/s3-37.2.273.

André Joyal and Ross Street. Braided monoidal categories. Mathematics Reports, 86008,
1986.

André Joyal and Ross Street. Planar diagrams and tensor algebra. September 1988.

André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in
Mathematics, 88(1):55–112, 1991. ISSN 0001-8708. doi:10.1016/0001-8708(91)90003-p.

André Joyal and Ross Street. Braided tensor categories. Advances in Mathematics, 102
(1):20–78, 1993. doi:10.1006/aima.1993.1055.

André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119(3):447–468, April 1996. ISSN
0305-0041, 1469-8064. doi:10.1017/S0305004100074338.

https://doi.org/10.5281/zenodo.2540764
https://doi.org/10.1017/S0960129504004293
https://doi.org/10.1145/800119.803896
https://doi.org/10.5281/zenodo.595996
https://doi.org/10.1145/2103621.2103667
https://doi.org/10.1112/plms/s3-37.2.273
https://doi.org/10.1016/0001-8708(91)90003-p
https://doi.org/10.1006/aima.1993.1055
https://doi.org/10.1017/S0305004100074338

Bibliography 183

Gilles Kahn. The semantics of a simple language for parallel programming. Information
processing, 74:471–475, 1974.

K. M. Kavi, B. P. Buckles, and U. N. Bhat. Isomorphisms Between Petri Nets and
Dataflow Graphs. IEEE Transactions on Software Engineering, SE-13(10):1127–1134,
October 1987. ISSN 0098-5589. doi:10.1109/TSE.1987.232854.

G. M. Kelly. On MacLane’s conditions for coherence of natural associativities,
commutativities, etc. 1964. doi:10.1016/0021-8693(64)90018-3.

Marc Lackenby. A polynomial upper bound on Reidemeister moves. Annals of
Mathematics, pages 491–564, 2015. doi:10.4007/annals.2015.182.2.3.

Marc Lackenby. The efficient certification of knottedness and Thurston norm.
arXiv:1604.00290 [math], July 2019. arXiv:1604.00290.

Miguel L. Laplaza. Coherence for distributivity. In G. M. Kelly, M. Laplaza, G. Lewis,
and Saunders Mac Lane, editors, Coherence in Categories, volume 281, pages 29–65.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1972. ISBN 978-3-540-05963-9
978-3-540-37958-4. doi:10.1007/BFb0059555.

Saunders Mac Lane. Natural associativity and commutativity. Rice Univ. Studies, 49(4):
28–46, 1963.

M. Makkai. The word problem for computads. May 2005.

A. Markov. The insolubility of the problem of homeomorphy. Doklady Akademii Nauk
SSSR, 121:218–220, 1958. ISSN 0002-3264.

J Peter May. The Geometry of Iterated Loop Spaces, volume 271. Springer, 1972. ISBN
978-3-540-37603-3.

José Meseguer, Ugo Montanari, and Vladimiro Sassone. On the semantics of Petri Nets.
In W.R. Cleaveland, editor, CONCUR ’92, volume 630, pages 286–301. Springer Berlin
Heidelberg, 1992. ISBN 978-3-540-55822-4. doi:10.1007/BFb0084798.

Bojan Mohar and Carsten Thomassen. Graphs on Surfaces, volume 10. JHU Press, 2001.
ISBN 0-8018-6689-8.

David Jaz Myers. String Diagrams For Double Categories and Equipments.
arXiv:1612.02762 [math], December 2016. arXiv:1612.02762.

Jean-Pierre Otal. Présentations en ponts du nœud trivial. C. R. Acad. Sci., Paris, Sér. I,
294:553–556, 1982. ISSN 0764-4442.

Carl Adam Petri. Communication with automata. page 97, 1966.

Emil L. Post. Recursive Unsolvability of a problem of Thue. The Journal of Symbolic
Logic, 12(1):1–11, March 1947. ISSN 0022-4812, 1943-5886. doi:10.2307/2267170.

Vaughn Pratt. Modeling concurrency with geometry. In Proceedings of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’91,
pages 311–322, Orlando, Florida, United States, 1991. ACM Press. ISBN
978-0-89791-419-2. doi:10.1145/99583.99625.

https://doi.org/10.1109/TSE.1987.232854
https://doi.org/10.1016/0021-8693(64)90018-3
https://doi.org/10.4007/annals.2015.182.2.3
http://arxiv.org/abs/1604.00290
https://doi.org/10.1007/BFb0059555
https://doi.org/10.1007/BFb0084798
http://arxiv.org/abs/1612.02762
https://doi.org/10.2307/2267170
https://doi.org/10.1145/99583.99625

184 Bibliography

David J. Reutter and Jamie Vicary. Biunitary constructions in quantum information.
Higher Structures, 3(1):109–154, 2019. ISSN 2209-0606. arXiv:1609.07775.

P. Selinger. A Survey of Graphical Languages for Monoidal Categories. In Bob Coecke,
editor, New Structures for Physics, number 813 in Lecture Notes in Physics, pages
289–355. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-12820-2 978-3-642-12821-9.
doi:10.1007/978-3-642-12821-9_4.

Mei Chee Shum. Tortile tensor categories. Journal of Pure and Applied Algebra, 93(1):
57–110, April 1994. ISSN 0022-4049. doi:10.1016/0022-4049(92)00039-T.

Eugene W. Stark. Dataflow networks are fibrations. In David H. Pitt, Pierre-Louis
Curien, Samson Abramsky, Andrew M. Pitts, Axel Poigné, and David E. Rydeheard,
editors, Category Theory and Computer Science, Lecture Notes in Computer Science,
pages 261–281. Springer Berlin Heidelberg, 1991. ISBN 978-3-540-38413-7.
doi:10.1007/BFb0013470.

Sam Staton. Algebraic Effects, Linearity, and Quantum Programming Languages. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages - POPL ’15, pages 395–406, Mumbai, India, 2015. ACM
Press. ISBN 978-1-4503-3300-9. doi:10.1145/2676726.2676999.

ME Szabo. Polycategories. Communications in Algebra, 3(8):663–689, 1975.
doi:10.1080/00927877508822067.

Bruce Trace. On the Reidemeister moves of a classical knot. Proceedings of the American
Mathematical Society, 89(4):722–724, 1983. ISSN 0002-9939, 1088-6826.
doi:10.1090/S0002-9939-1983-0719004-4.

Edward Walker, Weijia Xu, and Vinoth Chandar. Composing and executing parallel
data-flow graphs with shell pipes. In Proceedings of the 4th Workshop on Workflows in
Support of Large-Scale Science - WORKS ’09, pages 1–10, Portland, Oregon, 2009.
ACM Press. ISBN 978-1-60558-717-2. doi:10.1145/1645164.1645175.

http://arxiv.org/abs/1609.07775
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1016/0022-4049(92)00039-T
https://doi.org/10.1007/BFb0013470
https://doi.org/10.1145/2676726.2676999
https://doi.org/10.1080/00927877508822067
https://doi.org/10.1090/S0002-9939-1983-0719004-4
https://doi.org/10.1145/1645164.1645175

	Introduction
	Graphical representations in mathematics
	State of the art
	Overview of our contributions
	Structure of this thesis

	Background
	Monoidal categories
	Weak monoidal categories
	Strict monoidal categories

	String diagrams
	Diagrams as mathematical objects
	Joyal and Street's soundness and completeness theorem
	Computing with string diagrams

	Variants of monoidal categories
	Symmetric monoidal categories
	Cartesian categories
	Braided monoidal categories
	Bicategories and 2-categories
	Higher categories

	Bimonoidal categories
	Introduction
	Bimonoidal categories
	Sheet diagrams
	Bimonoidal signatures
	Defining sheet diagrams
	Isomorphisms of sheet diagrams
	Data structures for sheet diagrams

	Baez's conjecture
	Applications to dataflow programs
	Categorical semantics of dataflow
	Overview of OpenRefine
	Elementary model of OpenRefine workflows
	Model of OpenRefine workflows with facets
	Semantics and completeness

	Word problems
	Introduction
	Non-symmetric monoidal categories
	Combinatorial encoding of string diagrams
	Termination
	Upper bound on reduction length
	Confluence
	Computing normal forms
	Extension to disconnected diagrams
	Linear-time solution to the word problem in the connected case
	Recumbent isotopy

	Double categories
	Double categories
	Free double categories
	Translation to 2-categories
	Partial tilings
	Word problem
	Conclusion

	Braided monoidal categories
	Background
	Reducing the unknotting problem to the braided pivotal word problem
	Reducing the unknotting problem to the braided monoidal word problem
	Conclusion

	Coherence axioms of bimonoidal categories
	Axioms of a bimonoidal functor

	Bibliography

