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a b s t r a c t

A dynamical system is box invariant if there exists a box-shaped positively invariant region. We show
that box invariance can be checked in cubic time for linear and affine systems, and that it remains
decidable for classes of nonlinear systems of interest (with polynomial structure). We present results on
the robustness of box invariance for linear systems using spectral properties of Metzler matrices. We also
present sufficient conditions for establishing box invariance of switched and hybrid systems. In general,
we argue that box invariance is a characteristic of many biologically-inspired dynamical models.
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1. Introduction

An invariant set is a subset of the state space of a dynamical
system with the property that, if the system state is in this set
at some time, then it will stay in the set indefinitely in the
future (Blanchini, 1999). An invariant set is extremely useful
from the perspective of formal analysis and verification (Clarke,
Grumberg, & Peled, 2000). The task in formal verification is to
show that none of the trajectories of a given dynamical system
violate a given property, such as a liveness or safety property,
or in the opposite instance to find ‘‘witnesses’’ that do not abide
by such properties. Safety specifications form an important class
of properties, which encode the condition that a system can
never reach a given subset of ‘‘unsafe’’ or ‘‘bad’’ states. Direct
verification of safety properties is difficult because computing the
set of reachable states is often infeasible. However, an invariant
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set can be used to verify a safety property by showing that it
encloses all reachable states, but none of the unsafe states. From
a dual perspective, invariants can be used to look at reachability
properties, where the objective is to verify if any trajectory of
the system, starting from a region of the state space, will reach
a target set (which is again a subset of the state space). The
concept of invariance can also be related to certain notions of
stability (Podelski & Wagner, 2006). This motivates the need
to develop effective and constructive approaches to discover
invariant sets for dynamical systems—and especially invariant sets
with simple shapes.

Positively invariant sets can be obtained by exploiting the
property that their boundaries may correspond to level surfaces
of a proper Lyapunov-like function. This approach has been the
source of several results on the existence of positively invariant
sets (Blanchini, 1999; Kiendl, Adamy, & Stelzner, 1992). However,
this is quite restrictive in general, since systems that are not stable
can still have useful invariant sets.

In this paper, we focus on positively invariant sets that are in
the form of a box, that is, a hyper-rectangular region specified
by giving (upper and lower) bounds for each state variable. The
concept of box invariance is related to a number of studies in the
literature (Blanchini, 1999) (see Section 2.1). For instance, Kiendl
et al. (1992) look at the use of vector norms to study stability.
The notions that are developed in the present study are related to
that of component-wise stability (Pastravanu&Voicu, 2003; Voicu,
1984), as well as to the concepts of practical stability and Lagrange
stability (Passino, Burgess, & Michel, 1995).
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The study of several systems, especially models drawn from
the domain of systems biology, has suggested that they frequently
admit box-shaped, positively invariant sets. This seems natural
in retrospect since state variables often correspond to physical
quantities that are naturally constrained and tend to either
degrade, or remain conserved. In this paper, we are interested
in the practical aspects of the notion of box invariance. In
particular, we focus on how complex it is to check for box
invariance of a dynamical model, as well as to construct a
particular box, whenever possible. More precisely, we show that
it is computationally feasible to check if a dynamical system is
invariant with respect to a box set, and to explicitly find out box
invariant sets for a large class of dynamical systems (in particular,
biological ones). Because of the discussed connections with other
notions in systems theory, it is then argued that box invariance
is an ideal concept for building analysis and verification tools to
investigate such systems.
Outline. We formally define the notion of box invariance
in Section 2. Next, we present necessary and/or sufficient
characterizations of this notion for linear (Section 3), affine
(Section 3.3), and classes of nonlinear systems (Section 4) that
are especially meaningful for models of biological systems. Box
invariance of linear systems is strongly related to the theory
of Metzler matrices, as explained in Section 3.1. Using this
connection, we perform robustness analysis of box invariant
systems in Section 3.2. In Section 5, we extend the study to the
more general case of switched and hybrid systems. All throughout,
we will present computational complexity results and illustrate
the introduced concepts using examples from systems biology.

2. The concept of box invariance

We consider general and uncontrolled dynamical systems of
the form ẋ = f (x), x ∈ Rn. We assume the basic boundedness
and Lipschitz properties that ensure the existence of a unique
solution of the vector field, given any possible initial condition. A
rectangular box around a point x0 is specified using two diagonally
opposite points l and u, where l < x0 < u (interpreted
component-wise) and is defined as Box(l, u) := {x | l ≤ x ≤ u}.
Such a box has 2n faces consisting of n lower and n upper faces. The
jth lower face is defined as Face Lj(l, u) := {x ∈ Box(l, u) | xj = lj}
and the jth upper face is defined as Face Uj(l, u) := {x ∈ Box(l, u) |
xj = uj}, for j ∈ {1, . . . , n}.

Definition 1 (Box Invariant System). A dynamical system ẋ = f (x)
is said to be box invariant around an equilibrium point x0 if there
exists a finite rectangular box Box(l, u) around x0 such that f (y)j ≤
0 whenever y ∈ Face Uj(l, u) and f (y)j ≥ 0 whenever y ∈
Face Lj(l, u). The system is said to be strictly box invariant if the
inequalities hold strictly.

An equivalent definition of box invariant system can be given as
a system that admits a box as a positively invariant set. In the
case of multiple equilibria, either finite or infinite in cardinality,
we require the existence of (possibly different) boxes for each of
them.

Note that the existence of a box is unaffected by the reordering
of state variables and by rotations by multiples of π/2. It
also displays invariance under independent stretches of the
coordinates. Nevertheless, it is not invariant under general linear
transformations.

Definition 2 (Symmetrical Box Invariance). A system ẋ = f (x) is
said to be symmetrically box invariant around the equilibrium x0
if there exists a point u > x0 (interpreted component-wise) such
that the system ẋ = f (x) is box invariant with respect to the box
Box(2x0 − u, u).

2.1. Box invariance through vector norms

The boundary of a box can be seen as a level surface of a function
defined by a vector norm. Let ‖x‖∞ = max{|xi|, i = 1, . . . , n}
denote the infinity norm on an n-dimensional Euclidean space. Let
D be an n×n positive diagonal matrix. Any level set of the positive
real-valued function ‖Dx‖∞ coincideswith a hyper-rectangle inRn

that is symmetric around the origin. Specifically, for any positive
constant c ∈ R, {x | ‖Dx‖∞ ≤ c} = Box(−cD−11, cD−11), where
1 is the n-dimensional unity vector. Accordingly, symmetrical box
invariance has in part already, though not explicitly, been studied
in the literature by exploring when ‖Dx‖∞ is a Lyapunov function
for a dynamical system (Pastravanu & Voicu, 2003; Voicu, 1984).
For linear systems, a sufficient condition for this to hold is the
existence of a matrix Q of proper size, with µ(Q ) < 0, such that
WA = QW (Kiendl et al., 1992). Here µ(Q ) is a matrix measure
defined as µ(Q ) = lim∆→0+ ‖I+∆Q‖∞−1

∆
.

Whereas the existence of box invariants is closely related to
Lyapunov stability under infinity vector norms for linear systems
(see Theorems 2 and 3), this is not so for more general nonlinear
and hybrid systems. Invariants are also not easy to compute in
general. This motivates the search for invariants of a simple form,
such as a box. As we show in the present work, box invariants can
be easily computed using simple constraint-solving techniques.

3. Box invariant linear and affine systems

Given a linear system and a box around its equilibrium point,
the problem of checking whether the system is box invariant with
respect to the given box can be solved by verifying the related
condition only at the 2n vertices of the box (rather than on all the
points of the surface of the box). The set of vertices, Vert(l, u), of
the box Box(l, u) is defined asVert(l, u) = {x | xi = li∨xi = ui, ∀i}.

Proposition 1. A linear system ẋ = Ax, x ∈ Rn, is box invariant if
there exist two points l ∈ (R−)n and u ∈ (R+)n such that for each
point c ∈ Vert(l, u), we have Ac ∼ 0, where ∼i is ≤ if ci = ui and
∼i is ≥ if ci = li.

The proof follows the observation that the inequalities state that
the vector field points inwards on the 2n vertices in Vert(l, u), and
that it is possible to extend by linearity the value of the vector
field at other points on the faces of the box. Proposition 1 claims
that box invariance of linear systems can be checked by testing the
satisfiability of n2n linear inequality constraints, over 2nunknowns
(given by l and u). Lemmas 1 and 2 will allow us to simplify
this requirement to testing n linear inequalities over n variables.
Observe that the notion of box invariance and symmetrical box
invariance are equivalent for linear systems:

Lemma 1. A linear system ẋ = Ax, where A ∈ Rn×n, is box invariant
if and only if it is symmetrically box invariant.

Proof. If the linear system is symmetrically box invariant, then it
is clearly also box invariant. To prove the converse, assume that
the linear system is box invariant with respect to the box Box(l, u),
where l ∈ (R−)n and u ∈ (R+)n. We will show that the linear
system is also box invariant with respect to the (symmetrical)
box Box(−c, c), where ci = min(|li|, |ui|). Consider first i = 1
and the case when u1 ≤ −l1 so that c1 = u1. On the face
Face U1(l, u) of the x1 = u1 hyper-surface, by definition of c , we
have Face U1(−c, c) ⊆ Face U1(l, u). Hence, (Ax)1 ≤ 0, ∀x ∈
Face U1(−c, c). Since A(−x) = −Ax, we also get (Ax)1 ≥ 0
for all x ∈ Face L1(−c, c). The opposite case when −l1 < u1 is
similar. Repeating this argument for i = 2, 3, . . . , n, completes the
proof. !
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The following result shows that box invariance can be equivalently
checked on a newmatrix that is obtained from the original system
matrix A. The proof is again based on the simplification of the n2n

inequality constraints.

Lemma 2. An n-dimensional linear system ẋ = Ax is symmetrically
box invariant if and only if there exists a positive vector c ∈ (R+)n

such that A#c ≤ 0, where the components a#
ii = aii and a#

ij = |aij| for
i .= j; i, j ∈ {1, . . . , n}. This is equivalent to checking if the system
defined by the matrix A# is symmetrically box invariant.

Proof. By Proposition 1, box invariance of ẋ = Ax is equivalent
to the satisfiability of n2n inequality constraints. Out of these n2n

constraints, consider the following subset of 2n−1 constraints:

a11u1 + a12c2 + a13c3 + · · · + a1ncn ≤ 0,

where ci ∈ {ui, −ui}. These 2n−1 constraints are subsumed by one
of them, which is the strongest constraint:

a11u1 + |a12|u2 + |a13|u3 + · · · + |a1n|un ≤ 0.

This way the n2n−1 constraints are equivalent to satisfiability of n
constraints, which can be succinctly written as A#u ≤ 0, where
A# is as defined in the statement and u is a positive n-dimensional
vector. Notice that, because of symmetry (l = −u), we do not need
to consider the remaining n2n−1 constraints. !

Putting together Lemmas 1 and 2 we conclude that checking
whether an n-dimensional linear system ẋ = Ax is box invariant
reduces to existence of a positive n-dimensional vector c ∈ (R+)n

such that A#c ≤ 0. This can be generically solved using linear
programming in polynomial time.However,we candomuchbetter.
Since A# has non-negative off-diagonal terms, it is immediate that
the Fourier–Motzkin procedure (Dantzig & Eaves, 1973) can be
used to solve the n linear inequality constraints A#c ≤ 0 for
positive c in O(n3) time.

In fact, we can exactly characterize when the Fourier–Motzkin
elimination procedure would succeed in finding a solution using
the notion of principal minors. A principal minor of a matrix A is
the determinant of the submatrix of A formed by removing certain
rows and the corresponding columns fromA (Berman&Plemmons,
1994). Amatrix A is said to be a P-matrix if all of its principalminors
are positive (Berman & Plemmons, 1994; Horn & Johnson, 1991).
Lemma 3 formally recapitulates the above claims.

Lemma 3. Let A be an n × n matrix such that aij ≥ 0 for all i .= j.
Then, the following statements are equivalent:

(1) The linear system ẋ = Ax is strictly symmetrically box invariant.
(2) −A is a P-matrix.
(3) ∀ i = 1, 2, . . . , n, the determinant of the top left i × i submatrix

of −A is positive.

Proof. Using Lemma 2, we know that Condition 1 is equivalent to
the existence of a point u ∈ (R+)n such that −Au > 0. We apply
the well-known Fourier–Motzkin elimination procedure (Dantzig
& Eaves, 1973) to −Au > 0. Due to the form of A, this
procedure reduces to Gaussian reduction/elimination procedure
for converting −A to upper triangular form. A positive u exists iff
all diagonals in the triangular form of −A are positive. This shows
Condition 1 is equivalent to Condition 3. Repeating this argument
using different permutations of the rows and columns of −A, we
infer the equivalence to Condition 2. !

If A is nonsingular, then box invariance is equivalent to strict box
invariance, and results of Lemma 3 apply to box invariance.

Remark 1. Lemma 3 shows that box invariance of a linear system
characterized by matrix A can also be tested by checking if
the modified matrix −A# is a P-matrix. It is known that the
problem of deciding if a given matrix is a P-matrix is co-NP-
hard (Coxson, 1994). But in our case, due to the special form of
A#, we can determine if −A# is a P-matrix using the simple O(n3)
Fourier–Motzkin elimination procedure. !

In the language of vector norms (see Section 2.1), the existence of a
positive vector c such that A#c ≤ 0 is equivalent to the verification
of the inequality µ(D−1A#D) ≤ 0, where D is the positive diagonal
matrix D = diag(c). This connection was known (Kiendl et al.,
1992; Pastravanu & Voicu, 2003), but we now additionally have
the following new complexity result—notice that it is effectively
stated for rational-valued matrices since irrational numbers are
computationally difficult to represent.

Theorem 1. Let A ∈ Qn×n be any rational matrix, and let A# denote
the matrix obtained from A so that a#

ii = aii and a#
ij = |aij| for i .= j.

The following problems are all equivalent and can be solved in O(n3)
time:

• Is the linear system ẋ = Ax strictly box invariant?
• Is the linear system ẋ = A#x strictly box invariant?
• Is there a z > 0 such that A#z < 0?
• Does there exist a positive diagonal matrix D s.t. µ(D−1A#D) < 0

(in the infinity norm)?
• Is −A# a P-matrix?

Proof. The theorem follows immediately from Lemmas 1–3 and
the remarks on the use of the Fourier–Motzkin procedure (Dantzig
& Eaves, 1973). !

It is important to underline that it is not only possible to ‘‘decide’’
box invariance, but also to find box invariant sets by generating
solutions for the described linear constraint satisfaction problem.
Indeed, for a linear system, ẋ = Ax, we can associate a cone in the
positive (2n)th-ant described by the set

C = {x ∈ (R+)n : A#x ≤ 0}.
Any choice of a single vertex in the cone C and its origin-
symmetric, or of a pair of points in C, determine respectively a
symmetric and a non-symmetric box for the systemdescribed byA.

We next show that, for linear systems, box invariance is a
stronger concept than stability (see also related results in Kiendl
et al. (1992), Loskot, Polanski, and Rudnicki (1998) and Pastravanu
and Voicu (2003)).

Theorem 2. If a linear dynamical system is box invariant, then it is
stable. The converse is not true.

Proof. For a linear system, if Box(−c, c) is a box-shaped invariant,
then so is Box(−αc, αc) for any α > 0. Thus, given any
neighborhood of the equilibrium point, call it B, there exists an
α∗ > 0 that defines a box small enough to be contained in B and,
by its invariant property, all the trajectories startingwithin this box
will stay in it, and thus also in B. The converse is not true as the
system ẋ1 = −x1 + 10x2, ẋ2 = −10x1 − x2 is stable, but not box
invariant. !

3.1. Connections with Metzler Matrices

Matrices with non-negative off-diagonal terms, such as A# are
known as Metzler matrices. Metzler matrices are related to non-
negative matrices (Berman & Plemmons, 1994; Seneta, 1973), first
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studied by Frobenius (1908) and Perron (1907). Many results for
Metzler matrices can be shown provided a structural property,
which we will assume henceforth, holds:

Definition 3 (Irreducible Matrix). An (n × n)-matrix A, indexed by
{1, . . . , n}, is said to be irreducible if for every pair i, k ∈ {1, . . . , n}
of indices, there is a sequence of indices {j1, j2, . . . , jl}, l ≤ n − 2,
such that the elements A(i, j1), A(j1, j2), . . . , A(jl, k) are all non-
zero.
In practice, the irreducibility assumption is not restrictive, as
violation of irreducibility implies a certain level of decoupling
between parts of the dynamical system, which suggests a separate
study of these different parts. Example 2 illustrates this fact. We
will use the following properties of Metzler matrices.

Proposition 2 (From Seneta (1973)). Suppose A# ∈ Rn×n is Metzler
and irreducible. Then it has an eigenvalue τ which verifies the
following statements:
(1) τ is real; furthermore, τ > Re(λ), whereλ is any other eigenvalue

of A# different from τ ;
(2) τ is associated with a unique (up to multiplicative constant)

positive (right) eigenvector xτ ;
(3) τ ≤ 0 iff ∃c > 0, such that A#c ≤ 0; τ < 0 iff there is at least

one strict inequality in A#c ≤ 0;
(4) τ < 0 iff all the principal minors of −A# are positive;
(5) τ < 0 iff −(A#)−1 > 0.
This special τ is known as the Perron–Frobenius eigenvalue of the
matrix. It is of interest to modify point (3) as follows (the proof can
be directly adapted).

Proposition 3. Suppose A# is Metzler, irreducible, and has negative
diagonal terms. Then all the points of the previous fact hold but (3),
which needs to be modified as:
(3) τ ≤ 0 iff ∃c > 0, such that A#c ≤ 0; τ < 0 iff ∃c > 0, such

that A#c < 0.
The following result will be used later.

Proposition 4 (From Seneta (1973)). Given aMetzler matrix A#, with
Perron–Frobenius eigenvalue τ and a positive vector x, the following
holds, for i ∈ {1, . . . , n}:

min
i

1
xi

n∑

j=1

xja#
ij ≤ τ ≤ max

i

1
xi

n∑

j=1

xja#
ij.

Using the Perron eigenvector xτ in place of x turns both inequalities
into equalities.
The results described in Propositions 2–4 are interesting because
they provide alternative proofs of Lemma 3 and Theorem 2. In
particular, we can go beyond Theorem 2 and argue that strict box
invariance is equivalent to asymptotic stability for linear systems
specified by Metzler matrices.

Theorem 3. Let A be Metzler, irreducible and with negative diagonal
elements. The system ẋ = Ax is strictly box invariant if and only if it
is asymptotically stable.
Proof. Observe that the system is strictly box invariant iff there
exists c > 0 s.t. Ac < 0 (by Lemmas 1 and 2). The existence
of such a c is equivalent, by Point (3) of Proposition 3, to τ < 0.
The negativity of the Perron–Frobenius eigenvalue is equivalent to
asymptotic stability (by Point (1) of Proposition 2). !
The use of Metzler matrices has wide applications in biological
models, for instance in the study of positive systems (Farina &
Rinaldi, 2000) and compartmental systems (Sorensen, 1985). In
particular, the negativity of the diagonal elements of a matrix may
denote a class of reactions with decay, or be related tomodels with
some forms of loss or dissipation.

3.2. Robust properties of box invariance

The issue of robustness arises in biological models when some
parameters of the system are not exactly measured and may be
only known to lie within some bounds. These parameters can
represent rates of reactions that are often subject to intrinsic
or measurement noise (McAdams & Arkin, 1999), especially for
models describing environments with only a few interacting
species (Gillespie, 1977).

We divide the study of robustness within three cases.
Diagonal perturbations. Given a box invariant Metzler matrix A#,
consider the matrix A#

ε , where a#
ε,ij = a#

ij, i .= j, while a#
ε,ii =

a#
ii(1 + ε). In other words, A#

ε = A# + ε diag(a#
ii). If ε > 0,

then the perturbed system remains box invariant. If ε < 0, then
the Perron–Frobenius eigenvalue τε of A#

ε may still be negative
for some ε. Using the Perron–Frobenius eigenvector xτ of A# in
Proposition 4,weget τ ε ≤ maxi 1

xτi

∑n
j=1 x

τ
j a

#
ε,ij, which simplifies to

τ ε ≤ maxi(τ +εa#
ii). Since ε < 0, it follows that τε ≤ τ +ε mini a#

ii.
Hence, a lower bound for the allowable (negative) perturbation
that maintains box invariance is given by the inequality ε >
− τ

mini a#ii
.

Off-diagonal perturbations. Consider a perturbed matrix A#
ε ,

where a#
ε,ij = a#

ij(1+ εij), ∀i, j .= i and a#
ε,ii = a#

ii. We are interested
in finding how much we can perturb the off-diagonal elements of
the matrix A#, while preserving its box invariance. We solve this
problem by separately considering it for each of the n components.
Specifically, along direction i, using Proposition 4,we formulate the
following problem:

max
εi≥0

‖εi‖2
2 s.t.

n∑

j=1

a#
ε,ij < 0, εii = 0,

where the vector εi = [εij]j=1,...,n. The choice of the norm
is arbitrary here. Note that we focus on positive perturbations
for the off-diagonal terms, because only those can negatively
affect box invariance. (The reader should notice that, while
negative perturbations do not affect box invariance, they may
interfere with the Metzler structure of the matrix—in particular,
its irreducibility.) The optimization problem can be solved by
introducing two Lagrange multipliers (respectively λ > 0 and ν),
one for each constraint. Direct calculations show that the solution
has the following form, ∀j .= i:

εii = 0; εij = 1
2




a#
ij

n∑
j=1,j.=i

a#
ij

+
a#
iia

#
ij

n∑
j=1,j.=i

(a#
ij)

2




.

For each i, we can thus get a bound for the off-diagonal
perturbations εij.
General perturbations. We can tackle the problem more gener-
ally, albeit at the expense of renouncing to closed-form solutions.
Let A# be a Metzler matrix that describes a box invariant linear
system. Consider the perturbed matrix A#

ε = A# + E = A# +∑n
i,j=1 εij[∆(i,j)], where ∆(i,j) is an n × n matrix that has a 1 in

position (i, j), and 0 elsewhere, and εij ≥ 0, ∀i, j ∈ {1, . . . , n}. It
then makes sense, in order to understand what the worst (in some
sense) perturbation is that does not affect the box invariance prop-
erty, to set up the following problem:

max
E

f (E), s.t. (A#
ε1 < 0) ∨ (1T A#

ε < 0), E ≥ 0.

Here f (E) is a measure of the ‘‘perturbation level’’ introduced in
the model. For instance, we may choose f (E) = ∑n

i,j=1 εij, or
f (E) = ‖E‖p, p ≥ 1. For the 2-norm (p = 2), interpreting E as a
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function of its elements εij, introducing an epigraph and resorting
to the Schur complement, we can reformulate the problem as the
following linear matrix inequality (LMI):

max
εij≥0
s≥0

s, s.t.






[
−sI −E(ε)
E(ε) sI

]
0 0,

min
{
A#

ε1, 1
T A#

ε

}
< 0,

where the last inequality is interpreted component-wise.

3.3. Affine systems

We now consider an n-dimensional affine system ẋ = Ax + b.
We can relate the box invariance of such a system to the condition
that the equilibrium point x0 of the model lies in the positive
quadrant, x0 > 0 (component-wise). The idea is again to exploit
a Metzler matrix A# that corresponds to A, to deduce possible
box properties of the original system around x0. Note that the
condition that x0 belongs to the positive quadrant is naturally
satisfied in biological models where state variables often represent
concentrations of species or reactants. We give an alternate proof
of the following result known in the literature (Farina & Rinaldi,
2000).

Lemma 4. If the affine system ẋ = Ax + b is characterized by a
Metzler matrix A and b > 0, then its equilibrium point x0 > 0 if
and only if the system is box invariant.

Proof. ‘‘⇒’’: Consider the Perron–Frobenius eigenvalue τ A of A
and the corresponding positive left eigenvector xτ . Multiplying by
this eigenvector, we have

0 = (xτ )T (Ax0 + b) = (xτ )T (τx0 + b),

which, given the positivity of the involved terms, implies that τ <
0. Using Proposition 2, we conclude that the affine system is box
invariant.
‘‘⇐’’: The box invariant property of the Metzler matrix A allows us
to use the last point of Proposition 2. The equilibrium x0 : Ax0+b =
0, will be x0 = −A−1b > 0. !

The assumptions of the previous theorem can be relaxed to
having a non-negative b ≥ 0, b .= 0 at the expense of the necessity
of the claim (the proof follows similarly).

Theorem 4. If the affine system ẋ = Ax + b is characterized by a
Metzler matrix and its equilibrium point x0 > 0, then the positivity
of its drift term b > 0 implies that the system is box invariant. The
converse is not true.

Notice that the converse does not hold, as the following counter-
example shows:

A =
(

−1 1.5
1 −2

)
; x0 =

[
1
1

]
; b =

[
−0.5
1

]
.

Theorem 5. Assume b .= 0. Given an n-dimensional affine dynamical
system ẋ = Ax+b, consider themodified system ẋ = A#x+bP , where
we substituted A with its Metzler correspondent A# and, additionally,
we introduced bP , made up of the absolute values of the components
of b. The original system is box invariant if and only if the modified
system has a positive equilibrium.

The proof follows from Lemma 4, after performing coordinate
shifts according to the respective equilibria.

Fig. 1. Blood Glucose Concentration: simulation of a trajectory, and computation
of some boxes.

Example 1 (A Model for Glucose Concentration). The following
model describes a physiological compartment, the human brain,
and focuses on the dynamics of the blood glucose concentration.
In Sorensen (1985), this compartment is part of a larger model
of all the organs of the body (each organ is modeled as a single
compartment), which interact via some conservation laws. The
mass balance equations are:

VBĊBo = QB(CBi − CBo) + (CI − CBo)VI/T − rRBC
VI ĊI = (CBo − CI)VI/T − rT ,

where the variables CBo, CI and CBi denote solute concentrations,
VB and VI fluid volumes, QB a volumetric flow rate, rRBC and rT
removal rates, and T a diffusion time. This last value is chosen to
be T = 10 [min]. By applications of the conditions described in
Theorem 5, the system is box invariant. Fig. 1 plots a trajectory and
some concentric boxes with aligned vertices. !

VB 0.04 (l) VI 0.45 (l)
QB 0.7 (l/min) CBi 0.15 (kg/l)
rT 2×10−6 (kg/min) rRBC 10−5 (kg/min)

Example 2 (EGFR and HER2 Trafficking Model). This model is taken
from Hendriks, Orr, Wells, Wiley, and Lauffenburger (2005). It is
affine in its variables, which make up the six-dimensional vector
x = (Rs, Cs,Hs, Ri, Ci,Hi), and presents a positive constant drift.
The parameter L, which in general assumes three possible values,
is held fixed in this instance.

Ṙs = SR − kf LRs + kerCs − kerRs + kxr fxrRi

Ċs = kf LRs − krCs − kecCs + kxc fxcCi

Ḣs = SH − kehHs + kxhfxhHi

Ṙi = kerRs − kxrRi

Ċi = kecCs − kxcCi

Ḣi = kehHs − kxhHi.

The system matrix verifies the structural conditions on the signs
of its elements, as per Lemma 3. Noticing that the system matrix
is explicitly Metzler and that the constant drift is positive, we may
apply Lemma 4 and conclude that the system is box invariant. A
calculation of its eigenvalues shows that they are, as expected,
all negative (and so is, in particular, the Perron–Frobenius one).
However, the computation of the Perron–Frobenius eigenvector
yields a non-positive solution, thus going against the equivalent
condition 2) in Proposition 2. The reason for this is that the system
matrix is not irreducible. In fact, the third and the sixth coordinates
are decoupled from all the others. Fortunately, as discussed in
Section 3, we can carry on a separate study of these two separate
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components of the system. Splitting x into x1 = (Rs, Cs, Ri, Ci) ∈
R4 and x2 = (Hs,Hi) ∈ R2, we can set up two reduced models.
The two new reduced-size systemmatrices are irreducible, and, as
expected, are Metzler and verify all the equivalent conditions for
box invariance of Proposition 2. !

4. Box invariant nonlinear systems

In this Section, we extend the study of box invariance to
nonlinear systems. While for the linear and the affine cases box
invariance can be characterized with necessary and sufficient
conditions, in themore general nonlinear casewewill present only
sufficient conditions. Again, our focuswill be on the computational
aspects.
Polynomial systems. Dynamical models in biology, especially
those drawn from biochemical relations, commonly take the form
of polynomial systems, ẋ = p(x), where p(x) is a vector of
polynomials over the n-dimensional variable x. For polynomial
systems, the condition for box invariance (Definition 1) can be
written out as the following formula:

∃l, u.∀x. ∧
1≤j≤n

(
(x ∈ Face Lj(l, u) ⇒ pj(x) ≥ 0)

∧ (x ∈ Face Uj(l, u) ⇒ pj(x) ≤ 0)
)
, (1)

Since pj(x) is a polynomial and the conditions x ∈ Face Lj(l, u)

and x ∈ Face Uj(l, u) can also be written as (conjunctions of)
polynomial inequalities, it follows that Formula (1) is a formula in
the first-order theory of reals (Tarski, 1948). Since this theory is
decidable (Tarski, 1948), the following result holds.

Proposition 5. Box invariance of polynomial systems is decidable.

While this is a useful theoretical result, it is not very practical
due to the high complexity of the decision procedure for real-
closed fields. A subclass of polynomial systems, called multi-affine
systems, naturally arises when modeling biochemical reaction
networks (Belta, Habets, & Kumar, 2002; Lincoln & Tiwari, 2004).
In these systems, the polynomials are restricted so that every
monomial has degree at most one in each of its variables. Multi-
affine systems are endowedwith several properties that have been
exploited for building efficient analysis and verification tools (Batt,
Ropers, de Jong, Geiselmann, Page, & Schneider, 2005; Belta et al.,
2002).We generalize the definition ofmulti-affine systems in Belta
et al. (2002) and call an n-dimensional system ẋ = p(x) multi-
affine if every variable xj has degree at most one in each monomial
in pi for all j .= i; i, j ∈ {1, . . . , n}. We next show that for
multi-affine systems, the universal quantifiers in Formula (1) can
be eliminated and the formula can be simplified to a conjunction
of n2n (existentially quantified) constraints using the following
generalization of Proposition 1 (the proofs are identical).

Proposition 6. A multi-affine system ẋ = p(x), x ∈ Rn is box
invariant iff there exist two points l, u ∈ Rn such that for each point
c ∈ Vert(l, u), we have p(c) ∼ 0, where ∼i is ≤ if ci = ui and ∼i is
≥ if ci = li.

Proposition 6 still requires checking the satisfiability of an
exponential number of (nonlinear) constraints. The following
result shows that we cannot hope to obtain polynomial time
algorithms for checking if a multi-affine system is box invariant
with respect to a given box.

Theorem 6. The problem of determining if a multi-affine system is
box invariant with respect to a given box is co-NP-hard.

Proof. Given a clause φ, say b1 ∨ b̄2 ∨ b̄3, let poly(φ) denote the
polynomial (1−x1)x2x3. Given a formulaφ consisting of the clauses
φi, let poly(φ) denote the polynomial Σipoly(φi). Suppose φ is an
instance of 3-SAT with n Boolean variables. Consider the following
multi-affine system (note that this system is multi-affine even in
the sense of Belta et al. (2002)),

ẋi = −xi, (i = 1, . . . , n); ẋn+1 = xn+1(1 − poly(φ)),

and the box Box(0, 1). It can be shown that this box is positively
invariant for the multi-affine system iff φ is unsatisfiable. !

Despite the preceding result, for a very useful subclass of multi-
affine systems,we can reduce the number of constraints (from n2n)
to 2n. Let us introduce the notion of directional monotonicity. A
function f : Rn 4→ R is monotonic with respect to a variable xj if
f (. . . , xj, . . .) ≤ f (. . . , x′

j, . . .) (or f (. . . , xj, . . .) ≥ f (. . . , x′
j, . . .))

whenever xj < x′
j . Notice the difference between this notion and a

graph-theoretical version of monotonicity, as discussed in Sontag
(2007).

Proposition 7. Let ẋ = p(x) be an n-dimensional multi-affine
system such that eachmulti-affine polynomialpi(x) ismonotonicwith
respect to every variable xj, for j .= i. Then, the n2n constraints of
Proposition 6 are equivalent to a subset of the 2n constraints.

Proof. Consider any one of the n2n inequalities, say p1(c) ≥ 0,
where v ∈ Vert(l, u) is a vertex s.t. v1 = l1. Consider the
vertex v∗ defined by v∗

1 = v1 and for all i > 1, v∗
i = li if

p1(x) is monotonically increasing with respect to the variable xi,
and v∗

i = ui if p1(x) is monotonically decreasing with respect
to the variable xi. By definition of monotonicity, p1(v) ≥ p1(v∗)
and hence p1(v∗) ≥ 0 would imply p1(v) ≥ 0. Thus, we can
remove the constraint p1(v) ≥ 0 and only keep p1(v∗) ≥ 0. In
fact, the same argument shows that p1(v∗) ≥ 0 subsumes 2n−1

other such constraints (obtained by considering all possibilities for
v2, v3, . . . , vn). This shows that the n2n original constraints are
eventually subsumed by a subset of 2n constraints. !

We illustrate the utility of Proposition 7 in the following example.

Example 3 (Phytoplankton Growth Model). Consider the following
model (Bernard & Gouze, 2002):

ẋ1 = 1 − x1 − x1x2
4

, ẋ2 = (2x3 − 1)x2, ẋ3 = x1
4

− 2x23,

where the positive variable x1 denotes the substrate, x2 the
phytoplankton biomass, and x3 the intracellular nutrient per
biomass. This system is not multi-affine in the sense of Belta
et al. (2002) (see the third dynamical relation), but it is multi-
affine in our weaker sense. Moreover, it satisfies the monotonicity
condition. (Technically, (2x3 − 1)x2 is not monotonic with respect
to x3, but when restricted to the positive quadrant, it is indeed
monotonic. This is more formally developed in Tiwari (2008).)
Hence, by Proposition 7, its box invariance is equivalent to the
existence of l, u such that the following six constraints (that
subsume the 3 · 23 = 24 constraints) are satisfied:

1 − u1 − u1l2
4

≤ 0, u2(2u3 − 1) ≤ 0,
u1

4
− 2u2

3 ≤ 0,

1 − l1 − l1u2

4
≥ 0, l2(2l3 − 1) ≥ 0,

l1
4

− 2l23 ≥ 0.

One possible solution for these constraints is given by l = (0, 0, 0)
and u = (2, 1, 1/2), indicating that the box formed by these
two points as diagonally opposite vertices is a positive invariant
set. !
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Nonlinear systems as perturbations of linear systems. In
this Section we employ ideas from the robustness study in
Section 3.2 to efficiently check box invariance (using only a
sufficient characterization) of polynomial systems in which the
degree of each polynomial is atmost two, thus slightly generalizing
the results presented in the previous Section. As argued before,
dynamical models derived from stoichiometric reactions can often
be included in this class (Lincoln & Tiwari, 2004). In particular, this
assumption is natural for models of biochemical reactions where
second-order polynomials can describe both homo- and hetero-
dimerizations. (A trimerization can in fact be expressed as two
rapidly succeeding dimerizations.) Consider a general degree-2
polynomial system ẋ = f (x), x ∈ Rn. The structure of the vector
field allows expressing the model as

ẋ = Ax + g(x) = Ax + B(x)x = Γ (x)x.

where A is a constant n× nmatrix, while B(x) is made up of terms
that are now linear in the variables. Let us assume for the moment
that fi(x) does not contain the term x2i . This assumption is satisfied
in models of biochemical reaction networks because dimerization
of an element cannot yield that same element. This assumption
allows us to choose B(x) so that b(x)ii = 0.1

Let us now assume that system corresponding to the linear part
(ẋ = Ax) is box invariant, i.e. there exists a nonempty (conical)
set C in Rn that defines all the possible locations of the symmetric
vertices of the invariant hyper-rectangle. Let us introduce a matrix
Γ #(x) =̇ A# + B#(x), where b#(x)ij = |b(x)ij|. It is then possible
to refer back to Section 3.2 and interpret Γ #(x) = A#

ε , where the
nonlinear part B#(x) is perceived as an additional term that may
disrupt the box invariance of the linear system. Clearly this is a
worst-case scenario, which comes from the positivity of the terms
b#(x)ij. By the application of the results derived in Section 3.2, a
set of upper bounds for the values of the ‘‘allowed perturbations’’
is obtained. These bounds define some hyperplanes which, when
intersectedwith the coneC, define the new reduced feasible region
C ′ for the vertices of the box:

C ′ = {c | A#c ≤ 0, b#
ij(c) ≤ εij/a#

ij}
where εij is the maximum allowed perturbation obtained in
Section 3.2, and b#

ij(c) is computed as
∑

k |βk||ck| if bij(x) is
∑

k βkxk.
Notice that this procedure can also be extended to include the
presence of a constant drift term, according to Section 3.3, as well
as to disregard the assumption onmatrix B raised in this paragraph.
Overvaluing dynamical systems. A second method to compute
invariant regions is based on the definition of an overvaluing
system (Borne, Richard, & Radhy, 1996; Erdem & Alleyne, 2002),
which depends on the choice of a particular (vector) norm (Kiendl
et al., 1992). Consider the multi-affine model already introduced:
ẋ = Ax + g(x) = Ax + B(x)x = Γ (x)x, x ∈ Rn. As shown in
Section 2, we are interested in the infinity vector norm V (x) =
‖x‖∞ (or similarly in a scaled version thereof, VW (x) = ‖Wx‖∞,
whereW is a diagonal, positive n×nmatrix). If the right-derivative
ofV (x) (Kiendl et al., 1992),D+V (x), can beupper-bounded (within
a given limited region S ⊂ Rn) as follows: D+V (x) ≤ mV (x),
wherem is a negative real number, then the region defined as

B =̇ {x ∈ Rn : V (x) ≤ c, c ∈ R+} ⊆ S

is positively invariant for the original nonlinear system (Borne
et al., 1996). The right-derivative D+V (x) can be upper-bounded

1 The nonlinear part, which is made up of products of two different monomials,
can be ordered into possibly different B(x) matrices. Thus the choice of B(x) is not
unique.

by a set of inequalities: given the matrices A and B(x) as in the
preceding paragraph, notice that

D+V (x) ≤ max
1≤i≤n

(

aii +
∑

j.=i

(|aij| + |bij(x)|)
)

V (x).

This expression can yield a bound form. Herewe have not used any
assumption on the existence of a box.

5. Box invariance for hybrid systems

We extend the notion of box invariance to models, known as
hybrid or switched, which are compositions of different dynamical
systems. As in the case of the preceding nonlinear studies, we will
only derive sufficient conditions.

Definition 4 (Hybrid System, (Lygeros, Johansson, Simic, Zhang, &
Sastry, 2003)). A hybrid system is a tuple H = (Q , E,D,G, R, F),
where

• Q = {1, . . . ,m} is a finite set of discrete states
• E ⊂ Q × Q is a set of edges, where e = (e(1), e(2)) ∈ E
• D = {Di}i∈Q is a set of domains, where Di ⊂ Rn

• G = {Ge}e∈E is a set of guards, where Ge ⊆ De(1)
• R = {Re}e∈E is a set of identity reset maps
• F = {fi}i∈Q is a set of Lipschitz vector fields on Di.

The hybrid state space of H is
⋃

q∈Q {q} × Dq, i.e. the disjoint
union of the domains associated to each mode. A hybrid trajectory
(evolving in the hybrid state space), starting from an initial
condition (q0, x0) ∈ ⋃

q∈Q {q}×Dq, evolves continuously according
to the vector field in fq ∈ F until it intersects a guard set
in G (this last condition is called an ‘‘event’’). The guard set is
associated with an edge in E, which determines the new domain
the trajectory jumps to. Furthermore, the specific point in the
guard set is mapped, according to a function in R (in this work, the
identity function), to an initial condition within the new domain,
from which the continuous motion restarts. Hybrid models allow
for a plethora of possible dynamical behaviors. We refer the reader
to Lygeros et al. (2003) for further details on their dynamical
properties.

In contrast, switched systems specify jumping conditions in time,
rather than in state.

Definition 5 (Switched System). A switched system is a tuple S =
(Q , E,D,G, R, F), where

• Q , E, R, F are as in Definition 4
• D = {Di}i∈Q is a set of domains where Di = Rn

• G = {0, τ1, τ2, . . .} is a possibly infinite set of guards in time,
where τi ∈ R+ are increasing in i : τ0 = 0 ≤ τ1 ≤ τ2 . . .
Each τi is mapped to a state by a function g : G → Q such that
(g(τi−1), g(τi)) ∈ E, ∀i > 0.

The state space of S is then
⋃

q∈Q {q} × Rn. Trajectories of S
are defined similarly to those of H , where the ‘‘events’’ are now
simply time-dependent, rather than being determined by spatial
conditions.

An invariant set of a hybrid or a switched system is a subset
of the hybrid state space such that every trajectory originating in
this set or intersecting it continues to dwell inside it. The notion
of box invariance for hybrid and switched systems is defined so as
to allow for jumps between the different domains, as well as for
the possibility of having a number of different equilibria in each
separate domain (recall Definition 1 and ensuing comments).
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Definition 6 (Hybrid Box Invariance). A hybrid system H (a
switched systemS ) is said to be hybrid box invariant if there exists
a subset Q ′ ⊂ Q of states and boxed regions Bq ⊂ Dq, q ∈ Q ′

around the corresponding equilibria, such that
⋃

q∈Q ′ {q}× Bq is an
invariant set for H (or S ).

As for the dynamics, we restrict ourselves to the instance where
the components of F are either linear or affine vector fields. An
important classification in our analysis hinges onwhethermultiple
domains share an equilibrium point andwhether equilibria belong
to guard sets.

Reduction to pure dynamical systems.We first consider the case
for the hybrid system H when there is a discrete state, say i ∈
Q , such that (i) the dynamical system of state i is box invariant
with respect to a box B ⊆ Di, (ii) none of the guard sets Gi
intersect B, i.e., B ∩

(⋃
e∈E,e(1)=i Ge

)
= ∅, and (iii) B is contained

in the domain of state i, i.e., B ⊆ Di. Existence of a mode i
with such properties implies hybrid box invariance for H . This
case occurs frequently in models of genetic regulatory pathways.
This happens, for example, in the hybrid model of the Delta-
Notch lateral inhibitionmechanism of Ghosh and Tomlin (2001). A
second example is given below. The reader should realize that, as in
the nonlinear case, the existence of a box for a single discrete state
does not imply the existence of boxes of different sizes: expanding
a box may in fact cause it to intersect a guard, which may disrupt
the invariance property.

Example 4 (Tetracycline Antibiotics Resistance). Tetracyclines are a
group of broad-spectrum antibiotics whose general usefulness has
been reduced with the onset of bacterial resistance. The dynamics
of tetracycline antibiotic in a bacteria which develops resistance
to this drug (by turning on genes tet A and tet R) can be described
by the following hybrid systemwithmulti-affine dynamics, where
x1, x2, x3, x4 are the cytoplasmic concentrations of Tet R protein,
the Tet R-Tc complex, Tetracycline, and Tet A protein respectively,
and u0 is the extracellular concentration of Tetracycline (Rubin,
Kumar, & Sokolsky, 2006):

ẋ1 = f − x3x1
3

+ 5x2
40 000

, ẋ2 = 15u0

1000
− 35x3x4

10
,

ẋ3 = x3x1
3

− 16x2
40 000

, ẋ4 = f − 11x4
40 000

.

Here f is the transcription rate of genes, which are inhibited by Tet
R, f = 1/2000 if x1 > 2/10 0000 and f = 1/40 otherwise. In the
mode when the genes are ‘‘on’’ (i.e., f = 1/2000), if u0 is fixed to
200, then we can compute a positive invariant box 3/2 ≤ x4 ≤
2, 2/5 ≤ x3 ≤ 3/5, 3/1000 ≤ x1 ≤ 8/1000, 1 ≤ x2 ≤ 4 by
focusing solely on this mode and using Proposition 7. !

Hybrid domains sharing an equilibrium point. Let us first
observe that a hybrid dynamical system can be over-approximated
by a switched system that allows transitions at all possible time
instants. This over-approximation can be used to check properties
of the original system.

Proposition 8. Let H be a hybrid system and let S be the
corresponding switched systemmade up of the same tuple, except that
the domains are now Di = Rn and the set of guards is given by a
symbolic, non-decreasing sequence G = {0, τ1, τ2, . . .} that allows
for all possible switchings. For any (universal) property P , if P holds
for (all the possible trajectories of) S , then P holds for H .

Proof. Given an initial condition (q0, x0), x0 ∈ Dq0 , q0 ∈ Q for
H , the determinism of H (Lygeros et al., 2003) allows us to state
that the (unique) hybrid trajectory can be related to a unique
sequence of switching times {0, τ1, τ2, . . .} (possibly infinite in
cardinality). Clearly, this sequence belongs to the set G of S .
Hence, proving a (universal) property (for instance, stability) for
all possible switching sequence G for S , will a fortiori prove the
property for H (and for any of its executions). !

The following result deals with the case of switched linear
systems that share the origin as a common equilibrium.

Theorem 7. A switched linear system S , characterized by a set of
vector fields of the form

• F = {fi}i∈Q = Aix, x ∈ Rn, i ∈ Q

is hybrid box invariant around the origin if there exists a single
hybrid box

⋃
i∈Q {i} × B, B ⊂ Rn, such that the dynamical system

in each domain is box invariant with respect to B. Thus, recalling the
definition in Section 3 of the cones Ci for each mode i ∈ Q , a sufficient
condition for box invariance is that

⋂
i∈Q Ci .= ∅, which can be tested

in polynomial time.

Proof. In each domain i ∈ Q , the corresponding dynamical system
characterized bymatrixAi is related, via theMetzler correspondent
A#
i , to a cone Ci. The non-emptiness of the intersection

⋂
i∈Q Ci

allows choosing points that define a commonbox, and thus directly
specify a hybrid box. With reference to the notations in Section 3,
in order to find a box for all the discrete domains, the objective is to
find a positive c ∈ Rn, such thatA#

i c ≤ 0 for all i ∈ Q = {1, . . . ,m}.
This is a set of linear constraints that can be efficiently solved in
polynomial time. !

The condition for a common box, as in Theorem 7, is analogous
to the search for a common Lyapunov function for the stability of
switched systems (Branicky, 1994; Liberzon, 2003).

It is well known that the composition of two stable systems
can be unstable (Branicky, 1994). Similarly, Example 5 shows that
hybrid systems made up of box invariant linear systems need not
be box invariant—in fact, they can show divergent behavior.

Example 5. Consider the following two-dimensional hybrid sys-
tem, characterized by two modes with domains coinciding with
the whole space, D1 = D2 = (R+)2, and endowedwith the follow-
ing vector fields:

A1 =
(

−1 5
−0.1 −1

)
; A2 =

(
−1 −0.2
4 −1

)
.

Assume that there are two edges (1, 2), (2, 1), with the following
guards in R2: G(1,2)(x1, x2) = {x ∈ R2 : x1 − 5x2 = 0},
G(2,1)(x1, x2) = {x ∈ R2 : 4x1 − x2 = 0}. Assume again identity
reset maps, and initial condition (x1(0), x2(0)) = (0.1, 0.1) ∈ D1.
In isolation, both linear systems are box invariant and indeed have
spiraling convergent trajectories towards the origin. The hybrid
model though is unstable (e.g., for initial conditions on the bisector
of the first quadrant). Incidentally, notice that

C1 = {(x1, x2) : x1 − 5x2 ≥ 0 ∧ x2 ≥ 0};
C2 = {(x1, x2) : 4x1 − x2 ≤ 0 ∧ x1 ≥ 0};
and that C1 ∩ C2 = ∅. !

Affine hybrid systems. We finally consider the case of affine
hybrid and switched systems. Unlike the linear case, the different
modes in an affine hybrid system need not share their equilibrium
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Fig. 2. Simulation of a trajectory for the first (left) and second (right) system, and
computation of some symmetrical boxes.

point. However, we can still derive a sufficient condition for the
existence of a ‘‘common box’’ (the proof directly follows that in
Theorem 7).

Theorem 8. Consider an affine hybrid systemH , where each domain
has an equilibrium point xio, i ∈ Q , and all variables are bound
to be positive. H is box invariant if the following condition holds:⋂

i∈Q (Ci + xio) .= ∅.

Example 6 (A Model for Glucose Concentration). The following
model is an extension of Example 1 and its dynamics are given
there. We allow T to assume two different values (10 and 3
min), which correspond to different physiological conditions.
Furthermore, we assume that the switch between these two
conditions can happen at any time. This calls for the introduction
of a bimodal switched model, composed of the following two
dynamics: ẋ =

{
A1x + b, if T = 10 [min];
A2x + b, if T = 3 [min].

Both models, considered in isolation, are box invariant. They
therefore are stable around two different equilibria. In Fig. 2 we
plot trajectories for these two systems, and draw some boxes.
Additionally, the cones are shown, centered around the equilibria.
Notice that the intersection of the two cones is not empty.
The smaller one was thus chosen to define the ‘‘global’’ box.
Two different simulations, with random switching, starting from
opposite initial conditions, are shown in Fig. 3. The new box is
indeed an invariant for the switched system. This box yields a
bound on the values of x, which in the model represents the blood
glucose concentration in the brain. !

6. Conclusions

With a focus on computational aspects related to the character-
ization of box invariance, this paper has obtained necessary and
sufficient conditions for linear system, and sufficient conditions
for classes of nonlinear (in particular, monotone multi-affine) and
hybrid systems. We observed that the Metzler structure helps in
obtaining efficient computational procedures for analyzing dy-
namical systems.

Since robustness is a central issue for biological systems, we
also presented results on robustness of box invariance for linear
systems. The concept of box invariance is stronger than that of
asymptotic stability (for linear systems), but it is still not fully
compositional in the hybrid and switched cases: box invariance
of dynamical systems is not necessarily preserved when these
systems are composed into a hybrid or switched system.

The notion of box invariance is intuitive, rather descriptive,
and computationally attractive. It was shown and it is argued that
several models of biological systems are box invariant.

Fig. 3. Two realizations of the switched system composed by the two dynamical
systems, with a few global boxes.
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