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Abstract— In this paper, sufficient conditions for the existence ~ conditions on when this map is exponentially stable about
of Zeno behavior in a class of hybrid systems are given; the origin; these are exactly the conditions that imply the
these are thefirst sufficient conditions on Zeno of which the oy isiance of Zeno behavior in tHRFQ hybrid system (cf.

authors are aware for hybrid systems with nontrivial dynamics. Section V). M th diti i ifiabl
This is achieved by considering a class of hybrid systems S€ction V). Moreover, these conditions are easily verifiable.

termed diagonal first quadrant (DFQ) hybrid systemswWhen Zeno behavior has been well-studied in hybrid systems
the underlying graph of a DFQ hybrid system has a cycle, (see [1]-[5],[7] to name a few). In the literature, the condi-
we can construct an infinite execution for this system when the tjons that have been obtained to date have been necessary
vector fields on each domain satisfy certain assumptions. To this (cf. [2]-[4],[7]); these are generally based on the “geometry”
execution, we can associate a single discrete time dynamical . ) : ) ?
system that describes its continuous evolution. Therefore, we of the hybrid system, i.e., the spacial configuration of t_hg
reduce the study of executions of DFQ hybrid systems to the guards and the reset maps. There have been some sufficient
study of a single discrete time dynamical system. We obtain conditions for the existence of Zeno for certain classes of
SUfﬂCient' Con.ditions for the eXiSte.nce of Zeno.by determin_ing hybnd Systems with trivial vector fields on each domain
\Q{gglne this discrete time dynamical system is exponentially o \ith control inputs (cf. [4]). Unfortunately, these do not
' seem generalizable to the case when no control is present.
|. INTRODUCTION Therefore, the results obtained in this paper are the first
Zeno behavior is a phenomenon in hybrid systems thgtf Whi(.:h the au_thors are aware for hybrid systems with
. L o . o nontrivial dynamics.
is of special interest; it exists when an infinite number
of discrete transitions occur in a finite time interval. Zeno
behavior has seemed to be impervious Fo analysis. This is || D|AGONAL FIRST QUADRANT (DFQ) HYBRID
a byproduct of the fact that to determine whether Zeno SYSTEMS
behavior exists in a hybrid system, the vector fields on each
domain must be solved for explicitly. Since this is generally First quadrant hybrid systems are a special class of hybrid
not possible, finding sufficient conditions on the existence ¢¥yStéms whose domains, guards and reset maps are in special
Zeno has remained an open problem in the hybrid systerignfigurations. This class of hybrid systems is actually quite
community, at least in the case when the vector fields dgeneral in that it is possible to transform a large class of
each domain are nontrivial, i.e, when they are not constaRybrid systems into first quadrant hybrid systems. Diagonal
vector fields. first quadrant hybrid systems are a special class of first
In this paper, we provide sufficient conditions on theQuadrant hybrid systems that have diagonal affine vector
existence of Zeno for a class of hybrid systems, terdiag- fields on each domain. In this paper, this is the class of
onal first quadran{DFQ) hybrid systemsThe distinguishing hybrid systems that we will consider. The main impetus for
factor for DFQ hybrid systems is that on each domain thdhis is that these hybrid systems have sufficiently interesting
vector fields are given by diagonal affine hybrid systems (Cﬂynamics, in that they are not trivial, while they are amenable
Section I1). This allows us to explicitly solve for the solutionst0 analysis. In this section, we discus&§Q hybrid systems
of these vector fields. Using this, conditions can be derivedd Zeno behavior.
on the existence of an event (cf. Section Ill), i.e., a discrete
transition. We then can derive conditions on when there exists Definition 1: A first quadrant hybrid systenFQ hybrid
an infinite execution for DFQ hybrid system, and we can System) is a tuple
exploit this condition to construct a nonlinear discrete time
map that describes the discrete evolution of this execution in Q= (@, E,D,G, R, F),
space. The study d)FQ hybrid systems is thus reduced to\here
the study of a single discrete time dynamical system (cf. .« Q= {a,

. . - . ) .. is a set ofdiscrete states
Section V). Linearizing this map, we are able to obtain dm }

e« £ C @ x Q@ is a set ofedges The source and target
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award number CCR-0225610) t(e) = ¢;, respectively.



e D ={D,},cq is a set ofdomainsof the form 2.2: The definition of a Zeno execution results in two
qualitatively different types of Zeno behavior (cf. [3]). They

n ., .1 2 ) i . X
Dy={zeR":2" >0 and 2” > 0} are defined as follows: for an executignthat is Zeno,y is
for everyq € Q. Chattering Zeno: If there egists a finiteC' such
e G ={G.}eck is a set ofguardsof the form thatr, 4y —m =0foralli>C.
Ge={zeR":2' =0 and 2° > 0} Genuinely Zeno: If 7,41 —7; > 0 for all i € N.

The difference between these is especially prevalent in their
detection and elimination. Chattering Zeno executions result
from the existence of a switching surface in which the vector

for everye € E.
e R={R.}.ck is a set ofreset mapsuch that

Re(z) = Re(x, 22, ..., 2") = (22, 2, 23,.. ., 27T fields “oppose” each other; for this reason they are easy to
detect. Fillipov solutions can be defined on these surfaces in
for everye € E. order to force the flow to “slide” along the switching surface.

« F'={fy(2)}4eq is a set ofvector fields Lipschitz on  Genuinely Zeno executions are much more complicated
R". The solution to the ODE: = f,(x) with initial i their behavior. There currently is no way to detect the

condition o is denoted byp, (¢, zo). existence of genuinely Zeno executions, and very little has
The graphl’ = (Q, E) is called the underlying graph of the been done in the area of eliminating these executions be-
FQ hybrid system. cause genuinely Zeno executions are fundamentally global

in nature, which prevents the use of local techniques in their
2.1: An (infinite forward} execution of a hybrid system analysis.
is given by a tuple
Definition 3: A diagonal first quadrant hybrid system

x = (p,7,6), (DFQ hybrid system) is &Q hybrid system
where Horq = (Q,E,D,G,R,F)
e p: N — @ is adiscrete evolution map
. T:{Ti}iEN such thal():7'0§71§~~§n§~~ is such that . . . .
a set ofevent (or switching) times o F'={Agx + aq}qeq is a set ofdiagonal affine linear
o £ ={&Yien is a set ofinitial conditionswith ¢; € D, systemsi.e., a, € R" and A, ¢ R"*" is a diagonal
for someq € Q. matrix for everyq € Q.

An executiony must satisfy the conditions We denoteA’” by A\ and refer to it as the'™ eigenvalue.
(i) @iy (Tit1 — Tis&i) = 0, Note that for aDFQ hybrid system, the flow is given by
(11) @i()(t_TzaSz) >0 Vite [Ti,Ti+1],

: t, o) = Agt) — DA Ya, + At
(ii) Eit1 = R(p(0),p(i4+1) (Pp(i) (Tit1 — 7i, &), ?alt, 20) = (exp(Agt) = 1A aq + exp(Aqgt)zo
(iv) (p(i),p(i +1)) € E, which is well defined even if\, has zero eigenvalues; in

for all i € N. The first of these conditions says that an evenq1e case Wheh@q = ?] ﬂ;l's exp;rehssmn becomesl(t., o) =
must occur at timer;, 1, the second says that the flow must'% * %o; OF this Is the flow of the constant systein= a.
stay in the domairD,,;, for all time in [r;, 7;,1], the third

says that the initial conditions must be in the image of the IIl. EVENT DETECTION

guards under the reset maps, and the fourth condition saysD_ e t i . hvbrid " hen th
that discrete evolution map must evolve in a way that is IScrete transitions in a hybrid system occur when there

consistent with the edges iIs an event—that is when the flow hits the guard. In this
' section we determine when an event exists for some domain
and initial condition of aDFQ hybrid system, and we

Definition 2: An executiony is Zenoif - o . .
X explicitly solve for the time in which this event occurs. These

) > conditions are important because when they are satisfied, it
71320 Ti = Z(”H = i) is possible to construct an infinite execution.
1=0

converges. AFQ hybrid system is Zeno if it admits a Zeno  3.1: For somez, € Dy, we say that there exists an event
execution, i.e., if there exists an executigrthat is Zeno.  for this initial condition if there exists a finité\t(z¢) > 0
such that

. 1 A —
1The special form of these domains is the motivation for the term “first (1) 9 <Pq( t<x0)’ wo) 0
quadrant”. (ii) <Pq(t7370) >0 Vte[0,At(xo)].
2We will be interested only in infinite executions because these are the . . "
executions that can result in Zeno behavior. For a more general definitigﬂ the case ODFQ hybr'd systems, we give conditions on

of an execution, see [7]. when events exist. The first two components of the flow of



i = A,z + a, are given by sl TR =%
i ; : S I A
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There exists an event if + i
At ( 1) 1 1 acll Fig. 1. The phase space of the diagonal system given in Example 1 for
Ty) = —log | —————— — — _1(ri
q\Lo /\(11 g aé T >‘r11z(1J c=1 (left) andc = —1 (right).

is finite and positive (possible zero) and
In the case wher: = 1, an event exists it} < 4, and

(exp(\2t) — 1) ) !
%ag + exp()\zt)xg >0 V t € [0, At(zo)]. Otherwise one does not exist.df= —1 then an event always

A7 exists.
We can make these conditions more explicit by considering
initial conditions in a ball of radiug > 0 around the origin: IV. DISCRETENONLINEAR SYSTEMS FROMDFQ
Bs(0) = {x € R™ : ||z|| < d}. HYBRID SYSTEMS

- . . . Using the conditions obtained in the previous section, we
The surprising fact is that these conditions are independent P . .
. o . : are able to construct an infinite execution fob&Q hybrid
of the eigenvalues; this is a trend that will continue. We have S - . .
. . system satisfying these conditions. From this execution,
the following Proposition. . ; .
we can define a set of discrete time maps—analogous to
Proposition 1: For somed > 0, there exists an event for .P(')|'ncae m.a'ps—defln!ng the eyolutlon of the sequence of
20 € Bs(0) N D, if initial conditions of this execution. Thus, studying discrete
4 evolution in space is equivalent to studying a set of discrete
ay <0 and  a >0. time dynamical systems. Later, we will study one of these
discrete time dynamical systems, termed the discrete time

Proof: Proving this proposition amounts to first con-dynamical system associated td&Q hybrid system, and

sidering the inequality show that its behavior in some way dictates the behavior
1 ol of the other discrete time dynamical systems. Thus, we will
~7 log <1qll> > demonstrate that studying the behavior a hybrid system is
Aq ag + A% equivalent to studying a discrete time dynamical system.

and deriving conditions on, and \; such that it holds for _ ) )
0 <z} < & for somes > 0. It turns out that these conditions ~ 4-1- A directed graphl’ = (Q, E) has adirected cycle

are independent of, i.e., we only require that} < 0. Note or directed loopif a directed subgraplt, = (Q¢, E¢) < T
that A} does affects. Specifically, ifA} < 0, thend = oo, exists, 1.e.,

T
while if A} >0, X Qe={dab:-.-,ax} € Q
5:;?(1. E,={e,...,ef} C FE
A
o 4 _ such that
In other words, it will be seen that the eigenvalues affect the
radius of convergence of a Zeno point, but not its stability. t(el) = s(el) = qf, t(ef) = s(ef 1) =qf

The second step in showing this lemma is to understaqgri

what the conditions are om; and ; such that I' is the underlying graph of the hybrid systeffirq, then
(exp(A2t) —1) , 0 o for this hybrid system to be Zeno it must have a directed
SV +exp(Agt)ap = 0 cycle. For this reason, since we are interested in deriving
/ ) i sufficient conditions for the existence of Zeno behavior, we
for ¢ € [0, At(zo)]. It easily can be seen that this holds asyi|| assume that#prq has a cycle (otherwise it could not be
long asag > 0, regardless of the values of and\]. B zeng [3]). Letl, be a directed cycle of the underlying graph

) ) of the DFQ hybrid system#prq. We make the following
Corollary 1: There exists an event for ally € D, if assumption:

€ {1,...,K — 1}. The importance of cycles is that, if

)\é <0 and a; <0 and ai > 0. . )
Assumption 1: For the cycleI', of the DFQ hybrid

Example 1: Consider the diagonal system given by ~ SYystem.Zbrq, assume that for every’ € Qs, Agew + age
satisfies the conditions:

. (c 0 n —4
T=lo )" 4 : )\;ZSO and a;g<0<a3z.



4.2: If the above assumption holds, we can construct aBo we have reduced the dependence of the sequence of the
infinite execution ot/#prq for the cyclel',. This execution first component of the initial conditions on (or the event
is given by times).
X = (p7 T’ 5)7

wherep : N — @, is defined to be 4.4: The.next step |n.def|n|r_19 a single nonlinear discrete
map from this execution is to eliminagefrom a subsequence
(i) = 4 (modr+1): of the sequencé' that has the same limiting behavior as the

. . . . + +
The set of event times and the set of initial conditions ar@M9inal sequence. To do this, define the mapR; — Ry

given by 7 = {r;}ien and§ = {}ien Where:§y € D by

H 2 __

Wlth 5() _Oand \I’(JI) :(I)qg( oéqﬁ{_l O--~O(I)q(1),. (1)

T = Al (&) +7 Note that this map has the following important properties:

Cir1 = Riw,plit) (0p0) (Dtowy (6),6)) - , '

K
Note that herel? ;1 1),,zi)) is the reset map which is given W(0) =0 W(0) = H g
by switching the first and second coordinates, and ’ bl a}# '
1 _
Poi (Atp(i) (&), &) = X ) It also can be verified that
(exp(Api) At i) (&) — DA™ ap) . )
+exp(A, ) Aty (6)Ei- §rrnivr+t = Porrniri) Eryivr)

. . . i P ; [ e
Note also that this execution is well-defined for ale N PUK+1)itK) © Fp((K+1)it K1) ©

1
because of the results of the previous section. 0 Rp((K41)i) (5(K+1)i)
. . . . = Py 0Py 0 0Py (5(1K+1)z‘)
From the execution given in the previous paragraph, we _ (el
would like to construct a single nonlinear discrete map; o (§(K+1>i)
this map will be used to derive sufficient conditions on th%ince (i)
existence of Zeno. In order to construct this map, considghbse
: . o que
the first component of the sequence of initial conditigns
¢ = {53}@' This is dqne by first defining a map that 2= {2 }nen i= {5(1](4—1)7;}1'61\1
computes this sequence independently-pofthe next step is
to define a map that computes this sequence independerttfythis sequencé!. This subsequence is important because,
of both 7 and p. The end result is a single map that givesas we have just shown, it is a discrete time dynamical system:
the first component of the sequence of initial conditions se;+1 = ¥(2;). Itis also important because when it converges
that we can study the behavior of this sequence by studyirig the origin, so does the sequeri¢e This can be seen in the
the behavior of this map. following lemma, which will be important for establishing
results in the subsequent sections.

= qf(modKH). Therefore, define the following
nce

4.3: Define the following function: fog’ € Q, let Dy

RS — Ry (hereR{ = {z € R: z > 0}) given by 4.5: The final step in deriving a single map that describes
B, () = the sequenceé’ is to show that every element @gff can
a o ) . be expressed in terms of the map(composed with other
1 oxc glo Qg 1) g2 maps); this fact will be essential in establishing the main
A2 P )‘(114 & a(lﬂ + /\Cllgx @ result of this paper. Define the following subsequences of
1
Note that this function is well-defined because of AssumptioF1he sequence,
1. This func'gon algo has some important propertles_. First n(J) = {n(J))i}ien = {5(1K+1)i+J}ieN’
note that it is a diffeomorphism, where both, and its
inverse satisfy the properties: for J € {0,...,K}. Note in particularz = n(0), and it is
B0 (0) =0 <I>q_el(0) —0 clear that N
2 1 1_
Qe _ a g &= U 77(J)-
@ (0) =t (@, (0) =3 bt
q q-

This function is important because it gives the elements NOW We can relate each quue”ge]) to the sequence
the sequencé! inductively, i.e., by defining the map¥'; : Ry — Ry, for J € {0,..., K},

) ) L given by
Eiv1 = (Ripy i) (0o (Atpw (€),6)))
= Ope) (Dtoi) (&): &) Tro= gy orro®yody oy ooy,

' = DY _1 ... _1
= D). = &, o o<I>q§o\Ilo<I)qgo 0,

97-1 J-1



In other words, they are related to each other @ndy the case when!, = X2, = 0. To see this, note that in this

: . [q i .
conjugation: case we have t?1e discrete time linear system
Yo =0, Yip1=Pp 0T 00 K a2,
! 1 zipn=9(z) = (]] _a? Zi-
These maps are important because they describe the se- i=0 qf

quences)(J), i.e., it easily can be verified that The startling fact is that the stability of the map in

D(D)ise1 = Ty(n();). the gengral case will be directly reIaFed to the. stabl_llty
of this linear system. In the next section, we will derive
The mapsY ; also have the following important properties:results relating the properties of this function, specifically its

stability, to Zeno behavior.
T;0) = ¥(0)=0

K g2
T;0) = ¥(0)= (H—alf) . V. SUFFICIENT CONDITIONS FOR THEEXISTENCE OF

i=0 = qf ZENO BEHAVIOR

All of the aforementioned properties can be summarized by gy,qying the discrete time dynamical system associated to
noting that we have the following lemma. a dynamical system, we are able to obtain easily verifiable
conditions on the existence of Zeno behaviobiRQ hybrid

Lemma 1. If systems. This is the main result of this paper.

lim z; =0 = lim n(J); =0, . .
i—00 i—o0 5.1: Recall that a discrete dynamical system,; =

for all J € {0,..., K. U(z;), is exponentially stable at the origin if there exist
Y constants: > 0 and0 < « < 1 such that

Proof: We will reason by induction ol. For the case i
. |z:| < ca|zo]-
whenJ = 0, by assumption:
lim 7(0); = lim 2z = 0 We can derive conditions on when the discrete dynamical
e e = s = system associated to BFQ hybrid system and cycle is
Now assume thalim,_... 7(J — 1); = 0, and note that stable—at least when the cycle satisfies Assumption 1.
n(J); = §(1K+1)i+J Theorem 1: Let #prq be aDFQ hybrid system andl',
be a cycle of the underlying graph of this hybrid system

Dy 1 (Elrer i R ) ) )
=141y -1) satisfying Assumption 1. Then the discrete dynamical system

@y-1(n(J —1)i)

Z =W Z;
Therefore, 1 (1)
associated ta4 and I', is exponentially stable at the
lim 9(J); = lim &y y(n(J —1);) = ®,_1(0) =0. W oo DFQ ¢ 15 exp y
i—00 1—00 gin if
K 2
(lqg
. . : : : I <t
This lemma indicates that in studying the behavior of the 20 Bt

hybrid system.##pbrq, one can study the behavior of the
sequence: = {z};cn. Moreover, analyzing the behavior Heregq! € Q, and K = |Q,| — 1.

of this sequence is more manageable since it is determined

by a discrete time system. We thus can apply the analysis Proof: The result follows from the Hartman-Grobman
of discrete time systems theory to hybrid systems. Thikeorem (cf. [6]) after suitably extending the madpto the
motivates the following definition. entire real numbers. ]

Definition 4: Thediscrete time dynamical system associ- Theorem 2: Let J/prq be aDFQ hybrid system and’,
ated to the diagonal hybrid systesthrq and the cycld’,  be a cycle of the underlying graph of this hybrid system.
is given by. Then if Ayew + a,e, ¢° € Q, satisfies the conditions:

zit1 = V(2i), )‘él <0
. RT + ; ;
where¥ : Ry — R as defined in (1). al, <0< a2, '
q q = Jlprq is Zeno.

4.6: Note that the discrete time system givenQy; =
U(z;) has an isolated equilibrium point at the origif{0) = ’HiK—O
0. It also is interesting to note that this system is linear in

2
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Proof: Let x = (p,7,&) be the execution constructed

in Paragraph 4.2. The goal is to show that the series

oo

D (rig1— )

1=0
converges. To do this, we will consider subsequences of t
sequence ;11 — 7; fien. Namely, recall from the definition
of the execution and the sequencgd) that

Z(Ti+1 -n) = ZAtp(i)(fil)
=0 z(;O p
= Z Z Atk +1)i+) (&)
i=0 J=0
= D> Atg,(n())).
J=0i=0

Therefore, we need show only that.° ) At,, (n(.J);) con-
verges for eacly. First, it can be seen that

0) = .

At
ol
q

Atg,(0) =0, ”
b

Now our assumptions imply that the sequence {z};cy
is exponentially stable to the origin, i.e., for all €

{0,..., K},

i
.

|- )
a

Second tank
N

=
o
a

15

he

13

Time
First tank

Fig. 2. A simulated trajectory of the two tank system given in Example 2.

maps are in the form given in Definition 1. Therefore, to
complete the description of this system, we need only specify
the vector fields on each domain. These are given by:

Uy

nw=(,7 ) mo=( ).

— vy
Here,w > 0 is the inflow of water into the system, and
v1 > 0 andwv, > 0 are the outflows of water from each tank.
The goal is to verify that, for this system, the water levels
of each tank stay above andl,, respectively. To make this
problem more interesting, we assume that

U1

max{vy,va} < w < v1 + vo.

lim z; =0 = lim n(J); =0,
o Vi h ! oof h That is, we assume that the inflow is greater than the outflow
by Lemma 1. Applying the ratio test for each we have o 40 tank, and that the total outflow of the system is
.| Aty (m(T)it1) .| At (Y a(n(T):)) greater than the total inflow. Under these conditions, we
lim |—————~——~| = lim . . . . .
i—oo | Atg, (n(J):) imoo| Aty (n(J):) would like to verify that this hybrid system is Zeno.
| Atg, (Ty(x)) Since this system consists of a single cycle, we need only
= ilj}}) W examine the discrete dynamical system associated with this
A (‘“)T, (@) cycle. Therefore, we can apply Theorem 2 to this system.
- i | DS Namely, the system is Zeno because: = A2 = 0,
At!
=0 4, () —v9,—v1 <0, w— vy, w —ve >0, and
/
= MT&(O) (w—wv1)(w—wva)  ((v14+v2) —v1)((v1 +v2) —va2)
At! (0) < =1
qJ ) V1V2 V1V
_ ﬁ Yy <1 becausav < vy + vs.
= ! .
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