
Categorical quantum theory and
percolation methods for

measurement-based quantum
computing

Thesis submitted to the Mathematical Institute

at the University of Oxford in partial fulfilment for the degree of

Master of Science in Mathematical and Theoretical Physics

Joe Bacchus George

Wolfson College

Trinity Term 2024

12,641 Words

Categorical quantum theory and
percolation methods for

measurement-based quantum
computing

Candidate 1081414
Wolfson College

Thesis submitted to the Mathematical Institute
at the University of Oxford in partial fulfilment for the degree of

Master of Science in Mathematical and Theoretical Physics

Trinity Term, 2024

Abstract
It was shown in [7] that universal resources can still be extracted from

faulty cluster states in measurement-based quantum computing. This com-
putational model lends itself naturally to the diagrammatic language of ZX-
Calculus, a perspective not exploited in the original discussions. Independ-
ently, percolation methods have been used to decipher phase transitions in
the computational efficiencies of resources. Whilst both percolation theory
and the ZX language carry evident relations to graph theory, their symbi-
osis is yet to be exploited in simultaneity. We hope to promote a bridging
of these two perspectives, demonstrating a natural duality for tackling faulty
measurement-based systems.

In doing so, the techniques are used to build from the original work of [7],
where we propose alternative insights regarding the extraction process of uni-
versal clusters. We eventually argue that for certain lattices, the supercritical
regime is sufficient for universality in the thermodynamic limit. The results
hold innately under both site and bond percolation, as well as differing lat-
tice shapes obeying certain symmetries. Subsequently, we estimate a resource
overhead, necessary for real-life cluster state preparations. Finally, our tools
are adapted to more recently proposed fusion-based models [3], using network
renormalisation techniques. A potential avenue for hypergraph treatments is
briefly motivated and concludes our work.

i

Acknowledgements

I would like to thank Professor Renaud Lambiotte for his kind advice and en-
couragement in letting me pursue such an interdisciplinary project. Countless
directions are immediately inspired by Lambiotte’s recommmended readings,
his work and our discussions.

I would also like to thank Professor Mathew Hoban for dedicating many
patient hours of clarifying confusions, guiding me through mathematics and
offering so much of his appreciated time.

ii

Contents

1 Introduction 1

2 Quantum foundations 3
2.1 Discussing the small . 3
2.2 Multipartite systems . 6
2.3 Evolving qubits . 7

3 ZX Calculus and networks 10
3.1 Categorical quantum theory . 10
3.2 Diagrammatic tensor networks . 11
3.3 The spider constitution . 13
3.4 Extending diagrams . 15
3.5 Graph vernacular . 15

4 Measurement-based quantum computing 18
4.1 Flavours of computation . 18
4.2 Cluster states . 21
4.3 Feed-Forward Corrections . 23
4.4 The measurement arsenal . 24
4.5 Universal computation . 27
4.6 The efficiency of approximation . 30
4.7 Entanglement bakeries . 31

5 Sculpting from the erroneous 33
5.1 Percolation thresholds . 33
5.2 The chiselling algorithm . 35
5.3 Monotones and phase transitions . 41
5.4 Symmetry is sufficient . 44
5.5 The method of overcompensation . 47

6 Faults and fusion 50
6.1 High-dimensional tolerance . 50
6.2 Strategies for the optical architect . 52
6.3 Network renormalisation . 54
6.4 Hypergraph calculus . 57

7 Conclusion 59
7.1 Further Work . 60

A SHP algorithm

Bibliography

iii

CONTENTS

Conventions

O(N) Orthogonal group

SO(N) Special orthogonal group

U(N) Unitary group

SU(N) Special unitary group

P1 Single-qubit Pauli group

Pn n-qubit Pauli group

Cn n-qubit Clifford group

G Exactly universal set of gates

GA Approximately universal set of gates

H Hilbert space

Z2 Square lattice

H2 Hexagonal lattice

T2 Triangular lattice

Z3 Cubic lattice

O Asymptotic limit notation

Lf General faulty lattice

Acronyms

BCC Body-centered cubic

BP Bond percolation

CV Continuous variable

FBQC Fusion-based quantum computing

FTQC Fault-tolerant quantum computing

GK Gottesman-Knill (theorem)

KLM Knill, Laflamme and Milburn (protocol)

LCC Largest connected component

LOCC Local operations and classical communication

iv

CONTENTS

LOQC Linear-optical quantum computing

MBQC Measurement-based quantum computing

QCM Quantum circuit model

QEC Quantum error correction

RHWW Right-handed wall walking (method)

SHP Shortest path (method)

SP Site percolation

SK Solovay-Kitaev (theorem)

Clarifications

Almost surely means that in the thermodynamic limit for a sufficiently
large system, the statement holds with a probability exponentially close
to certainty.

Efficient will in general mean that there exists a classical polynomial
algorithm in both space and time resources that can implement the
described process.

Heralded means that the feature of interest can be made available to
the observer.

Necessary means a condition that must first be present in order for
another event to occur.

Overhead means the additional quantity required to compensate for a
lack in the desired amount.

Sufficient means a condition that will produce another event.

v

1 Introduction

“But let your communication be Yea, yea; Nay, nay: for whatsoever is more

than these cometh of evil.” – A proposal for binary code, Matthew 5:37

- Gary William Flake

Progress in physics is always accompanied by illuminating representations, ranging from

Dirac’s bra-kets to Feynman’s diagrams for quantum field theory, the trend appears

most strongly in the quantum realm. The ZX-Calculus, a diagrammatic language rooted

in category theory, offers its own contribution to the description of quantum computa-

tion. The tool provides a transparent approach to deciphering quantum architectures and

error-correcting protocols. Its applications are particularly catered towards measurement-

based quantum computing, given that this was the model that primarily motivated its

original development. Here, highly entangled multipartite quantum states are subject to

specifically tailored local measurements. Remarkably, this is enough to perform univer-

sal quantum computation, offering significant advantages over the original circuit model.

Despite these benefits, the initial construction of cluster states has shown to be problem-

atically erroneous.

In [7], cluster state generation is examined through the lens of percolation theory,

assessing the impact of errors on underlying graphs representing atoms in optical lat-

tices. This is where the disparate realms of ZX-Calculus and percolation theory share a

surprisingly strong symbiosis, in treating faulty measurement-based systems. By intro-

ducing the core results of both frameworks, we hope to motivate their natural duality for

discerning imperfect quantum resources. To do so, we extend upon the original work of

[7], offering new insights and approaches to more recent models of scalable fault-tolerant

quantum computing.

We will first provide an alternative to the algorithm in [7], offering a more intuitive

way of identifying universal substructures within faulty lattices. By doing so, we argue

1

1 Introduction

that the classical percolation threshold can serve as a sufficient condition for universal

computation in the thermodynamic limit, given that the underlying lattice obeys some

simple symmetries. For physical applications, a methodology for quantifying an overhead

is then introduced, essential for ensuring real faulty lattices can be adapted to harness

specific computational capacities. All of these investigations are carried out over both site

and bond percolation, representing a different defect based on the underlying physical

system.

Eventually, we extend the work to fusion-based models, one of the most recent

paradigms for fault-tolerant architectures [3]. To do so, renormalisation techniques are

motivated as a method for tackling their more convoluted nature of percolation. Finally,

we discuss potential hypergraph extensions as promising avenues for robust cluster state

development. A new diagrammatic shorthand is then suggested to further align the ZX

language with percolation methods, hinting towards a duality that can be maintained

when treating extensions of the current model.

Because of the large disparity between the literature of these two fields, we will spend

some time building an understanding of their respective formalisms. Standard results

from quantum information, graph theory and the ZX-Calculus are all introduced prior to

our discussion of measurement-based computation, where the role of percolation theory

falls naturally into place.

2

2 Quantum foundations

“Now, what happens if you try to come up with a theory that’s like probability

theory, but based on the 2-norm instead of the 1-norm? I’m going to try to

convince you that quantum mechanics is what inevitably results.”

- Scott Aaronson

Computation is fundamentally a physical process. Its strength is as much permitted

as the constraints of nature restrict it. And yet, classical computation is designed to

take advantage of laws that are not so fundamental. Quantum computing provides a

framework to exploit more foundational rules, regardless of whether these elaborate or

tighten previous constraints. In fact, many of the advantages to be gained over classical

processing, such as cryptographic usages [12], rely on the strictness of quantum theory

as opposed to additional freedom. With this in mind, it is practical to first remind the

reader of more primitive quantum theory, given that it is entirely these results that enable

a new model of computation. This original formulation will also motivate a subsequent

description stemming from category theory.

2.1 Discussing the small

The Dirac formalism of quantum mechanics

To a physical quantum system, we associate a fully descriptive pure state to encode its

properties. By pure, we mean that we do not account for classical uncertainty regarding

the state of our system. We say that |ψ⟩ is a state vector living in a Hilbert space H,

which depending on the feature of interest, is finite or infinite dimensional. In standard

quantum information and computing, we are mostly concerned with the finite discrete

case and designate our n-dimensional Hilbert space so that H ≃ Cn. This generally

describes a qudit, whilst for a two-level system n = 2 we refer to a qubit. There also exists

3

2.1. DISCUSSING THE SMALL

⟨ψ| belonging to the dual space H⋆, which is found by taking the hermitian conjugate of

our state vector. We can represent our system as a linear combination of orthonormal

basis states satisfying ⟨ϕi|ϕj⟩ = δij, so that:

|ψ⟩ =
n∑

k=1

ck |ϕk⟩
n∑

k=1

|ck|2 = 1 (2.1)

The coefficients ci ∈ C are probability amplitudes, differing from classical probability

theory in that they are complex numbers whose values can interfere with one another. If

there exists more than a single non-zero coefficient, the above defines a superposition of

states. The Born rule specifies that the modulus squared pi = |ci|2 offers the probability
that our state is measured as |ϕi⟩ and returns a value λi. This is the crucial aspect that

distinguishes quantum mechanics from ordinary Kolmogorov probability theory [28].

In our treatment of quantum information, we will consider only qubit systems defined

with respect to the computational basis.

|ψ⟩ ∈ H = span

{
|0⟩ :=

[
1

0

]
, |1⟩ :=

[
0

1

]}
(2.2)

Eigenstates of the Pauli Z matrix span the Hilbert space, allowing for a general form to

be written as:

|ψ⟩ = α |0⟩+ β |1⟩ |α|2 + |β|2 = 1 ∀α, β ∈ C (2.3)

There exists a redundancy in the state vector formalism, which says that |ψ⟩ ∼= eiϕ |ψ⟩, or
rather two state vectors are equivalent up to a global phase. This is simply a manifestation

of global U(1) gauge symmetry, a constituent trait of the theory. It is possible then to

parameterise our state solely in terms of Polar (θ) and Azimuthal (α) angles, so that

|ψ⟩ = cos θ
2
|0⟩ + sin θ

2
eiα |1⟩. The radial distance is restricted to unity by probability

normalisation requirements. Qubit states themselves transform under SU(2), itself a

double cover of SO(3), enabling a convenient representation according to the Bloch sphere

with our newly provided parameters.

4

2.1. DISCUSSING THE SMALL

However, because of this two-to-one mapping, orthogonality is to be understood between

opposite poles of the sphere.

|0⟩

|1⟩

|+⟩|−⟩

|i+⟩

|i−⟩ Z

|ψ⟩

X

α

θ

(2.4)

In the Bloch sphere diagram, we have provided shorthand basis states, acting as eigen-

vectors for the remaining Pauli matrices:

X eigenstates |0⟩ =
1√
2
(|+⟩+ |−⟩) |1⟩ =

1√
2
(|+⟩ − |−⟩) (2.5)

Y eigenstates |i+⟩ =
1√
2
(|0⟩+ i |1⟩) |i−⟩ =

1√
2
(|0⟩ − i |1⟩) (2.6)

Z eigenstates |+⟩ =
1√
2
(|0⟩+ |1⟩) |−⟩ =

1√
2
(|0⟩ − |1⟩) (2.7)

In noisy systems, we may not be so fortunate as to access a full description of our system

and may have to account for classical uncertainties regarding states of interest. This

motivates a more general formulation using mixed states, replacing the familiar state

vector with a density operator ρ. Although this formalism can be especially useful for

harnessing descriptions with decoherence, it is not used in our investigations. We will

assume by default that a full description of our system is readily available.

5

2.2. MULTIPARTITE SYSTEMS

2.2 Multipartite systems

Entanglement and Bell states

To extend our description to multiple qubits, we might define a combined state by taking

the tensor product of individual ones. This approach provides a separable form known

as the product state.

|Ψ⟩ =
n⊗

k=1

|ψk⟩ =
∑

i1...in=1

ci1...in |i1 . . . in⟩ (2.8)

For ease of notation, we index our basis states as |ϕk⟩ := |k⟩ and further write combined

tensoring as |k1⟩ ⊗ · · · ⊗ |kn⟩ := |k1 . . . kn⟩. The order of these indices is associated with

the qubits they describe. We may equally consider multi-qubit states not represented

by tensoring across individual qubits, systems of this type are said to be entangled.

Though mathematically the distinction seems trivial, entanglement entirely shifts our

description of nature. Primarily, one can identify correlations between qubits at arbitrary

distances, though crucially, these do not imply a superluminal exchange of information.

It is precisely this property that leads to the topic of non-locality, where an object is no

longer influenced directly by its immediate surroundings, a primary result that enables

many of the quirks exploited in quantum algorithms.

The quintessential 2-qubit entangled states are known as Bell states and are provided

below.

∣∣Φ+
〉

:=
1√
2
(|00⟩+ |11⟩)

∣∣Φ−〉 :=
1√
2
(|00⟩ − |11⟩)∣∣Ψ+

〉
:=

1√
2
(|01⟩+ |10⟩)

∣∣Ψ−〉 :=
1√
2
(|01⟩ − |10⟩)

(2.9)

For general multipartite systems, we will adopt the convention of ordering our basis

lexicographically, that is in accordance to binary counting.

6

2.3. EVOLVING QUBITS

For the above 2-qubit case we would have:

H1 ⊗ H2 = span

|00⟩ :=

1

0

0

0

 , |01⟩ :=

0

1

0

0

 , |10⟩ :=

0

0

1

0

 , |11⟩ :=

0

0

0

1

2.3 Evolving qubits

Quantum gates and measurement

Just as classical computation involves modifying bits according to specific protocols,

quantum computing relies on linear operators, known as gates, to describe actions on

quantum states. Single-qubit operators can be combined via tensoring to act on multi-

qubit states, though some are defined innately as non-decomposable. Under a transform-

ation, the evolved state must retain its quantum-like properties and constraints of the

underlying probability theory, features that are maintained by unitarity. For an n-qubit

system, physical operations must then belong to SU(2n). Actions on individual qubits

then rotate the state around the Bloch Sphere.

In the computational basis, we denote our Pauli matrices as:

X :=

[
0 1

1 0

]
Y :=

[
0 −i
i 0

]
Z :=

[
1 0

0 −1

]
(2.10)

One can define a single-qubit gate, denoted by H for Hadamard, which induces a super-

position with respect to a basis, a crucial capability for most manipulations in quantum

computing. Alongside two other useful unitaries S, the phase gate, and T we find:

H :=
1√
2

[
1 1

1 −1

]
S :=

[
1 0

0 i

]
T :=

[
1 0

0 e
π
4

]
(2.11)

7

2.3. EVOLVING QUBITS

With additional complex scalar factors for closure, the Paulis form generators for the

single-qubit Pauli group P1:

P1 := ⟨X, Y, Z⟩ = {I2, X, Y, Z} ⊗ {±1,±i} (2.12)

By extension, we can define the n-qubit Pauli group Pn as:

Pn :=

{
P =

n⊗
k=1

Pk | Pk ∈ P1

}
(2.13)

Non-decomposable multi-qubit gates enable much of the richness offered in quantum

algorithms. We provide three of these most useful 2-qubit gates below:

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 CZ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 SWAP =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (2.14)

They in turn allow us to generate another useful set of gates, known as the Clifford group.

Cn := ⟨CNOT,H, S⟩ =
{
U ∈ U(2n) | UPU † ∈ Pn, ∀ P ∈ Pn

}
(2.15)

These elements are especially easy to implement experimentally and generate the Pauli

group. Somewhat disappointingly, their ease of use allows for the Gottesman-Knill (GK)

theorem, stating that any quantum circuit composed solely of Clifford members, can

be efficiently simulated classically [22]. It is instead more non-conventional gates which

hold the key to quantum computing supremacy, which we will explore when discussing

universality.

A particular kind of operation is that of measurement Π. These act as projections

onto basis states that model the outcome obtained in experiment. Our state requires

subsequent normalisation afterwards.

8

2.3. EVOLVING QUBITS

Unlike quantum gates, measurements are irreversible and non-deterministic. Upon per-

forming such projections, the state vector governing our system collapses to the measured

states. Basis state projections are related to an observable O with expectation value ⟨O⟩.

O =
2n∑
k=1

λkΠk Πk = |k⟩ ⟨k| ⟨O⟩ = ⟨ψ|O |ψ⟩ (2.16)

This enables pre-deterministic insights into likely outcomes but does not unitarily evolve

our state, it is simply a tool for predicting eigenvalue statistics. The act of measuring a

state in the bases {k} is then modelled as taking M{k}:

M{k} : |ψ⟩ −→
Π{k} |ψ⟩√
⟨ψ|Π{k} |ψ⟩

(2.17)

Although frequently not specified, quantum computing is treated in the Schrödinger

picture, meaning that states carry time dependence whilst operators do not. In reality,

then, our system evolves in time, as it is inescapably subject to a Hamiltonian, caus-

ing time evolutions between measurements. However, the rapidity in which gates and

measurements are performed throughout quantum protocols makes these transforma-

tions negligible.

9

3 ZX Calculus and networks

“The calculations that eventually got me a Nobel Prize in 2004 would have

been literally unthinkable without Feynman diagrams.”

- Frank Wilczek

As enticing as Dirac notation may be, for larger protocols, one can rapidly lose touch

with the intuition of more complex quantum processes. Inspired by the diagrammatic

notation of Roger Penrose, a graphical reformulation of quantum theory was proposed in

the early 2000s. Its language, the ZX calculus with extended ZH elements, is here briefly

introduced, though a more rigorous introduction is available at [35]. The language was

initially motivated to treat the architectures of measurement-based quantum computing

and error correction protocols, the very premise of our ensuing discussions.

3.1 Categorical quantum theory

The roots of ZX-Calculus

In 2004, Samson Abramsky and Bob Coecke proposed an alternative treatment of quantum

theory through the lens of a seemingly more distant abstraction [1]. Category theory,

and particularly monoidal categories, allows for diagrammatic expressions with string

diagrams. In the quantum theoretic model, processes are captured more specifically by

dagger symmetric monoidal categories, which obey algebraic properties reminiscent of the

current framework. Here, a category of vector spaces is considered alongside morphisms

as linear maps, turning string diagrams into tensor networks [4]. Consecutive unitary

operations and entire quantum architectures are then succinctly represented as webs of

these tensors.

Morphisms are preserving maps between mathematical structures of the same type.

By structures, we mean sets of objects provided with additional features of interest.

10

3.2. DIAGRAMMATIC TENSOR NETWORKS

This could be an operation, metric, or even a topology. In our case the morphism maps

between two vector spaces such that the operations of vector addition and scalar mul-

tiplication are preserved. String diagrams allow for mathematical relationships to be

maintained across analogous manipulations diagrammatically. This is where the simpli-

cities of the ZX-Calculus appear so prominently, via their associated rewriting rules,

which consist of graphical tricks for performing mathematics. In more elaborate settings,

extensions might include additional notations, such as facilitating generalised multi-qubit

controlled gates. The latter of which is best visualised according to the ZH-calculus.

3.2 Diagrammatic tensor networks

Building blocks and their relationship to Dirac notation

ZX diagrams are constructed in terms of generator tensors, which we call spiders. These

arachnids are equipped with a phase α ∈ R which corresponds directly to the Azimuthal

angle of the Bloch sphere 2.4. If α = 0, then it is omitted visually from the spider’s

body. Properties are invariant under topological deformations, so it is only a matter of

how the connections are made which define linear maps. Composition is carried out by

connecting input to output legs in neighbouring diagrams, whilst tensor products are

simply represented by stacking diagrams side by side. Scalars are written explicitly next

to a diagram, ‘1’ can therefore be ignored whilst ‘0’ would remove the entire frame.

Legless spiders are equivalent to scalars.

Only two basis spiders are required to completely define the formalism [33], and these

are eponymously chosen to be Z (Green) and X (Red).

Z -spider: α

..
.

..
. nm := Zn

m[α] = |
×n︷ ︸︸ ︷

0 · · · 0⟩⟨
×m︷ ︸︸ ︷

0 · · · 0|+ eiα |
×n︷ ︸︸ ︷

1 · · · 1⟩⟨
×m︷ ︸︸ ︷

1 · · · 1|

X -spider: α

..
.

..
. nm := Xn

m[α] = |
×n︷ ︸︸ ︷

+ · · ·+⟩⟨
×m︷ ︸︸ ︷

+ · · ·+|+ eiα |
×n︷ ︸︸ ︷

− · · ·−⟩⟨
×m︷ ︸︸ ︷
− · · ·−|

11

3.2. DIAGRAMMATIC TENSOR NETWORKS

The Hadamard gate 2.11 can be generalised and deployed as a more convenient generator

by introducing the H-box notation, where a ∈ C:

H -box: a..
.

..
. nm :=

∑
x,y

ax1...xny1...ym |x1 . . . xn⟩ ⟨y1 . . . ym|

By convention, an H-box with a = −1 is labelled without a phase, given that this

is the standard usage for the familiar Hadamard. With these three notations, we can

reconstruct the familiar arsenal for quantum computation. In particular, single-qubit

operators, which naturally correspond to spiders with a single input and output, are

constructed via relative phase gates:

α = Z1
1 [α] =

[
1 0

0 eiα

]
α = X1

1 [α] =
1

2

[
1 + eiα 1− eiα

1− eiα 1 + eiα

]

And so our Pauli matrices 2.10 alongside the standard Hadamard gate form unitary maps

found to be represented as:

X → π Y → i π π Z → π H →

Basis states 2.5 are then implemented as spiders lacking inputs. Because of the U(1)

gauge redundancy, we tend to omit global phases and in doing so will instead denote

proportionality.

X-basis |+⟩ =
1√
2
(|0⟩+ |1⟩) ∝ |−⟩ =

1√
2
(|0⟩ − |1⟩) ∝ π

Y-basis |+i⟩ =
1√
2
(|0⟩+ i |1⟩) ∝ π

2 |−i⟩ =
1√
2
(|0⟩ − i |1⟩) ∝ −π

2

Z-basis |0⟩ =
1√
2
(|+⟩+ |−⟩) ∝ |1⟩ =

1√
2
(|+⟩ − |−⟩) ∝ π

12

3.3. THE SPIDER CONSTITUTION

Flipping a diagram horizontally takes the self-adjoint, and so mirroring the above would

provide dual-state vectors. How might we then choose to represent projection measure-

ments, given that these are how we extract classical information from our diagrams?

Let us consider the act of measuring a single qubit in the |ψ⟩ = |+⟩ state along the

Z-axis. One would expect an outcome of |0⟩ or |1⟩ with a 50% chance each. To model

this post-deterministically with projections, we would say that on the occasion we find 0

then M0 |ψ⟩ = |0⟩. It would seem as though M0 would exist as a two-legged spider, but

it is not always necessary to consider the collapsed state. In many of the protocols we

introduce, the very act of performing the measurement is sufficient in itself, and the col-

lapsed state is not so much of interest. For this reason, we simply associate measurements

to single-wired dual states, with an additional phase shift accounting for the unknown

outcome.

MX → kπ MY → (−1)k π2 MZ → kπ (3.1)

Where k ∈ {0, 1} is dependent on the outcome and would be assigned afterwards accord-

ing to the obtained experimental value.

3.3 The spider constitution

Useful diagrammatic simplification rules

Graphical rewriting rules offer shortcuts for otherwise cumbersome tensor calculus. An

exhaustive list is not provided but can be found in [35]. We restrict ourselves to the

manoeuvres necessary for our particular investigations. All of the following rules hold

equivalently when inverting spider colours, with α, β ∈ C and c ∈ {0, 1}.

13

3.3. THE SPIDER CONSTITUTION

Spider Fusion (SF)

β

..
.

..
.

α
..
.

..
.

=... ..
.

..
.α+β

β

..
.

..
.

α

..
.

..
.

=... ..
.

..
.α+β

Phase Commutation (PC)

−α=

π

π α ..
.

..
.

π

−α=

π

π α ..
.

..
.

π

State Copy (SC)

=

..
.αcπ

..
.

cπ

cπ

cπ

=

..
.αcπ

..
.

cπ

cπ

cπ

Colour Change (CC)

..
. = ..
.

..
.α α ..
.

..
. = ..
.

..
.α α ..
.

Identity Rules (IR)

= = =

14

3.4. EXTENDING DIAGRAMS

3.4 Extending diagrams

Multi-qubit representations

The familiar non-decomposable 2-qubit gates 2.14 offer representations in the following

way:

CNOT → CZ → SWAP → (3.2)

For generalised multi-qubit controlled gates, there exists a natural representation in the

ZH formalism, that considers additionally controlled qubits by attaching them to a central

H-box. For the 3-qubit alternatives to the CNOT and CZ gate, we have

CCNOT → CCZ → (3.3)

The 3-qubit multi-controlled CNOT extension is usually called the Toffoli gate and is

especially useful for larger algorithms.

Beyond the H-box, other notations are optionally included for tackling specific aspects

of quantum computing. These additions only offer clarity, and can always be translated

back to the original spider generators. As it turns out, we will eventually confront graphs

uniquely composed of green spiders with Hadamard-equipped legs. Given its evident

imitation of a network in the mathematical sense, this allows graph-theoretic tools to

come into play, so it is necessary to introduce these terms as well.

3.5 Graph vernacular

Essential terminology from graph theory

We first define the neighbourhood of a vertex vi to be all nodes directly connected to vi

by an edge. That is all vertices which contribute to the degree of our node.

15

3.5. GRAPH VERNACULAR

Below we consider a graph G and highlights N1(G) making up the neighbourhood of v1.

v1 v1

(3.4)

One can then consider the local complementation of a graph around a vertex, denoted

G ∗ vi. This inverts the edges of the subgraph induced by the neighbourhood of vi. For

the same vertex above we would find:

v1 v1

G ∗ v1
(3.5)

The graph dual G⋆ takes on a vertex for every face on a planar G, carrying a dual-edge

for every pair of faces in G that are separated from one another by an edge.

G G⋆

(3.6)

When discussing infinite lattices, the outside vertex on the dual graph tends to be omit-

ted. One can also classify a subgraph H with respect to its parent G. We say that H is

a graph minor of G if it can be formed from the latter solely by deleting edges, vertices

16

3.5. GRAPH VERNACULAR

or contracting edges. An example is provided below, converting a novel G into a minor.

(3.7)

A more restrictive, though useful classification is that of a topological minor, which obeys

the above principles whilst ensuring that the topology of the original graph G is retained.

(3.8)

Whilst the previous definitions mostly concern structural features of graphs, it is also

useful to consider passages within them for computational arguments. A path is a finite

sequence of edges where both the set of vertices and edges traversed are distinct. An open

path has differing beginning and ending vertices.

Here we offer three trails, the first graph highlighting a valid open path. The other two

trails are not paths since the second passes through the central vertex twice and the third

passes through its final edge twice. If we then consider any two vertices v1 and v2 on a

connected graph, the shortest path takes the least amount of edges between these two

nodes.

17

4 Measurement-based quantum

computing

“The sculpture is already complete within the marble block, before I start my

work. It is already there, I just have to chisel away the superfluous material.”

- Michelangelo

Quantum computing is, in a sense, a strategic evolution of multipartite states asso-

ciated with classical information. This is largely the entire ambition, regardless of how

it might be achieved. Whilst differing physical setups lend themselves to their respect-

ive advantages, different theoretical protocols hold irrespective of the system. We here

introduce a particular method of computation that is measurement-based, and although

the framework holds generally, we will tackle its implementation via low-energy atomic

and photonic-based systems. The proofs regarding universality and feed-forwarding are

adapted from [10], though tailored to our particular line of discussion.

4.1 Flavours of computation

Comparing circuit and measurement-based models

There are many equivalent ways of achieving quantum computation. The ZX-Calculus

was primarily born to transparently represent a certain class known as measurement-

based quantum computing (MBQC), though it equally provides an excellent range of tools

for more standard formalisms. The quantum circuit model (QCM), being the default, is

here introduced as a comparison against MBQC,

In QCM, we simply consider an initialised state and perform sequences of unitary

operations, acting as our ‘computation’. Easily retrievable product states are usually

18

4.1. FLAVOURS OF COMPUTATION

implemented as a first input, though entangled states might also be considered. After

evolving, the final state is measured, the action which translates our results into a classical

output. Because this induces a collapse, frequently measurements are only made across

a subset of qubits, to keep part of the output state for further manipulation.

As a tangible example, it may be desirable to entangle two qubits in the hopes of

constructing a Bell state 2.9. To do so, we could consider manipulating both states

initialised in |0⟩. The combined object to manipulate is then the product |ψ12⟩ ≡ |00⟩,
acted on according to the following circuit.

()
◦
(
|ψ12⟩ ∝

)
=

Once again, proportionality is denoted instead of scalar factors because of global phase

redundancy. The sequence of operations can now be manipulated with ZX rules, giving

the following:

SF
=

CC
=

SF
=

IR
=

One can read this off directly from the formal spider definition to check that we have the

desired result.

= |00⟩+ |11⟩ ∝ 1√
2
(|00⟩+ |11⟩) =

∣∣Φ+
〉

To produce the remaining three bell states, one only needs to offer different combina-

tions of initialised states from the Z-basis. These maximally entangled entities are then

19

4.1. FLAVOURS OF COMPUTATION

obtained with the following circuits.

π
−→ π

−→π

π

π −→ π

π

π

= |01⟩+ |10⟩ ∝ |Ψ+⟩

= |01⟩ − |10⟩ ∝ |Ψ−⟩

= |00⟩ − |11⟩ ∝ |Φ−⟩

Consider now a much larger, and more convoluted sequence of operations. Regardless of

the physical setting, it is not cheap or easy to perform. The initialised state may be desired

in an alternative more complex and entangled form, or maybe more convoluted multi-

qubit gates 3.3 are required to be implemented. This is the primary motivation behind

MBQC, which instead considers an approach where ‘computation’ is achieved entirely via

the measurements themselves. MBQC is sometimes called the one-way model of quantum

computing to emphasise the non-reversible aspect of computing with observation. What

is particularly powerful about the method, is that measurements are performed locally,

meaning that we only need to consider individual qubits at a time. Before introducing

the technicalities of this approach, let us first rework the above example to see how this

might make any sense at all. We begin with a 4-qubit circuit, where tactically placed CZ

gates 3.2 are implemented as follows.

−→

The rewritten form on the right is now entangled, but it is not a bell pair as desired.

However, if we are tactical about committing measurements, then we can indeed show

20

4.2. CLUSTER STATES

that the result is entirely analogous to the previous cases.

k1π

k2π

k2π

PC
=

k2π

k1π

k1π

k2π

CC
=

k1π
k1π

k2π

∝
k1π

k2π

k1πCC
= k2π

In the above process, we implemented measurements on the first and final qubit, leading

to four distinct possible outcomes k1, k2 ∈ {0, 1}. All of the bell states can thus be

obtained, regardless of an explicit implementation of the CNOT gate. At larger scales, this

is precisely the advantage of MBQC, in that we first construct an easily entangled state

to which desirable measurements are performed as a means of computation. However,

the outcomes above are probabilistic, and as shown by the end of this chapter, we must

adapt succeeding measurements to make our way towards deterministic outputs. In some

sense, MBQC chisels away at a highly entangled state, to carve out an equivalent circuit

found in QCM.

Initially entangled states seem to appear in a graph-like form, which happens to

mirror the physical layout of qubits in the system. This graphical equivalence is one of

the reasons why the ZX formalism lends itself so fluently to MBQC: the abstract tensor

networks map authentically to their underlying physical relationships. The choice for

these particular structures is by no means arbitrary, it provides the correct framework to

enable universal computation. To see what we mean by this, we must first describe the

graph-like forms more generally.

4.2 Cluster states

The entangled resources for MBQC

Resources are the quantum states that we initialise our models with. In MBQC, these

are called cluster states when the underlying graph comprising entangled qubits obeys

21

4.2. CLUSTER STATES

a lattice-like structure. In general, arbitrarily connected graphs can just as well provide

excellent resources, though they are not constructed easily in experiments. Consider an

undirected and unweighted graph G = (V,E) with V the set of vertices and E the set of

edges. Edges are defined as eij = (vi, vj), drawing a connection between both entries to

the 2-tuple. A graph state is given as:

|G⟩ =
∏

(vi,vj)∈E

CZvi,vj |+⟩
⊗|V | (4.1)

In other words, we define a graph whose vertices are |+⟩ state qubits, and for every edge,

we implement a CZ gate across the associated qubits. An illustrative 3 × 3 grid graph

state is shown below.

q1 q2 q3

q4 q5 q6

q7 q8 q9

G |G⟩ ∝ (|0⟩7 |+⟩8 |φ⟩+ |1⟩7 |−⟩8 |φ′⟩)

|+⟩ |+⟩

CZ1,2

v1 v2 v3

v4 v5 v6

v7 v8 v9

e12 = (v1, v2)

In the ZX calculus, we say that structures of this form are graph-like when all internal

wires carry a Hadamard and all spiders are phaseless in the Z basis. The following short-

hand makes graph-like states more digestible:

:=

22

4.3. FEED-FORWARD CORRECTIONS

We call the blue dotted wire a Hadamard edge, and its conciseness enables the identi-

fication of rewriting rules most commonly used in graph-like states, two of which are

introduced later. With the above conventions and wires understood as outputs, our grid

example in ZX becomes:

=

The initial lattice size will entirely determine its computational capacity. But this aspect

is secondary to whether its shape is practical. As it turns out, only certain geometries

are useful to quantum computing. Given that we are still considering a protocol that

produces probabilistic outcomes, how might this be?

4.3 Feed-Forward Corrections

The method of producing deterministic outcomes

The cure to non-determinism is a trick known as classical feed-forwarding [10], which

makes our measurement tools adaptive. Let us consider a 1-dimensional cluster to demon-

strate the idea, where we make a measurement in the XY-plane on the first qubit. This

means we use an α phased single-wired Z spider, while accounting for the probabilistic

outcomes with an additional shift kπ, where k ∈ {0, 1}. ZX rules show this to be entirely

equivalent to deterministically implementing a measurement on the desired qubit whilst

migrating the unwanted outcome-dependent shift to inputs of nearby qubits. In vertical

23

4.4. THE MEASUREMENT ARSENAL

diagrams, we read the sequence of processes from bottom to top.

α + kπ

kπ

α α

kπ

α

kπ

α

kπ

kπkπ kπ

kπ

α

SF
=

CC
=

PC
=

CC
=

CC
=

The result of k is known to the observer, and so one can adapt subsequent measurements

to account for these unwanted phases. Equivalently, one might instead treat the k = 1

outcome as an error, and in its manifestation implement corresponding local Pauli gates

to correct them, before making another measurement. The process continues across all

qubits, something that determines the order in which we should perform measurements

across the lattice. In fact, the speed of our computation is solely determined by the

classical processing of outcomes, since measurements are instantaneous. This is usually

permitted by a classical computer, operating polynomially efficiently. Feed-forwarding

further restricts the shape of desired clusters, in that they must enable correctly time-

ordered feed-forwarding. All of the lattices we will introduce satisfy this.

A linear one-dimensional cluster state is correctly time-ordered, allowing for feed-

forwarding, but it cannot perform the bell-state preparation explored before. To see what

sort of clusters can, or host any other arbitrary circuit, the quality of being universal is

additionally required.

4.4 The measurement arsenal

Tricks that are exploited to reshape clusters

Though we considered the effects of a general XY-plane measurement above, it is not

obvious if other variations are even useful. As it turns out, Y and Z basis measurements

demonstrate vital preliminary effects for shaping lattices.

24

4.4. THE MEASUREMENT ARSENAL

We first introduce two additional rewriting strategies:

Local Complement (LC)

±π
2α1 αn

...... ... = ...
α1∓ π

2

...
αn∓ π

2

α2

...
αn−1

...
α2∓ π

2

...
αn−1∓ π

2

...

...

Hopf Algebra (HA) α β..
.

..
. = α..
.

..
.β

The above equivalently holds for inverted spider colours, though in graph-like diagrams

we are not concerned with those cases. If we then consider measurement outcomes on

a lattice, their effects can be immediately translated in terms of graph operations. A

local single-qubit basis measurement 3.1 on a particular vertex vi is defined to be M b
i :

|G⟩ ↣ |G′⟩ where b indexes the basis. We will adopt a tailed arrow notation to mean

‘equal up to feed-forwarding and corrections’. In other words, there is some subsequent

set of deterministic local corrections that can be made to translate from one end of the

arrow to the other. When we interest ourselves in the outcome-independent effects of

these measurements we will denote for simplicity:

Xi := kiπ := (−1)ki π2Yi :=Zi kiπ

Our Y basis measurement in effect complements the graph 3.5 around the measured qubit

and subsequently removes it.

MY
i |G⟩↣ |G ∗ vi − vi⟩ (4.2)

25

4.4. THE MEASUREMENT ARSENAL

We can see this in effect on our 3× 3 grid example:

SF
=

Y
LC
=(−1)k π2

(−1)k+1π
2

↣

(−1)k+1π
2

(−1)k+1π
2(−1)k+1π

2

On the other hand, our Z basis measurement simply removes the measured qubit and all

neighbouring wires attached 3.4.

MZ
i |G⟩↣ |G− vi⟩ (4.3)

Using the same initial grid, we can see again how this appears with the ZX calculus.

PC
=

CC
=

kπ

↣

kπ

kπkπ

Z kπ

kπ

kπ

kπ

In later applications, we will find the linear results to be most convenient. Here, Y and

Z measurements simply contract and delete neighbouring qubits respectively.

↣
Z

↣
Y

(4.4)

It is precisely the effects of these basis measurements that can be exploited to modify

the topology of entangled cluster states, whilst YZ-planar measurements will be used for

the subsequent implementation gates.

26

4.5. UNIVERSAL COMPUTATION

4.5 Universal computation

How to compute anything desired

For single-qubit unitary gates, one can manipulate the Bloch sphere to see that chaining

together sequences of arbitrary Z and X rotations allows us to reach any point on the

surface. In essence, this is why they are sufficient generators. The separation of a unitary

in this form is known as an Euler decomposition, enabling a more insightful identification

of their operation.

= α γβU (4.5)

Given that HZ1
1 [α]H = X1

1 [α] by CC, we could alternatively represent this decom-

position with only Hadamard and Z gates. For generalised computations, unitaries are

defined to act on n-qubits, so how might we express these larger unitaries in terms of

their generators?

Fortunately, it is sufficient to only introduce the 2-qubit CNOT 3.2 gate for providing

a decomposition on arbitrary dimensions []. One can then chain these together with

single-qubit decompositions to construct any other desired gate. This is the premise of

universality, where we say that a set of gates G are exactly universal if they suffice in

constructing all possible n-qubit unitaries. One possibility is:

G =
{
CNOT,H,Z1

1 [α] | ∀α ∈ [0, 2π)
}

(4.6)

If we can find a lattice where CNOT and arbitrary single-qubit unitary gates can be

constructed via the MBQC scheme, then universal computation is possible on the state.

Cluster resources must not only offer a topology capable of being corrected through

feed-forwarding but now also allow for such universal computation.

27

4.5. UNIVERSAL COMPUTATION

One of the most prevalent structures to satisfy universality is the Brickwork lattice,

a form that is already correctly time-ordered [34].

Given the repeated structure of the cluster state, it suffices to consider a single compon-

ent brick, and discern if measurements exist to implement any of the elements required

from G. Neglecting feed-forward correctable phase shifts, we can perform the following

measurements in the XY-plane:

γ1

β1

α1

γ2

α2

β2

α1

γ1 γ2

α2

β1 β2

α2

γ2

α1

γ1

β1 β2β2

α1 α2

β1

γ2γ1 γ1

α1 α2

β1 β2

γ2

SF
=

CC
=

SF
=

HA
=

And so bothH and Z1
1 [α] are twice implementable within a single brick, which is precisely

two adjacent Euler decompositions for unitary gates 4.5. Alternatively, we could try a

different set of measurements, to produce a CNOT gate.

28

4.5. UNIVERSAL COMPUTATION

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

SF
=

LC
=

SF
=

LC
=

= IR
=

SF
=

CC
=

Once we scale our brickwork lattice to the appropriate size, we can achieve n-qubit uni-

versal computation. Preliminary modifications were not needed and we can immediately

select planar measurements for gate implementation. Unfortunately, this is a rare con-

venience of the bricks themselves. In other graphs that may still be universal, redundant

parts are initially measured out before making the computation-inducing measurements.

For a general cluster, we can search for graphs whose topological minors 3.8 are the

brickwork lattice. This is possible because of the one-dimensional effects of Y and Z

measurements 4.4, which have outcomes corresponding to the allowed transformations

defining minor graphs. All three regular lattices spanning the 2-dimensional plane are

universal resources whereas neither one-dimensional lattices, tree-like graphs nor certain

29

4.6. THE EFFICIENCY OF APPROXIMATION

complete graphs are [23]. We provide the regular triangular, square and hexagonal forms

below. An inner dot is a shorthand for an input wire.

4.6 The efficiency of approximation

Using fewer gates to achieve universality

Apart from Clifford gates 2.15, which take on integer multiples of π
2
spider phases in ZX,

more refined angles are both difficult and expensive to construct. So given the necessity

of requiring all infinitesimal values of these phases for the required Z1
1 [α] gate in G, how

can we possibly retain universality in the experimental setting?

In practice, we usually refer to an approximately universal set of gates when we

mention universality. That is, for any desired unitary U , we can construct UA from a

finite set of gates whose sequential combination can arbitrarily approximate the exact

form to a desired precision ε > 0. That is to say:

|U |ψ⟩ − UA |ψ⟩| < ε UA =

N(ε,U)∏
i

Ui ∀ Ui ∈ GA (4.7)

Where N(ε, U) ∈ N is a finite number of gates to be implemented to approximate U

dependent on the precision ε. The set GA contains gates that enable approximate univer-

sality. Most commonly, we can consider the Clifford gates with an additional, although

more costly, T gate.

GA = {CNOT,H, T} (4.8)

30

4.7. ENTANGLEMENT BAKERIES

This additional unitary disables the GK theorem, meaning that is uniquely efficient to

achieve circuits comprised of GA with a quantum computer. The S gate from the original

Clifford set can then be recovered by T 2 = S. The underlying argument as to why this

novel collection of gates suffices in approximating U , is that the sequences THTH and

HTHT offer two distinct irrational rotations around the Bloch Sphere, meaning we can

chain them together to approach arbitrary surface points. A more complete discussion is

found in [10].

Although finite, we would expect the number of elements in GA required to approxim-

ate a gate to depend strongly on the desired operation. Surprisingly, the Solovay–Kitaev

theorem (SK) [11] finds an efficient way of finding short sequences of gates that reach the

desired precisions of ε. The number of replacement unitaries then scales according to:

∃ γ ∈ R N(ε, U) ∼ O

(
logγ

(
1

ε

))
(4.9)

Not only does this hold for single-qubit unitaries, but also more generally, meaning that

one can always find combinations of elements in GA to efficiently approximate SU(2n).

From here onwards, by universality, we are always implying approximate universality.

The implications on MBQC are then manifested through restrictions of measurement.

We have then a framework of universal resources, to which non-deterministic measure-

ment outcomes can be corrected. The available computational power can still be exploited

by a limited set of measurements, as long as these can generate all the elements of GA.

The last step is to harness these theoretic models physically.

4.7 Entanglement bakeries

The physical constructions of cluster states

The preparation of a cluster state seems facilitated by the commutativity of CZ gates

among themselves. Because of this, the order in which they are applied does not matter,

theoretically allowing for the easy growth of larger states. It is instead the physical setting

31

4.7. ENTANGLEMENT BAKERIES

of applying these entangling operations, which harms their successful development. To

see this, we will consider two differing methods of implementing resources, motivated in

[16], that are innately related to their physical setting of computation.

In the static approach, the underlying lattice of the cluster state exploits the physical

layout of qubits. This is the case for low-energy atoms in optical lattices, where periodic

arrays of laser trapping sites determine the locations of qubits. These are then subject

to Ising-type interactions, implementing the desired CZ gates. Such protocols are usually

performed on a square lattice, though they are particularly prone to site defects, where

imperfections leave empty sites without atoms [7]. Failed CZ gates in this model are easily

correctable, as one can perform surgical measurements to disentangle failed regions before

reattempting entanglement. However, the loss of qubits themselves persists as missing

vertices in the associated graph.

Alternatively, the dynamic approach uses optical CZ gates to actively entangle the

system. These are especially useful for linear optical quantum computing (LOQC) and

other photonic-based systems [25]. Until 2001, it was thought that the limitations of

bosonic systems prevented the construction of quantum circuits using only linear optics.

That was until Knill, Laflamme and Milburn proposed a protocol (KLM) [17] allowing

for scalable universal computation, results that extend to MBQC. In these schemes,

gate implementation is only achievable non-deterministically, so many qubits are left

unentangled from the global lattice. Unlike the vertex-based faults of the static scheme,

errors here are instead related to missing edges of the underlying graph. Whilst photonic

loss, causing missing vertices, can also be apparent in this scheme, we will leave our

treatment of simultaneous errors to the final chapter.

Both methods offer unique advantages for generating resources but are equally prone

to specific production errors that need treatment. Fortunately, both types of defects

are heralded, meaning that we can detect the presence and location of these errors.

The challenge then is to use this information to ensure that the faulty clusters are still

computationally useful.

32

5 Sculpting from the erroneous

“It is the system and its fragility, not events, that must be studied.”

- Nassim Nicholas Taleb

With more defects, the topology of the underlying cluster states will change. Too many

faults may eventually destroy the structure that itself allows for universality. In [7], an

algorithm was devised for finding a universal lattice within a faulty one. The approach

considers a mapping of the problem to percolation theory, locating a phase transition in

the computational power of MBQC resource states subject to random errors. We here

provide an overview of this approach in the language of ZX, and extend on the work from

[7]. Whilst the technique bridges two seemingly distant fields, we seek to promote their

symbiosis via the diagrammatic language.

5.1 Percolation thresholds

An outline of important results

The study of graphs which are subject to probabilistic vertex and edge removals form the

premise of percolation theory. The seminal results concern phase transitions across these

networks at critical probabilities. Faulty cluster states that lack either qubit or entangle-

ment gates, are mapped to problems of site (SP) and bond percolation (BP) respectively.

Given that these errors occur as independent events, we are more specifically interested in

the results of Bernoulli percolation, and will initially focus on models considering planar

graphs.

In [7], only errors reminiscent of static preparation are considered, meaning that the

model considers site percolation where the chances of a qubit successfully forming is p.

One might prefer to call this faulty graph a network and expand on the native terminology

33

5.1. PERCOLATION THRESHOLDS

to this related field. Here, we are frequently interested in the sizes of clusters within a non-

trivial graph. These are isolated but fully connected chunks of the graph. The percolation

threshold pc is the concentration p at which a unique infinite cluster suddenly appears for

the first time over an infinite lattice. Below this threshold, only finite clusters exist. The

results we discuss are true almost surely in the thermodynamic limit otherwise definitions

are poorly defined. However, the approximations remain robust even at smaller scales.

For an L × L square lattice we find that the finite-size scaling accuracy at the critical

threshold obeys [31]:

pc(L)− pc(∞) ∝ L− 3
4 (5.1)

In other words, even for finite graphs, we can still expect good approximate results at

criticality. The following universal lattices have known, although not all exact, values for

pc as provided by [9]:

Percolation Type Site pc(∞) Bond pc(∞) Degree

Hexagonal Lattice (H2) ∼ 0.6962 ∼ 0.65271 3

Square Lattice (Z2) = 0.592746 = 0.5 4

Triangular Lattice (T2) = 0.5 ∼ 0.34729 6

Cubic Lattice (Z3) ∼ 0.3116 ∼ 0.2488 6

Some insights into the above properties can be obtained by a relationship relating the

dual lattices 3.6, which states that the critical bond threshold satisfies:

pc = 1− p⋆c (5.2)

Since Z2 = (Z2)⋆ then for square lattices the threshold must be one-half. Likewise, we

have H2 = (T2)⋆, which is apparent from their complementing bond values.

Consider the standard case of a finite Z2, where it becomes apparent what distin-

guishes the regimes outside criticality. We here provide an example for L = 25 subject

to site percolation at the subcritical (p < pc), critical (p = pc) and supercritical (p > pc)

34

5.2. THE CHISELLING ALGORITHM

regimes respectively. We illustrate the graph in a cellular form for clarity, though it is

entirely analogous to treating it as a network. The dark blue regions represent the largest

connected component, lighter blue are available sites and empty ones are left blank.

Crossings consist of paths that traverse a lattice from one side to another. For Z2,

we define H and V crossings for horizontal and vertical paths between their associated

borders, features that are exploited in the algorithm we introduce shortly. When we

consider alternative lattices like T2, crossings are less natural to define given the odd

number of sides, but we do not require these considerations in our investigation.

5.2 The chiselling algorithm

A method for identifying universality from faulty lattices

We will first consider a resource state subject to site percolation, as does [7] for the static

low-energy atomic case. Optical lattices are frequently implemented as a Z2 structure,

though when subject to unpredictable errors, it is not clear how the graph might evolve.

We again are looking to identify an alternative universal cluster, whose graph is a to-

pological minor 3.8 of a subset of qubits stemming from the initial faulty graph Lf . By

reintroducing the contraction and deletion effects of the Y and Z basis measurements, and

neglecting feed-forward post-processing, we can further simplify less obvious subgraphs

35

5.2. THE CHISELLING ALGORITHM

into more familiar universal shapes. The simplest regular lattice to devise from Z2 is that

of H2, since it carries the lowest average degree for internal nodes. This is useful when

finding methods to trace it out from Lf , given that high-degree nodes permeate less

as faults increase. If we successfully identify a suitable universal structure, then we can

confidently reclaim universal computation in the faulty state, though it’s computational

capacity may be weaker.

The algorithm of [7] uses a range of intricate methods to both optimally and efficiently

identify a useful subgraph. We here propose an alternative method that allows for a more

intuitive illustration of the underlying process. Later, it is shown that our approach still

manages to identify the same proportion of crossings as the original proposal. We call

this new method the shortest path (SHP) algorithm, the code for which is available in

the appendix.

Firstly, classical pre-processing locates a suitable region for a universal subgraph and

then assigns corresponding measurements to specific cells. Though these assignments are

made at the end, the associations between the cellular representation of the physical

system and ZX form are provided. Computationally, we assign the colour scheme to

numerical inputs of a matrix.

Type Fault Qubit Path Junction

Grid scheme

ZX scheme Z Y

36

5.2. THE CHISELLING ALGORITHM

The method of SHP is here described whilst providing examples for L = 25 and

p = 0.9. We begin with a faulted lattice, where the ZX scheme above is yet to be applied,

and so associate all cells to |+⟩ states as shown.

∋

Cells are associated to vij with i, j ∈ R = {1, ..., L}, reflective of the underlying vertex

correspondence. A border is then chosen, and scanned along, checking whether a path

exists between the current vertex and the opposite side. We restrict these to only attempt

vertices directly across, to better balance out spacing and efficiency purposes. If identified,

and validated through the additional conditions considered below, the shortest path is

drawn. These form subsets of the H and V crossings, and we label them as SH and SV

respectively. For clarity, we have defined boundary indices B = {1, L} and a function

S which returns the shortest path between any two input cells vi1j1 , vi2j2 subject to the

condition ĉ, but returns nothing if there is no path at all.

SH =
{
sHk = S(vk1, vkL, ĉ) ∀ k ∈ R | vkb ̸= 0 ∀ b ∈ B, ĉ→ /∈ N(vij)

}
(5.3)

SV =
{
sVk = S(v1k, vLk, ĉ) ∀ k ∈ R | vbk ̸= 0 ∀ b ∈ B, ĉ→ /∈ N(vij)

}
(5.4)

37

5.2. THE CHISELLING ALGORITHM

In short, we collect the shortest paths between opposite borders under the condition

that two paths of the same crossing type are never adjacent nor intersecting. This ensures

that we have the correct spacing to later perform measurements between, vital for creating

the universal minor. Both orientations of crossings are identified and combined in a

process called K, with junctions specified as their overlap.

K−→

Two parts of processing then take place. The first strategically neglects every other

inner bridge over a single orientation. These bridges consist of path sections between

two junction cells, best revealed in the exemplary diagrams. This action is referred to as

bridge decomposition B. Highlighted regions are labelled according to the transformation

imposed by the procedure as specified below, where the neutral shade represents any

non-empty cell type.

C : −→ P : −→ J : −→

The results of bridge decomposition are then shown with the identified neglected regions

highlighted.

38

5.2. THE CHISELLING ALGORITHM

B−→

This is now more revealing of the desired hexagonal form, though more intricate

modifications are required to sharpen the results. This is where the secondary process

comes into play, as it removes redundant trails and clustered path regions. We call this

chain of modifications trimming T. It also includes some internal modifications that

re-identify and retain necessary junction cells, to correctly designate them to suitable

measurements.

T−→

The identified structure and cell mappings are passed over for quantum processing so

that measurements are made according to the ZX scheme. We can see how this manifests

39

5.2. THE CHISELLING ALGORITHM

more closely on the same subsection of the processed lattice:

∋
Y Y

Y

Y Y Y Y

Z Z Z Z

Z Z Z

Z

Z Z

Z

Z

Z

Because ZX diagrams are invariant under deformations, the new resource state is then

innately equivalent to the universal H2. This can now be used as a completely unfaulted

universal resource for MBQC.

→

However, it is not always possible to spot these topological minors, given that the errors

may be severe enough to prevent any universal formations in Lf . Their appearance is

in fact entirely correlated to percolation thresholds, the reason for which the symbiosis

between these distant fields exists. To best quantify these, [7] proposes entanglement as

40

5.3. MONOTONES AND PHASE TRANSITIONS

an order parameter for a phase transition of computational efficiency.

5.3 Monotones and phase transitions

Quantifying critical error rates with entanglement

In general, it is extremely difficult to classify the amount of entanglement in a mul-

tipartite system, so many differing approaches can be found across the literature [32].

Entanglement monotones µ, are functions which attempt to quantify this and share the

following set of conditions.

• µ(|ψ⟩) ≥ 0 (Positive semi-definite)

• Invariance under local unitary transformations.

• Invariance under local operations and classical communication (LOCC).

This last condition occurs when a local operation is executed on a subsystem of a multi-

partite state, and the outcome is subsequently communicated classically to another party.

They then conditionally implement a local operation on their respective subsystem. Des-

pite appearing arbitrary, this definition reflects a reality of entanglement that monotones

themselves should obey, in order to be considered viable.

For regular lattices, a particularly suitable measure is that of entanglement width µW ,

a natural candidate for tackling cluster states given its inspiration from graph theory [36].

The most useful feature of this monotone to our purposes is that it obeys the following

equality:

µW

(⊗
k

|ψk⟩

)
= max

k
µW (|ψk⟩) (5.5)

That is, the measure of entanglement on a product state is entirely equivalent to the

largest contribution of any individual sub-state. Disconnected clusters within the lattice

are themselves no longer entangled with their surroundings, so µW for a cluster state can

be entirely deduced from the single most entangled component. Because of the regular

41

5.3. MONOTONES AND PHASE TRANSITIONS

lattice structure, the largest connected component (LCC) then bounds the amount of

entanglement available to the global cluster state.

In MBQC, the amount of entanglement present in the resource state predefines the

amount that can possibly be exploited in a quantum algorithm [10]. One can never use

measurements to produce a more entangled state, a property emphasised by its invariance

under LOCC. Relatedly, entanglement provides a baseline for the computational capacity

of a state. In fact, it is necessary that the entanglement width of a resource is unbounded

for it to ever be universal [24]. By unbounded, we mean that there exists no upper

limit to the amount of entanglement that the resource can possess, regardless of its

scaling. This can be understood from CNOT gates, the only 2-qubit elements of GA

which perform entanglement 4.8. In a faulty MBQC lattice, regions capable of containing

these gates must then already exist, and should not be limited to a finite region if the

lattice necessitates scaling.

From this perspective, it is clear that the only fully connected component that scales

in accordance to these requirements appears in the supercritical regime, as predicted by

classical percolation theory. Yet 5.5 immediately translates this into the upper bound for

available entanglement. It is then necessary for our faulty lattice to be situated beyond

pc for it to ever be universal. On the contrary, it is almost surely guaranteed that the

subcritical regime offers no deployable subgraph.

The argument in [7] considers the scaling properties of LCC components on Z2 to

decipher the above remarks with µW . It is further shown that in the subcritical regime,

one-way computation can be efficiently classically simulated. These findings allow us

to distinguish the two regimes of percolation theory as a phase transition for universal

quantum computation. But what does it tell us about the available computational power,

if we do successfully identify a universal minor?

42

5.3. MONOTONES AND PHASE TRANSITIONS

Figure 5.1: Numerical calculation of normalised LCC ratios Λ for all 2-dimensional reg-
ular universal lattices, subject to site percolation (left) and bond percolation (right).
Computed for L = 100 statistically averaged over 50 repeats with standard deviations
displayed.

Numerical solutions for Λ, which monitors the LCC size normalised to the total lattice,

are evaluated for the universal planar lattices in fig. 4.1. According to 5.5, the LCC

limits entanglement linearly in the supercritical regime for SP. Whereas nearly all of the

available capacity could be provided above pc for BP. It would seem as though the two

forms of percolation differ strongly in terms of how much computational capacity could

be available to a universal subsystem. But this does not account for the actual structure

that the LCC is likely to manifest.

Recall that topology played the initial governing role in identifying universality, mean-

ing that much of the contained entanglement could well be unexploitable from the LCC.

In fact, we already encountered many non-universal graphs, whose geometries would in

turn exhibit high entanglement width. In the next section we will propose an argument

from the perspective of crossing paths to instead motivate the supercritical regime as both

a necessary and sufficient condition for cluster state universality in the thermodynamic

limit.

43

5.4. SYMMETRY IS SUFFICIENT

5.4 Symmetry is sufficient

Why the supercritical phase can sometimes guarantee universal subsystems

When a percolating LCC cluster appears, crossings innately manifest, since the largest

component is expected to span the range of it’s underlying lattice. Crossing path intersec-

tions are further guaranteed, given that the component is fully connected. If our lattice is

asymmetric, some crossings appear sooner than others, because their respective bound-

aries are closer. This is what the analytical work of John Cardy presented in his work

[8]. Here, hypergeometric functions and tools from conformal field theory helped develop

mathematical estimations for crossing probabilities ϱk, the likelihood that crossing paths

appear between the sides specified by k. Though in general, the project of determining ϱk

remains largely incomplete. It is best then to approach these quantifications numerically,

though we can first make some simplifications given the symmetries of real cluster states.

We again consider the Z2 case, to lead from the work of [7]. The regular grid presents

equal sides, meaning that a π
2
rotational invariance is exhibited. Accordingly, H and V

crossings are expected at the same frequency, in the scaled limit, given that errors are

independent events. These arguments extend naturally to other regular lattice shapes,

as long as they present both even-numbered and equal-lengthed sides. The immediate

simplifications are twofold:

ϱH ∼ ϱV ∼ ϱH∩V := ϱ −→
∣∣SH

∣∣ ∼ ∣∣SV
∣∣ :≃ |S| (5.6)

These results can also be found via the self-duality of Z2 [18], but we maintain the

previous explanation for generality. In essence, 5.6 finds the likelihood of both H and V

crossings to appear on Z2 to be equal. In turn, the number of crossing paths are also

expected to be equivalent from either orientation. Whilst ϱ will remain independent of

the algorithm devised, |S| will depend on our method of extracting crossings within the

conditions necessary to weave a universal subsystem.

Crossings will still manifest regardless of whether a designated algorithm can identify

44

5.4. SYMMETRY IS SUFFICIENT

them. For a symmetric lattice in the above sense, the presence of a spanning LCC above

pc by definition will always contain such intersecting crossings. This is shown via our

SHP method, though not exclusively to it, to be sufficient criteria for tracing out an

underlying universal structure. For the finite case, on close proximity to pc, the lattice

itself might not exhibit a desirably large, or even any universal structure. However, it still

carries the possibility of being rescaled so as to eventually offer one, since crossings are

more likely than not to reoccur in the supercritical phase. In the infinite case, rescaling is

never needed, so the arguments will hold true always. In this sense, the thermodynamic

limit offers a guaranteed universal subsystem above pc.

To see these predictions numerically, we provide estimations for ϱ in fig. 4.2. Here,

the probability of crossings grow exponentially at the critical threshold before saturating

towards unity. Though an identified universal subgraph might not take advantage of all

these paths, their presence suffices in confirming that a tracing is possible from pc.

Figure 5.2: Numerical calculation of simultaneous crossing probabilities ϱ on Z2 for site
percolation (left) and bond percolation (right). Computed for L = 100 statistically aver-
aged over 50 repeats with standard deviations displayed.

To account for the additional spacing conditions enforced by the SHP algorithm, we

further simulate |S| as calculated by our carving algorithm. In [7], a constrained right-

handed wall walking (RHWW) algorithm is instead the proposed method of identifying

45

5.4. SYMMETRY IS SUFFICIENT

crossings. We find that the numerical results for our SHP method, see fig. 4.3, scales

in accordance to the results of RHWW in the original paper. Close to the percolation

threshold, SHP only differs in that it offers a linear-like scaling compared to the polyno-

mial growth of RHWW.

Figure 5.3: Numerical calculation of crossings |S| found using SHP on Z2 for site per-
colation (left) and bond percolation (right). Computed for L = 50 statistically averaged
over 10 repeats with standard deviations displayed.

As expected, there are much fewer desirable crossing paths in practice, though they

still birth from the classical critical value. These numerical calculations hence promote

the argument for supercritcal sufficiency. Whilst we do not provide a size-dependent

accuracy of how the sufficient condition for universality holds below the infinite case, 5.1

suggests a good approximation even at smaller scales.

These results can further be used to extract a necessary overhead, given that the

number of crossings immediately defines the limits of the universal structures that can

be extracted. For this development, instead of seeking H2 regions within Z2, we will look

directly for a brickwork-compatible subgraph. This builds immediately from the method

of tracing out H2, given the similarities in the two topologies. The component bricks are

then promoted as a currency for quantifying computational capacity.

46

5.5. THE METHOD OF OVERCOMPENSATION

5.5 The method of overcompensation

Calculating a resource overhead to account for errors

The maximal number of discernible bricks b(|S|) can be extracted by investigating the

relationship between |S| crossings on a Z2 lattice and its ability to construct the global

brickwork structure. We propose an estimation for this quantity by averaging the relative

number of crossings necessary to create a single brick. Below we outline the process of

how these bricks are quantified from Z2 crossings, which we represent in a lattice form

for clarity.

|S| = 2

|S| = 2

|S| = 5

←

The right-hand diagram demonstrates how only complete bricks will contribute to the

computational capacity, meaning that a flooring aspect is required in an estimation for

their quantity.

b(|S|) =
⌊
1

2

⌊
|S|
2

⌋⌊
|S|
5

⌋⌋
b0 := b

(⌊
L

2

⌋)
ς :=

b

b0
(5.7)

The maximal amount of bricks available to the original Z2 is defined as b0. The proportion

as compared to this original cluster state will then allow us to compute an overhead.

We define this quantity to be ς := b
b0

and then consider our overhead as Ω := ς−1.

47

5.5. THE METHOD OF OVERCOMPENSATION

Qualitatively, this is the value by which we must additionally scale our faulty lattice to

almost surely ensure a computational capacity equivalent to an unfaulted implementation

of the original Z2 cluster.

In fig. 4, we offer numerical estimations of the overhead. We have numerically im-

plemented Γ : p −→ |S|, to instead provide the brick count in terms of success rate p,

where b(p) := b(Γ(p)). The discontinuity in the exact points arises from the quantisa-

tion of bricks since they are only present in complete units. By neglecting the flooring

aspect, we also superimpose extended results, to imitate the tendency expected in the

thermodynamic limit.

Figure 5.4: Numerical calculation of the overhead Ω on Z2 for site percolation (left) and
bond percolation (right). Exact values obey the flooring aspect for quantising bricks,
whilst extended disregards it so as to represent the general tendency in the thermody-
namic limit. Computed for L = 50 statistically averaged over 10 repeats with standard
deviations displayed.

It is shown that Ω asymptotes vertically at the percolation threshold, phenomena

accounting for how only limitless additional resources will take a critically faulty cluster

towards a usable state. This was precisely the behaviour predicted beforehand, where we

expected possible universality towards pc, even if they necessitate a large overcompensa-

tion in initial resources. In the subcritical regime, no amount of overcompensated scaling

can achieve a universal state, so these values are suitably ill-defined.

48

5.5. THE METHOD OF OVERCOMPENSATION

It is difficult to obtain analytical results from the observed plots, given the fluctu-

ations and dependencies on the crossing algorithm. Still, we can gain insights into the

computational complexity.

The relations of 5.7 first imply Ω ∝ |S|−2. In [7], the RHWW is found to detect

roughly O(p) crossings away from the percolation threshold. Given its additional numer-

ical proximity to the SHP method, we can say in general that Ω ∝ O(pγ) with γ ∼ −2.
This means that the overhead scales polynomially in the supercritical regime away from

pc, and so offers an efficient scaling for overcompensation.

What we have then shown is that for regular and equal-sided planar lattices, cross-

ing probabilities directly coincide with the manifestation of an LCC. Given that their

very presence is sufficient to develop a universal substructure, one can conclude that the

phase transition not only delimits the subcritical regime as simulatable classically but

almost surely guarantees the supercritical regime to be universal. To account for these

non-critical errors reducing computational capacity, one can compensate with an efficient

scaling overhead so as to allow for the universal capacity initially desired in the unfaulted

scenario. Nevertheless, our language of efficiency here concerns a computational imple-

mentation, as opposed to a physical one. In practice, even polynomial compensation can

prove more difficult on an experimental level. Might there exist better ways of growing

these lattices in the first place?

49

6 Faults and fusion

“Have no fear of perfection, you’ll never reach it.” - Salvador Dali

Non-deterministic CZ gates in LOQC can be strategically improved on smaller scales.

However, their implementation in larger systems remains constrained, requiring a coarse-

grained model for better insights into percolating behaviour. This stems from fusion

measurements, which are instead deployed to glue constituent micro-clusters together.

The method further allows for three-dimensional resources, which are mandatory for

practical fault-tolerant quantum computing. These tools were recently reformulated as

a single model proposed in 2021 [3], an architecture that to our knowledge remains

unexplored from the perspective of percolation methods and rigorous ZX treatments.

6.1 High-dimensional tolerance

Why fault-tolerance is enabled in 3-dimensions

In addition to the errors arising in cluster state preparation, defects can occur during

computation. Even the slightest environmental disturbances can lead to unwanted effects

on qubits, which can destroy the desired computational process. In classical computation,

redundancy is used to overcome these errors by creating multiple copies of the same pieces

of information. This approach considers the majority output of clones, rather than relying

on a single potentially faulted bit. Unfortunately, the no-cloning theorem prevents this

scheme entirely from being realised in the quantum setting [13]. This is the statement that

it is impossible to construct an identical and independent copy of an arbitrary unknown

quantum state.

Instead, we can allocate bits towards a larger entangled state. Here, k logical qubits

embed their state into a highly entangled collection of n physical qubits. How this partic-

ular assignment is made defines a particular code. One then uses a syndrome measure-

50

6.1. HIGH-DIMENSIONAL TOLERANCE

ment to detect corrupted qubits in the entangled system. Subsequent operations are then

tailored towards restoring the logical piece of information. The general field of quantum

error correction (QEC) seeks general methods of detecting and correcting defects without

collapsing states. Whist it is not of interest to provide an extensive discussion here, a

more developed introduction is available in [29].

Fault tolerance, is the additional requirement for physically viable quantum computing

architecture. This is achieved when the physical error rate is reduced below a certain

threshold, that through repeated applications of a permitting QEC scheme, can suppress

logical errors to arbitrarily low levels [27]. When referring to a MBQC system that enables

these properties, we will instead call this fault-tolerant quantum computing (FTQC).

Physically, resource states are given an additional dimension for entanglement to most

naturally enable fault-tolerance. As part of the error diagnosis, parity checks consist of

collections of entangled qubits that decipher whether bit-flip (undesired X operations)

or phase-flip (undesired Z operations) have occurred. Inspired by the BCC symmetric

FTQC lattice of [6], we illustrate a possible fault-tolerant cluster state below, highlighting

the internal structure that plays the role of checks.

∋

↗

↘

Z

X

Whilst Z and X parity checks appear to take on the same form, their action differs

depending on the layers in which they are embedded. It is suggested in [7] to explore

the percolation results in the 3-dimensional case, so one might seek to explore the above

topology as a minor of Z3. However, in a physical setting, these larger clusters are not

51

6.2. STRATEGIES FOR THE OPTICAL ARCHITECT

immediately implementable. It is therefore not reflective of their physical creation to

consider these results with the same methods. LOQC being a more suitable candidate

for large-scale FTQC, offers a solution by gluing smaller pieces together.

6.2 Strategies for the optical architect

The realistic approach for building large lattices

Repeat-until-success methods can boost CZ success rates from 50% to well above 99%

[19]. To do so, micro-clusters are first created in the form of a central qubit attached

to many potentially redundant neighbours, an initial process that can be achieved de-

terministically [26]. One can then repeatedly apply photonic CZ gates, until successfully

entangling two auxiliary qubits. Failed CZ leads to the destruction of both target qubits,

so the optimality of this method is entirely determined by the number of neighbouring

qubits each. Once complete, any remaining neighbours are measured out, leaving only

the central qubits behind. The process is outlined in ZX below.

p
⇁ ↣✓

⇁
Mi⇁

X X

X X

X

X

XX

XX

For the above process considering an 8-legged spider, which models 7 potential target

qubits, our likelihood of success is already 99.22%. To ensure growth on average, only

2 additional legs are needed on the central qubit [26]. At these scales, bond percolation

may seem like a redundant issue, but it is for larger systems where this process becomes

unfeasible. This is where 2-qubit measurements known as fusions come into play.

In photonic systems, there exist two primary classes of fusions known as Type-I and

Type-II. Both effectively implement Bell measurements, though differing in terms of their

52

6.2. STRATEGIES FOR THE OPTICAL ARCHITECT

physical realisation. Type-II results are more favourable to cluster state development

because they are heralded and can be boosted using auxiliary qubits up to a 75% success

rate [14]. It is less a matter of considering the defected CZ gates forming micro-clusters

since they can be near-deterministically implemented, but rather a question of how the

non-deterministic fusion gates succeed in bridging these smaller components together.

The construction of large-scale fault-tolerant resources using fusion measurements was

recently bridged in a set of papers stemming from [3]. Fusion-based quantum computing

(FBQC) is here proposed as a method to simultaneously account for the range of issues

stated above. By considering micro-clusters structured strategically, their method facilit-

ates the construction of an immediately fault-tolerant resource. For the same BCC archi-

tecture as above, the protocol suggested in [6], proposes the creation of 6-ring clusters,

innately capable of QEC schemes, before fusing them selectively as shown.

7→ 7→ 7→

Alternative models also prepare slightly larger micro-clusters of differing structures. The

resulting system is then prone to defects mostly at the level of unsuccessful fusions

between components, rather than internal to the micro-clusters themselves. However,

given the time it takes to implement the above protocols, photonic loss can still occur

within the components. Similarly, repeat-until-success methods might be implemented

at worse rates, given experimental limitations or requirements for efficiency.

Original percolation models forget to capture these higher-order effects, occurring in

3-dimensional cluster state preparation. For this reason, we consider a renormalisation

53

6.3. NETWORK RENORMALISATION

method for a toy-FBQC model. The aim is to demonstrate an alternative approach to

the method of finding phases of fault-tolerant universality in FTQC, necessary for the

eventual quantification of an overhead.

6.3 Network renormalisation

The strategy of coarse-graining a cluster state

We first distinguish the success rates of micro-cluster percolation and Type-II fusions as

p and pF respectively, since these are not likely to be the same. Fusion measurements

always manifest a form of bond percolation at the global scale. On the contrary, depending

on the errors that best model our particular setup, we either subject the micro-cluster

to photonic loss on sites, or entanglement defects as bonds. We will not consider their

simultaneous presence for clarity, but such results are easily found by extension.

In this way, we first handle a system subject to 1 − p errors in either percolation

types on the micro clusters but 1− pF on the fusions between. We then renormalise the

micro-clusters so as to effectively model a global system with a successful site rate of

R(p) and correctly implement bonds according to pF .

−→

p R(p)

The translation through the photonic loss model is labelled as Rs and for CZ entangle-

ment via Rb. We then propose a toy construction of 1000 small Z2 clusters with L = 20,

modelled with success p for either form of percolation. These components are then sub-

ject to fusion measurements so as to relate them via global cubic connections Z3 of size

54

6.3. NETWORK RENORMALISATION

L = 10, occurring with success pF . In the renormalised scheme, the entire micro-cluster

is modelled as a single node subject to a success rate of R(p). If the micro-cluster does

not present an innate universal structure, then it is modelled as defective, and so re-

moved from the global structure. That is, we apply a local crossing analysis to each of

the components as a means of determining their coarse-grained effect.

For both SP and BP at the component level, our models are expected to display

higher-order effects, not predictable by an immediate modelling of a standard cubic lat-

tice. For comparison, fig. 5.1 presents the standard combined percolated Z3 LCC growth,

where p is the site success and pF is for bonds.

Figure 6.1: Numerical calculation of normalised LCC ratios Λ for the cubic lattice subject
to combined site and bond percolation. Computed for L = 30 statistically averaged twice.

We again identify the limiting region as a separation from universality, which falls

naturally from the arguments of sufficiency before. Indeed, if a unique spanning cluster is

identified, given the symmetry of Z3, crossings are expected from all faces with guaranteed

intersections of at least degree 3, since they are part of the same connected component.

In this way, one could use an adapted algorithm to trace these out as the backbone for

55

6.3. NETWORK RENORMALISATION

another underlying universal resource, but will it be fault-tolerant?

Junctions of degree 3, which are guaranteed in both 2-dimensional and 3-dimensional

crossing intersections, are sufficient for extracting the universal H2 or brickwork lattice.

However, this is not necessarily enough for current fault-tolerant architectures like the

BCC structure illustrated above, instead requiring crossing intersections of at least degree

4. Whilst the likelihood of this event is large in the supercritical regime, it requires a more

detailed analysis from the perspective of its degree distribution.

The coarse-grained models sought to better represent the physical FBQC resource

preparation are displayed in fig. 5.2.

Figure 6.2: Numerical calculation of normalised LCC ratios Λ for a global cubic lattice
whose coarse grained nodes represent Z2 micro-clusters. Fusion bond measurements suc-
ceed with pF whilst micro-clusters are subject either to local site percolation (left) or
bond percolation (right) with p. These represent photonic loss via Rs(p) or CZ entangle-
ment disruptions asRb(p), affecting the global site percolation accordingly. Computed for
L = 10 at the cubic level, and L = 20 for 1000 micro-clusters with statistical averaging
repeated 5 times.

These latter results present a tighter critical boundary, though the supercritical regime

offers a more rapidly saturating growth than the non-renormalised case. With Rb(p) =

56

6.4. HYPERGRAPH CALCULUS

99.22% and pF = 75%, using the optimal case values mentioned before, a universal and

very likely fault-tolerant resource safely lands in the supercritical regime. By mapping

out the entire region of criticality, limits to which both types of errors must be overcome

are then concisely identified. An extended three-dimensional crossing analysis with more

sophisticated algorithms could then be used to discern the necessary overhead for such

implementations.

6.4 Hypergraph calculus

A potential generalisation for more robust states

Erroneous resource preparation can also be studied through the lens of hypergraph

states. These are already well defined in the graph state literature as an extension to

MBQC resources [30], though their bridge to percolating cluster state preparation and

the ZX formalism remains untouched. The hyperedge allows for simultaneous connections

to many individual nodes. Its practicalities for representing entanglement have already

been investigated given that the hyperedge offers a natural description for multipartite

systems [20]. Hypergraph states are defined with k indexing the range of qubits to which

the multi-controlled CZ gate applies:

|H⟩ =
∏

(vi,...,vk)∈E

CkZvi,...,vk |+⟩
⊗|V | (6.1)

Theoretical work has developed message-parsing techniques to discern percolation thresholds

in hypergraphs, demonstrating that they exhibit significantly lower critical values than

traditional graphs [5]. Independently, hypergraph states have been suggested as deploy-

able resources for continuous variable (CV) MBQC [21]. This model of quantum comput-

ing instead considers non-discrete Hilbert spaces H, a framework that can be exploited

with specific photonic modes, and displays a variety of advantages over the standard

framework [15]. Given their more robust percolation properties, hypergraph resources

could prove to be promising candidates against preparation defects.

57

6.4. HYPERGRAPH CALCULUS

As an extended representation of the ZH formalism more tailored towards hypergraph

states, we suggest the generalised N-cardinality hyper-hadamard edge. The role of multi-

qubit CZ gates is then directly offered through a hypergraph translation. One can see this

more fluently from a bipartite representation, where H-box nodes are taken to represent

these hyperedges.

7→ −→

The ZH-calculus carries its own specific rewriting rules [2], whilst simultaneously reflect-

ing the underlying lattice subject to percolation methods. Future work might seek to

translate these ZH rules into the above representation, a transparency that would pro-

mote its relationship towards percolation on hypergraph states. Rewriting rules could also

be deployed within the faulty lattices, to help convert regions into more easily identifiable

universal structures.

Beyond MBQC, hypergraph structures are omnipresent in multipartite entangled sys-

tems. It would be of interest to see if the use of percolation methods and graph robust-

ness provide options for quantifying entanglement, non-locality or decoherence in open

quantum systems.

58

7 Conclusion

“Beauty is the first test; there is no permanent place in the world for ugly

mathematics.”

- Godfrey Harold Hardy

By mediating the benefits of ZX-Calculus and percolation theory, we have shown

that a number of new insights regarding faulty cluster state preparation are obtainable.

The ZX formalism was shown initially to allow for an organic transition towards erro-

neous clusters. Here, universal properties devised from the diagrammatic language were

exhibited though phase transitions in percolation theory.

We argued that the supercritical regime is sufficient for a universal subsystem to

appear on the Z2 symmetric lattice at the thermodynamic limit. The argument extends

naturally to structures obeying similar requirements, allowing for a richer interpretation

of error regimes. Numerical results are shown to agree with these predictions, though it is

stressed that fluctuations in accuracy are expected for finite systems. These methods, and

their relation to the brickwork lattice explored through ZX, further enabled an estimation

for the physical overhead required for physical cluster state resources.

Whilst [7] motivated investigations into 3-dimensional cases, we found that although

this model is readily treated with similar methodologies as before - though needing ad-

ditional degree distribution analysis to guarantee fault tolerance, it is not reflective of

modern cluster state preparation techniques. Instead, we consider fusion-based models

as the most realistic preparation process. Here, coarse gaining was applied to the global

structure of the cluster states, an approach that was demonstrated on a toy model. Sub-

sequent numerical simulations reveal higher-order effects which shift the original critical

thresholds from standard 3-dimensional percolation. Hypergraph states were then pro-

moted as a more robust candidate against percolating errors, a path that is left for further

work.

59

7.1. FURTHER WORK

The duality of the ZX-calculus and percolation theory, alongside the methods devised

throughout our discussions, may not be limited to applications in faulty measurement-

based quantum computing. As suggested in the hypergraph discussion, large entangled

structures entail a wide range of quantum-phenomena, and it would be of interest to

promote the combined methods across new areas of quantum research. Alternatively,

we could exercise these strategies for other percolated tensor networks, given that these

structures are frequently prevalent in other disciplines.

7.1 Further Work

Instead of relating computational units to the brickwork lattice, one could attempt to

quantify efficiency from a more theoretical approach, to better adapt this measure to

non-regular lattice structures. In this way, overhead predictions could be offered for ar-

bitrary systems, an achievement that would be extremely practical to real-life cluster

state preparation.

It would also be of interest to harness the methods of renormalisation beyond toy

models and see their effects on realistic fusion-based systems. Likewise, a 3-dimensional

tracing algorithm could be devised to then identify the universal subsections within.

Whilst it is likely that this subgraph is also fault-tolerant, it is suspected that a deeper

investigation into degree distributions on percolation models would be required to locate

the sufficient region for extracting fault-tolerant universal states.

Finally, the list of methods proposed could be generalised to hypergraph states, as

motivated by their natural representation in the ZX-formalism as well as their robustness

against percolating errors. This could further motivate rewriting methods specific to

assisting the identification of universal substructures, a strategy that might first begin

with more standard graph states.

60

p = 0.95 p = 0.85 p = 0.70

10
×
10

20
×

20
30
×

30
40
×
40

50
×

50

A SHP algorithm

1 def graph_to_matrix(graph , size):
2 """
3 Converts a graph into a matrix representation.
4 Inputs:
5 - graph: the graph
6 - size: size of the matrix
7 Outputs:
8 - matrix: matrix representation of the graph
9 """
10 matrix = np.zeros((size , size))
11 for (i, j) in graph.nodes:
12 matrix[i][j] = 1
13 return matrix
14
15 def count_neighbour_types(neighbours , neighbour_types):
16 """
17 Counts the number of neighbours of a certain type.
18 Inputs:
19 - neighbours: list of neighbour nodes
20 - neighbour_types: types of neighbours to count
21 Outputs:
22 - total: count of neighbours of specified types
23 """
24 total = 0
25 for neighbour in neighbour_types:
26 total += neighbours.count(neighbour)
27 return total
28
29 def get_square_neighbours(i, j, matrix):
30 """
31 Identifies a square region around a point in the matrix.
32 Inputs:
33 - i: row index
34 - j: column index
35 - matrix: the matrix
36 Outputs:
37 - square_neighbours: list of square members
38 """
39 size = len(matrix)
40 shifts = [(0, 0), (0, -1), (-1, 0), (-1, -1)]
41 square_positions = [(0, 0), (0, 1), (1, 0), (1, 1)]
42 for sx , sy in shifts:
43 square_neighbours = []
44 for dx , dy in square_positions:
45 nx = i + dx + sx
46 ny = j + dy + sy
47 if 0 <= nx < size and 0 <= ny < size:

48 if matrix[nx][ny] == 2 or matrix[nx][ny] == 3:
49 square_neighbours.append(matrix[nx][ny])
50 if len(square_neighbours) == 4:
51 break
52 return square_neighbours
53
54 def is_flower_structure(i, j, matrix):
55 """
56 Checks if a point is part of a flower structure in the matrix.
57 Inputs:
58 - i: row index
59 - j: column index
60 - matrix: the matrix
61 Outputs:
62 - is_flower: boolean indicating if the point is part of a

flower structure
63 """
64 size = len(matrix)
65 directions = [(1, 0), (0, 1), (-1, 0), (0, -1)]
66 direction_indices = [0, 1, 2, 3]
67 values = np.zeros (4)
68 for direction_index in direction_indices:
69 rotated_directions = np.roll(directions , -direction_index , axis

=0)
70 shifts = rotated_directions [0:2]
71 for dx , dy in shifts:
72 nx = i + dx
73 ny = j + dy
74 if 0 <= nx < size and 0 <= ny < size:
75 if matrix[nx][ny] == 4 or matrix[nx][ny] == 3:
76 values[direction_index] += 1
77 return tuple(values).count (2) == 1
78
79 def von_neumann_neighbourhood(matrix , neighbour_types):
80 """
81 Computes the Von Neumann neighbourhood for a given matrix and

neighbour cell types.
82 Inputs:
83 - matrix: the matrix
84 - neighbour_types: types of neighbours to count
85 Outputs:
86 - VNN_matrix: matrix of neighbour counts
87 """
88 VNN_matrix = np.zeros ((len(matrix), len(matrix)))
89 for i in range(len(matrix)):
90 for j in range(len(matrix)):
91 neighbour_count = count_neighbour_types(

get_von_neumann_neighbours(i, j, matrix),
neighbour_types)

92 VNN_matrix[i][j] = neighbour_count
93 return VNN_matrix
94
95 def branch_shortest_path(graph , matrix , direction):
96 """

97 Branches the shortest path horizontally or vertically in the matrix
.

98 Inputs:
99 - graph: the graph

100 - matrix: the matrix
101 - direction: ’H’ for horizontal , ’V’ for vertical
102 Outputs:
103 - matrix_with_paths: matrix with paths
104 - all_paths: list of all paths found
105 """
106 if direction == ’H’:
107 flipper = 1
108 elif direction == ’V’:
109 flipper = -1
110 else:
111 return "ERROR"
112
113 matrix_with_paths = matrix.copy()
114 all_paths = []
115
116 for shift in range(len(matrix)):
117 VNN_matrix = von_neumann_neighbourhood(matrix_with_paths , [2])
118 path_candidates = []
119
120 source = (shift , 0)[:: flipper]
121 target = (shift , len(matrix) - 1)[:: flipper]
122
123 if source in graph.nodes and target in graph.nodes:
124 overlap = False
125 try:
126 path = nx.shortest_path(graph , source , target)
127 except Exception:
128 continue
129 for (i, j) in path:
130 if VNN_matrix[i][j] != 0:
131 overlap = True
132 break
133 if not overlap:
134 path_candidates.append(path)
135
136 if path_candidates:
137 best_path = min(path_candidates , key=len)
138 all_paths.append(best_path)
139 for (i, j) in best_path:
140 matrix_with_paths[i][j] = 2
141
142 return matrix_with_paths , all_paths
143
144 def combine_paths(graph , matrix):
145 """
146 Combines horizontal and vertical paths in the matrix.
147 Inputs:
148 - graph: the graph
149 - matrix: the matrix

150 Outputs:
151 - combined_matrix: matrix with combined paths
152 - vertical_paths: list of vertical paths
153 """
154 horizontal_paths , _ = branch_shortest_path(graph , matrix , ’H’)
155 vertical_paths , vpaths = branch_shortest_path(graph , matrix , ’V’)
156 combined_matrix = horizontal_paths + vertical_paths
157 combined_matrix[combined_matrix == 2] = 1
158 combined_matrix[combined_matrix == 3] = 2
159 combined_matrix[combined_matrix == 4] = 3
160 return combined_matrix , vpaths
161
162 def trim_isolated_elements(matrix):
163 """
164 Trims isolated elements in the matrix based on their neighbourhood.
165 Inputs:
166 - matrix: the matrix
167 Outputs:
168 - trimmed_matrix: trimmed matrix
169 """
170 size = len(matrix)
171 trimmed_matrix = matrix.copy()
172 while True:
173 VNN_matrix = von_neumann_neighbourhood(matrix , [2, 3])
174 for i in range(size):
175 for j in range(size):
176 if VNN_matrix[i, j] == 1:
177 matrix[i][j] = 1
178 if np.array_equal(trimmed_matrix , matrix):
179 break
180 else:
181 trimmed_matrix = matrix.copy()
182 return matrix
183
184 def trim_bridges(matrix):
185 """
186 Trims bridges in the matrix.
187 Inputs:
188 - matrix: the matrix
189 Outputs:
190 - trimmed_matrix: trimmed matrix
191 """
192 size = len(matrix)
193 trimmed_matrix = matrix.copy()
194 while True:
195 VNN_matrix = von_neumann_neighbourhood(matrix , [2, 3])
196 for i in range(size):
197 for j in range(size):
198 if matrix[i][j] == 2 and VNN_matrix[i][j] == 1:
199 matrix[i][j] = 1
200 if np.array_equal(trimmed_matrix , matrix):
201 break
202 else:
203 trimmed_matrix = matrix.copy()

204 return matrix
205
206 def remove_bridges(graph , matrix):
207 """
208 Removes bridges from the matrix after crossing paths.
209 Inputs:
210 - graph: the graph
211 - matrix: the matrix
212 Outputs:
213 - result_matrix: matrix with bridges removed
214 """
215 crossed_matrix , vertical_paths = combine_paths(graph , matrix)
216 trimmed_matrix = trim_isolated_elements(crossed_matrix)
217 size = len(crossed_matrix)
218 new_paths = np.zeros ((size , size))
219
220 switch = 1
221 for path in vertical_paths:
222 switch *= -1
223 for step in path [:-1]:
224 stamp = 2 if switch == 1 else 0
225 if trimmed_matrix[step [0]][step [1]] == 3:
226 next_step = path[path.index(step) + 1]
227 if trimmed_matrix[next_step [0]][next_step [1]] != 3:
228 stamp = 0
229 new_paths[step[0], step [1]] = stamp
230
231 for i in range(size):
232 for j in range(size):
233 if new_paths[i][j] == 2 and crossed_matrix[i][j] != 2:
234 crossed_matrix[i][j] = 0
235 result_matrix = crossed_matrix
236 return result_matrix
237
238 def remove_errors(matrix):
239 """
240 Removes erroneous paths based on square patterns in the matrix.
241 Inputs:
242 - matrix: the matrix
243 Outputs:
244 - trimmed_matrix: trimmed matrix
245 """
246 trimmed_matrix = matrix.copy()
247 while True:
248 for i in range(len(matrix)):
249 for j in range(len(matrix)):
250 if matrix[i][j] == 2:
251 square = get_square_neighbours(i, j, matrix)
252 if tuple(square).count (2) == 1:
253 matrix[i][j] = 1
254 if np.array_equal(trimmed_matrix , matrix):
255 break
256 else:
257 trimmed_matrix = matrix.copy()

258 return matrix
259
260 def highlight_intersections(matrix):
261 """
262 Colors intersections in the matrix.
263 Inputs:
264 - matrix: the matrix
265 Outputs:
266 - highlighted_matrix: matrix with colored intersections
267 """
268 for i in range(len(matrix)):
269 for j in range(len(matrix)):
270 if matrix[i][j] == 2:
271 neighbours = get_von_neumann_neighbours(i, j, matrix)
272 if neighbours.count (2) > 2:
273 matrix[i][j] = 3
274 return matrix
275
276 def spread_contamination(matrix):
277 """
278 Spreads contamination from intersections in the matrix.
279 Inputs:
280 - matrix: the matrix
281 Outputs:
282 - contaminated_matrix: contaminated matrix
283 """
284 size = len(matrix)
285 contaminated_matrix = matrix.copy()
286 while True:
287 for i in range(size):
288 for j in range(size):
289 if matrix[i][j] == 2:
290 if get_von_neumann_neighbours(i, j, matrix).count

(3) == 1:
291 contaminated_matrix[i][j] = 3
292 if np.array_equal(contaminated_matrix , matrix):
293 break
294 else:
295 matrix = contaminated_matrix.copy()
296 return matrix
297
298 def fix_contaminated_intersections(matrix):
299 """
300 Fixes contaminated intersections in the matrix.
301 Inputs:
302 - matrix: the matrix
303 Outputs:
304 - fixed_matrix: fixed matrix
305 """
306 size = len(matrix)
307 fixed_matrix = matrix.copy()
308 while True:
309 for i in range(size):
310 for j in range(size):

311 if matrix[i][j] == 3:
312 square = get_square_neighbours(i, j, matrix)
313 if tuple(square).count (3) == 1:
314 fixed_matrix[i][j] = 2
315 if np.array_equal(fixed_matrix , matrix):
316 break
317 else:
318 matrix = fixed_matrix.copy()
319 return matrix
320
321 def fix_outer_intersections(matrix):
322 """
323 Fixes outer intersections in the matrix.
324 Inputs:
325 - matrix: the matrix
326 Outputs:
327 - fixed_matrix: fixed matrix
328 """
329 size = len(matrix)
330 fixed_matrix = matrix.copy()
331 while True:
332 for i in range(size):
333 for j in range(size):
334 if matrix[i][j] == 2:
335 if is_flower_structure(i, j, matrix):
336 fixed_matrix[i][j] = 3
337 if np.array_equal(fixed_matrix , matrix):
338 break
339 else:
340 matrix = fixed_matrix.copy()
341 return matrix
342
343 def simplify_matrix(matrix):
344 """
345 Chains multiple reduction steps to simplify the matrix.
346 Inputs:
347 - matrix: the matrix
348 Outputs:
349 - simplified_matrix: reduced matrix
350 """
351 matrix = fix_outer_intersections(matrix)
352 matrix = fix_contaminated_intersections(matrix)
353 matrix = spread_contamination(matrix)
354 return matrix
355
356 def iterative_trim(matrix):
357 """
358 Repeatedly trims the matrix using chain reduction.
359 Inputs:
360 - matrix: the matrix
361 Outputs:
362 - trimmed_matrix: trimmed matrix
363 """
364 while True:

365 previous_matrix = matrix.copy()
366 matrix = simplify_matrix(matrix)
367 matrix = remove_errors(matrix)
368 matrix = trim_bridges(matrix)
369 if np.array_equal(previous_matrix , matrix):
370 break
371 return matrix
372
373 def mark_paths(graph , matrix):
374 """
375 Sets fire (marks) to specific paths in the matrix based on

intersections.
376 Inputs:
377 - graph: the graph
378 - matrix: the matrix
379 Outputs:
380 - marked_matrix: matrix with paths marked
381 """
382 result_matrix = remove_bridges(graph , matrix)
383 result_matrix = highlight_intersections(result_matrix)
384 result_matrix = spread_contamination(result_matrix)
385 result_matrix = iterative_trim(result_matrix)
386 return result_matrix
387
388 def cement_paths(matrix):
389 """
390 Cements (fixes) the paths in the matrix after marking.
391 Inputs:
392 - matrix: the matrix
393 Outputs:
394 - cemented_matrix: cemented matrix
395 """
396 cemented_matrix = matrix.copy()
397 while True:
398 previous_matrix = matrix.copy()
399 for i in range(len(matrix)):
400 for j in range(len(matrix)):
401 if matrix[i][j] == 3:
402 if get_von_neumann_neighbours(i, j, matrix).count

(3) == 1:
403 cemented_matrix[i][j] = 2
404 if np.array_equal(previous_matrix , cemented_matrix):
405 break
406 else:
407 matrix = cemented_matrix.copy()
408 return cemented_matrix
409
410 def highlight_squares(matrix):
411 """
412 Colors squares in the matrix.
413 Inputs:
414 - matrix: the matrix
415 Outputs:
416 - highlighted_matrix: matrix with colored squares

417 """
418 size = len(matrix)
419 highlighted_matrix = matrix.copy()
420 for i in range(size):
421 for j in range(size):
422 if matrix[i][j] == 2:
423 square = get_square_neighbours(i, j, matrix)
424 if tuple(square).count (2) == 1:
425 highlighted_matrix[i][j] = 1
426 return highlighted_matrix
427
428 def full_path_extraction(graph , matrix):
429 """
430 Fully extracts the essential paths and features from the matrix.
431 Inputs:
432 - graph: the graph
433 - matrix: the matrix
434 Outputs:
435 - extracted_matrix: extracted matrix
436 """
437 matrix = cement_paths(matrix)
438 matrix = mark_paths(graph , matrix)
439 matrix = highlight_squares(matrix)
440 matrix = iterative_trim(matrix)
441 return matrix

Bibliography

[1] Samson Abramsky and Bob Coecke. ‘A categorical semantics of quantum protocols’.

In: (2004). doi: 10.48550/ARXIV.QUANT-PH/0402130. url: https://arxiv.org/

abs/quant-ph/0402130.

[2] Miriam Backens and Aleks Kissinger. ‘ZH: A Complete Graphical Calculus for

Quantum Computations Involving Classical Non-linearity’. In: (2018). doi: 10.

48550/ARXIV.1805.02175. url: https://arxiv.org/abs/1805.02175.

[3] Sara Bartolucci et al. ‘Fusion-based quantum computation’. In: (2021). doi: 10.

48550/ARXIV.2101.09310. url: https://arxiv.org/abs/2101.09310.

[4] Jacob D. Biamonte, Stephen R. Clark and Dieter Jaksch. ‘Categorical Tensor Net-

work States’. In: (2010). doi: 10.48550/ARXIV.1012.0531. url: https://arxiv.

org/abs/1012.0531.

[5] Ginestra Bianconi and Sergey N. Dorogovtsev. ‘The theory of percolation on hy-

pergraphs’. In: (2023). doi: 10.48550/ARXIV.2305.12297. url: https://arxiv.

org/abs/2305.12297.

[6] Hector Bombin et al. Unifying flavors of fault tolerance with the ZX calculus. 2023.

doi: 10.48550/ARXIV.2303.08829. url: https://arxiv.org/abs/2303.08829.

[7] Daniel E. Browne et al. ‘Phase transition of computational power in the resource

states for one-way quantum computation’. In: (2007). doi: 10.48550/ARXIV.0709.

1729. url: https://arxiv.org/abs/0709.1729.

[8] John Cardy. ‘Critical Percolation in Finite Geometries’. In: (1991). doi: 10.48550/

ARXIV.HEP-TH/9111026. url: https://arxiv.org/abs/hep-th/9111026.

https://doi.org/10.48550/ARXIV.QUANT-PH/0402130
https://arxiv.org/abs/quant-ph/0402130
https://arxiv.org/abs/quant-ph/0402130
https://doi.org/10.48550/ARXIV.1805.02175
https://doi.org/10.48550/ARXIV.1805.02175
https://arxiv.org/abs/1805.02175
https://doi.org/10.48550/ARXIV.2101.09310
https://doi.org/10.48550/ARXIV.2101.09310
https://arxiv.org/abs/2101.09310
https://doi.org/10.48550/ARXIV.1012.0531
https://arxiv.org/abs/1012.0531
https://arxiv.org/abs/1012.0531
https://doi.org/10.48550/ARXIV.2305.12297
https://arxiv.org/abs/2305.12297
https://arxiv.org/abs/2305.12297
https://doi.org/10.48550/ARXIV.2303.08829
https://arxiv.org/abs/2303.08829
https://doi.org/10.48550/ARXIV.0709.1729
https://doi.org/10.48550/ARXIV.0709.1729
https://arxiv.org/abs/0709.1729
https://doi.org/10.48550/ARXIV.HEP-TH/9111026
https://doi.org/10.48550/ARXIV.HEP-TH/9111026
https://arxiv.org/abs/hep-th/9111026

[9] Kim Christensen. Percolation Theory. Imperial College London, Oct. 2002. url:

https://web.mit.edu/ceder/publications/Percolation.pdf.

[10] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in

Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, Mar.

2017. isbn: 9781316219317. doi: 10.1017/9781316219317. url: http://dx.doi.

org/10.1017/9781316219317.

[11] Christopher M. Dawson and Michael A. Nielsen. ‘The Solovay-Kitaev algorithm’.

In: (2005). doi: 10.48550/ARXIV.QUANT-PH/0505030. url: https://arxiv.org/

abs/quant-ph/0505030.

[12] Artur K. Ekert. ‘Quantum cryptography based on Bell’s theorem’. In: Physical

Review Letters 67.6 (Aug. 1991), pp. 661–663. issn: 0031-9007. doi: 10.1103/

physrevlett.67.661. url: http://dx.doi.org/10.1103/PhysRevLett.67.661.

[13] Heng Fan et al. ‘Quantum Cloning Machines and the Applications’. In: (2013). doi:

10.48550/ARXIV.1301.2956. url: https://arxiv.org/abs/1301.2956.

[14] Mercedes Gimeno-Segovia et al. ‘From three-photon GHZ states to ballistic uni-

versal quantum computation’. In: (2014). doi: 10.48550/ARXIV.1410.3720. url:

https://arxiv.org/abs/1410.3720.

[15] Mile Gu et al. ‘Quantum Computing with Continuous-Variable Clusters’. In: (2009).

doi: 10.48550/ARXIV.0903.3233. url: https://arxiv.org/abs/0903.3233.

[16] K. Kieling, T. Rudolph and J. Eisert. ‘Percolation, renormalization, and quantum

computing with non-deterministic gates’. In: (2006). doi: 10.48550/ARXIV.QUANT-

PH/0611140. url: https://arxiv.org/abs/quant-ph/0611140.

[17] E. Knill, R. Laflamme and G. J. Milburn. ‘A scheme for efficient quantum computa-

tion with linear optics’. In: Nature 409.6816 (Jan. 2001), pp. 46–52. issn: 1476-4687.

doi: 10.1038/35051009. url: http://dx.doi.org/10.1038/35051009.

https://web.mit.edu/ceder/publications/Percolation.pdf
https://doi.org/10.1017/9781316219317
http://dx.doi.org/10.1017/9781316219317
http://dx.doi.org/10.1017/9781316219317
https://doi.org/10.48550/ARXIV.QUANT-PH/0505030
https://arxiv.org/abs/quant-ph/0505030
https://arxiv.org/abs/quant-ph/0505030
https://doi.org/10.1103/physrevlett.67.661
https://doi.org/10.1103/physrevlett.67.661
http://dx.doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.48550/ARXIV.1301.2956
https://arxiv.org/abs/1301.2956
https://doi.org/10.48550/ARXIV.1410.3720
https://arxiv.org/abs/1410.3720
https://doi.org/10.48550/ARXIV.0903.3233
https://arxiv.org/abs/0903.3233
https://doi.org/10.48550/ARXIV.QUANT-PH/0611140
https://doi.org/10.48550/ARXIV.QUANT-PH/0611140
https://arxiv.org/abs/quant-ph/0611140
https://doi.org/10.1038/35051009
http://dx.doi.org/10.1038/35051009

[18] Laurin Köhler-Schindler and Vincent Tassion. ‘Crossing probabilities for planar

percolation’. In: (2020). doi: 10 . 48550 / ARXIV . 2011 . 04618. url: https : / /

arxiv.org/abs/2011.04618.

[19] Yuan Liang Lim, Almut Beige and Leong Chuan Kwek. ‘Repeat-Until-Success

Quantum Computing’. In: (2004). doi: 10.48550/ARXIV.QUANT- PH/0408043.

url: https://arxiv.org/abs/quant-ph/0408043.

[20] Xiangyi Meng et al. ‘Percolation Theories for Quantum Networks’. In: (2023). doi:

10.48550/ARXIV.2310.18420. url: https://arxiv.org/abs/2310.18420.

[21] Darren W. Moore. ‘Quantum Hypergraph States in Continuous Variables’. In:

(2019). doi: 10.48550/ARXIV.1909.03871. url: https://arxiv.org/abs/

1909.03871.

[22] M. Van den Nest. ‘Classical simulation of quantum computation, the Gottesman-

Knill theorem, and slightly beyond’. In: (2008). doi: 10.48550/ARXIV.0811.0898.

url: https://arxiv.org/abs/0811.0898.

[23] M. Van den Nest et al. ‘Fundamentals of universality in one-way quantum com-

putation’. In: (2007). doi: 10.48550/ARXIV.QUANT-PH/0702116. url: https:

//arxiv.org/abs/quant-ph/0702116.

[24] Maarten Van den Nest et al. ‘Universal resources for measurement-based quantum

computation’. In: (2006). doi: 10.48550/ARXIV.QUANT-PH/0604010. url: https:

//arxiv.org/abs/quant-ph/0604010.

[25] Michael A. Nielsen. ‘Optical quantum computation using cluster states’. In: (2004).

doi: 10.48550/ARXIV.QUANT- PH/0402005. url: https://arxiv.org/abs/

quant-ph/0402005.

https://doi.org/10.48550/ARXIV.2011.04618
https://arxiv.org/abs/2011.04618
https://arxiv.org/abs/2011.04618
https://doi.org/10.48550/ARXIV.QUANT-PH/0408043
https://arxiv.org/abs/quant-ph/0408043
https://doi.org/10.48550/ARXIV.2310.18420
https://arxiv.org/abs/2310.18420
https://doi.org/10.48550/ARXIV.1909.03871
https://arxiv.org/abs/1909.03871
https://arxiv.org/abs/1909.03871
https://doi.org/10.48550/ARXIV.0811.0898
https://arxiv.org/abs/0811.0898
https://doi.org/10.48550/ARXIV.QUANT-PH/0702116
https://arxiv.org/abs/quant-ph/0702116
https://arxiv.org/abs/quant-ph/0702116
https://doi.org/10.48550/ARXIV.QUANT-PH/0604010
https://arxiv.org/abs/quant-ph/0604010
https://arxiv.org/abs/quant-ph/0604010
https://doi.org/10.48550/ARXIV.QUANT-PH/0402005
https://arxiv.org/abs/quant-ph/0402005
https://arxiv.org/abs/quant-ph/0402005

[26] Michael A. Nielsen. ‘Optical quantum computation using cluster states’. In: (2004).

doi: 10.48550/ARXIV.QUANT- PH/0402005. url: https://arxiv.org/abs/

quant-ph/0402005.

[27] Alexandru Paler and Simon J. Devitt. ‘An introduction to Fault-tolerant Quantum

Computing’. In: (2015). doi: 10.48550/ARXIV.1508.03695. url: https://arxiv.

org/abs/1508.03695.

[28] Miklós Rédei and Stephen Jeffrey Summers. ‘Quantum probability theory’. In:

Studies in History and Philosophy of Science Part B: Studies in History and Philo-

sophy of Modern Physics 38.2 (June 2007), pp. 390–417. issn: 1355-2198. doi:

10.1016/j.shpsb.2006.05.006. url: http://dx.doi.org/10.1016/j.shpsb.

2006.05.006.

[29] Joschka Roffe. ‘Quantum Error Correction: An Introductory Guide’. In: (2019).

doi: 10.48550/ARXIV.1907.11157. url: https://arxiv.org/abs/1907.11157.

[30] M. Rossi et al. ‘Quantum Hypergraph States’. In: (2012). doi: 10.48550/ARXIV.

1211.5554. url: https://arxiv.org/abs/1211.5554.

[31] Dietrich Stauffer and Ammon Aharony. Introduction To Percolation Theory. Taylor

Francis, Dec. 2018. isbn: 9781482272376. doi: 10.1201/9781315274386. url:

http://dx.doi.org/10.1201/9781315274386.

[32] Guifre Vidal. ‘Entanglement monotones’. In: (1998). doi: 10.48550/ARXIV.QUANT-

PH/9807077. url: https://arxiv.org/abs/quant-ph/9807077.

[33] Quanlong Wang. ‘Completeness of the ZX-calculus’. In: (2022). doi: 10.48550/

ARXIV.2209.14894. url: https://arxiv.org/abs/2209.14894.

[34] Tzu-Chieh Wei. ‘Quantum spin models for measurement-based quantum compu-

tation’. In: Advances in Physics: X 3.1 (Jan. 2018), p. 1461026. issn: 2374-6149.

https://doi.org/10.48550/ARXIV.QUANT-PH/0402005
https://arxiv.org/abs/quant-ph/0402005
https://arxiv.org/abs/quant-ph/0402005
https://doi.org/10.48550/ARXIV.1508.03695
https://arxiv.org/abs/1508.03695
https://arxiv.org/abs/1508.03695
https://doi.org/10.1016/j.shpsb.2006.05.006
http://dx.doi.org/10.1016/j.shpsb.2006.05.006
http://dx.doi.org/10.1016/j.shpsb.2006.05.006
https://doi.org/10.48550/ARXIV.1907.11157
https://arxiv.org/abs/1907.11157
https://doi.org/10.48550/ARXIV.1211.5554
https://doi.org/10.48550/ARXIV.1211.5554
https://arxiv.org/abs/1211.5554
https://doi.org/10.1201/9781315274386
http://dx.doi.org/10.1201/9781315274386
https://doi.org/10.48550/ARXIV.QUANT-PH/9807077
https://doi.org/10.48550/ARXIV.QUANT-PH/9807077
https://arxiv.org/abs/quant-ph/9807077
https://doi.org/10.48550/ARXIV.2209.14894
https://doi.org/10.48550/ARXIV.2209.14894
https://arxiv.org/abs/2209.14894

doi: 10.1080/23746149.2018.1461026. url: http://dx.doi.org/10.1080/

23746149.2018.1461026.

[35] John van de Wetering. ‘ZX-calculus for the working quantum computer scientist’.

In: (2020). doi: 10.48550/ARXIV.2012.13966. url: https://arxiv.org/abs/

2012.13966.

[36] Sabine Wölk and Otfried Gühne. ‘Characterizing the width of entanglement’. In:

(2015). doi: 10.48550/ARXIV.1507.07226. url: https://arxiv.org/abs/1507.

07226.

https://doi.org/10.1080/23746149.2018.1461026
http://dx.doi.org/10.1080/23746149.2018.1461026
http://dx.doi.org/10.1080/23746149.2018.1461026
https://doi.org/10.48550/ARXIV.2012.13966
https://arxiv.org/abs/2012.13966
https://arxiv.org/abs/2012.13966
https://doi.org/10.48550/ARXIV.1507.07226
https://arxiv.org/abs/1507.07226
https://arxiv.org/abs/1507.07226

	Introduction
	Quantum foundations
	Discussing the small
	Multipartite systems
	Evolving qubits

	ZX Calculus and networks
	Categorical quantum theory
	Diagrammatic tensor networks
	The spider constitution
	Extending diagrams
	Graph vernacular

	Measurement-based quantum computing
	Flavours of computation
	Cluster states
	Feed-Forward Corrections
	The measurement arsenal
	Universal computation
	The efficiency of approximation
	Entanglement bakeries

	Sculpting from the erroneous
	Percolation thresholds
	The chiselling algorithm
	Monotones and phase transitions
	Symmetry is sufficient
	The method of overcompensation

	Faults and fusion
	High-dimensional tolerance
	Strategies for the optical architect
	Network renormalisation
	Hypergraph calculus

	Conclusion
	Further Work

	SHP algorithm
	Bibliography

