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Abstract

Quantum theory challenges our intuitions of causality, as manifest in the exis-

tence of Bell non-local correlations. The latter seem to falsify Reichenbach’s com-

mon cause principle and evade causal explanations within the classical causal model

framework developed in recent decades. But could quantum correlations be ex-

plained in causal, albeit quantum causal terms? Even if one embraces a revised

causal relation, challenges of our intuitions seem to persist — for instance, ‘quan-

tum indefinite causal order’ of events being conceivable and intensely studied.

This thesis hopes to contribute to our understanding of how causal reasoning

can be maintained, in a rigorous manner, in light of quantum theory. Inspired by

the work of Allen et al. [Phys. Rev. X 7, 031021 (2017)], a definition of quantum

causal relations is given in terms of influence in underlying unitary transformations.

The notion of quantum causal structure that ensues is then explored in three, closely

related directions.

First, a quantum causal model framework is presented that generalises classical

causal models and allows causal explanations of quantum processes, assuming that

a definite causal order does exist. Amongst other things, notions of ‘quantum con-

ditional independence’ are presented and generalisations of core classical theorems,

such as the d-separation theorem, are derived.

Second, the thesis studies how causal structure of unitary transformations can

be understood in terms of their compositional structure. The results here reveal

how causal structure is closely associated with the interplay between direct sums

and direct products of Hilbert spaces. An extension of quantum circuit diagrams is

introduced to visualise the found ‘causal decompositions’ of unitaries.

Third, a generalisation of quantum causal models to cyclic causal structure is

proposed, to analyse processes that feature indefinite causal order. The idea is

illustrated through analysing well-known examples of such processes and some first

results are presented.
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Chapter 1

Introduction

Usually, shortly after pressing the switch of a kettle, the water is boiling and ready

to make the ubiquitous English cup of tea. Of course, we know why this is the case

— the kettle was designed to have a mechanism through which, as we are happy to

assert, the pressing of the switch causes the heating of the water. In contrast, on

most days that the sales of umbrellas in London are particularly high, the number

of daily visitors to Hyde park is particularly low. We would not be led to believe

that either causes the other, but rather assert that the culprit is rain as a common

cause.

Having this causal understanding changes how we engage with the world; whether

it is knowing how long before a friend’s arrival we need to ‘put the kettle on’, or

whether we had better stay indoors that afternoon. However, it is not only our

everyday life, but also science, that is inseparable from thinking in causal terms.

The very business of a scientific discipline often appears to be developing a causal

understanding of the phenomena under study. For instance, a good theory about

ocean currents is one that allows an understanding of the mechanisms that govern

them — the ‘causal mechanisms’ — for only then do we feel we really understand a

phenomenon, and can anticipate what happens if some of the parameters are altered.

Scientific practice also relies on causal thinking at the methodological level. That

two experiments can be regarded as independent sources of evidence for a hypothesis

appears as reliant on a basic causal assessment of the situation.

So, if causal reasoning is so basic, how does one infer causation from observa-

tions, seeing as observations constitute the basis of the empirical sciences? What

of the phrase we all have been educated to cherish — ‘correlation does not imply

causation’? Indeed, the fact that there are two correlated variables is the same in

both examples at the beginning and to that extent, just given statistics about the

respective variables, they are indistinguishable. Nonetheless, in the first example of
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the kettle we would assert a causal link between pressing the button and the water

boiling, whereas in the second, we do not buy into a causal link between umbrella

sales and visitor numbers in Hyde park, but rather assert a common cause. While

in these examples it may be uncontroversial which different causal explanations we

regard as plausible, scientific practice needs a principled methodology.

To this end, it is necessary to make precise how claims about the causal relations

of variables and statistical statements about them relate to one another. In the first

half of the last century Hans Reichenbach thought a great deal about this relation

(see, e.g., Refs. [5–7]) and the intuitive essence of his famous common cause principle

is simple and omnipresent in science: if two variables are correlated, but none is the

cause of the other, then there ought to exist a common cause in the past, conditional

on which the original variables are rendered statistically independent.

However, only with the advent of causal models, pioneered by Peter Spirtes,

Clark Glymour and Richard Scheines (see Ref. [8]) and Judea Pearl and his collab-

orators (see Ref. [9]), was a general framework for causal reasoning obtained, that,

amongst other things, moved the problem of causal inference into the realm of sci-

entific methodology. It facilitated the development of ‘causal discovery algorithms’,

which spell out in a principled way under which assumptions the causal structure

can be inferred from observational data. In a causal model the causal structure

is typically represented by a directed acyclic graph (DAG), where arrows represent

causal relationships between the variables and the DAG as a whole is part of the

causal explanation of the probability distribution over the same variables. The rea-

son humans care so much about causal relations is succinctly expressed in Pearl’s

metaphor of the three rungs for the advantage of causal reasoning [10]: at a first

rung, statistics from observations alone only allow predictions for future observa-

tions, such as the probability to observe B = b, given that one has observed A = a;

while with additional and increasingly detailed causal knowledge at rungs two and

three, the framework of causal models allows us to answer entirely different kinds

of questions such as questions of an interventional nature — what would happen to

variable B if one intervened and changed variable A — or of a counterfactual nature

— what would have happened to B, had A been observed to be different. Causal

models have found widespread application in fields ranging from AI and medicine

to economics and sociology [10].

A natural question to ask is what should one make of all these developments

from the perspective of physics, in particular in light of quantum theory? Can we

uphold our natural inclination to understand the physical world in causal terms in a

similarly precise way and, in particular, give causal explanations of the correlations
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that can arise in experiments involving quantum systems?

Intuitively speaking, if quantum physics is incompatible with a description in

terms of variables that have pre-existing values prior to measurement, then it seems

at odds with hoping to give causal explanations of quantum correlations with causal

models, where causal relata are classical variables. Indeed, one of the seminal no-

go theorems, that make precise in which sense one can claim such a feature of

quantum theory — Bell’s theorem [11, 12] — precisely rules out the explanation

of Bell-inequality violating correlations in terms of a common cause variable in

the past. Importantly, other conclusions from Bell’s theorem that are aimed at

saving a ‘picture of classical variables with definite values’ — such as retrocausal

explanations, superluminal signalling or superdeterminism — were shown to lead

to causal model explanations that are necessarily fine-tuned [13]. So, the answer

to the above question is ‘no’; insofar as the framework of classical causal models

cannot generally provide satisfactory causal explanations of quantum correlations.

The obvious question then must be: if not in terms of classical causal structure, can

quantum correlations be explained in terms of quantum causal structure?

We shall return to this question momentarily. Doing so, will in particular raise

the question of what exactly ‘quantum causal structure’ is supposed to be. The past

three decades, and especially the past 10 years, have seen a surge of research on

‘causality’ in quantum theory. Most of it is not concerned with giving explanations

à la Reichenbach or causal models, and studies a range of different questions, but

still derives from an intuition of and interest in causality of some kind or other. The

below touches on only a tiny fraction of such works.

One common perspective is to think of a set of quantum systems as being em-

bedded into a fixed space-time and to then study which kind of quantum channels

(completely positive trace-preserving maps), describing the evolution of these sys-

tems, is in keeping with relativity. In particular, one may then ask which channels

do not lead to the possibility of signalling between space-like separated systems and

which no-signalling correlations they generate. Conversely, where there is possible

signalling between two systems, one may ask whether this is compatible with a finite

speed of propagation and that the channel has an implementation with a ‘sequence

of local interactions’ as a quantum circuit diagram may be taken to represent. See,

e.g., Refs. [14–18] for a small selection of works in this spirit.

In the context of the framework of operational probabilistic theories [19] and

categorical quantum mechanics [20–25], ‘causality’ was formalised as a property

of processes which could be paraphrased as ‘no signalling back from the future’

and played an important role in studying the compositional structure of quantum
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theory and in axiomatisations of quantum theory [26–28]. The link of this notion of

‘causality’ with ‘relativistic causality’, that is, the above mentioned constraints on

signalling through a quantum channel, as well as with other concepts often associated

with causality such as determinism, was elucidated in Refs. [23,29–31].

Another formalism that is built around the causal intuitions about a ‘quantum

network’ is that of quantum combs [32], which looks at quantum circuits from a

higher-order perspective and studies how circuits can be transformed into other

circuits, with quantum circuit optimisation being one problem for which it is useful.

A general framework for studying the quantum information-processing properties of

systems through modelling them as ‘causal boxes’ was developed by Portmann et

al. in Ref. [33]. The study of generalised Bell inequalities in more complex causal

scenarios than the original Bell scenario has also been widely examined (see, e.g.,

Refs. [13, 34–39]).

Now, an important distinction is that between spacio-temporal relations and

causal relations. Our concept of causality often seems inseparable from events oc-

curring in, or systems existing in space-time. However, completely independently

from the kinds of systems, quantum or not, it is important to note that spacio-

temporal relations in a fixed background space-time impose constraints on what can

possibly be causally related to what, but does not tell us what actually is causally

related to what. If two quantum systems are time-like separated, then all we know

is that it is not contradictory to suppose they might be causally related. The sense

of quantum causal structure this thesis has in mind is causal structure as the set of

relations of what actually is causally related to what. One can always ask whether

a particular way of placing systems in a space-time is consistent with some asserted

causal relations, but, for the most part, this thesis will not concern itself with this.

Nonetheless, even if not primarily concerned with spacio-temporal relations, one

aspect of our intuition surely must persist (one would think) — whatever the causal

relations are, they always form a causal order, where loosely speaking, no influence is

going in loops. However, this very intuition of a fixed causal order is challenged in the

most hotly debated questions in quantum causality, a field concerned with indefinite

causal order. Triggered by a number of groundbreaking works, motivation for such

considerations comes from quantum gravity, as Hardy argued in Refs. [40, 41], and

from considering the ‘superposition of causal orders’ in quantum circuits, controlled

by another quantum system, as studied by Chiribella et al. in Ref. [42]. Oreshkov,

Costa and Brukner in Ref. [43] then introduced the framework of process matrices,

with which it is possible to describe any correlations between operations that can

locally be described by quantum mechanics, while no assumption is made that,
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globally, the operations fit into any fixed causal order. Surprisingly, they discovered

processes that are logically consistent, but indeed incompatible with any fixed causal

order. Understanding the scope and the physical status of ‘indefinite causality’ is

an extremely active area of research (see, e.g., Refs. [42, 44–72] for a selection, and

the review in a later chapter).

With so much energy and thought devoted to the field of ‘quantum causality’,

one might think it must be obvious and agreed what causal relations in the context

of quantum systems are in the first place. While quantum causation is usually taken

to be about ‘signalling’, we would like to argue that the notion of causal relations

needs careful examination. The emergence of the field of indefinite causality makes

it still more important to provide a solid foundation to the study of quantum causal

relations.

Giving an account of the description of matter of affairs in terms of what actually

is causally related to what, is what causal models are supposed to formalise and

guide. This brings us back to the earlier conclusion of the inadequacy of classical

causal models to understand Bell correlations and to the question whether a genuine

quantum generalisation of the framework can be developed that similarly formalises

the causal analysis of any set of quantum systems and the correlations they give rise

to. A lot of effort has been put into the development of this (see, e.g., Refs. [4,34,35,

73–88]). These works agree on the use of DAGs for representing causal structure and

that quantum systems are involved, however, there are otherwise large differences.

A review of these approaches will be given later. Specifically, we will argue that

they all, with the exception of the proposed definition by Allen et al. from Ref. [4],

lack generality or do not meet desirable desiderata for a quantum causal model

framework.

In order to provide a conceptually clear grounding for a quantum causal model

framework and any talk about quantum causal structure, it is helpful to disentangle

two steps:

(1) Define the quantum causal relation. This will have to be some 3-place relation

of the form ‘C is a direct cause of E given M if and only if some condition

CR holds’, that is, it has to say what sort of object C and E are, relative to

what sort of data M causal relations are defined at all and what the causal

connection is, i.e. which condition CR captures that C stands to E in a causal

relationship.

(2) Develop a quantum causal model framework. This has to spell out, in partic-

ular, when and how to give causal explanations, in accordance with (1) and in

a principled way, when the given data is not of the kind as demanded by M.
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Importantly, and as will be argued later, ‘signalling through a quantum chan-

nel’, or more generally ‘through a quantum process’ — the dominant intuition on

quantum causation in the literature — does not provide a satisfactory basis for a

definition of the form as in (1). A priori, it is of course conceivable that there is

more than one consistent way of following an approach as sketched in the scheme

of steps (1) and (2). However, none of the above cited works does this, with the

mentioned work by Allen et al. in Ref. [4] again being the only exception. The spirit

of the latter work is exactly such an approach and the core suggestion is, roughly

speaking, to take causal relations between quantum systems as influence in underly-

ing unitary evolution. On that basis, their main achievement consists in formulating

a quantum generalisation of Reichenbach’s common cause principle and deriving it

as a theorem, as it were, rather than proposing it as an ad-hoc principle. Taking

inspiration from the form of this principle, Ref. [4] then proposes a definition of a

quantum causal model, without however similarly substantiating it with a theorem,

and without much further exploration of that definition and the framework it leads

to.

The content and structure of this thesis

What this thesis will undertake could be summarised as follows. First, following

the suggestion from Ref. [4], it formalises the quantum causal relation and the

corresponding most general notion of quantum causal structure of a set of quantum

systems. Second, it fills the gap by formally going from above step (1) to step (2).

Third, in what will form the main body of the thesis, it derives a series of results that

explore quantum causal structure along several axes, including, but not restricted

to the causal model perspective. This notion of quantum causal relations based

on influence in unitary transformations by no means goes against the intuition of

signalling between agents, but rather finds the latter to be a typical manifestation

or expression of a causal connection.

One goal of the thesis is therefore to help establish a promising definition of

quantum causal structure — promising insofar as it is conceptually and mathemat-

ically clear and facilitates new results that are of interest, regardless of whether or

not one agrees with the above sketched scheme. These results concern for instance

novel notions of ‘quantum conditional independence’, structural properties of uni-

tary transformations and insights into the properties of processes with ‘indefinite

causal order’. However, this work will be restricted to the study of finite-dimensional

quantum systems and no attempt is made to extend the ideas to a quantum field

theoretic context.
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The following outlines the structure and sets out more concretely what one can

expect to find in this thesis.

After introducing some notation and necessary conventions in Chap. 2, Chap-

ter 3 introduces the necessary background knowledge on which the thesis builds. In

particular, it will give a summary of classical causal models with a focus on those

aspects that will serve a pedagogical purpose in the quantum case. It will also

summarise the prior work on quantum causal models, with a view to bringing out

clearly why there were open questions concerning the establishment of a satisfactory

definition, as claimed above.

Chapter 4 then constitutes the foundation of this whole thesis by presenting the

definitions, which the subsequent chapters explore: the definition of the quantum

causal relation and the induced notion of quantum causal structure relative to uni-

tary transformations, and more generally, unitary processes. It will give some basic

analysis of why this proposal is distinct and where the motivation stems from.

Chapter 5 is the first chapter with substantial results. It presents and explores

a fully-fledged framework of quantum causal models, based on the proposal from

Ref. [4]. It has two main parts, the first of which roots the framework in the

definition of quantum causal structure as defined in Chap. 4 by proving a theorem

to an analogous effect to the main result from Ref. [4] for the quantum common cause

principle (see Sec. 5.2.3). In the second part it essentially explores consequences from

causal structure at the level of non-unitary processes. This involves in particular the

introduction of genuinely quantum versions of conditional independence in Sec. 5.4

and the derivation of quantum generalisations of some of the main theorems of the

classical framework, namely, of the d-separation theorem in Sec. 5.5 and of the three

rules of the do-calculus in Sec. 5.6. Finally, it makes some first observations about

quantum causal inference in Sec. 5.7.3.

Seeing Chap. 5 as studying how causal structure, defined at the level of the

underlying unitary processes, manifests itself ‘at the higher level’ in the properties

of non-unitary processes, Chapter 6 can be seen as ‘going down’ and seeking to find

a more fine-grained understanding of the causal mechanisms in unitary processes.

It will do so by asking whether causal structure can be understood in compositional

terms and first argue in Sec. 6.2 that compositional structure as expressible with

ordinary circuit diagrams is not sufficient to this end. Section 6.3 will show that

direct sum structures, and in particular its interplay with direct products, are crucial

for a compositional understanding of causal structure. Section 6.4 will introduce a

novel type of diagrams, extended circuit diagrams, to overcome the limitations of

circuit diagrams and Sec. 6.6 will derive many results where the causal structure of
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a unitary map implies an extended circuit decomposition that makes the respective

causal structure evident in situations where circuit diagrams cannot achieve this.

Chapter 7, the third main chapter, can be seen as the application of the ideas

and insights from the preceding chapters to processes with ‘indefinite causal or-

der’. This naturally presents itself as exploring the case of the general definition

of causal structure in Chap. 4 for when that is not a DAG, but a cyclic directed

graph. This chapter will begin by first giving a brief introduction into the field of

‘indefinite causal order’ (see Sec. 7.1). Sections 7.2 and 7.3 will then introduce a

generalisation of quantum causal models to cyclic causal structure, with prominent

examples of such to be studied in Sec. 7.4. Section 7.5 will exemplify how the results

on ‘causal decompositions’ from Chap. 6 lead to new insights on ‘causally indefinite

processes’ and Sec. 7.7 will update quantum causal inference in light of the presented

generalisations.

Finally, Chap. 8 will conclude the thesis by summarising the work and the open

questions, and by sharing some final reflections.
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Chapter 2

Notation and conventions

2.1 Classical variables

When considering random variables it is assumed throughout that they take values

in sets of finite cardinality. A joint probability distribution over a set of n variables

{X1, . . . , Xn} is denoted P (X1, . . . , Xn). For disjoint sets of variables X, Y and Z

writing P (X, Y, Z) has the obvious meaning. An expression like P (X, Y |Z), apart

from denoting a Bayesian conditional obtained from a joint distribution, will also

be used to refer to a classical channel, that is, for every value z that the variable Z

may take, the data specifies a probability distribution P (X, Y |Z = z) over X × Y ,

so that P (X, Y |Z) defines a stochastic map. The context will always make clear

how expressions like P (X, Y |Z) are to be understood.

2.2 Quantum systems and the Choi-Jamio lkowksi

isomorphism

The Hilbert space associated with a quantum system A is denoted HA and through-

out assumed to be of finite dimension dA. The vector space of linear operators

on HA is denoted L(HA) and a state of system A, i.e. a trace-1, positive semi-

definite operator in L(HA), is denoted ρA. For S a set of quantum systems, write

HS :=
⊗

A∈SHA (the order of systems is left implicit).

A completely positive (CP) map E : L(HA) → L(HB) is typically denoted with

a curly letter and a trace-preserving CP map is referred to as a CPTP map, or

interchangeably, a quantum channel, or just channel for short. A channel U :

L(HA) → L(HB) is called a unitary channel if and only if there exists a unitary

map U : HA → HB such that U( ) = U( )U † (a unitary map U is not neces-
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sarily assumed to be an automorphism, but given by any linear map that defines a

bijection between ortho-normal bases).

A very useful tool in quantum information theory, which will be made heavy use

of in this thesis, is the Choi-Jamio lkowksi (CJ) isomorphism [89,90] that allows the

treatment of states of systems and channels between systems mathematically on an

equal footing. Following Ref. [4] and consistently with Refs. [1–3], which this thesis

is based on, a particular variant of the CJ isomorphism is used here. Given a CP

map E : L(HA)→ L(HB) its CJ operator is defined as

ρEB|A :=
∑
i,j

E
(
|i〉A 〈j|

)
⊗ |i〉A∗ 〈j| , (2.1)

where {|i〉A} is an orthonormal basis of HA, and {|i〉A∗} the corresponding dual

basis. The way that ρEB|A ∈ L(HB ⊗H∗A) is defined to act on the dual of HA allows

for the representation of CP maps with CJ operators that are positive semi-definite

and basis independent. In CJ representation the image of ρA under E becomes

E(ρA) = TrAA∗
[
ρEB|A τ

id
A ρA

]
(2.2)

with the ‘linking operator’

τ idA :=
∑
i,j

|i〉A∗ 〈j| ⊗ |i〉A 〈j| . (2.3)

Using the short-hand notation TrA[ ] := TrAA∗ [τ
id
A ] one can then write E(ρA) =

TrA[ρEB|A ρA], which is reminiscent of
∑

X P (Y |X)P (X), the image of a probability

distribution P (X) under the classical channel defined by P (Y |X). Conversely, given

any positive semi-definite operator α ∈ L(HB ⊗H∗A), then C( ) := TrA[α ] defines

a CP map of the form C : L(HA) → L(HB) . Importantly, the CJ operator ρEB|A
represents a CPTP map if and only if TrB[ρEB|A] = 1A∗ . For proofs and further facts

about the CJ representation of channels see, for instance, Ref. [32].

Given the 1-to-1 correspondence between channels and their CJ operators, we

will often write ‘given a channel ρB|A’ by stating the CJ operator and also suppress

the superscript E unless there is ambiguity. Furthermore, given the correspondence

between unitary channels U and the associated unitary map U between the underly-

ing Hilbert spaces, we will use both ρUB|A and ρUB|A for the CJ operator of the unitary

channel.

A convention that will be used frequently (and was already employed in Eq. (2.2))

is writing products of the form ρD|AB ρE|BC as a short-hand for the product of
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operators that are appropriately ‘padded’ with identity operators, i.e., it is short for

(ρD|AB ⊗ 1EC∗)(1DA∗ ⊗ ρE|BC).

2.3 Graphs and circuit diagrams

A directed graph G is given by a set V of vertices (also called nodes) and a set of

arrows, formally given by a subset E of V × V such that G has an arrow v → w if

and only if (v, w) ∈ E. Given a directed graph G a path of length n is a sequence of

vertices v1, v2, . . . ..., vn+1 such that there is an arrow between vi and vi+1 (in either

direction) for all i = 1, .., n. The path is called a directed path if for each i = 1, .., n

the arrow goes from vi to vi+1 and it is a directed cycle if furthermore v1 = vn+1. A

directed acyclic graph (DAG) is a directed graph that does not contain any directed

cycle. See Fig. 2.1 for examples.

A B

C

F

λC

λA λB

(a)

X1

X2 X3

X4

X5

(b)

Figure 2.1: Examples: (a) shows a directed graph with directed cycles; (b)
shows a DAG.

As is common and convenient, terms of kinship will be used to refer to relations

between vertices in a directed graph G: given a vertex X its set of parents, denoted

Pa(X), contains all those vertices with an arrow to X and its set of children, denoted

Ch(X), contains all those vertices to which there is an arrow from X. Similarly,

an ancestor of X is a vertex with a directed path to X and a descendant of X is a

vertex to which there is a directed path from X.

Chapter 6 will also make use of hypergraphs, which are a generalisation of undi-

rected graphs. A hypergraph is given by a set V of vertices and a set of hyperedges,

each of which is undirected and may generally connect more (or fewer) than two

vertices. The set of hyperedges is formally given by a subset of the powerset of V .

Examples will be given in Chapter 6.
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U1

R1

U2

L1

R2 R3

U3

L2

U4

L3

Figure 2.2: Example of a circuit diagram.

Finally, circuit diagrams will be a convenient way of representing compositional

structure between quantum systems and the maps between them. See Fig. 2.2 for

an example. The convention in this thesis is to read them bottom up.

An introduction into a formal and fully diagrammatical representation of quan-

tum theory can be found in the textbook in Ref. [91]. Roughly speaking, in a circuit

diagram wires represent systems, boxes represent linear maps, parallel composition

in the diagram corresponds to tensor product composition and connecting up boxes

with wires corresponds to the composition of the corresponding linear maps. In this

way a circuit diagram may represent two distinct kinds of data: either linear maps

between the Hilbert spaces associated with quantum systems (at that level only

unitary maps will be represented in circuit diagrams in this thesis), or CP maps,

i.e. linear maps at the level of spaces of operator on the underlying Hilbert spaces.

The context will always make clear which kind of data a diagram represents. In

case a diagram represents CP maps an upside-down grounding symbol represents

the CPTP map defined by the partial trace.
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Chapter 3

Background

3.1 Classical causal models

3.1.1 Introduction and definition

The framework of classical causal models, initially developed by Spirtes et al. [8] and

Pearl [9], addresses and formalises causal reasoning about classical random variables.

As mentioned in Chapter 1, it does so by spelling out, in a rigorous manner, what the

relation is between the assertion of causal relations between variables and statistical

statements about them. The past 40 years have seen the development of a vast body

of literature on causal models, but the following summary, which in many respects

will follow the presentation by Pearl in Ref. [9], will not attempt to do justice to

the history or breadth of that field, but instead will focus on the conceptual and

technical skeleton, so as to provide the basis for the subsequent study of ‘quantum

causal reasoning’.

Given a finite set of random variables1 X1, . . . , Xn, its causal structure is repre-

sented by a DAG with vertices X1, . . . , Xn such that an arrow Xi → Xj stands for

that Xi is a direct cause of Xj
2. Using terms of kinship (see Sec. 2.3), any ancestor

of Xj, which is not a parent, also is a cause of Xj, albeit an indirect one, the idea

being that the causal influence is mediated via the intermediate causes3.

A causal model specifies the relationship between the causal structure of variables

X1, . . . , Xn as expressed by a DAG and a probability distribution over X1, . . . , Xn

as follows.

1Recall from Sec. 2.1 that random variables are assumed throughout to take values in sets of
finite cardinality.

2Directed graphs with directed cycles are sometimes used to represent feedback loops, however,
will not be considered in the present exposition. Also see the discussion in Sec. 7.6.

3The distinction between direct and indirect causes thus manifestly depends on the choice of
variables. Also see Sec. 8.3.
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Definition 3.1 (Classical causal model): A classical causal model (CCM) is given

by

(1) a causal structure represented by a DAG G with vertices corresponding to

random variables X1, . . . , Xn,

(2) for each Xi, a classical channel P (Xi|Pa(Xi)).

The classical causal model defines a probability distribution over X1, . . . , Xn, given

by

P (X1, ..., Xn) =
∏
i

P (Xi|Pa(Xi)). (3.1)

See Fig. 3.1 for a generic example of a classical causal model.

X1

X2 X3

X4

X5 P (X1, X2, X3, X4, X5) =

P (X5|X1, X4) P (X4|X2, X3)

P (X2|X1) P (X3|X1)

P (X1)

Figure 3.1: A classical causal model.

Insofar as a causal model plays the role of a causal explanation, the idea is that

a probability distribution P (X1, ..., Xn), which might in particular be obtained from

actual observational data, is the explanandum and can be explained causally in

terms of the DAG G if it admits a causal model that involves G such that Eq. (3.1)

holds — the explanans thus consisting in G and the set of channels P (Xi|Pa(Xi)).

It is therefore convenient to capture the corresponding property of a probability

distribution relative to a DAG as follows.

Definition 3.2 (Markov condition): Given a DAG G, with vertices corresponding

to random variables X1, . . . , Xn, a joint probability distribution P (X1, . . . , Xn) is

called Markov for G if and only if there exist classical channels P (Xi|Pa(Xi)) such

that

P (X1, . . . , Xn) =
n∏
i=1

P
(
Xi|Pa(Xi)

)
. (3.2)

The data of a causal model can then be stated as a pair (G,P (X1, . . . , Xn)),
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where G is a DAG with vertices X1, . . . , Xn and P (X1, . . . , Xn) a probability distri-

bution that is Markov for G4.

Given only a probability distribution P (X, Y, Z) one can — provided that it

is well-defined — calculate Bayesian conditionals, say P (Y |X), and on that basis

make predictions for the probability of observing Y = y given that one has observed

X = x. A very different scenario is one in which an agent intervenes on variable X

and forces it to take on the value x. Such ‘reaching in’ from external to the situation

described by P (X, Y, Z) changes the causal structure of the variables X, Y, Z. The

original distribution P (X, Y, Z) as such thus has nothing to say about the new

situation.

However, suppose instead a causal model is given that explains P (X, Y, Z) that

involves some DAG G with vertices X, Y, Z. The idea is that the causal relations

expressed in G stand for causal mechanisms between the variables and an important

assumption for classical causal models is that these mechanisms are stable and au-

tonomous. Hence, knowing G and the effective description of the causal mechanisms

through the channels P (Xi|Pa(Xi)), should allow one to specify which new causal

situation arises upon an intervention. This is very much akin to a ‘mechanic’s un-

derstanding of a machine’, on the basis of which one can replace parts while leaving

others, that is, in particular their function, unaltered and build a new whole. A

particularly important intervention is a do-intervention do(X = x), which is the in-

tervention on X described above that forces X to take the value x, thereby overriding

the causal mechanism which would have fixed X otherwise in the pre-intervention

scenario. More generally, consider a do-intervention on a set S of variables, denoted

do(S = s), meaning that each variable X in S is forced to take the value x as given

by the tuple s. The following spells out how a causal model allows going from a pre-

to a post-do-intervention distribution.

Definition 3.3 (Do-conditional distribution): Consider a classical causal model

given by a DAG G with nodes X1, . . . , Xn, and for each i a classical channel P (Xi|
Pa(Xi)). Let S ⊂ {X1, ..., Xn} and let T := {X1, ..., Xn} \ S. The do-conditional

distribution for T , given a do-intervention on S, is given by

P (T |do(S)) :=
∏
Xi∈T

P (Xi|Pa(Xi)). (3.3)

4In the literature this Markov condition (or equivalent formulations) is sometimes referred to
as the ‘causal Markov condition’ [8,92], emphasising that the DAG is given a causal interpretation.
Also note that in our presentation the Markov condition is stated in terms of asserted channels,
rather than conditional distributions obtained from the given joint probability distribution — the
given probability distribution may not have full support but still admit of a causal model.
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If s is a particular value of S, i.e., a tuple containing a value for each variable

Xi ∈ S, then

P (T |do(S = s)) :=

(∏
Xi∈T

P (Xi|Pa(Xi))

)∣∣∣∣∣
S=s

. (3.4)

Given a do-conditional distribution P (T |do(S)), marginals are calculated as

usual, i.e. P (Xi|do(S)) :=
∑

Xj∈T,j 6=i P (T |do(S)), seeing as P (T |do(S)) just is an

ordinary probability distribution over T (for every value S = s), where do(S) is a

mere reminder of how it arises. For obvious reasons, Eq. 3.3 is also referred to as

the truncated factorization formula, since it effectively throws away all factors in the

product of Eq. 3.2 that correspond to variables that are being do-intervened on. See

Fig. 3.2 for an example.

X1

X2 X3

X4

X5 P (X1, X2, X3, X5|do(X4 = x)) =

P (X5|X1, X4 = x)

P (X2|X1) P (X3|X1)

P (X1)

Figure 3.2: Example: a do-intervention on X4 is performed. Suppose the causal
structure prior to that was as in Fig. 3.1, then do(X4 = x) overrides the mechanism
from the parents of X4, in this case, X2 and X3, which is reflected in the mutilated
DAG shown above, in which the arrows into X4 have been removed. The new causal
structure explains the properties of P (X1, X2, X3, X5|do(X4 = x)).

Note that prior to the advent of causal models, Bayesian networks had been stud-

ied, which can also be defined as a DAG, together with a distribution that is Markov

for it5 [9, 93]. A given probability distribution P (X1, . . . , Xn) is Markov for many

different DAGs (also see Sec. 3.1.3), however, only if a DAG G represents the causal

structure, the do-conditional distributions according to Def. 3.3 will make actually

correct predictions — something that can in principle be verified experimentally.

3.1.2 Causal principles — why the Markov condition?

At this point the main question that arises is, why these causal models should

correctly guide causal reasoning. Why that Markov condition? There are of course

deep questions concerning the (metaphysical) status of causal relations, such as

5Note that in this case the Markov condition is in terms of the conditional distributions obtained
from the given joint distribution and not in terms of separate classical channels. This makes only
a difference where the distribution does not have full support, see footnote 4.
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whether they can be further reduced to, and thereby grounded in, probabilistic,

interventional, counterfactual, or other relations. What is the relation to the arrow

of time? Such questions are still being debated in philosophy (see, e.g., Refs. [92,94])

and answers will depend on one’s preferred philosophical programme. Even though

ultimately such questions cannot be ignored in asking about the status of causal

models, in light of their empirical success and relevance, it seems fair to ask at least,

suppose there are causal relations — whatever their status is — why would they

relate to statistical claims as the causal models have it. After all, the framework is

to be used in serious decisions in, e.g., medicine or economics.

Reichenbach’s common cause principle [5] can be seen to be at the heart of causal

models and raise similar questions. Due to its historical importance in the role it

played in understanding the link between causal and probabilistic claims, and for

later reference, it is worth paraphrasing it again here in slightly more detail than

in the introduction: Given two variables Y and Z and a probability distribution

P (Y, Z), if they are statistically correlated, i.e. P (Y, Z) > P (Y )P (Z), then there

ought to be a causal explanation of that fact in terms of either Y being a cause of Z,

Z being a cause of Y , that there is a common cause X, or else a combination of the

latter with one of the former two. In case neither of Y and Z is a cause of each other

and X is a complete common cause, that is, no further common causes are missing,

then Y is statistically independent from Z conditional on X, i.e. P (Y, Z|X) =

P (Y |X)P (Z|X) (also see Sec. 3.1.3).

Observing that the condition P (Y, Z|X) = P (Y |X)P (Z|X) is equivalent to

that for the joint distribution over all three variables it holds that P (Y, Z,X) =

P (Y |X)P (Z|X)P (X), the common cause principle can be seen as a special case of

the following causal principle, which is in keeping with the definition of a causal

model.

Principle 1 (General causal principle): Given variables X1, . . . , Xn, if their causal

structure is as in the DAG G with vertices X1, . . . , Xn, with no common causes

missing, then the probability distribution describing X1, . . . , Xn is Markov for G.

The question of this section can thus be phrased as, on what grounds can Prin-

ciple 1 be justified? Why should the Markov condition be a reasonable constraint

on a probability distribution from causal structure — a question that stands quite

independently from one’s preferred interpretation of probabilities. Some advocate a

normative status of the principle in that it guides us in finding an appropriate set

of variables for causal reasoning (see, e.g., Refs. [8, 92]). In contrast, Pearl offers a

different perspective in Ref. [9], which will be sketched here (following Ref. [4] in its
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presentation). This is not to be taken as a binding suggestion, but as a pedagogical

analysis that will be particularly instructive for the analysis in the quantum case.

In this view, causal relations between variables X1, . . . , Xn as represented by a

DAG G are taken to stand for functional dependences in an underlying functional

model as defined in Ref. [9]. If Xi has parents Pa(Xi) in G, then it functionally

depends on the variables in Pa(Xi) through the function fi that determines the

variable Xi. The way probabilities enter the stage from such a deterministic level

of description is that there are typically further causes not included in X1, . . . , Xn,

which can either not be accessed or, one does not care about, so that the lack of

knowledge over their values cannot but be encoded in a probability distribution. Now

for G to be the causal structure of X1, . . . , Xn without missing common causes means

that the additional causes are at most ‘local disturbances’, i.e. for each Xi there may

be an additional variable λi such that λi is at most a cause of Xi. A functional model

involving the DAG G as causal structure specifies functions of the form fi : Pa(Xi)×
λi → Xi that determine each variable via Xi = fi(Pa(Xi), λi), together with a

product distribution P (λ1, . . . , λn) =
∏

i P (λi), assuming the local disturbances to

be statistically independent. The probability distributions over X1, . . . , Xn that

arise from marginalising over the local disturbances λi are those distributions that

can be causally explained by G. More formally,

Definition 3.4 (Compatibility with a DAG): Given a DAG G with vertices X1, . . . ,

Xn, a joint probability distribution P (X1, . . . , Xn) is compatible with G if and only

if there exist n additional variables λ1, ..., λn and functions fi : Pa(Xi) × λi → Xi,

along with distributions P (λi) such that

P (X1, . . . , Xn) =
∑

λ1,...,λn

[
n∏
i=1

δ
(
Xi, fi(Pa(Xi), λi)

)
P (λi)

]
. (3.5)

The assumption that the local disturbances can be ascribed a product distribu-

tion is a substantial, but common assumption, which will not be further justified

here (also see an analogous discussion in Sec. 5.2.4). Importantly, the following

equivalence holds.

Theorem 3.1 (Equivalence of classical compatibility and Markovianity [9]): Given

a distribution P (X1, . . . , Xn) and a DAG G with vertices X1, . . . , Xn, the following

are equivalent:

(1) P (X1, . . . , Xn) is compatible with G.

(2) P (X1, . . . , Xn) is Markov for G.
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If defining causal relations as functional relationships between variables given

underlying deterministic evolution, and if assuming that local disturbances can

be treated as statistically independent, then it is those probability distributions

P (X1, . . . , Xn) that are compatible with a DAG G that can be causally explained

by G. Thm. 3.1 establishes that this set is the same as those that are Markov for

G. The theorem can therefore be seen to justify Principle 1 and the definition of a

classical causal model — on the basis of the assumptions.

X1
λ1

X2

λ2

X3

λ3

X4

λ4

X5

λ5

X5 = f5(X1, X4, λ5),

X4 = f4(X2, X3, λ4),

X3 = f3(X1, λ3),

X2 = f2(X1, λ2),

X1 = f1(λ1),

P (λ1, λ2, λ3, λ4, λ5) =
5∏
i=1

P (λi)
.

Figure 3.3: A functional model as it can be seen to underly the causal model in
Fig. 3.1.

This view of causal relations as functional dependences also allows to understand

the truncated factorisation formula from Eq. (3.4) for calculating do-conditional

distributions. Let a functional model for variables X1, . . . , Xn be given by the family

of functions fi : Pa(Xi)× λi → Xi and distributions P (λi). Let S ⊂ {X1, . . . , Xn}
and T := {X1, . . . , Xn}\S. A do-intervention do(S = s) corresponds to (1) deleting

all equations Xi = fi(Pa(Xi), λi) for Xi ∈ S, since the corresponding mechanisms

are overridden by do(S = s), and (2) wherever Xi ∈ S appears as a parent of a

variable in T , fixing the value of Xi according to S = s. It is straightforward to see

that at the probabilistic level, once marginalised over the local disturbances λi of

the variables in T , then the right-hand side of Eq. (3.4) is obtained as the correct

expression for the post-do-intervention probability distribution for the remaining

variables.

3.1.3 Conditional independence and the d-separation theo-

rem

Given a probability distribution P (Y, Z,W ), the (sets of) variables Y and Z are

statistically independent conditional on (set) W , written (Y ⊥⊥ Z|W )P , if and

only if P (Y, Z|W = w) = P (Y |W = w)P (Z|W = w) whenever P (W = w) 6= 0.
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Statistical (unconditional) independence between Y and Z is the special case of

W = ∅ and hence denoted (Y ⊥⊥ Z)P .

Consider the situation from Sec. 3.1.2 that Reichenbach’s common cause principle

is concerned with. There, the fact about a given probability distribution P (Y, Z,W )

in need of explanation is the correlation between, say Y and Z, i.e. that (Y��⊥⊥Z)P .

Suppose the causal structure is as in Fig. 3.4a, featuring W as a complete common

cause. The sense in which this achieves a successful explanation as demanded by the

principle is that then (Y ⊥⊥ Z|W )P holds, which is in particular true if P (Y, Z,W )

is Markov for the fork in Fig. 3.4a. The idea is that the correlation disappears once

one conditions on the value of the common cause W , because the variable W that

underwrote the correlation in the first place, is held fixed.

W

Y Z

(a) A fork.

W

Y

Z

(b) A chain.

W

Y Z

(c) A collider.

Figure 3.4

Similarly, suppose P (Y, Z,W ) is given and (Y��⊥⊥Z)P holds, but the causal struc-

ture is as in Fig. 3.4b. That Y and Z are correlated is again expected seeing as

the former is a cause of the latter, however this is not a direct cause relation, but

an indirect one via W . The Markov condition for the chain in Fig. 3.4b demands

that P (Y, Z,W ) = P (Z|W )P (W |Y )P (Y ). Again, this implies that (Y ⊥⊥ Z|W )P

— the correlation between Y and Z is explained through its disappearance upon

conditioning on the variable W that mediates the ‘creation of the correlation’. In

contrast, if the causal structure is as in Fig. 3.4c (not assuming (Y��⊥⊥Z)P ), the

Markov condition demands that P (Y, Z,W ) = P (W |Y Z)P (Y )P (Z). Then Y and

Z are statistically independent as one would expect since they are causally unre-

lated. However, conditioning on the collider W will typically render them correlated,

i.e. one finds (Y��⊥⊥Z|W )P . Such a case is thus clearly distinguished from the first

two cases of the fork and chain.

Conditional and unconditional independence relations as well as their absences

are thus at the heart of giving (classical) causal explanations. In the canonical

examples of the fork, chain and collider above, the Markov condition did exactly

what one expected. This leads to the more general question concerning what the

relation between conditional independence relations in a distribution P and a causal
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structure G is, provided P is Markov for G so that the latter can be regarded the

causal structure in keeping with Principle 1.

The graphical criterion that has been found to capture which conditional in-

dependence relations hold in a distribution that is Markov for a DAG, is called d-

separation. The precise definition below is a little lengthy at first sight, but becomes

intuitive with the three canonical examples form above in mind — in Figs. 3.4a and

3.4b Y is d-separated from Z by W , in contrast to Fig. 3.4c.

Definition 3.5 (Blocked paths and d-separation [95]): Given a DAG G, a path

between vertices y and z is blocked by the set of vertices W if the path contains

either

(1) a chain a→ w → c or a fork a← w → c with the middle vertex w ∈ W

(2) a collider a→ r ← c such that neither r nor any descendant of r lies in W .

For subsets of vertices Y , Z and W , say that Y and Z are d-separated by W , and

write (Y ⊥⊥ Z|W )G, if for every y ∈ Y and z ∈ Z, every path between y and z is

blocked by W .

A fundamental theorem of the framework then is the following.

Theorem 3.2 (d-separation theorem [96, 97], also see Ref. [9]): Consider a DAG

G, with vertices X1, . . . , Xn, and disjoint subsets of vertices Y , Z, and W .

(1) (Soundness): if (Y ⊥⊥ Z|W )G, then any distribution P (X1, . . . , Xn) that is

Markov for G satisfies (Y ⊥⊥ Z|W )P .

(2) (Completeness): if (Y��⊥⊥Z|W )G, then there exists a probability distribution

P (X1, . . . , Xn) such that P (X1, . . . , Xn) is Markov for G and (Y��⊥⊥Z|W )P .

Note that the d-separation theorem does not rely on a causal reading of the

DAG and equally holds in the context of Bayesian networks. What the examples in

Fig. 3.4 made plausible is that if they do express the respective causal structure then

one would indeed also expect the conditional independence relations to hold that

are implied by Markovianity. However, a probability distribution P (X1, . . . , Xn) is

Markov for many different DAGs6. This fact in turn makes Thm. 3.2 highly relevant

to causal discovery.

6Observe that, given a probability distribution P (X1, . . . , Xn), for every possible total order
of the variables X1, . . . , Xn, it is immediate from the chain rule for probability distributions that
P (X1, . . . , Xn) is Markov for the ‘completely connected’ DAG corresponding to that total order of
X1, . . . , Xn.
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Suppose a probability distribution P (X1, . . . , Xn) is given that is estimated from

observational data. The problem of causal discovery is finding what a plausible

causal explanation is, that is, finding which additional assumptions are needed so

that the causal structure could be, as far as possible, singled out in a principled and

convincing way.

By putting the causal principle (Principle 1) to work one can exclude any DAG

with vertices X1, . . . , Xn, for which P (X1, . . . , Xn) is not Markov. Under the as-

sumption that there are no latent common causes, i.e. there are no common causes

that are not already included in X1, . . . , Xn, at first instance the problem becomes

classifying all DAGs with vertices X1, . . . , Xn, for which a distribution is Markov.

This is why the d-separation theorem can easily be understood to be at the heart of

the celebrated causal discovery algorithms [96,98]. A common further assumption is

that the correct causal explanation is given by a faithful causal model. Faithfulness

requires that P (X1, . . . , Xn) does not satisfy any further ‘extraneous’ conditional

independence relations that are not enforced by a corresponding d-separation rela-

tion in the DAG. This is a plausible desideratum for a good explanation because

‘extraneous’ conditional independences would require careful fine-tuning of the pa-

rameters of a functional causal model. One is then looking for exactly the DAGs G

that have those and only those d-separation relations (Y ⊥⊥ Z|W )G that have a cor-

responding conditional independence relation (Y ⊥⊥ Z|W )P in the distribution P .

Finding these in a systematic way is what the causal discovery algorithms achieve

and output. Further assumptions such as the time ordering of variables may then

be invoked, if such knowledge is available, to reduce the set of DAGs7.

In case no assumption is made with regards to whether or not there are latent

common causes, the situation is more difficult. However, algorithms have been

developed that output sets of DAGs, involving possible further latent variables, that

are the candidate causal explanations given plausible assumptions [8,9]. While these

causal discovery algorithms are among the strongest achievements of the framework,

they will not be presented in more detail, as they are not needed for the remainder

of the thesis.

7For instance, given P (Y,Z,W ), note that (Y ⊥⊥ Z|W )P is equivalent to Markovianity for the
fork in Fig. 3.4a, but also to Markovianity for the chain in Fig. 3.4b. These two causal structures
are thus not distinguishable just given P (Y,Z,W ), without further assumptions, e.g. about the
time ordering of the variables. (Note that both, the fork and chain, would constitute faithful causal
models if (Y ⊥⊥ Z|W )P holds, hence, faithfulness does not distinguish them either.)
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3.1.4 The do-calculus

Being able to assess the causal effect of X on Y , which is how Pearl also refers to the

do-conditional probability P (Y |do(X)) [9], is obviously of great relevance to many

fields, be it medicine or economics. Knowing P (Y |do(X)) is about both, finding out

whether Y wiggles at all as X wiggles, but also how much so. If one can conduct an

experiment in which one controls X, that is, intervenes on X, then P (Y |do(X)) can

be determined experimentally. There are however cases where such an intervention

is practically impossible or considered unethical. Of the latter kind is the famous

example that one cannot force a control group of humans to smoke so as to find out

how strong the causal effect of smoking on lung cancer is. This would however be

necessary to assess the plausibility of the genotype theory, defended by the tobacco

industry at some point, which proposed to explain the correlation between smoking

and lung cancer through a confounding common cause of a genetic nature that

increases the craving for nicotine and the probability to suffer from lung cancer.

The preceding introduction of causal models established two things. First, just

given a probability distribution P (X, Y, ...), the causal effect P (Y |do(X)) can in

principle not be calculated. It has to be supplemented with causal knowledge.

Second, if a causal model for P (X, Y, ...) with causal structure G is given, then

it is easy to calculate P (Y |do(X)) through employing the truncated factorisation

formula from Eq. (3.3). However, what if the whole distribution over all causally

relevant variables that appear in G is not known? Suppose a DAG G correctly

represents the actual causal structure — maybe the judgment of some expert or in

combination with the output of a causal discovery algorithm — but only some of

the variables in G are observed. When and how can one then calculate the causal

effect P (Y |do(X))? This is the problem of the identifiability of causal effects [9].

The framework of causal models solves this problem as well as is in principle

possible, through the so called do-calculus [9], one of the framework’s main achieve-

ments. This do-calculus comprises a set of three inference rules that relate obser-

vational and interventional statements — warranted by certain properties of the

causal structure G. It does so in a way that helps to express the desired causal ef-

fect P (Y |do(X)) entirely in terms of objects computable from the given distribution

and G, typically through multiple application of the rules. Crucially, these three

rules were proven to be complete for the problem of causal effect identifiability [9],

that is, a causal effect is computable if and only if it can be obtained through a

finite sequence of applications of the three rules.

The below theorem states the three rules, each of which is of the form that

a graphical antecedent in terms of a mutilated version of G implies an equality
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that relates a Bayesian and a do-conditional probability distribution. The notation

follows the one from Ref. [9], in particular, given a DAG G, if S is a subset of its

vertices, then GS denotes the DAG that is obtained from G by removing all arrows

incident on vertices in S and conversely, GS denotes the DAG, where all arrows have

been removed from G that are going out of vertices in S.

Theorem 3.3 (Rules of the do-calculus for classical causal models [9]): Let a clas-

sical causal model be given by a DAG G and a probability distribution P (...)8. Let

X, Y, Z, and W be disjoint subsets of the variables.

Rule 1 (insertion/deletion of observations):

(Y ⊥⊥ Z|X,W )GX ⇒ P (Y |do(X), Z,W ) = P (Y |do(X),W )

Rule 2 (exchange of observations and interventions):

(Y ⊥⊥ Z|X,W )GXZ ⇒ P (Y |do(X), do(Z),W ) = P (Y |do(X), Z,W )

Rule 3 (insertion/deletion of interventions):

(Y ⊥⊥ Z|X,W )G
X,Z(W )

⇒ P (Y |do(X), do(Z),W ) = P (Y |do(X),W ) ,

where Z(W ) denotes the set of nodes in Z that are not ancestors of W in GX .

Note that Rule 1 contains the soundness part of the d-separation theorem,

Thm. 3.2, as the special case given by X = ∅. As the focus in this thesis does

not lie on the application of these rules to identify causal effects, the presentation

contents itself with giving the basic idea as done above. Further intuition for each

rule will be built when studying the quantum analogues in Sec. 5.6.

3.2 The path to quantum causal models

3.2.1 Why quantum causal models?

The framework of classical causal models, summarised in the previous section, fails

to provide the grounds to give satisfactory causal explanations of the correlations

one does encounter in experimental data when quantum systems are involved. Let

us recapitulate the standard argument, already mentioned in Chapter 1, for why

that is the case by appealing to Bell’s theorem [11,12].

8As with conditional independence relations, wherever conditional probabilities appear in the
consequents of the three rules this is to be understood as that the equality holds for all values of
the variables for which the conditional distribution is defined.
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Suppose then that at a region A a pair of two-dimensional systems, A1 and A2,

say two photons, are prepared in a Bell state, say (1/
√

2)(|00〉+ |11〉). They are then

sent off to space-like separated regions B and C, where agents are stationed and both

parties perform one out of two possible, appropriately chosen measurements, say spin

SX or SZ . Let the outcomes atB and C be denoted kB and kC , respectively, and their

choices of measurements τB and τC , respectively. Upon comparing measurement

statistics one will find the outcomes are correlated in the conditional distribution for

fixed measurements, i.e. P (kB, kC |τB, τC) 6= P (kB|τB)P (kC |τC), where it was used

that P (kB|τB, τC) does not depend on τC and, similarly, P (kC |τB, τC) not on τB, in

keeping with relativity given that the regions are space-like separated. For the same

reason kB and kC cannot be causes of each other. Reichenbach’s common cause

principle then demands that there ought to exist a common cause λ in the past

such that P (kB, kC |τB, τC , λ) = P (kB|τB, λ)P (kC |τC , λ). However, Bell’s theorem

essentially states that from the previous expression an inequality can be derived,

which quantum theory predicts to be violated, e.g., for the outlined scenario where

a Bell state is prepared.

The fact that Bell-inequality violations have been confirmed in numerous experi-

ments is therefore typically taken to imply a failure of Reichenbach’s common cause

principle — there can in principle not exist a variable in the common past of B and

C that would warrant a common cause explanation as the principle demands. The

principle however essentially is what a common cause explanation within classical

causal modeling would amount to and thus is a general pillar of classical causal

models (see Sec. 3.1.2). The existence of Bell inequality violating correlations via

Bell’s theorem only implies the invalidity of the conjunction of all assumptions that

go into the theorem (which have not been made explicit here), and it is well-known

that there are ways to retain an explanation of Bell correlations in terms of classical

variables. These explanatory strategies, such as invoking superdeterminism, retro-

causal influences or superluminal causal influences, can be treated as giving causal

explanations within the framework of classical causal models, however, as Wood

and Spekkens showed in Ref. [13], and further elaborated by Cavalcanti in Ref. [99],

necessarily at the cost of relying on some form of fine-tuning (see Sec. 3.1.3). If a

common and fundamental phenomenon of quantum systems such as Bell-nonlocal

correlations always requires fine-tuning, then this may well be taken to mean that

it cannot be explained causally with classical causal models.

While quantum correlations go beyond what is explicable in terms of classical

causal models, in a sense, there is nothing puzzling about the Bell scenario as far as

giving a causal account of it from within the quantum formalism is concerned — the
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intuition is that there is an obvious common cause: the preparation of a Bell state at

A. And this is of course the whole point here; it seems as if there may not be an in

principle obstacle to giving causal explanations once one allows quantum systems to

take the role of causal relata in some form or other, and provided one adjusts what

a successful causal explanation is taken to mean, i.e. not the factorisation property

in a classical conditional probability distribution. Such hope was formulated and

argued for by Wood and Spekkens in Ref. [13] (also see the work by Cavalcanti

and Lal in Ref. [100]). What this calls for is a quantum framework that makes the

intuition of ‘quantum causal explanations’ rigorous.

There is a large body of literature with a series of strong results due to Rédei,

Hofer-Szabó and their collaborators (see, e.g., Refs. [101–108]), exploring, in par-

ticular, whether a (generalised) common cause principle can be maintained in light

of quantum theory. The intention of this research programme and the underlying

notion of a (generalised) common cause explanation are somewhat complementary

to those in this thesis (see, e.g., Refs. [78,100] for discussions).

3.2.2 Previous approaches I

The past couple of decades have seen much work dedicated to the development of

a quantum generalisation of causal models. It is not possible to cover all of it here

and to do full justice to the different kinds of ideas that have appeared or to the

different aspects with respect to which one could delineate them. Good overviews,

that the following one is inspired by, can be found in Refs. [4,82]. The works that are

going to be mentioned all share the usage of DAGs and that they involve quantum

systems in some way or other. The main themes are: What data does the DAG

represent? What do the arrows mean? What object is constrained by the DAG?

Can one treat arbitrary interventions on a set of quantum systems? In what sense

does it allow to give causal explanations? It may be helpful to identify five broad

groups of works prior to and distinct from the approach taken in this thesis, which

is the sixth group, as it were, that was begun in the work by Allen et al. in Ref. [4]

to be summarised in detail in Sec. 3.2.5. Concerning the first five groups it may

further be helpful to distinguish those that rely on the quantum process formalism

and those that do not. Hence, the overview is split accordingly into two parts —

Secs. 3.2.2 and 3.2.4 — to give way to the ‘intermezzo’ that introduces the process

formalism.

First, the earliest works noteworthy in this context, which add quantum systems

to the data represented by a DAG are those by Tucci in Refs. [73,74]. It associates

complex probability amplitudes with the vertices of the DAG, in order to achieve
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what might be seen as a quantum analogue of Bayesian networks, that is, it does

not insist on a causal interpretation of the DAG.

Second, there is a group of works, including those in Refs. [34, 35, 77, 80, 81],

that do not all have identical goals, but share the features that (1) the DAG is

intended to have a causal reading and involves quantum systems and (2) the object

constrained by a causal DAG is a probability distribution over classical variables

that represent the settings and outcomes of measurement of the quantum systems.

A ‘causal arrow’ is here taken to represent the passing of quantum systems between

the loci, where the measurements take place, which are in turn represented by the

vertices. Generally, these works are concerned with how the bringing in of quantum

resources changes the interplay between causal structure, on the one hand, and

equality and inequality constraints on the associated probability distribution, on

the other hand.

More specifically, the works by Henson, Lal and Pusey in Ref. [34] and by Fritz in

Ref. [35] develop a set-up in order to derive generalised Bell inequalities in arbitrary

causal scenarios (also see, e.g., Refs. [13, 36–38]). Both, Ref. [34] and also the work

by Pienaar and Brukner in Ref. [80] study the ramifications of d-separation in the

presence of quantum systems and achieve the derivation of generalisations of the

classical d-separation theorem (see Sec. 3.1.3). However, due to the fact that the

object constrained by causal structure maintains to be a classical distribution, it

is not a fully quantum version of the theorem and cannot capture whether or not,

loosely speaking, ‘d-separation between quantum systems’ captures a genuine notion

of quantum conditional independence.

Related to this second group, in so far as a quantum causal model specifies a

probability distribution over classical variables that is constrained by a causal DAG,

is the recent approach developed by Pienaar in Refs. [85–88]. Otherwise, it however

is quite distinct from the above mentioned approaches and can be seen as the applica-

tion of the QBist take on quantum theory [109] to causal modeling. The probability

distribution, specified by a quantum causal model, arises specifically from consider-

ing symmetric informationally-complete positive operator-valued measurements on

the quantum systems. A special feature of these quantum causal models is that the

proposed quantum Markov condition is preserved under the reversal of all arrows in

the DAG.

A third group of works is situated in the context of aiming at a formulation of

the quantum formalism as a theory of Bayesian inference as undertaken in Refs. [75,

76, 78]. The work by Leifer and Poulin in Ref. [76] presented approaches to quan-

tum generalisations of various ways in which DAGs have been employed in classical
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probability theory. In particular Ref. [76] proposed a notion of ‘quantum Bayesian

networks’ (therein called quantum Markov networks), where a DAG has vertices

that represent Hilbert spaces and the constraints it imposes on a quantum state

over all involved Hilbert spaces are in terms of quantum conditional mutual in-

formation. Ref. [76] inspired much later work, including this thesis. In Ref. [78]

Leifer and Spekkens further developed the ideas and used a particular definition of

quantum states and quantum conditional states as proposed analogues to classical

joint and conditional probability distributions so as to provide a similarly causally-

neutral way for inference about quantum systems, i.e. that can be used to formalise

reasoning about quantum systems regardless of the causal relations amongst them.

They then studied how different causal scenarios constrain a quantum (conditional)

state, working towards a corresponding quantum approach to causal models. In

contrast to the previous approaches, here the object constrained by a DAG is not

a classical probability distribution, but an intrinsically quantum object. There are

however serious obstacles to a fully general treatment based on associating single

Hilbert spaces with the vertices of the DAG [110]. Also note that while the DAG is

intended to encode causal relations, there is no precise definition of causal relations

between quantum systems.

Recall that a classical causal model allows to make predictions for post-interven-

tion scenarios9. This additional power, brought about by giving the DAG a causal

interpretation as done in a causal model, can be considered the decisive difference to

Bayesian networks. Now, note that a similar ‘predictiveness for arbitrary quantum

interventions’ is a feature that all of the above mentioned approaches to quantum

generalisations of causal models lack10. While the probability distribution, con-

strained by causal structure in the second group above, is taken to arise from the

quantum systems through a measurement process, it is not the case that the data

that defines the model allows to calculate outcome probabilities for arbitrary inter-

ventions on the quantum systems.

Other approaches to quantum generalisations of causal models have in contrast

focused on that aspect. Although it need not be that way, many of them happen to

also stand in a tradition of taking an operationalist perspective on quantum theory,

together with an interventionist account of causation.

Intuitively speaking, the core behind an interventionist account of causation is

the idea that what it means to say that C is a cause of E is that, when an agent

9Although often only do-interventions are considered, in principle arbitrary interventions could
be treated (see Sec. 5.3).

10The mentioned work by Pienaar does allow to consider arbitrary interventions, however, only
for special cases of DAGs (see Refs. [86, 88]).
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‘wiggles on C’, then also ‘E wiggles’, that is, through manipulating C one can

send signals to E11. Classically, this is conveniently formalised as follows. Given a

classical channel P (EF |CD), variable C can signal to E, if and only if for at least

some value d it holds for the marginal channel that P (E|C = c,D = d) 6= P (E|C =

c′, D = d) for some c 6= c′.

Similarly, given a quantum channel E : L(HC ⊗HD)→ L(HE ⊗HF ), system C

is said to be able to signal to E if and only if for at least some state ρD it holds that

the marginal states differ for some ρC 6= ρ′C , i.e. TrF [E(ρC⊗ρD)] 6= TrF [E(ρ′C⊗ρD)].

Often it is more convenient to formally define no-signalling relations of quantum

channels. The negation of the just given operational statement, was in Ref. [16]

shown to be equivalent, amongst other operational statements, to the following

definition, which will be particularly convenient to work with in this thesis.

Definition 3.6 (No-signalling in channel): Given a channel E : L(HA ⊗ HC) →
L(HB⊗HD), write A9s D, say ‘A does not signal to D’, if and only if there exists

a quantum channel M : L(HC) → L(HD), with CJ representation ρMD|C such that

TrB[ρEBD|AC ] = ρMD|C ⊗ 1A∗.

However, in a quantum channel, at least how it is commonly interpreted as

describing the evolution of quantum systems at an earlier time to a later time, a lot

of causal constraints are already fixed, namely that none of the later systems can

then be causes of the earlier systems. As emphasised in many works, in particular

by Leifer and Spekkens in Ref. [78], what appears as a prerequisite for developing a

quantum generalisation of classical causal models is a formalism with which causally

distinct situations, such as a joint state of two quantum systems at the same time

and a channel from one system to another, can be represented mathematically on an

equal footing — it should always be the same sort of object that is then constrained

by different DAGs as causal structure. The next section will introduce the process

formalism, which is one way to provide such a stage. Sec. 3.2.4 will then resume

the current overview with the two remaining groups of works. Crucially, the process

formalism does not necessarily lead to an interventionist account of causation and

will also provide the stage for the treatment of quantum causal models in this thesis.

11While this is not the notion of causal relations that underlies Pearl’s presentation of classical
causal models in Ref. [9] (see Sec. 3.1.2), nor in Refs. [111, 112], many understand classical causal
models in such a light. It is one thing to note the role of interventions in giving causal relations
operational meaning, and another to define causal relations in terms of interventions.
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3.2.3 Intermezzo: the process formalism

This section introduces a central concept for this thesis, that of a quantum process

operator. Up to the different convention for the CJ isomorphism in this thesis, a

quantum process operator essentially is a process matrix as first defined by Ore-

shkov, Costa and Brukner in Ref. [43]. The below presentation of the formalism of

quantum processes12 will follow that in Ref. [3]. Historically, in Ref. [43] process ma-

trices were introduced in order to study the conceivable ways in which an ‘indefinite

causal order’ of events could be compatible with quantum theory without running

into logical paradoxes. An introduction into the motivation for such inquiry, how it

leads to the process formalism and the seminal findings in a large set of works since,

is postponed to Sec. 7.1. Here, the set-up is introduced merely to: (1) provide a way

to represent quantum data such that it does not already manifestly depend on the

causal structure and (2) makes it possible to consider arbitrary quantum interven-

tions and make predictions for their outcomes — for the time being, disregarding

questions on ‘indefinite causality’. The process formalism is a prerequisite for the

continuation of the overview on quantum causal models in Sec. 3.2.4, for formulating

the notion of a causal model this thesis studies, as well as it will ensure a smooth

transition into the contents of Chap. 7 that will finally be concerned with ‘indefinite

causality’.

Quantum processes have many cousins in preceding and closely related for-

malisms: from the multi-time formalism [113–117], via quantum combs [32, 118],

more general quantum higher-order maps [42, 67], to the almost identical process

matrices [43, 48, 49, 53]. While these different works stem from distinct intentions

and study distinct questions, they share that a system or locus of intervention is

represented by a pair of Hilbert spaces, one representing the causal past — seen

locally — and one representing the causal future. Some of the mentioned works are

manifestly operational and associate these ‘pairs of Hilbert spaces’ with the ‘before

and after’ of an intervention, while others leave them more abstract or may associate

the pair of spaces with a single system to represent pre- and post-selected informa-

tion about that system. To a certain degree, different perspectives will also feature

in the remainder, however, here we choose to introduce them as the most general

kind and under neutral terminology, which is also natural for the context of causal

models: A quantum node A is a pair of an input system HAin and an output system

HAout . An intervention at the node A that maps the states of the incoming system

to the states of the outgoing system, is modeled by a quantum instrument of the

12Note that this is not to be confused with the same terminology in the context of seeing
quantum theory as a process theory (see, e.g., Ref. [24]), where ‘quantum processes’ are CP maps.
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form {EkA}kA , where the CP maps EkA : L(HAin)→ L(HAout) are represented by

τ kAA :=
(
ρE

kA

Aout|Ain

)T
, (3.6)

which is an operator on HAin ⊗H∗Aout (recalling our definition of CJ operators and

that a Hilbert spaceH is assumed to be finite-dimensional and henceH is canonically

isomorphic to (H∗)∗).
In case of a deterministic intervention at node A with just one possible outcome

— or equivalently the effective CPTP map from summing over all possible outcomes

of an arbitrary quantum instrument — is denoted τA. For a set of quantum nodes

A1, . . . , An, the process ‘external to the nodes’ is then most generally described by

a quantum process operator 13.

Definition 3.7 (Quantum pocess operator): A quantum process operator σA1...An

(process operator for short) over the quantum nodes A1, . . . , An is a positive semi-

definite operator

σA1...An ∈ L
( n⊗

i=1

HAin
i
⊗H∗Aout

i

)
,

such that for all sets of channels {τAi} at the n nodes it holds that

Tr
[
σA1...An

(
τA1 ⊗ . . .⊗ τAn

)]
= 1 .

As mentioned above, a process operator is the same as a process matrix as defined

in Ref. [43], modulo the different choice of CJ representation that ensures the process

operator to be a basis-independent object.

Given a process operator σA1...An and a choice of intervention at each node, τ
kAi
Ai

with i = 1, ..., n, the joint probability distribution over the n outcomes is given by

P (kA1 , . . . , kAn) = Tr
[
σA1...An

(
τ
kA1
A1
⊗ . . .⊗ τ kAnAn

)]
. (3.7)

It follows from Def. 3.7 that the expression on the right-hand side of Eq. (3.7)

indeed defines a correctly normalised probability distribution P (kA1 , . . . , kAn) over

all possible outcomes of the n interventions. Note that the reason for representing

CP maps of interventions with τ kAA , the transpose of the CJ operator, rather than

the latter itself, is so that Eq. (3.7) would take this form of a simple trace rule.

Importantly, and as is not hard to see, Def. 3.7 implies that for a process operator

13This definition agrees with the presentation in Ref. [3], while the one in Ref. [1] differs slightly
in that it does not allow arbitrary quantum nodes as done here and that the labelling of the ‘out’
Hilbert space and its dual is the reverse compared to here.
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σA1...An it holds that

TrAin
1 ...A

in
n

[
σA1...An

]
= 1(Aout

1 )∗ ⊗ . . .⊗ 1(Aout
n )∗ . (3.8)

Hence, it follows that a process operator σA1...An , seen as a CJ operator, also defines

a channel from the output spaces of all nodes to the input spaces of all nodes,

P : L(HAout
1
⊗ . . .⊗HAout

n
) → L(HAin

1
⊗ . . .⊗HAin

n
) . (3.9)

Eq. (3.7) can then be read as the composition of this channel P ‘in a loop’ with the

CP maps of the interventions. Note that however not all channels of the form as in

Eq. (3.9) define process operators. Furthermore, Eq. (3.7) also makes evident that a

process operator σA1...An defines a multi-linear map that maps tuples of n CP maps

into the probabilities and can be seen as a special case of a higher-order map [67].

Just as we will often write ‘given a channel ρC|B’ by stating the CJ operator ρC|B

of the channel, we will often write ‘given a quantum process σA1...An ’ by stating the

process operator σA1...An . Alternative conditions to characterise process operators

can be found in Refs. [43,48,49] (also see Sec. 7.1).

An important convention will be that if labels of quantum nodes appear on CJ

operators of channels then we have suppressed the ‘in’ and ‘out’ to avoid clutter

and write, e.g., σA1...An = ρPA1...An|A1...An
, that is, the label A of a node refers to the

respective output space Aout if A appears to the right of the ‘bar’ and to the input

space Ain if it appears to the left of the ‘bar’.

The way in which, for instance, a state ρAB of two systems A and B at the

same time and a channel ρB|A from A to B, which evolves state ρA forward, can be

represented in a unified way in terms of process operators is by formally considering

A and B as two quantum nodes, for which HAout = HAin = HA and HBout = HBin =

HB. In the first case the process operator is given by σAB = 1(AoutBout)∗⊗ρAB, and in

the second case by σ′AB = 1(Bout)∗⊗ρB|A⊗ρA. Following the convention from Sec. 2.2

for suppressing identity operators, these are more conveniently written as σAB = ρAB

and σ′AB = ρA|B ρB, respectively . Alternatively, any channel ρCD|AB from quantum

systems AB to CD itself already is a special case of a process operator, simply

by seeing A and B as quantum nodes with trivial input spaces and C and D as

quantum nodes with trivial output spaces.

Some more notational conventions will be useful. If S = {A1, . . . An} is a set

of quantum nodes, then we let ‘local interventions at S’, denoted by τ kSS , refer to

an intervention at each node individually, τ kSS = τ
kA1
A1
⊗ . . .⊗ τ kAnAn

with kS standing

for the tuple of outcomes. More generally, interventions τ kSS at S that are not of
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that form are referred to as global interventions. For a set of nodes S let HSin :=⊗
A∈SHAin and HSout :=

⊗
A∈SHAout . It will be convenient to use the short-hand

notation TrA[. . .] := TrAin(Aout)∗ [. . .], as a ‘partial trace over node A’. Similarly,

TrS[. . .] := TrSin(Sout)∗ [. . .] for S a set of nodes. This is particularly handy when

considering marginal processes. Let σA1...An be a quantum process, then for some

choice of interventions τS at S ⊂ {A1, . . . An} the marginal process on the remaining

nodes R := {A1, . . . An} \ S will in general depend on the choice τS and is denoted

στSR := TrS[σA1...An τS].

Since the quantum nodes A1, . . . , An can in particular be regarded as loci of

interventions, where one may imagine an agent to be stationed and able to perform

arbitrary quantum instruments, given a quantum process σA1...An , one can then

naturally consider the condition of no-signalling between subsets of nodes.

Definition 3.8 (No-signalling between nodes of a quantum process [49]): Given a

quantum process σA1...An, for disjoint subsets S, T ⊆ {A1, . . . , An} say the nodes S

cannot signal to the nodes T , write (S 9s T )σSTR, where R := {A1, . . . , An} \ (S ∪
T ), if and only if for all interventions τ kTT at T and all interventions τR at R the

probability distribution p(kT |τS) = Tr
[
σSTR

(
τS ⊗ τ kTT ⊗ τR

)]
is independent from the

choice of intervention τS at S.

The signalling properties of processes will be further studied in Sec. 5.7. Due to

the present focus on processes compatible with a ‘definite causal order’ it may be

useful to point out more precisely the link to the closely related formalism of quantum

combs, as defined in Ref. [32], where it was used to formalise the study of quantum

networks. A (n+ 1)-comb can be seen to be a multi-linear map that maps CP maps

at n quantum nodes A1, . . . , An into a CP map of the form L(HI)→ L(HO), subject

to conditions that relate the total order of nodes, as enumerated by A1, . . . , An, to

certain no-signalling relations. In case the output CP map of the comb has trivial

input and output systems I andO, the comb maps into the probabilities and becomes

a special case of a quantum process: a quantum process σA1...An over n quantum

nodes is a quantum comb for the given total order of its nodes (as enumerated by

A1, . . . , An) if and only if

σA1...An =
1

dAout
n

Tr(Aout
n )∗ [σA1...An ]⊗ 1(Aout

n )∗ (3.10)

and ∀l = 1, . . . , n− 1

TrAl+1...An [σA1...An ] =
1

dAout
l

Tr(Aout
l )∗

[
TrAl+1...An [σA1...An ]

]
⊗ 1(Aout

l )∗ . (3.11)
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It is immediate that if a quantum process σA1...An is a comb for the total order

of nodes A1, . . . , An, then for any i ≤ j < k ≤ l the set of nodes Ak, Ak+1, . . . Al

cannot signal to the set of nodes Ai, Ai+1, . . . Aj. Signalling is thus possible at most

to nodes later in the total order.

Further intuition for quantum processes will be developed in the remainder of

the thesis.

3.2.4 Previous approaches II

This section will continue where Sec. 3.2.2 left the overview on previous approaches

to quantum causal models. As remarked there, it is a strong desideratum for a defi-

nition of quantum causal models to have the feature of ‘predictiveness for arbitrary

interventions’. Now, a quantum process σA1...An over quantum nodes A1, . . . , An, as

introduced in Sec. 3.2.3, is a fully quantum object that allows to consider and make

predictions for arbitrary interventions at A1, . . . , An. If it furthermore is a quantum

comb as defined in Ref. [32], that is, it satisfies the conditions from Eqs. (3.10) and

(3.11), in particular then A1, . . . , An can be seen to have a fixed causal order14. A

fourth sense in which the term ‘quantum causal model’ has been used in the litera-

ture then essentially coincides with the notion of a quantum comb, reducing a causal

model to the predictiveness aspect. This group includes for instance Ref. [119,120].

Importantly, a core aspect of a causal model framework, as understood in this

thesis, but that the just mentioned usage of the term ignores, is that it is supposed

to be a formalisation of how to give causal explanations. This aims at the capability

to answer questions, such as, what the causal structure of the quantum nodes of a

quantum process σA1...An is and when and based on what assumptions can one assert

that no common causes are omitted in the choice of quantum nodes under study?

A fifth and last approach in the overview then is the first instance of a framework

of quantum causal models that is in the interventionist tradition, equating causation

with signalling, but also in keeping with the spirit of classical causal models in that

it formulates a quantum Markov condition and is explicitly concerned with giving

causal explanations. This is the notion of a quantum causal model as proposed by

Costa and Shrapnel in Ref. [82] (also see Ref. [121]). It focuses on two concepts,

‘interventions’ and ‘autonomous causal mechanisms’. Concerning the former, pre-

dictiveness for arbitrary interventions is again built in by virtue of that a quantum

causal model in particular specifies a quantum process. Concerning the latter, a

‘causal mechanism’ that the arrow in a DAG of a causal model is supposed to stand

14This does not exhaust the cases when one can regard that to be the case, however, a discussion
of the corresponding concept of ‘causal separability’ is postponed to Sec. 7.1.1.
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for, is taken to mean the passing of a quantum system, which mediates the signalling

as a physical process — a feature that is shared with the approaches in group two

from Sec. 3.2.2.

On that basis, Ref. [82] defined a quantum causal model by specifying a DAG

G with vertices A1, . . . , An and a quantum process σA1...An over quantum nodes

A1, . . . , An with the special property that each output space Aout
i factorises into as

many subsystems as the vertex Ai has children in the DAG G, i.e. Aout
i is required

to have subsystems A
(j)
i with Aj ∈ Ch(Ai), and such that σA1...An satisfies their

proposed notion of a quantum Markov condition relative to G. The latter condition

then demands that σA1...An =
⊗n

j=1 ρAj |Pa(Aj), where each ρAj |Pa(Aj) represents a

channel L(
⊗

Ai∈Pa(Aj)HA
(j)
i

) → L(HAin
j

). In particular the Bell scenario described

in Sec. 3.2.1 fits into that picture, seeing as the corresponding process is of the form

σABC = ρB|A(B) ⊗ ρC|A(C) ⊗ ρA(B)A(C) , where ρA = ρA(B)A(C) is a Bell state and the

channels ρB|A(B) and ρC|A(C) describe the sending of the subsystems A(B) and A(C)

into the respective space-like separated regions.

The approach from Ref. [82] also facilitated quantum analogues of other aspects

of classical causal models such as a notion of faithfulness and moreover led to the

development of a quantum causal discovery algorithm [82,121] (also see Sec. 5.7.3).

In the view that takes causation to be signalling and common causes necessarily

to be composite systems with a subsystem ‘per causal relation’, the framework

from Ref. [82] appears as an interesting and plausible approach. There are however

reasons why one might not be fully satisfied with such an approach.

First, independently from the definition of a causal model, and also indepen-

dently from one’s preference concerning whether or not it is desirable to have causal

relations as an agent based, interventionist notion or not, defining a causal rela-

tion as signalling comes with an oddity. The possibility to signal can only be a

property that obtains given certain data. For the case of quantum processes this

discussion is postponed to Sec. 5.7.1, but the claimed oddity essentially boils down

to the following observation just for ‘ordinary’ quantum channels. Given a channel

ρB1...Bk|A1....An , suppose that Ai cannot signal to Bj and also not to Bm for j 6= m.

Note that it however may still be the case that Ai can signal to the composite system

BjBm
15. While the possibility to signal should arguably lead to the conclusion of

15A simple example of such a situation can be given even in purely classical terms. Let X, Y and
Z be bits and P (Y,Z|X) the classical channel that arises from a functional model as follows: there is
an additional bit λ and it holds that Y = X+λmod 2 and that Z = λ, as well as, suppose P (Y,Z|X)
arises from marginalising over λ for the uniform distribution P (λ = 0) = 1/2 = P (λ = 1). It is
straightforward to verify that while X can signal to Y × Z, it cannot signal to Z alone and also
not to Y alone, since the output of the marginal channel P (Y |X) is the uniform distribution over
Y independently from X.
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a causal relation on any account, a definition is an ‘if and only if’ relation and if

defining causation as signalling, one would have to conclude that Ai is not a ‘direct

cause’ of Bj given that Ai cannot signal to Bj. This however is an assertion one

does not quite know what to make of, given that Ai would also not be a ‘direct

cause’ of Bm, while it is a ‘direct cause’ of BjBm. It is an assertion that is at odds

with taking DAGs as representing individually meaningful direct cause relations,

where in particular their absences matter (also see Sec. 4.1). Now, it is true that

in case of a quantum causal model as defined in Ref. [82] this issue does not arise,

that is, the DAG can be trusted also concerning the absences of arrows it encodes

(see Sec. 5.7), however, then the notion of a causal relation cannot be distentangled

from the notion of a causal model. This in turn is particularly pertinent given the

following point.

Second, no justification has been given why the definition of a quantum causal

model in Ref. [82] should be the most general one. Indeed, the assumption of

‘composite systems as common causes’ does not seem to exhaust the cases, where

one would like to be able to give a causal account of a quantum channel, or generally

a quantum process, in terms of common causes. This insight was gained in the

work by Allen et al. in Ref. [4] by moving away from an interventionist account of

causation. This work will be sketched in the subsequent section and provides the

basis for this thesis.

3.2.5 The work by Allen et al. and causal principles

The works discussed in the previous sections left unanswered the question of what an

appropriate notion of quantum causal models is that incorporates all the mentioned

desirable features, but can deal with the most general case and has a conceptually

clear grounding. In order to arrive at such, one is well-advised to first properly

understand the arguably most basic situation of causal reasoning — the common

cause scenario, with which it all began in Sec. 3.2.1. This is what Allen et al.

undertook and studied in detail in Ref. [4], taking inspiration from the analysis of

classical causal models in Sec. 3.1.2. If classical causal models got something right

about causal reasoning for classical variables, then this manifests itself in, or in fact

can be seen as a generalisation of, Reichenbach’s common cause principle. Hence,

what is needed is a common cause principle in intrinsically quantum terms. The

hope that this might be possible was already expressed in Ref. [13]. The ‘blueprint’

for causal models, which the analysis of the classical case in Sec. 3.1.2 may be seen

to constitute is this: provided a precise definition of causal relations, one may then

be able to obtain the principle as a theorem rather than an ad-hoc assertion, and in
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a second step generalise from the common cause scenario to arbitrary DAGs.

The following summarises the ideas and results from Ref. [4]. This is presented

in a slightly different way than in Ref. [4], in accordance with that ‘blueprint’ from

Sec. 3.1.2: here causal principles are formulated explicitly to match the analogy,

which did not appear literally in Ref. [4], but are conceptually entirely contained in

Ref. [4]. The approach in Ref. [4] involves in particular the proposal of a different

take on causal relations compared to the approaches in Secs. 3.2.2 and 3.2.4, which

will be introduced here to the extent it was covered in Ref. [4]. A corresponding

fully general definition of causal structure was first given in our work in Ref. [1]

and will be presented in Chap. 4.

3.2.5.1 The quantum common cause principle

Let B and C be quantum systems. They could in general be causally unrelated

or stand in one of the five possible causal relationships already described for the

classical case in Sec. 3.1.2, i.e. B could be a cause of C, vice versa, there could be

a common cause A or a combination of the latter with one of the former two. Now,

suppose A is a complete common cause of B and C, as depicted in Fig. 3.5, i.e. in

particular B and C are not causes of each other.

A

B C

Figure 3.5: A is the complete common cause of B and C.

An analogous treatment to that in Sec. 3.1.2 has to answer the two questions

what the object is that is constrained by such an assertion and what the constraint is.

The proposal from Ref. [4] for the first is that the quantum analogue of the classical

channel P (Y, Z|X) is a quantum channel E : L(HA)→ L(HB ⊗HC) that describes

the evolution from A to B and C. Concerning the second, the constraint imposed

by the asserted causal scenario is that the CJ operator of the channel factorises as

ρBC|A = ρB|A ρC|A . (3.12)

The constraint ρBC|A = ρB|A ρC|A looks analogous to the one in Reichenbach’s

common cause principle, that is, P (Y, Z|X) = P (Y |X)P (Z|X). It is of course a

generalisation, containing the classical one as a special case for a preferred prod-

uct basis of HA, HB and HC , relative to which ρBC|A is diagonal and encodes

the conditional distribution P (Y, Z|X) on its diagonal (see Sec. 5.3 for a detailed
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analysis). For two such diagonal operators ρB|A and ρC|A commutation is trivial.

Commutation is also trivial if HA has subsystems corresponding to tensor factors,

HA = HA(B) ⊗HA(C) such that ρB|A = ρB|A(B) ⊗ 1A(C)∗ and ρC|A = 1A(B)∗ ⊗ ρC|A(C) ,

i.e. ρBC|A = ρB|A(B) ⊗ ρC|A(C) . This could be seen as the ‘complete common cause

scenario’ according to Ref. [82] (see Sec. 3.2.4).

However, the proposed principle is more general. It demands a factorisation as

in Eq. (3.12), but where ρB|A and ρC|A are allowed to act non-trivially on A without

a global factorisation of A. Note that the hermiticity of ρBC|A still implies that the

factors commute, [ρB|A, ρC|A] = 0 [4].

An instructive example, presented in Ref. [4], is the incoherent copy channel

ρBC|A that describes a situation, where qubit A is measured in the computational

basis |0〉, |1〉 and, depending on the outcome i = 0, 1, the qubits B and C are

prepared in state |i〉|i〉. The CJ operator is given by ρBC|A = |000〉〈000|BCA∗ +

|111〉〈111|BCA∗ and can be verified to indeed be of the form ρBC|A = ρB|A ρC|A

[4]. Here A does not factorise into subsystems, which independently go to B and

C; system A is a qubit with a prime-dimensional Hilbert space. Nonetheless, one

would want to be able to say that A is the complete common cause of B and C,

seeing as it is a quantum version of the classical copy map — the maybe canonical

example for a common cause explanation.

Since useful later, the formal statement of the principle is given for a slightly

more general case.

A

B1 B2 · · ·
· · ·

Bk

Figure 3.6: A is the complete common cause of B1, . . . , Bk.

Principle 2 (Quantum common cause principle): If system A is the complete com-

mon cause of systems B1, . . . , Bk as shown in Fig. 3.6 then the channel ρB1...Bk|A that

describes their evolution, factorises as

ρB1...Bk|A =
k∏
i=1

ρBi|A , (3.13)

such that the marginal channels commute pairwise, [ρBi|A, ρBj |A] = 0 ∀i, j.

Note that in this case the pairwise commutation of the k factors is not implied

by the factorisation itself, but rather is an additional, substantial condition. In

a similar spirit as in Sec. 3.1.2, this begs the question why one should hold this
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principle to be a reasonable one, be it for just two systems B and C, or for k systems.

The answer offered in Ref. [4] starts from proposing causal relations as relations of

influence between quantum systems in underlying unitary transformations. This is

most conveniently formalised by defining the no-influence condition:

Definition 3.9 (No-influence in unitary transformation): Given a unitary trans-

formation U : HA⊗HC → HB ⊗HD with CJ representation ρUBD|AC, write A9 D,

say ‘A does not influence D’, if and only if there exists a quantum channel M :

L(HC)→ L(HD), with CJ representation ρMD|C such that TrB[ρUBD|AC ] = ρMD|C⊗1A∗.

The effective description with a channel ρB1...Bk|A is thought to arise from the

evolution with an underlying unitary transformation U that involves these systems,

but in general also further input and output systems. Now, if A is the complete

common cause of B1, . . . , Bk as in Fig. 3.6, then A must be the only input system

that influences more than one of the output systems B1, . . . , Bk. Hence, U may

involve at most further ‘local disturbances’ λ1, . . . , λk as input systems, in much the

same fashion as for the classical case in Sec. 3.1.2. More formally,

Definition 3.10 (Compatibility with complete common cause [4]): Given a chan-

nel ρB1...Bk|A, it is compatible with A being the complete common cause of B1, . . . , Bk

if and only if there exist k auxiliary systems λi and a unitary channel ρUB1....BkF |Aλ1...λk
such that

(1) for some product state ρλ1 ⊗ · · · ⊗ ρλn it holds that

ρB1...Bk|A = TrFTrλ1...λn

[
ρUB1....BkF |Aλ1...λk

(
ρλ1 ⊗ · · · ⊗ ρλn

) ]
, (3.14)

(2) the unitary U satisfies the no-influence conditions {λi 9 Bj}j 6=i.

The assumption that the ‘local disturbances’ λ1, . . . , λk can be ascribed a product

state when A is the complete common cause parallels the corresponding assump-

tion in the classical case concerning statistically independent local disturbances.

See Sec. 5.2.4 for a discussion of why no attempt is made to further justify this

assumption. The main result from Ref. [4] then is:

Theorem 3.4 (Equivalent statements for complete common cause scenario [4]):

Given a channel ρB1...Bk|A, the following statements are equivalent:

(1) The channel ρB1...Bk|A is compatible with A being the complete common cause

of B1, . . . , Bk.
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(2) The channel ρB1...Bk|A factorises as ρB1...Bk|A =
∏k

i=1 ρBi|A, where the corre-

sponding marginal channels commute pairwise, i.e. ∀i, j, [ρBi|A, ρBj |A] = 0.

On the basis of taking causal relations as relations of influence in underlying uni-

tary evolution, whenever A is the complete common cause of B1, . . . , Bk, Principle 2

necessarily has to be satisfied, provided the product state assumption. In that sense

Thm. 3.4 may therefore be taken as a justification of the principle.

Note that, unlike the incoherent copy channel mentioned above, the coherent

version defined by mapping |0〉A 7→ |00〉BC and |1〉A 7→ |11〉BC defines a channel,

the CJ operator of which does not factorise as in Eq. (3.12), i.e. ρBC|A 6= ρB|A ρC|A

[4]. This is just as one would expect on the basis of causal relations as influence in

underling unitary evolution because a unitary transformation that implements the

coherent copy map will involve further common causes to B and C and hence the

factorisation condition should indeed fail to detect that very fact [4].

3.2.5.2 General quantum causal principle

Based on the result of Thm. 3.4, Allen et al. in Ref. [4] proposed a definition of

quantum causal models in accordance with the quantum common cause principle.

The presentation of the proposal here will adopt the scheme from Sec. 3.1.2: first for-

mulate the general quantum causal principle that generalises the quantum common

cause principle to arbitrary causal scenarios as represented by a DAG, in analogy

to how the classical Principle 1 generalises Reichenbach’s common cause principle.

For the complete common cause case the constraint concerned a channel ρB1...Bk|A,

which is natural since none of the B1, . . . , Bk are, by assumption, causes of each

other. Now allowing arbitrary causal relations between a set of quantum systems

— as long as expressible by a DAG — the kind of object with which the quantum

systems can always be described, and that is constrained by causal structure, is a

quantum process operator. However, in Refs. [1, 4] it is not any kind of quantum

nodes that are allowed as the vertices of a causal DAG, but a special kind16:

Definition 3.11 (Quantum inode): A quantum inode A is a quantum node with

isomorphic input and output systems, HAin
∼= HAout, where for convenience we let

them be copies of each other, HAout = HAin.

The decisive feature of a quantum inode A is that it then is always possible to

consider ‘no intervention’ at A. This is represented by the identity channel, the

16The terminology of an inode is not established in the literature, but introduced here for ease
of reference given that in this thesis both will be needed, the general formalism of processes with
arbitrary quantum nodes, as well as, the restricted ones.
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special intervention τ idA , which is nothing but the ‘linking operator’ from the CJ

isomorphism in Sec. 2.2. If the input and output spaces of a quantum node have

different dimension, then a ‘non-trivial’ intervention necessarily has to happen at

the respective locus, in order to mediate the input system to the output system. A

restriction to quantum inodes aims at a framework concerned with the causal rela-

tions between quantum systems, rather than ‘labs’ or interventionist interpretations

otherwise of quantum nodes. See Sec. 4.2 for further discussion.

In analogy to the classical Principle 1, the following then suggests itself by virtue

of Principle 2 from the complete common cause scenario.

Principle 3 (Quantum causal principle): Given quantum inodes A1, . . . , An , if

their causal structure is as in the DAG G with vertices A1, . . . , An, with no common

causes missing, then the process operator σA1...An describing these quantum inodes

admits a factorization into pairwise commuting CJ operators of channels of the form

σA1...An =
∏n

i=1 ρAi|Pa(Ai).

This in turn suggests — in keeping with the causal principle — the following

definition of a quantum causal model, proposed in Ref. [4].

Definition 3.12 (Quantum causal model): A Quantum causal model (QCM) is

given by:

(1) a causal structure represented by a DAG G with vertices corresponding to

quantum inodes A1, ..., An,

(2) for each Ai, a quantum channel ρAi|Pa(Ai) ∈ L(HAin
i
⊗ H∗Pa(Ai)out) such that

for all i, j, [ρAi|Pa(Ai) , ρAj |Pa(Aj)] = 0.

The quantum causal model defines a process operator over the quantum inodes A1, ..., An

given by

σA1...An =
∏
i

ρAi|Pa(Ai) . (3.15)

As before with the common cause principle, this begs the question why would

Principle 3 be justified? Why should Def. 3.12 be the right definition of a quantum

causal model? Ref. [4] proposed the definition without further justification. A mere

appealing to analogy with Principle 2 and that both involve a factorisation into

pairwise commuting operators does not suffice for a framework that aspires to be

the general one for causal reasoning about quantum systems. Of course, the intuition

was that the story which justified Principle 2 should extend and allow a theorem to

a similar effect as Thm. 3.4. It turns out this is not entirely trivial and will be the
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first main result in Chap. 5. The exploration of this framework of quantum causal

models is then undertaken in the remainder of Chap. 5. Before that, Chapter 4

will first lay the foundation by formalising the suggested picture of quantum causal

relations in full generality — the first achievement of this thesis proper.
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Chapter 4

Quantum causal structure

This chapter presents the main concepts of this thesis, common to all three of our

publications in Refs. [1–3] — the quantum direct-cause relation between quantum

systems as one that inheres in unitary transformations, the notion of causal structure

any unitary transformation thereby has, and how that notion lifts to the level of

unitary processes over quantum nodes. It also states a fundamental link between

causal relations of quantum systems and structural properties of the underlying

Hilbert spaces — a tool that will feature heavily in most proofs throughout. This

short chapter thus serves to expose the definitions and observations that form the

basis of this thesis and the thread that runs through the subsequent chapters.

4.1 Causal structure of unitary transformations

The previous Section. 3.2.5 summarised the main achievement from Ref. [4], namely,

the formulation of a quantum common cause principle and, roughly speaking, how

it was turned from an ad-hoc assertion to a theorem. This relied on the no-influence

condition from Def. 3.9 : given a unitary transformation U : HA⊗HC → HB ⊗HE,

say A does not influence E, written A9 E, if and only if TrB[ρUBE|AC ] = ρME|C⊗1A∗
for some marginal channel M : L(HC) → L(HE). This condition is equivalent to

TrB ◦ U = TrA ⊗M and expressed graphically in Fig. 4.1.

B E

A C

U =

E

A C

M

Figure 4.1: Graphical representation of A9 E for unitary channel U .
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The idea is, given a unitary map U , whenever there is influence from an input

system to an output system, then this is causal influence.

Definition 4.1 (Direct cause relation): Given a unitary transformation U : HA ⊗
HC → HB ⊗HE, system C is said to be a direct cause of E, written C → E, if and

only if C can influence E, i.e. ¬(C 9 E).

For a unitary transformation with a fixed tensor product structure of subsystems

in both domain and codomain (not necessarily the same), one can then ask for each

output system what its direct causes are.

Definition 4.2 (Causal parents in unitary transformation): Given a unitary trans-

formation U : HA1 ⊗ . . .⊗HAn → HB1 ⊗ . . .⊗HBk , for j ∈ {1, ..., k} the set

Pa(Bj) := { Ai | i ∈ {1, ..., n}, Ai → Bj } (4.1)

is called the causal parents of output subsystem Bj.

A crucial property of unitary channels is the consequence from causal relations

observed by the following theorem.

Theorem 4.1 Given a unitary transformation U : HA1 ⊗ . . .⊗HAn → HB1 ⊗ . . .⊗
HBk with the family of causal parents {Pa(Bj)}kj=1, the CJ operator of the associated

channel ρUB1...Bk|A1....An
factorises in the following way

ρUB1...Bk|A1....An
=

k∏
j=1

ρBj |Pa(Bj) , (4.2)

where for all j,m = 1, ..., k, it holds that [ρBj |Pa(Bj) , ρBm|Pa(Bm)] = 0.

Proof: Let ρUB1...Bk|A1....An
be the CJ representation of a unitary channel with family

of causal parents {Pa(Bj)}kj=1. For j ∈ {1, . . . , k} let Bj := {B1, . . . , Bk}\{Bj} and

Pa(Bj) := {A1, . . . , An} \ Pa(Bj). By assumption, it holds that

TrBj
[
ρUB1...Bk|A1....An

]
= ρBj |Pa(Bj) ⊗ 1(Pa(Bj))∗ . (4.3)

Let HA :=
⊗n

i=1HAi , and observe that the channel ρUB1...Bk|A is trivially compatible

with A being the complete common cause of B1...Bk (see Def. 3.10), since it is its

own dilation with trivial auxiliary systems λi. Theorem 3.4 then implies

ρUB1...Bk|A1....An
= ρUB1...Bk|A =

k∏
j=1

ρBj |A , (4.4)
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where the marginal channels on the right-hand side have to commute pairwise.

Comparison with Eq. 4.3 yields that for every j = 1, . . . , k,

ρBj |A = TrBj
[
ρUB1...Bk|A

]
= ρBj |Pa(Bj) ⊗ 1(Pa(Bj))∗ , (4.5)

hence, ρUB1...Bk|A1....An
=
∏k

j=1 ρBj |Pa(Bj), by our convention of suppressing identity

operators. �

A first insight now ensues from asking, given ρUB1...Bk|A1....An
, what are the causal

parents of, say the composite subsystem of Bj and Bm taken together (for j 6= m)?

It is immediate from Thm. 4.1 that the marginal channel into BjBm is of the form

ρBj |Pa(Bj) ρBm|Pa(Bm). Hence,

∀j,m, j 6= m,
(
Ai 9 Bj ∧ Ai 9 Bm

)
⇒ Ai 9 BjBm . (4.6)

The causal structure of a unitary transformation U naturally is the set of all causal

relations between all subsets of subsystems — an exhaustive description of all the

pathways of influence mediated by U . Due to the property in Eq. (4.6), this is

completely specified by the causal parents of the single output systems.

Definition 4.3 (Causal structure of unitary transformation): Given a unitary trans-

formation U : HA1 ⊗ . . . ⊗ HAn → HB1 ⊗ . . . ⊗ HBk the family of causal parents

{Pa(Bj)}kj=1 is called its causal structure and can be represented by a DAG with ver-

tices A1, ..., An and B1, ..., Bk and an arrow from Ai to Bj whenever Ai ∈ Pa(Bj).

Fig. 4.2 shows an example of a unitary map and its causal structure. Note that

in this case A2 is the complete common cause of B1 and B3, that is, it is the kind

of unitary which is asserted to exist by compatibility of a channel ρB1B3|A2 with A2

being the complete common cause of B1 and B3.

B1 B2 B3

A1 A2 A3

(a)

Pa(B1) = {A1, A2},
Pa(B2) = {A1, A2, A3},
Pa(B3) = {A2, A3}.

(b)

A1 A2 A3

B1 B2 B3

(c)

Figure 4.2: Example of a causal structure: if the unitary U in (a) has the
causal structure in (b), the latter can be represented as a DAG as in (c).
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Why tie causal relations to unitary transformations?

An immediate question might be what is the difference between the condition

that A cannot signal to E given an arbitrary channel ρBE|AC (cf. Def. 3.6) and

the relation of no-influence from A to E specifically for a unitary channel ρUBE|AC
(cf. Def. 3.9). Mathematically speaking, the latter of course is just an instance of

the former. In particular, this means that the no-influence relation inherits all the

equivalent operational statements. Given a unitary channel ρUBE|AC , that A 9 E

holds is, for instance, equivalent to that for all states ρC , the choice of state ρA makes

no difference to the marginal state TrBTrAC [ρUBE|AC(ρA ⊗ ρC)] at E. Conversely, in

case C → E, then at least for some state ρA, if ‘wiggling on C’ by choosing different

states ρC , then the marginal state ρE at E will ‘wiggle’, too. This is the essence of

an interventionist account of causation that Secs. 3.2.2 and 3.2.4 touched on.

Suppose the channel ρBE|AC describes a situation in which two agents have access

to and can control systems A and C, respectively, and, possibly other agents, at a

later time receive systems B and E. Also suppose that this channel arises from

the unitary channel ρUBEF |ACD via ρBE|AC = TrDTrF [ρUBEF |ACD ρD] for some state

ρD and where D and F could be thought of as some respective environments. The

unitary U has a causal structure according to Def. 4.3. As one would expect, if the

respective agents can signal from C to E then the underlying unitary evolution U

necessarily will be such that C is a direct cause of E. Suppose also A is a direct cause

of E. Now it may however be the case that for the particular state ρD, for which

the given channel ρBE|AC arises, the possibility to signal from A to E disappears.

The approach taken here is based on taking quantum evolution to be funda-

mentally unitary, while non-unitary channels serve an effective description. Causal

relations pertain to unitary transformations. As such, they are independent from

agents, who might in principle be unable to access and control the system D in the

above example to ‘tune’ the state ρD in such a way, so as to leverage the causal

mechanism present in U to enable signalling from A to E.

On a second note, recall the remark from Sec. 3.2.4 that defining causation

as signalling (relative to a generic channel) leads to an oddity. Given a channel

ρB1...Bk|A1....An , it is generally not true that it satisfies an analogous property to that

in Eq. (4.6) for no-signalling relations, that is, even if Ai cannot signal to Bj and also

not to Bm, it may still be the case that it can signal to the composite system BjBm.

While the overall causal structure of a unitary transformation is completely specified

by the ‘single-system’ no-influence conditions — hence the terminology as in Def. 4.3

is justified — the overall signalling structure of a channel is not determined by the

‘single-system’ no-signalling conditions and is therefore not representable by a DAG.
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As pointed out in Sec. 3.2.4, if one defined causal structure as a property of a generic

channel given by the signalling relations, then causal structure would inherit that

feature, making it incompatible with the idea that the presence and absence of a

direct cause relation as encoded in a DAG can be considered individually.

4.2 Causal structure of unitary processes

In order to develop a framework of quantum causal models that rests on the above

definition of quantum causal relations, it is necessary to spell out what that no-

tion becomes at the level of quantum processes. This section will take that step

and present the most general definition of causal structure aligned with that from

Sec. 4.1. Substantiating that definition with intuition and discussing special cases

is what the following chapters are reserved for.

Recall from Sec. 3.2.3 that any process σA1...An over the quantum nodesA1, . . . , An

defines a channel P : L(HAout
1
⊗ . . .⊗HAout

n
)→ L(HAin

1
⊗ . . .⊗HAin

n
) from the out-

put spaces of all nodes to their input spaces, with its CJ representation given by

the process operator, σA1...An = ρPA1...An|A1...An
. Now, this channel may be a unitary

channel.

Definition 4.4 (Unitary process): A process σA1...An is called a unitary process if

and only if its induced channel is a unitary channel, i.e. σA1...An = ρUA1...A1|A1...An
.

Note that the quantum nodes A1, . . . , An are arbitrary quantum nodes, where

some of the input and output spaces of the nodes may be trivial. The notion of

no-influence from Def. 3.9 for unitary transformations then straightforwardly lifts

to the notion of no-influence between the quantum nodes of a unitary process.

Definition 4.5 (No-influence in unitary process): Given a unitary process σA1...An =

ρUA1...A1|A1...An
, write Aj 9 Ai, say ‘node Aj does not influence node Ai’, if and only

if Aout
j 9 Ain

i in U .

Hence, stating the no-influence relations between the quantum nodes of a unitary

process is a different way of stating the no-influence relations satisfied by the uni-

tary transformation that is defined by the process. This difference in bookkeeping

captures the fact that which pairs of spaces of a unitary transformation U — pairs

of input and output to U — are taken to constitute a quantum node — the output

and input of that node — plays a crucial role in the causal analysis of the matter of

affairs. It also allows us to talk about quantum nodes as causal relata in a precise

way. The analogues of Defs. 4.1 -4.3 in terms of nodes of unitary processes are then

as follows.
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Definition 4.6 (Direct cause relation and causal parents in unitary process): Given

a unitary process σA1...An = ρUA1...A1|A1...An
, node Aj is said to be a direct cause of

node Ai, written Aj → Ai, if and only if Aj can influence Ai, i.e. ¬(Aj 9 Ai). For

i ∈ {1, ..., n} the set Pa(Ai) := {Aj | j ∈ {1, ..., n}, Aj → Ai} is called the causal

parents of node Ai.

Definition 4.7 (Causal structure of a unitary process): Given a unitary process

σA1...An = ρUA1...A1|A1...An
, the family of causal parents {Pa(Ai)}ni=1 is called its causal

structure and can be represented by a directed graph with vertices A1, ..., An and an

arrow from Aj to Ai whenever Aj ∈ Pa(Ai).

It follows from the property of unitary transformations (see Thm. 4.1 and sub-

sequent discussion) that the causal structure of a unitary process, as defined in

Def. 4.7, fully captures the direct-cause relations between its nodes — node Ai is a

direct cause of the (composite) node defined by the pair Aj, Am, if and only if it is

a direct cause of at least one of them. Also note that due to unitarity, a node Ai is

a root node in the causal structure of a unitary process if and only if Ain
i is a trivial

space, and similarly, Aj is a leaf node if and only if Aout
j is a trivial space.

The causal structure of a unitary process represented as a directed graph G can

be seen to arise from the DAG representing the causal structure of the associated

unitary transformation, according to Def. 4.3, through merging the vertices corre-

sponding to Ain
i and Aout

i into one vertex Ai for each i = 1, . . . , n, while keeping all

arrows. This may lead to directed cycles in the causal structure of a unitary process.

The next chapter on quantum causal models will be exclusively concerned with the

acyclic case, exploring this approach for when the causal structure is an ‘ordinary’

DAG. It is then Chap. 7 that is devoted to the study of when this is not the case.

Causal relata: arbitrary quantum nodes vs. quantum inodes

In above Def. 4.7, causal structure is defined as a property of any unitary pro-

cess over arbitrary quantum nodes, which suggests that causal relata at a process

level can be considered to be arbitrary quantum nodes. In contrast, Ref. [4] (see

Sec. 3.2.5) and in fact our own work in Ref. [1] only considers quantum inodes as

causal relata (see Def. 3.11). There are good reasons for such restriction to quan-

tum inodes as explained in Sec. 3.2.5. Above all, it ensures that there always is

the possibility to consider ‘no intervention’ at each node so as to view a quantum

node as a representation of a quantum system, rather than necessarily as a locus

of intervention. This is aligned with a programme that seeks to leave the role of
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agents reserved for studying causal relations but the latter itself can be defined as

properties of underlying unitary evolution without agent-based terms.

The guiding attitude in this thesis will be the following. The notion of causal

structure of a unitary process over general quantum nodes is a sound concept and

leads to a formally more general framework. Seeing as the aspiration is to for-

mulate the most general framework for causal reasoning, a restriction to quantum

inodes will not be imposed manifestly, except for in Secs. 5.3-5.6, where this is well-

motivated and will be pointed out explicitly. Anything that follows, however, could

be presented with a general restriction to quantum inodes and one may think of

this as a possible and intriguing perspective.

4.3 Causal relations and commutation relations

A central place in this thesis is taken by Thm. 4.1 : the factorisation property of the

CJ operator of a unitary channel, ρUB1...Bk|A1....An
, into pairwise commuting marginal

channels ρBj |Pa(Bj), as a consequence of the causal constraints U satisfies. It was

already used to argue that the causal structure of a unitary transformation can

indeed by represented by a DAG, as formalised in Def. 4.3. A noteworthy feature

of the factorisation is that distinct factors ρBj |Pa(Bj) and ρBm|Pa(Bm) commute, while

they both act non-trivially on the common causal parents Pa(Bj)∩Pa(Bm), which is

in general a non-empty set. This has consequences concerning the algebraic structure

of the Hilbert spaces, on which the operators act — a decomposition of the space

associated with Pa(Bj) ∩ Pa(Bm), which lets one understand the conjunction of

commutation and non-trivial action on that space. The following lemma states this

decomposition.

Lemma 4.1 ([4]): Let ρA|CD and ρB|DE be CJ representations of channels. If they

commute [ρA|CD , ρB|DE] = 0, then there exists a decomposition of the Hilbert space

on which the domains of the channels overlap, here denoted as D, into orthogonal

subspaces

HD =
⊕
i

HDLi
⊗ HDRi

, (4.7)

and families of channels {ρA|CDLi }i and {ρB|DRi E}i, such that

ρA|CD =
⊕
i

ρA|CDLi ⊗ 1(DRi )∗ (4.8)

ρB|DE =
⊕
i

1(DLi )∗ ⊗ ρB|DRi E . (4.9)
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Remark 4.1 As is common, it will be useful at times to write
∑

i ρA|CDLi ⊗ 1(DRi )∗,

where the summands are regarded as operators on the whole Hilbert space and act

as zero maps on all but the ith subspace.

Proof of Lem. 4.1. Ignoring negligible details the below proof already appeared

in Ref. [4], but is restated here for the sake of completeness. Consider the channel

ρAB|CDE := ρA|CDρB|DE. One can directly verify that, as a consequence of the com-

muting factors, the quantum conditional mutual information I(AC : BE|D) van-

ishes, if evaluated on the trace-1 quantum state ρ̂AB|CDE = (1/(dCdDdE))ρAB|CDE.

Theorem 6 of Ref. [122] then implies that there exists a decomposition of HD into

orthogonal subspaces of the form of Eq. (4.7), along with a probability distribution

{pi}, such that

ρ̂AB|CDE =
∑
i

pi
(
ρ̂A|CDLi ⊗ ρ̂B|DRi E

)
, (4.10)

where ρ̂A|CDLi and ρ̂B|DRi E are (trace-1) quantum states on the indicated Hilbert

spaces. The normalization condition for the CJ representation of a channel, TrAB[

ρAB|CDE] = 1(CDE)∗ , fixes the pi such that

ρAB|CDE =
∑
i

[
ρA|CDLi ⊗ ρB|DRi E

]
, (4.11)

where now each operator on the RHS is normalized as CJ operator of a channel, that

is for each i, TrA[ρA|CDLi ] = 1(CDLi )∗ , and TrB[ρB|DRi E] = 1(DRi E)∗ . The orthogonality

of the subspaces means that the marginals ρA|CD and ρB|DE can indeed be written

as claimed in Eqs. (4.8)-(4.9). �

Remark 4.2 Strictly speaking, there is in general no equivalence between HD and⊕
iHDLi

⊗ HDRi
— it is only an equivalence up to a unitary isomorphism. As is

common practice, the presentation of Lem. 4.1 leaves this implicit for better readi-

bility. However, in Chap. 6, since useful there, a statement of Lem. 4.1 will be given

that makes explicit the unitary map, which ‘identifies the decomposition’.

Lemma 4.1 will be a recurring tool for proving results throughout the following

chapters. The further study of the link between causal and compositional structure

as such will be the very content of Chap. 6.
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Chapter 5

The framework of quantum causal

models

Section 3.2 argued why it is crucial to establish a framework of quantum causal

models and summarised how prior work paved the way. This chapter, which is largely

based on the first publication in Ref. [1], presents a fully-fledged framework based on

the definition from Ref. [4]. It first states the definition of quantum causal models,

which is then rooted in the notion of quantum causal structure from Chapter 4. The

remainder of the chapter explores the framework and proves quantum generalisations

of main theorems of the classical framework from Sec. 3.1.

5.1 The definition

The definition of this chapter’s central object of study — a quantum causal model

— is restated here for the sake of completeness, as well as, for a slight generalisation

compared to the original Def. 3.12 from Ref. [4], by allowing arbitrary quantum

nodes.

Definition 5.1 (Quantum causal model): A Quantum causal model (QCM) is

given by:

(1) a causal structure represented by a DAG G with vertices corresponding to

quantum nodes A1, ..., An,

(2) for each Ai, a quantum channel ρAi|Pa(Ai) ∈ L(HAin
i
⊗ H∗Pa(Ai)out) such that

for all i, j, [ρAi|Pa(Ai) , ρAj |Pa(Aj)] = 0.

It defines a process operator over the quantum nodes A1, ..., An given by

σA1...An =
∏
i

ρAi|Pa(Ai) . (5.1)
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See Fig. 5.1 for a generic example of a QCM.

A1

A2 A3

A4

A5
σA1A2A3A4A5 =

ρA5|A1A4 ρA4|A2A3

ρA2|A1 ρA3|A1

ρA1

Figure 5.1: A quantum causal model.

Remark 5.1 Suppose A1, . . . , An are quantum nodes and {Pa(Ai)}i are the parental

sets of a DAG with vertices A1, . . . , An. The fact that then any product of pairwise

commuting operators of the form
∏

i ρAi|Pa(Ai) defines a process operator, as claimed

in Def. 5.1, is straightforward due to the commutativity. There exists a total order

of the nodes (let this be A1, . . . , An) such that Ai 6∈ Pa(Aj) for any i ≥ j. Hence,

for any choice of CPTP maps at the n nodes {τAi}i, it holds that

TrA1...An

[ n∏
i=1

ρAi|Pa(Ai) τAi

]
= TrA1...An−1

[( n−1∏
i=1

ρAi|Pa(Ai)τAi

)
TrAn [ρAn|Pa(An)τAn ]

]
= TrA1...An−1

[ n−1∏
i=1

ρAi|Pa(Ai)τAi

]
= . . . = 1 .

Thus, by Def. 3.7,
∏

i ρAi|Pa(Ai) is a process operator. It is also immediate that it is

a quantum (n + 1)-comb, as defined in Ref. [32], for the same total order of nodes

A1, . . . , An (see Sec. 3.2.3).

The reason for allowing arbitrary quantum nodes as causal relata in Def. 5.1,

despite the main intended usage of the framework as one for causal reasoning about

quantum inodes (see Def. 3.11), was explained in Sec. 4.2. It is useful to give

the constraint from causal structure, expressed in the quantum causal principle

(Principle 2), only now allowing arbitrary quantum nodes, a name.

Definition 5.2 (Quantum Markov condition): Given a DAG G, with vertices cor-

responding to the quantum nodes A1, . . . , An, a process σA1...An is called Markov for

G if and only if it admits a factorization into pairwise commuting channels of the

form σA1...An =
∏n

i=1 ρAi|Pa(Ai).

This generalises the classical notion of Markovianity (cf. Def. 3.2) to the quantum

case1 and allows reference to the data of a QCM as a pair (G, σA1...An), where G is

1See Sec. 5.3 for a detailed analysis of how the former is a special case of the latter.
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a DAG with vertices A1, . . . , An and σA1...An a process that is Markov for G.

It also generalises the definition of the quantum Markov condition from Ref. [82]

that was already mentioned in Sec. 3.2.4. According to that notion, each output

system Aout
i factorises into as many subsystems as the vertex Ai has children, i.e.

Aout
i has subsystems A

(j)
i for all j such that Aj ∈ Ch(Ai). The CJ operator ρAj |Pa(Aj)

is then assumed to represent a channel of the form L(
⊗

Ai∈Pa(Aj)HA
(j)
i

)→ L(HAin
j

).

Hence, as far as the parent node Ai is concerned, the operator ρAj |Pa(Aj) acts non-

trivially only on the A
(j)
i subsystem. The pairwise commutation of all the operators

ρAi|Pa(Ai) therefore becomes trivial, despite the generally overlapping parental sets.

The physical intuition behind the Markov condition from Ref. [82] is clear: a physical

system — the respective subsystem A
(j)
i — can be thought to ‘travel’ from Ai to

Aj, thereby mediating the asserted causal mechanism (see Sec. 3.2.4).

However, this is not the most general condition to warrant a corresponding causal

explanation of all those cases, where we have a good understanding of what the

causal explanation should be, as argued in Ref. [4] (see Sec. 3.2.5). But what then

justifies the general quantum causal principle, that is, why should Markovianity for

a DAG G according to Def. 5.2, be the correct necessary condition for regarding G

as a plausible causal structure of the involved nodes? The next section offers an

answer to this question.

5.2 Causal structure and the Markov condition

This section presents one of the main results — the last missing piece in the quan-

tum analogue of the blueprint from Sec. 3.1.2 : a generalisation to arbitrary DAGs

of Thm. 3.4 that concerns the quantum complete common cause scenario, and si-

multaneously, a generalisation from classical to quantum of Thm. 3.1, that concerns

arbitrary DAGs. We start by developing the necessary terms.

5.2.1 Compatibility with causal structure

Let us forget about the proposed quantum causal models for a moment. Chapter 4

defined what it means for a node Aj to be a direct cause of node Ai given a unitary

process σA1...An (cf. Def. 4.6) and what the causal structure of a unitary process is

(cf. Def. 4.7).

Now, given a non-unitary process σA1...An , the idea is that there always is an

underlying unitary process and it is that which the causal structure is a prop-

erty of. Suppose this causal structure is a DAG, recalling that in this chapter

we restrict our attention to acyclic causal structures. More concretely, suppose
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σA1...An = TrFP [σA1...AnFP τP ] for some state τP ∈ L(H∗P out) and some unitary pro-

cess σA1...AnFP = ρUA1...AnF |A1...AnP
with root node P and leaf node F and the DAG

G as its causal structure of the n + 2 nodes. What is the status of the subgraph

G′ defined by ignoring the vertices F and P as well as any arrows involving these

two nodes? Is this the causal structure of the nodes A1, . . . , An? If P is a common

cause of at least two distinct nodes Ai and Ak, the answer ought to be ‘no’, for it

would be an incomplete causal characterisation of the nodes A1, . . . , An. This is in

analogy to how, classically, common causes in general underwrite correlations that

can only be made sense of in light of all common causes. If in turn the restriction

to a subgraph G′ by ignoring some nodes and all arrows involving those nodes, does

not omit any common causes to the nodes in G′, then these remaining nodes may

be regarded as a causally complete set of nodes. It is thus natural to call a process

σA1...An compatible with a DAG G if it is possible to see σA1...An as arising from a

unitary process with a corresponding causal structure, without having to introduce

further common causes. More formally, and generalising Def. 3.10 :2

Definition 5.3 (Compatibility with DAG): A process σA1...An is compatible with

a DAG G with vertices A1, ..., An, if and only if a unitary process σA1...Anλ1...λnF =

ρUA1...AnF |A1...Anλ1...λn
exists, with an extra root node λi for i = 1, ..., n and an extra

leaf node F , such that:

(1) the process σA1...An is recovered as the marginal process on nodes A1, . . . , An

for some product state τλ1 ⊗ · · · ⊗ τλn with τλi ∈ L(H∗
λouti

), i.e.

σA1...An = TrFλ1...λn [ σA1...Anλ1...λnF (τλ1 ⊗ · · · ⊗ τλn)] , (5.2)

(2) the unitary process σA1...Anλ1...λnF satisfies the following causal constraints

(with Pa(Ai) referring to G):

{Aj 9 Ai}Aj /∈Pa(Ai) , {λj 9 Ai}j 6=i . (5.3)

Note that compatibility with a DAG G through Eq.(5.3) only requires that the

asserted underlying unitary process satisfies the no-influence conditions that are

encoded in G through absences of arrows. It does not require that these are the only

ones, i.e. that all arrows in G actually correspond to the presence of influence in that

unitary process. This is aligned with a tradition in classical causal modeling in that

2Note that if a process is compatible with a DAG, it is in particular ‘unitarily extendible’, a
concept, which was first introduced in Ref. [123] under the name of ‘purifiability’, and which will
be defined and studied in Chap. 7.
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it is the absences of causal relations which impose constraints, and it is those that the

underlying unitary process has to respect at the very least. Def. 5.3 thus captures

the minimum requirements for a notion of compatibility, while a conceivable stronger

notion would require that all arrows in G correspond to direct-cause relations in the

underlying unitary process. (Also see discussions in Secs. 5.2.3 and 5.7.)

5.2.2 Compatibility and unitary circuits

The above argued why the notion of compatibility with a DAG captures what its

name suggests. However, the unitary processes thereby asserted to exist are abstract

objects. At the same time, in the ‘acyclic regime’ where causal structure can be

represented with a DAG, we have a clear intuition for how quantum systems evolve,

namely, in a fashion that is representable with quantum circuits.

In order to see how a unitary circuit can induce a unitary process, the con-

cept of a broken unitary circuit is helpful. Suppose a unitary circuit is given as

in Fig. 5.2a, and suppose that then at the places A1, A2, A3 and A4 the wires are

‘broken’, creating four slots that define the respective quantum inodes A1, A2, A3

and A4, where for each i = 1, ..., 4 the respective bottom open wire, ‘going into’ Ai,

represents the space HAin
i

and the top open wire, ‘coming out’ of Ai, represents the

space HAout
i

. This defines the unitary map U :
(⊗3

j=1HRj

)
⊗
(⊗4

i=1HAout
i

)
→(⊗3

m=1HLm

)
⊗
(⊗4

i=1HAin
i

)
. That this map U in turn defines a unitary process

with root nodes R1, R2, R3, leaf nodes L1, L2, L3 and inodes A1, . . . , A4 is evident

from its circuit structure: no matter which CPTP maps are inserted into A1, . . . , A4

and which states fed into R1, R2, R3, tracing L1, L2, L3 always yields the real num-

ber 1. Similarly, given any unitary circuit, letting the originally open ingoing and

outgoing wires define root and leaf nodes, respectively, and if an arbitrary number

of wires is ‘broken’ to define further inodes, this defines a broken unitary circuit.

As a unitary process, a broken unitary circuit has a DAG as causal structure.

The causal structure of the one from Fig. 5.2b will in general be a subgraph of the

DAG in Fig. 5.2c, since the component unitaries themselves and their composition as

in Fig. 5.2b might satisfy further causal constraints not evident from the circuit (also

see Chap. 6). If causal relata are considered to be quantum inodes, a broken unitary

circuit with a causal structure that respects the corresponding causal constraints

from Def. 5.3 is just what one would expect to exist in case a process is compatible

with some DAG. The broken unitary circuit describes how the quantum systems

evolve, where the broken wires of the circuit allow us to reason about what would

be the case, were one to consider an external intervention on the respective system,

even though it is otherwise just an ordinary quantum circuit.
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U1

R1

U2

L1

R2 R3

U3

L2

U4

L3

(a)

−→

U1

R1

U2

L1

A2

R2 R3

U3

A1

A3 A4

L2

U4

L3

(b)

L1 L2 L3

A2

A1

A3 A4

R1 R2 R3

(c)

Figure 5.2: Example of a broken unitary circuit in (b), which can be seen to arise
from the circuit in (a), and in (c) the DAG that encodes all no-influence conditions
as manifest from (b) [30].

In the general framework the quantum nodes of a process that is compatible with

some DAG may be arbitrary. In order to see how a unitary process that involves

such general nodes, can arise from a unitary circuit, consider again the same example

of a unitary circuit, reproduced in Fig. 5.3a. This time, once some wires are broken,

rather than necessarily taking the ‘slot’ of a single broken wire to define a quantum

node, instead let the quantum node be defined by the gap created from taking a

whole unitary circuit fragment out, as illustrated in the example in Fig. 5.3.

U1

R1

U2

L1

R2 R3

U3

L2

U4

L3

(a)

−→

U1

R1 R2 R3

N2

L2

N1

U4

(b)

L2

N1 N2

R1 R2 R3

(c)

Figure 5.3: Example of a broken unitary circuit in (b), which can be seen to arise
from the circuit in (a) by taking circuit fragments out, and in (c) the DAG that
encodes all no-influence conditions as manifest from (b) [30].

The general object that can arise in such a way, that is, as a composition of

unitary circuit fragments, where some sets of open wires are taken to define quantum

nodes, will still be referred to as a broken unitary circuit. The following theorem then

fills the gap and brings the intuition of unitary circuits to the notion of compatibility.
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Theorem 5.1 Consider a DAG G with nodes A1, . . . , An, labelled such that the

total order A1 < · · · < An is compatible with the partial order defined by G. Suppose

that a process σA1...An is compatible with G. Let σA1...Anλ1...λnF = ρUA1...AnF |A1...Anλ1...λn

be the unitary process, whose existence is asserted by the definition of compatibility,

that is, satisfies Eq.5.2 for some product state τλ1 ⊗ · · · ⊗ τλn and also satisfies the

causal constraints from Eq. (5.3). Then there exists a broken unitary circuit of the

form of Fig. 5.4 that is a realization of σA1...Anλ1...λnF , i.e.,

σA1...Anλ1...λnF = TrA′1...A′n

[
ρ
Un+1

F |AnA′n

(
n∏
i=2

ρUiAiA′i|Ai−1A′i−1λi

)
ρU1

A1A′1|λ1

]
. (5.4)

Proof. See App. A.2. �

λ1

U1

A1

λ2
A′1

U2

A2

...
An−1 λn

A′2

...
A′n−1

Un

An A′n

Un+1

F

Figure 5.4: A broken unitary circuit as implied to exist by compatibility
of a process with a DAG.

Note that in Eq. (5.4) the intermediate primed systems A′i are ordinary quantum

systems, while the Ai are quantum nodes and hence, following our convention for

suppressing ‘in’ and ‘out’ for the respective spaces in CJ operators (see Sec. 3.2.3),

the ith unitary is of the form Ui : HAout
i−1
⊗HA′i−1

⊗Hλi → HAin
i
⊗HA′i

.

The unitary process asserted to exist by compatibility with a DAG G is by

definition a unitary quantum comb, that is, a unitary process which also is a quantum

comb as originally defined in Ref. [32] (see Sec. 3.2.3). As such, Ref. [32] showed it to

always have a realisation as a quantum network of a similar form as in Fig. 5.4, but

with isometries as the component maps, where Fig. 5.4 shows the unitary maps Ui.

Dilating these isometries to unitary maps will in general require further auxiliary
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input systems, which cannot (at least not in an obvious way) be guaranteed to not

be additional common causes to some of the quantum nodes. That, however, is

the core of the notion of compatibility, hence, the need of Thm. 5.1. Note that in

the proof in App. A.2 it is an iterative use of Lem. 4.1 that essentially reveals the

decomposition of the unitary transformation U into the component unitaries Ui.

5.2.3 Equivalence Markovianity and compatibility

Theorem 5.2 Given a DAG G with nodes A1, . . . , An, and a process σA1...An , the

following are equivalent:

(1) σA1...An is compatible with G.

(2) σA1...An is Markov for G.

Proof: (1) → (2). Suppose σA1...An is compatible with G and let σA1...Anλ1...λnF =

ρUA1...AnF |A1...Anλ1...λn
be the unitary process asserted to exist by assumption of com-

patibility with G. Let Pa(Ai) denote the parental sets of the nodes Ai according

to the DAG G. Due to the no-influence conditions specified in Eq. 5.3, the causal

parents of Ai in the unitary U then have to be contained in Pa(Ai)∪{λi} and hence,

by Thm. 4.1, it holds that

ρUA1...AnF |A1...Anλ1...λn
= ρF |A1...Anλ1...λn

(∏
i

ρAi|Pa(Ai)λi

)
. (5.5)

Marginalizing over F and the λi for the appropriate states τλi ∈ L(H∗
λouti

), also

asserted to exist by assumption of compatibility, gives

σA1...An = TrFλ1...λn

[
ρUA1...AnF |A1...Anλ1...λn

(τλ1 ⊗ · · · ⊗ τλn)
]

= TrF
[
ρF |A1...Anλ1...λn

] (∏
i

Trλi
[
ρAi|Pa(Ai)λi τλi

])
(5.6)

=
∏
i

ρAi|Pa(Ai) , (5.7)

where ρAi|Pa(Ai) := Trλi
[
ρAi|Pa(Ai)λi τλi

]
and [ρAi|Pa(Ai) , ρAj |Pa(Aj)] = 0 for all i, j,

since [ρAi|Pa(Ai)λi , ρAj |Pa(Aj)λj ] = 0 for all i, j. Hence σA1...An is Markov for G. �

For the converse direction, (2)→ (1), as well as, for many later proofs the following

notion will be useful.
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Definition 5.4 (Reduced unitary channel3): A channel C : L(HA) → L(HB) is

a reduced unitary channel if and only if there exists a unitary transformation U :

HA → HB ⊗HF such that ρCB|A = TrF [ρUFB|A].

Lemma 5.1 Suppose ρB|A and ρC|A represent reduced unitary channels and satisfy

[ρB|A , ρC|A] = 0. Then the channel represented by their product ρBC|A := ρB|A ρC|A

is also a reduced unitary channel.

Proof of Lem. 5.1. See App. A.3. �

Proof: (2) → (1) of Thm. 5.2. Suppose σA1...An is Markov for G. For improved

legibility of the following proof, write Pi := Pa(Ai). By assumption, there exist

pairwise commuting channels ρAi|Pi , such that σA1...An =
∏

i ρAi|Pi . In particular,

[ρA1|P1 , ρA1|P1P1
] = 0, where P1 := {A1, . . . , An} \P1, so that ρA1|P1P1

=
∏

i 6=1 ρAi|Pi .

Lem. 4.1 implies that there exists a decomposition of HP out
1

into orthogonal sub-

spaces HP out
1

=
⊕

j H(P1)Lj
⊗H(P1)Rj

such that

ρA1|P1 =
∑
j

ρA1|(P1)Lj
⊗ 1(P1)Rj

, (5.8)

ρA1|P1P1
=

∑
j

1(P1)Lj
⊗ ρA1|(P1)Rj P1

, (5.9)

where on the right-hand sides the ‘stars’ indicating the action of the identity oper-

ators on the dual spaces have been suppressed to avoid clutter, and the ordinary

sum symbols are in keeping with the convention from Rem. 4.1. For each j, the

channel represented by ρA1|(P1)Lj
can be dilated to a unitary channel with unitary

Vj : H(P1)Lj
⊗ H(λ1)j → HA1 ⊗ HFj and some appropriate state |0〉(λ1)j . Let λ1

be a system of large enough dimension such that these unitaries can be extended

to Vj : H(P1)Lj
⊗ Hλ1 → HA1 ⊗ HFj (for appropriate Fj) with a common aux-

iliary state |0〉λ1 . Define the unitary V : HP1 ⊗ Hλ1 → HA1 ⊗ HF by setting

HF :=
⊕

jHFj ⊗H(P1)Rj
and V :=

⊕
j Vj ⊗ 1(P1)Rj

. By construction,

ρA1|P1 = TrFTrλ1

[
ρVA1F |P1λ1

|0〉λ1 〈0|
]
. (5.10)

The marginal channel ρA1|P1λ1 = TrF [ρVA1F |P1λ1
] is by definition a reduced unitary

channel, and it commutes with ρAj |Pj for all j 6= 1. Next, consider [ρA2|P2 , ρA2|P2P2λ1
] =

0, where ρA2|P2P2λ1
:= ρA1|P1λ1

(∏n
i=3 ρAi|Pi

)
. A similar construction to the above

yields a corresponding channel ρA2|P2λ2 . Iterating this procedure yields a set of

3This terminology was first used in Ref. [1]. In Ref. [16], the same concept is called ‘autonomy’
of a channel.
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pairwise commuting reduced unitary channels, {ρAi|Piλi}, such that for each i, the

reduced unitary channel ρAi|Piλi returns the original channel ρAi|Pi for some state

ρλi . Lem. 5.1 then implies that
∏

i ρAi|Piλi represents a reduced unitary channel,

too, and hence, there exists a unitary U such that

TrF

[
ρUA1...AnF |A1...Anλ1...λn

]
=
∏
i

ρAi|Piλi . (5.11)

By construction,

σA1...An = Trλ1...λnTrF

[
ρUA1...AnF |A1...Anλ1...λn

(ρλ1 ⊗ · · · ⊗ ρλn)
]
, (5.12)

and the unitary U satisfies the no-influence conditions:

{
Aout
j 9 Ain

i

}
Aj /∈Pa(Ai)

,
{
λj 9 Ain

i

}
j 6=i ∀i = 1, . . . , n. (5.13)

It is straightforward to see that this unitary channel defines a unitary process with

the required properties. Let us formally see the systems λi as defining the output

spaces of root nodes, also labelled λi, and similarly, F as defining the input space

of a leaf node F . The states ρλi induce states τλi ∈ L(H∗
λouti

) such that Eq. (5.12)

can be rewritten with traces over nodes Fλ1...λn as in Eq.(5.2). Noting Rem. 5.1 it

then follows that ρUA1...AnF |A1...Anλ1...λn
indeed defines a unitary process with, due to

Eq. (5.13), the desired causal constraints as required by Def. 5.3. �

Note that the above proof of direction ‘(1) → (2)’ also makes explicit how it

follows immediately from Thm. 4.1 that any unitary process with an acyclic causal

structure G defines a quantum causal model.

Finally, recall that Sec. 5.2.1 mentioned a conceivable, stronger notion of com-

patibility with a DAG G that demands that the underlying unitary process actually

allows causal influences according to all arrows in G. Whether Thm. 5.2 can then

be strengthened to an equivalence between Markovianity and such stronger notion

of compatibility is an open question at the time of writing.

5.2.4 What the equivalence means for the framework

Sections 5.2.1 and 5.2.2 established that it is those processes that are compatible

with a DAG G, for which G can be taken to be a plausible causal explanation.

Thm. 5.2 establishes the equivalence between compatibility with a given DAG and

Markovianity for that DAG. Thus it is the processes which are Markov for a DAG

G that can be causally explained in terms of G.
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Thm. 5.2 can therefore be seen to amount to a justification — at least a partial

one — of the causal principle (Principle 3) and the definition of a quantum causal

model. It is a justification on the grounds of two premises. First, causal relations

are defined as influence in underlying unitary processes as in Sec. 4.2. Second, the

notion of compatibility with a DAG G has built in that the given process σA1...An

is obtained as the marginal process for a product state on the local disturbances λi.

While the causal structure of the underlying unitary process is of course independent

from which state is considered for λ, . . . , λn, the intuition behind requiring a product

state is clear. Suppose σA1...An can be seen to arise from a unitary process that does

not introduce further common causes to A1, ..., An, however, that requires a non-

product state for the systems λi. Then the latter fact is interpreted as a signature of

that σA1...An contains ‘correlations’ between the systems λi, and that these λi can in

fact not be regarded local disturbances, for they must have a common cause further

down in the ‘causal past’, which leads to the necessity of a non-product state.

However, a justification of the product-state assumption that does not end up

being circular, is beyond the scope of this work. Grounding this assumption in other,

yet less ad-hoc premises may well not be independent from other deep questions,

such as what the status and origin of an apparent arrow of time is and what the role

of agents are. Note that it also is a common assumption in the classical literature

to ascribe a product distribution accounting for the lack of knowledge over the local

disturbances as mirrored in the classical case in Def. 3.4.

Note that also if not further justifying the product state assumption, a minimum

consistency requirement for seeing Thm. 5.2 as a justification of the definition of

a quantum causal model is ‘Markov-stability’: maintaining a product form, but

changing which concrete state the systems λi are ascribed, should make no difference

to the fact that the marginal process is Markov for G. Otherwise Markovianity could

hardly be taken seriously as the condition that is the signature of having identified a

plausible causal structure — the precise ‘lack of knowledge’ encoded in ρλ1⊗· · ·⊗ρλn
had better stand apart from what the asserted causal structure is. It is immediate

from Eq. (5.6) that this is the case. Markovianity is not an artifact from fine-tuning

the local disturbances.

5.3 Relation quantum and classical causal models

This section will explain the relation between classical and quantum causal models,

in particular, in what sense the former are special cases of the latter. To this end
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it introduces classical split-node causal models, which take an intermediate place

between classical and quantum causal models and help to expose their relation.

They will also be important for deriving and elucidating the results in Secs. 5.4-5.6.

Importantly, this section as well as the three subsequent ones — Secs. 5.4, 5.5

and 5.6 — will

only consider quantum inodes

as the quantum nodes of quantum processes (see Def. 3.11). It will be understood

implicitly that talking about quantum nodes refers to inodes. Beyond dedicating

these sections to the approach that takes causal relata to be quantum inodes and

the conceptual motivation behind that (see Sec. 4.2), the reason for this restriction

also is that quantum nodes that are not inodes, do not have an analogue in classical

causal models. The following sections, however, develop quantum generalisations of

core concepts and theorems of the classical framework, which either strictly require

the restriction to quantum inodes and or are strongly guided by the intuition in the

classical case.

5.3.1 Classical process maps

The classical analogue of a quantum node is a classical split node X, given by a

pair of classical variables of an input variable X in and an output variable Xout,

which are copies of each other. Completely analogous to the quantum case, the

idea is that a classical split node constitutes a locus, where an intervention may

take place. An intervention at the classical split node X with outcome kX can

be modeled by a classical instrument of the form P (kX , X
out|X in). If there is no

outcome (i.e. trivial kX), or equivalently, considering the effective intervention from

marginalising over different outcomes, a corresponding intervention is given by a

classical channel P (Xout|X in). Particularly important is the representation of ‘no

intervention’, namely as P (Xout|X in) = δ(Xout, X in), analogous to the quantum case

with τ idA at a quantum inode A. Also important and unique to the classical case is

the concept of a perfect, non-disturbing measurement of the form P (kX , X
out|X in) =

δ(Xout, X in)δ(kX , X
in).

The classical analogue of a quantum process is a classical process, as defined in

a corresponding framework to study the most general processes connecting a set of

classical split nodes. This was introduced by Baumeler, Feix and Wolf in Ref. [47]

and has been studied in detail in the literature4 (see, e.g., Refs. [47,52,58,69]). The

main motivation behind these works, however, is to explore the conceivable classical

4Terminology tends to differ across different works, where e.g. in Ref. [47] split nodes are called
‘local laboratories’ and classical processes are called ‘environments’.
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processes which are incompatible with a definite causal order of the split nodes.

A discussion of this purpose of the formalism and the seminal findings from these

works will be postponed to Sec. 7.1.2. Here, the intention merely is to provide a

general set-up for the formulation of classical causal models that is closer to the

quantum framework and this chapter therefore focuses on scenarios, where a causal

order of the split nodes exists.

A classical process can be represented by a classical process map:

Definition 5.5 (Classical process map): A classical process map over classical

split-nodes X1, ..., Xn is a map

κX1...Xn : X in
1 ×Xout

1 × . . .×X in
n ×Xout

n → [0, 1] ,

such that for any set of classical channels {P (Xout
i |X in

i )},

∑
Xin

1 ,X
out
1 ,...,Xin

n ,X
out
n

(
κX1...Xn

∏
i

P (Xout
i |X in

i )

)
= 1 . (5.14)

Given a classical process map κX1...Xn and local interventions P (kXi , X
out
i |X in

i )

at the n nodes, the joint probability distribution over the outcomes is given by

P (kX1 , ..., kXn) =
∑

Xin
1 ,X

out
1 ,...,Xin

n ,X
out
n

(
κX1...Xn

∏
i

P (kXi , X
out
i |X in

i )

)
, (5.15)

where it follows from Def. 5.5 that the right-hand side indeed defines a correctly

normalised probability distribution [47]. Note that it also follows from Eq. (5.14)

that, analogously to the quantum case, a classical process map κX1...Xn defines a

classical channel P (X in
1 , . . . , X

in
n |Xout

1 , . . . , Xout
n ) from the output variables at all

nodes to the input variables at all nodes. However, just as with the quantum case,

not all channels of the form P (X in
1 , . . . , X

in
n |Xout

1 , . . . , Xout
n ) define a classical process

map.

In order to enable analogous notation to that for quantum processes (Sec. 3.2.3),

the following are some useful conventions. A classical instrument P (kX , X
out|X in)

will often be denoted as τ kXX , which, for each kX , is seen as a map of the form

Xout × X in → [0, 1] (the context will always make it unambiguous, whether it is a

classical or quantum instrument). In particular, write τ idX = δ(Xout, X in) for the ‘no

intervention’. Otherwise an intervention without outcome (trivial kX) is denoted

τX . Analogously to TrA for a quantum node A we write
∑

X as short-hand for∑
Xin,Xout .
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Concerning a set of split nodes S = {X1, . . . , Xn}, writing Sin stands for the

tuple (X in
1 , . . . , X

in
n ), analogously for Sout, and

∑
S is short for

∑
X1,...,Xn

. For a set

of local interventions {τ kXiXi
}, writing τ kSS denotes the product of local interventions

with kS the tuple of outcomes. In general, if not specified to be local interventions,

τ kSS may be a global intervention with (single) outcome kS. Finally, for a bipartition

of nodes S ⊆ {X1, . . . , Xn} and R := {X1, . . . , Xn} \ S, and a fixed intervention τR

at the R nodes, the marginal process is denoted κτRS =
∑

R(κSR τR). It is understood

that writing κS, where the intervention is suppressed in the superscript, indicates

the ‘no intervention’ at the marginalised nodes, i.e. κS =
∑

R(κSR τ
id
R ).

5.3.2 Classical split-node causal models

Within the formalism of classical processes there is also then a natural notion of a

causal model, which parallels that of a quantum causal model from Def. 5.1, and

which is called a classical split-node causal model5.

Definition 5.6 (Classical split-node causal model): A Classical split-node causal

model (CSM) is given by:

(1) a causal structure represented by a DAG G with vertices corresponding to

classical split-nodes X1, ..., Xn,

(2) for each Xi, a classical channel P (X in
i |Pa(Xi)

out).

The CSM defines a classical process map over the classical split nodes X1, . . . , Xn,

given by

κX1···Xn =
∏
i

P (X in
i |Pa(Xi)

out) . (5.16)

Similarly to ordinary classical causal models and the quantum case, the defi-

nition expresses the idea that, if the causal structure between the classical split

nodes X1, . . . , Xn is as given by the DAG G with vertices X1, . . . , Xn, then such

assertion constrains the classical process κX1...Xn that effectively describes the nodes

X1, . . . , Xn. That constraint is the corresponding Markov condition for classical

processes, which allows reference to a CSM as the pair (G, κX1...Xn) of a DAG G

with vertices X1, . . . , Xn and a classical process κX1...Xn that is Markov for G.

Definition 5.7 (Classical split-node Markov condition): A classical process κX1...Xn

is called Markov for a DAG G with classical split nodes X1, . . . , Xn as its vertices

if and only if it admits a factorization into classical channels of the form κX1...Xn =∏
i P (X in

i |Pa(Xi)
out).

5They were first introduced in Ref. [4] as ‘classical interventional models’.
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An analogous analysis to that in Sec. 5.2 could be presented to justify the defini-

tion of classical split-node causal models. This would combine the notion of classical

causal relations from Sec. 3.1.2 in terms of dependences between variables in an un-

derlying functional model with the approach from Chap. 4 for lifting such notions

to the level of nodes and processes, in this case classical processes. However, this is

straightforward, little insightful and therefore omitted.

The next subsection will put the new definitions to their main purpose — eluci-

date the relation between quantum and classical causal models.

5.3.3 Overview: the trinity of causal models

The relationships between quantum, classical split-node and classical causal models,

are described below. To ease frequent reference in later sections they are labelled as

the set of relations Iσ→κ, Iκ→σ, Iκ→P and ICCM→CSM , which spell out how certain

data induces other data. Crucially, the first three of them are primarily just relations

between the three kinds of objects given by quantum processes over quantum inodes,

classical processes and probability distributions over classical variables and make

sense independent of any causal assumptions.

Iσ→κ Given a process operator σA1...An , suppose that there exists an orthonor-

mal basis at each node (that is, an orthonormal basis for HAin
i

along with,

noting Def. 3.11, the dual basis for H∗
Aout
i

), such that σA1...An is diagonal

with respect to the product of these bases. Then the process operator

defines a classical process map, with in and out variables X in
i , Xout

i at the

ith node labelling the basis elements of HAin
i

and H∗
Aout
i

, and the diagonal

entries of σA1...An interpreted as P (X in
1 , . . . , X

in
n |Xout

1 , . . . , Xout
n ). If the

process operator is Markov for a particular DAG over A1, . . . , An, then

the induced classical process map is Markov for the equivalent DAG over

X1, . . . , Xn.

Iκ→σ A classical process map straightforwardly induces a quantum process op-

erator by interpreting the variables X in
i and Xout

i as labelling the elements

of an orthonormal basis of HAin
i

, and its dual basis of H∗
Aout
i

, respec-

tively, and by encoding the conditional probabilities P (X in
1 , . . . , X

in
n |Xout

1 ,

. . . , Xout
n ) as the diagonal elements of a matrix, which is then interpreted

as a process operator σA1...An . If the classical process map is Markov for

a particular DAG over X1, . . . , Xn, then the induced process operator is

Markov for the equivalent DAG over A1, . . . , An.
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Iκ→P A classical process map κX1...Xn straightforwardly induces a classical prob-

ability distribution P (X1, . . . , Xn) by identifying input with output vari-

ables, marginalizing over the input variables to obtain

P (Xout
1 , . . . , Xout

n ) =
∑

Xin
1 ...X

in
n

(
κX1...Xn

∏
i

δ(X in
i , X

out
i )

)
,

and then identifying each variable Xout
i with a single variable Xi such

that P (X1, . . . , Xn) = P (Xout
1 , . . . , Xout

n ). If the classical process map is

Markov for a particular DAG over classical split nodes X1, . . . , Xn, then

the probability distribution P (X1, . . . , Xn) is Markov for the equivalent

DAG over random variables X1, . . . , Xn.

ICCM→CSM Given a classical causal model, with DAG G and channels P (Xi|Pa(Xi)),

a classical split-node causal model is straightforwardly induced by replac-

ing each variable Xi with the pair X in
i , X

out
i , and by replacing the channels

P (Xi|Pa(Xi)) with P (X in
i |Pa(Xi)

out).

This makes precise how, as previously claimed, quantum causal models gener-

alise classical causal models: the latter are formally special cases of the former via

ICCM→CSM and Iκ→σ.

Note that while CSMs and CCMs are in 1-to-1 correspondence and thus define

equivalent frameworks, they encode causal information in different ways. This is

reflected in how ICCM→CSM differs from the other three inductions — it only relates

respective types of models. A probability distribution P (X1, . . . , Xn) on its own does

not allow for predictions for any intervention if not accompanied by the assertion of

a causal DAG (for which it is Markov) and cannot induce a classical process κX1...Xn ,

which does allow predictions for arbitrary interventions. However, the fact that not

any classical process via Iκ→P yields a classical causal model, in turn succinctly

expresses why classical processes, or quantum processes for that matter, in general

fail to be causal models even though they are ‘fully predictive’ (see discussion in

Sec. 3.2.4).

The following scheme summarises the relations, when applied to the respective

types of causal models.
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QCM

DAG G

ith node:

HAin
i

, HAout
i

ρAi|Pa(Ai)

induces

in ‘all

diagonal’

case

Iσ→κ

induces

Iκ→σ

CSM

DAG G

ith node:

X in
i , Xout

i

P (X in
i |Pa(Xi)

out)

induces

for special

interven-

tion

Iκ→P

induces

ICCM→CSM

CCM

DAG G

ith node:

Xi

P (Xi|Pa(Xi))

Figure 5.5: Summary of the relationships between QCMs, CSMs and CCMs.

5.3.4 Quantum and classical split-node do-interventions

In the context of classical causal models do-interventions play a crucial role (see

Sec. 3.1). Typically it is also the only type of external intervention that is considered.

In contrast, in the formalisms of quantum and classical processes all conceivable in-

terventions are treated on the same footing and are equally important. Nonetheless,

there are corresponding natural analogues to the classical do-intervention, which

capture the idea of overriding the causal mechanism, which would otherwise fix the

output state. A quantum do-intervention at node A ignores whatever state comes

in at Ain and prepares some fixed state to be sent out at Aout, i.e. is of the form

τA = ρAout ⊗ 1Ain for some state ρAout ∈ L(H∗Aout). Similarly, in the classical split-

node case. It will prove useful to introduce the following concept.

Definition 5.8 (do-conditional process operator): Consider a set of quantum nodes

V , with S ⊂ V and T = V \ S, and let σST be a process operator over the nodes in

V . The do-conditional process operator for a do-intervention on S is given by

σTdo(S) := TrSin [σST ]. (5.17)

A do-conditional operator6 σTdo(S) acts on HT in ⊗ H∗T out ⊗ H∗Sout and can be

thought of as representing ‘half a do-intervention’ at the S nodes, that is, it still

awaits states to be fed in at the output spaces of the S nodes, to give back the

marginal process operator on the T nodes.

Suppose the process σA1...An is Markov for some DAG G, i.e. it holds that

σA1...An =
∏

i ρAi|Pa(Ai). Then for any bi-partition of {A1, . . . , An} into sets S and

6A similar idea appeared in Ref. [124] in the definition of what therein is called a ‘quantum
evolution map’, however, not being in the context of quantum processes over quantum nodes, it
does not allow to consider do-interventions at an arbitrary subset of nodes.
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T , the do-conditional operator σTdo(S) simply becomes
∏

Ai∈T ρAi|Pa(Ai), reminiscent

of the truncated factorisation formula in Eq. (3.3).

The analogue for a classical process κST for disjoint sets of classical split nodes

S and T is a do-conditional classical process map defined by

κTdo(S) =
∑
Sin

κST .

Note that in the formulation of Iκ→P a choice was made to sum over the input

spaces rather than the output spaces, which can now be seen to also ensure that

the definition of κTdo(S) plays well with the ‘limit’ under Iκ→P , namely that one

recovers P (T |do(S)). Writing κTdo(S=s) has the obvious meaning, i.e. κTdo(S=s) =∑
Sout

[
κTdo(S) δ(S

out, s)
]
.

Given a quantum (classical) process, for any choice of a subset of nodes, the

do-conditional operator (process map) is always defined, independent of whether

the given data is part of a causal model or not. This fact emphasises again the

key difference in encoding causal knowledge between CCMs, on the one hand, and

CSMs and QCMs, on the other hand.

5.4 Notions of independence

This section presents notions of independence that generalise the classical notions of

unconditional and conditional statistical independence to genuinely quantum ones.

This is to say, they come as constraints at the quantum level of description — in

terms of process operators — rather than probability distributions that arise from

quantum systems.

Classically, causal structure imposes constraints in the form of conditional inde-

pendence relations, and making this link precise is a core part of the framework of

causal models (see Sec. 3.1.3). However, conditional independence is defined at the

level of probability distributions and a core concept in statistics independent from

causal models. Similarly, the following analysis is done independently from causal

assumptions — ‘quantum independence relations’ may hold without being enforced

through causal constraints and should be meaningful as such. The interplay with

causal claims will be studied in Sec. 5.5. The analysis proceeds by reiterating known

concepts for classical probability distributions and ordinary quantum states, to then

generalise them via classical processes to quantum processes. Studying classical

processes turns out to not only be a helpful pedagogical intermediate step, but also

insightful in its own right.
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5.4.1 2-place independence relations

5.4.1.1 Classical probability distributions

Given a probability distribution P (Y, Z), recalling from Sec. 3.1.3, the (sets of)

variables Y and Z are statistically independent, written (Y ⊥⊥ Z)P , if and only if

P (Y, Z) = P (Y )P (Z).

5.4.1.2 Quantum states

Given a quantum state ρAB, the (sets of) systems A and B are independent, written

(A ⊥⊥ B)ρAB , if and only if ρAB = ρA ⊗ ρB. This condition is equivalent to that for

arbitrary local measurements at A and B with outcomes kA and kB, respectively,

it holds that P (kA, kB) = P (kA)P (kB). This is why the quantum systems A and B

are sometimes also said to be uncorrelated in that case.

5.4.1.3 Classical processes

For classical processes, there are two inequivalent notions of independence. A first

one is the following.

Definition 5.9 (Classical strong independence): Given a classical process κY Z, the

(sets of) classical split nodes Y and Z are strongly independent, written (Y ⊥⊥
Z)κY Z , if and only if κY Z = κY κZ.

It has the operational meaning expected for the independence between nodes of

a classical process.

Proposition 5.1 Given a classical process κY Z, the condition (Y ⊥⊥ Z)κY Z holds

if and only if for all local interventions at Y and Z, with outcomes kY and kZ,

respectively, the probability distribution P (kY , kZ) satisfies (kY ⊥⊥ kZ)P .

Since Prop. 5.1 is a special case of Prop. 5.2, no separate proof is stated. Due to

the equivalence in Prop. 5.1, strong independence can be understood as ‘uncorrelated

outcomes’ for arbitrary interventions if agents were stationed at all nodes. The

following weaker notion can then be seen as a notion of independence between the

systems themselves that are associated with the nodes when not considering any

interventions.

Definition 5.10 (Classical weak independence): Given a classical process κY Z, let

P (Y, Z) be the probability distribution over the sets of single variables Y and Z,

obtained via Iκ→P . The sets of classical split nodes Y and Z are weakly independent

if and only if P (Y, Z) = P (Y )P (Z).

69



Clearly, strong independence implies weak independence since the ‘no interven-

tion’ of Iκ→P can be seen as a special kind of intervention. That the converse does

not hold is established by the following example.

Y

Z Z in = Y out ,

P (Y in = 0) = 1 .

Figure 5.6: Example, where weak independence holds but strong
independence does not.

Suppose a classical process κY Z over two classical split nodes Y and Z with

binary input and output variables is given by the scenario in Fig. 5.6, that is, Z in

is fixed to be the same as Y out and Y in is fixed to be 0. This ‘fine-tuned’ point

distribution P (Y in) means that P (Y, Z), obtained via Iκ→P , also is a point distri-

bution, which trivially takes a product form, establishing P (Y, Z) = P (Y )P (Z). A

generic intervention at Y , which prepares some probability distribution over Y out

will obviously lead to correlated outcomes at Y and Z due to Z in = Y out. Hence,

strong independence, (Y ⊥⊥ Z)κY Z , does not hold.

5.4.1.4 Quantum processes

A corresponding notion for quantum processes naturally is the following.

Definition 5.11 (Quantum strong independence): Given a quantum process σY Z,

the (sets of) quantum nodes Y and Z are strongly independent, written (Y ⊥⊥
Z)σY Z , if and only if σY Z = σY σZ.

Recalling the restriction to quantum inodes in this section, σY and σZ are the

marginal processes for ‘no intervention’ at the respective other nodes7. Also in the

quantum case, strong independence has the expected operational meaning.

Proposition 5.2 Given a quantum process σY Z, the condition (Y ⊥⊥ Z)σY Z holds

if and only if for all local interventions at Y and Z, with outcomes kY and kZ,

respectively, the probability distribution P (kY , kZ) satisfies (kY ⊥⊥ kZ)P .

7It is arguably the most natural way to define strong independence as σY Z = σY σZ for the
marginal processes σY and σZ , but σY Z = στZY στYZ is an equivalent statement no matter which
choice of τY , τZ .
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Proof. See App. A.5. �

By our convention of suppressing identity operators in products of the form

σY σZ , the latter is equal to σY ⊗ σZ , making (A ⊥⊥ B)ρAB for ordinary quantum

states a special case. Furthermore, (Y ⊥⊥ Z)σY Z reduces to (Y ⊥⊥ Z)κY Z under

Iσ→κ. Whether a quantum analogue to classical weak independence exists, is left

open.

5.4.2 3-place independence relations

5.4.2.1 Classical probability distributions

Given a probability distribution P (Y, Z,W ), recalling from Sec. 3.1.3, the (sets of)

variables Y and Z are statistically independent conditional on W , written (Y ⊥⊥
Z|W )P , if and only if P (Y, Z|W = w) = P (Y |W = w)P (Z|W = w) whenever

P (W = w) 6= 0. The following proposition, the proof of which is straightforward

and omitted, reveals much of the guiding intuition for the below generalisations.

Proposition 5.3 Given (sets of) variables Y, Z,W and a probability distribution

P (Y, Z,W ), the following are equivalent:

(1) (Y ⊥⊥ Z|W )P .

(2) P (Y, Z,W ) P (W ) = P (Y,W ) P (Z,W ).

(3) There exist real functions α : Y ×W → R and β : Z ×W → R, such that

P (Y, Z,W ) = α(Y,W ) β(Z,W ).

(4) The conditional mutual information satisfies I(Y : Z|W ) = 0.

5.4.2.2 Quantum states

Given a quantum state ρABC of three (sets of) systems A, B and C, define A

and B to be independent relative to C, written (A ⊥⊥ B|C)ρABC , if and only if

the quantum conditional mutual information between A and B given C vanishes,

I(A : B|C) = 0. Note that this terminology refrains from speaking of ‘quantum

conditional independence’, because ‘conditioning on’ invokes classical associations

of variables, whose values can be considered fixed.

Before formulating a generalisation at the level of quantum processes, it will be

instructive to introduce the following product of operators (see, e.g., Refs. [76, 125,

126]):

? : L(H)× L(H)→ L(H)
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(A,B) 7→ A ? B := lim
n→∞

(
A1/n B1/n

)n
. (5.18)

Among its useful properties are that it is associative and commutative, and reduces

to the ordinary product AB if [A,B] = 0. For the special case of strictly positive

definite operators, it holds that

A ? B = exp(log(A) + log(B)) , (5.19)

which can be generalised to positive semi-definite operators A and B in form of

log(A ?B) = log(A) + log(B), where the logarithms are understood to be restricted

to the supports of the respective operators [126]. We extend our convention of

suppressing identity operators and write σXY ? σY Z as short-hand for (σXY ⊗ 1Z) ?

(1X ⊗ σY Z).

An analogue to Prop. 5.3 for quantum states can now be stated as follows.

Proposition 5.4 Given (sets of) systems A,B,C, and a quantum state ρABC, the

following are equivalent:

(1) (A ⊥⊥ B|C)ρABC .

(2) ρABC ? ρC = ρAC ? ρBC.

(3) There exist Hermitian operators αAC and βBC, such that ρABC = αAC βBC.

(4) The Hilbert space HC decomposes as HC =
⊕

iHCLi
⊗HCRi

, such that ρABC =∑
i qi

(
ρACLi ⊗ ρBCRi

)
, where 0 ≤ qi ≤ 1,

∑
i qi = 1, and for each i, ρACLi and

ρBCRi are density operators on the Hilbert spaces indicated by the subscripts.

If (3) holds, then [αAC , βBC ] = 0.

Proof. For ‘(1) ⇔ (2)’, see Refs. [76, 127]. For ‘(1) ⇔ (4)’, see Ref. [122]. It

is immediate that ‘(4) ⇒ (3)’ and straightforward to verify that ‘(3) ⇒ (2)’. If

ρABC = αAC βBC , for Hermitian αAC and βBC , then taking the Hermitian conjugate

of both sides of the equation yields [αAC , βBC ] = 0. �

5.4.2.3 Classical processes

Inspired by Prop. 5.3, classical strong independence naturally lifts to a 3-place re-

lation.

Definition 5.12 (Classical strong relative independence): Given a classical pro-

cess κY ZW , say that Y and Z are strongly independent relative to W , written
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(Y ⊥⊥ Z |W )κY ZW , if and only if there exist real functions αYW : Y in×Y out×W in×
W out → R and βZW : Z in × Zout ×W in ×W out → R, such that κY ZW = αYW βZW .

Clearly, (Y ⊥⊥ Z|W )κY ZW reduces to (Y ⊥⊥ Z)κY Z for W = ∅. The reason for the

terminology of strong independence ‘relative to’ W , despite the presence of classical

variables, which one could conceivably condition on, in contrast to the quantum case

from Sec. 5.4.2.2, is that it does not make sense to ‘condition on’ W as a classical

split node, or a set of such.

In order to give strong relative independence an operational reading, the follow-

ing concept is needed.

Definition 5.13 (Maximally informative intervention): A maximally informative

intervention at a node W , with outcome kW , is a classical intervention such that

W in and W out can each be inferred from kW . A necessary and sufficient condition

is that:

P (kW ,W
out|W in) = δ

(
gin(kW ),W in

)
δ
(
gout(kW ),W out

)
P (kW ,W

out|W in) ,

where gin is a surjective function and gout an arbitrary function. For W a set of

nodes, a maximally informative local intervention at W is a product of maximally

informative interventions at each node in W .

Proposition 5.5 Given a classical process κY ZW , the condition (Y ⊥⊥ Z|W )κY ZW
holds if and only if for any choice of maximally informative local intervention at

W with outcome kW , and any local interventions at Y and Z, with outcomes kY

and kZ, respectively, the joint probability distribution P (kY , kZ , kW ) satisfies (kY ⊥⊥
kZ |kW )P .

Proof. See Appendix A.6. �

If an agent performs a maximally informative local intervention at the W nodes,

then, upon obtaining some outcome kW , she knows with certainty the values of all

W in and W out, which are supposedly the only variables, which ‘underwrite correla-

tion between Y and Z’ — so at least the intuition of conditional independence type

relations. Hence, that (Y ⊥⊥ Z|W )κY ZW implies the above operational statement is

as expected. Note that the operational statement could not be weakened by restric-

tion to ‘perfect, non-disturbing’ measurements of the form δ(kW ,W
in)δ(W out,W in).

Interventions that relate distinct values of W out and W in are essential for establishing

equivalence. See Fig. 5.7 for an example.
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Z

W

Y

Z in = Y out ⊕W out ,

W in = Y out ,

P (Y in) .

Figure 5.7: Example of a classical process over 3 split nodes with all vari-
ables being bits, valued in {0, 1}, and defined by the shown functions, where
⊕ is addition modulo 2. (P (Y in) left unspecified as irrelevant.) For the ‘per-
fect, non-disturbing’ measurement δ(kW ,W

in)δ(W out,W in) it ends up being
the case that Z in = 0 is fixed and, hence, (kY ⊥⊥ kZ |kW )P holds for arbitrary
interventions at Y and Z. However, (kY ⊥⊥ kZ |kW )P clearly fails for some
maximally informative intervention at W .

Also weak independence from Def. 5.10 lifts to a 3-place relation and inherits its

logical relationship to strong relative independence from the special cases for W = ∅.

Definition 5.14 (Classical weak relative independence): Given a classical process

κY ZW , let P (Y, Z,W ) be the joint probability distribution over sets of single variables

Y, Z,W obtained via Iκ→P . For the sets of classical split nodes, Y and Z are weakly

independent relative to W if and only if (Y ⊥⊥ Z|W )P .

Importantly, strong and weak relative independence are both conditions on a

classical process. While (Y ⊥⊥ Z|W )κY ZW reduces to (Y ⊥⊥ Z|W )P under Iκ→P

(noting Prop. 5.3), the fact that the converse does not hold is independent from the

logical relation between strong and weak relative independence. If (Y ⊥⊥ Z|W )P

holds for a given probability distribution P (Y, Z,W ), there is no induced classical

process for which either strong or weak relative independence could obtain.

5.4.2.4 Quantum processes

Finally, one arrives at the following quantum analogue of classical conditional inde-

pendence that, inspired by Prop. 5.4, lifts quantum strong independence to a 3-place

relation.

Definition 5.15 (Quantum strong relative independence): Given a quantum pro-

cess σY ZW , say that Y is strongly independent from Z relative to W , and written

(Y ⊥⊥ Z|W )σY ZW , if and only if there exist Hermitian operators αYW and βZW such

that

σY ZW = αYW βZW . (5.20)
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Here, just as with process operators, the label of a (set of) quantum nodes A

in the subscript of a Hermitian operator αA indicates that αA ∈ L(HAin ⊗ H∗Aout).

Strong independence (Y ⊥⊥ Z)σY Z is subsumed as the special case W = ∅. Classical

strong relative independence, (Y ⊥⊥ Z|W )κY ZW , is recovered under Iσ→κ
8, and

conversely, becomes a special case of the quantum version via Iκ→σ.

Concerning the operational meaning of (Y ⊥⊥ Z|W )σY ZW , the situation is more

subtle than with the classical analogue. The reason is that there is no quantum

analogue of a maximally informative intervention (Def. 5.13), which could be per-

formed at the W nodes so as to reveal the ‘value they have’. The following presents

an operational statement that is implied by, but not equivalent to (Y ⊥⊥ Z|W )σY ZW .

Proposition 5.6 Consider a quantum process σY ZW . If (Y ⊥⊥ Z|W )σY ZW , then

there exists a global intervention at the W nodes, with outcome kW , such that for

all local interventions at Y , Z, with joint outcomes kY , kZ, respectively, the joint

probability distribution P (kY , kZ , kW ) satisfies (kY ⊥⊥ kZ |kW )P .

Proof. Suppose that σY ZW = αYW βZW . Due to Lem. 4.1, the commutation of αYW

and βZW implies the existence of a decomposition HW in ⊗H∗W out =
⊕

iHFLi
⊗HFRi

into orthogonal subspaces such that σY ZW =
∑

i αY FLi ⊗ βZFRi (note that αYW

and βZW can be chosen to be positive9). Let {|i, fLi 〉 |i, fRi 〉}fLi ,fRi be a product

orthonormal basis of the ith subspace FL
i ⊗ FR

i .

Consider the following global intervention at W . An agent is stationed at an

additional locus E, such that for each node N ∈ W , the quantum system at N in is

sent to E, one of a maximally entangled pair of systems is fed into Nout, and the

other one is sent to E. This defines a new quantum process σY ZE over Y, Z and

E, with Ein isomorphic to HW in ⊗ HW out (and hence to HW in ⊗ H∗W out), such that

σY ZE has a block-diagonal structure with respect to the induced decomposition.

Let |i, fLi , fRi 〉 := J−1 |i, fLi 〉 |i, fRi 〉 label the induced orthonormal basis of Ein (for

a suitable isomorphism J). The agent performs the von Neumann measurement at

E corresponding to that basis. For a particular outcome kE, corresponding to the

8One might worry that, in case of degenerate eigenbases, it is not obvious that αYW and
βZW can be chosen to be diagonal in the same fixed basis in which σY ZW defines the classical
process. See, e.g., Prop. 5.7 together with Rem. 5.2 for that (Y ⊥⊥ Z|W )κY ZW

is indeed recovered
under Iσ→κ given that quantum strong relative independence holds for κY ZW (seen as a quantum
process).

9Strictly speaking, Lem. 4.1 is formulated for commuting operators which are correctly nor-
malised as CJ representations of channels, while here αYW and βZW are only assumed to be
positive. It is, however, easy to see that nothing in the proof of that lemma changes if one ac-
counts for different normalisation everywhere.
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basis state |i, fLi , fRi 〉, define the operator

TrE

[
σY ZE |i, fLi , fRi 〉 〈i, fLi , fRi |

]
= dEout 〈i, fLi , fRi | J−1

(∑
j

αY FLj ⊗ βZFRj
)
J |i, fLi , fRi 〉

= dEout 〈i, fLi |αY FLi |i, f
L
i 〉 ⊗ 〈i, fRi | βZFRi |i, f

R
i 〉 =: γY ⊗ ηZ ,

where the dEout results from the trace over Eout, on which σY ZE acts trivially, and

is then absorbed into, say γY . The product form γY ⊗ ηZ implies that the joint

probability distribution for kE and outcomes kY and kZ for arbitrary choices of

interventions at Y and Z satisfies P (kY , kZ , kE) = φ(kY , kE)χ(kZ , kE) (for some

functions φ and χ). Recalling Prop. 5.3, this establishes the claim. �

In order to see that the converse does indeed not hold, consider the following

simple example with three quantum systems A, B and C, all two-dimensional, and

let ρBC|A be the channel corresponding to the coherent copy map that takes |i〉 to

|i〉|i〉 for the computational basis i = 0, 1 (also see Sec. 3.2.5.1 for this example).

Seeing A, B and C as quantum nodes, then it is true that there exists an intervention

at A, namely the von Neumann measurement in the computational basis, such

that conditional on its outcome i, the outcomes kB and kC will be independent for

arbitrary measurements at B and C. However, for arbitrary states ρA one finds that

for the quantum process σABC = ρBC|A ρA, the relation (B ⊥⊥ C|A)σABC fails [4].

Whether there is an insightful operational statement that is equivalent to strong

relative independence, as well as, whether there is a weak notion of quantum relative

independence are left open.

Observe that also in the case of quantum processes there are equivalent state-

ments, analogous to those in Propositions 5.3 and 5.4. Since needed here and fre-

quently in the subsequent sections, given a process operator σA1...An , let σ̂A1...An

denote the corresponding operator that is correctly normalised as a trace-1 quan-

tum state on the 2n Hilbert spaces, i.e. σ̂A1...An = 1∏
i dAout

i

σA1...An .

Proposition 5.7 Let σY ZW be a process operator. The following are equivalent:

(1) (Y ⊥⊥ Z|W )σY ZW .

(2) σY ZW ? στY τZW = στZYW ? στYZW ∀ local interventions τY , τZ.

(3) I(Y : Z|W ) = 0, evaluated on σ̂Y ZW , the trace-1 operator obtained from

σY ZW as defined above.

Proof. This proposition is a special case of Prop. 5.10 (see proof in App. A.9). �
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Remark 5.2 Note that a set of completely analogous equivalent statements hold for

classical strong relative independence, (Y ⊥⊥ Z|W )κY ZW , just replacing σY ZW with

κY ZW everywhere, replacing the ‘?’-product in (2) with ordinary multiplication of

functions and I(Y : Z|W ) in (3) with the classical conditional mutual information.

The proof is analogous.

5.5 A quantum d-separation theorem

The previous section presented novel notions of independence, in particular a quan-

tum analogue of conditional statistical independence. The immediate question, the

present section addresses, is how do these independence relations relate to causal

claims.

As far as the classical case of probability distributions over variables is concerned,

the d-separation theorem, presented in Sec. 3.1.3, exhaustively captures this link. If

the set of vertices Y is d-separated from the set Z by the set W in a DAG G, denoted

(Y ⊥⊥ Z|W )G, then whenever a probability distribution P is Markov for G, then it

holds (Y ⊥⊥ Z|W )P . This is soundness of d-separation for conditional independence.

Although the graphical property of d-separation (Def. 3.5) is somewhat involved,

Sec. 3.1.3 showed how looking at the basic scenarios of fork, chain and collider makes

it intuitive to expect (Y ⊥⊥ Z|W )P to hold, whenever the causal structure satisfies

(Y ⊥⊥ Z|W )G. That d-separation also is the best structural criterion possible to

capture conditional independence relations, is established through the completeness

part of the d-separation theorem.

When it comes to quantum systems, it was previously unclear and at times con-

tested whether d-separation still provides the appropriate structural criterion of a

causal kind that could capture ‘quantum independence relations’ (see Refs. [34, 80]

and the discussion in Sec. 3.2.2). This essentially boils down to the same analysis

which concludes a failure of Reichenbach’s common cause principle due to Bell’s

theorem, i.e. the fact that we do observe correlation between parties A and B

conditioned on the successful preparation of a Bell-state at P , although the fork

A ← P → B is a canonical example of A and B being d-separated by P . The

main idea behind the quantum common cause principle (Principle 2) from Ref. [4]

and the general programme pursued in this thesis is that there is nothing wrong

with the above causal assertion of A ← P → B, nor with that it ought to impose

quantitative constraints, but with the terms in which the constraints are formu-

lated. Conditional independence relations in probability distributions, which arise

from quantum systems through interventions, is not the right level to look for the
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ramifications of d-separation properties in the underlying causal structure. In con-

trast, quantum strong relative independence from Def. 5.15 is a genuinely quantum

notion and might satisfy a d-separation theorem. That this is indeed the case is

established in the following.

A standard tool in this context uses the semi-graphoid axioms, which axiomatise

the logical relationship between conditional independence type statements [97,128].

Given a set V and a 3-place relation S on the subsets of V , letting Y, Z,W,X ⊆ V

be arbitrary disjoint subsets, the semi-graphoid axioms are:

symmetry S(Y, Z;W ) ⇔ S(Z, Y ;W ) , (5.21)

decomposition S(Y,XZ;W ) ⇒ S(Y, Z;W ) , (5.22)

weak union S(Y,XZ;W ) ⇒ S(Y, Z;XW ) , (5.23)

contraction S(Y, Z;W ) ∧ S(Y,X;ZW ) ⇒ S(Y, ZX;W ) . (5.24)

A semi-graphoid is a model given by a set V and a relation S that satisfies these

four axioms. Furthermore, a 3-place relation S on the subsets of V satisfies the local

Markov condition relative to a DAG G with vertices V if and only if

∀X ∈ V , S({X}, Nd(X) \ Pa(X);Pa(X)) , (5.25)

where Nd(X) denotes the non-descendants of X. The intuition behind this property,

interpreting the 3-place relation S as a conditional independence type relation, is

that the parents of X screen X off its non-descendants. For a semi-graphoid S on

V , the local Markov condition relative to the DAG G is equivalent to what is called

the ‘global Markov condition’ for G [96, 129], namely,

(Y ⊥⊥ Z|W )G ⇒ S(Y, Z;W ) . (5.26)

It is now crucial to note that these general results from the literature, just as

the specific d-separation theorem for classical conditional independence (Thm. 3.2),

concern a 3-place relation that is defined on arbitrary triples of disjoint subsets of

a set V . Given a quantum process σA1...An on a set of quantum nodes A1, . . . , An,

there however is an ambiguity for how to calculate a marginal process over a triple

of disjoint subsets Y, Z,W . Let R := {A1, . . . , An} \ (Y ∪ Z ∪W ). Whether στRY ZW
satisfies (Y ⊥⊥ Z|W )στRY ZW

or not, will in general depend on the intervention τR at the

R nodes. This is just as it does classically, but given a probability distribution, there

is no such ambiguity over marginalisation, because a probability distribution just

does not allow to answer the question for interventions on the remaining variables.
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In order to define an unambiguous relation that can be evaluated for arbitrary

triples of disjoint subsets Y, Z,W , the following theorem will make the strongest

possible choice: for the soundness part a quantification over all possible interventions

at the R nodes, while the statement of the completeness part refers to the ‘no

intervention’ at the remaining nodes, σY ZW = σ
τ idR
Y ZW .

Theorem 5.3 (Quantum d-separation theorem): Consider a DAG G, with a set V

of quantum nodes, and disjoint subsets of nodes Y , Z, and W , with R := V \ (Y ∪
Z ∪W ).

(1) (Soundness): If (Y ⊥⊥ Z|W )G, then for any process operator σY ZWR that is

Markov for G, it holds that: for any local intervention τR at R, the marginal

στRY ZW satisfies (Y ⊥⊥ Z|W )στRY ZW
.

(2) (Completeness): If (Y��⊥⊥Z|W )G, then there exists a process operator σY ZWR

that is Markov for G, such that with no interventions at the R nodes, for the

marginal σY ZW it holds that (Y��⊥⊥Z|W )σY ZW .

Proof. Given a set of quantum nodes V , and a process operator σV , define the

3-place relation T on the subsets of V as

T (Y, Z;W ) iff ∀ local interventions τR, (Y ⊥⊥ Z|W )στRY ZW
. (5.27)

The soundness part of Thm. 5.3 follows from the following two lemmas.

Lemma 5.2 Given a process operator σY ZWR, the relation T defined by Eq. (5.27)

satisfies the semi-graphoid axioms.

Proof of Lem. 5.2. See App. A.7 �

Lemma 5.3 Consider a DAG G, with nodes V , and a process operator σV that

is Markov for G. The relation T defined by Eq. (5.27) satisfies the local Markov

condition.

Proof of Lem. 5.3. See App. A.7 �

Finally, for the completeness part of Thm. 5.3, consider a DAG G with quantum

nodes V , and suppose that (Y��⊥⊥Z|W )G for disjoint subsets of nodes Y , Z, and W .

Let R = V \(Y ∪ Z ∪W ). Associate a classical random variable with each node,

ranging over a set of values, whose cardinality is the same as the dimension of the

input Hilbert space of the respective quantum node (equivalently, the dimension of

the output Hilbert space, as quantum nodes are assumed to be inodes). By virtue
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of the completeness part of Thm. 3.2, there exists a joint probability distribution

P (Y, Z,W,R) over these random variables, Markov for G, for which (Y��⊥⊥Z|W )P .

This classical causal model induces a classical split-node causal model with the same

DAG via ICCM→CSM of Sec. 5.3, for which (Y��⊥⊥Z|W )κY ZW . This in turn induces

a quantum causal model with the same DAG via Iκ→σ, for which (Y��⊥⊥Z|W )σY ZW .

This concludes the proof of Thm. 5.3. �

Seeing as we are here only considering quantum inodes, there is another natural

choice to arrive at an unambiguous 3-place relation defined on all triples of disjoint

subsets of nodes, namely (Y ⊥⊥ Z|W )σY ZW , that is, instead of quantifying over all

interventions at the remaining nodes, to always consider the ‘no intervention’. By

virtue of being a special case of the logically stronger statement in the above theorem,

d-separation is sound for this relation. However, it is not entirely obvious and left

open whether (Y ⊥⊥ Z|W )σY ZW itself satisfies the contraction axiom, if marginals

are calculated with the ‘no intervention’ throughout (the other three semi-graphoid

axioms are straightforward).

Since classical strong and weak relative independence formally become special

cases of quantum strong relative independence via Iκ→σ, observe that Thm. 5.3 also

gives that d-separation is sound and complete for classical strong and weak relative

independence. This is again in the strongest possible sense, with quantifying over

all possible interventions at the remaining nodes for the soundness part, and the

completeness part only involving the ‘no intervention’ at the remaining nodes.

N1

N2 N3 N4

N5

Figure 5.8: Example of a DAG G for illustration of Thm. 5.3.

In order to illustrate Thm. 5.3, consider the DAG G in Fig. 5.8. Suppose the

quantum process σN1...N5 is Markov for G. For instance, it holds that (N2 ⊥⊥
N4|{N3, N5})G and therefore (N2 ⊥⊥ N4|{N3, N5})στN1

N2...N5

for all interventions τN1 .

Note that since N1 is a leaf node it does not matter at all which intervention for

marginalisation is considered at N1. With Prop. 5.6 it follows that there exists a

(in this case even local) intervention at N3 and N5 such that conditioned on its out-

come, the outcomes of arbitrary interventions at N2 and N4 are independent from

each other. In contrast, consider for instance the fact that (N2 ��⊥⊥N4|N5)G. Indeed,

once marginalised over the common cause N3, as one would expect, in general there
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does not exist an intervention at N5 that would lead to uncorrelated outcomes at Y

and Z for arbitrary interventions.

We close with two remarks on differences between the classical and quantum case.

First, it was mentioned above that for any semi-graphoid the local and global Markov

condition relative to some DAG G are equivalent. For a classical probability dis-

tribution P (X1, . . . , Xn) and conditional independence defining the semi-graphoid,

these conditions are furthermore equivalent to the condition that P (X1, . . . , Xn)

factorises relative to G, as in what is just called the Markov condition according to

Def. 3.2 (see, e.g., Ref. [9]). Note that an analogous equivalence does not hold in the

quantum case. If σA1...An is Markov for some DAG G, that is, ‘factorises relative’ to

G according to Def. 5.2, then the local Markov condition from Eq. (5.25) and the

global Markov condition from Eq. (5.26) hold with the 3-place relation given by T

from Eq. (5.27). However, the converse is not true. Consider for instance a process

σABC on three quantum nodes of the form σABC = ρC|A ρA|B ρB. This process is

Markov for the chain B → A → C. Now, consider the DAG given by the fork

B ← A → C and observe that the only constraint imposed by the global Markov

condition for the fork is (B ⊥⊥ C|A)σABC . That the given process σABC satisfies the

latter condition is evident, while σABC is not Markov for the fork.

Second, as mentioned in Chap. 3.1, the classical d-separation theorem can be

understood independently from concerns about causal reasoning in the context of

Bayesian networks. In particular, any distribution P (X1, . . . , Xn) is Markov for

many different DAGs, most of which cannot have anything to do with causal struc-

ture. Unsurprisingly, the situation is very different for quantum or classical processes

due to their process nature. Here, the d-seperation theorem plays no role in clas-

sifying which DAGs a process is Markov for (see Sec. 5.7.2), while it still achieves

an analogous formalisation of the link between causal claims and quantum relative

independence relations.

5.6 Constraints from causal structure

A key strength of the framework of classical causal models that was highlighted in

Sec. 3.1.4, is that Pearl’s do-calculus [9] solves the problem of the identifiability of

causal effects. This do-calculus tells us when and how to calculate P (Y |do(X)) —

without actually performing the do-intervention — just from causal assumptions

and observational data, even when there are unobserved causally relevant variables.

A main theme in comparing classical and quantum causal models in this thesis has

been the different ways, in which causal knowledge is encoded in the respective
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types of causal models. In contrast to a given distribution P (X1, . . . , Xn), given

a quantum process σA1...An , or for that matter, a classical process, one can always

calculate the marginal process on a subset T ⊆ {A1, . . . , An} for a do-intervention

at the complementary subset S. In particular, the do-conditional operator σT |do(S),

the analogue of P (Y |do(X)), can always be calculated (see Sec. 5.3.4). Hence, if the

given data is a quantum process σA1...An , the ‘identifiability of causal effects’ (see

Sec. 3.1.4) is not an interesting problem.

The core of the do-calculus are the three rules in Theorem 3.3. Independent from

being the rules of a calculus that is useful for identifying causal effects, they are

results, which take the form that a particular d-separation property in a mutilated

version of a given DAG G implies a statement that relates Bayesian conditional and

do-conditional probability distributions, provided the distribution on all variables of

G is Markov for G. Thus, the rules expose consequences from particular properties

of causal structure. As such, the rules may of course have insightful analogues in

the quantum framework.

The following presents such generalisations of all three rules to classical split-node

and quantum causal models. They are generalisations in the following sense. First,

for classical and quantum processes, the generalised rule takes the same logical form,

that is, given a DAG G, the same graphical antecedent as in the corresponding rule

in Thm. 3.3 implies a constraint on a process that is Markov for G. Second, these

constraints on quantum and classical processes are such that the respective classical

consequents from Thm. 3.3 are recovered under the inductions Iσ→κ and Iκ→P .

Furthermore, intuitive operational statements are presented, which are implied by

the respective constraints in the case of quantum processes and equivalent to the

respective constraints in the case of classical processes. So, given that a process is

Markov for a DAG G — and only then it is consistent to assume G to be the causal

structure of the nodes without ignoring relevant common causes — the generalised

rules identify consequences of an empirical nature that necessarily hold for particular

causal arrangements in G, but not for all processes that are Markov for some DAG.

They are therefore an integral part of carving out what the framework of quantum

causal models is. Beyond that, there might of course be a type of problem, other

than the identifiability of causal effects, for which the generalisations are ‘useful’,

however, the investigation of such a problem is left for future work.
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5.6.1 Generalisation do-calculus rule 1

5.6.1.1 Classical probability distributions

For convenience, Rule 1 is restated here: if the probability distribution P (...) is

Markov for the DAG G, then for disjoint sets of nodes Y, Z,X,W it holds that

(Y ⊥⊥ Z|X,W )GX ⇒ P (Y |do(X), Z,W ) = P (Y |do(X),W ) , (5.28)

where, recalling Sec. 3.1.4, GX denotes the DAG obtained from G by removing all

arrows incident on vertices in X. Note that Rule 1 is a generalisation of soundness

of d-separation for conditional independence (see Thm. 5.3), since the consequent

in Eq. (5.28) says that Y is independent from Z conditional on W in the post do-

intervention probability distribution P (. . . |do(X)). For later reference, also note

that the consequent in Eq. (5.28) is equivalent to

P (Y, Z,W |do(X)) P (W |do(X)) = P (Y,W |do(X)) P (Z,W |do(X)) . (5.29)

5.6.1.2 Classical processes

Classical strong relative independence from Def. 5.12 has the following generalisation

to account for an additional set X, where a do-intervention takes place, such that

(Y ⊥⊥ Z|W )κY ZW is recovered for X = ∅.

Definition 5.16 (Classical strong relative independence with a do-intervention):

Given a classical process κY ZWX , say that Y and Z are strongly independent relative

to (W , do(X)), and write (Y ⊥⊥ Z|Wdo(X))κY ZWX
, if and only if there exist real

functions αYWXout : Y in×Y out×W in×W out×Xout → R and βZWXout : Z in×Zout×
W in ×W out ×Xout → R, such that κY ZWdo(X) = αYWXout βZWXout.

Also Prop. 5.5, which gives an operational statement equivalent to (Y ⊥⊥ Z|W )κY ZW ,

straightforwardly extends to include an additional set X with do(X).

Proposition 5.8 Given a classical process κY ZWX , then (Y ⊥⊥ Z|Wdo(X))κY ZWX

holds if and only if:

(COS1) For all values Xout = x of a do-intervention at X, any maximally infor-

mative intervention at W with outcome kW , and any local interventions

at Y and Z with outcomes kY and kZ, respectively, the joint probability

distribution P (kY , kZ , kW ) satisfies (kY ⊥⊥ kZ |kW )P .
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Proof. Observe that the condition (Y ⊥⊥ Z|Wdo(X))κY ZWX
is equivalent to the

statement that (Y ⊥⊥ Z|W )κY ZWdo(X=x)
holds for all values x of a do-intervention at

X. The result then follows from Prop. 5.5. �

In order to see that (Y ⊥⊥ Z|Wdo(X))κY ZWX
under Iκ→P reduces to the conse-

quent of Rule 1, note the observation in the above proof, or alternatively, observe

that (Y ⊥⊥ Z|Wdo(X))κY ZWX
implies that κY ZWdo(X) κWdo(X) = κYWdo(X) κZWdo(X),

10

which under Iκ→P reduces to Eq. (5.29).

Given a classical process κV , there is no one unique way of calculating the

marginal on disjoint subsets Y, Z,W,X ⊆ V (see Sec. 5.5) and the following gener-

alisation of Rule 1 makes the strongest possible statement by quantifying over all

possible interventions at the remaining nodes, just as Thm. 5.3 did.

Theorem 5.4 (Rule 1 analogue for classical processes): Consider a DAG G, with

a set V of classical split nodes, and disjoint subsets of nodes Y , Z, W and X, with

R := V \ (Y ∪Z ∪W ∪X). For any classical process κY ZWXR that is Markov for G,

(Y ⊥⊥ Z|X,W )GX ⇒ ∀τR (Y ⊥⊥ Z|Wdo(X))κτRY ZWX
.

Proof. The proof is essentially the same as that of Theorem 5.5 below, with classi-

cal process maps replacing process operators, classical channels replacing quantum

channels, and classical interventions replacing quantum interventions. �

5.6.1.3 Quantum processes

Analogously to the above, quantum strong relative independence can be generalised

to allow for a fourth set X, where do-interventions take place, such that (Y ⊥⊥
Z|W )σY ZW is recovered for X = ∅.

Definition 5.17 (Quantum strong relative independence with a do-intervention):

Given a quantum process σY ZWX , say that Y and Z are strongly independent rel-

ative to (W , do(X)), and write (Y ⊥⊥ Z|Wdo(X))σY ZWX
, if and only if there exist

Hermitian operators αYWXout and βZWXout such that σY ZWdo(X) = αYWXout βZWXout.

Remark 5.3 By convention, the appearance of the label of a node, say Y , in the

subscript of an operator αYWXout means that it acts on HY in ⊗ H∗Y out. In order to

avoid cluttered notation above and in the remainder of this chapter, when writing

σY ZWdo(X) = αYWXout βZWXout it is understood implicitly that the operators on the

right-hand side act on H∗Xout, rather than HXout.

10Straightforward calculation, or else, see Prop. 5.10 in conjunction with Rem. 5.5
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Also the operational statement implied by (Y ⊥⊥ Z|W )σY ZW from Prop. 5.6

carries over to when allowing for do(X) at some additional nodes X.

Proposition 5.9 Given a quantum process σY ZWX , if (Y ⊥⊥ Z|Wdo(X))σY ZWX
,

then:

(QOS1) There exists a global intervention at WXout, with outcome kWXout,

such that for all local interventions at Y , Z, with outcomes kY , kZ

respectively, the joint probability distribution P (kY , kZ , kWXout), satis-

fies (kY ⊥⊥ kZ |kWXout)P .

Proof. See Appendix A.8. �

Remark 5.4 The global intervention at WXout that yields (kY ⊥⊥ kZ |kWXout)P for

all interventions at Y and Z can be taken to be of the following form: an additional

node E is brought in with Ein isomorphic to HW in ⊗ HW out ⊗ HXout, then at each

node in X the incoming quantum system is ignored, while for each node in W the

incoming quantum system is sent to E; for all nodes in W and X, one half of a pair

of maximally entangled systems is fed into the output of the node, with the other half

sent to E, where finally an appropriate joint von Neumann measurement on Ein is

performed.

The set of equivalent statements, which generalises Prop. 5.4, is the following.

Proposition 5.10 Let σY ZWX be a quantum process over the disjoint sets of nodes

Y, Z,W and X. The following statements are equivalent:

(1) (Y ⊥⊥ Z|Wdo(X))σY ZWX
.

(2) σY ZWdo(X) ? σ
τY ,τZ
Wdo(X) = στZYWdo(X) ? σ

τY
ZWdo(X) ∀ local interventions τY , τZ.

(3) I(Y : Z|WXout) = 0, evaluated on σ̂Y ZWdo(X).

Proof. See Appendix A.9. �

Remark 5.5 Completely analogous statements exist that are equivalent to classical

strong relative independence with a do-intervention, (Y ⊥⊥ Z|Wdo(X))κY ZWX
. They

are obtained from the above by replacing σY ZWX with κY ZWX everywhere, replacing

the ‘?’-product in (2) with ordinary multiplication of functions and I(Y : Z|WXout)

in (3) with the classical conditional mutual information. The proof is analogous.
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Prop. 5.10 and Rem. 5.5 make evident that (Y ⊥⊥ Z|Wdo(X))σY ZWX
reduces to

(Y ⊥⊥ Z|Wdo(X))κY ZWX
under Iσ→κ.

Finally, the quantum analogue of Rule 1, that generalises Thm. 5.4 for classical

processes, takes the expected form.

Theorem 5.5 (Analogue of Rule 1 for quantum processes): Consider a DAG G,

with a set V of quantum nodes, and disjoint subsets of nodes Y , Z, W and X, with

R := V \ (Y ∪ Z ∪W ∪X). For any quantum process σY ZWXR that is Markov for

G,

(Y ⊥⊥ Z|X,W )GX ⇒ ∀τR (Y ⊥⊥ Z|Wdo(X))στRY ZWX
.

Proof. See App. A.10. �

Soundness of d-separation for quantum strong relative independence (see Thm. 5.3)

is the special case of this theorem for X = ∅. Note that the proof in App. A.10 of

the above theorem is not just a straightforward generalisation of the proof technique

for the d-separation theorem, thereby actually giving soundness of d-separation for

quantum strong relative independence an independent proof.

5.6.1.4 Example

The illustration of the generalisation of Rule 1 will be based on the same DAG

G as in Fig. 5.8, which already served to illustrate the d-separation theorem. For

convenience, G is shown again below in Fig. 5.9.

G

N1

N2 N3 N4

N5

Figure 5.9

Suppose G is the causal structure of the quantum nodes N1, . . . , N5 and let

σN1...N5 be a quantum process that is Markov for G. Now, consider the following

two distinct mutilations of G.
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GX

N1

N2 N3 N4

N5

Y = {N2}
Z = {N4}

W = {N3, N5}
X = {N1}

(a)

GX′

N1

N2 N3 N4

N5

Y = {N2}
Z = {N4}

W ′ = {N1, N3}
X ′ = {N5}

(b)

Figure 5.10: For the stated choices of subsets Y, Z,W,X, and X ′,W ′, respectively,
of the nodes in Fig. 5.9, (a) and (b) depict the mutilated DAGs GX and GX′ , where
(Y ⊥⊥ Z|X,W )GX holds, while (Y ⊥⊥ Z|X ′,W ′)G

X′
fails.

In G the set X ∪W contains the collider N1 and therefore does not d-separate

Y from Z. However, once arrows into X are taken out then (Y ⊥⊥ Z|X,W )GX
holds and, hence, Thm. 5.5 implies (Y ⊥⊥ Z|Wdo(X))σY ZWX

. Due to Prop. 5.9,

the operational statement (QOS1) then also holds — as expected, considering a

do-intervention at the collider cannot underwrite correlations between Y and Z.

In contrast, (Y ⊥⊥ Z|X ′,W ′)G
X′

fails since the collider N1 is still contained

in W ′. For the special case of a classical process that is Markov for G, it will

generally indeed be the case that the operational statement (COS1) (for the sets

Y, Z,W ′, X ′) fails — the quantification over all maximally informative interventions

not only at N3, but also N1, will generally underwrite correlations between Y and

Z. Note that the quantum operational statement (QOS1) is much weaker and

requires only the existence of one suitable intervention and a do-intervention at

N1 does the job, so that (QOS1) still holds for the sets Y, Z,W ′, X ′ even though

(Y ⊥⊥ Z|W ′do(X ′))σY ZW ′X′ will generally fail.

5.6.2 Generalisation do-calculus rule 2

5.6.2.1 Classical probability distributions

For convenience, Rule 2 is restated here: if the probability distribution P (...) is

Markov for the DAG G, then for disjoint sets of nodes Y, Z,X,W it holds that

(Y ⊥⊥ Z|X,W )GXZ ⇒ P (Y |do(X), do(Z),W ) = P (Y |do(X), Z,W ) , (5.30)

where, recalling Sec. 3.1.4, GXZ denotes the DAG obtained from GX by additionally

removing all arrows coming out of vertices in Z. For later reference, note that the
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consequent in Eq. (5.30) is equivalent to

P (Y, Z,W |do(X)) P (W |do(X)do(Z))

= P (Y,W |do(X)do(Z)) P (Z,W |do(X)) . (5.31)

5.6.2.2 Classical processes

The consequent of Rule 2, loosely speaking, says that if knowing W and x for

do(X = x), then it does not matter to Y whether one observes Z = z or enforces it

via do(Z = z). Translated to the level of split nodes, the intuition is that only what

comes out of the Z nodes may matter to the Y nodes. Consider then the following

notion for a classical process.

Definition 5.18 (Classical strong independence from broken nodes): Given a clas-

sical process map κY ZWX , say that Y is strongly independent from Z in relative to

(W , do(X), Zout), and write (Y ⊥⊥ Z in|Wdo(X)Zout)κY ZWX
, if and only if there exist

real functions αYWXoutZout : Y in×Y out×W in×W out×Xout×Zout → R and βZWXout :

Z in × Zout ×W in ×W out ×Xout → R, such that κY ZWdo(X) = αYWXoutZout βZWXout.

In order to give (Y ⊥⊥ Z in|Wdo(X)Zout)κY ZWX
an operational reading in the

subsequent proposition, we first pin down a special class of classical interventions,

which generalise do-interventions and help detect that the ‘breaking of Z does not

matter to Y ’.

Definition 5.19 (Classical breaking intervention): A breaking intervention at a

node Z consists of a measurement of Z in, giving outcome kZ, and the preparation of

a fixed value z of Zout. A necessary and sufficient condition is that:

P (kZ , Z
out|Z in) = P (kZ |Z in) δ(Zout, z). (5.32)

For Z a set of nodes, a breaking local intervention at Z is a product of breaking

interventions at each node in Z.

Proposition 5.11 Given a classical process κY ZWX , the condition (Y ⊥⊥ Z in|
Wdo(X)Zout)κY ZWX

holds if and only if:

(COS2) For all values Xout = x of a do-intervention at X, all maximally infor-

mative local interventions at W with outcome kW , all local interventions

at Y with outcome kY , and all breaking local interventions at Z with

outcome kZ, the joint probability distribution P (kY , kZ , kW ) satisfies

(kY ⊥⊥ kZ |kW )P .
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Proof. See Appendix A.11. �

In order to see that (Y ⊥⊥ Z in|Wdo(X)Zout)κY ZWX
reduces to Eq. (5.31) un-

der Iκ→P , and, hence, also to the consequent of Rule 2, observe that (Y ⊥⊥ Z in|
Wdo(X)Zout)κY ZWX

implies that κY ZWdo(X) κWdo(X)do(Z) = κZWdo(X) κYWdo(X)do(Z).
11

We can now state the generalisation of Rule 2.

Theorem 5.6 (Rule 2 analogue for classical processes): Consider a DAG G, with

a set V of classical split nodes, and disjoint subsets of nodes Y , Z, W and X, with

R := V \ (Y ∪Z ∪W ∪X). For any classical process κY ZWXR that is Markov for G,

(Y ⊥⊥ Z|X,W )GXZ ⇒ ∀τR (Y ⊥⊥ Z in|Wdo(X)Zout)κτRY ZWX
.

Proof. The proof is essentially the same as that of Thm. 5.7 below, with classi-

cal process maps replacing process operators, classical channels replacing quantum

channels, and classical interventions replacing quantum interventions. �

5.6.2.3 Quantum processes

The immediate quantum analogue to Def. 5.18 is the following.

Definition 5.20 (Quantum strong independence from broken nodes): Given a

quantum process σY ZWX , say that Y is strongly independent from Z in, relative to

(W , do(X), Zout), and write (Y ⊥⊥ Z in|Wdo(X)Zout)σY ZWX
, if and only if there exist

Hermitian operators αYWXoutZout and βZWXout such that σY ZWdo(X) = αYWXoutZout

βZWXout.

The condition (Y ⊥⊥ Z in|Wdo(X)Zout)σY ZWX
has an implied operational state-

ment, similar in spirit to the one for classical processes in Prop. 5.11, but, as always,

modulo that there is no quantum analogue of a maximally informative intervention

at the W nodes.

Proposition 5.12 Given a quantum process σY ZWX , if it holds that (Y ⊥⊥ Z in|
Wdo(X)Zout)σY ZWX

, then:

(QOS2) There exists a global intervention at WXoutZout, with outcome

kWXoutZout, such that for all interventions at Y , with outcome kY , and

all measurements of Z in with outcome kZin, the joint probability distri-

bution P (kY , kZin , kWXoutZout) satisfies (kY ⊥⊥ kZin|kWXoutZout)P .

Proof. See Appendix A.12. �

11Straightforward calculation, or else, see Prop. 5.13 in conjunction with Rem. 5.7
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Remark 5.6 The required global intervention at WXoutZout that yields (kY ⊥⊥ kZin|
kWXoutZout)P for all interventions at Y and all measurements of Z in can be taken to

be basically the same as in Rem. 5.4, apart from additionally feeding one half of a

pair of maximally entangled systems into Zout with the other half sent to E.

Also for (Y ⊥⊥ Z in|Wdo(X)Zout)σY ZWX
, there exists a set of equivalent state-

ments, similar in form to those in Prop. 5.10.

Proposition 5.13 Given a quantum process σY ZWX , the following statements are

equivalent:

(1) (Y ⊥⊥ Z in|Wdo(X)Zout)σY ZWX
.

(2) σY ZWdo(X)?σ
τY
Wdo(X)do(Z) = στYZWdo(X)?σYWdo(X)do(Z) ∀ local interventions τY .

(3) I(Y : Z in|WXoutZout) = 0, evaluated on σ̂Y ZWdo(X).

Proof. See Appendix A.13. �

Remark 5.7 Completely analogous statements exist that are equivalent to (Y ⊥⊥
Z in|Wdo(X)Zout)κY ZWX

in case of classical processes, by replacing σY ZWX with

κY ZWX everywhere, replacing the ‘?’-product in (2) with ordinary multiplication

of functions and I(Y : Z in|WXoutZout) in (3) with the classical conditional mutual

information. The proof is analogous.

Prop. 5.13 and Rem. 5.7 make evident that (Y ⊥⊥ Z in|Wdo(X)Zout)σY ZWX
re-

duces to (Y ⊥⊥ Z in|Wdo(X)Zout)κY ZWX
under Iσ→κ.

The quantum analogue of Rule 2 can now be stated as follows.

Theorem 5.7 (Rule 2 analogue for quantum processes): Consider a DAG G, with

a set V of quantum nodes, and disjoint subsets of nodes Y , Z, W and X, with

R := V \ (Y ∪ Z ∪W ∪X). For any quantum process σY ZWXR that is Markov for

G, it holds that

(Y ⊥⊥ Z|X,W )GXZ ⇒ ∀τR (Y ⊥⊥ Z in|Wdo(X)Zout)στRY ZWX
.

Proof. See Appendix A.14. �
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5.6.2.4 Example

The illustration of the generalisation of Rule 2 will again be based on the same DAG

G as in Fig. 5.9, reproduced here in Fig. 5.11.

G

N1

N2 N3 N4

N5

Figure 5.11

Suppose G is the causal structure of the quantum nodes N1, . . . , N5 and let

σN1...N5 be a quantum process that is Markov for G. Now, consider the following

two distinct mutilations of G.

GX,Z

N1

N2 N3 N4

N5

(a)

Y = {N4, N5}
Z = {N2}
W = {N3}
X = {N1}

GX,Y

N1

N2 N3 N4

N5

(b)

Figure 5.12: For the stated choices of subsets Y, Z,W,X of the nodes in Fig. 5.11,
(a) and (b) depict the mutilated DAGs GX,Z and GX,Y , where (Y ⊥⊥ Z|X,W )GX,Z
holds, while (Z ⊥⊥ Y |X,W )GX,Y fails.

Common to both, GX,Z and GX,Y , is that the arrows into X were taken out,

reflecting that here we will only consider do-interventions at the collider in X. Unlike

the considered subsets of nodes in Sec. 5.6.1.4, now N5 is contained in Y . Hence,

there is a direct causal pathway from Z to Y and these two sets are not d-separated

by X ∪ W in GX — interventions at Y and Z will typically not be independent

conditional on the outcome of any intervention at W .

However, if considering a special intervention at Z, that just measures Z in and

prepares some fixed state independent from kZin , then the outcome at Y would be ex-

pected to be independent from kZin , at least conditional on the outcome of an appro-

priate intervention at W , the common cause to Y and Z. For such special interven-

tions at Z it is therefore enough to check a corresponding d-separation condition in
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the further mutilated graph once arrows coming out of Z are taken out, too. Indeed,

(Y ⊥⊥ Z|X,W )GX,Z holds and Thm. 5.7 therefore implies (Y ⊥⊥ Z in|Wdo(X)Zout),

and thus by Prop. 5.12 the operational statement (QOS2) holds.

In contrast, if one considered such a ‘breaking’ intervention at Y , obviously no

independence between the outcomes at Y and Z would be expected to hold, because

the input space at N5 will have direct causal influence from Z. This is captured by

the fact that (Z ⊥⊥ Y |X,W )GX,Y fails.

5.6.3 Generalisation do-calculus rule 3

5.6.3.1 Classical probability distributions

For convenience, Rule 3 is restated here: if the probability distribution P (...) is

Markov for the DAG G, then for disjoint sets of nodes Y, Z,X,W it holds that

(Y ⊥⊥ Z|X,W )G
X,Z(W )

⇒ P (Y |do(X), do(Z),W ) = P (Y |do(X),W ) , (5.33)

where, recalling Sec. 3.1.4, Z(W ) denotes the subset of all those vertices in Z that

are not ancestors of W in GX . For later reference, note that the consequent in

Eq. (5.33) is equivalent to

P (Y,W |do(X)do(Z)) P (W |do(X)) = P (Y,W |do(X)) P (W |do(X)do(Z)). (5.34)

5.6.3.2 Classical processes

The consequent in Eq. (5.33), loosely speaking, says that if knowing W and x

for do(X = x), then whether or not an intervention takes place at Z makes no

difference to Y . Consider the following analogous notion for classical processes,

which appears slightly involved, but has a simple operational meaning as expressed

in the subsequent proposition.

Definition 5.21 (Classical strong independence from settings): Given a classical

process κY ZWX , say that Y is strongly independent from the setting at Z, relative to

(W , do(X)), and write (Y ⊥⊥ Set(Z)|Wdo(X))κY ZWX
, if and only if there is a real-

valued function ηYWXout : Y in×Y out×W in×W out×Xout → R such that for all local

interventions τZ at Z, there is a real valued function ξτZWXout : W in×W out×Xout → R,

such that

κτZYWdo(X) = ηYWXout ξτZWXout .

Proposition 5.14 Given a classical process κY ZWX , the condition (Y ⊥⊥ Set(Z)|
Wdo(X))κY ZWX

holds if and only if:
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(COS3) For all values Xout = x of a do-intervention at X, all maximally infor-

mative local interventions at W with outcome kW , and all local inter-

ventions at Y with outcome kY , the conditional probability P (kY |kW )

is independent of the choice of local intervention at Z.

Proof. See Appendix A.15. �

In order to see that (Y ⊥⊥ Set(Z)|Wdo(X))κY ZWX
under Iκ→P reduces to Eq. (5.34),

and, hence, to the consequent of Rule 3, observe that if (Y ⊥⊥ Set(Z)|Wdo(X))κY ZWX
,

then for all z:

κ
do(Z=z)
YWdo(X) κWdo(X) =

(
ηYWXout ξ

do(Z=z)
WXout

) (∑
Y

(
ηYWXout τ idY

)
ξ
τ idZ
WXout

)
=

(∑
Y

(
ηYWXout τ idY

)
ξ
do(Z=z)
WXout

) (
ηYWXout ξ

τ idZ
WXout

)
= κ

do(Z=z)
Wdo(X) κYWdo(X) .

We can now state the generalisation of Rule 3 as follows.

Theorem 5.8 (Rule 3 analogue for classical processes): Consider a DAG G, with

a set V of classical split nodes, and disjoint subsets of nodes Y , Z, W and X, with

R := V \ (Y ∪Z ∪W ∪X). For any classical process κY ZWXR that is Markov for G,

(Y ⊥⊥ Z|X,W )G
X,Z(W )

⇒ ∀τR (Y ⊥⊥ Set(Z)|Wdo(X))κτRY ZWX
.

Proof. The proof is essentially the same as that of Thm. 5.9 below, with classi-

cal process maps replacing process operators, classical channels replacing quantum

channels, and classical interventions replacing quantum interventions. �

5.6.3.3 Quantum processes

Finally, the immediate quantum analogue to Def. 5.21 is the following.

Definition 5.22 (Quantum strong independence from settings): Given a quantum

process σY ZWX , say that Y is strongly independent from the setting at Z, relative

to (W , do(X)), and write (Y ⊥⊥ Set(Z)|Wdo(X))σY ZWX
, if and only if there is a

Hermitian operator ηYWXout such that for all local interventions τZ at Z, there is a

Hermitian operator ξτZWXout, such that

στZYWdo(X) = ηYWXout ξτZWXout .

Again, there is the expected operational statement, analogous to (COS3), that

is implied by (Y ⊥⊥ Set(Z)|Wdo(X))σY ZWX
.
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Proposition 5.15 Given a quantum process σY ZWX , if it holds that (Y ⊥⊥ Set(Z)|
Wdo(X))σY ZWX

, then:

(QOS3) There exists a global intervention at WXout, with outcome kWXout, such

that for all local interventions at Y , with outcome kY , the conditional

probability P (kY |kWXout) is independent of the choice of local interven-

tion at Z.

Proof. See App. A.16. �

Remark 5.8 The global intervention at WXout that yields the independence of

P (kY |kWXout) from the choice of local intervention at Z for all local interventions at

Y can be taken to be the same as the one described in Rem. 5.4.

In contrast to the generalisations of Rule 1 and Rule 2, there are no statements

equivalent to (Y ⊥⊥ Set(Z)|Wdo(X))σY ZWX
, which are of an analogous form to those

in Prop. 5.10 and Prop. 5.13. Note that (Y ⊥⊥ Set(Z)|Wdo(X))σY ZWX
reduces to

(Y ⊥⊥ Set(Z)|Wdo(X))κY ZWX
under Iσ→κ.

12

The quantum analogue of Rule 3 can now be stated as follows.

Theorem 5.9 (Rule 3 analogue for quantum processes): Consider a DAG G, with

a set V of quantum nodes, and disjoint subsets of nodes Y , Z, W and X, with

R := V \ (Y ∪ Z ∪W ∪X). For any quantum process σY ZWXR that is Markov for

G, it holds that

(Y ⊥⊥ Z|X,W )G
X,Z(W )

⇒ ∀τR (Y ⊥⊥ Set(Z)|Wdo(X))στRY ZWX
.

Proof. See App. A.17. �

5.6.3.4 Example

The illustration of the generalisation of Rule 3 will again be based on the same DAG

G as for Rule 1 and Rule 2, which is reproduced here in Fig. 5.13.

G

N1

N2 N3 N4

N5

Figure 5.13

12In order to see that under Iσ→κ for each τZ , the operators ηYWXout and ξτZWXout can be
chosen to be diagonal in the same basis in which στZYWdo(X) is diagonal (only non-obvious in case

of degenerate eigenbases), observe that this is immediate from the block-diagonal structure of
ηYWXoutξτZWXout that is used in the proof of Prop. 5.15.
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Suppose G is the causal structure of the quantum nodes N1, . . . , N5 and let

σN1...N5 be a quantum process that is Markov for G. Now, consider the following

two distinct mutilations of G.

G
X,Z(W )

N1

N2 N3 N4

N5

Z = {N4, N5}
Y = {N2}

W = {N3}
X = {N1}

(a)

G
X,Z′(W ′)

N1

N2 N3 N4

N5

Z ′ = {N5}
Y = {N2}

W ′ = {N3, N4}
X = {N1}

(b)

Figure 5.14: For the stated choices of subsets Y, Z,W,X and Z ′,W ′, respectively,
of the nodes in Fig. 5.13, (a) and (b) depict the mutilated DAGs GX,Z(W ) and

GX,Z′(W ′), where (Y ⊥⊥ Z|X,W )G
X,Z(W )

holds, while (Y ⊥⊥ Z ′|X,W ′)G
X,Z′(W ′)

fails.

The two mutilated DAGs again share that the arrows into X have been taken

out, since at X only do-interventions will be considered in the following.

There is no direct causal pathway from Z to Y in G and there are no ancestors

of W in Z (i.e. Z = Z(W )). It holds that (Y ⊥⊥ Z|X,W )G
X,Z(W )

, thus, Thm. 5.9

implies (Y ⊥⊥ Set(Z)|Wdo(X))σY ZWX
and, hence, Prop. 5.15 implies the operational

statement (QOS3). This is as expected, because choosing different interventions at

Z could not directly influence Y and there is no ‘inferential link’ via some collider.

In this case, because of the simplicity of the example, the distribution P (kY |τZ)

will be independent from the choice of intervention τZ at the Z nodes, no matter

what intervention at W is performed (i.e. no matter which state at N3 is prepared),

provided a do-intervention at X.

In contrast, even though there still is no direct causal pathway from Z ′ to

Y , now that N4 is included in W ′, then Z ′ does have ancestors in W ′ (in fact,

Z ′(W ′) = ∅) and (Y ⊥⊥ Z ′|X,W ′)G
X,Z′(W ′)

fails. Consider for simplicity a clas-

sical process κY Z′W ′X . Now, in the specific case of Fig. 5.14b the presence of a

fork at N3 on the path from Z ′ to Y actually still prevents signalling from Z ′ to

Y once conditioned on the outcome of maximally informative interventions at W ′.

The simple DAG in Fig. 5.13 just does not allow to give a simple example where

(Y ⊥⊥ Z ′|X,W ′)G
X,Z′(W ′)

fails and also (Y ⊥⊥ Set(Z ′)|W ′do(X))κY Z′W ′X fails. How-

ever, the intuition behind the graphical antecedent in Thm. 5.8 is clear – if W ′
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contains a collider then conditioning on the outcome of maximally informative in-

terventions at W ′ can in general underwrite correlations so that one may signal to

Y through choosing an intervention at Z ′.

5.6.4 Overview

(Y ⊥⊥ Z|W,X)GX

⇓ ⇓ ⇓

QCM

∀τR
(
Y ⊥⊥ Z |
Wdo(X)

)
σ
τR
Y ZWX

Iσ→κ−−−→
CSM

∀τR
(
Y ⊥⊥ Z |
Wdo(X)

)
κ
τR
Y ZWX

Iκ→P−−−→
CCM(
Y ⊥⊥ Z |
Wdo(X)

)
P

(a) Generalisation of Rule 1.

(Y ⊥⊥ Z|W,X)GXZ
⇓ ⇓ ⇓

QCM

∀τR
(
Y ⊥⊥ Z in |

Wdo(X)Zout)στRY ZWX

Iσ→κ−−−→
CSM

∀τR
(
Y ⊥⊥ Z in |

Wdo(X)Zout)κτRY ZWX

Iκ→P−−−→
CCM

P (Y |do(X), do(Z),W )

= P (Y |do(X), Z,W )

(b) Generalisation of Rule 2.

(Y ⊥⊥ Z|W,X)G
XZ(W )

⇓ ⇓ ⇓

QCM

∀τR
(
Y ⊥⊥ Set(Z) |
Wdo(X))στRY ZWX

Iσ→κ−−−→
CSM

∀τR
(
Y ⊥⊥ Set(Z) |
Wdo(X))κτRY ZWX

Iκ→P−−−→
CCM

P (Y |do(X), do(Z),W )

= P (Y |do(X),W )

(c) Generalisation of Rule 3.

Figure 5.15: Overview of all three rules for classical causal models from Thm. 3.3,
together with their respective generalisations for classical split-node causal models
and quantum causal models.
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5.7 From causation to signalling and back

The preceding sections of this chapter have a common feature, namely, what the

given is in the respective questions that are being asked. They all are of the form:

given causal structure, as defined in Chap. 4, what are its ramifications for quantum

processes? This question led to the definition of a quantum causal model and the

results so far can then be seen to establish Def. 5.1 as the appropriate definition of

a quantum causal model. This conclusion stems in particular from the equivalence

result from Section 5.2.3, with further support coming from the fact that this frame-

work allows for the generalisation of the d-separation theorem in Sec. 5.5 and of the

three rules of the classical do-calculus in Sec. 5.6.

Having thus built confidence in the definition, the direction of the question should

be turned around: given a quantum process σA1...An , what can we say about causal

structure? This leads to the formulation of a problem of quantum causal inference,

which a framework of quantum causal models had better be able to say something

about. The following will make a start with this direction of inquiry. This requires

first spelling out the relation between causation and ‘signalling relations’, the latter

being the central empirically accessible concept for generic quantum processes.

At the formal level it makes no difference whatsover to the following exposition

whether one allows for arbitrary quantum nodes or not. In the view that causal

relata should be considered quantum inodes — thinking of causal reasoning as one

about quantum systems without a need for an intervention — one may also see the

following in this light (see Sec. 3.2.5.2 and 4.2). However, for the sake of generality

and in order not to impose any philosophical ladenness, the restriction to quantum

inodes from Secs. 5.3-5.6 is henceforth dropped again in the rest of the thesis.

5.7.1 Signalling and processes

The notion of ‘signalling’ is an interventionist one that involves the notion of agents

who act as senders and receivers. Given a quantum process σA1...An the quantum

nodes A1, . . . , An are in particular loci of intervention, where one may imagine an

agent to be stationed and able to perform arbitrary quantum instruments. Sec. 3.2.3

introduced in Def. 3.8, what it means, given a quantum process σSTR with disjoint

sets of nodes S, T,R, that the nodes S cannot signal to the nodes T , written (S 9s

T )σSTR . Then say the nodes S can signal to the nodes T , write (S →s T )σSTR , if

and only if ¬(S 9s T )σSTR , i.e. there exists an intervention τ kTT and interventions

τR such that p(kT |τS) 6= p(kT |τ ′S) for at least a pair of interventions τS, τ
′
S.

By just considering pairs of individual nodes, rather than pairs of sets of nodes,
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this notion induces a directed graph.

Definition 5.23 (Induced signalling directed graph): Given a quantum process

σA1...An, let the induced signalling directed graph be the directed graph with vertices

{A1, . . . , An} and an arrow Ai → Aj whenever (Ai →s Aj)σA1...An
.

Importantly, a quantum process’ induced signalling directed graph is in general

an incomplete representation of a process’ signalling relations: even though there

may not be signalling from Ai to Aj and also not from Ai to Ak for i 6= j 6= k,

there may be signalling from Ai to the set of nodes {Aj, Ak}, while a complete

representation has to capture the set of signalling relations between all pairs of

disjoint subsets of nodes. Nonetheless, the induced signalling directed graph is

arguably the most complete directed graph, associated with the signalling relations

in a quantum process, rather than, say, a hypergraph — hence the name ‘induced

signalling directed graph’ despite the limited information it conveys.

Also note that, given the generality of the process formalism, a quantum process’

induced signalling directed graph is generally not a DAG. However, this chapter is

not concerned with the study of those cases, where it is not a DAG. A corresponding

discussion is postponed to Chap. 7.

Now recall that any quantum process σA1...An also defines a channel P from the

output spaces of all nodes to their input spaces via σA1...An = ρPA1...An|A1...An
. As

such, one can study the relations of (no-)signalling according to Def. 3.6 from any

set of Aout
j — the input systems of P — to any set of Ain

i — the output systems of

P . Consider the directed graph that arises based on that by associating both Aout
i

and Ain
i with one vertex, to represent the quantum nodes A1, . . . , An, as follows.

Definition 5.24 (Induced direct-signalling directed graph): Given a process oper-

ator σA1...An, let its induced direct-signalling directed graph, denoted Gσ, be the one

defined by the associated channel ρPA1...An|A1...An
as follows: it has vertices A1, . . . , An

and an arrow Ai → Aj whenever Aout
i can signal to Ain

j through the channel P, i.e.

¬(Aout
i 9s Ain

j ).

Importantly, Gσ is in general again an incomplete representation of, now the di-

rect signalling relations between nodes. This is for the same reason as ever, discussed

in Secs. 3.2.4 and 4.1, namely, that the set of no-signalling relations for individual

output systems of a channel does not in general determine the no-signalling relations

for sets of output systems.

It is easy to see that Gσ is a subgraph of the induced signalling directed graph

from Def. 5.23. In fact, Gσ can alternatively be characterised as the subgraph
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obtained by drawing an arrow from Ai to Aj if there is signalling from Ai to Aj

when quantifying over only do-interventions at Ai and the remaining nodes, rather

than arbitrary interventions as in Def. 3.8. This is the reason the signalling relations

of this kind are referred to as direct signalling, seeing as it is not mediated through

other nodes — the do-interventions break the influence. Consider for instance the

simple situation of σABC = ρC|B ρB|A ρA, where all input and output spaces are

qubits and ρC|B and ρB|A are two unitary channels. The process’ graph Gσ is the

chain A → B → C, while in the induced signalling directed graph according to

Def. 5.23, there would be an arrow from A to C, too. The latter signalling relation

is however only mediated through B and hence not regarded as direct signalling.

The bottom line is that also Gσ is generally not a DAG and that an arrow in Gσ

has the obvious meaning — there is signalling between the respective nodes — while

absences of arrows in Gσ are inconclusive — both with respect to direct signalling

between sets of nodes and indirect signalling between individual nodes, as well as

the combination of the two kinds.

5.7.2 Signalling and the Markov condition

Suppose the quantum process σA1...An is Markov for the DAG G and therefore fac-

torises accordingly into pairwise commuting operators σA1...An =
∏

i ρAi|Pa(Ai). There

are then some immediate observations regarding the signalling properties of σA1...An .

First, the marginal channel ρAi|Pa(Ai) allows signalling to Ain
i from the output

systems of at most those nodes that are contained in Pa(Ai). Hence, by Def. 5.24,

the induced direct-signalling directed graph Gσ necessarily is a subgraph of G. In

particular, Gσ is also a DAG and G has to contain all arrows Gσ has.

Second, by our convention of suppressing identity operators, it also holds that

σA1...An =
∏

i ρAi|PaGσ (Ai), where the parental sets refer to Gσ, that is, the process

σA1...An is also Markov for Gσ.

Third, since the marginal channel into Ain
j A

in
k is given by ρAj |PaGσ (Aj)ρAk|PaGσ (Ak),

it holds that if Aout
i cannot signal to Ain

j and also not to Ain
k , then it cannot signal

to the composite Ain
j A

in
k either 13 . Hence, the DAG Gσ is a complete representation

of the direct signalling relations between the nodes of σA1...An .

Fourth, in the converse direction, adding further arrows to G, instead of taking

arrows out, does not destroy the Markov property for the new DAG if appropriately

padding ρAi|PaGσ (Ai) with identity operators.

13This is the same argument as for the analogous property for causal influence in a unitary
channel in Sec. 4.1, the crucial difference being that for the latter it is enforced by unitarity due
to Thm. 4.1, while for the channel defining a generic process the Markov condition is a non-trivial
condition to hold.
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In summary:

Remark 5.9 Given a quantum process σA1...An, if it is Markov for some DAG G,

then it is also Markov for Gσ, and conversely, if it is Markov for Gσ it is Markov

for any DAG with the same vertices that contains Gσ as a subgraph. One may

therefore also speak of a quantum process being Markov or not, independently from

which particular DAG.

A pair (G, σA1...An), where σA1...An is Markov for the DAG G is a quantum causal

model. What then is the status of all those DAGs with ‘extraneous’ arrows compared

to Gσ, for which the process is Markov and which, together with σA1...An , all form

QCMs?

Suppose (G, σA1...An) is a QCM and that there is an arrow from Ai to Aj in G

that is absent in Gσ. It may well be the case that there is direct causal influence from

node Ai to node Aj in the actual underlying unitary process, hence the corresponding

arrow in G; however, due to some particular state ρλ for some latent root node, for

which σA1...An is recovered from the unitary process, the direct signalling from Aout
i

to Ain
j disappears in the effective description with σA1...An . The underlying causal

mechanism is still present and would allow for signalling in case of a different state

ρλ, which is not ‘fine-tuned’ to make the signalling from Ai to Aj disappear. Such

QCMs are perfectly conceivable and in fact an important part of the framework —

a relation of direct signalling is a sufficient but not a necessary condition for the

presence of a causal relation.

Call a quantum causal model (G, σA1...An) faithful14 if and only if there are no ‘ex-

traneous’ arrows in the DAG G that do not correspond to direct signalling relations,

i.e. if it holds that G = Gσ. A QCM is called non-faithful otherwise. This borrows

terminology from classical causal models (see Sec. 3.1.3), where a faithful classical

causal model (G,P (X1, . . . , Xn)) is one, where there is no extraneous conditional

independence relation that the probability distribution P (X1, . . . , Xn) satisfies, but

that is not enforced by a corresponding d-separation relation in the causal structure

G (see Thm. 3.2).

Remark 5.10 Note that at the end of Sec. 5.2.3 it was left open whether the equiv-

alence between Markovianity and compatibility can also be proven to hold for a

stronger version of compatibility with a DAG G that requires all arrows of G to cor-

respond to causal influence in the asserted underlying unitary process, rather than

merely requiring the unitary process to satisfy the no-influence relations according

14Also in Ref. [82] this terminology was used for the same concept, only based on the corre-
sponding definition of a QCM from Ref. [82].

100



to G. Suppose (G, σA1...An) is a faithful quantum causal model, that is G = Gσ.

In that case the two notions of compatibility coincide, since the unitary process as-

serted to exist by compatibility via Thm. 5.2 necessarily has to allow all ways of

causal influence corresponding to Gσ — signalling can disappear, but not appear

when marginalising over root and leaf nodes. Arguably, this is the most important

case anyway, but for all other non-faithful quantum causal models the question from

Sec. 5.2.3 concerning the stronger notion of compatibility remains open.

5.7.3 Quantum causal inference

Traditionally, the problem of causal inference15 is the problem that motivated the

development of a causal model framework, so that it could be addressed scientifically:

given a probability distribution that encodes purely observational data, how can

one infer the causal structure between the variables in a principled way, that is,

under which additional assumptions? As mentioned in Sec. 3.1.3 the seminal causal

discovery algorithms of the classical causal model framework answer the question

for many situations (see, e.g., Refs. [8, 9]).

In the quantum case, the same problem obviously does not exist, because there

is no object that encodes ‘purely observational quantum data’ and that would bear

the same kind of ambiguity as a probability distribution does, when it comes to

giving causal explanations. First works on inferring the causal relation between two

quantum systems given data on outcomes of measurements on those systems can

be found in, e.g., Refs. [79, 81]. Generally, the empirical object, with which any

set of quantum systems can be described, and in terms of which the constraints

from causal structure are most elegantly stated, is a quantum process operator.

As such, it already allows predictions for arbitrary interventions. Conversely, one

needs informationally complete sets of interventions at all nodes to obtain a process

operator experimentally. Causal discovery problems given a process operator may

therefore not be considered a particularly relevant problem, practically speaking. It

would be interesting to see whether there is a ‘more practically relevant’ problem

that asks about causal explanations, when the given data only leads to an incom-

plete knowledge of the quantum process, and where the data is of the sort that

may be available in typical situations in laboratories or future quantum information

processing set-ups.

Nonetheless, given a quantum process σA1...An , there are essential questions, pre-

cisely of a causal nature, and being able to answer them is not only of foundational

15Causal inference and causal discovery are used synonymously here.

101



interest but also the very basis for potential, more practically relevant, future ver-

sions of causal discovery:

(1) Is σA1...An compatible at all with a causal order of the quantum nodes?

(2) If so, what is a plausible causal explanation of σA1...An within the framework

of quantum causal models?

A first step in answering such questions in a principled way was taken by Costa

and Shrapnel in Ref. [82] and a further step by Giarmatzi and Costa in Ref. [121],

where a detailed quantum causal discovery algorithm was presented, based on the

definition of a quantum causal model from Ref. [82] (see Sec. 3.2.4 for that approach).

Inspired by the work in Ref. [121], the following will sketch similar steps, albeit in

much less detail, adjusted to the more general definition of a quantum causal model

in this work. One other main difference is that the input data to the algorithm from

Ref. [121] includes a specification of the factorisation of each node’s output space

into subsystems. It is these subsystems that are then considered as the potential

systems that mediate the causal influence along the causal arrows of the to-be-

discovered DAG, owing to the notion of a quantum causal model from Ref. [82].

The input data thus already includes substantial causal knowledge, namely, how

many children a node may have at most and which subsystems may play the role of

another node’s direct cause.

The classical causal discovery algorithms have at their heart, amongst other

assumptions like faithfulness or the absence of latent common causes, the idea of

putting the causal principle to work: if a given probability distribution P (X1, . . . , Xn)

is not Markov for a DAG G with vertices X1, . . . , Xn, then G is not a plausible causal

explanation of P . In the quantum case, the idea equally is to put the quantum causal

principle from Sec. 5.1 to work: if a quantum process σA1...An is not Markov for the

DAG G then G is not a plausible causal explanation of σA1...An . Building on the

observations from the Sec. 5.7.2, this is now straightforward.

A simple version of a quantum causal discovery algorithm, which takes a quantum

process operator σA1...An as its input, does the following. It first calculates Gσ, that

is, the parental sets {Pa(Ai)}ni=1 by checking the corresponding n(n − 1) linear

constraints:

Aj 6∈ Pa(Ai) iff
1

dAout
j

Tr(Aout
j )∗
[
ρAi|A1...An

]
⊗ 1(Aout

j )∗ = ρAi|A1...An , (5.35)

where ρAi|A1...An := TrAin
k ,∀k,k 6=i

[
σA1...An

]
. The algorithm then checks whether Gσ is

a DAG, and in case it is, the algorithm then checks whether σA1...An is Markov for
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Gσ and outputs the findings. A slightly more detailed presentation of the algorithm

is postponed to Sec. 7.7.

Rem. 5.9 means that in case Gσ is a DAG, learning whether σA1...An is Markov for

it already tells us all there is to be found out about the possibilities of any DAG with

vertices A1, . . . , An being a candidate causal explanation. If σA1...An is Markov for

Gσ, the pair forms a faithful QCM. The set of DAGs, which, together with σA1...An ,

form non-faithful QCMs, are all DAGs with vertices A1, . . . , An, of which Gσ is a

subgraph. Generally, the problem of causal inference can be restricted to considering

faithful QCMs, since the exact set of non-faithful QCMs is then always trivially

known, too, and only given σA1...An , without further clues such as the embedding

of the quantum nodes into spacetime, all non-faithful QCMs are indistinguishable.

If in turn σA1...An is not Markov for Gσ, we conclude that there does not exist any

DAG with vertices A1, . . . , An that can causally explain σA1...An .

This sketched naive version of a causal discovery algorithm does not enable one

to infer much more, mainly due to the fact that Gσ is generally — that is, in

case of non-Markovianity — a little conclusive object, as explained in Sec. 5.7.1.

However, in the following special case one can draw an important conclusion from

non-Markovianity. Suppose σA1...An is not Markov, but it is known to be a quantum

comb. Then there always exists a unitary process involving further nodes, from

which σA1...An can be seen to arise and which has a DAG as its causal structure and

forms a QCM16. Thus, given that σA1...An is a comb, non-Markovianity certifies that

there are necessarily latent common causes to at least some of the original nodes

A1, . . . , An. This leads to further questions concerning what one can say beyond

just that common causes are missing. Can one design an algorithm which is more

conclusive and reveals, e.g., which subsets of nodes it is that necessarily need further

common causes? Such investigation is left for future work.

Observe the following important difference to classical causal discovery algo-

rithms based on non-interventional data. There, the presence of latent common

causes can never be inferred from the given data; it always is a substantial assump-

tion whether there are latent common causes or not — one which has a strong

influence on how complex the causal discovery algorithm is [9]. Now, note that

there is a completely analogous version of the above causal discovery algorithm for

classical processes, just by seeing them as special cases of quantum processes. This

16This follows essentially from the results on quantum combs in Ref. [32] by similar arguments
as discussed at the end of Sec. 5.2.2. Any quantum comb has a realisation as a quantum network
of a similar form as in Fig. 5.4, however, with isometries as the component maps, where Fig. 5.4
shows the unitary maps Ui. Dilating these isometries to unitary maps, a broken unitary circuit
is obtained, i.e. a unitary process with a DAG as causal structure, where this step will generally
introduce additional common causes.
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shows what, if one has access to arbitrary interventions on all variables, the clas-

sical problem of causal inference turns into — above all, one notes that it does

not trivialise. For instance, one may then similarly infer that there must be latent,

unobserved common causes.

The conclusion of the presence of latent common causes in case of non-Markovianity

is a meaningful one for quantum combs, because there necessarily exists a quantum

causal model involving some latent common causes, which constitutes a possible

causal explanations of the given process. In contrast, if Gσ is not a DAG, or if it

is a DAG, but σA1...An is not a quantum comb, then concluding the need of latent

common causes is — at least so far — vacuous, since it is not clear whether σA1...An

would have a meaningful causal explanation in any framework. How progress in

this direction is possible is what Chap. 7 is dedicated to and Sec. 7.7 will eventually

extend the above causal discovery algorithm.
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Chapter 6

Causal structure and

compositional structure

This chapter presents the results from the second publication in Ref. [2]. The quan-

tum direct-cause relation from Chapter 4 is based on the view that at a fundamental

level quantum evolution is unitary and it is in unitary transformations that causal

relations reside. As a consequence, every unitary transformation has a causal struc-

ture according to Def. 4.3 and so does every unitary process according to Def. 4.7.

Chapter 5 presented the framework of quantum causal models based on these defini-

tions. Now, loosely speaking, if Chapter 5 ‘went up’, studying the ramifications from

the underlying causal structure at the level of an effective description with generic,

non-unitary quantum processes, the direction of inquiry here is to ‘go down’ and

study how a more fine-grained, causal understanding of unitary transformations can

be developed. Can the concept of a ‘causal mechanism’ that mediates the causal

influence to a system from its direct causes, be identified more precisely in a com-

positional manner?

6.1 Introducing the question and prior work

The context, within which to carve out the above vague question a little more

concretely in a first step, comes from two lines of research. One tradition is that of

studying ‘localisability of causal maps’ in the sense of, e.g., Refs. [14, 16, 18]. The

spirit of these works, which were also mentioned in Chapter 1, can be paraphrased

as: given a quantum channel with certain pathways of signalling and assumed spacial

relations between the involved systems, studying circuit decompositions such that

the channel can be seen to respect a finite speed of signalling since any signalling is

mediated through a sequence of ‘local interactions’ in some circuit. In the first of
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these works, Ref. [14], Beckmann et al. showed in particular that given a bipartite

channel with two systems A and B, where A can signal to B, but not vice versa, the

channel has a circuit decomposition, where A first interacts with an environment,

which then interacts with B1. For a tripartite unitary U from ABC to ABC,

Schumacher and Westmoreland then showed in Ref. [16] that if A cannot signal to

C, then U has a decomposition into a circuit of the form of a bipartite unitary on AB,

followed by a unitary on BC. Ref. [18] studies unitary operators U over an arbitrary

number of Hilbert spaces and establishes a representation theorem in a similar spirit:

given arbitrary no-signalling constraints, it yields a circuit decomposition of U ,

where systems only interact with their ‘nearest neighbours’. There is much further

literature in the same vein and with similar results (see, e.g., Refs. [130–133]), and in

particular, a large body of literature concerned with the application of such results

to ‘quantum cellular automata’ (see, e.g., [134–143]).

Another tradition emphasises the role of compositionality for a better under-

standing of the quantum formalism. In particular, the category-theoretic approach

to quantum theory stands in this tradition and shaped it, above all by leading to

the development of a diagrammatical representation of the theory that has become

a useful tool for reasoning about quantum systems (see, e.g., Refs. [20, 21, 24, 25]

and references therein). Similarly, the framework of ‘operational probabilistic theo-

ries’ emphasises compositional structure and uses a graphical representation thereof

(see, e.g., Refs. [19,26]). As mentioned in Chapter 1, studying causality has played

a vital role in all of these, including defining what a ‘causal process’ is, what makes

a theory a ‘causal theory’, and understanding the link to relativistic causality (see,

e.g., Refs. [19, 22, 23, 26, 30]). Nonetheless, a rigorous understanding of the relation

between causal structure and compositional structure of unitary transformations is

missing – can the former be understood in terms of the latter?

Now, suppose a unitary map U has a representation as a quntum circuit diagram,

that is, U is equivalent to the composition of other unitary maps, sequentially and

in tensor product. If there is no path from input system A to output system B

in the circuit diagram, then there is no influence from A to B in U (see, e.g.,

Ref. [30]) – the no-influence relation thereby becomes graphically evident in the

circuit representation of U . Conversely, the result by Schumacher and Westmoreland

from Ref. [16] implies that, given a unitary map U , if A does not influence B, then

there always exists a circuit decomposition of U which makes that particular no-

influence relation graphically evident through the absence of a corresponding path

from A to B.

1In their terminology the statement is that a semicausal bipartite channel is semilocalisable.
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However, as the next section will argue in detail, not all unitaries allow for a

circuit decomposition, which simultaneously makes all no-influence relations evident.

Hence, the question of whether causal structure can be understood in compositional

terms still stands. The remainder of this chapter will show how progress is possible,

essentially, by studying Thm. 4.1 in conjunction with Lem. 4.1 — the recurring main

tools to the study of causal structure in this thesis.

6.2 Decompositions using circuit diagrams

This section starts exploring the question whether causal structure of unitary maps

can be understood in compositional terms by looking at a few simple examples of

unitaries, where corresponding circuit decompositions are known, which achieve a

compositional understanding of the respective causal structure. At the same time,

these examples will also lead to the limits of circuit decompositions for that purpose.

Consider the simplest case of a unitary map with specified input and output

tensor product structures such that the causal structure is nontrivial, i.e. a unitary

map with two input and two output subsystems, U : HA1 ⊗ HA2 → HB1 ⊗ HB2 .

Suppose A1 9 B2 and A2 9 B1. From Thm. 4.1 it follows that ρUB1B2|A1A2
=

ρB1|A1ρB2|A2 . Hence, recalling the convention of suppressing identity operators, it

holds that ρUB1B2|A1A2
= ρB1|A1⊗ρB2|A2 . The fact, that ρUB1B2|A1A2

represents a unitary

channel that factorises into the two channels represented by ρB1|A1 and ρB2|A2 , implies

that the latter are unitary channels, too. Therefore, there exist unitary maps Ṽ :

HA2 → HB2 and W̃ : HA1 → HB1 , such that U = W̃ ⊗ Ṽ (a result that had been

obtained in several previous works; see, e.g., Refs. [14,131,144]). Fig. 6.1 represents

this decomposition graphically and makes the two causal constraints, A1 9 B2 and

A2 9 B1, graphically evident through the fact that on the right-hand side of it,

there is no path from A1 to B2 and similarly not from A2 to B1.

U

B1 B2

A1 A2

= W̃ Ṽ

B1 B2

A1 A2

Figure 6.1: Factorisation of unitary U that is implied by
A1 9 B2 ∧ A2 9 B1 (indicated as red dashed arrows).

Next, consider a unitary map with three input and output systems, U : HA1 ⊗
HA2 ⊗ HA3 → HB1 ⊗ HB2 ⊗ HB3 . The following result by Schumacher and West-
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moreland from Ref. [16] identifies a circuit decomposition of U that is implied by

A1 9 B3.

Theorem 6.1 [16]2: Let U : HA1 ⊗HA2 ⊗HA3 → HB1 ⊗HB2 ⊗HB3 be a unitary.

If A1 9 B3, then there exist unitaries V : HA2 ⊗ HA3 → HX ⊗ HB3 and W :

HA1 ⊗HX → HB1 ⊗HB2 such that U = (W ⊗ 1B3)(1A1 ⊗ V ).

Thm. 6.1 is expressed graphically in Fig. 6.2a, where the right-hand side again

makes the constraint A1 9 B3 evident through the absence of a path from A1 to

B3. Similarly, in case A3 9 B1 holds, a corresponding decomposition as in Fig. 6.2b

exists.

U

B1 B2 B3

A1 A2 A3

=

W

V

B1 B2 B3

A1 A2 A3

(a)

U

B1 B2 B3

A1 A2 A3

=

W ′

V ′

B1 B2 B3

A1 A2 A3

(b)

Figure 6.2: Circuit decompositions of unitary U in (a) and (b), which are implied
by A1 9 B3 and A3 9 B1 (indicated as red dashed arrows), respectively.

As the special case of Thm. 6.1 for when the two middle systems (above labelled

A2 andB2) are trivial systems, observe that if for a 2-input, 2-output unitary map U :

HA1 ⊗HA2 → HB1 ⊗HB2 , it holds that A1 9 B2, then there exists a decomposition

as in Fig. 6.3a, which makes that causal constraint evident. Similarly, Fig. 6.3b

depicts the corresponding decomposition in case A2 9 B1 holds.

U

B1 B2

A1 A2

=
W

V

B1 B2

A1 A2

(a)

U

B1 B2

A1 A2

=
W ′

V ′

B1 B2

A1 A2

(b)

Figure 6.3: Circuit decompositions of unitary U in (a) and (b), which are implied
by A1 9 B2 and A2 9 B1 (indicated as red dashed arrows), respectively.

In case both causal constraints, A1 9 B2 and A2 9 B1, hold simultaneously

for a 2-input, 2-output unitary map, Fig. 6.1 already showed a decomposition that

2The result in Ref. [16] is stated for unitaries U : HA ⊗HB ⊗HC → HA ⊗HB ⊗HC , i.e. for
unitaries with the same set of systems as in- and output, but it is straightforward to extend their
proof to the more general case stated here.
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expresses that fact. Thus, for all presented circuit decompositions of some unitary

map U , as long as the assumed causal constraints are the only ones that U satisfies,

then the corresponding circuit decomposition faithfully expresses the causal struc-

ture of U : there is a path from an input system A to an output system B if and

only if there actually is causal influence from A to B.

Now, returning to a 3-input, 3-output unitary map, the obvious question is

whether in case A1 9 B3 and A3 9 B1 hold simultaneously, there similarly exists

a circuit decomposition that captures the causal structure. Decompositions as in

Figs. 6.2a and 6.2b then exist, but neither on their own expresses both constraints.

There of course exists a circuit diagram with a corresponding connectivity, namely

the one in Fig. 6.4: any unitary map U : HA1 ⊗ HA2 ⊗ HA3 → HB1 ⊗ HB2 ⊗ HB3

defined by a unitary circuit diagram of that form necessarily satisfies A1 9 B3 and

A3 9 B1. However, not all unitary maps that satisfy A1 9 B3 and A3 9 B1, admit

a circuit decomposition of the form as in Fig. 6.4.

S

T V

W

B1 B2 B3

A1 A2 A3

Figure 6.4: Unitary circuit diagram, with the feature that the cor-
responding unitary transformation satisfies A1 9 B3 ∧ A3 9 B1.

A simple argument to convince oneself of that fact is the following. Suppose for

the unitary U : HA1 ⊗ HA2 ⊗ HA3 → HB1 ⊗ HB2 ⊗ HB3 , the conditions A1 9 B3

and A3 9 B1 are the only causal constraints, i.e., in particular A2 can influence

B1 and also B3. Furthermore, suppose A2 is prime-dimensional. If U had a circuit

decomposition of the form as in Fig. 6.4, then the intermediate systems between

the unitaries S and T as well as S and V , respectively, cannot both be non-trivial

systems, because their product is isomorphic to A2. However, that in turn means

that it is impossible for causal influence to go to both, B1 and B3. Finally, in

order to see that a concrete unitary map with such properties exists, consider U :

HA1 ⊗HA2 ⊗HA3 → HB1 ⊗HB2 ⊗HB3 with all Hilbert spaces two-dimensional and

defined as in Fig. 6.5, that is, as a sequential composition of two CNOT gates, both

of which have A2 as the control system, and A1 and A3 as the respective target

systems (for i = 1, 2, 3, Bi is taken to be a copy of Ai here.).
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U

B1 B2 B3

A1 A2 A3

=

B1 B2 B3

A1 A2 A3

=

B1 B2 B3

A1 A2 A3

Figure 6.5: Example of a unitary U , satisfying A1 9 B3 and A3 9 B1, which
does not have a decomposition of the form of Fig. 6.4.

A first conclusion therefore is that circuit decompositions, i.e. tensor product and

sequential compositions of unitary maps, are not in general sufficient to understand

causal structure in compositional terms.

6.3 A decomposition beyond circuit diagrams

The open question from above concerning which decomposition of a unitary map

U : HA1 ⊗HA2 ⊗HA3 → HB1 ⊗HB2 ⊗HB3 is implied by the conjunction of the two

causal constraints, A1 9 B3 and A3 9 B1, is answered by the following theorem.

We will first prove the theorem and then give a graphical representation of the result.

Theorem 6.2 Given a unitary U : HA1 ⊗ HA2 ⊗ HA3 → HB1 ⊗ HB2 ⊗ HB3, if

A1 9 B3 and A3 9 B1, then

U =
(
1B1 ⊗ T ⊗ 1B3

) (⊕
i∈I

Vi ⊗Wi

) (
1A1 ⊗ S ⊗ 1A3

)
, (6.1)

where S and T are unitaries, and {Vi}i∈I and {Wi}i∈I families of unitaries, of the

form

S : HA2 →
⊕

i∈I HXL
i
⊗HXR

i
, Vi : HA1 ⊗HXL

i
→ HB1 ⊗HY Li

,

T :
⊕

i∈I HY Li
⊗HY Ri

→ HB2 , Wi : HXR
i
⊗HA3 → HY Ri

⊗HB3 .

In order to prove the theorem, the following two lemmas will be essential. The

first is a mere restatement of Lem. 4.1 in a more careful way, making explicit the

unitary isomorphisms that are implicit in Lem. 4.1 (also see Rem. 4.2).

Lemma 6.1 Let ρA|CD and ρB|DE be CJ representations of channels. If [ρA|CD ,

ρB|DE] = 0, then there exist a Hilbert space HX =
⊕

i∈I HXL
i
⊗ HXR

i
, a unitary

S : HD → HX , with transpose ST : H∗X → H∗D, and families of channels {ρA|CXL
i
}i∈I
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and {ρB|XR
i E
}i∈I , such that3

ρA|CD = ST
(⊕

i∈I

ρA|CXL
i
⊗ 1(XR

i )∗

) (
ST
)†

(6.2)

ρB|DE = ST
(⊕

i∈I

1(XL
i )
∗ ⊗ ρB|XR

i E

) (
ST
)†

. (6.3)

The channel ρA|CD is therefore equivalent to the composition of a channel corre-

sponding to the unitary 1C ⊗ S, followed by the channel
⊕

i∈I ρA|CXL
i
⊗ 1(XR

i )∗.

Similarly ρB|DE.

The second lemma relies on the concept of a reduced unitary channel, defined

in Def. 5.4 in Chap. 5. For ease of reference it is repeated here: A channel C :

L(HA) → L(HB) is a reduced unitary channel if and only if there exists a unitary

transformation U : HA → HB ⊗HF such that ρCB|A = TrF [ρUFB|A].

Lemma 6.2 Let ρY |X be a reduced unitary channel.

(1) If X has a tensor product structure HX = HX1 ⊗HX2, with respect to which

ρY |X = ρY |X1 ⊗ 1X2, then ρY |X1 is a reduced unitary channel.

(2) If ρY |X =
⊕

i ρY |Xi for some decomposition into orthogonal subspaces HX =⊕
iHXi, then ρY |Xi is a reduced unitary channel for each i.

Proof of Lemma 6.2. See Appendix B.1. �

Proof of Theorem 6.2: Consider a unitary transformation U : HA1⊗HA2⊗HA3 →
HB1 ⊗HB2 ⊗HB3 such that A1 9 B3 and A3 9 B1. Theorem 4.1 implies that

ρUB1B2B3|A1A2A3
= ρB1|A1A2 ρB2|A1A2A3 ρB3|A2A3 , (6.4)

where all operators commute pairwise. Hence, by Lemma 6.1, there exist a Hilbert

space HX =
⊕

i∈I HXL
i
⊗ HXR

i
, a unitary S : HA2 → HX , and families of channels

{ρB1|A1XL
i
}i∈I and {ρB3|XR

i A3
}i∈I , such that ρB1|A1A2 is equivalent to the composition

of the unitary channel corresponding to 1A1⊗S, followed by
⊕

i∈I ρB1|A1XL
i
⊗ 1(XR

i )∗ ,

and ρB3|A2A3 is equivalent to the composition of the unitary channel corresponding

to S ⊗ 1A3 , followed by
⊕

i∈I 1(XL
i )
∗ ⊗ ρB3|XR

i A3
.

Eq. (6.4) implies that ρB1|A1A2 ⊗ 1A∗3 is a reduced unitary channel. Lemma 6.2

then gives that, for each i, ρB1|A1XL
i

is a reduced unitary channel. Similarly, for

3The appearance of the transpose of S in this equation is due to our convention of defining
Choi-Jamio lkowksi operators as acting on the dual space of the input to the channel.
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each i, ρB3|XR
i A3

is a reduced unitary channel. Hence there exist families of unitaries

Vi = HA1 ⊗HXL
i
→ HB1 ⊗HY Li

,

Wi = HXR
i
⊗HA3 → HY Ri

⊗HB3

such that ρB1|A1XL
i

= TrY Li [ρVi
B1Y Li |A1XL

i
] and ρB3|XR

i A3
= TrY Ri [ρWi

Y Ri B3|XR
i A3

], where Y L
i

and Y R
i are some additional output systems of appropriate dimension.

Now consider the unitary transformation

Ũ :=
(⊕

i

Vi ⊗Wi

)(
1A1 ⊗ S ⊗ 1A3

)
: HA1 ⊗HA2 ⊗HA3 → HB1 ⊗HY ⊗HB3 ,

where HY :=
⊕

iHY Li
⊗ HY Ri

. By construction, ρŨB1Y B3|A1A2A3
is a purification of

ρB1B3|A1A2A3 = ρB1|A1A2ρB3|A2A3 , as is ρUB1B2B3|A1A2A3
. By uniqueness of purification

up to a unitary transformation on the purifying system, there therefore exists a

unitary transformation T : HY → HB2 such that

U = (1B1 ⊗ T ⊗ 1B3) Ũ .

This completes the proof. �

The decomposition from Eq. (6.1) can be represented graphically as in Fig. 6.6.

U

B1 B2 B3

A1 A2 A3

=

S

T

Vi Wi

i i

i i

B1 B2 B3

A1 A2 A3

Figure 6.6: Theorem 6.2 written graphically: the decomposition as in
Eq. (6.1), implied by A1 9 B3 ∧ A3 9 B1, can be represented by an
extended circuit diagram as on the right-hand side.

We refer to a diagram as on the right-hand side of Fig. 6.6 as an extended

circuit diagram. While a general introduction to such diagrams that extend the

expressiveness of circuit diagrams, is postponed to the next section, Fig. 6.7 will

support the following explanation of how Fig. 6.6 expresses the data from Eq. (6.1).

In a circuit diagram, individual wires represent Hilbert spaces and their paral-

lel composition the corresponding tensor product. Now in Fig. 6.6, wires with an

index i on them, such as those between the circles S and Vi and between S and
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Wi, respectively, represent the families of Hilbert spaces {HXL
i
}i and {HXR

i
}i, re-

spectively. These two wires taken together, as parallel wires, represent the space⊕
i∈I HXL

i
⊗ HXR

i
, which is distinct from the space

(⊕
i∈I HXL

i

)
⊗
(⊕

j∈I HXR
j

)
.

The latter contains all cross terms and is what two parallel wires in an ordinary cir-

cuit diagram would represent if the individual wires were to represent
⊕

i∈I HXL
i

and⊕
j∈I HXR

j
, respectively. Similarly, the indexed wires connected to T represent the

families {HY Li
}i and {HY Ri

}i, respectively, and both wires together, as parallel wires,

represent the space
⊕

i∈I HY Li
⊗ HY Ri

. Concerning the component maps in Fig. 6.6,

the circles S and T represent the corresponding unitary maps from Eq. (6.1) and the

individual circles labeled Vi and Wi represent the corresponding families of unitaries,

while the parallel composition of the circles Vi and Wi represents the unitary map⊕
i∈I Vi ⊗ Wi. Fig. 6.7 also shows three possible slices through the diagram and the

respective types of the overall Hilbert space associated with each slice. Reading the

diagram bottom up, these are the respective domains and codomains of the three

unitaries that are composed sequentially in Eq. (6.1), namely 1A1 ⊗ S ⊗ 1A3 then

(
⊕

i∈I Vi ⊗Wi) and finally, 1B1 ⊗ T ⊗ 1B3 .

{HY Ri }i∈I

{HY Li }i∈I

{HXL
i
}i∈I

{HXR
i
}i∈I S

T

Vi Wi

i i

i i

B1 B2 B3

A1 A2 A3

HB1 ⊗HB2 ⊗HB3

HB1 ⊗
(⊕

i∈I HY Li ⊗HY Ri
)
⊗HB3

HA1 ⊗
(⊕

i∈I HXL
i
⊗HXR

i

)
⊗HA3

HA1 ⊗HA2 ⊗HA3

1B1 ⊗ T ⊗ 1B3

⊕
i∈I Vi ⊗Wi

1A1 ⊗ S ⊗ 1A3

Figure 6.7: Illustration of the data represented by the extended circuit
diagram in Fig. 6.6.

In Sec. 6.2 an example of a unitary U was given, defined by the composition of

two CNOT gates as in Fig. 6.5, which satisfies A1 9 B3 and A3 9 B1, but cannot

be decomposed into a circuit as in Fig. 6.4. It is straightforward to see explicitly

what the decomposition of the form as in Fig. 6.6 in this case is. Let i ∈ {0, 1}
be a binary index, HXL

0
, HXR

0
, HXL

1
and HXR

1
one-dimensional Hilbert spaces and

|0〉L ∈ HXL
0

, |0〉R ∈ HXR
0

, |1〉L ∈ HXL
1

and |1〉R ∈ HXR
1

some normalised states. The

control qubit HA2 is isomorphic to HX := (HXL
0
⊗ HXR

0
) ⊕ (HXL

1
⊗ HXR

1
) via the

unitary S sending |0〉 to |0〉L |0〉R and |1〉 to |1〉L |1〉R. Let V0 be the identity on HA1

and V1 the NOT gate on HA1 (suppressing the trivial factors HXL
0

and HXL
1

in the

113



domain and codomain of V0 and V1) and similarly for W0 and W1 on HA3 . Finally,

letting T = S†, the composition of these unitary maps as in Fig. 6.6 indeed gives U

as defined in Fig. 6.5.

Just as the circuit decompositions from Sec. 6.2, Fig. 6.6 has the desired property

that if A1 9 B3 and A3 9 B1 are the only causal constraints, then it makes the

causal structure of U evident through the presence of paths between input and

output spaces whenever there is corresponding causal influence.

Note that a unitary map U : HA1 ⊗ HA2 ⊗ HA3 → HB1 ⊗ HB2 ⊗ HB3 that

satisfies A1 9 B3 and A3 9 B1 is particularly pertinent to the quantum causal

model approach, seeing as it is exactly the kind of unitary transformation that is

asserted to exist if A2 is the complete common cause of B1 and B3 [4]4 (see Def. 3.10).

Thm. 6.2 thus allows one to understand how in general the causal influence from

the complete common cause A2 goes to B1 and B3 — it does so ‘within subspaces’.

6.4 Extending circuit diagrams

The above proof of Thm. 6.2 and the graphical representation of that result in

Fig. 6.6 are exemplary of both main aspects of this chapter: the development of

proof techniques for deriving decompositions of unitary transformations that are

implied by their particular causal structures, and the development of a graphical

representation of those compositional structures, namely extended circuit diagrams.

In this thesis the focus lies on the former, while the rigorous presentation of a

graphical language with syntax and semantics that formalises the extended circuit

diagrams is left for future work. The present section will therefore content itself

with the informal explanation of the example of a generic extended circuit diagram

in Fig 6.8a, which contains all basic features needed to state the results in Sec. 6.6.

The following will step by step explain what data is represented by the different

kinds of wires and circles and, eventually, by the entire diagram.

What do the wires represent?

A plain wire represents a Hilbert space, just as in circuit diagrams. A wire with

an index, or in general a tuple of indices, next to it is associated with a family of

Hilbert spaces, parametrised by that tuple of indices. It is the convention that the

set, in which an index i takes values, has the corresponding capital letter, i.e. i ∈ I.

4In Ref. [4] a circle-shaped structure, reminiscent of the role S plays in Fig. 6.6, was used
for the first time to represent a space of the structure

⊕
i∈I HXL

i
⊗HXR

i
, in order to express the

specific block-diagonal structure of the marginal channel ρB1B3|A1A2A3
.
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(a)

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5

F G

Pi

Ti

Wiji
QijiUik Vik

S
i

ikik

ik ik

k i k i

k k i i i

i

i

iji

iji

iji

iji

Y Lk
Y Rk Z

(1)
i Z

(2)
i

Z
(3)
i

NL
iji

NR
iji

ML
iji

MR
iji

X
(1)
ik X

(2)
ik

X
(3)
i

(3)

(2)

(1)

(b)

Figure 6.8: Example of an extended circuit diagram in (a) and in (b) the same
diagram with (in blue) three example slices and explicit labels for the intermediate
wires.

The label for the family of Hilbert spaces is typically suppressed in the diagram,

only leaving the index behind to indicate the fact that it is a family. Fig. 6.8b has

explicit labels of the Hilbert spaces in blue for the purpose of this exposition. For

instance, the wire going from the circle S to the circle Uik carries the tuple (i, k)

and represents the family of Hilbert spaces {H
X

(1)
ik
}i∈I,k∈K . Note that in a tuple of

indices like (i, ji), parametrising a family of Hilbert spaces {HML
iji
}i∈I,ji∈Ji , we allow

an index ji ∈ Ji to take values in a set which itself is parametrised by i ∈ I and

refer to this as ‘nesting of indices’.

This thesis focuses on extended circuit diagrams, where open in- or outgoing

wires do not carry indices. Reading extended circuit diagrams bottom up, indices

‘go in loops’, introduced by a ‘source’ circle, such as S for the indices i and k, and

disappear in a ‘sink’ circle, such as F for the index k.

What type is associated with a slice through the diagram?

The overall Hilbert space associated with a slice through the diagram, can be

described as follows. Consider the Cartesian product I × J ×M × ... of all distinct

index sets appearing across the slice, i.e. M appears only once even if the index m
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appears on several crossed wires. For each fixed tuple of indices (i, j,m, ...) consider

for each crossed wire the corresponding element of its family of Hilbert spaces and

form their tensor product. Finally, the overall Hilbert space associated with the

slice is obtained from forming the direct sum over these tensor products, summing

over all appearing indices5.

The example slices in Fig. 6.8b are associated with the following Hilbert spaces:

(1) : HA1 ⊗HA2 ⊗
[ ⊕
i∈I,k∈K

H
X

(1)
ik
⊗H

X
(2)
ik
⊗H

X
(3)
i

]
⊗HA4 ⊗HA5 ⊗HA6 ,

(2) : HA1 ⊗
[ ⊕
i∈I,k∈K

H
X

(1)
ik
⊗HA2 ⊗HX

(2)
ik
⊗HA4 ⊗

(⊕
ji∈Ji

HML
iji
⊗HMR

iji

)]
⊗HA6 ,

(3) : HB1 ⊗
(⊕
k∈K

HY Lk
⊗HY Rk

)
⊗
(⊕

i∈I

H
Z

(1)
i
⊗H

Z
(2)
i
⊗H

Z
(3)
i

)
⊗HB4 ⊗HB5 .

From now on, where there is no ambiguity, we omit the index set I in ‘
⊕

i’.

What do the circles represent?

A circle with label S represents a unitary map S with its domain (codomain)

given by the Hilbert space associated with the slice through the ingoing (outgoing)

wires of S in the sense as described above, i.e. the indices appearing on those wires

are summed over in the ‘orchestrated’ way that respects which wires share the same

indices. A circle with an indexed label Ti represents an accordingly parametrised

family of unitary maps {Ti}i∈I , where each Ti is a unitary map with the domain

(codomain) Hilbert space similarly determined by the ingoing (outgoing) wires with

all indices summed over apart from i, i.e. it is the ith subspace of the Hilbert space

associated with the slice through its ingoing (outgoing) wires.

The component unitaries appearing in Fig 6.8a are of the following form:

F :
⊕
k

HY Lk
⊗HY Rk

→ HB2 , Uik : HA1 ⊗HX
(1)
ik
→ HB1 ⊗HY Lk

⊗H
Z

(1)
i
,

G :
⊕
i

H
Z

(1)
i
⊗H

Z
(2)
i
⊗H

Z
(3)
i
→ HB3 , Vik : HA2 ⊗HX

(2)
ik
→ HY Rk

⊗H
Z

(2)
i
,

Pi :
⊕
ji

HNL
iji
⊗HNR

iji
→ H

Z
(3)
i
, Wiji : HA4 ⊗HML

iji
→ HB4 ⊗HNL

iji
,

Ti : H
X

(3)
i
⊗HA5 →

⊕
ji

HML
iji
⊗HMR

iji
, Qiji : HMR

iji
⊗HA6 → HNR

iji
⊗HB5 ,

S : HA3 →
⊕
i,k

H
X

(1)
ik
⊗H

X
(2)
ik
⊗H

X
(3)
i
.

5The type is taken to be fixed up to some distributivity isomorphism (with respect to ⊗ and
⊕).
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Which overall unitary is represented by the diagram?

The unitary represented by an extended circuit diagram is obtained from: (1)

composing the component unitaries sequentially and in tensor product according to

the connectivity of the diagram as if it was an ordinary circuit diagram, that is, as if

ignoring the direct sum structure indicated by the indices, and then (2) adding direct

sum symbols with a summation over all indices that appear in the subscripts of the

circles’ labels, such that the direct sum applies to all terms carrying the respective

index.

For instance, the unitary represented by the extended circuit diagram in Fig. 6.8a,

expressed in terms of the component unitaries, is the following:

U =
(
1B1 ⊗ F ⊗G⊗ 1B4B5

)
[⊕

i,k

Uik ⊗ Vik ⊗
[ (
1B4 ⊗ Pi ⊗ 1B5

) (⊕
ji

Wiji ⊗Qiji

) (
1A4 ⊗ Ti ⊗ 1A6

) ] ]
(
1A1A2 ⊗ S ⊗ 1A4A5A6

)
,

where the ‘distributivity isomorphisms’ for well-typed composition are suppressed,

just as we did in Eq. (6.4) and as will be done henceforth.

A diagram without any indices on its wires is just an ordinary circuit diagram,

but for the sake of consistent style they will at times be drawn with ‘circles’ rather

than ‘boxes’.

6.5 Causal faithfulness and the hypothesis

The main conclusion from Sec. 6.2 was that circuit decompositions of unitary trans-

formations generally do not allow to understand their causal structure, since in

general no single circuit decomposition can express all causal constraints. The main

insight from Thm. 6.2 then was that, in addition to tensor product and sequential

composition, also direct sum structures are necessary for such understanding. This

led to the introduction of extended circuit diagrams to represent compositions of uni-

tary maps in the enlarged set of operations. The obvious question now is whether

this is sufficient, that is, whether any unitary transformation has a decomposition

that allows to understand its causal structure and is expressible as an extended

circuit diagram.

In order to formulate a precise hypothesis that this is the case, call an extended

circuit diagram that represents a unitary transformation U , causally faithful if it
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holds that there is a path from input system A to output system B in the diagram

if and only if there is causal influence from A to B through U6.

Hypothesis 1 Every finite-dimensional unitary transformation with specified ten-

sor product structures of n input and k output subsystems, U : HA1 ⊗ ... ⊗HAn →
HB1⊗ ...⊗HBk , can be represented with a causally faithful extended circuit diagram.

If the unitary map U is represented by a (faithful) extended circuit diagram, then

also the represented decomposition of U , seen algebraically, will be called a (faithful)

extended circuit decomposition. Two final pieces of notation will be useful to help

classify unitary maps and their causal structures. First, a unitary transformation

with n input systems and k output systems will be referred to as a unitary of type

(n, k). Second, given a unitary map U : HA1⊗ ...⊗HAn → HB1⊗ ...⊗HBk , its causal

structure is conveniently represented graphically as a hypergraph with vertices given

by the set of input systems A1, . . . , An and k hyperedges defined by the parental sets

{Pa(Bi)}ki=1. See Fig. 6.9 for an example. For better visibility distinct hyperedges

will be drawn with distinct colours. Where it matters which hyperedge represents

which output system’s causal parents, the corresponding association of the latter

with colours will be given, otherwise, like in Fig. 6.9, this is left implicit seeing as the

advantage of this notation is to make the overlap structure between causal parents

evident and differences in possible causal structure arising from a permutation of

the output systems often is not of interest.

A1

A2

A3
A4

A5

Figure 6.9: Example of the causal structure of a unitary of type (5, 6),
represented as a hypergraph with 5 vertices A1, ..., A5, and 6 hyperedges
given by the 6 parental sets {A3}, {A1, A2}, {A1, A2, A3}, {A4, A5},
{A2, A4, A5}, and {A1, A2, A3, A4, A5}.

6.6 Decompositions of unitary transformations

While Hypothesis 1 remains unproven, we do not know of any counter example and

the following will present results on causally faithful extended circuit decompositions

6This is distinct from the notion of faithfulness of a quantum causal model, although related
in spirit in so far as they both obtain whenever either all paths in an extended circuit diagram or
all arrows in the DAG of a quantum causal model have the expected meaning.
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for unitary maps of type (n, k) with increasing values of n and k, starting with (2, 2).

6.6.1 Unitaries of type (2, 2)

Any unitary transformation U of type (2, 2) has, up to relabeling, one of the following

causal structures in Fig. 6.10a, 6.11a or 6.12a. In the first case, the representation of

U in Fig. 6.10b is already a causally faithful circuit diagram. It is generally the case

that for any type (n, k), if there are no causal constraints, i.e. all k output systems

are influenced by all n input systems, then there is no decomposition that would be

informative in causal terms. This case will henceforth be ignored for larger values of

n and k. That the causal structures in Figs. 6.11a and 6.12a imply causally faithful

circuit decompositions as in Fig. 6.11b and Fig. 6.12b, respectively, was already

observed in Sec. 6.2.

A1 A2

(a)

U

A1 A2

B1 B2

(b)

Figure 6.10

A1 A2

(a)

V

W

A1 A2

B1 B2

(b)

Figure 6.11

A1 A2

(a)

W̃Ṽ

A1 A2

B1 B2

(b)

Figure 6.12

6.6.2 Unitaries of type (n, 2) and (2, k) for n, k ≥ 3

Before analysing (n, 2) cases, it is useful to first establish a general observation.

Theorem 6.3 Let U : HA1 ⊗ ... ⊗ HAn → HB1 ⊗ ... ⊗ HBk be a unitary. For

any bi-partition of the k output systems into S and S = {B1, ..., Bk} \ S, and any

partitioning of the inputs {A1, ..., An} into disjoint subsets PS ∪ C ∪ PS, such that

PS 9 S and PS 9 S, there exist Hilbert spaces HXL and HXR and unitaries

T : HC → HXL ⊗ HXR, V : HPS ⊗ HXL → HS and W : HXR ⊗ HPS
→ HS

such that U = (V ⊗W ) (1PS ⊗ T ⊗ 1PS).

Proof: Seeing as Pa(S) ⊆ PS ∪ C and Pa(S) ⊆ C ∪ PS, Theorem 4.1 implies

that ρU
SS|PSCPS

= ρS|PSC ρS|CPS . Lemma 6.1 then implies that there exist a unitary

T : HC →
⊕

iHXL
i
⊗ HXR

i
, and families of channels {ρS|PSXL

i
}i and {ρS|XR

i PS
}i,

such that ρU
SS|PSCPS

= T T
(⊕

i ρS|PSXL
i
⊗ ρS|XR

i PS

) (
T T
)†

. The fact that ρU
SS|PSCPS

is a rank 1 operator implies that there cannot be more than one term in the direct

sum. Hence, we can write HX = HXL ⊗HXR , such that ρU
SS|PSCPS

= T T
(
ρS|PSXL ⊗
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ρS|XRPS

) (
T T
)†

. The operator ρS|PSXL⊗ρS|XRPS
represents a unitary channel, hence

each of ρS|PSXL and ρS|XRPS
represent unitary channels. Denoting the associated

unitaries V and W , respectively, concludes the proof. �

The statement of Thm. 6.3 is expressed graphically in Fig. 6.13.

S︷ ︸︸ ︷ S︷ ︸︸ ︷
U

︸︷︷︸
PS

︸︷︷︸
C

︸︷︷︸
PS

· · · · · ·

· · · · · · · · ·

=

S︷ ︸︸ ︷ S︷ ︸︸ ︷
V W

T︸︷︷︸
PS ︸︷︷︸

C

︸︷︷︸
PS

· · · · · ·

· · ·

· · ·

· · ·

Figure 6.13: Theorem 6.3 written graphically: if U satisfies PS 9 S and
PS 9 S, then it has a circuit decomposition as on the right-hand side.

Remark 6.1 It is straightforward to verify that the causal structure of the compo-

nent unitaries V and W are as expected: if Bi ∈ S and PaU(Bi) ∩ C = ∅ then

PaV (Bi) = PaU(Bi), and otherwise PaV (Bi) = (PaU(Bi)\C)∪{XL}. Analogously

for W if Bi ∈ S.

Note that for a unitary U : HA1 ⊗HA2 ⊗HA3 → HB1 ⊗HB2 ⊗HB3 that satisfies

A1 9 B3, Thm. 6.3 recovers Thm. 6.1 from Ref. [16] for the choices S = {B1, B2},
PS = {A1}, C = {A2, A3}, S = {B3} and PS = ∅.

A decomposition as it is asserted to exist by Thm. 6.3 makes the constraints

PS 9 S and PS 9 S evident, but is in general not a causally faithful decomposition.

However, in case of a unitary transformation of type (n, 2) for n ≥ 3, it automatically

yields a causally faithful one. Given a unitary U : HA1 ⊗ ... ⊗HAn → HB1 ⊗HB2 ,

let S := {B1}, S := {B2}, P12 := Pa(B1) ∩ Pa(B2), P1 := Pa(B1) \ P12 and

P2 := Pa(B2) \ P12. Noting that some of the sets P1, P12 or P2 may be empty, the

causal structure of U can be seen to always be of the form as in Fig. 6.14a. Thm. 6.3

then yields a causally faithful circuit decomposition of U as shown in Fig. 6.14b.

The special case of P12 = ∅ generalises the situation in Fig. 6.12 and the case P2 = ∅
the one in Fig. 6.11.
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P1 P2P12

(a)

B1 B2

V W

T

︸︷︷︸
P1

︸︷︷︸
P12

︸︷︷︸
P2

· · · · · · · · ·

(b)

Figure 6.14: The causal structure of a type (n, 2) unitary U can always be
cast as in (a), where P12 := Pa(B1) ∩ Pa(B2), P1 := Pa(B1) \ P12 and P2 :=
Pa(B2) \ P12. Then U has a causally faithful circuit decomposition as in (b).

The following theorem will be instructive for the analysis of the (2, k) cases and,

in fact, for arbitrary (n, k) cases, as well as it is an interesting fact in its own right:

it establishes a ‘reversibility’ of the causal structure of unitary transformations 7

(also see discussion in Sec. 8.3).

Theorem 6.4 If U : HA1⊗ ...⊗HAn → HB1⊗ ...⊗HBk is a unitary transformation

with causal structure {PaU(Bj)}kj=1, then the causal structure of U † is obtained by

inverting all causal arrows. That is,

PaU
†
(Ai) = ChU(Ai) ∀ i = 1, ..., n , (6.5)

where PaU
†
(Ai) denotes the parents of Ai in U †, and ChU(Ai) denotes the children

of Ai in U .

Proof: See App. B.2. �

7There is a similar result in Ref. [18]. Whenever U is a unitary operator, i.e. if the factorizations
into subsystems for the input and the output Hilbert space are identical, then Thm. 6.4 can be
obtained from the result in Ref. [18] (Proposition 2 therein), by observing that the causal structure
of such U induces a ‘quantum labeled graph’, relative to which U is causal in the sense as defined
in Ref. [18].
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Pa(B1)

Pa(B2)

Pa(B3)

Pa(B4)

A1 A2

A3

↔
B1 B2

B3 B4

Pa(A1)

Pa(A2)

Pa(A3)

Figure 6.15: Example to illustrate Theorem 6.4 using the hypergraph notation.
The two causal structures of a unitary of type (3, 4) on the left-hand side and
of a unitary of type (4, 3) on the right-hand side are ‘dual’ to each other.

Given Thm. 6.4, the following is an immediate consequence.

Proposition 6.1 Given an extended circuit diagram C, let C† be the extended cir-

cuit diagram obtained by reading C from top to bottom, and replacing all unitary

transformations featuring in C with their inverses. If C represents a type (n, k) uni-

tary U , then C† represents the type (k, n) unitary U †. If C is causally faithful for U ,

then C† is causally faithful for U †.

The number of distinct causal structures for which independent causally faithful

extended circuit decompositions have to be derived is thereby reduced considerably

— the reason it is not quite halved is that some causal structures of type (n, n) are

symmetric under taking the inverse of the unitary map, i.e. for some unitary maps

of type (n, n) the parental sets and the children sets have the same overlap structure

amongst themselves.

In particular, given a type (2, k) unitary U : HA1 ⊗ HA2 → HB1 ⊗ ... ⊗ HBk ,

let C12 := Ch(A1) ∩ Ch(A2), C1 := Ch(A1) \ C12 and C2 := Ch(A2) \ C12. Due

to Prop. 6.1 and the causally faithful circuit decomposition from Fig. 6.14b for any

type (k, 2) unitary, it follows that U has a causally faithful circuit decomposition as

in Fig. 6.16.

A1 A2

V W

T

C1︷︸︸︷ C12︷︸︸︷ C2︷︸︸︷
· · · · · · · · ·

Figure 6.16: Every unitary of type (2, k) has a causally faithful circuit diagram
of the above form, where C12 := Ch(A1) ∩ Ch(A2), C1 := Ch(A1) \ C12 and
C2 := Ch(A2) \ C12.
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6.6.3 Unitaries of type (3, 3)

This subsection will show that all unitary transformations of type (3, 3) have causally

faithful (extended) circuit decompositions. One prominent (3, 3) case was already

covered by Thm. 6.2 and discussed in detail in Sec. 6.3: given a unitary U : HA1 ⊗
HA2 ⊗ HA3 → HB1 ⊗ HB2 ⊗ HB3 , if the causal structure of U is as in Fig. 6.17a,

then U has a causally faithful extended circuit decomposition as in Fig. 6.17b.

A1 A2

A3

(a)

S

T

Vi Wi

i i

i i

B1 B2 B3

A1 A2 A3

(b)

Figure 6.17

As it turns out, this is the only case that requires an extended circuit dia-

gram, and all other causal structures of type (3, 3) unitaries imply the existence of a

causally faithful circuit decomposition. Among those there is only one further case,

where the proof is not entirely obvious.

Theorem 6.5 Given a unitary transformation U : HA1 ⊗ HA2 ⊗ HA3 → HB1 ⊗
HB2 ⊗ HB3, if the causal structure of U is as in Fig. 6.18a, then U has a causally

faithful circuit diagram as in Fig. 6.18b.

A1 A2

A3

(a)

B1 B2 B3

A1 A2 A3

S T V

W P Q

(b)

Figure 6.18

Proof: See App. B.3. �

The following set of rules will be useful for the remaining (3, 3) cases, as well

as for many other cases later. We say a (n, k) case reduces to a (n′, k′) case with
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n′ ≤ n, k′ ≤ k if it holds that in case a causally faithful extended circuit decompo-

sition for the (n′, k′) case is known, then also one for the (n, k) case is known.

Rules of reduction: Let U : HA1 ⊗ ... ⊗ HAn → HB1 ⊗ ... ⊗ HBk be a unitary

transformation of type (n, k) with causal structure {Pa(Bj)}kj=1.

(R1) If there is a single-parent output, the problem reduces to a (n, k − 1) case:

Suppose |Pa(Bj)| = 1 for some j ∈ {1, ..., k}. Assume Pa(Bj) = {Ai}
and write Ai := {A1, ..., An} \ {Ai} and Bj := {B1, ..., Bk} \ {Bj}. Then

U = (1Bj ⊗ W )(T ⊗ 1Ai) for some unitaries T : HAi → HBj ⊗ HX and

W : HX ⊗HAi
→ HBj

, where W is a unitary of type (n, k− 1) with causal

structure identical to that of U , ignoring Pa(Bj) and replacing Ai with X

in all other parental sets. See Fig. 6.19.

(R2) If there is a single-child input, the problem reduces to a (n − 1, k) case:

Suppose |Ch(Ai)| = 1 for some i ∈ {1, ..., n}. Assume Ch(Ai) = {Bj}
and write Ai := {A1, ..., An} \ {Ai} and Bj := {B1, ..., Bk} \ {Bj}. Then

U = (T ⊗ 1Bj)(1Ai ⊗W ), for some unitaries W : HAi
→ HX ⊗ HBj

and

T : HAi⊗HX → HBj , where W is a unitary of type (n−1, k) with the causal

structure PaW (Bl) = PaU(Bl) for all l 6= j and PaW (X) = PaU(Bj)\{Ai}.
See Fig. 6.20.

(R3) If there are two identical parental sets, the problem reduces to a (n, k − 1)

case: Suppose Pa(Bj) = Pa(Bj′) for some j 6= j′. Considering the two

output systems as a composite system, HB̃ := HBj⊗HBj′
, defines a unitary

of type (n, k − 1). Any causally faithful extended circuit diagram for the

latter obviously induces one for the original case.

(R4) If there are two identical children sets, the problem reduces to a (n − 1, k)

case: Analogous to (R3).

Bj
Bj︷ ︸︸ ︷

U

Ai
︸ ︷︷ ︸

Ai

· · ·

· · ·
=

Bj
Bj︷ ︸︸ ︷
W

T

Ai
︸︷︷︸
Ai

· · ·

· · ·

Figure 6.19: Illustration of (R1).

Bj
Bj︷ ︸︸ ︷

U

Ai
︸ ︷︷ ︸

Ai

· · ·

· · ·
=

Bj
Bj︷ ︸︸ ︷

W

T

Ai
︸ ︷︷ ︸

Ai

· · ·

· · ·

Figure 6.20: Illustration of (R2).
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For type (3, 3) unitaries there are 17 causal structures that are inequivalent up

to relabeling of the input or output systems. These are all listed in the below table,

which also presents a causally faithful (extended) circuit decomposition for each

case: the 5th and 11th case were covered earlier in Thm. 6.2 and Thm. 6.5, respec-

tively, while all other cases are straightforward, either through a direct application

of Thm. 6.3 or else through reduction to a known case from Secs. 6.6.1-6.6.2 via the

above rules (R1)-(R4).

# (p1, p2, p3)
Causal

structure

(Extended)

circuit

diagram

# (p1, p2, p3)
Causal

structure

(Extended)

circuit

diagram

1 (3, 3, 3)
A1 A2

A3

B1 B2 B3

A1 A2 A3

U 10 (2, 2, 2)
A1 A2

A3

B1 B2 B3

A1 A2 A3

S

TV

2 (3, 3, 2)
A1 A2

A3

B1 B2 B3

A1 A2 A3

V

W

11 (2, 2, 2)
A1 A2

A3

B1 B2 B3

A1 A2 A3

S T V

W P Q

3 (3, 3, 1)
A1 A2

A3

B1 B2 B3

A1 A2 A3

V

W

12 (2, 2, 1)
A1 A2

A3

B1 B2 B3

A1 A2 A3

V W

4 (3, 2, 2)
A1 A2

A3

B1 B2 B3

A1 A2 A3

V

W
13 (2, 2, 1)

A1 A2

A3

B1 B2 B3

A1 A2 A3

S

TV

5 (3, 2, 2)
A1 A2

A3

S

T

Vi Wi
i i

i i

B1 B2 B3

A1 A2 A3

14 (2, 2, 1)
A1 A2

A3

B1 B2 B3

A1 A2 A3

S T

V W

6 (3, 2, 1)
A1 A2

A3

B1 B2 B3

A1 A2 A3

S

T

V

15 (2, 1, 1)
A1 A2

A3

B1 B2 B3

A1 A2 A3

S

T

V
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7 (3, 2, 1)
A1 A2

A3

B1 B2 B3

A1 A2 A3

S T

V

16 (2, 1, 1)
A1 A2

A3

B1 B2 B3

A1 A2 A3

S T

8 (3, 1, 1)
A1 A2

A3

B1 B2 B3

A1 A2 A3

S

T

17 (1, 1, 1)
A1 A2

A3

B1 B2 B3

A1 A2 A3

S T V

9 (3, 1, 1)
A1 A2

A3

B1 B2 B3

A1 A2 A3

S T

V

Table 6.1: List of all inequivalent causal structures, up to relabeling, of type (3, 3)
unitaries, together with their respective causally faithful (extended) circuit dia-
grams. In order to ease classification, the first column contains the tuple (p1, p2, p3),
where p1 ≥ p2 ≥ p3 denote the cardinalities of the three parental sets in descending
order. Starting with (3, 3, 3) in the first row, the table progresses by considering
smaller and smaller values for p1, p2 and p3, making it easy to see that this is indeed
the complete list of inequivalent causal structures.

6.6.4 Unitaries of type (n, 3) and (3, k) for n, k ≥ 4

From now on we will not present all inequivalent causal structures up to relabeling

anymore, since that becomes unfeasible and would produce little new insight. In-

stead we focus on those cases, where the derivation of a causally faithful extended

circuit decomposition is not obvious, that is, only those cases will be presented,

where an (iterative) application of the rules (R1)-(R4) does not straightforwardly

reduce it to a simpler one.

Starting with unitaries of type (3, k) for k ≥ 4, first observe that there are only 4

distinct subsets of {A1, A2, A3} that are neither empty nor singletons. Hence, for all

k ≥ 5 the problem inevitably reduces to a simpler case due to some outputs having

to have either identical parents or singleton parental sets (see (R1) and (R3)). It is

only for k = 4 that a causal structure may exist that does not reduce to a simpler

case. In fact there is only one such case, namely, the one where each of the four

distinct subsets is one of the 4 parental sets. The following theorem addresses that

case.
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Theorem 6.6 Given a unitary transformation U : HA1 ⊗ HA2 ⊗ HA3 → HB1 ⊗
HB2 ⊗ HB3 ⊗ HB4 , if the causal structure of U is as in Fig. 6.21a, then U has a

causally faithful extended circuit diagram as in Fig. 6.21b.

A1 A2

A3

(a)

S T V

Pij Qik Rjk

ij

ik jk

i i j j k k

A1 A2 A3

W

B1 B2 B3 B4

(b)

Figure 6.21

Proof: See App. B.4. �

With all unitary transformations of type (3, k) for k ≥ 4 having known causally

faithful extended circuit decompositions, it then follows due to Prop. 6.1 that also

all unitaries of type (n, 3) for n ≥ 4 have known causally faithful extended circuit

decompositions. We will therefore not explicitly treat them, with the exception of

the following example of a (4, 3) case. Given a unitary transformation U : HA1 ⊗
HA2⊗HA3⊗HA4 → HB1⊗HB2⊗HB3 , if the causal structure of U is as in Fig. 6.22a,

then U has a causally faithful extended circuit decomposition as in Fig. 6.22b.

A1

A3

A2

A4

(a)

S̃ T̃ Ṽ

P̃ij Q̃ik R̃jk

ij

ik jk

i i j j k k

A1 A2 A3 A4

W̃

B1 B2 B3

(b)

Figure 6.22

Note that this is a prime example of a case where Prop. 6.1, i.e. in essence

Thm. 6.4, is not just simplifying the classification of cases but actually doing work:
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proving the above case directly does not seem straightforward, while the result is

immediate by observing that the causal structure in Fig. 6.22a is dual to that in

Fig. 6.21a from Thm. 6.6.

6.6.5 Unitaries of type (4, 4)

For unitaries of type (4, 4) there exist in total 15 inequivalent causal structures

that do not reduce to one of the results of the previous subsections via (R1)-(R4).

For the first nine of them, depicted in Figs. 6.23-6.31, causally faithful extended

circuit decompositions will be presented in the following. The remaining six cases

in Figs. 6.32-6.37 will be left open.

A1

A3

A2

A4

Figure 6.23

A1

A3

A2

A4

Figure 6.24

A1

A3

A2

A4

Figure 6.25

A1

A3

A2

A4

Figure 6.26

A1

A3

A2

A4

Figure 6.27

A1

A3

A2

A4

Figure 6.28

A1

A3

A2

A4

Figure 6.29

A1

A3

A2

A4

Figure 6.30

A1

A3

A2

A4

Figure 6.31

A1

A3

A2

A4

Figure 6.32
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Figure 6.37

The below lemma concerns the ‘nesting of indices’, which was mentioned in

Sec. 6.4 and which makes appearance in the subsequent Thm. 6.7 that addresses the

first (4, 4) case from Fig. 6.23.

Lemma 6.3 Let ρB1B2B3|A1A2A3A4A5 = ρB1|A1A3 ρB2|A1A2A4 ρB3|A1A2A5 be the CJ rep-

resentation of a channel, with the factors on the right hand side commuting pairwise.
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Then there exist a unitary S, and a family of unitaries {Ti}i∈I ,

S : HA1 →
⊕
i∈I

HXL
i
⊗HXR

i
and Ti : HXR

i
⊗HA2 →

⊕
ji∈Ji

HY Liji
⊗HY Riji

,

with {Ji}i∈I a family of sets parametrized by I, such that

ρB1B2B3|A1A2A3A4A5 =

ST
[⊕
i∈I

ρB1|XL
i A3
⊗ T Ti

(⊕
ji∈Ji

ρB2|Y LijiA4
⊗ ρB3|Y RijiA5

) (
T Ti
)† ] (

ST
)†

, (6.6)

for families of channels {ρB1|XL
i A3
}i∈I , {ρB2|Y LijiA4

}i∈I,ji∈Ji and {ρB3|Y RijiA5
}i∈I,ji∈Ji.

Proof: See App. B.5. �

Theorem 6.7 Given a unitary transformation U : HA1 ⊗ HA2 ⊗ HA3 ⊗ HA4 →
HB1 ⊗ HB2 ⊗ HB3 ⊗ HB4, if the causal structure of U is as in Fig. 6.38a, then U

has a causally faithful extended circuit diagram as in Fig. 6.38b.

A1

A3

A2

A4

(a)

Piji Qiji

iji iji

iji iji

i

i

i

i

Ti

T ′i

Vi

S

S′

A1 A2 A3 A4

B1 B2 B3 B4

(b)

Figure 6.38

Proof: See App. B.6. �

The following three theorems present causally faithful extended circuit decom-

positions for the causal structures in Figs. 6.24-6.26.

Theorem 6.8 Given a unitary U : HA1⊗HA2⊗HA3⊗HA4 → HB1⊗HB2⊗HB3⊗
HB4, if the causal structure of U is as in Fig. 6.39a, then U has a causally faithful

extended circuit diagram as in Fig. 6.39b.
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Figure 6.39

Proof: See App. B.7. �

Theorem 6.9 Given a unitary transformation U : HA1 ⊗ HA2 ⊗ HA3 ⊗ HA4 →
HB1 ⊗ HB2 ⊗ HB3 ⊗ HB4, if the causal structure of U is as in Fig. 6.40a, then U

has a causally faithful extended circuit diagram as in Fig. 6.40b.

A1

A3

A2

A4

(a)

S T

Pi Qij Rj

i ij j

i i j j

A1 A2 A3 A4

V

B1 B2 B3 B4

(b)

Figure 6.40

Proof: See App. B.8. �

Theorem 6.10 Given a unitary transformation U : HA1 ⊗ HA2 ⊗ HA3 ⊗ HA4 →
HB1 ⊗ HB2 ⊗ HB3 ⊗ HB4, if the causal structure of U is as in Fig. 6.41a, then U

has a causally faithful extended circuit diagram as in Fig. 6.41b.
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Figure 6.41

Proof: See App. B.9. �

The next two causal structures from the above list, Figs. 6.27 and 6.28, are

reproduced below as Figs. 6.42 and 6.43. Observe that they are ‘dual’ to those in

Figs. 6.24 and 6.25, addressed by Thms. 6.8 and 6.9, respectively. With Prop. 6.1

it follows that they have known causally faithful extended circuit decompositions,

arising from those in Thms. 6.8 and 6.9, which will therefore not be stated explicitly.

A1

A3

A2

A4

Figure 6.42

A1

A3

A2

A4

Figure 6.43

Finally, the three causal structures from Figs. 6.29-6.31 are reproduced in the

below three figures, together with their respective implied causally faithful circuit

decompositions. In all three cases, the proofs are analogous to that of Thm. 6.5 and

hence omitted.
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Figure 6.44: The causal structure in (a)
implies a causally faithful circuit dia-
gram as in (b).
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Figure 6.45: The causal structure in (a)
implies a causally faithful circuit dia-
gram as in (b).
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Figure 6.46: The causal structure in (a)
implies a causally faithful circuit dia-
gram as in (b).

6.7 The permissible causal structures

In light of the fact that in the previous section many causally faithful extended

circuit decompositions were derived from just an assumed causal structure, one may

wonder which causal structures, seen as purely combinatorial objects, are permissible

at all. For any natural numbers k and n, does any choice of k non-empty subsets of

a set of cardinality n, represent the causal structure of some unitary?

It is straightforward to see that the answer is ‘yes’ if the question is put so broadly,

without any dimensional restrictions. For any choice of k subsets Pa(Bj) of a set

{A1, ..., An}, the following is an example of a unitary U : HA1 ⊗ ...⊗HAn → HB1 ⊗
...⊗HBk that instantiates that causal structure. Associate a two-dimensional Hilbert

space HXj
i

with each ‘causal arrow’ Ai ∈ Pa(Bj). For each i = 1, ..., n consider some

unitary V (i) : HAi →
⊗

j:Bj∈Ch(Ai)HXj
i
, where Ch(Ai) is the set of children of Ai

and similarly, for each j = 1, ..., k a unitary W (j) :
⊗

i:Ai∈Pa(Bj)HXj
i
→ HBj .
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The composition (W (1) ⊗ ... ⊗W (k))(V (1) ⊗ ... ⊗ V (n)) (with suppressed swaps for

well-typed composition) defines a unitary with the desired causal structure.

However, if the dimensions dA1 , ..., dAn and dB1 , ..., dBk are fixed, provided
∏

i dAi =∏
j dBj holds to allow for the existence of an invertible linear map, then in general

not any causal structure is permissible.

A1 A2

B1 B2

Pa(B1) = {A1, A2}
Pa(B2) = {A2}

(a)

W

V

B1 B2

A1 A2

(b)

Figure 6.47: Example of a causal structure in (a) with A1 9 B2 as the only
constraint and in (b) the implied decomposition (same as Fig. 6.3a).

For instance, consider a unitary with two input and two output systems U :

HA1 ⊗ HA2 → HB1 ⊗ HB2 and suppose its causal structure is as in Fig. 6.47a, i.e.

the only causal constraint is A1 9 B2. Then U has a circuit decomposition as in

Fig. 6.47b (see, e.g., Sec. 6.2), which allows to read off dimensional restrictions on

any unitary U with that causal structure: only dimensions dA1 , dA2 , dB1 and dB2

are permissible for which there exists a natural number d ≥ 2 such that dA2 = dB2d

and dB1 = dA1d hold (noting that with d being the dimension of the intermediate

system, d = 1 would not allow causal influence from A2 to B1). Thus, all unitaries

with the considered causal structure can be classified by triples of natural numbers

(dA1 , dB2 , d) with d ≥ 2.

It is a generic phenomenon that a causal structure as a combinatorial object

imposes dimensional restrictions on the possible Hilbert spaces in the domain and

co-domain of unitaries, which instantiate that particular causal structure. While it is

in general a non-trivial question what these constraints are, for all those cases where

a causally faithful extended circuit decomposition implied by the causal structure

is known, then one can read off the dimensional restrictions imposed by that causal

structure, just as done in the above example.

Note that one can similarly analyse the possible ‘classical causal structures’,

taking causal relations between variables to be functional dependences in a func-

tional model (see Sec. 3.1.2). The corresponding analogous question then concerns

reversible functions f : X1× ...×Xn → Y1× ...×Yk from n variables to k variables,

each taking values in sets of finite cardinality dXi and dYj , respectively, where the
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causal structure of f are the k subsets Pa(Yi) ⊆ {X1, ..., Xn} of all those input vari-

ables on which Yi functionally depends. For arbitrary natural numbers n, k, do all

choices of k subsets of {X1, ..., Xn} appear as the causal structure of some reversible

function?

By completely analogous arguments as above, just replacing tensor products with

Cartesian products and unitaries with reversible functions of one’s choice, the answer

is ‘yes’ as long as the cardinalities dXi and dYj are not fixed. Similarly does the causal

structure {Pa(Yi)}i in general impose ‘cardinality restrictions’ on the variables which

can appear in the domain and co-domain of a reversible function which instantiates

that causal structure. However, these constraints differ from those for unitary maps

in the quantum case. Consider a reversible function f : X1 × X2 → Y1 × Y2 and

the same causal structure as in Fig. 6.47a (replacing Ai with Xi and Bi with Yi).

A concrete reversible function with that causal structure is the logical CNOT gate

with X1 as the target bit and X2 as the control bit (CNOT is a self-inverse function).

However, in this case dX2 = 2, which is impossible to occur as the dimension of the

Hilbert space HA2 in the quantum case in Fig. 6.47. Note that the quantum CNOT

gate with A1 as the target qubit and A2 as the control qubit is a unitary, but does

not have the causal structure as in Fig. 6.47a — there is a backaction from the target

qubit on the control qubit.

6.8 Decompositions of unitary processes

Given a unitary transformation U : HA1 ⊗ ...⊗HAn → HB1 ⊗ ...⊗HBk this chapter

studied the structural consequences from its causal structure in terms of decomposi-

tions of U . Let us now return to the perspective with which this chapter started to

introduce the question, namely, whether the causal mechanisms can be pinned down

more precisely in a compositional manner, where the latter are ‘part of’ unitary pro-

cesses. Clearly, the obtained results are completely independent from the ‘physical

interpretation’ of U . The unitary map may be seen to describe the evolution of

quantum systems A1, . . . An at an earlier time to the quantum systems B1, . . . , Bk

at a later time, as is standard in physics. However, it may also be seen as a ‘more

abstract’ unitary map U that defines a unitary process, in which case, pairs of input

and output systems of the unitary map are interpreted as the output and input

spaces of corresponding quantum nodes.

Recall Def. 4.7 for the concept of causal structure between the quantum nodes

of a unitary process. The discussion of the cases, where this is not a DAG and

extended circuit decompositions will actually turn out to facilitate new insights, is
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postponed to the next chapter. In order to provide the basis for these insights, here

only a simple observation is made by sketching the link between extended circuit

diagrams and unitary processes for when there is nothing conceptually puzzling

about the latter — for broken unitary circuits as they were introduced in Sec. 5.2.2

(see Fig. 5.3c).

Suppose σA1...An = ρUA1...An|A1...An
is a broken unitary circuit. Furthermore, sup-

pose the associated unitary map U : HAout
1
⊗ ... ⊗ HAout

n
→ HAin

1
⊗ ... ⊗ HAin

n
has

a causally faithful extended circuit decomposition. This then also yields a more

fine-grained decomposition of the broken unitary circuit: seeing as σA1...An arises

from a circuit and has a DAG as causal structure, there exists a relabeling of the

quantum nodes — let this be A1, . . . , An — such that Ai 9 Aj for all i ≥ j and the

components of the extended circuit diagram can be appropriately ‘slided around’

and ‘wires bent’ so as to ‘re-identify’ pairs of spaces as the corresponding quantum

nodes.

Consider the following simple example as an illustration. The broken unitary

circuit in Fig. 6.48b with root nodes R1, R2, leaf nodes L1, L2 and intermediate

node N can be seen to arise from the unitary map U : HR1 ⊗ HR2 ⊗ HNout →
HL1 ⊗HL2 ⊗HN in in Fig. 6.48d8. This map U is the same unitary that was already

considered in Sec. 6.2 (see Fig. 6.5) and which has a causally faithful extended

circuit decomposition due to Thm. 6.2. Therefore, applying the steps (d) → (c)

and (c) → (b) from Fig. 6.48 to the extended circuit diagram in Fig. 6.6 yields the

decomposition of the broken unitary circuit as in Fig. 6.48e.

The one no-influence relation that is not apparent from Fig. 6.48b, namely R1 9
L1, is now evident in Fig. 6.48e through the lack of a corresponding path. More

generally, causal faithfulness carries over to unitary processes in the obvious sense.

If the extended circuit decomposition of U is causally faithful, then it remains the

case, once wires are bent, that there is a path from node A to B in the corresponding

extended circuit decomposition of the broken unitary circuit iff A is a direct cause

of B.

6.9 Discussion

The main insights from this chapter can be condensed into two. First, tensor prod-

uct and sequential composition do not suffice to understand causal structure of

unitary transformations in compositional terms. Second, direct sum structures are

8As the root (leaf) nodes have a trivial input (output) space the corresponding superscript is
dropped and the non-trivial spaces are just referred to as R1 and R2 (L1 and L2).
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Figure 6.48: Example of a simple broken unitary circuit in (b), together with two
ways of seeing how it arises – from (a) via ‘breaking’ wires, or from (c) via two
swaps. (e) shows a causally faithful extended cirucit diagram for the broken unitary
circuit.

needed in addition, which led to the introduction of extended circuit diagrams and

facilitated progress by the fact that now some causal structures can be understood

compositionally where this was previously impossible. In particular, causally faithful

extended circuit decompositions were presented for all unitary maps of type (n, k)

with arbitrary n and k at most 3, as well as arbitrary k and n at most 3. Also for

a selection of causal structures of type (4, 4) unitaries, causally faithful extended

circuit decompositions were presented.

There are three main questions left open for future work.

The hypothesis

While the results from Sec. 6.6 lend support to Hypothesis 1, the latter remains

unproven. There will be many more cases of unitaries of arbitrary type (n, k), where

the same proof techniques as employed in the previous sections will allow to derive

a causally faithful extended circuit decomposition. However, there are also cases

where these techniques do not seem to straightforwardly allow to derive a desired
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decomposition, such as the six causal structures in Figs. 6.32-6.37 of type (4, 4)

unitaries.

Note that the results in Sec. 6.6 concerning specific causal structures were all

of the form that a causal structure (for a type (n, k) unitary), as a purely combi-

natorial object of k subsets of a set of cardinality n, implies a certain form of a

causally faithful extended circuit diagram, which exists for every unitary transfor-

mation with that causal structure — completely independently from which specific

unitary. Therefore, a slightly stronger version of Hypothesis 1, also supported by

the presented results, is that this continues and any causal structure comes with a

general causally faithful extended circuit diagram. In case that stronger version was

false, it is logically conceivable that Hypothesis 1 remains valid and every particular

unitary has a causally faithful extended circuit decomposition, but their forms differ

among unitaries with the same causal structure.

Formalisation of the graphical language

In Sec. 6.4 extended circuit diagrams were introduced informally as an extension

of circuit diagrams, designed to graphically express the interplay between direct sum

and tensor product — not in full generality, but to the extend that this work found

it to be necessary to understand causal structure compositionally.

Future work has to develop extended circuit diagrams into a formal graphical

language with syntax, that is, rules of composition for the circles with indexed wires

going in and out, and semantics in terms of unitary maps between finite-dimensional

Hilbert spaces. To this end, it is likely to be instructive to study the precise relation

between extended circuit diagrams and the work by Vicary and Reutter on shaded

tangles (see, e.g., Refs. [145–147]), which provides a more general framework for the

graphical representation of compositional structures including those expressible with

extended circuit diagrams. The index sets parametrizing families of Hilbert spaces

and linear maps, explicit as indices in the extended circuit diagrams here, are there

represented graphically through shaded regions, leading to high-dimensional geo-

metric objects to represent compositional structures such as in Fig. 6.8a. The works

in Refs. [145–147] are not concerned with a causal analysis of linear maps and the

graphical representations within their formalism of the decompositions discovered in

this chapter do not necessarily achieve the purpose of rendering the causal structure

visually evident, hence, the introduction of extended circuit diagrams in the first

place. More generally, this future investigation will also have to study the relation

to other works on graphical calculi, in particular for bimonoidal categories, (see,

e.g., Refs. [21,148]).
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Extension to non-unitary channels and processes

So far, this chapter was concerned exclusively with unitary maps (and unitary

processes). An obvious question is to what extent any of it can be extended beyond

that.

Given a generic channel C : L(HA1 ⊗ ...⊗HAn)→ L(HB1 ⊗ ...⊗HBk), one can

still ask for each output system Bj which input systems can signal to Bj according

to Def. 3.6. Let Pas(Bj) then denote this subset of input systems that can signal to

Bj. As has been emphasised throughout this thesis the sets {Pas(Bj)} — merely

encoding the ‘single system signalling relations’ — in general do not fix the channel’s

overall signalling structure (see, e.g., Secs. 4.1 and 5.7). A question that is analogous

to the one studied here for unitary transformations, might ask after a decomposition

of C, including a graphical representation thereof, that would make its signalling

structure evident through the absence and presence of paths. However, this question

does not generally make sense: if Ai cannot signal to Bj and also not to Bk, the

decomposition ought to reflect that through the absence of a path to either, i.e. in

particular there would not be a path to the composite BjBk, while there however

may be signalling from Ai to BjBk.

Now, suppose it so happens that

ρCB1...Bk|A1...An
=

k∏
j=1

ρBj |Pas(Bj) , (6.7)

where all factors commute pairwise. First, the sets {Pas(Bj)} then do determine

the channel’s overall signalling structure (see Sec. 5.7), making the question after a

corresponding decomposition that would be ‘faithful’ for that signalling structure,

an in principle sensible question. Second, one may furthermore hope to be able to

employ the same ideas and techniques as in this chapter to find an insightful de-

composition of C — essentially exploring when and how the decomposition obtained

from the pairwise commutation relations due to Lem. 6.1 can be translated into a

decomposition of C itself. Future work will pursue this direction further and develop

a graphical language adequate to this purpose, i.e. an analogue or extension of the

extended circuit diagrams to non-unitary channels.

There of course is an important class of channels, studied in detail in Chap. 5,

that have the factorisation property from Eq. (6.7), namely any channel defined by

the process operator of a quantum causal model (Def. 5.1)9. Once an appropriate

analogue of extended circuit diagrams for non-unitary channels exists, one would

9See Rem. 5.9 for the relation between Eq. (6.7) and the parental sets defined by a causal
model.
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expect that the same step as described in Sec. 6.8 for unitary processes then allows

to ‘bend the wires’ and obtain ‘causal decompositions’ of the non-unitary processes

associated with quantum causal models.

In light of the fact that due to Thm. 5.2 Markovianity implies compatibility, given

a quantum causal model involving the process σA1...An , an obvious first approach

would be the following. Consider the unitary process asserted to exist by virtue

of compatibility of σA1...An with the causal structure of the model (cf. Def. 5.3).

Suppose that unitary process has a causally faithful extended circuit decomposition

in the sense as described in Sec. 6.8. If one can lift the extended circuit diagram to a

representation of the channel, i.e. from the level of the underlying Hilbert spaces and

linear maps to the level of CP maps, then the data which gives the marginalisation

to σA1...An should allow to obtain a decomposition of the process σA1...An that now

makes the causal structure of the model evident in compositional terms.
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Chapter 7

Generalising quantum causal

models: cyclic causal structure

This last main chapter is largely based on the third publication in Ref. [3]. It will

bring together the ideas and results from all three preceding Chapters 4, 5 and 6.

It will study the significance of those cases, where the causal structure of a unitary

process, as defined in Def. 4.7, is a directed graph with directed cycles. In particular,

it will study its significance in relation to the field of ‘indefinite causal order’, by

bringing to the latter the causal model perspective from Chap. 5, as well as, the

compositional understanding of causal structure from Chap. 6. In order to set the

stage, first a brief introduction to the study of ‘indefinite causal order’ will be given.

7.1 Background on indefinite causal order

7.1.1 Quantum processes

One feature of quantum processes, which, amongst other reasons, made it an at-

tractive formalism for the formulation of quantum causal models, is that it allows

to represent different causal situations on an equal footing, that is, with the same

kind of mathematical object. This feature was highlighted in Sec. 3.2 and is shared

with other formalisms such as those in Refs. [32, 78, 79, 149]. Suppose A and B are

two quantum nodes and for the sake of a more concrete discussion here, one may

think of them as two labs, equipped with agents Alice and Bob who can perform

interventions at A and B, respectively. A process σAB may describe a situation in

which the two labs are acausally related and hence in particular none of the agents

can signal to the other. The process σAB may also describe a situation in which they

are causally related. Usually the presupposition is that then at most Alice can signal
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to Bob or vice versa, but not both — there is a causal mechanism in at most one

direction. In particular if the respective labs are embedded into a fixed space-time,

then space-like or time-like separation constrain which of the causal situations can

obtain.

Precisely to question such presupposition and to explore the scope for possibil-

ities, where two labs do not have a fixed causal order, while maintaining logical

consistency, was the original motivation for the introduction of the process formal-

ism by Oreshkov, Costa and Brukner (OCB) in Ref. [43]. There is a number of good

reasons for such inquiry. First, could quantum theory as such be compatible with

more general situations, where causal relations are ‘quantum indefinite’, in a sense

akin to how Bell’s theorem can be taken to imply the impossibility of assigning pre-

existing values to observables prior to measurement. In a similar spirit Chiribella

et al. in Ref. [42] had studied a new model of quantum computation that tran-

scends that of quantum circuits with always a fixed causal structure, by considering

higher-order quantum computations that allow to model that the connectivity of

a quantum circuit itself could be controlled by the state of a quantum system and

put in a superposition. Second, in the context of a search for a theory of quantum

gravity it can be argued that the dynamical nature of spacetime together with the

quantum phenomenon of superpositions including, say, of different spatial positions

of a large mass, might lead to a dynamical causal structure as argued by Hardy

[40, 41] (also see [42, 43, 46, 150] on the relevance of quantum processes to quantum

gravity). Third, considering scenarios that lack a definite causal order between op-

erations also finds motivation from studying the possibility of closed time-like curves

in the context of quantum theory without ending up with non-linear modifications

of the latter [42,43,46,57,58,69].

The way Oreshkov, Costa and Brukner approached the question in Ref. [43] is by

deriving the general framework for describing the correlations between events in a

set of labs, assuming only quantum mechanics being valid locally in the labs and the

absence of logical contradictions, while in particular not assuming that there exists

a fixed causal order of the labs. Suppose a set of n labs, each of which receives a

system once and sends it out again, but is otherwise closed from the environment,

is represented by the quantum nodes A1, . . . , An and suppose τ
kA1
A1

, . . . , τ
kAn
An

is a

choice of local interventions. The question then becomes which probability distri-

butions P (kA1 , . . . , kAn) can be obtained given the mentioned assumptions. The

sense in which the standard quantum formalism is assumed to correctly describe the

labs locally is two-fold. First, by virtue of considering a quantum node A with an

input and an output Hilbert space and by letting local operations be represented
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by arbitrary quantum instruments {τ kAA }kA . Second, in order for convex mixtures

of operations locally to give the probabilistic structure as usual, the function that

maps (τ
kA1
A1

, . . . , τ
kAn
An

) onto P (kA1 , . . . , kAn) — the ‘quantum process’ — has to be

a multilinear function, linear in all its n arguments. Requiring P (kA1 , . . . , kAn) to

be a positive real number, also when the n labs may share any entangled auxiliary

input systems amongst them, implies that the quantum process can be represented

by a positive semi-definite operator σA1...An on all 2n Hilbert spaces:

P (kA1 , . . . , kAn) = Tr
[
σA1...An

(
τ
kA1
A1
⊗ . . .⊗ τ kAnAn

)]
. (7.1)

The requirement that this be a correctly normalised probability distribution means

that the right-hand side has to give unity for any set of local CPTP maps. Hence,

the assumptions yield the formalism of process operators just as defined in Def. 3.7.

See Ref. [43] for the details of the derivation (modulo our different convention for

the CJ isomorphism) and see Refs. [43,48,49] for equivalent necessary and sufficient

conditions for an operator to be a quantum process operator (also see Sec. C.1).

A first sense in which ‘compatibility with a definite causal order’ — note the

different meaning compared to compatibility with a DAG from Def. 5.3 — was made

precise for the bipartite case in Ref. [43] is through the notion of causal separability.

A bipartite process σAB is causally separable if and only if it has a decomposition of

the form σAB = p σ
A�B
AB + (1− p) σB�AAB , where 0 ≤ p ≤ 1 and σ

A�B
AB is a process, in

which A cannot signal to B (cf. Def. 3.8) and σ
B�A
AB a process, in which B cannot

signal to A. In that case σAB is a convex mixture of processes, each of which can be

seen to have a fixed causal order (either summand may contain acausally related A

and B). If a process σAB is not of that form it is called causally nonseparable.

A priori, it could have been the case that only causally separable processes exist

within the framework. However, Ref. [43] presented an example of a bipartite process

that is causally nonseparable, and which in subsequent works has been referred to as

the OCB process. In fact, this process was shown to be ‘incompatible with a definite

causal order’ in a second, stronger sense than captured by causal nonseparability. In

Ref. [43] a causal inequality was derived that is satisfied by any bipartite correlation

in a particular ‘causal game’ involving two agents, whenever there is a fixed causal

order of their respective labs (or probabilistic mixtures thereof), regardless of any

specification of what sort of systems the agents are dealing with and what the

operations are they may perform. Ref. [43] then demonstrated the OCB process to

violate that causal inequality. Analogously to a Bell inequality, the violation of the

causal inequality certifies in a theory-independent way that the correlations could

not have arisen from a fixed causal order.
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Much effort has been devoted since to the exploration of the landscape of quan-

tum processes, in particular for more than two nodes. The notion of causal separa-

bility in the multipartite case, developed by a number of works in Refs. [43,48,49,64],

is not as straightforward as in the bipartite case, since one has to not only capture

probabilistic mixtures of fixed causal orders, but also dynamical causal order and

that causal nonseparability might be ‘activated’ when allowing shared entangled

auxiliary input systems among the involved nodes. A formal definition is given in

App. C.4 and see Refs. [49, 64] for a discussion. Many further works have stud-

ied quantum processes that can give rise to correlations that violate multipartite

causal inequalities (see, e.g., Refs. [47, 49, 51, 52, 151–154]), which are, similarly to

the bipartite case, incompatible with a definite causal order in a theory-independent

sense [44,49,155]. Such processes are often referred to as ‘noncausal’ processes [49].

In Ref. [66] a category theoretic construction was presented that allows modelling

causal structure in a general class of theories in a way that contains quantum process

operators as special cases. Similarly, Ref. [67] presented a framework of higher-order

quantum maps, with an operational axiomatisation thereof, that contains in partic-

ular quantum process operators as special cases.

It has been shown that access to causally nonseparable processes constitutes a

resource that allows to perform certain informational tasks that are impossible if

operations are required to occur in a definite causal order [44, 50, 156, 157]. One

such process is the quantum SWITCH [42], which is the first causally nonseparable

quantum process presented in the literature, in fact even before the work in Ref. [43]

and the definition of multipartite causal separability. This important example of a

causally nonseparable process (albeit not violating a causal inequality [44, 49]) will

be discussed in some detail below in Sec. 7.4.1. Importantly, the quantum SWITCH

has been implemented in a series of experiments [158–162], although the question

over the precise sense in which it is a realisation of the quantum SWITCH has lead

to some debate [65,72,83].

The maybe biggest open question of the field at this stage is which of the causally

nonseparable quantum processes that exist mathematically in the framework, are

also physical, i.e. can occur in nature in some sense or other. Do causal inequality

violating processes exist at all? If so, maybe only in a quantum-gravitational regime?

In particular the work by Araújo et al. in Ref. [123] made a start with tackling this

question in a principled way and will feature in the subsequent discussions.

On a last note, observe that the relation between causal separability of a process

σ and the properties of the induced graph Gσ (cf. Def. 5.24) is not trivial. Let

σAB be a uniform mixture of a channel from A to B and vice versa, i.e. σAB =
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(1/2)ρA|B ρB+(1/2)ρB|A ρA. This canonical example of a causally separable process

has in general a graph Gσ with an arrow from A to B and conversely — it is not a

DAG. What is more, in general even if Gσ is a DAG, the process may be causally

nonseparable, and even noncausal.

7.1.2 Classical processes

In this thesis the formalism of quantum processes was initially presented in Sec. 3.2.3,

in particular as a stage for the development of quantum causal models. It was not

until Sec. 7.1.1 that the historical motivation behind quantum process operators was

explained in more detail — the study of conceivable scenarios that lack a definite

causal order of the operations. Similarly, Sec. 5.3 presented the definition of classical

(split-node) processes, initially just as a stage to study the relation between quan-

tum and classical causal models. This is the reason why a classical split node was

presented as the classical analogue of a quantum inode, that is, the variables X in

and Xout were assumed to be copies of each other. This ensured an unambiguous

transition to a picture with a single variable per node and a probability distribution

over them to link with classical causal models. This also explains the terminology

of a classical split node for disambiguation.

In contrast, now the focus is to appreciate the original interest in the formalism

of classical processes as introduced by Baumeler, Feix and Wolf in Ref. [47] — the

study of the analogous question to the quantum case, namely, what are the logically

consistent classical processes that lack a definite causal order. The variables X in

and Xout of a classical (split) node X may now take values in arbitrary sets of finite

cardinality. It of course maintains to be the case that classical processes κX1...Xn

over classical nodes X1, . . . , Xn can be seen as a special case of quantum processes

in the sense of the inductions Iκ→σ and Iσ→κ, only now for arbitrary nodes.

For only two nodes the original OCB paper in Ref. [43] had already looked at

the classical special case of quantum processes. It found that all bipartite classical

processes κXY over two classical split nodes X and Y are all convex mixtures of at

most X can signal to Y and the converse. This is what one might have expected —

nothing exotic in a fundamentally classical set-up. The more surprising it was that

Ref. [47] found that classical processes over more than two nodes, in fact as few as

three nodes, exist that are not compatible with any fixed causal order of the classical

nodes. Further detailed study of classical processes followed in, e.g., Refs. [52,58,69].

This can be seen as crucial work to help understand what it is about causally

nonseparable quantum processes that is due to the quantum nature of systems and

what is due to the general assumptions — or lack thereof — in the process formalism
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and similarly conceiveable in a purely classical set-up. Independently from that

perspective, in particular closed time-like curves have provided motivation for the

study of classical processes without a definite causal order [47,52,58,69].

Let us briefly mention some of the findings in the literature that are relevant to

later discussions in Sec. 7.6. Just as in Sec. 5.3, we let a classical process interchange-

ably refer to the classical process map κX1...Xn as in Def. 5.5 (modulo arbitrary input

and output variables now), to the quantum process operator diagonal in a preferred

basis and the associated channel P (X in
1 , ..., X

in
n |Xout

1 , ..., Xout
n ). A classical process

κX1...Xn over classical nodes X1, . . . , Xn is called a deterministic process if and only

if there exists a function f : Xout
1 × ....×Xout

n → X in
1 × ....×X in

n such that

P (X in
1 , ..., X

in
n |Xout

1 , ..., Xout
n ) = δ((X in

1 , ..., X
in
n ), f(Xout

1 , ..., Xout
n )) . (7.2)

A deterministic process will often be denoted as κfX1...Xn
. When f is bijective, the

deterministic process is called reversible.

As was shown in Ref. [52], the set of classical processes over nodes X1, ..., Xn

forms a polytope. The same work also showed that the deterministic polytope,

defined by the set of deterministic processes as the set of vertices, is generally a

strict subset of the polytope of all classical processes. Furthermore, Ref. [52] showed

that there even exist deterministic processes that are incompatible with a definite

causal order (see Sec. 7.4.2 for an example).

7.2 Generalised quantum causal models

7.2.1 The idea

The very conception of the process formalism in Ref. [43] and the interest in causally

nonseparable processes are, above all, motivated from foundational questions that

are phrased in causal terms — seeking to understand the most general ‘causal situ-

ation’ admissible in nature. At the same time, there is no framework that allows to

maintain a principled way of enquiring about causal explanations of causally nonsep-

arable processes. However, the development of such, provided possible, seems highly

desirable. Not only as a matter of principle just as in the acyclic case, but one might

hope that the development of such a framework actually facilitates progress with

some of the technical questions of the field.

It is thus natural to wonder whether the causal model perspective can be brought

to the study of causally nonseparable processes. In particular, a question, which was

already formulated by Costa and Shrapnel in Ref. [82], concerns what the relation
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between indefinite causal order and cyclic directed graphs is. However, so far no

general enough causal model framework has been proposed to answer such questions.

Although Ref. [82] raised the question, the definition of a quantum causal model

that work is based on, does not allow for a straightforward extension. Similarly in

a causal model context, also Ref. [83] considered the idea of causal explanations in

terms of directed cycles, however, to then dismiss such a possibility for reasons of

conflict with their notion of ‘autonomy of causal mechanisms’.

The following presents a generalised framework of quantum causal models by

extending the one from Chap. 5 to cyclic causal structures. This will go in the obvi-

ous way, namely, by simply allowing for directed graphs, rather than only directed

acyclic graphs, seeing as much of the concepts defined in Secs. 5.1 and 5.2 naturally

suggest such a generalisation. It is almost as if we previously had to explicitly sup-

press this generality for the sake of a conceptually clear journey — it was a matter

of first ‘sanity-checking’ the approach to quantum causal models in the acyclic case,

that is, testing it against the conventional, well-understood part of the quantum

formalism. Thus gained confidence in the approach through the results in Chap. 5,

now the goal is to learn something new about the exotic, less understood processes

by employing the fully general definition of causal structure of a unitary process in

Def. 4.7.

7.2.2 The definition

The following definition generalises Def. 5.1, by essentially dropping the condition

of acyclicity for the causal structure.

Definition 7.1 (Quantum causal model — generalized): A Quantum causal model

is given by:

(1) a causal structure represented by a directed graph G with vertices correspond-

ing to quantum nodes A1, ..., An,

(2) for each Ai, a quantum channel ρAi|Pa(Ai) ∈ L(HAin
i
⊗ H∗Pa(Ai)out) such that

[ρAi|Pa(Ai) , ρAj |Pa(Aj)] = 0 for all i, j and such that σA1...An =
∏

i ρAi|Pa(Ai) is

a process operator over the quantum nodes A1, ..., An.

A directed graph that contains at least one directed cycle will be referred to

as a cyclic directed graph. Similarly a cyclic quantum causal model is one whose

causal structure is cyclic. Otherwise, it is called an acyclic quantum causal model to

specifically refer to the special case according to Def. 5.1. It is understood implicitly
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throughout that a directed graph has no directed one-cycle, i.e. no arrows from a

node A to itself.

Also the Markov condition from Def. 5.2 generalises, so that a quantum causal

model can be referred to as the pair (G, σA1...An) with G a directed graph with

vertices A1, . . . , An and σA1...An a process that is Markov for G.

Definition 7.2 (Quantum Markov condition — generalized): Given a directed graph

G, with vertices corresponding to the quantum nodes A1, . . . , An, a process σA1...An is

called Markov for G if and only if it admits a factorization into pairwise commuting

channels of the form σA1...An =
∏n

i=1 ρAi|Pa(Ai).

As observed in Rem. 5.1, it is trivially the case that a product of pairwise com-

muting operators of the form
∏

i ρAi|Pa(Ai) is a process if the parental sets Pa(Ai)

form a DAG. In contrast, for a cyclic directed graph this is a non-trivial condition

and hence an explicit requirement in the above Def. 7.1 — it is what ensures the

absence of logical paradoxes despite the apparent causal cycles.

A B

(a)

A B

C

(b)

Figure 7.1: Examples of cyclic directed graphs.

Consider for instance a bipartite scenario with two nodes A and B. The unique

cyclic directed graph G is depicted in Fig. 7.1a. Suppose a QCM has G as its causal

structure, it then comes with a process operator of the form

σAB = ρA|B ρB|A . (7.3)

If, however, both ρA|B and ρB|A are signalling channels, then σAB could not be

a process operator, as loosely speaking, there would exist interventions at A and

B, which led to a contradiction for their outcomes. To state this more formally

and succinctly, first note that the notion of faithfulness of a quantum causal model

from Sec. 5.7.3 straightforwardly generalises: a quantum causal model (G, σA1...An)

is called faithful if and only if for each i = 1, . . . , n the channel ρAi|Pa(Ai) allows

signalling to Ain
i from each of the parents’ output spaces1.

1Equivalently, (G, σA1...An
) is faithful if and only if G = Gσ for the induced graph Gσ as

defined in Sec. 5.7.1.
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Proposition 7.1 There is no faithful cyclic quantum causal model with two nodes.

Proof. See App. C.2. �

Now consider a scenario with three nodes A, B and C with a causal structure G

as in Fig. 7.1b. A corresponding QCM comes with a process operator of the form

σABC = ρA|BC ρB|AC ρC . (7.4)

While the cycle from Fig. 7.1a, which on its own does not accommodate a faithful

bipartite QCM, is a subgraph of G, there now are faithful tripartite QCMs of the

form as in Eq. (7.4) with G as causal structure (see Sec. 7.4 for a concrete example).

The crucial difference between Eq. (7.3) and Eq. (7.4) is that in the latter the

non-trivial action of the two operators ρA|BC and ρB|AC overlaps on Cout — it is

essentially the decomposition of the operators thereby implied due to Lem. 4.1 that

will allow to understand how it is possible to have signalling from A to B, as well

as conversely, without leading to contradictions.

A first conclusion thus is that in contrast to DAGs, where every possible DAG

accommodates a faithful QCM, not all cyclic directed graphs accommodate a faithful

QCM. Moreover, note that even given a cyclic graph G that does accommodate some

faithful cyclic QCM, it is not true that any set of pairwise commuting operators

{ρAi|Pa(Ai)} defines a process operator by considering their product (see App. C.3

for an explicit example).

7.3 Cyclic causal structure and the Markov con-

dition

7.3.1 Compatibility with a directed graph

Chapter 4 presented in Def. 4.7 the general notion of causal structure of a unitary

process, representable as a directed graph that may contain directed cycles. Just as

with acyclic quantum causal models the idea is that the directed graph that is part

of a QCM is a candidate causal structure as the property that pertains to the actual

underlying unitary process.

Due to Thm. 4.1 it is immediate that any unitary process σA1...An together with

its causal structure G defines a faithful quantum causal model, in particular if G

is cyclic. In order to make precise what the relation between non-unitary processes

and causal structure is, the below will follow the same ideas as in the acyclic case

in Sec. 5.2.1, that is, spell out what the notion of compatibility with a directed graph
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is. It is instructive to first define the following property, which was introduced by

Araújo et al. in Ref. [123]2.

Definition 7.3 (Unitary extendibility) [123]: A process σA1...An is called unitarily

extendible if and only if there exists a unitary process σA1...AnPF = ρUA1...AnF |A1...AnP

on the quantum nodes A1, . . . , An, plus additional root node P and leaf node F ,

such that σA1...An = TrFP [σA1...AnPF τP ] for some state τP ∈ L(H∗P out). The process

σA1...AnPF is called a unitary extension of σA1...An.

A major discovery from Ref. [123] is that not all processes are unitarily ex-

tendible. While every process, seen as a channel from the output spaces to the

input spaces of all nodes, has a dilation to a unitary channel, this channel will gen-

erally not define a process. A discussion of the original motivation for presenting

the above notion in Ref. [123] is postponed to Sec. 7.8.

The same arguments as discussed in Sec. 5.2.1 concerning what one should care

about when calling a process σA1...An compatible with a certain DAG G as causal

structure — that is, no need for additional common causes in an underlying uni-

tary process from which σA1...An may be seen to arise — now naturally lead to the

following analogous concept for directed graphs.

Definition 7.4 (Compatibility with a directed graph): A process σA1...An is com-

patible with a directed graph G with nodes A1, ..., An, iff σA1...An is extendible to a

unitary process σA1...Anλ1...λnF , with an extra root node λi for i = 1, ..., n and an extra

leaf node F , such that:

1. there exists a product state τλ1⊗· · ·⊗τλn with τλi ∈ L(H∗
λouti

) such that σA1...An =

Trλ1...λnF [ σA1...Anλ1...λnF (τλ1 ⊗ · · · ⊗ τλn)],

2. σA1...Anλ1...λnF satisfies the following no-influence conditions (with Pa(Ai) refer-

ring to G): {Aj 9 Ai}Aj /∈Pa(Ai) , {λj 9 Ai}j 6=i.

Note that in the acyclic case, Thm. 5.1 established that the unitary process

asserted to exist by virtue of compatibility with a DAG G, has a realisation as a

broken unitary circuit. This filled the gap between the abstract unitary process

and what we understand to be, at least in principle, physically realisable. In case of

compatibility with a cyclic directed graph, it clearly cannot have a circuit realisation.

However, seeing as it is generally not understood yet what the criterion for physical

2Therein the property from Def. 7.3 is referred to as purifiability and a unitary extension is
called a purification. The reason for the deviation in terminology here is that a ‘purification’ could
naturally be understood as an extension to an isometric process, i.e. to one where the channel
defined by the process is an isometric channel.
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realisability for (causally nonseparable) processes should be, it is not clear what a

theorem to an analogous effect to that of Thm. 5.1 should establish in the cyclic

case.

7.3.2 The conjecture

Concerning acyclic causal structures, the main result from Sec. 5.2.3 established

equivalence between compatibility with a DAG and Markovianity for that DAG.

Concerning cyclic causal structures, one direction is straightforward.

Theorem 7.1 If a process σA1...An is compatible with the directed graph G, then it

is also Markov for G.

Proof. Completely analogous to the proof of ‘(1)→ (2)’ of Thm. 5.2 and essentially

a consequence of Thm. 4.1. For the sake of completeness: the unitary extension,

asserted to exist by virtue of the assumed compatibility with G, has to factor-

ize into pairwise commuting operators of the form σA1...Anλ1...λnF = ρF |A1...Anλ1...λn(∏
i ρAi|Pa(Ai)λi

)
. This yields σA1···An =

∏
i Trλi

[
ρAi|Pa(Ai)λi τλi

]
, where the factors

ρAi|Pa(Ai) := Trλi
[
ρAi|Pa(Ai)λi τλi

]
are pairwise commuting operators. �

The converse direction does not seem as straightforward. Given a process σA1...An

that is Markov for a directed graph G, the same steps as in the proof of Thm. 5.2

guarantee the existence of a unitary channel with the appropriate causal constraints,

i.e. no additional common causes are introduced. However, it is not obvious that

this unitary channel can also be chosen such that it defines a unitary process. We

leave this as a conjecture.

Conjecture 1 If a process σA1...An is Markov for a directed graph G, then it is

compatible with G.

A discussion of the consequences from the validity or invalidity of the conjecture

is postponed to Sec. 7.7. The next section will present a couple of concrete examples

of faithful cyclic QCMs.

7.4 Examples of cyclic quantum causal models

7.4.1 The quantum SWITCH

The first example of a causally nonseparable process described in the literature is the

quantum SWITCH [42]. It is typically presented as a higher-order map [32, 42, 67],
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P out
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Aout
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A B

P
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Figure 7.2: The quantum SWITCH in (a) with its causal structure GSWITCH in (b).

which maps pairs of CP maps of the types FA : L(HAin) → L(HAout) and GB :

L(HBin)→ L(HBout) with dAin = dAout = dBin = dBout = d, to a CP map of the type

E : L(HQ ⊗HS) → L(HQ′ ⊗HS′) with dQ = dQ′ = 2 and dS = dS′ = d. The basic

idea is that a control qubit, which is represented by HQ and HQ′ at an initial and

a final time, controls in a coherent manner in which order the maps FA and GB act

on a target system S, which is represented by HS and HS′ at the initial and final

time.

For our purpose it is convenient to give a precise definition of the quantum

SWITCH by seeing the higher-order map as a quantum process over four nodes as

depicted in Fig. 7.2a: the nodes A and B are the slots where FA and GB are inserted,

the node P in the ‘past’ with HP out = HQ⊗HS is where the control qubit and target

system are initially prepared in a state, and finally the node F in the ‘future’ with

HF in = HQ′ ⊗HS′ is where the control qubit and target system can be measured at

the final time. The quantum SWITCH is then given by the unitary process

σSWITCH

ABPF = ρUABF |ABP = |W 〉 〈W | , where (7.5)

|W 〉 := |0〉Q∗ |0〉Q′ |φ
+〉S∗Ain |φ+〉(Aout)∗Bin |φ+〉(Bout)∗S′

+ |1〉Q∗ |1〉Q′ |φ
+〉S∗Bin |φ+〉(Bout)∗Ain |φ+〉(Aout)∗S′ , (7.6)

with |φ+〉XY :=
∑

i |i〉X |i〉Y .

It is not hard to check that the causal structure of σSWITCH
ABPF is given by the

cyclic directed graph GSWITCH in Fig. 7.2b. As pointed out in Sec. 7.3.1, as a

unitary process, σSWITCH
ABPF together with GSWITCH forms a faithful cyclic quantum

causal model:

σSWITCH

ABPF = ρF |ABP ρA|BP ρB|AP ρP . (7.7)
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Here ρP appears explicitly to emphasise Markovianity for GSWITCH, although ρP is

equal to the real number one, seeing as P in is trivial. Note that also if introducing

a non-trivial input space P in, the above data would of course still define a faithful

cyclic QCM for an arbitrary state ρP .

Finally, consider the (causally separable) marginal process σABP = TrF
[
σSWITCH
ABPF

]
on three nodes. It follows from Eq. (7.7) that σABP = ρA|BP ρB|AP ρP and, hence,

σABP together with the directed graph from Fig. 7.1b (relabeling C as P ) forms a

faithful cyclic quantum causal model, too. This establishes the claim from Sec. 7.2.2

that such tripartite QCMs exist.

7.4.2 A causal inequality violating process — the AF pro-

cess

The quantum SWITCH was presented above as an example of a causally nonsepa-

rable process that can be understood as a quantum causal model with cyclic causal

structure. However, it does not violate any causal inequality; it is not a noncausal

process. As pointed out in Sec. 7.1, noncausal processes give rise to correlations in

the outcome statistics that are not explicable with any causally separable process,

no matter how large the input and output systems at the nodes or of what kind

they are. They are therefore regarded genuinely incompatible with any causal order

of the nodes and the immediate question is whether cyclic quantum causal models

exist that involve processes of that kind. It turns out that such models do exist.

A well-known example of a noncausal process is the tripartite process discovered

by Araújo and Feix (AF) and first published and further studied by Baumeler and

Wolf in Ref. [52,163].3 It is a deterministic classical process (see Sec. 7.1.2) and yet

noncausal. Here it will be convenient to present it as a special case of a quantum

process operator that is diagonal with respect to a product basis of orthonormal

bases for all involved input and output spaces. Let A, B and C be quantum nodes

with two-dimensional input and output systems. The AF process is then given by

the following process operator.

σAF

ABC = ρA|BC ρB|CA ρC|AB,

where

ρA|BC =
∑
b,c=0,1

|¬b ∧ c〉〈¬b ∧ c|Ain ⊗ |b, c〉〈b, c|(BoutCout)∗ ,

3See Ref. [52], where M. Araújo and A. Feix are acknowledged for the discovery of this process.
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A B

C

Figure 7.3: The causal structure of the AF process4.

ρB|CA =
∑
c,a=0,1

|¬c ∧ a〉〈¬c ∧ a|Bin ⊗ |c, a〉〈c, a|(CoutAout)∗ ,

ρC|AB =
∑
a,b=0,1

|¬a ∧ b〉〈¬a ∧ b|Cin ⊗ |a, b〉〈a, b|(AoutBout)∗ .

It is evident that σAF
ABC is Markov for the cyclic directed graph G in Fig. 7.3, seeing

as the operators, all diagonal in the same basis, commute trivially. It is also easy

to see that each arrow in Fig. 7.3 corresponds to a direct signalling relation, and

hence, the pair of σAF
ABC and G constitutes a faithful cyclic quantum causal model.

For this process to be in keeping with Conjecture 1, it had better be compatible

with G. Baumeler and Wolf (BW) [163] showed that σAF
ABC is unitarily extendible

to the following unitary extension (also see Refs. [57,123]):

σBW

ABCFP = ρUABCF |ABCP , (7.8)

where the additional root node P has a tensor product of three qubits as its output

space, HP out = HλA ⊗HλB ⊗HλC , and the corresponding unitary map U is defined

by the following bijection of orthonormal bases:

U : |a, b, c〉AoutBoutCout ⊗ |i, j, k〉λAλBλC 7→

|i⊕ (¬b ∧ c), j ⊕ (¬c ∧ a), k ⊕ (¬a ∧ b)〉AinBinCin ⊗ |a, b, c〉F in . (7.9)

The AF process is recovered from σBW
ABCFP if tracing F and feeding in the product

state |0, 0, 0〉 for λA, λB and λC . Finally, it is not hard to check that the causal

structure of the unitary process σBW
ABCFP is as depicted in Fig. 7.4, i.e. it is given

by the graph that arises from that in Fig. 7.3 if adding arrows from everywhere

to the additional node F and arrows from λX to X and F for X = A,B,C. The

BW extension therefore has the appropriate properties to establish compatibility of

4Strictly speaking, as a non-unitary quantum process, σAF
ABC does not have a causal structure,

however, as a classical deterministic process it does (see Sec. 7.6.2). Also note that the directed
graph in Fig. 7.3 is the induced graph Gσ when seeing σAF

ABC as a quantum process.
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Figure 7.4: The causal structure of the BW extension of the AF process.

σAF
ABC with the cyclic directed graph G in Fig. 7.3.

7.5 Cyclicity and extended circuit decompositions

Recall the undertaking in Chapter 6 that studied the structural consequences for

unitary transformations ensuing from causal constraints, in order to answer the ques-

tion whether causal structure can be understood in compositional terms through

extended circuit diagrams. Section 6.8 observed that if the unitary map U that cor-

responds to the unitary process σA1...An = ρUA1...An|A1...An
given by a broken unitary

circuit, has a (causally faithful) extended circuit decomposition, then by ‘sliding

components of the diagram around’ one can obtain a corresponding decomposition

of the unitary process. See the example in Fig. 6.48. Note that nothing about this

observation relied on the acyclicity of the process’ causal structure and the naturally

arising question is which insights can be gained from studying such decompositions

for unitary processes with cyclic causal structures. Because Hypothesis 1 remains

unproven and causally faithful extended circuit decompositions are not (yet) known

for all unitary transformations at the time of writing, this question cannot be an-

swered in full generality. However, the following two examples show that this is a

fruitful and promising approach to the study of causally nonseparable processes.

7.5.1 Looking inside the quantum SWITCH

The quantum SWITCH seen as a unitary process on four nodes, σSWITCH
ABPF = ρUABF |ABP ,

is given by Eqs. (7.5) and (7.6). It defines a corresponding unitary map U : HAout ⊗
HP out ⊗ HBout → HAin ⊗ HF in ⊗ HBin , which is depicted in Fig. 7.5 together with
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the two causal constraints as ruled by the process’ causal structure from Fig. 7.2b.

U

Aout P out Bout

Bin F in Ain

Figure 7.5: The unitary map U defined by the quantum
SWITCH and, in red, the two causal constraints U satisfies.

Thus, this unitary U is precisely of the kind treated in Sec. 6.3 and due to

Thm. 6.2 has a causally faithful extended circuit decomposition of the following

form:

U =
(
1Bin ⊗ T ⊗ 1Ain

)(⊕
i∈I

Vi ⊗Wi

) (
1Aout ⊗ S ⊗ 1Bout

)
, (7.10)

where S and T are unitaries, and {Vi}i∈I and {Wi}i∈I families of unitaries of the

form

S : HP out →
⊕
i∈I

HXL
i
⊗HXR

i
,

Vi : HAout ⊗HXL
i
→ HY Li

⊗HBin ,

Wi : HXR
i
⊗HBout → HAin ⊗HY Ri

,

T :
⊕
i∈I

HY Li
⊗HY Ri

→ HF in .

Now, consider the graphical representation of Eq. (7.10) as an extended circuit

diagram as in Fig. 6.6. By bending those wires down that correspond to Ain and

Bin, so as to re-identify the quantum nodes A and B, the graphical representation

of the unitary process in Fig. 7.2a can be ‘filled in’ to yield the extended circuit

decomposition5 of the quantum SWITCH as shown in Fig. 7.6

5The way the graphical notation from Chap. 6 has been deployed here may more appropriately
be called ‘extended string diagrams’, since it additionally allows liberally bending wires around,
using ‘cups and caps’ (see, e.g., Ref. [24]). Typically, ‘circuit diagrams’ refer to diagrams, where
the outputs of boxes can only be connected to the inputs of other boxes, while ‘string diagrams’
are the more general class, where anything can be connected to anything.
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Aout

Ain

Bout

Bin

P out

F in

S

WiVi

T

ii

ii

Figure 7.6: The extended circuit decomposition of the quantum SWITCH.

For the quantum SWITCH it is straightforward to see what the decomposition

in Eq. (7.10) is concretely. The index i is binary and the two values, say 0 and 1, can

be seen to label the corresponding subspaces of the control qubit Q. This subspace

decomposition of Q induces the corresponding decomposition of P out, as identified

by the unitary S:

HP out = HQ ⊗HS
∼= (HS ⊗ C)⊕ (C⊗HS) =: (HXL

0
⊗HXR

0
)⊕ (HXL

1
⊗HXR

1
) .

The unitary Vi is the SWAP transformation on the respective systems for i = 0

and the identity map on Aout (XL
1 is trivial) in case of i = 16, and similarly for

Wi just with a reversed role of 0 and 1. Hence, while the causal structure of the

quantum SWITCH is cyclic, each of the summands V0⊗W0 and V1⊗W1, when seen

as defining a unitary process, has an acyclic causal structure.

Note that any unitary extension σABPF of a unitarily extendible bipartite process

σAB — equivalently, any unitary process σABPF on 4 nodes, where P is a root node

and F a leaf node — necessarily satisfies the two causal constraints as in Fig. 7.5

and hence, has an extended circuit decomposition of the form as in Fig. 7.6. As we

argued in Ref. [3] (and as was afterwards independently shown in Ref. [164]), it then

follows from the requirement that σABPF is a process, that for each i the unitary

process defined by Vi ⊗ Wi (where the input and output spaces of the nodes are

subspaces of the corresponding spaces of the nodes ABPF ) has an acyclic causal

structure. Any such unitary process σABPF is thus revealed, loosely speaking, ‘to

6The terms SWAP and identity transformations are used in the obvious sense here despite that
the labels of the spaces are changing.
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be’ a direct sum over unitary processes with an acyclic causal structure, ignoring

the unitaries S and T . This is the main idea behind the proof of Theorem 37 of

Ref. [3], which states that all bipartite unitarily extendible processes are causally

separable.

7.5.2 Looking inside the BW unitary extension of the AF

process

A second example of a faithful cyclic quantum causal model involving a causally non-

separable process was given in Sec. 7.4.2 in terms of the tripartite AF process σAF
ABC .

While the latter is not itself a unitary process, it is unitarily extendible and Eqs. (7.8)

and (7.9) stated the BW unitary extension, denoted σBW
ABCFP = ρUABCF |ABCP . Re-

calling that HP out = HλA ⊗HλB ⊗HλC , the BW extension has the causal structure

as depicted in Fig. 7.4, so that the associated unitary map

U : HAout ⊗HBout ⊗HCout ⊗HλA ⊗HλB ⊗HλC → HAin ⊗HBin ⊗HCin ⊗HF in

satisfies the no-influence relations as illustrated through the red dashed arrows in

Fig. 7.7.

U

Aout λC Bout λA Cout λB

Ain Bin C in F in

Figure 7.7: The unitary map U from Eq. (7.9) that defines the BW
unitary extension of the AF process, together with, shown as red
dashed arrows, the causal constraints it satisfies.

Although this particular case of a causal structure of a unitary of type (6, 4) was

not treated in Sec. 6.6, observe that it is similar to that in Fig. 6.21a of Thm. 6.6,

except for the additional systems λA, λB and λC . This can be seen most easily if

representing the causal structure of U as in Fig. 7.8a using the hypergraph notation

of Chap. 6. The latter representation does not express anything Fig. 7.7 did not

already express, but it emphasises the overlap structure between the parental sets

and thereby makes evident that a proof analogous to that of Thm. 6.6 in App. B.4

straightforwardly yields the following result.

7This result is due to O. Oreshkov and therefore not presented in detail with a proof in this
thesis.
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Theorem 7.2 Given a unitary transformation U : HAout ⊗HBout ⊗HCout ⊗HλA ⊗
HλB⊗HλC → HAin⊗HBin⊗HCin⊗HF in, if the causal structure of U is as in Fig. 7.8a,

then U has a causally faithful extended circuit diagram as shown in Fig. 7.8b.

Aout

λC

Bout

λA

CoutλB

(a)

S T V

Pij Qik Rjk

ij
ik jk

i i j j k k

λC
Aout

λB
Bout Cout

λA

W

C in Bin Ain F in

(b)

Figure 7.8

Proof. Analogous to the proof of Thm. 6.6 in App. B.4. �

For the sake of completeness, the decomposition from Fig. 7.8b written out al-

gebraically, reads:

U =
(
1CinBinAin ⊗W

)(⊕
i,j,k

Pij ⊗Qik ⊗Rjk

)(
1λC ⊗ S ⊗ 1λB ⊗ T ⊗ V ⊗ 1λA

)
,

for (families of) unitary maps

S : HAout →
⊕
i

HXL
i
⊗HXR

i
, Pij : HλC ⊗HXL

i
⊗HY Lj

→ HCin ⊗H
G

(1)
ij
,

T : HBout →
⊕
j

HY Lj
⊗HY Rj

, Qik : HXR
i
⊗HλB ⊗HZLk

→ HBin ⊗H
G

(2)
ik
,

V : HCout →
⊕
k

HZLk
⊗HZRk

, Rjk : HY Rj
⊗HZRk

⊗HλA → HAin ⊗H
G

(3)
jk
,

W :
⊕
i,j,k

H
G

(1)
ij
⊗H

G
(2)
ik
⊗H

G
(3)
jk
→ HF in .

In the same fashion as above for the quantum SWITCH, now considering Fig. 7.8b,

bending those wires down that correspond toAin, Bin and C in to re-identify the nodes

A, B and C (and swapping some wires for better readability), yields the extended

circuit decomposition of the BW unitary extension as shown in Fig. 7.9 — a fine-

grained compositional structure of the process that makes clear what the pathways

of causal influence are. It is again not difficult to see what the data in Fig. 7.9 is

for the concrete case of the BW unitary extension. All three indices i, j and k are

binary and each ‘indexed space’, i.e. each element of the family of Hilbert spaces as-
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sociated with an indexed wire, is a trivial Hilbert space. For any fixed tuple (i, j, k),

the unitary Pij ⊗Qik ⊗Rjk is of the type HλC ⊗HλB ⊗HλA → HCin ⊗HBin ⊗HAin ,

where all spaces are qubits and all trivial spaces in the domain and codomain have

been suppressed. The unitary Pij : HλC → HCin maps |λC〉 7→ |λC ⊕ (¬i ∧ j)〉, i.e.

Pij is the identity or the NOT gate depending on the values of i and j. The unitaries

Qik and Rjk can similarly be identified through comparison with Eq. (7.9). Thus,

the BW unitary extension can be seen as a direct sum over unitary processes each

of which has an acyclic causal structure.

S T V

W

PijQikRjk

ik
ijjk

i
i jj k k

Aout Bout Cout

λA λB λC

Ain Bin C in

F in

Figure 7.9: Extended circuit decomposition of the BW unitary ex-
tension of the AF process.

Note that actually any unitary process with a causal structure as in Fig. 7.4 has

a decomposition of the form as in Fig. 7.9. Naturally, the question now is whether

a similarly insightful decomposition exists for any unitary extension of a tripartite

process, and maybe even a ‘direct sum over acyclic processes’ type of statement can

be made, analogously to the conclusion in Sec. 7.5.1 concerning any unitary extension

of a bipartite process. Suppose σABCPF = ρUABCF |ABCP is a unitary process with root

node P and leaf node F , then the only causal constraints that are entailed by virtue

of σABCPF being a process are that Xout 9 X in for all X = A,B,C, that is, the

causal structure of the unitary map U is as in Fig. 7.10 (up to possibly further causal

constraints in specific cases). However, the latter causal structure is the same as the

one in Fig. 6.32, which is one for which the derivation of a causally faithful extended

circuit decomposition was left as an open problem. At the time of writing, it is

therefore not known yet whether the unitary extension of a tripartite process always
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has a decomposition as a ‘direct sum over acyclic processes’.

Aout

P out

Bout

Cout

Pa(Ain)

Pa(Bin)

Pa(C in)

Pa(F in)

Figure 7.10: The causal structure defined by the minimum set of
causal constraints of the unitary extension of a tripartite process.

7.6 Cyclicity and classical processes

7.6.1 Cyclic classical split-node causal models

The fact that there exist classical processes that are not compatible with any causal

order of its classical split nodes (see Sec. 7.1.2) provides motivation to also spell

out the special case of the generalised framework of quantum causal models from

Def. 7.1, where the process is, in the sense of Iσ→κ and Iκ→σ, classical. This gives

the following generalisation of the classical split-node causal models from Def. 5.6

to cyclic causal structures.

Definition 7.5 (Classical split-node causal model): A Classical split-node causal

model (CSM) is given by:

(1) a causal structure represented by a directed graph G with vertices correspond-

ing to classical split-nodes X1, ..., Xn,

(2) for each Xi, a classical channel P (X in
i |Pa(Xi)

out) , where Pa(Xi) denotes the

set of parents of Xi according to G, such that κX1···Xn =
∏

i P (X in
i |Pa(Xi)

out)

is a process operator over X1, ..., Xn.

Similarly generalising Def. 5.7, for a classical process κX1...Xn to be Markov for a

directed graph G with classical split nodes X1, . . . , Xn as its vertices, has the obvious

meaning.

Note that the formal 1-to-1 correspondence in the acyclic case between classical

split-node causal models and conventional classical causal models, discussed in detail

in Sec. 5.3, does not extend to general directed graphs. Cyclic directed graphs

have been studied and used in the context of classical causal models (see, e.g.,

Refs. [165–168]), but there, directed cycles are taken to represent classical feedback
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loops and do not exhaust the generality of classical processes including those that

are incompatible with any causal order. Studying the precise relationship between

the usage of cyclic directed graphs in the ‘classical causal modeling literature’ and

the above Def. 7.5 is left for future work.

Note that in Sec. 5.3 classical split-node causal models were introduced primarily

to elucidate the relation between quantum and classical causal models and to obtain

the results in Secs. 5.5 and 5.6. In contrast, here the motivation is essentially the

same as for the quantum case, namely, to use a causal model perspective to study

the ‘exotic’ processes in the formalism.

7.6.2 A classical version of the conjecture

Chapter 5 did not present an explicit classical analogue of the equivalence between

Markovianity and compatibility with a DAG. This was omitted because of the pri-

marily pedagogical purpose of classical split-node causal models in that chapter and

because there is little insight to be gained in merely lifting the ideas from Sec. 3.1.2

on classical causal models from underlying determinism to a formulation in terms of

classical processes. This is different in the context of cyclic CSMs and the following

will briefly spell out classical analogues of the concepts in Sec. 7.3.

First of all, in keeping with the spirit from Sec. 3.1.2, i.e. causal relations as

relations of dependence between variables in an underlying deterministic description,

causal relations pertain to deterministic processes, leading to the following classical

analogue of causal structure of a unitary process.

Definition 7.6 (Causal structure of a deterministic classical process): Given a de-

terministic process κfX1...Xn
, the causal structure of the process is the directed graph

with vertices X1, ..., Xn and an arrow Xi → Xj, whenever X in
j depends on Xout

i

through the function f .

Observe the following (proof straightforward and omitted).

Proposition 7.2 Every deterministic classical process is Markov for its causal struc-

ture.

Thus, just as is the case with any unitary process, any deterministic process

together with its causal structure constitutes a faithful CSM.

In order to make precise the relation between generic classical processes and

causal structure, we now choose to insist on reversibility for closer analogy with the

quantum case in Defs. 7.3 and 7.4.
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Definition 7.7 (Reversible extendibility): A process κX1...Xn is reversibly extendible

if and only if there exists a reversible deterministic process κfX1···XnFλ with an addi-

tional leaf node F and root node λ, such that κX1···Xn =
∑

F in,λout [κ
f
X1···XnFλP (λout)]

for some probability distribution P (λout).

Definition 7.8 (Compatibility with a directed graph): A process κX1···Xn is com-

patible with a directed graph G with nodes X1, ..., Xn, if and only if κX1···Xn is re-

versibly extendible to a deterministic process κfX1···XnFλ1...λn, with an additional leaf

node F , root nodes λi, and a product distribution
∏

i P (λouti ), such that through f ,

X in
i depends neither on λoutj for j 6= i nor on Xout

j for Xj /∈ Pa(Xi) (with Pa(Xi)

referring to G).

The choice of insisting on reversibility of the asserted deterministic process, may

also seem slightly more natural from the point of view of fundamental physics, but

note that this really is just a matter of analogy to the quantum case, since any

deterministic process can be extended to a reversible deterministic process without

introducing further common causes [58]8.

The following analogue of Thm. 7.1 is straightforward due to Prop. 7.2.

Theorem 7.3 If a classical process κX1···Xn is compatible with a directed graph G,

then it is also Markov for G.

The converse direction does not seem straightforward, also in this classical case

(cf. Conjecture 1), and it is stated as a conjecture.

Conjecture 2 If a process κX1...Xn is Markov for a directed graph G, then it is

compatible with G.

Note that the relation to the quantum version, Conjecture 1, is a priori not just

one of being a special case of the latter. It has not been established yet whether

reversible extendibility implies unitary extendibility for a classical process when

seen as a special case of a quantum process [58]. Hence, if Conjecture 2 is true, it

does note immediately give the quantum conjecture on the special cases of classical

prcoesses. Conversely, if Conjecture 1 holds, then Conjecture 2 is not immediately

implied: if a classical process that is Markov for a given graph, admits a unitary

extension (seeing it as a quantum process), which satisfies the corresponding causal

8The statement of this result, Theorem 2 in Ref. [58], only introduces one leaf and one root
node, however, the proof in fact uses an output variable of the additional root node that has a
Cartesian product structure such that it can be thought to constitute n distinct root nodes if there
were n originally given nodes X1, ..., Xn and such that each new root node is a cause of at most
one of the Xi.
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constraints to establish quantum compatibility with the graph, it is not necessarily

clear that any of the unitary extensions define a reversible deterministic classical

process for the special basis fixed by the given classical process.

We close the discussion of classical processes with the following observation.

Theorem 7.4 Given a set of classical split nodes X1, ..., Xn, the set of reversibly

extendible classical processes on X1, ..., Xn coincides with the deterministic polytope.

Proof: See App. C.5. �

Thus, in case Conjecture 2 is true, it follows that all classical processes that are

part of a classical split-node causal model, i.e. Markov for a directed graph, have to

lie inside the deterministic polytope. A well-known example of a classical process

that lies outside the deterministic polytope was found in Ref. [52] (therein denoted

Êex1). One can easily check that this process is indeed not Markov for any directed

graph9, hence in keeping with Conjecture 2.

7.7 Quantum causal inference 2.0

Let us return to the causal inference perspective that already underlay Sec. 5.7.3.

Call a process σA1...An causally explicable if it can be seen to arise from a (possibly

cyclic) quantum causal model with process σA1...AnL, that has a set L of additional,

latent nodes and is such that for some intervention τL, the original process is obtained

back, σA1...An = TrL
[
σA1...AnL τL

]
. One of the main questions then becomes which

quantum processes are causally explicable at all within the presented framework.

The following does not present much substantial new insight, but is included for

the sake of completeness and overview. It essentially gives a case differentiation of

how a process σA1...An can stand to its induced graph Gσ (cf. Def. 5.24), presented

as the sketch of a causal discovery algorithm that generalises the one from Ref. [121]

and extends one from Sec. 5.7.3 to the generalised framework.

Given a process σA1...An , calculate Gσ, that is, the parental sets {Pa(Ai)}ni=1 by

checking the corresponding n(n− 1) linear constraints from Eq. (5.35) in Sec. 5.7.3.

Then check whether Gσ is a DAG or not.

(1) If it is a DAG, check whether σA1...An is Markov for Gσ, i.e. check whether

the marginal channels, ρAi|Pa(Ai) and ρAj |Pa(Aj) (already calculated as part of

9Note that Rem. 5.9 generalises to cyclic directed graphs and applies in particular to the subset
of classical processes. It is therefore enough to check Markovianity for the induced direct-signalling
directed graph.
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finding Gσ), commute whenever Pa(Ai) ∩ Pa(Aj) 6= ∅ and i 6= j and if so,

whether σA1...An =
∏

i ρAi|Pa(Ai)
10.

(A) If yes, return (Gσ, acyclic, Markov).

(B) If not, check whether σA1...An is a quantum comb.

(a) If a comb, return (Gσ, acyclic, not Markov, Comb).

(b) Otherwise return (Gσ, acyclic, not Markov, not Comb).

(2) If Gσ is not a DAG, check whether σA1...An is Markov for Gσ (same as in (1)).

(A) If yes, return (Gσ, cyclic, Markov).

(B) If not, return (Gσ, cyclic, not Markov).

First, note that Rem. 5.9 generalises to arbitrary directed graphs, i.e. a process

σA1...An is either Markov for its induced graph Gσ and then for any directed graph

which contains Gσ as a subgraph, or else, it is not Markov for any directed graph

with vertices A1, . . . , An. Causal discovery can therefore be reduced to the search

of faithful (cyclic) QCMs in the sense as explained in Sec. 5.7.3. Furthermore, note

that classical processes and their explanations in terms of (cyclic) classical split-node

causal models are contained in the above as special cases11

Now, in case of (Gσ, acyclic, Markov) or (Gσ, cyclic, Markov) the given process

σA1...An already defines a faithful quantum causal model, i.e. Gσ is a candidate

causal explanation of the given process. As already mentioned in Sec. 5.7.3, in case of

(Gσ, acyclic, not Markov, Comb), one concludes that σA1...An is causally explicable,

but that common causes are necessarily missing in the set of nodes {A1, . . . , An}.
The cases of (Gσ, acyclic, not Markov, not Comb) and (Gσ, cyclic, not Markov)

are inconclusive and contain causally explicable as well as inexplicable ones — a

distinction that essentially comes down to unitary extendibility. Note that Ref. [123]

presented a necessary, but not sufficient condition for unitary extendibility, and

an easy-to-check condition that allows to determine whether a process is unitarily

extendible, is still missing. Ignoring such computational issues, in case σA1...An is

not Markov, but unitarily extendible, the unitary extension defines a QCM, hence

σA1...An is causally explicable and one concludes that common causes to the nodes

{A1, . . . , An} are necessarily missing. It is left for future work to study in detail

10Checking Markovianity thus amounts to checking at most n(n−1)+1 further linear constraints.
11The remainder of this section and the subsequent one discuss the dependence of causal infer-

ence on the validity of the quantum Conjecture 1. Also for the classical Conjecture 2 an analogous
discussion can be held, but will be omitted.
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when and how one can infer more about the kind of latent common causes that

need to be involved, such as which subsets of {A1, . . . , An} they affect. In case

σA1...An is not unitarily extendible, then — assuming the validity of Conjecture 1

— σA1...An cannot possibly arise from a QCM, hence is not causally explicable. A

discussion of what to conclude in case Conjecture 1 is false is postponed to the next

section.

7.8 Discussion

This chapter answered positively the question from Sec. 7.2.1 of whether or not a

framework of quantum causal models can be developed that also applies to causally

nonseparable processes. It did so by extending the framework from Chap. 5 to cyclic

causal structures. Now, what is gained through that extension?

As illustrated through the examples of the quantum SWITCH (Sec. 7.4.1) and

the AF process (Sec. 7.4.2), the framework provides the grounds on which certain

causally nonseparable processes can now be given a causal explanation — in terms of

cyclic causal structure. The conceptual step thereby rendered possible is to go from

seeing certain processes as having an ‘indefinite causal order’ to having a definite

causal structure, where we only had to revise what the properties of the latter are

in general. Similarly, processes that are called noncausal — a term suggesting they

cannot be understood causally — turn out, at least some of them, to only defy the

notion of causal (partial) order, but are very much amenable to causal analysis. The

new notions of ‘causal’ and ‘noncausal’, as it were, are whether a process σA1...An

is causally explicable or not within the framework (see previous section for causal

explicability).

The main insight may thus be seen to be that the notion of cyclic causal structure

can be given rigorous meaning within the new framework and the main, albeit

tentative proposal to take that notion seriously.

Cyclicity, causal (non)separability and extended circuit decompositions

Section 7.2.2 observed the difference between, on the one hand, the bipartite

cyclic directed graph in Fig. 7.1a not being a possible causal explanation12 of any

bipartite process σAB and, on the other hand, the tripartite cyclic graph in Fig. 7.1b

being a possible causal explanation of some processes σABC (namely, whenever the

latter is Markov for the graph in Fig. 7.1b). It was claimed that this difference comes

down to the fact that in the second case there is an additional common cause to A

12Restricting to faithful quantum causal models here.
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and B given by C, which manifests itself in the overlap of the non-trivial action of

the two commuting operators ρA|BC and ρB|AC from Eq. (7.4) on Cout, and that it

is the corresponding decomposition of the operators due to Lem. 4.1, which allows

to understand the ‘cycle of causal influence without leading to contradictions’.

One way to substantiate this claim is provided by the results from Sec. 7.5 in

terms of extended circuit decompositions. A unitary process σABCF with leaf node F

and root node C has an extended circuit decomposition such that, loosely speaking,

in any one subspace there is at most signalling from A to B or vice versa [3]. Now,

the marginal process from marginalising over the node F is precisely of the form as

in Eq. (7.4)13. Similarly, the extended circuit decomposition of the BW extension of

the AF process turned out to be a direct sum over unitary processes with an acyclic

causal structure (see Fig. 7.9).

This is suggestive of that there might be a more general understanding to be

obtained concerning the relation between causally nonseparable processes and ex-

tended circuit decompositions — it is at least conceivable that all unitary processes

might turn out to be ‘direct sums over unitary processes with acyclic causal struc-

ture’14. This provides further motivation to go beyond the thus far obtained results

in Sec. 6.6 and, ultimately, to try to prove or else disprove Hypothesis 1. Together

with the result from Ref. [3] that a unitary process is causally nonseparable if and

only if it has a cyclic causal structure15, there lies a potential for a substantially

better understanding of causally nonseparable processes.

What if Conjecture 1 is false?

Suppose Conjecture 1 is false. How does that change the set of causally explica-

ble processes and their status? A priori, a false Conjecture 1 leaves two conceiveable

logically distinct situations. Either all processes σA1...An that are Markov, are uni-

tarily extendible, however, they do not generally allow for a unitary extension with

the appropriate causal structure so as to establish compatibility with Gσ. Alter-

natively, it is not even true that all processes that are Markov, also are unitarily

extendible. In either case, if Conjecture 1 is false, there exist processes that sat-

isfy the Markov condition, but where it is impossible to give that Markovianity the

meaning otherwise intended by the framework.

13Provided Conjecture 1 holds, also the converse is true, i.e., whenever a tripartite process of
the form as in Eq. (7.4) is given, then it has an extension to a unitary process which has an
extended circuit decomposition essentially of the same form as in Fig. 7.6 (up to some additional
local causes).

14I thank J. Barrett for formulating this intuition clearly for the first time.
15This result (Theorem 4 in Ref. [3]) is not presented in this thesis as it is largely due to my

co-authors, in particular O. Oreshkov.)
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Instead of abandoning the notion of cyclic quantum causal models altogether,

the proposed lesson to take away in such a case would be that, beyond acyclic causal

structures, the Markov condition is a misleading one and has to be abandoned. In

order to explain this further, first note that also in the acyclic regime, one could have

presented the framework as built on two notions: (1) the definition of a quantum

causal model as a unitary process with an acyclic causal structure (2) the notion

of compatibility with a DAG from Def. 5.3 as the relevant condition for when to

take a particular DAG as a candidate causal explanation of a non-unitary process.

What the equivalence in Thm. 5.2 achieves is just establishing a more convenient

definition of a quantum causal model to work with, seeing that in so far as it is an

empirical framework, one will rarely be dealing with unitary processes, but typically

with non-unitary process operators estimated from experimental data. This is in fact

mirroring how Pearl presents classical causal models in Ref. [9], namely, as functional

models and only once the equivalence between Markovianity and compatibility16 is

established, the working definition of a causal model is a DAG G and a distribution

that is Markov for G.

In keeping with the outlined spirit, in case Conjecture 1 is false, the general

framework would have to be presented as: (1) the definition of a quantum causal

model as a unitary process together with its causal structure and (2) the notion

of compatibility with a directed graph from Def. 7.4 as the relevant condition for

when to take a particular directed graph as a candidate causal explanation of a non-

unitary process. Thus, in the template of an algorithm sketched in Sec. 7.7, step

(2) would then be dropped, while it remains to be the case that σA1...An is causally

explicable if and only if is unitarily extendible, as previously, only with a changed

definition of a QCM that underlies ‘causal explicability’. If causal structure pertains

to unitary processes, it indeed should be a tautology that causal explicability reduces

to unitary extendibility.

Physicality of processes

One of the main open questions of the field, as mentioned in Sec. 7.1, concerns

which processes are ‘physical’, that is, realisable in nature in some sense or other.

In Ref. [123], unitary extendibility was originally proposed as a postulate to discern

physical from unphyscial processes, that is, unitary extendibility is considered a

necessary, albeit maybe not sufficient, condition for physicality.

The motivation for this proposal came primarily from observing ‘reversibility’ as

a cherished principle in physics together with the fact that, as shown in Ref. [123],

16This terminology was not used by Pearl, but introduced in Ref. [4] and is useful to succinctly
describe Pearl’s approach.
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unitary processes are precisely those, which map unitary channels to unitary chan-

nels, i.e. they are the higher-order maps that preserve purity and reversibility.

Independently from the validity of Conjecture 1, modulo the wrinkle explained

just above, the unitarily extendible processes are precisely the causally explica-

ble ones. One may see this as an independent reason for considering unitary ex-

tendibility a necessary condition for physicality, asserting that only processes that

are amenable to a causal analysis can be physical.
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Chapter 8

Conclusions

8.1 Summary

This section summarises the main results presented in this thesis. For more in-depth

discussions see in particular Secs. 5.2.4, 5.7 6.9 and 7.8.

Recall from the introduction in Chapter 1 the two steps (1) and (2), that were

formulated as an approach to provide a conceptual grounding for a quantum causal

model framework. Chapter. 4 took step (1) : in Def. 4.6 the direct cause relation

was defined as the relation between quantum nodes C and E relative to a unitary

process σCE... = ρUCE...|CE... with the causal connection given by influence from Cout

to Ein in the associated unitary map U . Any unitary process then has a causal

structure (Def. 4.7) given by the set of all direct cause relations, representable as

a directed graph. Special cases of unitary processes are ordinary unitary channels

ρUC1...Ck|B1...Bn
, where B1, . . . , Bn are root nodes and C1, . . . , Ck are leaf nodes, as well

as broken unitary circuits as described in Sec. 5.2.2.

The main idea is that there always is an underlying unitary process, while the

generic object as a description of the behaviour of a set of quantum nodes is a

non-unitary process. What quantum causal models are supposed to formalise is

how analysing possible causal explanations in the latter case works. As far as

acyclic causal structures are concerned, Chapter 5 studied the framework of quan-

tum causal models as defined in Def. 5.1, originally proposed by Allen et al. in

Ref. [4]. Section 5.2.3 took step (2) from our ‘scheme’ and established this frame-

work as the one that captures giving causal explanations in accordance with the

definitions from Chapter. 4 : Theorem 5.2 finds equivalence between compatibility

of a process σA1...An with a DAG G with vertices A1, . . . , An and Markovianity for

G (see Defs. 5.3 and 5.2, respectively).

Section 5.3 gave a detailed analysis of how quantum and classical causal models
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relate to each other, the exposition of which made use of the ‘intermediate kind’,

classical split-node causal models. Section 5.4 presented various notions of inde-

pendence for classical processes and quantum processes that generalise those of

unconditional and conditional independence for classical probability distributions.

All discussed notions can be seen as special cases of quantum relative independence

from Def. 5.15. See Props. 5.6 and 5.3 for corresponding operational statements for

quantum and classical processes, respectively. Section 5.5 proved that d-separation

is sound and complete for quantum relative independence. Section 5.6 presented

quantum generalisations of all three rules of the classical do-calculus, together with

operational statements implied by (equivalent to) the corresponding consequent for

quantum (classical) processes. See Sec. 5.6.4 for an overview.

Chapter 6 had two aspects: first, the (algebraic) derivation of decompositions

of unitary maps implied by their causal structure in terms of sequential, tensor

product and direct sum compositions of unitary maps, and, second, the graphical

representation of such decompositions, which relied on the introduction of extended

circuit diagrams as a new kind of diagram. Section 6.6 presented causally faithful

extended circuit decompositions for all unitary maps with arbitrary number of input

systems if at most three output systems and with arbitrary number of output systems

if at most three input systems, as well as for some unitary maps with 4 input and

4 output systems. This allows an understanding of the causal structure of unitary

maps in compositional terms, where this was previously not possible.

Chapter 7 introduced a generalised framework of quantum causal models (see

Def. 7.1), where the causal structure is allowed to contain directed cycles, repre-

sentable by a directed graph, rather than a DAG. The proposal is that the novel

cyclic quantum causal models may help shed light on causally nonseparable pro-

cesses (see Sec. 7.1.1) and indeed, Sec. 7.4 showed the quantum SWITCH and a

well-known process due to Araújo and Feix to be examples of cyclic quantum causal

models. Section 7.5 showed how the results on extended circuit decompositions

from Chapter 6 can provide fine-grained and insightful decompositions of causally

nonseparable processes. Section 7.7 summarised what the immediate observations

on quantum causal inference are, both for acyclic and cyclic causal structures, and

sketched a quantum causal discovery algorithm.

As was claimed in Chapter 4, all results essentially come down to and are facili-

tated by two things: Theorem 4.1, the factorisation of the CJ operator of a unitary

channel into commuting factors according to its causal structure, together with

Lem. 4.1 that relates the commutation relations to decompositions of the underly-

ing Hilbert spaces. It was the factorisation property from Thm. 4.1 that allowed
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us to see that the causal structure of a unitary transformation is a DAG at all (see

Sec. 4.1). That same factorisation also is what the quantum Markov condition is

understood to reflect — it comes from the underlying unitary process and is only

lost if one marginalises over common causes. It is the pairwise commutation rela-

tions in light of Lem. 4.1 that enables the nontrivial part of the proof of Thm. 5.2,

the proofs related to operational statements in Secs. 5.4 and 5.6, and, above all,

that yields the decompositions discovered in Chapter 6, manifesting a tight relation

between causal structure and direct sum structures. This highlights how the whole

thesis can, also from a technical point of view, be seen as the exploration of quantum

causal structure as defined in the foundational Chapter 4.

8.2 Outlook

A detailed discussion of the open questions can be found within the respective

chapters. The following only briefly mentions again what could be considered to be

the most important directions for future work.

Concerning the framework of acyclic quantum causal models, as covered in

Chap. 5, a focus should lie on applications and practical problems. This may include

extending the causal discovery algorithm so that it reveals more details about the

nature of latent common causes in case of non-Markovianity of a given process σ

for its induced graph Gσ (see Sec. 5.7.3). It may also include formulating a more

practically relevant kind of causal discovery problem, where the given data is not

a (full) process operator, as well as exploring whether there is a problem for which

the generalised do-calculus rules are useful. Eventually, it would be interesting to

ask whether the framework has anything to say about the existence of a meaningful

notion of counterfactual relations in a quantum context.

Concerning extended circuit decompositions, studied in Chapter 6, the main

open question of course is whether Hypothesis 1 is true or false. Knowing causally

faithful extended circuit decompositions has already proven insightful for the struc-

ture of causally nonseparable processes in Sec. 7.5 and might quite generally prove

useful for applications in quantum information theory. Hence, making progress with

further causal structures, which were left open in Sec. 6.6, and, ultimately, proving

or disproving the hypothesis would be valuable. Extended circuit diagrams were

introduced informally in Sec. 6.4 and their formalisation as a graphical language

with precise syntax and semantics should also be pursued.

Concerning cyclic causal structures, as discussed in Chapter 7, one main open

problem is proving the validity or otherwise of Conjecture 1. See Sec. 7.8 for a
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discussion of what the consequence in either case is. Generally, it is important

to further explore the framework and to consolidate the conceptual meaning of

cyclic causal structure. This may well open doors, especially in combination with

the techniques from Chap. 6, into a better understanding of causally nonseparable

processes and even into the realisability of such processes (see Sec. 7.8). The relation

to classical causal models with its use of cyclic graphs to represent feedback loops

should also be studied and understood precisely.

Finally, one should explore to what extent the basic definitions of causal relations

and causal structure, as well as that of quantum causal models extend to infinite

dimensional Hilbert spaces.

8.3 Reflections

This section concludes the thesis with a few reflections and questions.

Quantum vs. classical causal explanations

One can present the relation between quantum causal models and classical causal

models as one that focuses on similarities as much as on differences. Similarity con-

sists in the initial motivation to make causal reasoning precise and scientific. Similar-

ity also consists in a largely analogous form that the definitions of the main concepts

themselves take, as well as the overall presentation of the material in Chap. 5 and

Chap. 3. However, there also are crucial differences. One that was emphasised

throughout the thesis is the conceptual and empirical difference between a probabil-

ity distribution (suppose estimated from observational data) and a quantum process

(or a classical process for that matter). Another difference is slightly more subtle

and concerns both what the explanandum is, that is, what begs the question, and

the explanans, namely where our initial intuition and confidence rests when it comes

to the criterion for a successful causal explanation. This is most clearly pinned down

in the simplest of cases, the common cause scenario, which was discussed in great

detail in Ref. [4], as summarised in Sec. 3.2.5.1, and is recapitulated below to reflect

on the difference.

Classically, the fact in need of explanation is the correlation between two vari-

ables, say Y and Z, and what Reichenbach’s common cause principle demands (in

case neither is a cause of the other) really is quite intuitive: once one holds the com-

plete common cause variable X fixed, the correlation between Y and Z disappears,

because there is nothing else anymore that ‘ties them together’. Now, one can derive

the principle as a theorem based on a functional model view, that is, by assuming
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an underlying determinism (see Sec. 3.1.2 and Ref. [4]). If one had doubts about the

universal validity of the principle in the first place and independently from quantum

physics (see Ref. [7] for an overview of challenges to the principle), then the deter-

ministic perspective may or may not add much credence to the principle. However,

for all practical purposes, the principle’s important role in scientific reasoning seems

to remain in any case.

Quantumly, the situation is different. The closest analogue considers a given

state ρBC that is not of a product form, i.e. ρBC 6= ρB ⊗ ρC , and sees that as a fact

in need of causal explanation. According to the quantum common cause principle

(Principle 2) if system A is a complete common cause, then for the channel ρBC|A

that gives rise to the state ρBC via ρBC = TrA[ρBC|A ρA] for some state ρA, it holds

that ρBC|A = ρB|A ρC|A. Now, even given one knows that ρBC|A = ρB|A ρC|A holds

and that ρA was successfully prepared at the common cause A, nothing changes the

form of the state ρBC and that for at least some measurements at B and C the

outcomes will be correlated conditional on the preparation of ρA. In that respect

the situation is no different than if ρBC was described as arising from a channel for

which ρBC|A′ 6= ρB|A′ ρC|A′ . So, the intuition for the principle does not come from

an intuitive understanding of the constraint it imposes. Instead, the credence in the

principle stems entirely from the definition of causal relations and causal structure

in Chap. 4 : as discussed in Sec. 3.2.5.1, only if ρBC|A = ρB|A ρC|A holds, can one

justifiably claim A is a complete common cause based on those definitions [4].

For the general case of an arbitrary causal structure given by some DAG, it is

again the definition of causal relations from Chap. 4, from which credence in the

general causal principle (Principle 3) comes. This was established by the first main

results in Sec. 5.2.

Who or what carves up the universe?

It is worth emphasising again that the causal structure of a unitary transfor-

mation U : HA1 ⊗ . . . ⊗ HAn → HB1 ⊗ . . . ⊗ HBk is only well-defined given that

the specification of the map comes with a fixed tensor product structure for domain

and codomain, with the subsystems taking the role of causal relata. A coarsened or

a more fine-grained factorisation, or a completely different factorisation altogether,

obviously leads to a different causal structure. Similarly, the causal structure of a

unitary process σA1...An is only defined relative to the given set of quantum nodes.

In particular, whether the causal relation between nodes Ai and Aj is a direct or

indirect one depends on the overall set of nodes, just as it depends on the choice of

variables for classical causal models.
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This can be regarded an instance of ‘a feature, not a bug’ — causal reasoning only

makes sense relative to a set of considered relata. However, the story about where

this set comes from is not part of the framework of causal models that formalises

causal reasoning about any given set. In contexts where classical causal models are

useful, very different purposes or theories may tell us what the relevant relata are —

clearly, a judge and a biochemist will generally be looking for quite different sorts

of things as relata (also see discussion on difference between causes and background

conditons in philosophy of causation [94]). Similarly in the quantum case, what-

ever it is that fixes a choice of systems or nodes also influences what status one

may attribute to them. In a realist view, the factorisation of a Hilbert space that

determines the causal analysis may be the ‘preferred’ one that corresponds to the

systems out there. In an operationalist view, the kinds of nodes that have meaning

are those that are defined by what an agent can do in a lab. The concept of a

quantum node is abstract and generic, and intended to fit any approach, the hope

being that the structure of causal reasoning is independent from one’s choice and

correctly formalised by the framework of quantum causal models.

That said, it is an important task to develop a clear understanding of the de-

pendence of the presented work, in particular the definition of causal relations and

causal structure in Chap. 4, on assuming the standpoint of a particular interpreta-

tion of the quantum formalism. Do the definitions fix where in the ontic-epistemic

divide of the quantum formalism causal relations reside? Can the definitions be

sound from the perspective of, for instance, a relational interpretation [169, 170] or

does it become a nonsensical undertaking from the beginning? Would it be naive

to even consider the possibility that, conversely, a formalisation of causal reasoning,

for instance as undertaken in this thesis, could provide new angles on old debates?

Symmetric causal relations?

The introduction started the motivation for this work by asking what to make of

the progress due to classical causal models from the perspective of physics. A first

reaction right then could have been that there should be no place at all in funda-

mental physics for caring about causal relations, as echoed in Russell’s famous line

“The law of causality, I believe, like much that passes muster among philosophers, is

a relic of a bygone age, surviving, like the monarchy, only because it is erroneously

supposed to do no harm.” [171]. Not only do physics textbooks (mostly) not need

the concept of causation to present our best candidates for fundamental theories,

but also (almost) all equations of motion are time-reversal invariant. Deeming the

arrow of time a non-fundamental phenomenon, similarly deprives causation of a
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fundamental status — so at least the claim, assuming that the causal arrow must

hinge on the temporal one.

While this thesis has nothing to say about the origin of the arrow of time,

it seems there are at least two reactions to such criticism that might let one see

value in pursuing quantum causal models. First, as a matter of fact, the way the

quantum formalism is employed and used to describe experiments in the lab, or in

the development of technology, is in a time asymmetric way. So, even if deemed

non-fundamental, causal reasoning may still be a crucial part of scientific practice,

in particular when it involves quantum physics.

Second, it is a priori not the case that a non-fundamental status of the perceived

temporal asymmetry necessarily leads to a debunking of causation in physics. One

may indeed contemplate the possibility of causation being more fundamental than

an arrow of time. This could be in the sense of reducing the temporal arrow to

a causal arrow. However, this could also be in the sense of asserting the causal

connection to constitute a symmetric relation, while the directionality, with which

we usually regard the causal relation as asymmetric — as one between cause and

effect — reduces to the same temporal arrow as ever, that is, insofar as there is a

causal arrow it is the same as the temporal arrow, but this is not the essence of the

causational link. While any solid argument for any possible assertion of how causal

and temporal relations stand to each other is far beyond the scope of this thesis,

note that Thm. 6.4 in fact establishes a sense of reversibility of the causal structure

of a unitary transformation. Hence, could this fact potentially be interpreted as

supporting the idea that causal structure is a set of symmetric relations amounting

to which systems are causally connected to each other — no matter which ‘way

round one looks at’ the unitary transformation?

Such and other difficult questions rely on having defined causal relations, for one

otherwise does not know what one is debunking or arguing for. A small contribution

towards at least one possible way of doing that, is what this thesis hopes to have

done.
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“Witnessing causal nonseparability,” New Journal of Physics 17 no. 10,

(2015) 102001.

181

http://dx.doi.org/10.1103/PhysRevA.88.022318
http://dx.doi.org/10.1103/PhysRevA.88.022318
https://link.aps.org/doi/10.1103/PhysRevA.88.022318
http://dx.doi.org/10.1103/PhysRevA.86.040301
https://link.aps.org/doi/10.1103/PhysRevA.86.040301


[49] O. Oreshkov and C. Giarmatzi, “Causal and causally separable processes,”

New Journal of Physics 18 no. 9, (2016) 093020.

http://stacks.iop.org/1367-2630/18/i=9/a=093020.
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[104] G. Hofer-Szabó and P. Vecsernyés, “Noncommuting local common causes for

correlations violating the clauser–horne inequality,” Journal of mathematical

physics 53 no. 12, (2012) 122301.
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[133] C. Bény, “Causal structure of the entanglement renormalization ansatz,”

New Journal of Physics 15 no. 2, (2013) 023020.

[134] B. Schumacher and R. F. Werner, “Reversible quantum cellular automata,”

arXiv:quant-ph/0405174 [quant-ph].

[135] P. Arrighi, V. Nesme, and R. Werner, “One-dimensional quantum cellular

automata over finite, unbounded configurations,” in International

Conference on Language and Automata Theory and Applications, pp. 64–75,

Springer. 2008.

[136] P. Arrighi, R. Fargetton, V. Nesme, and E. Thierry, “Applying causality

principles to the axiomatization of probabilistic cellular automata,” in

Conference on Computability in Europe, pp. 1–10, Springer. 2011.

[137] A. Shakeel and P. J. Love, “When is a quantum cellular automaton (qca) a

quantum lattice gas automaton (qlga)?,” Journal of Mathematical Physics

54 no. 9, (2013) 092203.

[138] T. C. Farrelly and A. J. Short, “Causal fermions in discrete space-time,”

Phys. Rev. A 89 (Jan, 2014) 012302.

https://link.aps.org/doi/10.1103/PhysRevA.89.012302.

[139] G. M. D’Ariano and P. Perinotti, “Derivation of the dirac equation from

principles of information processing,” Phys. Rev. A 90 (Dec, 2014) 062106.

https://link.aps.org/doi/10.1103/PhysRevA.90.062106.

[140] A. Bisio, G. M. D’Ariano, and P. Perinotti, “Special relativity in a discrete

quantum universe,” Phys. Rev. A 94 (Oct, 2016) 042120.

https://link.aps.org/doi/10.1103/PhysRevA.94.042120.

[141] P. Arrighi and S. Martiel, “Quantum causal graph dynamics,” Physical

Review D 96 no. 2, (2017) 024026.

189

http://arxiv.org/abs/quant-ph/0405174
http://dx.doi.org/10.1103/PhysRevA.89.012302
https://link.aps.org/doi/10.1103/PhysRevA.89.012302
http://dx.doi.org/10.1103/PhysRevA.90.062106
https://link.aps.org/doi/10.1103/PhysRevA.90.062106
http://dx.doi.org/10.1103/PhysRevA.94.042120
https://link.aps.org/doi/10.1103/PhysRevA.94.042120
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[167] P. Forré and J. M. Mooij, “Markov properties for graphical models with

cycles and latent variables,” arXiv preprint arXiv:1710.08775 (2017) .
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Appendix A

Proofs and supplementary

material Chapter 5

A.1 Useful tools I

Lemma 4.1, which will play a central role in many of the following proofs, stated

how the commutation of the CJ operators of two channels, ρA|CD and ρB|DE, implies

a decomposition of HD, on which the non-trivial actions of both operators overlap,

namely HD =
⊕

iHDLi
⊗HDRi

, such that ρA|CD ρB|DE =
⊕

i ρA|CDLi ⊗ ρB|DRi E. The

below lemma describes a ‘nested’ such decomposition and will be useful momentarily.

Lemma A.1 Suppose the CJ operators of three channels of the form ρA|CD, ρB|DEF

and ρH|DEG commute pairwise. Then there exists a ‘nested’ decomposition of the DE

Hilbert space into orthogonal subspaces of the form

HD ⊗HE =
(⊕

i

HDLi
⊗HDRi

)
⊗HE

=
⊕
i

HDLi
⊗
(⊕

ji

H(DRi E)Lji
⊗H(DRi E)Rji

)
(A.1)

such that the given channels are block diagonal with respect to this decomposition in

the following way:

ρA|CD =
∑
i

ρA|CDLi ⊗ 1(DRi )∗ , (A.2)

ρB|DEF =
∑
i,ji

1(DLi )∗ ⊗ ρB|(DRi E)Lji
F ⊗ 1((DRi E)Rji

)∗ , (A.3)

ρH|DEG =
∑
i,ji

1(DLi )∗ ⊗ 1((DRi E)Lji
)∗ ⊗ ρH|(DRi E)Rji

G . (A.4)
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Proof. The proof is a mere iterative application of Lem. 4.1. We will not give

a full proof here since Lem. 6.3, proven in App. B.5, is the ‘same’ statement only

stated more carefully and does not suppress the unitary maps which define the

‘decompositions’. �

Remark A.1 An important special case of commuting CJ operators of channels

is when the overall channel is a unitary one. Suppose ρUAB|CDE = ρA|CDρB|DE

represents a unitary channel. Lem. 4.1 implies a block-diagonal form ρUAB|CDE =⊕
i ρA|CDLi ⊗ ρB|DRi E relative to a decomposition of HD into orthogonal subspaces.

However the unitary of U means ρUAB|CDE is a rank-1 operator and cannot have

contributions from more than one subspace. Hence, there has to exist a global fac-

torisation HD = HDL⊗HDR such that ρUAB|CDE = ρA|CDL ⊗ ρB|DRE. An analogous

statement holds for the nested decomposition in Lem. A.1.

A.2 Proof of Theorem 5.1

Let G be a DAG with nodes A1, . . . , An, labelled such that the total order A1 <

· · · < An is compatible with the partial order defined by G. Consider a unitary

process σA1...Anλ1...λnF = ρUA1...AnF |A1...Anλ1...λn
which respects the causal constraints

in Eq. 5.3 with Pa(Ai) referring to the DAG G. The causal parents of Ai as defined

by the unitary process thus have to be contained in Pa(Ai)∪{λi} and from Thm. 4.1

it then follows that

ρUA1...AnF |A1...Anλ1...λn
= ρF |A1...Anλ1...λn

( n∏
i=1

ρAi|Pa(Ai)λi

)
. (A.5)

Noting that all root nodes λi have a trivial input space, it will be convenient to write

Hλi for Hλouti
. Similarly for the leaf node F , write HF for HF in . The total order

A1 < · · · < An can be uniquely extended to the 2n + 1 nodes: λ1 < A1 < λ2 < A2

< ... < λn < An < F . Now consider the following data:
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λ1

A1

λ2

A2

...

λn

An

F

Figure A.1: DAG G′

ρF |λ1A1...λnAn

ρAn|Pa(An)λn

ρλn
...

ρA2|Pa(A2)λ2

ρλ2

ρA1|λ1

ρλ1

︸ ︷︷ ︸
Set A

ρF |λ1A1...λnAn

ρAn|λ1A1...λn−1An−1λn

ρλn
...

ρA2|λ1A1λ2

ρλ2

ρA1|λ1

ρλ1

︸ ︷︷ ︸
Set B

The DAG G′ is obtained from drawing an arrow from λi to Ai for all i, drawing

an arrow into F from all preceding nodes and drawing arrows between nodes Ai as

given by the original DAG G. The product of channels in Set A, where Pa(Ai) refers

to the parental structure of G, is by construction Markov for G′. Focusing on the

channels in Set B, these are obtained by padding those in Eq. A.5 with identities:

ρAi|λ1A1...λi−1Ai−1λi := ρAi|Pa(Ai)λi ⊗ 1(Pa(Ai)λi) , (A.6)

where (Pa(Ai)λi) denotes the relative complement of Pa(Ai) ∪ {λi} in the set

{λ1, A1, . . . , λi−1, Ai−1, λi} and for better readability the notation in Eq. (A.6) sup-

presses that it is the duals of the output spaces of the nodes in (Pa(Ai)λi) that

the identity operator acts on. Since the main difficulty in this proof really just is

maintaining a clear notation in clunky bookkeeping, we will generally suppress the

‘star’ in the subscript of identity operators, letting the context make clear on which

space the identity acts. It follows from the pairwise commutation of the operators

defined in Eq. A.6 that

[ρA1|λ1 , ρA2...AnF |λ1A1...λnAn ] = 0 . (A.7)

The unitarity of U , along with Thm. 4.1 and Rem. A.1 then imply a factorization

Hλ1 = H(λ1)L ⊗H(λ1)R such that

ρA1|λ1 = ρA1|(λ1)L ⊗ 1(λ1)R , (A.8)

ρA2...AnF |λ1A1...λnAn = ρA2...AnF |(λ1)RA1...λnAn ⊗ 1(λ1)L . (A.9)
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The proof now proceeds via iterative use of Lem. A.1. In order to avoid clutter in

the remainder of this proof, we will furthermore often write X instead of HX , e.g.,

writing λ1 = (λ1)
L ⊗ (λ1)

R, instead of Hλ1 = H(λ1)L ⊗ H(λ1)R . In the second step,

the fact that

[ρA2|λ1A1λ2 , ρA3...AnF |λ1A1λ2A2...λnAn ] = 0 , (A.10)

along with Lem. A.1 and Rem. A.1, implies a factorization

(λ1)
RAout

1 λ2 = ((λ1)
RAout

1 λ2)
L ⊗ ((λ1)

RAout
1 λ2)

R ,

such that

ρA2|λ1A1λ2 = ρA2|((λ1)RAout
1 λ2)L ⊗ 1((λ1)RAout

1 λ2)R ⊗ 1(λ1)L ,

ρA3...AnF |λ1A1λ2A2...λnAn = ρA3...AnF |((λ1)RAout
1 λ2)RA2...λnAn ⊗ 1((λ1)RAout

1 λ2)L ⊗ 1(λ1)L .

By using the short-hand notation

(
←−−−−
Aiλi+1) := (· · · (((λ1)RAout

1 λ2)
RAout

2 λ3)
R · · ·Aout

i λi+1)
R , (A.11)

the iteration of the above step yields the factorization

λ1 ⊗ Aout
1 ⊗ . . .⊗ λn ⊗ Aout

n = (λ1)
L ⊗ ((λ1)

RAout
1 λ2)

L ⊗ (((λ1)
RAout

1 λ2)
RAout

2 λ3)
L

⊗ ((
←−−
A2λ3)A

out
3 λ4)

L ⊗ ... ⊗ ((
←−−−−−−
An−2λn−1)A

out
n−1λn)L

⊗ ((
←−−−−−−
An−2λn−1)A

out
n−1λn)R ⊗ Aout

n , (A.12)

along with channels on the respective factors such that

ρUA1...AnF |A1...Anλ1...λn
= ρA1|(λ1)L ρA2|((λ1)RAout

1 λ2)L (A.13)

ρ
A3|((

←−−−
A1λ2)Aout

2 λ3)L
... ρ

An|((
←−−−−−−−
An−2λn−1)Aout

n−1λn)
L

ρ
F |((
←−−−−−−−
An−2λn−1)Aout

n−1λn)
RAout

n
.

Note that all operators appearing on the right hand side of Eq. A.13 act on distinct

spaces. The product of the n+ 1 operators (recalling the convention of suppressing

identities) is therefore identical with the tensor product of the same n+1 operators:

ρA1|(λ1)L ⊗· · ·⊗ ρ
F |((
←−−−−−−−
An−2λn−1) Aout

n−1λn)
RAout

n
. Eq. A.13 then expresses that the unitary

channel corresponding to U is equal to the tensor product of channels on the right

hand side, each of which thus has to be a unitary channel.
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Systems A′i (i = 1, ..., n), corresponding to the unbroken wires in the circuit of

Fig. 5.4, are now defined using Eq. A.12 as follows:

HA′1
∼= H(λ1)R ,

HA′2
∼= H((λ1)RAout

1 λ2)R ,

...

HA′n
∼= H

((
←−−−−−−−
An−2λn−1) Aout

n−1λn)
R .

Write

ρIi
A′i|((

←−−−−−−
Ai−2λi−1) Aout

i−1λi)
R

(A.14)

for the CJ operator corresponding to a unitary map Ii between A′i and the indicated

‘right factor’ – such an Ii exists by definition of the primed systems. Then define

the following channels:

ρU1

A1A′1|λ1
:= ρA1|(λ1)L ⊗ ρI1

A′1|(λ1)R
, (A.15)

ρU2

A2A′2|A′1A1λ2
:= ρA2|(A′1Aout

1 λ2)L ⊗ ρI2
A′2|(A′1Aout

1 λ2)R
, (A.16)

...

ρUnAnA′n|A′n−1An−1λn
:= ρAn|(A′n−1A

out
n−1λn)

L ⊗ ρIn
A′n|(A′n−1A

out
n−1λn)

R , (A.17)

ρ
Un+1

F |A′nAn
:= ρF |A′nAout

n
, (A.18)

which are by construction unitary channels. This notation is to be understood in

the obvious way: ρA2|(A′1Aout
1 λ2)L is short for ρA2|((λ1)RAout

1 λ2)L post-composed with

the unitary map I1, and similarly for the other channels. It remains to show that

marginalizing over the primed systems to obtain a broken unitary circuit of the form

of that of Fig. 5.4, given by

TrA′1,...,A′n

[
ρU1

A1A′1|λ1
ρU2

A2A′2|A′1A1λ2
... ρUnAnA′n|A′n−1An−1λn

ρ
Un+1

F |A′nAn

]
, (A.19)

returns the unitary channel ρUA1...AnF |A1...Anλ1...λn
of Eq. (A.13). This is the case by

construction, since

TrA′1

[
ρA2|(A′1Aout

1 λ2)L ρ
I2
A′2|(A′1Aout

1 λ2)R
ρI1
A′1|(λ1)R

]
= TrA′1A′1

∗

[
τ idA′1 ρA2|(A′1Aout

1 λ2)L ρ
I2
A′2|(A′1Aout

1 λ2)R
ρI1
A′1|(λ1)R

]
= ρA2|((λ1)RAout

1 λ2)L ρ
I2
A′2|((λ1)RAout

1 λ2)R
, (A.20)

and similarly for A′i, i = 2, . . . , n. �

197



A.3 Proof of Lemma 5.1

Suppose ρB|A and ρC|A represent reduced unitary channels and satisfy [ρB|A , ρC|A] =

0. That ρB|A is a reduced unitary channel by definition means that there exists a

unitary channel ρVBF |A such that TrF [ρVBF |A] = ρB|A. By Thm. 3.4, ρVBF |A = ρB|AρF |A,

hence by Remark A.1 there is a global factorization A = ALb ⊗ ARb , with respect

to which ρVBF |A = ρB|ALb ⊗ ρF |ARb . Similarly, there exists a unitary channel ρWCG|A
such that TrG[ρWCG|A] = ρC|A and a factorization A = ALc ⊗ ARc such that ρWCG|A =

ρG|ALc ⊗ ρC|ARc .

A priori, the relation between the factorizations ALb ⊗ ARb and ALc ⊗ ARc is un-

known. However, by assumption it is also true that [ρB|A, ρC|A] = 0. The operators

ρB|ALb , ρF |ARb , ρG|ALc and ρC|ARc all have to represent unitary channels (for dimensional

reasons and due to the purity of the operators), hence, up to normalization, can be

seen as maximally entangled states. It is then straightforward to check that due to

the commutation of ρB|ALb with ρC|ARc , the operator ρC|ARc acts trivially on ALb , and

conversely that the operator ρB|ALb acts trivially on ARc . Therefore, there exists a

factorization A = ALb ⊗ A′ ⊗ ARc such that ρBC|A = ρB|ALb ⊗ 1(A′)∗ ⊗ ρC|ARc . This

establishes the claim. �

A.4 Useful tools II

This section presents a definition and a lemma which are purely concerned with

DAGs and capture the d-separation relation of a DAG in a way that will be useful

in many of the subsequent proofs.

Definition A.1 (Relation SR on the nodes of a DAG): Let G be a DAG, with

a set of nodes V . Let Y , Z and W denote arbitrary disjoint subsets of V , with

R := V \ (Y ∪ Z ∪W ). The 3-place relation SR(Y, Z;W ) holds if and only if there

exist partitions of W and R

R = RY ∪RZ ∪Rc, (A.21)

W = WY ∪WZ (A.22)

such that: if A is any of Y , Z, RY , RZ or Rc, and B is any of WY , WZ, Y , Z,

RY , RZ or Rc, then the absence of an arrow A → B in Fig. A.2 implies that for

any a ∈ A, b ∈ B, there is no arrow in G from a to b. (NB Nodes in WY and WZ

can have children in any other set, but these arrows are suppressed in Fig. A.2 for

better visibility.)
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Rc

Y RY RZ Z

WY WZ

Figure A.2

Lemma A.2 Let G be a DAG, with a set of vertices V , and let Y ,Z and W be

disjoint subsets of V . If (Y ⊥⊥ Z|W )G, then SR(Y, Z;W ).

Proof. As observed in Section 5.5 (see Refs. [96, 129]) and used in the proof of

Thm. 5.3, the soundness of d-separation for a 3-place relation on subsets of nodes

can be established by showing that the relation satisfies the local Markov condition

and the semi-graphoid axioms.

In order to see that the local Markov condition holds, let X ∈ V and define

P := Pa(X) and N := Nd(X) \ Pa(X). The nodes in D = V \({X} ∪ P ∪N) are

the descendants of X. Without any further partitioning of sets, Fig. A.3 is already

of the required form, hence SR({X}, N ;P ).

D

X N

P

Figure A.3: SR({X}, N ;P ).

Now consider the semi-graphoid axioms. The symmetry axiom SR(Y, Z;W ) ⇔
SR(Z, Y ;W ) is immediate. Concerning the decomposition axiom, SR(Y,XZ;W ) ⇒
SR(Y, Z;W ), suppose that SR(Y,XZ;W ) holds, with corresponding decomposi-

tions W = WY ∪WXZ and R = RY ∪ RXZ ∪ Rc. Defining RZ := RXZ ∪ X and

WZ := WXZ , it follows immediately that SR(Y, Z;W ) holds, with corresponding

decompositions W = WY ∪WZ and R = RY ∪RZ ∪Rc. Concerning the weak union

axiom, SR(Y,XZ;W ) ⇒ SR(Y, Z;XW ), suppose that SR(Y,XZ;W ) holds, with

corresponding decompositions W = WY ∪WXZ and R = RY ∪ RXZ ∪ Rc. Defining

WZ := WXZ ∪ X and RZ := RXZ , it is immediate that SR(Y, Z;XW ) holds with

corresponding decompositions X ∪W = WY ∪WZ and R = RY ∪RZ ∪Rc. Finally,

concerning the contraction axiom, suppose that SR(Y, Z;W ) ∧ SR(Y,X;ZW ).
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Let the subsets implied by these two relations be labelled as in Figs. A.4 and A.5.

RcXc

Y RYXY RZXZ Z

WY WZ

Figure A.4: SR(Y, Z;W ).

R
′c

Y R′Y RX X

W ′Y ZY WXZX

Figure A.5: SR(Y,X;ZW ).

R̃c

Y R̃Y RXZ XZ

W̃Y WXZ

Figure A.6: SR(Y, ZX;W ).

Defining new sets as follows,

WXZ := WX ∪WZ

W̃Y := W \WXZ

RXZ := RX ∪RZ

R̃c := (Rc ∪R′c) \RXZ

R̃Y := R \ (RXZ ∪ R̃c) ,

the diagram in Fig. A.6 correctly expresses which parent-child relations between

those subsets are forbidden, i.e. there must not be any arrows from RXZ , X or Z

to the sets on the left and no arrows from R̃Y or Y to any sets on the right. This

establishes SR(Y, ZX;W ). �

A.5 Proof of Proposition 5.2

The only if direction is immediate.

For the if direction, consider an informationally complete intervention at each

node A ∈ Y : that is, an intervention corresponding to a quantum instrument {τ kAA }
such that, varying over kA, the operators τ kAA span the real vector space of Hermitian

operators on HAin ⊗ H∗Aout . Let kY denote the joint outcome, and for each kY , let

τ kYY denote the corresponding tensor product of local operators. Varying over kY ,

the operators τ kYY span the real vector space of Hermitian operators on HY in⊗H∗Y out ,

i.e., the local intervention at Y , consisting of a product of informationally complete
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interventions, is also informationally complete. Similarly, consider an information-

ally complete local intervention at Z, with joint outcome kZ , and corresponding

product operators τ kZZ .

Given σY Z , suppose that P (kY , kZ) = TrY Z [σY Z(τ kYY ⊗ τ
kZ
Z )] = P (kY )P (kZ). Let

αY be the operator such that P (kY ) = TrY (αY τ
kY
Y ) and βZ be the operator such

that P (kZ) = TrZ(βZτ
kZ
Z ). Since {τ kYY ⊗ τ

kZ
Z }kY ,kZ spans the tensor product space of

operators, σY Z and αY ⊗ βZ agree on a basis, hence σY Z = αY ⊗ βZ = σY ⊗ σZ . �

A.6 Proof of Proposition 5.5

For the only if direction, assume that (Y ⊥⊥ Z|W )κ holds, hence κY ZW can be

written in the form κY ZW = αYWβZW . Consider arbitrary interventions at Y and

Z, and a maximally informative intervention at W . Then by Def. 5.13, functions

gin and gout exist such that

P (kY , kZ , kW ) =
∑
Y

∑
Z

∑
W

κY ZW P (kY , Y
out|Y in) P (kZ , Z

out|Z in)

δ(gin(kW ),W in) δ(gout(kW ),W out) P (kW ,W
out|W in)

=
∑
Y

αYW (Y in, Y out, gin(kW ), gout(kW )) P (kY , Y
out|Y in)∑

Z

βZW (Z in, Zout, gin(kW ), gout(kW )) P (kZ , Z
out|Z in)

P (kW , g
out(kW )|gin(kW )) .

Setting

α′(kY , kW ) =
∑
Y

αYW (Y in, Y out, gin(kW ), gout(kW )) P (kY , Y
out|Y in),

and

β′(kZ , kW ) =
∑
Z

βZW (Z in, Zout, gin(kW ), gout(kW )) P (kZ , Z
out|Z in)

P (kW , g
out(kW )|gin(kW ))

yields P (kY , kZ , kW ) = α′(kY , kW )β′(kZ , kW ), hence (kY ⊥⊥ kZ |kW )P , by Prop. 5.3.

For the if direction, assume that for any local interventions at Y and Z, and

any maximally informative local intervention at W , the joint outcome probabilities

P (kY , kZ , kW ) satisfy (kY ⊥⊥ kZ |kW )P . Consider, in particular, an intervention at

each node X (where X ∈ Y , X ∈ Z, or X ∈ W ), such that the outcome kX is a
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pair kX = (kIX , k
O
X), and

P (kX , X
out|X in) =

1

dX
δ(kIX , X

in)δ(kOX , X
out),

where dX is the cardinality of the set on which X in takes values. This corresponds

to measuring the input variable, recording the value as kIX , choosing a value kOX
at random, and setting Xout = kOX . Assume that the local intervention at Y is

a product of interventions of this form, with joint outcome kY = (kIY , k
O
Y ), where

kIY is the tuple consisting of a value of kIX , for each X ∈ Y , and kOY is the tuple

consisting of a value of kOX , for each X ∈ Y . Similarly Z and kZ = (kIZ , k
O
Z ), and W

and kW = (kIW , k
O
W ). Observe that these interventions are maximally informative,

in keeping with the assumption of a maximally informative intervention at W .

Given (kY ⊥⊥ kZ |kW )P , it follows from Prop. 5.3 that there exist α(kY , kW ) and

β(kZ , kW ) such that P (kY , kZ , kW ) = α(kY , kW )β(kZ , kW ). Define α′YW : Y in ×
Y out ×W in ×W out → R and β′ZW : Z in × Zout ×W in ×W out → R such that

α′YW (Y in, Y out,W in,W out) = dY dW α(kY , kW )
∣∣
kY =(Y in,Y out),kW=(W in,W out)

,

β′ZW (Z in, Zout,W in,W out) = dZ β(kZ , kW )
∣∣
kZ=(Zin,Zout),kW=(W in,W out)

.

Observe that

α(kY , kW ) =
∑
YW

α′YWP (kY , Y
out|Y in)P (kW ,W

out|W in) ,

β(kZ , kW ) = dW
∑
ZW

β′ZWP (kZ , Z
out|Z in)P (kW ,W

out|W in) .

Now,

P (kY , kZ , kW ) = α(kY , kW ) β(kZ , kW )

= dW

(∑
YW

α′YW P (kY , Y
out|Y in) P (kW ,W

out|W in)
)

(∑
ZW

β′ZW P (kZ , Z
out|Z in) P (kW ,W

out|W in)
)

=
∑
Y ZW

α′YW β′ZW P (kY , Y
out|Y in) P (kZ , Z

out|Z in)

P (kW ,W
out|W in) , (A.23)

where the third equality follows from the form of the W intervention (in particular,

the fact that the W intervention is maximally informative). From the definition of
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the classical process map,

P (kY , kZ , kW ) =
∑
Y ZW

κY ZW P (kY , Y
out|Y in) P (kZ , Z

out|Y in)

P (kW ,W
out|W in) . (A.24)

The measurements considered are informationally complete: that is, if for fixed kY ,

kZ , kW , the term P (kY , Y
out|Y in)P (kZ , Z

out|Z in)P (kW ,W
out|W in) is viewed as a

real-valued function of Y in, Y out, Z in, Zout, W in, W out, then, varying over kY , kZ , kW ,

these functions span the vector space of all real-valued functions of Y in, Y out, Z in,

Zout, W in, W out. Comparing Eqs. (A.23) and (A.24) then gives κY ZW = α′YWβ
′
ZW ,

that is (Y ⊥⊥ Z|W )κY ZW . �

A.7 Proof of Lemmas 5.2 and 5.3

Proof of Lemma 5.2. Let σV be a process operator, and consider the relation T of

Eq. (5.27), defined over triples of disjoint subsets of V . The symmetry axiom from

Eq. (5.21) is immediate. For the decomposition axiom from Eq. (5.22), suppose that

T (Y,XZ;W ) holds, i.e., for all local interventions τR, there exist αYW and βXZW

such that στRY XZW = αYW βXZW . Then for any choice of local intervention τX at X,

στRτXY ZW = αYW TrX
[
τXβXZW

]
, hence (Y ⊥⊥ Z|W )στRτXY ZW

, hence T (Y, Z;W ) holds. The

weak union axiom from Eq. (5.23) is immediate. Finally, for the contraction axiom

from Eq. (5.24), suppose that for all local interventions τR and τX , (Y ⊥⊥ Z|W )στRτXY ZW
,

and that for all local interventions τR, (Y ⊥⊥ X|ZW )στRYXZW
. The first condition,

along with Part (3) of Prop. 5.7, implies that for all local interventions τR and τX ,

the quantum conditional mutual information I(Y : Z|W ) = 0 when evaluated on

σ̂τRτXY ZW . Similarly, the second condition implies that for all local interventions τR,

I(Y : X|ZW ) = 0 when evaluated on σ̂τRY ZWX .1 Let τX be the intervention that,

at each node in X, ignores the input and prepares a maximally mixed state on the

output. This yields

H(TrZX [σ̂τRY ZWX ]) +H(TrY X [σ̂τRY ZWX ])

−H(TrY ZX [σ̂τRY ZWX ])−H(TrX [σ̂τRY ZWX ]) = 0

H(TrX [σ̂τRY ZWX ]) +H(TrY [σ̂τRY ZWX ])−H(TrY X [σ̂τRY ZWX ])−H(σ̂τRY ZWX) = 0

where H(...) denotes the von Neumann entropy. Adding the two equations gives

1The following steps are essentially the same as those used in Ref. [76] to show that the
condition I(A : B|C) = 0 on ordinary quantum states satisfies the semi-graphoid axioms.
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I(Y : XZ|W ) = 0, when evaluated on σ̂τRY ZWX . Seeing as this holds for any local

intervention τR, Prop. 5.7 gives T (Y,XZ;W ). �

Proof of Lemma 5.3. Consider a DAG G, with nodes V , and a process op-

erator σV , such that σV is Markov for G. Let X ∈ V and set P := Pa(X),

N := Nd(X) \ Pa(X) and D := V \ (X ∪ P ∪ N). The sets {X}, P , N and D

constitute a partition of V , hence σV = ρX|Pa(X) ρP |Pa(P ) ρN |Pa(N) ρD|Pa(D). The set

D only contains descendants of X, hence D cannot have children in any of the other

sets. Given an arbitrary local intervention τD, the marginal process operator over

XPN is therefore of the form στDXPN = TrD[σXPND τD] = ρX|Pa(X) ρP |Pa(P ) ρN |Pa(N).

By definition, X /∈ P and N ∩ P = ∅, hence στDXPN is of the form αXP βNP , with

αXP = ρX|Pa(X) and βNP = ρP |Pa(P ) ρN |Pa(N). Therefore T (X,N ;P ) holds. �

A.8 Proof of Proposition 5.9

This is essentially the same as the proof of Prop. 5.6, except that with σY ZWdo(X) =

αYWXout βZWXout , the two factors have non-trivial action on the three Hilbert spaces

HW in , H∗W out and H∗Xout . The relevant decomposition into orthogonal subspaces that

follows from Lem. 4.1, is therefore a decomposition of HW in ⊗H∗W out ⊗H∗Xout . The

proof proceeds with ‘WXout’ replacing W . �

A.9 Proof of Proposition 5.10

(1)→ (2)

Suppose that σY ZWdo(X) = αYWXoutβZWXout for a pair of Hermitian operators

αYWXout and βZWXout . Taking the Hermitian conjugate of both sides of this equation

establishes that [αYWXout , βZWXout ] = 0. For arbitrary local interventions τY at

Y and τZ at Z, let ατYWXout = TrY [αYWXout τY ] and βτZWXout = TrZ [βZWXout τZ ].

Observe that [ατYWXout , βZWXout ] = 0 and [αYWXout , βτZWXout ] = 0

Using the commutativity and associativity of the ‘?’-product, along with the fact

that for arbitrary Hermitian operators M and N , if [M,N ] = 0 then M ?N = MN ,

σY ZWdo(X) ? σ
τY ,τZ
Wdo(X) = (αYWXout βZWXout) ?

(
ατYWXout β

τZ
WXout

)
= αYWXout ? βZWXout ? ατYWXout ? β

τZ
WXout

=
(
αYWXout βτZWXout

)
?
(
ατYWXout βZWXout

)
= στZYWdo(X) ? σ

τY
ZWdo(X) .
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(2)→ (3)

Assume (2), and consider local interventions τY and τZ that consist of discarding

the input, and preparing a maximally mixed state on the output, for each node

in the corresponding set. Dividing each side of (2) by dY dZ(dWdX)2, and taking

logarithms, gives

log
(
σ̂Y ZWdo(X)

)
+ log

(
TrY Z(σ̂Y ZWdo(X))

)
= log

(
TrZ(σ̂Y ZWdo(X))

)
+ log

(
TrY (σ̂Y ZWdo(X))

)
,

where the logarithms are restricted to the support of the respective operators. This

implies (3).

(3)→ (1)

Assume (3). By Theorem 6 of Ref. [122], there is a decomposition of the form

HW in ⊗H∗W out ⊗H∗Xout =
⊕

iH(WXout)Li
⊗H(WXout)Ri

, and a probability distribution

{pi} such that σ̂Y ZWdo(X) =
∑

i pi σ̂Y (WXout)Li
⊗ σ̂Z(WXout)Ri

for positive trace-1

operators σ̂Y (WXout)Li
and σ̂Z(WXout)Ri

. Define Hermitian operators

αYWXout := dY dZdWdX
∑
i

pi σ̂Y (WXout)Li
⊗ 1Z(WXout)Ri

, (A.25)

βZWXout :=
∑
i

1Y (WXout)Li
⊗ σ̂Z(WXout)Ri

. (A.26)

Since the distinct subspaces are orthogonal, σY ZWdo(X) = αYWXoutβZWXout , which

establishes the claim. �

A.10 Proof of Theorem 5.5

Let σY ZWXR be a process operator that is Markov for G, hence σY ZWRdo(X) =

ρY |Pa(Y ) ρZ|Pa(Z) ρW |Pa(W ) ρR|Pa(R), where all operators commute and may act non-

trivially on H∗Xout . Suppose that (Y ⊥⊥ Z|WX)GX . Recalling Def. A.1, Lem. A.2

implies that SR(Y, Z;WX) holds in GX . Therefore there exist partitions R =

RY ∪RZ ∪Rc and W ∪X = WY ∪XY ∪WZ ∪XZ , with

ρW |Pa(W ) = ρWY |Pa(WY ) ρWZ |Pa(WZ)

and

ρR|Pa(R) = ρRY |Pa(RY ) ρRZ |Pa(RZ) ρRc|Pa(Rc)
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such that each of the operators ρY |Pa(Y ), ρWY |Pa(WY ), ρRY |Pa(RY ) acts trivially on the

input and (the duals of the) output spaces of the nodes in Z ∪RZ ∪Rc, and each of

the operators ρZ|Pa(Z), ρWZ |Pa(WZ) , ρRZ |Pa(RZ) acts trivially on the input and (the

duals of the) output spaces of the nodes in Y ∪RY ∪Rc. With τR = τRY ⊗ τRZ ⊗ τRc
an arbitrary local intervention at R, the term TrRc [ρRc|Pa(Rc) τRc ] = 1 (identity on

the duals of the output spaces of Pa(Rc) \Rc) , and it follows that

στRY ZWdo(X) = TrR
[
τR σY ZWRdo(X)

]
= TrRY

[
τRY ρY |Pa(Y ) ρWY |Pa(WY ) ρRY |Pa(RY )

]
TrRZ

[
τRZ ρZ|Pa(Z) ρWZ |Pa(WZ) ρRZ |Pa(RZ)

]
.

Setting

αYWXout = TrRY
[
τRY ρY |Pa(Y ) ρWY |Pa(WY ) ρRY |Pa(RY )

]
and

βZWXout = TrRZ
[
τRZ ρZ|Pa(Z) ρWZ |Pa(WZ) ρRZ |Pa(RZ)

]
concludes the proof. �

A.11 Proof of Proposition 5.11

(Y ⊥⊥ Z in|Wdo(X)Zout)κY ZWX
⇒ (COS2):

Let κY ZWX represent a classical process map, and suppose that κY ZWdo(X) =

αYWXoutZout βZWXout , for suitable functions αYWXoutZout and βZWXout . Then, for

an arbitrary local intervention at Y , a breaking local intervention at Z that fixes

Zout = z, a maximally informative local intervention at W , and a do-intervention

that fixes Xout = x,

P (kY , kZ , kW ) =
∑
Y,Z,W

∑
Xout

[
κY ZWdo(X) P (kY , Y

out|Y in)

δ(Xout, x) δ(Zout, z) P (kZ |Z in)

δ
(
gin(kW ),W in

)
δ
(
gout(kW ),W out

)
P (kW ,W

out|W in)
]

=
(∑

Y

P (kY , Y
out|Y in)αYWXoutZout

(
Y in, Y out, gI(kW ), gO(kW ), x, z

) )
(∑

Zin

P (kZ |Z in)P (kW , g
out(kW )|gin(kW )) βZWXout

(
Z in, z, gI(kW ), gO(kW ), x

) )
.

Setting

α′(kY , kW ) =
∑
Y

P (kY , Y
out|Y in)αYWXoutZout

(
Y in, Y out, gI(kW ), gO(kW ), x, z

)
,
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and

β′(kZ , kW ) =
∑
Zin

P (kZ |Z in) P (kW , g
out(kW )|gin(kW ))

βZWXout

(
Z in, z, gI(kW ), gO(kW ), x

)
,

yields P (kY , kZ , kW ) = α′(kY , kW )β′(kZ , kW ), hence (kY ⊥⊥ kZ |kW )P , by Prop. 5.3.

(COS2) ⇒ (Y ⊥⊥ Z in|Wdo(X)Zout)κY ZWX
:

The converse direction proceeds by a similar argument to that of the proof of

Prop. 5.5. Consider an intervention at each node N (where N ∈ Y or N ∈ W ), such

that the outcome kN is a pair kN = (kIN , k
O
N), and

P (kN , N
out|N in) =

1

dN
δ(kIN , N

in)δ(kON , N
out),

where dN is the cardinality of the set on which Nout takes values. Assume that the

local intervention at Y is a product of interventions of this form, with joint outcome

kY = (kIY , k
O
Y ), where kIY is the tuple consisting of a value of kIN , for each N ∈ Y ,

and kOY is the tuple consisting of a value of kON , for each N ∈ Y . Similarly W and

kW = (kIW , k
O
W ). Consider a breaking local intervention at Z that fixes Zout = z,

and returns kZ = Z in. Consider a do-intervention at X that fixes Xout = x.

For each choice of (x, z), let Pxz(kY , kZ , kW ) be the joint distribution over out-

comes, and assume that the condition (kY ⊥⊥ kZ |kW )Pxz holds. It follows from

Prop. 5.3 that there exist αxz(kY , kW ) and βxz(kZ , kW ) such that Pxz(kY , kZ , kW ) =

αxz(kY , kW )βxz(kZ , kW ). Define α′YWXoutZout : Y in×Y out×W in×W out×Xout×Zout →
R and β′ZWXout : Z in × Zout ×W in ×W out ×Xout → R such that for each x, z,

α′YWXoutZout(Y in, Y out,W in,W out, x, z) = dY dW αxz(kY , kW )
∣∣
kY =(Y in,Y out),kW=(W in,W out)

,

β′ZWXout(Z in, z,W in,W out, x) = βxz(kZ , kW )
∣∣
kZ=Zin,kW=(W in,W out)

.

Observe that

αxz(kY , kW ) =
∑
YW

α′YWXoutZout(Y in, Y out,W in,W out, x, z)

P (kY , Y
out|Y in) P (kW ,W

out|W in),

βxz(kZ , kW ) = dW
∑
ZinW

β′ZWXout(Z in, z,W in,W out, x) P (kZ |Z in) P (kW ,W
out|W in).
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Now,

Pxz(kY , kZ , kW ) = αxz(kY , kW )βxz(kZ , kW )

= dW

(∑
YW

α′YWXoutZout(Y in, Y out,W in,W out, x, z)

P (kY , Y
out|Y in)P (kW ,W

out|W in)
)

( ∑
ZinW

β′ZWXout(Z in, z,W in,W out, x)P (kZ |Z in)P (kW ,W
out|W in)

)
=

∑
Y ZinW

P (kY , Y
out|Y in) P (kZ |Z in) P (kW ,W

out|W in)

(α′YWXoutZout β′ZWXout)
∣∣
Xout=x,Zout=z

=
∑
Y ZW

P (kY , Y
out|Y in) P (kZ , Z

out|Z in)P (kW ,W
out|W in)

(α′YWXoutZout β′ZWXout)
∣∣
Xout=x

, (A.27)

where the third equality follows from the form of the W intervention (in particular,

the fact that the W intervention is maximally informative), and where

P (kZ , Z
out|Z in) = P (kZ |Z in)δ(Zout, z).

From the definition of the do-conditional process map,

Pxz(kY , kZ , kW ) =
∑
Y ZW

P (kY , Y
out|Y in) P (kZ , Z

out|Z in) P (kW ,W
out|W in)(

κY ZWdo(X)

)∣∣
Xout=x

. (A.28)

The measurements considered are informationally complete: that is, if for fixed

z, kY , kZ , kW , the term P (kY , Y
out|Y in)P (kZ , Z

out|Z in)P (kW ,W
out|W in) is viewed

as a real-valued function of Y in, Y out, Z in, Zout, W in, W out, then, varying over z,

kY , kZ , kW , these functions span the vector space of all real-valued functions of Y in,

Y out, Z in, Zout, W in, W out. Comparing Eqs. (A.27) and (A.28) yields κY ZWdo(X) =

α′YWXoutβ′ZWXout , that is (Y ⊥⊥ Z in|Wdo(X)Zout)κY ZWX
. �

A.12 Proof of Proposition 5.12

The proof is similar to that of Prop. 5.6 (and Prop. 5.9).

Assume (Y ⊥⊥ Z in|Wdo(X)Zout)σY ZWX
, hence there exist Hermitian operators

αYWXoutZout and βZWXout such that σY ZWdo(X) = αYWXoutZout βZWXout . Lem. 4.1

implies that there is a decompositionHW in⊗H∗W out⊗H∗Xout⊗H∗Zout =
⊕

iHFLi
⊗HFRi

such that σY ZWdo(X) =
∑

i αY FLi ⊗βZinFRi
, with αY FLi and βZinFRi

positive for all i. Let
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{|i, fLi 〉 |i, fRi 〉}fLi ,fRi be a product orthonormal basis of the ith subspace HFLi
⊗HFRi

.

Consider the following global intervention at WXoutZout. An agent is stationed

at an additional locus E, such that for each node N ∈ W , the quantum system at N in

is sent to E, one half of a maximally entangled state is fed into Nout, and the other

half is sent to E. For each node N ∈ Z or N ∈ X, one half of a maximally entangled

state is fed into Nout, and the other half is sent to E. This defines an operator σY ZinE

over Y , Z in and E, with HEin isomorphic to HW in⊗HW out⊗HXout⊗HZout , such that

σY ZinE has a block-diagonal structure with respect to the induced decomposition.

Let |i, fLi , fRi 〉 := J−1 |i, fLi 〉 |i, fRi 〉 label the induced orthonormal basis of Ein (for

a suitable isomorphism J). The agent performs the von Neumann measurement at

E corresponding to that basis. For a particular outcome kE, corresponding to the

basis state |i, fLi , fRi 〉, define the operator

TrE

[
σY ZinE |i, fLi , fRi 〉 〈i, fLi , fRi |

]
= dEout 〈i, fLi , fRi | J−1

(∑
j

αY FLj ⊗ βZinFRj

)
J |i, fLi , fRi 〉

= dEout 〈i, fLi |αY FLi |i, f
L
i 〉 ⊗ 〈i, fRi | βZinFRi

|i, fRi 〉 := γY ⊗ ηZin ,

where the dEout results from the trace over Eout, on which σY ZE acts trivially, and

is then absorbed into, say γY . The product form γY ⊗ ηZin implies that the joint

probability distribution for kE and outcomes kY and kZ for an arbitrary interven-

tion at Y , and an arbitrary local measurement of Z in, satisfies P (kY , kZ , kE) =

φ(kY , kE)χ(kZ , kE) (for some functions φ and χ). Recalling Prop. 5.3, and noting

that kE is the outcome kWXoutZout , this establishes the claim. �

A.13 Proof of Proposition 5.13

The proof is similar to that of Prop. 5.10.

(1)→ (2):

Assume σY ZWdo(X) = αYWXoutZoutβZWXout . As in the proof of Prop. 5.10, use

the associativity and commutativity of the star-product, and express the operators

in Condition (2) in terms of ατYWXoutZout := TrY
[
τY αYWXoutZout

]
and βZoutWXout :=

TrZin

[
βZWXout

]
.

(2)→ (3):

Consider the intervention at each node in Y that discards the input, and prepares
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a maximally mixed state on the output. Condition (2) then implies

σ̂Y ZWdo(X) ? TrY Zin(σ̂Y ZWdo(X)) = TrY (σ̂Y ZWdo(X)) ? TrZin(σ̂Y ZWdo(X)),

which yields Condition (3).

(3)→ (1):

The proof is the same as that of the proof of the (3)→ (1) direction of Prop. 5.10,

except that Z in replaces Z, and WXoutZout replaces WXout. �

A.14 Proof of Thorem 5.7

Suppose (Y ⊥⊥ Z|WX)GXZ . Then Lemma A.2 implies SR(Y, Z;WX) with respect

to the mutilated DAG GXZ . Hence, with the set X suppressed, there are partitions

of the sets W and R such that allowed parent-child relationships are as shown in

Fig. A.7.

Rc

Y RY RZ Z

WY WZ

Figure A.7: The allowed parent-child relations in G, suppressing the set X, and
suppressing arrows coming out of WY and WZ . Blue dashed arrows represent parent-
child relationships that are allowed in G, but absent in GXZ .

Let σV be a process operator that is Markov for G. It follows from the above

that, with a local intervention τR = τRY ⊗ τRZ ⊗ τRc at the R nodes,

στRY ZWdo(X) = TrRY
[
τRY ρY |Pa(Y ) ρWY |Pa(WY ) ρRY |Pa(RY )

]
(A.29)

TrRZ
[
τRZ ρZ|Pa(Z) ρWZ |Pa(WZ) ρRZ |Pa(RZ)

]
,

which is of the form στRY ZWdo(X) = αYWXoutZout βZWXout . �

A.15 Proof of Proposition 5.14

(Y ⊥⊥ Set(Z)|Wdo(X))κY ZWX
⇒ (COS3):
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Given a classical do-conditional process κY ZWdo(X), suppose that

κτZYWdo(X) = ηYWXout ξτZWXout ∀ local interventions τZ . (A.30)

Consider an arbitrary local intervention at Y given by P (kY , Y
out|Y in), a maximally

informative local intervention at W given by

P (kW ,W
out|W in) = δ

(
gin(kW ),W in

)
δ
(
gout(kW ),W out

)
P (kW ,W

out|W in),

and a do-intervention at X that fixes Xout = x. For τZ a local intervention at Z,

let P τZ (kY , kW ) denote the resulting joint distribution over outcomes kY and kW

(where the notation suppresses dependence on x). This is given by

P τZ (kY , kW ) =
∑
Y

∑
W

∑
Xout

κτZYWdo(X) P (kY , Y
out|Y in) δ

(
Xout, x)

δ
(
gin(kW ),W in

)
δ
(
gout(kW ),W out

)
P (kW ,W

out|W in)

=
∑
Y

ηYWXout(Y in, Y out, gin(kW ), gout(kW ), x) P (kY , Y
out|Y in)

ξτZWXout(g
in(kW ), gout(kW ), x) P (kW , g

out(kW )|gin(kW )) .

Setting

α(kY , kW , x) =
∑
Y

ηYWXout(Y in, Y out, gin(kW ), gout(kW ), x) P (kY , Y
out|Y in),

and

βτZ (kW , x) = ξτZWXout(g
in(kW ), gout(kW ), x) P (kW , g

out(kW )|gin(kW )),

yields P τZ (kY , kW ) = α(kY , kW , x) βτZ (kW , x), which implies that kY is independent

of the choice of intervention τZ , conditioned on kW . This holds for all interventions

at Y , all maximally informative interventions at W , and all x, hence (COS3) follows.

(COS3) ⇒ (Y ⊥⊥ Set(Z)|Wdo(X))κY ZWX
:

Consider a classical process map κY ZWX , and suppose that (COS3) holds for

κY ZWdo(X). Consider local interventions at Y and W corresponding to an interven-

tion at each node N (N ∈ Y or N ∈ W ) of the form

P (kN , N
out|N in) =

1

dN
δ(kIN , N

in)δ(kON , N
out),

211



where dN is the cardinality of the set on which Nout takes values. (Similar inter-

ventions were considered in Section A.6.) Let the joint outcome of the intervention

at Y be kY = (kIY , k
O
Y ), where kIY is the tuple consisting of a value of kIN , for each

N ∈ Y , and kOY is the tuple consisting of a value of kON , for each N ∈ Y . Similarly

W and kW = (kIW , k
O
W ). Consider a do-intervention at X that sets Xout = x, and

an arbitrary local intervention τZ at Z.

As above, let P τZ (kY , kW ) denote the resulting joint distribution over outcomes

kY and kW , given a local intervention τZ at Z, where the dependence on x is sup-

pressed. The intervention at W is maximally informative, hence by assumption, the

probability of outcome kY is independent of τZ when conditioned on kW . This im-

plies that there exist a function α(kY , kW , x), and for each τZ , a function βτZ (kW , x),

such that

P τZ (kY , kW ) = α(kY , kW , x) βτZ (kW , x) . (A.31)

Define ηYWXout such that

ηYWXout(Y in, Y out,W in,W out, x) = dY dW α(kY , kW , x)
∣∣
kY =(Y in,Y out),kW=(W in,W out)

,

and for each τZ , a function ξτZWXout such that

ξτZWXout(W
in,W out, x) = βτZ (kW , x)

∣∣
kW=(W in,W out)

.

Observe that

α(kY , kW , x) =
∑
YW

ηYWXout

∣∣
Xout=x

P (kY , Y
out|Y in)P (kW ,W

out|W in) ,

βτZ (kW , x) = dW
∑
W

ξτZWXout

∣∣
Xout=x

P (kW ,W
out|W in) .

Therefore,

P τZ (kY , kW ) = α(kY , kW , x) βτZ (kW , x)

= dW

(∑
YW

ηYWXout

∣∣
Xout=x

P (kY , Y
out|Y in)P (kW ,W

out|W in)
)

(∑
W

ξτZWXout

∣∣
Xout=x

P (kW ,W
out|W in)

)
=

∑
YW

P (kY , Y
out|Y in) P (kW ,W

out|W in)(
ηYWXout

)∣∣
Xout=x

(
ξτZWXout

)∣∣
Xout=x

. (A.32)
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From the definition of a classical process map,

P τZ (kY , kW ) =
∑
YW

P (kY , Y
out|Y in) P (kW ,W

out|W in)
(
κτZYWdo(X)

)∣∣
Xout=x

. (A.33)

The interventions considered at Y and W are informationally complete: that is,

if for fixed kY , kW , the term P (kY , Y
out|Y in)P (kW ,W

out|W in) is viewed as a real-

valued function of Y in, Y out, W in, W out, then, varying over kY , kW , these func-

tions span the vector space of all real-valued functions of Y in, Y out, W in, W out.

Comparing Eqs. (A.32) and (A.33) then gives κτZY ZWdo(X) = ηYWXoutξτZWXout , that is

(Y ⊥⊥ Set(Z)|Wdo(X))κY ZWX
. �

A.16 Proof of Proposition 5.15

This proof is again similar to that of Prop. 5.6.

Consider a process operator σY ZWX , and assume that there is a Hermitian oper-

ator ηYWXout , and for each local intervention τZ , a Hermitian operator ξτZWXout , such

that

στZYWdo(X) = ηYWXout ξτZWXout .

Note that ηYWXout commutes with ξτZWXout for each τZ . The set {ξτZWXout} for varying

τZ generates a *-subalgebra of the form A = 1Y ⊗ AWXout , where AWXout is a *-

subalgebra of L(HW in ⊗ H∗W out ⊗ H∗Xout). A fundamental representation-theoretic

result concerning finite-dimensional C*-algebras (see, e.g., Lemma 13 of Ref. [122])

then implies that there exists a decomposition HW in ⊗H∗W out ⊗H∗Xout =
⊕

iHFLi
⊗

HFRi
such that AWXout =

⊕
i 1FLi ⊗ L(HFRi

). The commutant A′ of A, that is,

the subalgebra of operators that commute with all elements of A, is of the form

A′ =
⊕

i L(HY ⊗ HFLi
) ⊗ 1FRi . Since ηYWXout ∈ A′, and the distinct subspaces

labelled by i are orthogonal, στZYWdo(X) can be written in the form

στZYWdo(X) =
∑
i

ηY FLi ⊗ ξ
τZ
FRi

for appropriate positive operators ηY FLi and ξτZ
FRi

, where we have adopted the same

convention as previously and let the latter operators act as zero maps on all other

subspaces j 6= i. Consider a global intervention at WXout, of the same form as

that of (QOS1): that is, there is an additional locus E such that for each node

N ∈ W ∪X, one half of a maximally entangled state is fed into Nout, and the other

half sent to E, and for each node N ∈ W , the system at N in is sent to E. The same

arguments as in the proof of Prop. 5.6 imply that there exists a basis {|i, fLi , fRi 〉}
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of Ein, which corresponds to a basis {|i, fLi 〉 |i, fRi 〉} of
⊕

iHFLi
⊗HFRi

. The agent

at E performs the associated von Neumann measurement.

The probability of obtaining outcome kY for an arbitrary intervention τ kYY at Y ,

and outcome kE, corresponding to |i, fLi , fRi 〉, for the von Neumann measurement

at E, is

P (kY , kE) = TrY

[
〈i, fLi | ηY FLi |i, f

L
i 〉 τ

kY
Y

]
〈i, fRi | ξ

τZ
FRi
|i, fRi 〉 . (A.34)

This product form implies that the probability of kY conditional on obtaining any

of the outcomes at E is independent from τZ . �

A.17 Proof of Theorem 5.9

Let G be a DAG with nodes V = Y ∪Z∪W ∪X∪R, for disjoint subsets Y , Z, W , X,

and R, such that (Y ⊥⊥ Z|WX)G
XZ(W )

. Then Lemma A.2 implies SR(Y, Z;WX)

with respect to the mutilated DAG GXZ(W ). There is therefore a partition of the set

W into WY and WZ , a partition of the set R into RY , RZ and Rc, and a partition

of the set Z into Z(W ) and Z ′ = Z\Z(W ), such that, with X suppressed, the

allowed parent-child relationships are as shown in Fig. A.8a. Note in particular that

it follows from the definition of Z(W ) that there is no arrow from Z(W ) to WY , WZ

or Z ′.

Let R := {r ∈ RZ : r is a descendant of a node in Z(W )} and define R̃Z :=

RZ \ R and R̃c := Rc ∪ R. The allowed parent-child relationships between the

resulting sets are shown in Fig. A.8b. Note in particular that there are no arrows

from R to WY , WZ or Z ′.

R c

Y RY RZ Z ′

Z(W )

WY WZ

(a) Allowed parent-child relations in G,
with the set X, and arrows out of WY and
WZ suppressed. Blue dashed arrows show
parent-child relationships that are allowed
in G, but absent in G

XZ(W )
.

R̃c

Y RY R̃Z Z ′

Z(W )

WY WZ

(b) Allowed parent-child relations in G,
with re-defined sets R̃c and R̃Z . The set
X and arrows out of WY and WZ are sup-
pressed. Blue dashed arrows show parent-
child relationships that are allowed in G,
but absent in G

XZ(W )
.

Figure A.8
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Let σV be a process operator that is Markov for G. The constraints on allowed

parent-child relations shown in Fig. A.8b imply that for arbitrary local interventions

τR = τRY ⊗ τR̃Z ⊗ τR̃c and τZ = τZ(W ) ⊗ τZ′ ,

στR,τZYWdo(X) = TrZ′ TrRY TrR̃Z

[
τZ′ τRY τR̃Z ρY |Pa(Y ) ρWY |Pa(WY ) ρRY |Pa(RY )

ρZ′|Pa(Z′) ρWZ |Pa(WZ) ρR̃Z |Pa(R̃Z)

TrR̃c TrZ(W )

[
τR̃c τZ(W ) ρZ(W )|Pa(Z(W )) ρR̃c|Pa(R̃c)

] ]
= TrRY

[
τRY ρY |Pa(Y ) ρWY |Pa(WY ) ρRY |Pa(RY )

]
TrZ′ TrR̃Z

[
τZ′ τR̃Z ρZ′|Pa(Z′) ρWZ |Pa(WZ) ρR̃Z |Pa(R̃Z)

]
,

where the second equality follows since

TrR̃c TrZ(W )

[
τR̃c τZ(W ) ρZ(W )|Pa(Z(W )) ρR̃c|Pa(R̃c)

]
= 1.

Setting

ηYWXout = TrRY
[
τRY ρY |Pa(Y ) ρWY |Pa(WY ) ρRY |Pa(RY )

]
,

and

ξτZWXout = TrZ′ TrR̃Z
[
τZ′ τR̃Z ρZ′|Pa(Z′) ρWZ |Pa(WZ) ρR̃Z |Pa(R̃Z)

]
(where the notation suppresses the dependence of these quantities on τR), yields

στR,τZYWdo(X) = ηYWXout ξτZWXout .

Since the choices of τR and τZ were arbitrary, this gives that for all local interventions

τR,

(Y ⊥⊥ Set(Z)|Wdo(X))στRY ZWX
,

as required. �
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Appendix B

Proofs and supplementary

material Chapter 6

B.1 Proof of Lemma 6.2

Let ρY |X be a reduced unitary channel. By assumption there exists a Hilbert space

HF , and a unitary transformation U : HX → HY⊗HF , such that ρY |X = TrF [ρUY F |X ].

In order to establish claim (1), suppose that ρY |X = ρY |X1 ⊗ 1X2 with respect to

some product structure HX = HX1 ⊗HX2 . Since ρY |X1 ⊗ 1X2 = TrF [ρUY F |X1X2
], the

unitary transformation U satisfies X2 9 Y . As shown in Section 6.2, this implies

that there are unitary transformations T : HX1 → HY ⊗HZ and W : HZ ⊗HX2 →
HF such that U = (1Y ⊗W )(T ⊗ 1X2). Hence ρY |X1 = TrZ [ρTY Z|X1

].

In order to establish claim (2), suppose that ρY |X =
⊕

i ρY |Xi for some decompo-

sition ofHX into orthogonal subspaces,HX =
⊕

iHXi . By Theorem 4.1, the channel

corresponding to the unitary transformation U can be written in the form ρUY F |X =

ρY |XρF |X . By Lemma 6.1, there exists a Hilbert space HG =
⊕

jHGLj
⊗ HGRj

,

and a unitary transformation V : HX → HG, with transpose V T : H∗G → H∗X ,

such that ρUY F |X = V T
(⊕

j ρY |GLj ⊗ ρF |GRj
) (
V T
)†

. The fact that ρUY F |X is a rank

1 operator implies that this last equation cannot be satisfied if there is more than

one term in the direct sum. Hence the index j takes only one value, and we can

write HG = HGL ⊗ HGR such that ρUY F |X = V T
(
ρY |GL ⊗ ρF |GR

) (
V T
)†

. Setting

ρY |G := ρY |GL ⊗ 1GR , we have ρY |X =
∑

i ρY |Xi = V TρY |G
(
V T
)†

, where ρY |Xi is to

be read as an operator on the whole of HY ⊗ HX , acting as zero map on all but

the ith subspace HY ⊗ HXi . Let ρY |Gi =
(
V T
)†
ρY |XiV

T , so that ρY |G =
∑

i ρY |Gi .

Considering (1/dG)ρY |G as a correctly normalised quantum state on HY ⊗HG, the
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equation
1

dG
ρY |G =

∑
i

dGi
dG

1

dGi
ρY |Gi =

1

dGL
ρY |GL ⊗

1

dGR
1GR (B.1)

describes a convex decomposition of (1/dG)ρY |G, into states (1/dGi)ρY |Gi with sup-

port on orthogonal subspaces. The fact that (1/dGL)ρY |GL is a pure, maximally

entangled state implies that for each i,

ρY |Gi = ρY |GL ⊗ φ
(i)

GR
, (B.2)

for some appropriate operator φ
(i)

GR
. Tracing Y on both sides of Eq. (B.2) yields

1GL ⊗ φ
(i)

GR
= 1Gi , (B.3)

where on the right-hand side the zero maps on all but the ith subspace Gi are sup-

pressed. Equation B.3 implies the existence of a subspace decomposition HGR =⊕
iHGRi

such that HGi = HGL ⊗ HGRi
and φ

(i)

GR
= 1GRi ⊕ (

⊕
j 6=i 0GRj ). For each i,

then, ρY |Gi = ρY |GL ⊗ 1GRi . Let W be the unitary transformation corresponding to

ρY |GL , and let W̃ = W ⊗ 1GRi . Then ρY |Gi = TrGRi [ρW̃
Y GRi |GLGRi

], hence ρY |Gi repre-

sents a reduced unitary channel for each i, hence ρY |Xi represents a reduced unitary

channel for each i. �

B.2 Proof of Theorem 6.4

Let U : HA1 ⊗ ...⊗HAn → HB1 ⊗ ...⊗HBk be a unitary transformation with causal

structure {PaU(Bj)}kj=1. Let j ∈ {1, ..., k}, and write Bj := {B1, ..., Bk} \ {Bj}
and PaU(Bj) := {A1, ..., An} \ PaU(Bj). Regarding U as a bipartite unitary, with

inputs PaU(Bj), PaU(Bj), and outputs Bj, Bj, such that PaU(Bj) 9 Bj, the

results of Section 6.2 imply the existence of V : HPaU (Bj) → HBj ⊗ HX , and

W : HX ⊗ HPaU (Bj)
→ HBj

, such that U = (1Bj ⊗ W )(V ⊗ 1
PaU (Bj)

). Hence

U † = (V † ⊗ 1
PaU (Bj)

)(1Bj ⊗W †), as illustrated in Fig. B.1.
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U

Bj Bj

PaU (Bj) PaU (Bj)

=

V

W

Bj Bj

PaU (Bj) PaU (Bj)

⇒ U†

Bj Bj

PaU (Bj) PaU (Bj)

=

V †

W †

Bj Bj

PaU (Bj) PaU (Bj)

Figure B.1

It is thus manifest that Bj 9 Ai in U † for all Ai ∈ PaU(Bj). This is equivalent

to the claim of Theorem 6.4.

�

B.3 Proof of Theorem 6.5

Let U : HA1 ⊗ HA2 ⊗ HA3 → HB1 ⊗ HB2 ⊗ HB3 be a unitary transformation.

Suppose that the causal structure is as in Fig. 6.18a, i.e., A3 9 B1, A2 9 B2 and

A1 9 B3. Then, by Theorem 4.1, ρUB1B2B3|A1A2A3
= ρB1|A1A2ρB2|A1A3ρB3|A2A3 , where

the factors on the right hand side commute pairwise. The commutation relation

[ρB1|A1A2 , ρB2|A1A3 ] = 0, along with Lemma 6.1, implies the existence of a unitary

S : HA1 → HX =
⊕

iHXL
i
⊗HXR

i
such that

ρB1|A1A2ρB2|A1A3 = ST
(⊕

i

ρB1|XL
i A2
⊗ ρB2|XR

i A3

) (
ST
)†

, (B.4)

for some appropriate families of channels {ρB1|XL
i A2
}i and {ρB2|XR

i A3
}i. Hence

ρUB1B2B3|A1A2A3
= ST

(⊕
i

ρB1|XL
i A2
⊗ ρB2|XR

i A3

) (
ST
)†
ρB3|A2A3 . (B.5)

Now, the operator ρB3|A2A3 satisfies STρB3|A2A3

(
ST
)†

= ρB3|A2A3 , where as always

the necessary identity operators are suppressed in writing such products. Hence

ρUB1B2B3|A1A2A3
= ST

(⊕
i

ρB1|XL
i A2
⊗ ρB2|XR

i A3

)
ρB3|A2A3

(
ST
)†

. (B.6)

The operator ρB3|A2A3 commutes with the factor in brackets to the left of it in

Eq. B.6. Additionally, the operator ρB3|A2A3 commutes with a projector onto the

subspace H∗Xi = H∗
XL
i
⊗ H∗

XR
i

of H∗X . This means that if ρB1|XL
i A2
⊗ ρB2|XR

i A3
is
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regarded as an operator acting on the whole of H∗X⊗H∗A2
⊗H∗A3

⊗HB1⊗HB2 , acting

as the zero map on all but the ith subspace H∗Xi ⊗H
∗
A2
⊗H∗A3

⊗HB1 ⊗HB2 , then

ρB3|A2A3 commutes with ρB1|XL
i A2
⊗ ρB2|XR

i A3
for each value of i. We can therefore

write

ρUB1B2B3|A1A2A3
= ST

[∑
i

(
ρB1|XL

i A2
⊗ ρB2|XR

i A3

)
ρB3|A2A3

] (
ST
)†

, (B.7)

where the ith term in the sum has non-trivial action only on the subspace H∗Xi ⊗
H∗A2
⊗H∗A3

⊗HB1 ⊗HB2 ⊗HB3 . The fact that the left hand side of Eq. (B.7) is a

rank 1 operator implies that there can only be one term in the sum, hence we can

write S : HA1 → HXL ⊗HXR such that

ρB1|A1A2ρB2|A1A3 = ST
(
ρB1|XLA2

⊗ ρB2|XRA3

) (
ST
)†
. (B.8)

Analogous arguments to that above yield unitaries T : HA2 → HY L ⊗ HY R and

V : HA3 → HZL ⊗HZR , and corresponding channels, such that

ρUB1B2B3|A1A2A3
=

(
ST ⊗ T T ⊗ V T

) (
ρB1|XLY L ⊗ ρB2|XRZL ⊗ ρB3|Y RZR

)
( (
ST
)† ⊗ (T T )† ⊗ (V T

)† )
. (B.9)

The product ρB1|XLY L⊗ρB2|XRZL⊗ρB3|Y RZR represents a unitary channel, hence each

factor individually represents a unitary channel. Denoting the respective unitary

transformations W : HXL⊗HY L → HB1 , P : HXR⊗HZL → HB2 and Q : HY R⊗
HZR → HB3 , gives

U = (W ⊗ P ⊗Q) (S ⊗ T ⊗ V ) , (B.10)

which concludes the proof. �

B.4 Proof of Theorem 6.6

Let U : HA1 ⊗ HA2 ⊗ HA3 → HB1 ⊗ HB2 ⊗ HB3 ⊗ HB4 be a unitary transforma-

tion. Suppose that the causal structure of U is as in Fig. 6.21a, i.e., A3 9 B1,

A2 9 B2 and A1 9 B3. Then Theorem 4.1 implies that ρUB1B2B3B4|A1A2A3
=

ρB1|A1A2 ρB2|A1A3 ρB3|A2A3 ρB4|A1A2A3 . Note that the causal structure is the same

as in Fig. 6.18a of Theorem 6.5, apart from the additional output system B4, which

is influenced by all three input systems.

Considering the product ρB1|A1A2 ρB2|A1A3 ρB3|A2A3 , the same steps leading up to
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Eq. (B.7) in the proof of Theorem 6.5 yield

ρB1B2B3|A1A2A3 = ST

[∑
i

(
ρB1|XL

i A2
⊗ ρB2|XR

i A3

)
ρB3|A2A3

] (
ST
)†

, (B.11)

for a unitary S : HA1 →
⊕

iHXL
i
⊗ HXR

i
. This time, the term on the left hand

side does not represent a unitary channel, hence we cannot conclude that there is

only one term in the sum. The following analogous steps, leading up to Eq. (B.9)

in the proof of Theorem 6.5 , then yield

ρB1B2B3|A1A2A3 =
(
ST ⊗ T T ⊗ V T

)(⊕
i,j,k

ρB1|XL
i Y

L
j
⊗ ρB2|XR

i Z
L
k
⊗ ρB3|Y Rj ZRk

)
( (
ST
)† ⊗ (T T )† ⊗ (V T

)† )
,

for unitaries T : HA2 →
⊕

jHY Lj
⊗HY Rj

and V : HA3 →
⊕

kHZLk
⊗HZRk

.

By Lemma 6.2, each of the operators ρB1|XL
i Y

L
j

, ρB2|XR
i Z

L
k

and ρB3|Y Rj ZRk
represent

reduced unitary channels for each i, j, k. Hence there exist families of unitaries of

the form

Pij : HXL
i
⊗HY Lj

→ HB1 ⊗HF
(1)
ij

, (B.12)

Qik : HXR
i
⊗HZLk

→ HB2 ⊗HF
(2)
ik

, (B.13)

Rjk : HY Rj
⊗HZRk

→ HB3 ⊗HF
(3)
jk

, (B.14)

such that tracing F
(1)
ij , F

(2)
ik and F

(3)
jk , respectively, for the induced unitary channels,

gives back ρB1|XL
i Y

L
j

, ρB2|XR
i Z

L
k

and ρB3|Y Rj ZRk
. Define HF :=

⊕
i,j,kHF

(1)
ij
⊗ H

F
(2)
ik
⊗

H
F

(3)
jk

and the unitary Ũ : HA1 ⊗HA2 ⊗HA3 → HB1 ⊗HB2 ⊗HB3 ⊗HF , by setting

Ũ :=
(⊕
i,j,k

Pij ⊗Qik ⊗Rjk

) (
S ⊗ T ⊗ V

)
.

The unitary Ũ is a unitary purification of the channel represented by ρB1B2B3|A1A2A3

and, by uniqueness of purification, can only differ from U by a unitary W : HF →
HB4 . This concludes the proof. �

B.5 Proof of Lemma 6.3

Let ρB1B2B3|A1A2A3A4A5 = ρB1|A1A3ρB2|A1A2A4ρB3|A1A2A5 be the CJ representation of a

channel, where the factors on the right hand side commute pairwise. The commu-
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tation relation [ρB1|A1A3 , ρB2B3|A1A2A4A5 ] = 0, where ρB2B3|A1A2A4A5 := ρB2|A1A2A4

ρB3|A1A2A5 yields, via Lemma 6.1, a decomposition

ρB1B2B3|A1A2A3A4A5 = ST
(⊕

i

ρB1|XL
i A3
⊗ ρB2B3|XR

i A2A4A5

) (
ST
)†
, (B.15)

for some unitary S : HA1 → HX =
⊕

i∈I HXL
i
⊗ HXR

i
. The marginal opera-

tors obtained by tracing B1B3, and B1B2, respectively define families of channels

{ρB2|XR
i A2A4

}i and {ρB3|XR
i A2A5

}i. The commutation relation [ρB2|A1A2A4 , ρB3|A1A2A5 ] =

0 implies [ρB2|XA2A4 , ρB3|XA2A5 ] = 0, where ρB2|XA2A4 =
⊕

i 1(XL
i )
∗ ⊗ ρB2|XR

i A2A4
and

ρB3|XA2A5 =
⊕

i 1(XL
i )
∗ ⊗ ρB3|XR

i A2A5
. The fact that each of ρB2|XA2A4 and ρB3|XA2A5

commutes with a projector onto H∗Xi := H∗
XL
i
⊗ H∗

XR
i

implies that [ρB2|XR
i A2A4

,

ρB3|XR
i A2A5

] = 0 for each i. Thus, iterating the argument, there exists for each i a

unitary Ti : HXR
i
⊗HA2 →

⊕
ji∈JiHY Liji

⊗HY Riji
with {Ji} a family of sets parametrized

by i ∈ I, such that Eq. (6.6) holds. �

B.6 Proof of Theorem 6.7

Let U : HA1 ⊗ HA2 ⊗ HA3 ⊗ HA4 → HB1 ⊗ HB2 ⊗ HB3 ⊗ HB4 be a unitary trans-

formation. Suppose that the causal structure is as in Fig. 6.38a, i.e., A4 9 B1,

A2 9 B2, A4 9 B2, A1 9 B3, and A2 9 B3. Then Theorem 4.1 implies that

ρUB1B2B3B4|A1A2A3A4
= ρB1|A1A2A3 ρB2|A1A3 ρB3|A3A4 ρB4|A1A2A3A4 . The proof proceeds

analogously to that of Theorem 6.6, only that this time there will be a ‘nested split-

ting’. Due to Lemma 6.3, the pairwise commutation relations between ρB1|A1A2A3 ,

ρB2|A1A3 and ρB3|A3A4 yield a unitary S : HA3 →
⊕

iHXL
i
⊗HXR

i
and for each i a

unitary Ti : HA1 ⊗HXL
i
→

⊕
ji
HY Liji

⊗HY Riji
such that

ρB1B2B3|A1A2A3A4 =

ST
[⊕

i

(
T Ti

(⊕
ji

ρB1|A2Y Liji
⊗ ρB2|Y Riji

) (
T Ti
)† ) ⊗ ρB3|XR

i A4

] (
ST
)†

.

Due to Lemma 6.2, the operators ρB1|A2Y Liji
, ρB2|Y Riji

and ρB3|XR
i A4

represent reduced

unitary channels for each i, ji. Hence there exist families of unitary transformations

of the form

Piji : HA2 ⊗HY Liji
→ HB1 ⊗HFLiji

,

Qiji : HY Riji
→ HB2 ⊗HFRiji

,

Vi : HXR
i
⊗HA4 → HGRi

⊗HB3 ,
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such that tracing FL
iji

, FR
iji

and GR
i , respectively, for the induced unitary channels,

gives back ρB1|A2Y Liji
, ρB2|Y Riji

and ρB3|XR
i A4

. For each i, let T ′i be a unitary trans-

formation T ′i :
⊕

ji
HFLiji

⊗ HFRiji
→ HGLi

, for some Hilbert space HGLi
. Define

HG :=
⊕

iHGLi
⊗ HGRi

. By construction, the following unitary transformation

Ũ : HA1 ⊗ HA2 ⊗ HA3 ⊗ HA4 → HB1 ⊗ HB2 ⊗ HB3 ⊗ HG constitutes a unitary

purification of the channel represented by ρB1B2B3|A1A2A3A4 :

Ũ :=
[⊕

i

(
1B1 ⊗ T ′i ⊗ 1B2

)(⊕
ji

Piji ⊗Qiji

)(
1A2 ⊗ Ti

)
⊗ Vi

](
1A1A2 ⊗ S ⊗ 1A4

)
.

By uniqueness of purification, Ũ can differ from U only by a unitary transformation

S ′ : HG → HB4 , which concludes the proof. �

B.7 Proof of Theorem 6.8

Let U : HA1 ⊗ HA2 ⊗ HA3 ⊗ HA4 → HB1 ⊗ HB2 ⊗ HB3 ⊗ HB4 be a unitary trans-

formation. Suppose that the causal structure is as in Fig. 6.39a. This is the same

causal structure as in Fig. 6.21a of Theorem 6.6 with the only difference that B3

and B4 now have one additional parent, A4. It is straightforward to follow the same

steps as in the proof of Theorem 6.6 since they are not affected by the additional

non-trivial action of ρB3|A2A3A4 on A4. The claim is then immediate. �

B.8 Proof Theorem 6.9

Let U : HA1 ⊗ HA2 ⊗ HA3 ⊗ HA4 → HB1 ⊗ HB2 ⊗ HB3 ⊗ HB4 be a unitary trans-

formation. Suppose that the causal structure is as in Fig. 6.40a, i.e., A3 9 B1,

A4 9 B1, A2 9 B2, A4 9 B2, A1 9 B3 and A2 9 B3. Then Theorem 4.1 implies

that ρUB1B2B3B4|A1A2A3A4
= ρB1|A1A2 ρB2|A1A3 ρB3|A3A4 ρB4|A1A2A3A4 . The rest of the

proof is analogous to that of Theorem 6.6, and will not be stated in full detail.

The commutation relations [ρB1|A1A2 , ρB2|A1A3 ] = 0 and [ρB2|A1A3 , ρB3|A3A4 ] = 0 give

independent decompositions of A1 and A3, captured by the unitaries S and T as

depicted in Fig. 6.40b. Lemma 6.2 and uniqueness of purification then yield the

claim that

U =
(
1B1B2B3 ⊗ V

)(⊕
i,j

Pi ⊗Qij ⊗Rj

)(
S ⊗ 1A2 ⊗ T ⊗ 1A4

)
. �
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B.9 Proof Theorem 6.10

Let U : HA1 ⊗ HA2 ⊗ HA3 ⊗ HA4 → HB1 ⊗ HB2 ⊗ HB3 ⊗ HB4 be a unitary trans-

formation. Suppose that the causal structure is as in Fig. 6.41a, i.e., A3 9 B2,

A4 9 B2, A2 9 B3, A4 9 B3, A2 9 B4 and A3 9 B4. Then Theorem 4.1 implies

that ρUB1B2B3B4|A1A2A3A4
= ρB1|A1A2A3A4 ρB2|A1A2 ρB3|A1A3 ρB4|A1A4 . Given the pair-

wise commutation relations between the operators ρB2|A1A2 , ρB3|A1A3 and ρB4|A1A4 ,

an iterative application of Lemma 6.1, analogously to the proof of Lemma 6.3, to-

gether with the fact that the only Hilbert space on which the respective non-trivial

actions of the three operators overlap is HA1 , implies that there exists a unitary

S : HA1 →
⊕

iHX
(1)
i
⊗H

X
(2)
i
⊗H

X
(3)
i

such that

ρB2|A1A2 ρB3|A1A3 ρB4|A1A4 = ST
(⊕

i

ρ
B2|X(1)

i A2
⊗ ρ

B3|X(2)
i A3

⊗ ρ
B4|X(3)

i A4

) (
ST
)†

.

The rest of the proof proceeds by analogous arguments as the proof of Thm. 6.6, that

is, due to Lemma 6.2 there exist families of unitaries Pi : H
X

(1)
i
⊗HA2 → H

Y
(1)
i
⊗

HB2 , Qi : H
X

(2)
i
⊗HA3 → H

Y
(2)
i
⊗HB3 and Ri : H

X
(3)
i
⊗HA4 → H

Y
(3)
i
⊗HB4 and

furthermore, by uniqueness of purification, a unitary T :
⊕

iHY
(1)
i
⊗H

Y
(2)
i
⊗H

Y
(3)
i
→

HB1 such that

U =
(
T ⊗ 1B2B3B4

)(⊕
i

Pi ⊗Qi ⊗Ri

)(
S ⊗ 1A2A3A4

)
.

�
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Appendix C

Proofs and supplementary

material Chapter 7

C.1 Characterisation of process operators

Let {ηlX}
d2X−1
l=0 denote a Hilbert-Schmidt (HS) basis for L(HX), i.e., a set of opera-

tors such that they are orthonormal with respect to the HS inner product and, in

addition, traceless for all l = 1, ..., d2X−1, while η0X = (1/dX)1X . Any σ ∈ L(HAin⊗
H∗Aout⊗HBin⊗H∗Bout) can be expanded in a HS basis as σ =

∑
l1,l2,l3,l4

αl1l2l3l4 η
l1
Ain⊗

ηl2Aout ⊗ ηl3Bin ⊗ ηl4Bout . A term of type Ain in the expansion is a summand with non-

trivial action only on Ain, i.e. l1 6= 0 and l2 = l3 = l4 = 0. Similarly for types

AinBout etc.

It was shown in Ref. [43] that σ being a bipartite process operator is equivalent

to σ ≥ 0, Tr[σ] = dAoutdBout and that in a HS basis expansion, in addition to a

term, which is proportional to the identity operator on all four spaces, only the

coefficients of terms of the types Ain, Bin, AinBin, AinBout, AoutBin, AinAoutBin and

AinBinBout, may be non-vanishing. These conditions were generalized to n numbers

of parties in Ref. [49] and can easily be stated as (1) σ ≥ 0, (2) Tr[σ] =
∏n

i=1 dAout
i

and (3) that in a HS basis expansion the only non-vanishing terms, apart from an

overall identity operator, are of a type such that there must be at least one node,

say Ai, on whose out-space, Aout
i , the action is trivial, but on whose in-space, Ain

i ,

the action is non-trivial. Equivalent conditions were presented in [48] where the

projector onto the linear subspace of process operators was defined explicitly, giving

a basis-independent characterization.
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C.2 Proof of Proposition 7.1

Suppose (G, σAB) is a cyclic QCM with G as in Fig. 7.1a. By Markovianity for G, it

holds that σAB = ρA|B ρB|A, which due to our convention reads σAB = ρB|A ⊗ ρA|B,

as both factors act on distinct Hilbert spaces. Further suppose that this is a faithful

QCM, i.e., both channels ρA|B and ρB|A are signalling channels. One way to see

that this contradicts the assumption that σAB is a valid process is by analyzing the

non-vanishing types of terms in an expansion of σAB relative to a Hilbert-Schmidt

product basis (see Sec. C.1). If signalling from Bout to Ain is possible through ρA|B,

then an expansion of just ρA|B has to contain a non-vanishing term of type AinBout.

Similarly, if signalling from Aout to Bin is possible in ρB|A, then an expansion of

ρB|A has to contain a non-vanishing term of type BinAout. Consequently, σAB has

to contain a non-vanishing term of type AinBoutBinAout, which is forbidden for a

process operator [43].

C.3 Commutation insufficient for being a process

operator

Sec. 7.2.2 observed that not every cyclic directed graph is the causal structure of

some faithful QCM (established, e.g., by Prop. 7.1). It furthermore claimed that

even given a cyclic directed graph G that does accommodate a faithful QCM, it is

not true that then any product of commuting operators
∏

i ρAi|Pa(Ai), with parental

sets as in G, defines a process operator. The following gives a simple example to

back this claim.

Consider the cyclic graph G with three vertices A, B and C from Fig. 7.1b.

As observed in Sec. 7.4.1 G is the causal structure of a faithful QCM. Let A, B

and C be classical split nodes (see Sec. 7.6), where all input and output variables

Ain, Aout, Bin, Bout, C in and Cout are classical bits. Let furthermore classical chan-

nels be given as in Eqs. C.1-C.2. One can easily check that the dependencies in

P (Ain|Bout, Cout) and P (Bin|Aout, Cout) are such that Fig. 7.1b indeed represents

the signalling relations. However, note that for any probability distribution P (C in),

the product P (Ain|Bout, Cout)P (Bin|Aout, Cout)P (C in) is not a classical process. This

can be seen from considering a do-intervention at C that fixes Cout = 0, since the

classical channels P (Ain|Bout, 0) and P (Bin|Aout, 0) are still signalling and seeing

them as special cases of quantum channels gives a contradiction with Prop. 7.1.
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P (Ain|Bout, Cout) :=



P (0|0, 0) = 0.4, P (0|0, 1) = 0.3,

P (1|0, 0) = 0.6, P (1|0, 1) = 0.7,

P (0|1, 0) = 0.8, P (0|1, 1) = 0.3,

P (1|1, 0) = 0.2, P (1|1, 1) = 0.7.

(C.1)

P (Bin|Aout, Cout) :=



P (0|0, 0) = 0.5, P (0|0, 1) = 0.3,

P (1|0, 0) = 0.5, P (1|0, 1) = 0.7,

P (0|1, 0) = 0.25, P (0|1, 1) = 0.1,

P (1|1, 0) = 0.75, P (1|1, 1) = 0.9.

(C.2)

C.4 Definition causal separability

Section 7.1.1 mentioned the notion of causal separability, however, it only gave a

precise definition for the bipartite case. As already mentioned there, in the general

multipartite case the definition is a little more intricate, because arguably it should

include cases where the causal order of a subset of nodes may depend on the opera-

tion at an earlier node, as well as it should be such that a process remains causally

separable even if extending the process with additional input states shared among

all nodes. The below definition was given in Ref. [64] and therein shown to be equiv-

alent to an earlier version presented in Ref. [49]. It is an iterative definition, which

relies on the notion of no-signalling between the nodes of a quantum process from

Def. 3.8. In order to avoid clutter, we here write τAj , in slight abuse of notation,

for the representation of a CP map at the node Aj, also if it is not trace-preserving.

While given a quantum process σA1...An , the object TrAj [σA1...AnτAj ] is not generally a

process operator, if Aj cannot signal to {A1, . . . , An} \ {Aj}, then it is proportional

to a process operator. In the latter case we refer to the corresponding correctly

normalized process operator as the conditional process and denote it as σ|τAj .

Definition C.1 (Causal separability) [64]: Every single-node process is causally

separable. For n ≥ 2, a process σ on n quantum nodes A1, . . ., An is said to

be causally separable, if and only if, for any extension of each node Aj with an

additional input system H(A′j)
in to a new node Ãj, defined by HÃin

j
:= HAin

j
⊗H(A′j)

in

and HÃout
j

:= HAout
j

, and any auxiliary quantum state ρ ∈ L(H(A′1)in
⊗ . . .⊗H(A′n)

in),
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the process σ ⊗ ρ on the quantum nodes Ã1, . . ., Ãn decomposes as

σ ⊗ ρ =
n∑
k=1

qk σ
ρ
(k), (C.3)

with qk ≥ 0,
∑

k qk = 1, where for each k, σρ(k) is a process in which there can be

no signalling to Ãk from the rest of the nodes, and where for any CP map τÃk that

can take place at the node Ãk, the conditional process on the remaining n− 1 nodes,

σρ(k)|τÃk , is itself causally separable.

C.5 Proof of Theorem 7.4

First, suppose κX1...Xn is a reversibly extendible process, that is, there exists a

reversible deterministic process κgX1...XnλF
for some bijection g : Xout

1 × ...×Xout
n ×

λout → X in
1 × ...×X in

n × F in, such that

κX1...Xn =
∑

λout,F in

κgX1...XnλF
P (λout) (C.4)

for some probability distribution P (λout). It follows from the fact that κgX1...XnλF
is

a classical process that marginalization as in Eq. C.4 has to yield a classical process

over nodes X1, ..., Xn for arbitrary distributions P (λout), in particular for every

point-distribution. Hence, for every value λ′ of λout, the induced function gλ′( ) :=

g( , λ′) has to define a deterministic process for n+ 1 nodes and furthermore, also

once marginalizing over F it still has to be a deterministic process for the n nodes

X1, . . . , Xn. Hence, Eq. C.4 can be read as establishing that the given κX1...Xn is a

convex mixture of deterministic processes over the nodes X1, ..., Xn, i.e. κX1...Xn lies

in the deterministic polytope.

Conversely, suppose κX1...Xn lies inside the deterministic polytope, that is, there

exists a family of deterministic processes {κfiX1...Xn
}mi=1, defined by the functions

fi : Xout
1 × ...×Xout

n → X in
1 × ...×X in

n such that κX1...Xn =
∑m

i=1 qi κ
fi
X1...Xn

for some

probability distribution {qi}. The proof will proceed by first observing that such a

process can be seen to arise from one single deterministic process on n+2 nodes. To-

gether with the fact that every deterministic process is reversibly extendible, proven

in Ref. [58], this establishes the claim. In order to see that indeed an appropri-

ate deterministic process on n + 2 nodes exists, let λout and F in be variables with

cardinality m and define the function

f : Xout × λout → X in × F in
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(x, i) 7→ (fi(x), i) ,

where Xout = Xout
1 ×...×Xout

n (similarly for X in) and x = (x1, ..., xn). Together with

setting P (λout = i) := qi, f defines a deterministic classical process over the nodes

X1, ..., Xn, λ and F , which gives back κX1...Xn upon marginalization over λ and F .

That f indeed defines a process follows from the fact that arbitrary variation of

the distribution P (λout) corresponds to an arbitrary weighting {qi} in the originally

given mixture, each case of which has to be a classical process. This concludes the

proof. �
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