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Abstract—This work investigates the use of finite abstractions consecutive events of the MPL model. The computational
for the verification of autonomous Max-Plus-Linear (MPL) performance of the abstraction procedure is benchmaried (c
models. Abstractions are characterized as finite-state ladled Section 11-D) on a case study.

transition systems (LTS) and are obtained by first partitioning With f t i d te th f
the state space of the MPL and associating states of the LTS to Ith Tocus on System properlies, we advocate the use o

the partitions, then by defining relations among the vertics of Linear Temporal Logic (LTL) [5] to express time-dependent
the LTS, corresponding to dynamical transitions between tk properties of the original MPL model. In particular, we fecu

MPL state partitions, and finally by labeling the LTS edges on properties related to the cyclicity, transient time, and
according to one-step time properties of the events of the MP 5oy mntotic behavior of the MPL model (cfr. Section 1V). LTL

model. In order to establish formal equivalences, the finitd TS ificati LTS b fficient! del checked b
abstraction is proven to either simulate or to bisimulate the Specifications over can be efliciently model checked by

original MPL model, the difference depending on its determpism. @ number of existing software tools — in this work we use
The computational performance of the abstraction procedue is the SPIN model checker [6] for our purposes. Section IV

tested on a benchmark. The work then studies properties of th  elaborates an example to display the overall approach.
original MPL model by verifying equivalent specifications a the

finite LTS abstraction. Il. MODELS AND PRELIMINARIES

This section introduces the definition of an MPL model,
recalls a few of its basic properties, and presents LTS nsodel
Max-Plus-Linear (MPL) systems are discrete-event mod- )
els [1], [2] with a continuous state space characterizirgy tA Max-Plus-Linear Systems
timing of the underlying discrete events (cfr. Section 1l). Define R, ¢ and e respectively asR U {e}, —oo and 0.
Classical dynamical analysis of MPL models is grounded ¢k vector with each component equal @o(or —oo) is also
their algebraic [3] or geometric properties [4]. This worklenoted bye (resp.,e). For z,y € R., we definex © y =
investigates a novel approach based on finite-state atistrac max{xz,y} andz®y = z+y. LetG = A®B (or H = C®D),
of autonomous MPL models, on the expression of genefalr matricesA, B € R**" (or C € R"*P, D € RP*™), then
dynamical properties as specifications in a modal logic,amd G (i, j) = A(i,7) ® B(i,j) (or H(i,j) = @j_, Cli,k) ®
the formal verification of such properties by model checkind?(k, j)), for 1 <i < m and1 < j < n. (Notice the analogy
With regards to the abstraction procedure (cfr. Sectiop lllbetween®, ® and+, x for matrix and vector operations in
we put forward a new technique that generates a finite-stgtandard algebra.) Givenc R (or m € N), the max-algebraic
labeled transition system (LTS). The vertices of the LTS apower ofz € R (resp., A € R'*") is denoted byz®" (or
obtained by finite partitioning of the state space of the MPA®") and corresponds tez in conventional algebra (resp.,
model, whereas relations between two LTS states are defingé@® - - - ® A, m times). Notice that® = E,,, whereE, is a
by checking whether a trajectory of the original MPL modehax-plus identity matrix, i.eE,,(i,i) = e and E,(i,j) = «,
can transition between the corresponding partition regjiorfor 1 <i # j < n.
The obtained finite-state transition system can be eithar no An autonomous MPL model [7, p. 47] is defined as:
deterministic or deterministic. We prove that the first amste o
simulates the original MPL model, whereas the second one plk+1) = A®z(k), (1)
bisimulates it. Given a nondeterministic transition systea where A € RI*", z(k) € R for k € N. The indepen-
refinement procedure based on state partitioning can atterdent variablek denotes an increasing discrete-event counter,
to generate a deterministic one, however this approach iswhereas the state variable defines the (continuous) timing o
general nondecidable. Finally, the labels of the LTS modtle discrete events. For practical reasons, in this work we
are defined in two possible ways: they either characterige tiefine the state space B and assume to be working with a
difference between the timing of an event for any two vagabl regular or row-finite max-plus matrid € R?*", namely with
of the original model, or represent the time difference leetww a matrix characterized by at least one element differemhfro

e in each row. Related to matrid is the notion of precedence
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I. INTRODUCTION



Example: Consider the two-dimensional MPL model cyclicity of a general graph is the least common multiple
from [7, Section 0.1]: of the cyclicities of all its strongly connected subgraphs.

sha )= |3 3| @alh) @ | o
Example: The MPL model in (2) admits the critical circuit
the precedence graph df is shown in Figure 1. - {1 — 2 — 1}, thus the critical graph coincides with the critical
circuit. Since the critical graph is strongly connectede th

> 3 eigenvector is unique and the eigenspace is the multipicat

(in a max-plus sense) of the eigenvector with a finite coristan
3 The cyclicity of the critical graph is 2, as also results from
Proposition 1, thus there exists a periodic regime withqueri

2. O

Definition 4 (Max-algebraic linear systems, [11, Sectioj 2]
A max-algebraic linear system is defined4s x = b, where
The notion of irreducible matrix, to be used shortly, can bg ¢ R™*" = [by . _,bm]T ER™, 2z =[x;...2,]T € R™.

given via a precedence graph. If b = e, the max-algebraic linear system is normalizedd

Definition 2 (Irreducible matrix, [7, Theorem 2.14]A The projective space is a quotient space generated by an
matrix A € R¢*" is called irreducible if its precedence grapkequivalence relation- [7, Section 1.4]. For each,y € R”,
G(A) is strongly connected. O 2 ~ y iff there is ana € R, such thaty = o ® . We use a
Recall that a directed graph is strongly connected iff for arbar to distinguish between an elementnd its equivalence
two pairs of different vertices, j of the graph, there exists aclassz. Formally,z = {y € R? : y ~ x}, for eachz € R}.
path from: to j. From a max-plus algebraic perspective, a
matrix A € R?*" is irreducible if the nondiagonal elementd3. Labeled Transition Systems

n— k ..

of By A®" are finite (not equal te). Definition 5 ([5, Definition 2.1]):A Labeled Transition
Example: For the preceding example in (2), sinde¢l,2) # System (LTS)(S, L, d, I, AP) consists of a sef of states,

e # A(2,1), matrix A is irreducible. Equivalently, notice thata setL of labels, a transition relatiofh C S x L x S, a set

the precedence graph in Figure 1 is strongly connected! I C S of initial states and a setP of atomic propositions.]

Proposition 1 (Cyclicity, [7, Theorem 3.9]))tet A € R¥*™  Denote withP(S) the power set of a given se&t. This
be an irreducible matrix with eigenvalueand cylicity c, there - work considers a special class of LTS. To begin with, often
is ako € N, such thatd®" " = X\®" ® A®", for all k > ko. (] we will assume thaf = S and AP = R™. Moreover the set
Proposition 1 allows to establish the existence of a pesiod?f labels, customarily taken to be discrete and finite, issher
regime. Given an initial condition:(0) € R™, we can seek assumed to bé = P(AP) — in other words, the labels will
a ko(z(0)) (the transient time), which is in general les$e n-dimensional vectors of real numbers or of real-valued
conservative than thg, = ko(A) in Proposition 1. intervals.

Example: In the previous numerical example, characterized
by an irreducible matrix4 in (2), we have eigenvalug = 4,
cyclicity ¢ = 2, and transient(A) = 2. ) We abstract an MPL model into a finite-state LTS. The states

From a graph theoretical point of view, the max-plusf the LTS are obtained by partitioning the continuous state
eigenvalue) is defined as the maximum cycle mean of thepace, whereas its transitions depend on the dynamics &etwe
precedence graph [8, Theorem 3.23]. Fast algorithms hdbe partition regions. The labels of the LTS are defined in two
been developed to compute this quantity [9, Section 4]. Atistinguished manners and depend on the delay (timing) fea-
upper bound for the transient timi, and its computation tures of the MPL model. We derive exact equivalences or pre-
have been discussed in [10, Theorem 10,13]. order relations between the LTS abstraction and the camcret

In order to investigate the asymptotic behavior of an MPMPL model. Finally, we test the abstraction procedure on a
model, we employ the concept of critical graph, which isomputational benchmark.
constructed from the precedence graph.

Definition 3 (Critical graph, cyclicity [8, Definition 3.93]

Fig. 1. Precedence graph for the MPL model in (2)

IIl. LTS ABSTRACTIONS OFMPL MODELS

A. LTS States: Partitioning Procedure

For a matrix4 € R*", the following notions are defined: We put forward two different approaches to partition the
« Acircuit ¢ of the precedence gragh(4) is calledcritical ~ state space, then prove their equivalence: the first leesrag
if it has maximum average weight. a piecewise-affine approach, whereas the second is directly
« Thecritical graphG¢(A) consists of those nodes and arcbased on the MPL model.
of G(A) which belong to a critical circuit 0§ (A). 1) Partitioning via PWA ExpressionEach autonomous

« Thecyclicity of a strongly connected graph is the greate8PL model as in (1) can be expressed as a piecewise-affine
common divisor of the lengths of all its circuits. The(PWA) system in the event domain [12, Section 3]. The PWA



dynamics in each region are characterized(by,...,g,) €  Algorithm 2: Generation of state-space partition via MPL

{1,...,n}™ or, more precisely, as: model
wi(k +1) = zg, (k) + A(i,g:), 1<i<n, 3) input : A € R, a regular max-plus matrix
output: R, a collection of regions
where the value ofy, ..., g, depends on:(k). R 0
We determine a covering of the MPL state space b ' n
constructing the collection of the regions correspondiog foregch (fﬁ%’ﬁ_"’f”) € (P{L,...,n})\ )" do
the PWA dynamics, as Algorithm 1 details (see also next ¢ Fe Lo n d
paragraph). 4 or r< 1ton do

al

foreach1 < i # j <n do
if 3,7 € f. then
Ry« RinN{zeR":z; —x; =
A_(ij) - A(Tvi)};
else ifi € f,, j ¢ f, then

o

Algorithm 1: Generation of state-space covering via
piecewise-affine model

input : A € R’*", a regular max-plus matrix

~

o

output: R, a collection of regions 9 Ry« RyN{zeR":z; —z; >
1 R« 0; A(r,j) — A(r,0)};
2 fin(i) « {j: AG, ) > e}, i=1,....m 10 de”d
3 foreach (g1,...,qn) € fin(1) x --- x fi do unooen
e igﬁn. gn) € fin(1) finin) 12 if Ry #0then R+« RU{R;}:;
g L
5 fori<« 1ton do 13 end
6 foreach j € fin(i) \ {g;} do
7 Ry < RynN{z e R": A(i,9;) + zg, >
A, j) + x5} The following property characterizes the output of Algo-
8 end i .
q rithm 2:
9 en . . .
. . Proposition 2: The collection of regions generated by the
1(1) endlf Ry #0then R RU{R} MPL approach is a partition oR". O

Algorithm 2 allows to derive a general representation of

. . . L .. each region, which can be expressed as a set of linear
Notice that, since this collection is in general not PaiRViSihe o alities of the following form:

disjoint, further refinement is needed to construct a patit

namely, if there are two intersecting regions, then we remov a~z; —x; ~f, (4)
their intersection and create a new region defined as the . ]
intersection. wherel < i < j < n;a,f € ReU{—€}; and~ is < if

2) Partitioning via MPL Model: As discussed, each pointe # 3, whereas~ is < if a = f.
in R™ possibly corresponds to more than one PWA model. From the definition of regions obtained using the perturba-
We now directly determine a partitioning of the state spad®n analysis, we conclude that:
using a perturbation analysis over the MPL model. Given anLemma 1:Each region generated by the PWA approach is

autonomous MPL model characterized by a regular max-plasunion of regions generated by the MPL approach. [
matrix A € R?*™ and a generie:(0) € R", we are interested

o . 7 7
in finding a perturbation vectop » [p1 - '_p"] , such that the MPL approach, there exists a regigrgenerated by the
A®(2(0)+p) = 2(1) = A®x(0). This equation red.uces to thep\ya approach such that C ¢ (recall that the collection of
following normalized max-algebraic linear systed,®p = e, regions generated by the PWA approach is a covek

Whe_reAp(i,j) = Al ) + xj(o.) - zi(l), _f_or lL<ij<n We are ready to formulate the main result of this section.
Notice that each element of, is nonpositive and that there

exists a nonempty set of nult elements in each of its rows. Proposition 3: The partitions constructed by the PWA ap-
Notice that the PWA dynamics (3) af(0) € R" are proach after refinement coincide with those obtained by the

characterized b¥g: ,. ... gn) iff A,(i,g;) =e, for1 <i<n. MPLapproach. O

The region characterized Ry, . . ., g, ) in the PWA approach  Example: Consider the MPL model defined in (2), the cov-

is the set of pointsz(0) € R™ such thatA,(i,g;) = e for ering region characterized iy, 1) is {z € R? : 71 —z2 > 3}

1 < i < n. We can characterize the region in the MPland it is generated by the PWA approach. By using the MPL

approach by(f1,...,fn) € (P({1,...,n}) \ 0)", where approach, the partitioning region characterized(by}, {1})

fi = {j : A,(i,5) = e}, for 1 < i < n. More precisely, and({1,2},{1})areR; = {z € R* : 21 —25 > 3} and Ry =

the region characterized byfi,..., f,) is defined as the {r € R?: z;—x, = 3} respectively. Observe that the covering

set of 2(0) € R™ such that the matrix4d, corresponds to region characterized bt 1) is a union of partitioning regions

(f1,---, fn). Algorithm 2 details the procedure generating theharacterized by({1},{1}) and ({1,2},{1}). We obtain a

collection of regions. total of 5 partitioning regions (Figure 2), where the renain

This allows to conclude that for each regifrgenerated by



partitioning regions areR;, = {r € R?
cr — a9 = e} and Ry = {z € R?

Ry = {.I' € R?
1'1—1'2<3}.

Ry

T2

D xp — xe < e},
e <
O

Rs

Fig. 2. Partition ofR2 for the MPL model in (2)

where R’ is the region defined by thg-th inequality, for
1 < 5 < 7. Algorithm 3 details the approach (notice that
transitions, for the moment, are defined with no labels):

Algorithm 3: Computation of transitions via backward
reachability analysis
input : R ={Ry,..., R}, partition of the state space;
A={Ay,...,A.} andB ={B,...,B,}, the
corresponding PWA dynamics
output: § € R x R, a transition relation

16« 0;

2 foreach1 <i,j <r do

3 if{IERiiAix-i-BiERj}?é@then
6(—6U{(R1,R7)},

4 end

Let us look into ste@ of Algorithm 3. We are interested in
determining the existence of a transition between two regio
R andR’. Assume that the dynamics in regidhis described
by the PWA model (3), wheré; = A(i, g;), for 1 < i < n.

We are going to quantify the worst-case time complexity degion R’ is characterized as in (4). The following steps
Algorithm 1 and 2. Since the maximum number of iterationgutput a boolean value, equal to true if there is a relation
in step 3 of Algorithm 1 is:", the time complexity is factorial. from R to R/, else false:

Similarly, the time complexity of Algorithm 2 is exponeritia 1) Ry, < R™.
since the maximum number of iterations in step R2is—1)". 2) For each inequality iR’ do

However, this worst-case is rarely incurred in practice. We - If g, < g; then Rz’m — R;Te N{z(k) eR":a— h; +
implement the partitioning procedure directly on the MPL hj >~ xg, (k) — x4, (k) = B — hi + h;}.

If g; >g;thenR  « R, N{x(k) €
h,j ~ Ig]. (/{) — .Igl(l{) ~ — + hz — h]}
If gi = gj and QLi—hj ;‘éﬂora;‘é hi—hj)then
Ry, 0.

3) If RN R, # 0 then return true, else return false.

B. LTS Transitions: Backward Reachability Analysis Recall that each region of the partition is represented by

In this section, we investigate a technique to determine tﬁ\esystem of linear mequalmes_, as In (4). It turns out that.
transition relations between two LTS states, that is betwe uch a set can be expressed via a Difference-Bounded Matrix

two abstract regions of the MPL state-space partition. At a BM) [13, _Sectlon 4'_1]’ Wh'Ch_'S a co_mputanonally efncten_
given point in timek, there is a transition from regioR to representation. Che<_:k|ng emptiness via a DBM representat
R’ iff there exists ar(k) € R such that:(k+1) € R'. Such a can be easily done in polynomial time [13, Section 4.1].

; i i i 2,3
transition can be determined either with a forward-readtityab The worst-case time complexity of Algorithm 3d¥(r»°),

approach, or with a backward one. According to the formevy,here.r Is Fhe cardinality o_f the state—;pace pgrtition, and for
we calculateR’ N {z(k + 1) : (k) € R}, whereas if we use each iteration the complexity of checking emptines®is?).

backward approach we compukn {z(k) : z(k + 1) € R'}. thlpe_ that the o_btam_ed transition system can be nor_lde-
. : g .. terministic. Its relationship with the original MPL moded i
The non-emptiness of the resulting set characterizes aitran

tion from R to R'. described next.

With focus on the backward-reachability approach, given Proposition 4: The transition system obtained by the Algo-
two regionsR and R, let v’ be the number of inequalities fithm 3 simulates the original MPL model. O
in R, we calculate the inverse image of thgh inequality In general the opposite direction in the preceding statémen
at each iteration] < j < ¢/, by substituting the dynamical does not hold true. In fact, whenever the transition system i
system in partition® into the inequality. Finally, we compute nondeterministic we can find a regidd such that the region
the intersection. Notice that the inverse image is comfmtithas more than one outgoing transition (say that this happens
with set intersection, that is at pointz € R). However for each: € R" the value ofA® x
{x(k) € R": Apa(k) + B € ﬂ;le R;} is unique.(-él denoting again .t.he MPL system .matrix).
) Proposition 5: If the transition system obtained by Alg. 3
ﬂ;zl {z(k) e R" : Agrz(k) + Br € R;} , is deterministic, it bisimulates the original MPL model. O

model, since the complexity of set intersection is lowemtha -
the complexity of set difference. In order to improve the
performance of the approach we apply the standard pruning -
tricks, which practically results in efficient outcomessaswn
with the benchmark in Section IlI-D.

R": 8+ h; —



We can try to obtain a deterministic transition system by  space isn, the maximum number of elements in the
successive refinement: within a refinement step, each non- vector isn. In the nondeterministic case, evaluating
deterministic state is split and its (incoming and outgding the transitions labels requires proper subdivision of the
transitions are updated. Whenever a deterministic triansit partition regions.

systemt ISU ofbt?me(il,lthen P:N € can gStab.“Sh the lp(;z;ed'n%otice that labels can be of two types, (deterministic) vec-
property. Unforiunately, Such a procedure in genera S Rors or (nondeterministic) intervals. If the partitioninggion

necessarily terminate, except for special instances shscl is a single equivalence class, we have a deterministic ,label
shortly. becausé A® 2') — 2’ = (A®2"”) — 2", for eacha’, 2" € z,
Proposition 6: For an irreducible MPL model with associ-ywhereA e R™ ™ is a regular max-plus matrix. Otherwise, we
ated transition system, if the transition system is deteistic gptain a nondeterministic label.
over the periodic regime, it is globally deterministic. (] In general, the labeling procedure involves collectinginf
In the following, a matrix whose critical graph is composecthation from expressions as in (4) and (3), respectively. The

of j strongly connected subgraphs and whose cyclicity istime complexity hinges on the number of transition relasion
will be denoted by sgscyck. in the LTS.

Proposition 7: If an irreducible MPL model is scsl-cycl, Example: Consider the transition system of Figure 3, we
the_related transition system is deterministic over théogér gre going to determine the label of the transition frét to
regime. L R}. By substituting the dynamical system &f, i.e. z;(k +

Proposition 8: For each 2-dimensional irreducible MPL1) = z1(k) + 2, z2(k+ 1) = z1(k) + 3, tox(k + 1) — z(k)
system, the transition system is deterministic over théogar and by applying the definition o} if necessary, we obtain
regime. O z1(k+1) —x1(k) = 2 andza(k + 1) — x2(k) > 6. The

Example: We use backward reachability over the partitiofomplete LTS of this example is shown on Figure 3. [
regions obtained in the previous example to obtain a non-
deterministic transition system. After refinement we abtai 4.4
total of 9 partitioning regions, defined &, fori =1,...,9. - e
For1 < i < 4, R, = R; and the remaining partitioning .9
regions areR, = {z € R?* : 2 < x1 — 22 < 3}, o
RIGZ{$€R2Z$1—$2:1},RI7:{$€R2Z$1—$2:2}, @
Ri={zeR’:e<m—m<l}andR)={zeR?:1<
x1 — x2 < 2}
We are going to explicitly check the existence of a transitio
from R} to Rj: after substituting the dynamical system of
region R into the inequalities characterizinB;, we obtain
the relation—1 < e. Thus there is a unique outgoing transition
from R} and the destination i®}. The overall transition sys-
tem for this example is shown on Figure 3, where transitions,
for the moment, are defined with no labels. O
C. LTS Labels Fig. 3. LTS for the MPL model in (2)

We introduce labels on the transition system, thus obtginin
an LTS. Labels are introduced in two different possible ways
they either characterize 1) tr_le difference be_tvyeen thengmiy Computational Benchmark
of an event for any two variables of the original model, or
represent 2) the time difference between consecutive gventin order to test the efficiency of the proposed algorithms we
of the MPL model: compute the runtime needed to perform abstractions of MPL
1) labels are defined as all possible values ¢k) —z;(k), sSystems into LTS, for an increasing dimensiomf the MPL
wherel < i < j < n. Given a partitioning region, we models. We also keep track of the number of states and of
can easily compute the labels using its explicit represeifiansitions of the obtained LTS. For any givepwe generate
tation. More precisely, the label of each state is definégparse matrices (in max-plus sense) with 2 finite elements
as the system of linear inequalities characterizing tligndomly placed in each row. The finite elements are randomly
region. Thus a label is a vector of real-valued intervalgenerated integers betwegérand 100.
If the dimension of the state spaceristhe maximum  Table | reports the time needed to construct the LTS, as well
number of elements in the vectordgn — 1)/2. as the number of states and of transitions in the LTS (mean
2) labels are defined as all the possible values: ¢k + and maximum oveil0 experiments). We have run MATLAB
1) — z;(k), for 1 < i < n. A label is again a vector code on a dual-core AMD Opteron 2.8 GHz PC with 8 GB
of real-valued intervals: if the dimension of the statef memory.



TABLE |

NUMERICAL BENCHMARK — {MEAN; MAXIMAL }VALUES

size of generation of generation of generation of number of number of
MPL model states transitions labels states of LTS transitions of LTS
3 {0.36; 0.39 [sec] {0.09; 0.1¢ [sec] {0.02; 0.02 [sec] {14.20; 15 {28.00; 3%
4 {0.62; 0.73 [sec] {0.67; 1.4% [sec] {0.07; 0.1¢ [sec] {45.00; 65 {163.60; 245
5 {1.33; 1.78 [sec] {4.12; 10.04 [sec] {0.30; 0.7Q [sec] {120.20; 195% {740.40; 1,613
6 {3.14; 5.14 [sec] {39.24; 93.9% [sec] {1.54; 3.4% [sec] {304.00; 513 {3.67; 8.4% x10°
7 {10.64; 15.8% [sec] | ~ {6.63; 20.3% [min] {12.02; 23.68 [sec] {1,029.00; 1,755 {2.57; 4.8 x10*
8 {20.31; 25.58 [sec] | ~ {22.44; 62.1} [min] | {38.03; 122.78 [sec] | {1.94; 3.13 x10° | {7.75; 26.53 x10*
9 {95.78; 138.18 [sec] ~ {5.13; 11.50 [hr] | ~ {3.92; 9.3% [min] | {7.93; 10.94 x10% | {4.03; 10.1§ x10°

IV. VERIFICATION OF MPL MODELS We can characterize the s¢tr € R™ : ko(z) < k},

for k € N U {0}, by computing the satisfiability set of the

To specify timed properties for trajectories of the MPLLTL formula O=F . By extension, we can formulate the

LTL formlas are recursely defined over a set of stomf21Ue Of fal4) @ a function of LTL formulatky(4) =
y gminy {O=F ¥}. Along with the above properties related to

. ar
propositions £.P), by Boolean operators and temporal OPerane periodic regime of the MPL model, we may be interested in

tors. The set of atomic propositions in our case corresptinds , :
the set of labels of the LTSAP — L. Boolean operators are model checking general formulas, such as the followinghreac

- (negation),A (conjunction), andv (disjunction), whereas avoid specificationOs, VL1, whereys, € AP denotes the

. . , . ,
temporal operators ar@) (next), (until), O (always), and |ncom/|ng label QfR ,_\_/vhereaswg the_ u/mon/of th/ose ?R3
¢ (eventually). A formulap, which in general is (recursively) and ;. The satisfiability set results iff U &y U R5 U F7. [
determined by application of the above operators, is inétepl
over traces (trajectories) generated by the LTS. In pdatidu [1]
is of interest to check if (the trajectories of) an LTS satisfa
given formula (or “specification”) — this procedure is known
as “model checking”. (2
In this work we use the SPIN model checker [6] to verify
given specifications on a LTS. Given an MPL model imple{3]
mented in the MATLAB environment, we first abstract the
MPL as an LTS within MATLAB, then export the obtained
data structure into the PROMELA language and feed thi&!
model, along with an LTL formula that expresses a specifi-
cation for the model, to SPIN. [5]

Example: We are going to investigate properties of the MPLg
model expressed in (2). Recall that Section Il has already
looked at the cyclicity and the periodic regime of this modell’]
First, we construct the LTS from the given MPL model. The
LTS is shown on Figure 3 (labels here refer to time delays] F. Bac _ !
between consecutive events, cfr. Sec. IlI-C). As discussed ;'Qrf:”tlgg'g” Algebra for Discrete Event Systemslohn Wiley and
abov.e_, the colleption of atomic_propos.itior_ls ?s Fh_e set Ofg] J. Cochet-Terrasson, G. Cohen, S. Gaubert,
transition labels in the LTS, thus its cardinality is finite.

Inspecting the LTS in Figure 3, we conclude that the
eigenspace and the periodic regime with period 2 correspomgl
to R; and R, U R, U R; U Ry, respectively. In order to reach
the_elgenspace, the,lr."tlal Cond.ltlon r.nUSt be _an elgenvec ] P. Butkovic, “Max-algebra: the linear algebra of cométiorics?"Linear
Notice that, becausR; is a one-dimensional region, whenever ~ ajgebra and its Applicationsvol. 367, pp. 313-335, 2003.

a point in it is perturbed by a vectdp;, p2]” : p1 # p2, the [12] W. Heemels, B. Dte"Schutter, and A. Bemporad, “Equivedenf hybrid
state will be driven outside the eigenspace. %gimlcal models,’Automatica vol. 37, no. 7, pp. 1085-1091, July

In order to identify the eigenspace, we can use the formyla] p. Dill, “Timing assumptions and verification of finitetate concurrent
V¢GAP(D¢ A || = 1), where| - | denotes the cardinality syst(le_mst," inﬁlut:)mgticCVerifictatioSr‘l _Methodssfo_r Finitg Sl_ta_fgzﬂast,ems

H H H s ser. Lecture Notes In Computer sScience. pringer serlini rg,
:)ff a set. Itntth!z eﬁ;nfr:e, th|§ I(_jTL for_mula |_?hver|f!gxdjtl?g. 1990, vol. 407, pp. 197-212.

we want to identi e periodic regime with peri en
we can usel = VgeapB(@A Q_C(b), Where.zQc denotes the
application of the next operatortimes. In this example; = 2
and the LTL formula is verified byr,, Rg, R%, Rg, Rj.
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