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Abstract. The objective of this study is to introduce an abstraction
procedure that applies to a general class of dynamical systems, that is
to discrete-time stochastic hybrid systems (dt-SHS). The procedure ab-
stracts the original dt-SHS into a Markov set-chain (MSC) in two steps.
First, a Markov chain (MC) is obtained by partitioning the hybrid state
space, according to a controllable parameter, into non-overlapping do-
mains and computing transition probabilities for these domains accord-
ing to the dynamics of the dt-SHS. Second, explicit error bounds for the
abstraction that depend on the above parameter are derived, and are
associated to the computed transition probabilities of the MC, thus ob-
taining a MSC. We show that one can arbitrarily increase the accuracy
of the abstraction by tuning the controllable parameter, albeit at an in-
crease of the cardinality of the MSC. Resorting to a number of results
from the MSC literature allows the analysis of the dynamics of the orig-
inal dt-SHS. In the present work, the asymptotic behavior of the dt-SHS
dynamics is assessed within the abstracted framework.

1 Introduction and Objectives

Hybrid Systems (HS) are dynamical systems with interleaved continuous and dis-
crete behaviors. Their great expressive power is offset by two main issues. The
first is the subtlety of their theoretical investigation: much research has been
directed to further the understanding of their system-theoretical properties. The
second is the problem of scalability, in particular with respect to computational
complexity. For instance, the formal verification of properties of the system (e.g.
model checking techniques [4]) is complicated by the continuity of the state-space
and by the interaction between continuous and discrete dynamics.
A technique which is often employed to cope with system complexity and di-
mensionality is abstraction. According to this approach, a system with a smaller
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state space (possibly finite) is obtained, which is equivalent to the system under
study. Systems equivalence is usually defined via the notions of language equiva-
lence and bisimulation [2]. Recently, approximate notions of system equivalence
[7] have been developed, where a metric is introduced to quantify the distance
between the original system and the abstraction. The contribution in [6] pro-
poses an algorithm to construct an approximate abstraction of a HS by means
of a timed automaton. In [9] a notion of approximate bisimilarity is proposed
for a class of Stochastic Hybrid Systems (SHS), that is HS which are endowed
with probabilistic terms.
The present contribution introduces a formal abstraction procedure for a general
class of SHS. This work refers to a discrete time framework and introduces the
explicit presence of spatial guards in a class of SHS (named dt-SHS), and shows
that it is possible to express the transition probability function in a compact way
by employing the concept of probabilistic reachability. After introducing a parti-
tioning procedure on the hybrid state space, the transition probabilities between
these partitions are approximately computed, thus generating a Markov chain
(MC). By raising some continuity assumptions on the entities that characterize
the dynamics of the dt-SHS, explicit error bounds are associated to the transi-
tion probabilities. These error bounds depend on the diameter of the introduced
partitions and can then be refined by this parameter. This allows to formally
set up a Markov set-chain (MSC) associated to the partitioning procedure. The
asymptotic behavior of the MSC is then related to that of the dt-SHS.
The present technique is analogous to the line of work presented in [10], which
proposes a discretization of the continuous dynamics of a Markov process into
that of a MC, defined on a grid on the state-space. The contribution shows weak
convergence of the MC process to the original one, but no error bounds are ex-
plicitly derived. Both this work and [10] approximate the original process with a
probabilistic discrete structure. This provides a connection to model checking of
stochastic timed automata (which is a subclass of SHS), that has been investi-
gated in [3]. A general understanding of the area of probabilistic model checking
for SHS is however still far. As a first result towards this goal, we have shown
the ability to construct a finite state abstraction that possibly allows us to ef-
ficiently compute the steady state of the original system with arbitrary precision.

2 The dt-SHS Model

This section formalizes the dt-SHS model first mentioned in section 1. The math-
ematical framework is inspired by that in [1], but we model the presence of a
physical forcing guard set rather than introducing state-dependent transition
probabilities. The use of a discrete time framework is motivated by the simplic-
ity in dealing with measurability issues for events on the underlying probability
space, as well as by the direct computability of transition probabilities.

Definition 1 (dt-SHS). A discrete time stochastic hybrid system is a tuple
H = (Q,S∗,G, T,R), where



– Q := {q1, q2, . . . , qm}, for some finite m ∈ N, is the discrete component of
the state space;

– S∗ := ∪i∈Q{i}×D∗i , is the hybrid state space, made up by a set of continuous
“domains” for each mode i ∈ Q, each of which is defined to be a compact
subset D∗i ⊂ Rn(i). The function n : Q → N assigns to each i ∈ Q the
dimension of the continuous state space Rn(i);

– G := ∪i∈Q{i} × Gi,Gi = {gij ; j ∈ Q, j 6= i, gij ⊆ D∗i } is the set of spatial
guards. We assume that ∀i, j, k ∈ Q, i 6= j 6= k, gij ∩ gik = ∅, and that the
guards have non-trivial volume: L(gij) 6= 0,∀i, j ∈ Q, j 6= i, where L(A)
denotes the Lebesgue measure associated to any Borel subset A ⊂ B(D∗i ). Let

us further introduce the set Di := D∗i \
{
∪j∈Q
j 6=i

gij

}
, the “invariant” of mode

i, and S := ∪i∈Q{i} × Di;
– T : B(D∗(·)) × S → [0, 1] is a Borel-measurable stochastic kernel (the “tran-

sition kernel”) on D∗(·) given S, which assigns to each s = (q, x) ∈ S a
probability measure on the Borel space (D∗q ,B(D∗q )): T (dx|(q, x));

– R : B(D∗(·)) × G × Q → [0, 1] is a Borel-measurable stochastic kernel (the
“reset kernel”) on D∗(·), given G×Q, that assigns to each s = (q, x) ∈ G, and
q′ ∈ Q, q′ 6= q, a probability measure on the Borel space (D∗(q′),B(D∗(q′))):
R(dx|(q, x), q′). ut

The system initialization at the initial time (say k = 0) is specified by some
probability measure π0 : B(S∗) → [0, 1] on the Borel space (S∗,B(S∗)). Here
again B(S∗) is the σ-field generated by the subsets of S∗ of the form ∪q{q}×Bq,
with Bq denoting a Borel set in D∗q . For details on the measurability and metric
properties of H, the reader is invited to refer to [1, 5]. Notice that the transition
and reset kernels (respectively T and R) have different domains of definition (S
and G ×Q), but the same support (D∗). Next, we define the notion of execution
for the above model (throughout the paper, random processes will be denoted
in bold fonts, while random variables in normal typesets).

Definition 2 (Execution). Consider a dt-SHS H = (Q, n,G, T,R). An exe-
cution for H, associated with an initial distribution π0, is a stochastic process
{s(k), k ∈ [0, N ], N ∈ N} with values in S∗, whose sample paths are obtained
according to the following algorithm:
extract from S∗ a value s0 = (q0, x0) for s(0), according to the distribution π0;

for k = 0 to N − 1,

if there is a j 6= qk, j ∈ Q, such that xk ∈ gqk,j ,
then extract a value sk+1 ∈ S∗ for s(k + 1), according to R(· |sk, j);
else extract a value sk+1 ∈ S∗ for s(k + 1), according to T (· |sk);

end. ut
As mentioned, the introduced (autonomous) dt-SHS is related to the (controlled)
SHS in [1], where the additional presence of a stochastic kernel allows for the
presence of spontaneous jumps within the invariants. The theory developed in
this work can be extended to account for similar terms.



3 Markov set-chains

We define here the concept of Markov set-chain, which will be used as an abstrac-
tion framework for dt-SHS. We also recall some useful results from [8], which
contains a compendium of literature on the subject.

Definition 3 (Transition Set). Let P,Q ∈ Rn×n, with P,Q ≥ 0(that is
component-wise nonnegative matrices, not necessarily stochastic), with P ≤ Q.
We define a “transition set” as:

[P,Q] = {A ∈ Rn×n : A is a stochastic matrix and P ≤ A ≤ Q}. �

In the proceeding, we assume that the transition set [P,Q] 6= ∅. When the
“bounding matrices” P,Q will be clear from the context, we will use the notation
[Π] to denote such compact (possibly infinite) set of stochastic matrices. We can
define a Markov set-chain as a non-homogeneous, discrete-time Markov chain,
where the transition probabilities vary non-deterministically within a compact
transition set [Π]. More formally,

Definition 4 (Markov set-chain). Let [Π] be a transition set, i.e. a compact
set of n×n stochastic matrices. Consider the set of all non-homogeneous Markov
chains having all their transition matrices in [Π]. We call the sequence

[Π], [Π]2, · · ·

a Markov set-chain, where [Π]k is defined by induction as the compact set of all
possible products A1, · · · , Ak, such that, ∀i = 1, · · · , k, Ai ∈ [Π].
Similarly, let [π0] be a compact set of 1 × n stochastic vectors, introduced as in
Def. 3. We call [π0] the initial distribution set. ut

The compact set [πk] = [π0][Π]k is the k-th distribution set and

[π0], [π0][Π], · · ·

is the Markov set-chain with initial distribution set [π0].
It can be shown that each element [πk] is a convex polytope if [π0] is a convex

polytope and [Π] is a transition set. It should be noticed that the number of
vertices of [πk] increases with k, thus the computational burden to obtain [πk] for
large values of k should be accounted for. However, it is possible to compute tight
(see [8]) upper and lower bounding matrices Lk, Hk for [πk] in a very efficient
way, in particular the computation of Lk, Hk can be recursively obtained from
Lk−1, Hk−1.

Definition 5 (Coefficient of Ergodicity). For any stochastic matrix A, its
coefficient of ergodicity is defined as follows:

T (A) =
1
2

max
i,j
||ai − aj ||,

where ai is the i–th row of A and || · || on a vector is the standard 1–norm. If
T (A) < 1, A is said to be scrambling. ut



The above definition can be directly extended to Markov set-chains:

Definition 6. For any transition set [Π], its coefficient of ergodicity is defined
as follows:

T ([Π]) = max
A∈[Π]

T (A). �

Notice that since T (·) is a continuous function and [Π] a compact set, the maxi-
mum argument of T ([Π]) exists. Also notice that T ([Π]) ∈ [0, 1], asT (A) ∈ [0, 1].
This value provides a measure of the “contractive” nature of the Markov set-
chain: the smaller T ([Π]), the more contractive the MSC. This will become clear
when studying the asymptotic properties of the MSC, and is related to the reg-
ularity properties of the matrices that build up the MSC [8]. The exact value of
T ([Π]) can be hard to compute, but it can be upper bounded as follows:

Theorem 1. Let [Π] be the interval [P,Q] and A ∈ [Π], then:

|T ([Π])− T (A)| ≤ ||Q− P ||

The above matrix norm is taken from [8] and is a modification of the induced
1-norm. The following notion connects to Definition 5:

Definition 7 (Scrambling Integer). Suppose r ≥ 1 is such that T (A1 · · ·Ar) <
1, ∀A1, · · · , Ar ∈ [Π]. Then [Π] is said to be product scrambling and r its scram-
bling integer. ut

We now illustrate some results on the convergence of MSC.

Theorem 2. Given a product scrambling MSC with transition set [Π] and ini-
tial distribution set [π0], then there exists a unique limit set [π∞] such that
[π∞][Π] = [π∞]. Moreover, let r be the scrambling integer of [Π]. Then for
any positive integer h, and according to the Hausdorff metric d(·) on compact
sets:

d([πh], [π∞]) ≤ Kβh (1)

where K = [T ([Π]r)]−1d([π0], [π∞]) and β = T ([Π]r)
1
r < 1. Thus

lim
h→∞

[πh] = lim
h→∞

[π0][Π]h = [π∞].
�

As we argued before, the exact computation of [π∞] can be expensive. However, it
is possible to use the upper and lower bounding matrices Lk, Hk mentioned above
to obtain an accurate estimate of [π∞] with a reasonable computational com-
plexity. In fact, Lk, Hk converge to a value L∞, H∞ such that [π∞] ⊆ [L∞, H∞].
Define the diameter of a compact set (referred to either matrices or vectors) as

∆([Π]) = max
A,A′∈[Π]

||A−A′||.

The following result provides an efficient procedure to compute an upper bound
for the diameter of the limit set [π∞].



Theorem 3. Given a product scrambling Markov set-chain with transition set
[Π] = [P,Q] and such that T ([Π]) < 1, then

∆([π∞]) ≤ ∆([Π])
1− T ([Π])

≤ ||Q− P ||
1− T (A)− ||Q− P ||

,

for any A ∈ [Π]. The second inequality holds only if T (A) + ||Q− P || ≤ 1. �

4 Probabilistic Dynamics

The model described in Definition 1 is quite general and allows for a wealth
of possible behaviors. However, even in the case of further knowledge of the
structure of the dynamics (beyond the general stochastic kernels T,R that char-
acterize it), is in general not translatable into a closed-form expression for the
solution process ofH. Thus, in order to study the dynamical properties ofH, two
directions can be pursued. The first looks at the ensemble of possible realizations
that originate from the initial distribution, according to the steps in Definition
2. Monte Carlo simulations are a known example of this approach. The second,
instead, characterizes probabilistically the presence of the solution process in
certain regions of S∗, as time progresses. More precisely, it is of interest to de-
fine the following likelihood: given a point s0 ∈ S∗, what is the probability that
the solution process s(·) of H, starting from s0, is located in the set A ∈ B(S∗)
at time k > 0? Similarly, given a point s0 ∈ S∗, what is the probability that the
solution process s(·) of H stays within the set A ∈ B(S∗), if s0 ∈ A, for all the
time k ∈ [0, N ], N <∞?

These and similar quantities leverage the ability of defining and computing
the concept of probabilistic reachability [1]. Interestingly, these stochastic reach-
ability problems are related to the two analogous deterministic approaches taken
in [6] for constructing finite abstractions of (deterministic) HS. The two prob-
abilistic kernels T and R depend on, respectively, the invariant and the guard
sets. We are thus particularly interested in computing the transition probabilities
between these subsets of the hybrid state space. For instance, considering two
modes q, q′ ∈ Q, we call pq,q′(x) the probability that a trajectory, starting from
a point (q, x) ∈ S, has to transition in a time step (according to T (·|(q, x))) into
any other domain q′ 6= q by intersecting the corresponding guard, or possibly to
continue evolving in q′ = q:

pq,q′(x) ,
∫
gq,q′

T (dy|(q, x)), if q′ 6= q, (2)

pq,q(x) ,
∫
Dq
T (dy|(q, x)) = 1−

∑
q′∈Q
q′ 6=q

∫
gq,q′

T (dy|(q, x)).

The case where (q, x) ∈ S∗\S, which is associated to the probability that the
trajectory is reset, according to R(·|(q, x), q′), into an invariant q′ 6= q, is similar.



Let us denote this probability p(q,q′),q′(x):

p(q,q′),q′(x) ,
∫
Dq′

R(dy|(q, x), q′). (3)

Notice that, as the support of T and of R coincides, the contribution of both
terms is similar, except for the fact that T is associated with a one time-step
continuous motion, while R to an instantaneous reset.
Investigating similar quantities for dynamics over a longer time interval involves
conditioning the probability backwards in time and referring to the “template
quantities” discussed above. For instance, we may be interested in the following
transition, for q, r, s ∈ Q, q 6= r, r 6= s: x ∈ gq,r

R→ Dr
T→ gr,s; and the associated

probability p(q,r),r(x)pr,s(·). This is computed by:

P (s(1) ∈ gr,s|s(0) = (q, x) ∈ gq,r) =
∫
Dr

∫
gr,s

R(dy|(q, x), r)T (dz|(r, y))

=
∫
Dr
R(dy|(q, x), r)pr,s(y) (4)

This quantity shows that the contributions of the one-step probabilities over time
have to be necessarily “averaged” over the influence of the stochastic kernels
that precede them. This will also hold with reference to a particular initial
distribution π0. As already mentioned, the interplay between transition and reset
probabilities is a characteristic feature of SHS.

The terms in (2)-(3), and their multiplications, are then characteristic of the
computations we want to perform to study the dynamics of the dt-SHS H. In
principle, we may be able to associate a transition probability to each couple
of elements taken from the set of invariants and guards. This would allow to
abstract the dynamics of H into those of a discrete m2-dimensional MC (where
m = card(Q)). However, by closely looking at the quantity in (2) [resp. (3)], it
becomes clear that it is necessary to compute the transition probabilities over
the whole invariant Dq [over the whole guard gq,q′ ], averaged over the contri-
bution of the incoming reset maps R(·|(·, ·), q) [the transition kernel T (·|(q, ·))].
To fully make sense, these last quantities would have to depend on other proba-
bilities, and so on backwards, until integrating over an initial distribution. This
computation is rather unfeasible, and its bottleneck hinges on the dependence
of T and R on the continuous component of the hybrid state space.
Rather than aiming, as just proposed, at abstracting the dynamics of the dt-
SHS H into an m2-dimensional MC, we may instead allow an abstraction into
a higher dimensional structure, while improving the precision of the approxima-
tion. The technique to achieve this, described in the following section, is based
on a continuity assumption on the dynamics, and a state-partitioning procedure.

5 Abstraction Procedure

This section describes the abstraction procedure for the dt-SHS model H of
section 2. The dt-SHSH will be abstracted into a Markov set-chainM, described



by a one-step transition set [Π] = [P,Q]. The computations involved in obtaining
the abstraction are reduced to integrations over the continuous part of the hybrid
state space. The procedure introduces some necessary approximations in order to
perform the computations feasibly. However, explicit bounds on these errors will
be obtained, provided some continuity assumptions are raised. The association
of these bounds to the computed transition probabilities allows a connection
with the theory of MSC, as it provides a direct definition of the transition set
[Π] of M. The precision of the abstraction will depend on a parameter δ. It is
desirable for the abstraction to be endowed, in the limit as δ → 0, with some
convergence properties to the original dt-SHS H.

Approximation of state-dependent Transitions and Resets

As discussed in section 4, the dependence of transition and reset kernels on,
respectively, the invariant and the guard set, and their continuous supports,
renders the computation of transition probabilities via nested integrals of prod-
uct terms as in (4) computationally unattractive. Introducing some “regularity
assumptions” on the probabilistic kernels, it is possible to achieve a “state-
memoryless” approximation for these transition probabilities, whereby their cal-
culation does not depend on the continuous part of the hybrid state-space S.
Let us suppose that the stochastic kernels T and R, which depend on the con-
tinuous component of the hybrid state in Definition 1 of H, admit densities
respectively t and r. Similarly, let us assume the initial probability distribution
π0 has a density p0. It is supposed that p0, t, and r satisfy the following Lipschitz
condition.

Assumption 1 (Lipschitz Continuity of the Stochastic Kernels)

1. |p0(s)− p0(s′)| ≤ k0‖x− x′‖, for all s = (q, x), s′ = (q, x′) ∈ D∗q ;
2. |t(x̄|s) − t(x̄|s′)| ≤ kT ‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ Dq, and

(q, x̄) ∈ D∗q ;
3. |r(x̄|s, q̄) − r(x̄|s′, q̄)| ≤ kR‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D∗q\Dq,

(q̄, x̄) ∈ D∗q̄ , and q̄ ∈ Q, q̄ 6= q,

where k0, kT , and kR are finite positive constants. ut

Let us also recall the implicit assumption, raised for computations’ sake in Defi-
nition 1, that for each q ∈ Q, the continuous domain D∗q associated to such mode
is a bounded subset of Rn(q).
Let us introduce the following quantities (see Table 1 for a compendium of them),
describing the (finite) volume measures of particular subsets of the domains:
λ∗q = L(D∗q ), λq = L(Dq), λq,r = L(gq,r), λ =

∑
q∈Q L(Dq), λ∗ =

∑
q∈Q L(D∗q ),

where L is the Lebesgue measure of a bounded subset of a Euclidean space.
Since D∗q = Dq ∪ Gq, it follows that ∀q ∈ Q, λq = λ∗q −

∑
r∈Q
r 6=q

λq,r.

Let us now focus on the computation of the transition probabilities. Consider a



mode q ∈ Q, and any two points (q, x), (q, x′) ∈ Dq. Then, with reference to the
quantity in (2) and according to Assumption 1, let us compute, ∀r ∈ Q, r 6= q,

|pq,r(x)− pq,r(x′)| =

∣∣∣∣∣
∫
gq,r

T (dz|(q, x))−
∫
gq,r

T (dz|(q, x′))

∣∣∣∣∣
≤
∫
gq,r

|T (dz|(q, x))− T (dz|(q, x′))| ≤ λq,rkT ‖x− x′‖.

A similar bound is obtained for the case r = q, which now depends on the
quantity λq. Furthermore, a similar bound can be found for the quantity in (3):
selecting any two points (q, x), (q, x′) ∈ gq,r ⊂ D∗q , r 6= q, we have:

|p(q,r),r(x)− p(q,r),r(x′)| =
∣∣∣∣∫
Dr
R(dz|(q, x), r)−

∫
Dr
R(dz|(q, x′), r)

∣∣∣∣
≤
∫
Dr
|R(dz|(q, x), r)−R(dz|(q, x′), r)| ≤ λqkR‖x− x′‖.

Likewise, it is possible to derive error bounds for more complicated expressions,
such as (4).

Hybrid State Space Partition

Let us now introduce a partition of the hybrid state space S∗ (see Table 1). Recall
that S∗ can be written as S∗ = ∪q∈Q{q} × D∗q = ∪q∈Q{q} × {∪r∈Q

r 6=q
gq,r ∪ Dq}.

With regards to a particular mode q ∈ Q, let us introduce a partition of D∗q of
cardinality cδq = dδq +

∑
r∈Q
r 6=q

eδq,r, where the first term dδq refers to the number of

sections of the invariant Dq, while the other terms eδq,r refer to the cardinality
of the partition of the corresponding guard set gq,r. These terms are clearly
all greater than or equal to one. Let us introduce their respective measures λjq

and λkq,r, which make up the quantities λq =
∑dδq
j=1 λ

j
q, and λq,r =

∑eδq,r
k=1 λ

k
q,r

introduced above. This dependence on the parameter δ will be made clear shortly.
We do not impose any structure on the partition, but only require it, within each
domain, to respect (that is, not to intersect) the boundaries between invariant
and guards, and those between each couple of adjacent guards. It is then possible
to express the domainD∗q , associated to mode q ∈ Q, as the union of the following
disjoint sets:

D∗q = {∪r∈Q
r 6=q
{∪e

δ
q,r

j=1g
j
q,r}} ∪ {∪

dδq
j=1D

j
q}.

Let us now associate a discrete state of M to each of these partitions, by in-
troducing mode qj for Djq, and mode qjr for gjq,r. The parameter δ is defined to
be

δ = maxq∈Q{max{εq, γq}}, where
εq = maxr∈Q

r 6=q j=1,...,eδq,r
sup{‖x− x′‖ : x, x′ ∈ gjq,r} = maxr∈Q

r 6=q j=1,...,eδq,r
εjq,r,

γq = maxj=1,...,dδq
sup{‖x− x′‖ : x, x′ ∈ Djq} = maxj=1,...,dδq

γjq .



In other words, δ represents the largest diameter of the partitions defined on S∗.
Let us choose a representative point within each single mode introduced through
the partition: ∀q ∈ Q,∀j = 1, . . . , dδq, let us select a point x̄jq ∈ Djq; ∀q ∈ Q, r 6=
q,∀j = 1, . . . , eδq,r, let us select a point x̄jq,r ∈ gjq,r.
We will now revisit the computation of the probabilistic quantities in (2)-(3)
with the additional knowledge of the derived error bounds, in order to define the
elements of the MSCM that abstracts the original dt-SHS H. Toward this aim,
we associate to each discrete state of the above partition a distinct state of the
MSC. The values of the error bounds depend on the partition diameter δ, and
on the structure of the dynamics of H. To be more precise, we shall approximate
the quantities in (2)-(3) with ones that will be based on computations performed
on the representative points. The new transition probabilities will be intuitively
denoted in a similar fashion as the relations in (2)-(3). Let us start from the
relation in (2):

∀x ∈ Djq, pqj ,rk(x) =
∫
gkq,r

T (dy|(q, x)) ≈ pqj ,rk(x̄jq), (5)

More precisely, |pqj ,qkr (x) − pqj ,qkr (x̄jq)| ≤ λkq,rkT γ
j
q ≤ λ∗kT δ. Notice that, if x ∈

Djq ⊆ Dq, T (dy|(q, x)) = T (dy|(qj , x)).
Now, focusing on equation (3), we have:

∀x ∈ gjq,r, p(q,r)j ,rk(x) =
∫
Dkr
R(dy|(q, x), r) ≈ p(q,r)j ,rk(x̄jq,r), (6)

where |p(q,r)j ,rk(x) − p(q,r)j ,rk(x̄jq,r)| ≤ λkrkRε
j
q,r ≤ λ∗kRδ. Notice that, if x ∈

gjq,r ⊆ D∗q , R(dy|(q, x), r) = T (dy|(gjq,r, x), Dk
r ).

Similar transition probabilities and bounds can be referred to the initial distri-
bution π0. Moreover, it is possible to compute analogous bounds for quantities,
such as (4), which involve more than a single step of computation. However,
it will become clear in the next section that these bounds can be equivalently
derived from direct matrix computations on the MSC M.

6 Steady state computation using the MSC abstraction

In this section we show that it is possible to infer the asymptotic behavior
of the dt-SHS H using the introduced Markov set-chain abstraction M. We
start by providing an intuitive justification of why the MSC M may yield some
conclusions about the asymptotic dynamics of the original dt-SHS H.
The values of the MSC, i.e. the explicit bounds for the errors associated to the
approximate computations of the transition probabilities of the dt-SHS, allow to
introduce a “conservative estimate” of the actual transition probabilities between
regions of the state space of the original dt-SHS. By selecting a small enough
diameter δ of the partition, the possibly contractive nature ofM may dominate
over the approximation errors. The contractivity ofM depends on the dynamics



component form parts partitions cardinality size diameter

hybrid space
of H S∗ =

S
q∈Q
{q} × D∗q D∗q cδ λ∗ =

P
q∈Q

λ∗q δ

domain D∗q = Dq ∪ Gq Dq,Gq cδq λ∗q γq ∨ εq
invariant Dq Djq dδq λq γq
invariant
sections

Djq 1 λjq γjq

guards Gq =
S
r∈Q
r 6=q

{gq,r} gq,r gjq,r
P
r∈Q
r 6=q

eδq,r λ∗q − λq εq

guard
sections

gjq,r 1 λjq,r εjq,r

Table 1. Relationship between the components of the dt-SHS and the elements of the
partition that yields the MSC, with corresponding quantities of interest.

and on the structure of H. By tuning the parameter δ, we may derive conclusions
on the asymptotic behavior of H.
We now make the above discussion more quantitative. Given a desired precision
ε > 0 on the approximation, we integrate the procedure for the partition of H
into an algorithm to compute the steady state of the MSC abstraction M. The
precision ε is related to the partition parameter δ. As discussed above, the steady
state vector [π∞] for M is an estimate of the invariant measure of H, with a
confidence bound given by the diameter ∆([π∞]). Let us initialize a partition of
H according to a value δ = δ(ε), which guarantees a precision ε for the steady
state computation of [π∞]. The transition set [Π] = [P,Q], as constructed in the
previous section, has the following property:

∆([Π]) ≤ ||Q− P || = λ∗k̄δ(ε), (7)

with k̄ = kT ∨ kR ∨ k0. The inequality can be drawn by directly employing the
definition of matrix norm, and the bounds derived for equations (5)-(6). Then,
by Theorem 3, a sufficient condition to achieve ∆([π∞]) ≤ ε is the following:

λ∗k̄δ(ε) ≤ ε (1− T ([Π])) . (8)

It is clear that if T ([Π]) < 1 there always exists a value of δ(ε) that satisfies
this inequality, since the LHS expression goes to zero as δ(ε) goes to zero. Notice
however that, without an idea of the transition probabilities that define [Π], one
cannot estimate T ([Π]). Since in general 0 ≤ T ([Π]) ≤ 1, the set of feasible
values for δ(ε) that satisfy equation (8) ranges from a finite upper bound δ0
(when T ([Π]) = 0) to 0 (when T ([Π]) = 1). This makes sense: until we have
no information about the contractive nature of [Π], there is no possibility to
estimate the limit set behavior. For this reason, it is impossible to establish a
priori a value for δ(ε) that guarantees a desired precision ε in the steady state
computation using the abstraction M.

However, we can choose an “optimistic” initial value δ0. In the following
iterative algorithm, given a partition diameter β(k), we define Π(k) the transi-



tion probabilities computed by the abstraction algorithm described in the pre-
vious section from an initial distribution π0. Moreover, we define [Π(k)] =
[P (k), Q(k)], the associated MSC. The parameter α(k) represents an upper
bound for T ([Π(k)]).

Algorithm 1 (Compute steady state of H with precision ε)

input: (H, ε);
set integer k = 0, real α(0) = 0, and real β(0) such that λ∗k̄β(0) ≤ ε;
for k ≥ 0

compute Π(k), [Π(k)] = [P (k), Q(k)] according to β(k);

set α(k) = T (Π (k)) + ||Q(k)− P (k)||;
if α(k) ≥ 1 or α(k) ≥ α(k − 1) then set β(k + 1) = aβ(k), a < 1;

else if ||Q(k)−P (k)||
1−α(k) > ε then set β(k + 1) s.t. λ∗k̄β(k + 1) ≤ ε(1− α(k));

else exit;

set k = k + 1;

end

compute the steady state π∞ of Π(k);

output: (π∞).
ut

Notice that, ∀k ≥ 0, β(k + 1) < β(k), thus lim
k→+∞

∆([Π]) = lim
k→+∞

||Q(k) −
P (k)|| = 0. Let T∞ = lim

k→+∞
T ([Π(k)]) < 1: by Theorem 1 it follows that

lim
k→+∞

α(k) = T ([Π(k)]) = T∞. Namely, if T∞ < 1 we can arbitrarily increase

the accuracy δ of our abstraction until, by equation (8), λ∗k̄δ ≤ ε (1− T∞).
When this happens the algorithm terminates, and we compute the steady state
π∞, or compute [π∞] using the upper and lower bounding matrices L∞, H∞, as
described in section 3.

We now discuss the computational burden of our procedure. It is clear that
the main bottlenecks are (1) the abstraction procedure for the partitioning of the
hybrid state space; and (2) the limit set computation on the abstraction MSC.
The first computation directly depends on the parameter δ, which is related to
T∞ by (8). The second computation depends on two parameters: the cardinality
of the MSC and the convergence speed. The state cardinality is cδ, and depends
on δ, while the convergence speed can be related to T∞ by (1). The main weight
in the computational complexity of our abstraction procedure is T∞.
For the above arguments, it can be interesting to interpret T∞ as the coefficient
of ergodicity T (H) of the dt-SHS H, and possibly compare this value with other
convergence bounds directly derived on the structure and the dynamics of H.



7 Numerical Study

We implement the proposed abstraction procedure on a simple one-dimensional
dynamical system, whose dynamics is described by the following SDE, defined
for t ≥ 0:

dXt = f(Xt)dt+ dBt, with X0 ∼ U(A). (9)

The drift depends on a function f : R → R, assumed to be continuous and
bounded. The term Bt denotes a standard Wiener process. U(A) is the uniform
distribution, over some compact set A ⊂ R.
The SDE in (9) is discretized in time according to a first-order Euler-Maruyama
scheme, with discretization step ∆ > 0, which yields the following, for any n ≥ 0:
X(n+1)∆ ∼ N (Xn∆ +∆f(Xn∆), ∆), where N (m,σ2) is a normal random vari-
able with mean m and variance σ2.
For computational necessity, we shall introduce some approximation outside the
compact interval K = [−K,K]. Let us partition this interval K into 2l sections of
length 2δ, where δ = K/l, and centered at the representative points x̄k = −K +
(2k− 1)δ, k = 1, 2, . . . , l. Call these partitions Dk = [−K+ 2(k− 1)δ,−K+ 2kδ].
Additionally, consider two regions for the open intervals Dlb = (−∞,−K],Dub =
[K,+∞), “centered” at the points x̄lb,ub = {±(K+δ)}. Consider for convenience
the extended index set Q = {1, 2, . . . , l, lb, ub}. Conditional on Xn∆ = x̄k, for

δ-K+δ-K-δ

lth partition

K-K

2δlb ub

0
−δ K+δK-δ

2δ 2δ

Fig. 1. Abstraction procedure for the one-dimensional system in (9).

any k ∈ Q, the process at time (n + 1)∆ is distributed according to T (·|x̄k) ,
N (·;mk, ∆), where mk = x̄k +∆f(x̄k).
This discretization procedure induces a dt-SHS, where the l + 2 domains make
up the state space as S =

⋃
k∈Q{k} × Dk. Let us compute the approximate

transition probabilities between the different modes of the introduced dt-SHS
based on the representative points, and associate bounds on the errors.
In the following, we implement some computations for the very special linear-
drift case, i.e. where f(x) = −µx, µ > 0. The knowledge of a closed form distribu-
tion for this process [11] enables a comparison of it with the outcome of the simu-
lations. We have chosen the following parameters: K = 15, ∆ = 1,m = 0, σ = 1.
Choosing a µ = 0.5, the solution process of (9) is trivially distributed as N (0, 1).
We have implemented our abstraction procedure and the MSC basic algorithms
on Matlab. Figure 2 illustrates that, to obtain a precision (say ε = 0.05) in
the steady state computation, we need a MSC abstraction with 50 states. The



table below Figure 2 shows that by augmenting the state space of the MSC
abstraction, the error bounds for the steady state converge to zero.

MSC state space cardinality 30 50 100 200

Steady state estimation error 0.06 0.05 0.04 0.03

Fig. 2. Simulation outputs.
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