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Abstract—This work investigates the use of finite abstractions
for the verification of autonomous Max-Plus-Linear (MPL)
models. Abstractions are characterized as finite-state labeled
transition systems (LTS) and are obtained by first partitioning
the state space of the MPL and associating states of the LTS to
the partitions, then by defining relations among the vertices of
the LTS, corresponding to dynamical transitions between the
MPL state partitions, and finally by labeling the LTS edges
according to one-step time properties of the events of the MPL
model. In order to establish formal equivalences, the finiteLTS
abstraction is proven to either simulate or to bisimulate the
original MPL model, the difference depending on its determinism.
The computational performance of the abstraction procedure is
tested on a benchmark. The work then studies properties of the
original MPL model by verifying equivalent specifications on the
finite LTS abstraction.

I. I NTRODUCTION

Max-Plus-Linear (MPL) systems are discrete-event mod-
els [1], [2] with a continuous state space characterizing the
timing of the underlying discrete events (cfr. Section II).
Classical dynamical analysis of MPL models is grounded on
their algebraic [3] or geometric properties [4]. This work
investigates a novel approach based on finite-state abstractions
of autonomous MPL models, on the expression of general
dynamical properties as specifications in a modal logic, andon
the formal verification of such properties by model checking.

With regards to the abstraction procedure (cfr. Section III),
we put forward a new technique that generates a finite-state
labeled transition system (LTS). The vertices of the LTS are
obtained by finite partitioning of the state space of the MPL
model, whereas relations between two LTS states are defined
by checking whether a trajectory of the original MPL model
can transition between the corresponding partition regions.
The obtained finite-state transition system can be either non-
deterministic or deterministic. We prove that the first instance
simulates the original MPL model, whereas the second one
bisimulates it. Given a nondeterministic transition system, a
refinement procedure based on state partitioning can attempt
to generate a deterministic one, however this approach is in
general nondecidable. Finally, the labels of the LTS model
are defined in two possible ways: they either characterize the
difference between the timing of an event for any two variables
of the original model, or represent the time difference between
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consecutive events of the MPL model. The computational
performance of the abstraction procedure is benchmarked (cfr.
Section III-D) on a case study.

With focus on system properties, we advocate the use of
Linear Temporal Logic (LTL) [5] to express time-dependent
properties of the original MPL model. In particular, we focus
on properties related to the cyclicity, transient time, and
asymptotic behavior of the MPL model (cfr. Section IV). LTL
specifications over LTS can be efficiently model checked by
a number of existing software tools – in this work we use
the SPIN model checker [6] for our purposes. Section IV
elaborates an example to display the overall approach.

II. M ODELS AND PRELIMINARIES

This section introduces the definition of an MPL model,
recalls a few of its basic properties, and presents LTS models.

A. Max-Plus-Linear Systems

Define Rǫ, ǫ and e respectively asR ∪ {ǫ}, −∞ and 0.
A vector with each component equal to0 (or −∞) is also
denoted bye (resp.,ǫ). For x, y ∈ Rǫ, we definex ⊕ y =
max{x, y} andx⊗y = x+y. LetG = A⊕B (orH = C⊗D),
for matricesA,B ∈ R

m×n
ǫ (or C ∈ R

m×p
ǫ , D ∈ R

p×n
ǫ ), then

G(i, j) = A(i, j) ⊕ B(i, j) (or H(i, j) =
⊕p

k=1
C(i, k) ⊗

D(k, j)), for 1 ≤ i ≤ m and1 ≤ j ≤ n. (Notice the analogy
between⊕, ⊗ and+, × for matrix and vector operations in
standard algebra.) Givenr ∈ R (orm ∈ N), the max-algebraic
power of x ∈ R (resp.,A ∈ R

n×n
ǫ ) is denoted byx⊗

r

(or
A⊗m

) and corresponds torx in conventional algebra (resp.,
A⊗ · · ·⊗A, m times). Notice thatA⊗0

= En, whereEn is a
max-plus identity matrix, i.e.En(i, i) = e andEn(i, j) = ǫ,
for 1 ≤ i 6= j ≤ n.

An autonomous MPL model [7, p. 47] is defined as:

x(k + 1) = A⊗ x(k), (1)

whereA ∈ R
n×n
ǫ , x(k) ∈ R

n
ǫ for k ∈ N. The indepen-

dent variablek denotes an increasing discrete-event counter,
whereas the state variable defines the (continuous) timing of
the discrete events. For practical reasons, in this work we
define the state space asRn and assume to be working with a
regular or row-finite max-plus matrixA ∈ R

n×n
ǫ , namely with

a matrix characterized by at least one element different from
ǫ in each row. Related to matrixA is the notion of precedence
(or communication) graph.

Definition 1 (Precedence graph, [8, Definition 2.8]):Con-
sider A ∈ R

n×n
ǫ . The precedence graph ofA, denoted by

G(A), is a weighted directed graph with vertices1, . . . , n and
an arc(j, i) with weightA(i, j) for eachA(i, j) 6= ǫ.



Example: Consider the two-dimensional MPL model
from [7, Section 0.1]:

x(k + 1) =

[

2 5
3 3

]

⊗ x(k), (2)

the precedence graph ofA is shown in Figure 1.

1

2
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3
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3

Fig. 1. Precedence graph for the MPL model in (2)

The notion of irreducible matrix, to be used shortly, can be
given via a precedence graph.

Definition 2 (Irreducible matrix, [7, Theorem 2.14]):A
matrixA ∈ R

n×n
ǫ is called irreducible if its precedence graph

G(A) is strongly connected.

Recall that a directed graph is strongly connected iff for any
two pairs of different verticesi, j of the graph, there exists a
path from i to j. From a max-plus algebraic perspective, a
matrix A ∈ R

n×n
ǫ is irreducible if the nondiagonal elements

of
⊕n−1

k=1
A⊗k

are finite (not equal toǫ).

Example: For the preceding example in (2), sinceA(1, 2) 6=
ǫ 6= A(2, 1), matrixA is irreducible. Equivalently, notice that
the precedence graph in Figure 1 is strongly connected.

Proposition 1 (Cyclicity, [7, Theorem 3.9]):Let A ∈ R
n×n
ǫ

be an irreducible matrix with eigenvalueλ and cylicityc, there
is ak0 ∈ N, such thatA⊗k+c

= λ⊗
c

⊗A⊗k

, for all k ≥ k0.

Proposition 1 allows to establish the existence of a periodic
regime. Given an initial conditionx(0) ∈ R

n, we can seek
a k0(x(0)) (the transient time), which is in general less
conservative than thek0 = k0(A) in Proposition 1.

Example: In the previous numerical example, characterized
by an irreducible matrixA in (2), we have eigenvalueλ = 4,
cyclicity c = 2, and transientk0(A) = 2.

From a graph theoretical point of view, the max-plus
eigenvalueλ is defined as the maximum cycle mean of the
precedence graph [8, Theorem 3.23]. Fast algorithms have
been developed to compute this quantity [9, Section 4]. An
upper bound for the transient timek0 and its computation
have been discussed in [10, Theorem 10,13].

In order to investigate the asymptotic behavior of an MPL
model, we employ the concept of critical graph, which is
constructed from the precedence graph.

Definition 3 (Critical graph, cyclicity [8, Definition 3.94]):
For a matrixA ∈ R

n×n
ǫ , the following notions are defined:

• A circuit ζ of the precedence graphG(A) is calledcritical
if it has maximum average weight.

• Thecritical graphGc(A) consists of those nodes and arcs
of G(A) which belong to a critical circuit ofG(A).

• Thecyclicity of a strongly connected graph is the greatest
common divisor of the lengths of all its circuits. The

cyclicity of a general graph is the least common multiple
of the cyclicities of all its strongly connected subgraphs.

Example:The MPL model in (2) admits the critical circuit
{1→ 2→ 1}, thus the critical graph coincides with the critical
circuit. Since the critical graph is strongly connected, the
eigenvector is unique and the eigenspace is the multiplication
(in a max-plus sense) of the eigenvector with a finite constant.
The cyclicity of the critical graph is 2, as also results from
Proposition 1, thus there exists a periodic regime with period
2.

Definition 4 (Max-algebraic linear systems, [11, Section 2]):
A max-algebraic linear system is defined asA⊗x = b, where
A ∈ R

m×n
ǫ , b = [b1 . . . bm]

T ∈ R
m, x = [x1 . . . xn]

T ∈ R
n.

If b = e, the max-algebraic linear system is normalized.

The projective space is a quotient space generated by an
equivalence relation∼ [7, Section 1.4]. For eachx, y ∈ R

n
ǫ ,

x ∼ y iff there is anα ∈ R, such thaty = α ⊗ x. We use a
bar to distinguish between an elementx and its equivalence
classx̄. Formally, x̄ = {y ∈ R

n
ǫ : y ∼ x}, for eachx ∈ R

n
ǫ .

B. Labeled Transition Systems

Definition 5 ([5, Definition 2.1]): A Labeled Transition
System (LTS)(S,L, δ, I, AP ) consists of a setS of states,
a setL of labels, a transition relationδ ⊆ S × L × S, a set
I ⊆ S of initial states and a setAP of atomic propositions.

Denote withP(S) the power set of a given setS. This
work considers a special class of LTS. To begin with, often
we will assume thatI = S andAP = R

n. Moreover the set
of labels, customarily taken to be discrete and finite, is here
assumed to beL = P(AP ) – in other words, the labels will
be n-dimensional vectors of real numbers or of real-valued
intervals.

III. LTS A BSTRACTIONS OFMPL MODELS

We abstract an MPL model into a finite-state LTS. The states
of the LTS are obtained by partitioning the continuous state
space, whereas its transitions depend on the dynamics between
the partition regions. The labels of the LTS are defined in two
distinguished manners and depend on the delay (timing) fea-
tures of the MPL model. We derive exact equivalences or pre-
order relations between the LTS abstraction and the concrete
MPL model. Finally, we test the abstraction procedure on a
computational benchmark.

A. LTS States: Partitioning Procedure

We put forward two different approaches to partition the
state space, then prove their equivalence: the first leverages
a piecewise-affine approach, whereas the second is directly
based on the MPL model.

1) Partitioning via PWA Expression:Each autonomous
MPL model as in (1) can be expressed as a piecewise-affine
(PWA) system in the event domain [12, Section 3]. The PWA



dynamics in each region are characterized by(g1, . . . , gn) ∈
{1, . . . , n}n or, more precisely, as:

xi(k + 1) = xgi(k) +A(i, gi), 1 ≤ i ≤ n, (3)

where the value ofg1, . . . , gn depends onx(k).
We determine a covering of the MPL state space by

constructing the collection of the regions corresponding to
the PWA dynamics, as Algorithm 1 details (see also next
paragraph).

Algorithm 1 : Generation of state-space covering via
piecewise-affine model

input : A ∈ R
n×n
ǫ , a regular max-plus matrix

output: R, a collection of regions

R← ∅;1

fin(i)← {j : A(i, j) > ǫ}, i = 1, . . . , n;2

foreach (g1, . . . , gn) ∈ fin(1)× · · · × fin(n) do3

Rg ← R
n;4

for i← 1 to n do5

foreach j ∈ fin(i) \ {gi} do6

Rg ← Rg ∩ {x ∈ R
n : A(i, gi) + xgi ≥7

A(i, j) + xj};
end8

end9

if Rg 6= ∅ then R← R ∪ {Rg};10

end11

Notice that, since this collection is in general not pairwise
disjoint, further refinement is needed to construct a partition:
namely, if there are two intersecting regions, then we remove
their intersection and create a new region defined as the
intersection.

2) Partitioning via MPL Model: As discussed, each point
in R

n possibly corresponds to more than one PWA model.
We now directly determine a partitioning of the state space
using a perturbation analysis over the MPL model. Given an
autonomous MPL model characterized by a regular max-plus
matrixA ∈ R

n×n
ǫ and a genericx(0) ∈ R

n, we are interested
in finding a perturbation vectorp = [p1 . . . pn]

T , such that
A⊗(x(0)+p) = x(1) = A⊗x(0). This equation reduces to the
following normalized max-algebraic linear system:Ap⊗p = e,
whereAp(i, j) = A(i, j) + xj(0) − xi(1), for 1 ≤ i, j ≤ n.
Notice that each element ofAp is nonpositive and that there
exists a nonempty set of null (e) elements in each of its rows.

Notice that the PWA dynamics (3) ofx(0) ∈ R
n are

characterized by(g1, . . . , gn) iff Ap(i, gi) = e, for 1 ≤ i ≤ n.
The region characterized by(g1, . . . , gn) in the PWA approach
is the set of pointsx(0) ∈ R

n such thatAp(i, gi) = e for
1 ≤ i ≤ n. We can characterize the region in the MPL
approach by(f1, . . . , fn) ∈ (P({1, . . . , n}) \ ∅)n, where
fi = {j : Ap(i, j) = e}, for 1 ≤ i ≤ n. More precisely,
the region characterized by(f1, . . . , fn) is defined as the
set of x(0) ∈ R

n such that the matrixAp corresponds to
(f1, . . . , fn). Algorithm 2 details the procedure generating the
collection of regions.

Algorithm 2 : Generation of state-space partition via MPL
model
input : A ∈ R

n×n
ǫ , a regular max-plus matrix

output: R, a collection of regions

R← ∅;1

foreach (f1, . . . , fn) ∈ (P({1, . . . , n}) \ ∅)n do2

Rf ← R
n;3

for r ← 1 to n do4

foreach 1 ≤ i 6= j ≤ n do5

if i, j ∈ fr then6

Rf ← Rf ∩ {x ∈ R
n : xi − xj =7

A(r, j)−A(r, i)};
else if i ∈ fr, j /∈ fr then8

Rf ← Rf ∩ {x ∈ R
n : xi − xj >9

A(r, j)−A(r, i)};
end10

end11

if Rf 6= ∅ then R← R ∪ {Rf};12

end13

The following property characterizes the output of Algo-
rithm 2:

Proposition 2: The collection of regions generated by the
MPL approach is a partition onRn.

Algorithm 2 allows to derive a general representation of
each region, which can be expressed as a set of linear
inequalities of the following form:

α ≃ xi − xj ≃ β, (4)

where1 ≤ i < j ≤ n;α, β ∈ Rǫ ∪ {−ǫ}; and≃ is < if
α 6= β, whereas≃ is ≤ if α = β.

From the definition of regions obtained using the perturba-
tion analysis, we conclude that:

Lemma 1:Each region generated by the PWA approach is
a union of regions generated by the MPL approach.

This allows to conclude that for each regionf generated by
the MPL approach, there exists a regiong generated by the
PWA approach such thatf ⊆ g (recall that the collection of
regions generated by the PWA approach is a cover ofR

n).
We are ready to formulate the main result of this section.

Proposition 3: The partitions constructed by the PWA ap-
proach after refinement coincide with those obtained by the
MPL approach.

Example:Consider the MPL model defined in (2), the cov-
ering region characterized by(1, 1) is {x ∈ R

2 : x1−x2 ≥ 3}
and it is generated by the PWA approach. By using the MPL
approach, the partitioning region characterized by({1}, {1})
and({1, 2}, {1}) areR3 = {x ∈ R

2 : x1−x2 > 3} andR4 =
{x ∈ R

2 : x1−x2 = 3} respectively. Observe that the covering
region characterized by(1, 1) is a union of partitioning regions
characterized by({1}, {1}) and ({1, 2}, {1}). We obtain a
total of 5 partitioning regions (Figure 2), where the remaining



partitioning regions areR1 = {x ∈ R
2 : x1 − x2 < e},

R2 = {x ∈ R
2 : x1 − x2 = e} andR5 = {x ∈ R

2 : e <
x1 − x2 < 3}.

x1

x2

R5

R1 R2

3

R3

R4

Fig. 2. Partition ofR2 for the MPL model in (2)

We are going to quantify the worst-case time complexity of
Algorithm 1 and 2. Since the maximum number of iterations
in step 3 of Algorithm 1 isnn, the time complexity is factorial.
Similarly, the time complexity of Algorithm 2 is exponential,
since the maximum number of iterations in step 2 is(2n−1)n.

However, this worst-case is rarely incurred in practice. We
implement the partitioning procedure directly on the MPL
model, since the complexity of set intersection is lower than
the complexity of set difference. In order to improve the
performance of the approach we apply the standard pruning
tricks, which practically results in efficient outcomes, asshown
with the benchmark in Section III-D.

B. LTS Transitions: Backward Reachability Analysis

In this section, we investigate a technique to determine the
transition relations between two LTS states, that is between
two abstract regions of the MPL state-space partition. At any
given point in timek, there is a transition from regionR to
R′ iff there exists ax(k) ∈ R such thatx(k+1) ∈ R′. Such a
transition can be determined either with a forward-reachability
approach, or with a backward one. According to the former,
we calculateR′ ∩ {x(k + 1) : x(k) ∈ R}, whereas if we use
backward approach we computeR ∩ {x(k) : x(k + 1) ∈ R′}.
The non-emptiness of the resulting set characterizes a transi-
tion from R to R′.

With focus on the backward-reachability approach, given
two regionsR andR′, let r′ be the number of inequalities
in R′, we calculate the inverse image of thej-th inequality
at each iteration,1 ≤ j ≤ r′, by substituting the dynamical
system in partitionR into the inequality. Finally, we compute
the intersection. Notice that the inverse image is compatible
with set intersection, that is

{

x(k) ∈ R
n : ARx(k) +BR ∈

⋂r′

j=1
R′

j

}

=

⋂r′

j=1

{

x(k) ∈ R
n : ARx(k) +BR ∈ R′

j

}

,

whereR′
j is the region defined by thej-th inequality, for

1 ≤ j ≤ r′. Algorithm 3 details the approach (notice that
transitions, for the moment, are defined with no labels):

Algorithm 3 : Computation of transitions via backward
reachability analysis

input : R = {R1, . . . , Rr}, partition of the state space;
A = {A1, . . . , Ar} andB = {B1, . . . , Br}, the
corresponding PWA dynamics

output: δ ⊆ R× R, a transition relation

δ ← ∅;1

foreach 1 ≤ i, j ≤ r do2

if {x ∈ Ri : Ai x+Bi ∈ Rj} 6= ∅ then3

δ ← δ ∪ {(Ri, Rj)};
end4

Let us look into step3 of Algorithm 3. We are interested in
determining the existence of a transition between two regions
R andR′. Assume that the dynamics in regionR is described
by the PWA model (3), wherehi = A(i, gi), for 1 ≤ i ≤ n.
Region R′ is characterized as in (4). The following steps
output a boolean value, equal to true if there is a relation
from R to R′, else false:

1) R′
pre ← R

n.
2) For each inequality inR′ do
- If gi < gj thenR′

pre ← R′
pre ∩ {x(k) ∈ R

n : α − hi +
hj ≃ xgi (k)− xgj (k) ≃ β − hi + hj}.

- If gi > gj thenR′
pre ← R′

pre ∩ {x(k) ∈ R
n : β + hi −

hj ≃ xgj (k)− xgi(k) ≃ −α+ hi − hj}.
- If gi = gj and (hi − hj 6≃ β or α 6≃ hi − hj) then
R′

pre ← ∅.
3) If R ∩R′

pre 6= ∅ then return true, else return false.
Recall that each region of the partition is represented by

a system of linear inequalities, as in (4). It turns out that
such a set can be expressed via a Difference-Bounded Matrix
(DBM) [13, Section 4.1], which is a computationally efficient
representation. Checking emptiness via a DBM representation
can be easily done in polynomial time [13, Section 4.1].

The worst-case time complexity of Algorithm 3 isO(r2n3),
wherer is the cardinality of the state-space partition, and for
each iteration the complexity of checking emptiness isO(n3).

Notice that the obtained transition system can be nonde-
terministic. Its relationship with the original MPL model is
described next.

Proposition 4: The transition system obtained by the Algo-
rithm 3 simulates the original MPL model.

In general the opposite direction in the preceding statement
does not hold true. In fact, whenever the transition system is
nondeterministic we can find a regionR such that the region
has more than one outgoing transition (say that this happens
at pointx ∈ R). However for eachx ∈ R

n the value ofA⊗x
is unique (A denoting again the MPL system matrix).

Proposition 5: If the transition system obtained by Alg. 3
is deterministic, it bisimulates the original MPL model.



We can try to obtain a deterministic transition system by
successive refinement: within a refinement step, each non-
deterministic state is split and its (incoming and outgoing)
transitions are updated. Whenever a deterministic transition
system is obtained, then we can establish the preceding
property. Unfortunately, such a procedure in general does not
necessarily terminate, except for special instances discussed
shortly.

Proposition 6: For an irreducible MPL model with associ-
ated transition system, if the transition system is deterministic
over the periodic regime, it is globally deterministic.

In the following, a matrix whose critical graph is composed
of j strongly connected subgraphs and whose cyclicity isk
will be denoted by scsj-cyck.

Proposition 7: If an irreducible MPL model is scs1-cyc1,
the related transition system is deterministic over the periodic
regime.

Proposition 8: For each 2-dimensional irreducible MPL
system, the transition system is deterministic over the periodic
regime.

Example: We use backward reachability over the partition
regions obtained in the previous example to obtain a non-
deterministic transition system. After refinement we obtain a
total of 9 partitioning regions, defined asR′

i, for i = 1, . . . , 9.
For 1 ≤ i ≤ 4, R′

i = Ri and the remaining partitioning
regions areR′

5
= {x ∈ R

2 : 2 < x1 − x2 < 3},
R′

6
= {x ∈ R

2 : x1−x2 = 1}, R′
7
= {x ∈ R

2 : x1−x2 = 2},
R′

8 = {x ∈ R
2 : e < x1 − x2 < 1} andR′

9 = {x ∈ R
2 : 1 <

x1 − x2 < 2}.
We are going to explicitly check the existence of a transition

from R′
3

to R′
1
: after substituting the dynamical system of

regionR′
3 into the inequalities characterizingR′

1, we obtain
the relation−1 < e. Thus there is a unique outgoing transition
from R′

3
and the destination isR′

1
. The overall transition sys-

tem for this example is shown on Figure 3, where transitions,
for the moment, are defined with no labels.

C. LTS Labels

We introduce labels on the transition system, thus obtaining
an LTS. Labels are introduced in two different possible ways:
they either characterize 1) the difference between the timing
of an event for any two variables of the original model, or
represent 2) the time difference between consecutive events
of the MPL model:

1) labels are defined as all possible values ofxi(k)−xj(k),
where1 ≤ i < j ≤ n. Given a partitioning region, we
can easily compute the labels using its explicit represen-
tation. More precisely, the label of each state is defined
as the system of linear inequalities characterizing the
region. Thus a label is a vector of real-valued intervals.
If the dimension of the state space isn, the maximum
number of elements in the vector isn(n− 1)/2.

2) labels are defined as all the possible values ofxi(k +
1) − xi(k), for 1 ≤ i ≤ n. A label is again a vector
of real-valued intervals: if the dimension of the state

space isn, the maximum number of elements in the
vector is n. In the nondeterministic case, evaluating
the transitions labels requires proper subdivision of the
partition regions.

Notice that labels can be of two types, (deterministic) vec-
tors or (nondeterministic) intervals. If the partitioningregion
is a single equivalence class, we have a deterministic label,
because(A⊗ x′)− x′ = (A⊗ x′′)− x′′, for eachx′, x′′ ∈ x̄,
whereA ∈ R

n×n
ǫ is a regular max-plus matrix. Otherwise, we

obtain a nondeterministic label.
In general, the labeling procedure involves collecting infor-

mation from expressions as in (4) and (3), respectively. The
time complexity hinges on the number of transition relations
in the LTS.

Example:Consider the transition system of Figure 3, we
are going to determine the label of the transition fromR′

3
to

R′
1. By substituting the dynamical system ofR′

3, i.e. x1(k +
1) = x1(k) + 2, x2(k + 1) = x1(k) + 3, to x(k + 1) − x(k)
and by applying the definition ofR′

3
if necessary, we obtain

x1(k + 1) − x1(k) = 2 and x2(k + 1) − x2(k) > 6. The
complete LTS of this example is shown on Figure 3.

(3, 4)
(4, 5)

[5, 5]
[3, 3]

[2, 2]
(6,∞)

(4, 5)
(3, 4)

[4, 4]
[4, 4]

[3, 3]
[5, 5]

(5,∞)
[3, 3]

[2, 2]
[6, 6]

(2, 3)
(5, 6)

R′
1

R′
3

R′
2

R′
5

R′
4

R′
7

R′
6

R′
9

R′
8

Fig. 3. LTS for the MPL model in (2)

D. Computational Benchmark

In order to test the efficiency of the proposed algorithms we
compute the runtime needed to perform abstractions of MPL
systems into LTS, for an increasing dimensionn of the MPL
models. We also keep track of the number of states and of
transitions of the obtained LTS. For any givenn, we generate
sparse matrices (in max-plus sense) with 2 finite elements
randomly placed in each row. The finite elements are randomly
generated integers between1 and100.

Table I reports the time needed to construct the LTS, as well
as the number of states and of transitions in the LTS (mean
and maximum over10 experiments). We have run MATLAB
code on a dual-core AMD Opteron 2.8 GHz PC with 8 GB
of memory.



TABLE I
NUMERICAL BENCHMARK – {MEAN ; MAXIMAL } VALUES

size of generation of generation of generation of number of number of
MPL model states transitions labels states of LTS transitions of LTS

3 {0.36; 0.39} [sec] {0.09; 0.10} [sec] {0.02; 0.02} [sec] {14.20; 15} {28.00; 37}
4 {0.62; 0.73} [sec] {0.67; 1.41} [sec] {0.07; 0.10} [sec] {45.00; 65} {163.60; 245}
5 {1.33; 1.78} [sec] {4.12; 10.04} [sec] {0.30; 0.70} [sec] {120.20; 195} {740.40; 1,613}
6 {3.14; 5.14} [sec] {39.24; 93.91} [sec] {1.54; 3.41} [sec] {304.00; 513} {3.67; 8.47} ×10

3

7 {10.64; 15.85} [sec] ∼ {6.63; 20.31} [min] {12.02; 23.68} [sec] {1,029.00; 1,755} {2.57; 4.88} ×10
4

8 {20.31; 25.58} [sec] ∼ {22.44; 62.11} [min] {38.03; 122.78} [sec] {1.94; 3.11} ×10
3 {7.75; 26.53} ×10

4

9 {95.78; 138.18} [sec] ∼ {5.13; 11.50} [hr] ∼ {3.92; 9.37} [min] {7.93; 10.94} ×10
3 {4.03; 10.15} ×10

5

IV. V ERIFICATION OF MPL MODELS

To specify timed properties for trajectories of the MPL
model, we use Linear Temporal Logic (LTL) [5, Chapter 5].
LTL formulas are recursively defined over a set of atomic
propositions (AP ), by Boolean operators and temporal opera-
tors. The set of atomic propositions in our case correspondsto
the set of labels of the LTS:AP = L. Boolean operators are
¬ (negation),∧ (conjunction), and∨ (disjunction), whereas
temporal operators are© (next), U (until), � (always), and
♦ (eventually). A formulaφ, which in general is (recursively)
determined by application of the above operators, is interpreted
over traces (trajectories) generated by the LTS. In particular it
is of interest to check if (the trajectories of) an LTS satisfies a
given formula (or “specification”) – this procedure is known
as “model checking”.

In this work we use the SPIN model checker [6] to verify
given specifications on a LTS. Given an MPL model imple-
mented in the MATLAB environment, we first abstract the
MPL as an LTS within MATLAB, then export the obtained
data structure into the PROMELA language and feed this
model, along with an LTL formula that expresses a specifi-
cation for the model, to SPIN.

Example: We are going to investigate properties of the MPL
model expressed in (2). Recall that Section II has already
looked at the cyclicity and the periodic regime of this model.
First, we construct the LTS from the given MPL model. The
LTS is shown on Figure 3 (labels here refer to time delay
between consecutive events, cfr. Sec. III-C). As discussed
above, the collection of atomic propositions is the set of
transition labels in the LTS, thus its cardinality is finite.

Inspecting the LTS in Figure 3, we conclude that the
eigenspace and the periodic regime with period 2 correspond
to R′

6 andR′
2 ∪R

′
7 ∪R

′
8 ∪R

′
9, respectively. In order to reach

the eigenspace, the initial condition must be an eigenvector.
Notice that, becauseR′

6
is a one-dimensional region, whenever

a point in it is perturbed by a vector[p1, p2]T : p1 6= p2, the
state will be driven outside the eigenspace.

In order to identify the eigenspace, we can use the formula
∨

φ∈AP (�φ ∧ |φ| = 1), where | · | denotes the cardinality
of a set. In this example, this LTL formula is verified byR′

6.
If we want to identify the periodic regime with periodc, then
we can useΨ =

∨

φ∈AP �(φ∧©cφ), where©c denotes the
application of the next operatorc times. In this example,c = 2
and the LTL formula is verified byR′

2
, R′

6
, R′

7
, R′

8
, R′

9
.

We can characterize the set{x ∈ R
n : k0(x) ≤ k},

for k ∈ N ∪ {0}, by computing the satisfiability set of the
LTL formula ♦≤k Ψ. By extension, we can formulate the
value of k0(A) as a function of LTL formula:k0(A) =
argmink

{

♦≤k Ψ
}

. Along with the above properties related to
the periodic regime of the MPL model, we may be interested in
model checking general formulas, such as the following reach-
avoid specification:♦ψ1∨�¬ψ2, whereψ1 ∈ AP denotes the
incoming label ofR′

2, whereasψ2 the union of those ofR′
3

andR′
4
. The satisfiability set results inR′

1
∪R′

2
∪R′

5
∪R′

7
.
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