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Abstract—This paper introduces a deterministic approxima-
tion algorithm with error guarantees for computing the probabil-
ity of propositional formulas over discrete random variables. The
algorithm is based on an incremental compilation of formulas into
decision diagrams using three types of decompositions: Shannon
expansion, independence partitioning, and product factorization.
With each decomposition step, lower and upper bounds on the
probability of the partially compiled formula can be quickly
computed and checked against the allowed error.

This algorithm can be effectively used to compute approximate
confidence values of answer tuples to positive relational algebra
queries on general probabilistic databases (c-tables with discrete
probability distributions). We further tune our algorithm so as
to capture all known tractable conjunctive queries without self-
joins on tuple-independent probabilistic databases: In this case,
the algorithm requires time polynomial in the input size even for
exact computation.

We implemented the algorithm as an extension of the SPROUT
query engine. An extensive experimental effort shows that it
consistently outperforms state-of-art approximation techniques
by several orders of magnitude.

I. INTRODUCTION

This paper investigates the following problem: Given a

propositional formula Φ in disjunctive normal form (DNF)

over independent discrete random variables and an allowed

error ǫ, compute a probability value that is within ǫ from the

exact probability of Φ. Computing the exact probability of Φ
is a generalization of counting the number of its satisfying

assignments [12], [7] and is #P-hard for DNFs [25]. Note that

#P is an intractable complexity class which contains NP. Our

motivation for this study is that probability computation is a

core task in probabilistic databases, e.g., [7], [21]. This study

may be however of interest to model counting (#SAT) and

probabilistic inference in graphical models as well.

Approaches to exact probability computation essentially

explore the raw combinatorial search space of the problem and

therefore do not scale up to larger problem sizes. Approximate

methods, on the other hand, are much faster, though at the

price of losing accuracy. They are nevertheless extremely use-

ful in applications where estimates suffice and tiny distinctions

are irrelavant. Two fundamental aspects govern such meth-

ods [11]: the estimate quality and the correctness confidence

on the reported estimate. It is easy to find a correct lower

bound for the true probability p of Φ - just consider the

probability p0 of any of its clauses. However, the quality can

be very poor, for p can be orders of magnitude higher than

p0. Also, we may report an estimate much closer to p, but be
completely unable to provide any correctness confidence.

In this paper we present a deterministic approximation algo-

rithm for probability computation. The algorithm guarantees

both estimate quality and correctness confidence bounds by

computing an interval of probabilities that are within the

given error from the exact probability of the input DNF. It

incrementally performs a sequence of decomposition steps and

termination checks until the desired approximation is achieved.

In a decomposition step, a DNF Φ is compiled into an

equivalent disjunction or conjunction of DNFs φ1, . . . , φn such

that (1) they are pairwise independent or mutual exclusive,

and (2) lower and upper bounds on the probability of Φ
can be easily computed from the bounds on the probabilities

of φ1, . . . , φn. We consider three types of decompositions:

Shannon expansion, independence partitioning, and product

factorization. A termination check computes bounds on the

probabilities of φ1, . . . , φn and of Φ - we deliberately chose

that the bounds computed at this step may fall short of the

estimate quality desideratum, yet be quickly computable. If

the bounds are however close enough to guarantee the desired

approximation, then the algorithm stops. Otherwise, we further

decompose and check again for termination.

There are two main observations behind the design of this

algorithm. First, sufficient approximations can be obtained

within a few decomposition steps and there is thus no need

to exhaustively compile the input DNF down to clauses. This

motivates the incremental nature of the algorithm as well as the

use of efficient termination checks. Being incremental, the al-

gorithm is also useful under a given time budget. According to

our experiments with large probabilistic data sets, a small num-

ber of well-chosen decomposition steps computable within a

few seconds are usually enough to guarantee good precision.

The DNFs obtained after decompositions may still be large,

yet they account for a very small percentage of the overall

probability mass. The second observation is geared at query

evaluation in probabilistic databases. We can effectively derive

orders of decomposition steps under which any approximation

can be obtained in polynomially many steps for decomposing

DNFs obtained during the evaluation of any known tractable

conjunctive query without self-joins. Most notably, this is

achieved without a-priori knowledge of the query or the input

probabilistic database. These two aspects are, to the best of

our knowledge, not considered by any other query evaluation

technique nor probability approximation algorithm.



The main contributions of this paper are as follows:

• We introduce a deterministic algorithm with error guar-

antees for computing probabilities of DNFs, such as

those created by the evaluation of positive relational

algebra queries on probabilistic databases. In contrast to

much of the existing work in probabilistic databases, this

algorithm is not only applicable to restricted classes of

queries or probabilistic databases, but is generic.

• The algorithm is based on a number of fundamental ideas

from combinatorial algorithms, constraint satisfaction,

and verification, and turns out to be both simple and ex-

tensible. We compile DNFs into a novel type of decision

diagram called d-trees. Such diagrams decompose DNFs

using negative correlations, independence, and factored

representations that are easy to compute. Given a d-tree

and an approximate (or exact) probability for each of its

leaves, we can compute an overall approximate (or exact)

probability in just one pass over the d-tree.

• We then show how a given formula can be incrementally

compiled into fragments of a d-tree without fully mate-

rializing it. We devise heuristics that allow us to obtain

close lower and upper probability bounds within a few

compilation steps, thus avoiding exhaustive traversal of

a complete d-tree. For a given absolute or relative error

bound, we decide locally whether to further compile a

subformula under a certain node of the d-tree or move on

to a following node. For this, we devise a safety check

on which such subformulas can be discarded while still

guaranteeing the overall error bound.

• We also show that d-trees in conjunction with our heuris-

tics yield an alternative polynomial-time algorithm for

exact confidence computation for cases from the literature

for which efficient algorithms for confidence computation

are known, namely the hierarchical queries without self-

joins [7], with inequalities [20], and certain additional

cases in which functional dependencies on the data yield

tractability [21]. In fact, these are all the currently known

tractable cases in the absence of self-joins. In these cases,

our algorithm guarantees a running time linear in query

size and quadratic in the size of the input DNF.

• We have implemented the algorithm as a new operator

in the SPROUT query engine, which is used by the

MayBMS probabilistic database management system.

• We experimentally verify the robustness of our algorithm.

We evaluate both tractable and hard queries on various

probabilistic databases, such as tuple-independent TPC-

H, random graphs, and social networks. In all these exper-

iments, our algorithm consistently outperforms state-of-

the-art approximation algorithms by orders of magnitude.

• The experiments also show that our algorithm performs

well in practice compared to approaches specialized to

tractable queries, which exploit knowledge about the

query but are only applicable to those tractable queries.

To summarize, this single algorithm is competitive with

the most efficient currently known exact and approximation

algorithms in their respective domains.

II. STATE OF THE ART

A very recent survey on approximate and exact techniques

for model counting is presented in [11]. Some of these

techniques consider formulas with various restrictions (such as

bounded treewidth), or focus on lower-bounding in extremely

large combinatorial problems, with bounds off the true count

by many orders of magnitude, e.g., [27]. Further, extensions

of the Davis-Putnam procedure (which is based on Shannon

expansion) have been used for counting the solutions to

formulae [4]. The decomposable Negation Normal Form [8]

(and variations thereof) is a propositional theory with efficient

model counting, which uses Shannon expansion and indepen-

dence partitioning. Our recent work [17] uses similar ideas to

design an exact probability computation algorithm, although

without polynomial-time guarantees for tractable queries.

The approach in this paper shares ideas with these tech-

niques, yet two of its main aspects remain novel: (1) the

combination of incremental compilation and the use of prob-

ability bounds for fast approximate computation with error

guarantees, and (2) polynomial-time evaluation for tractable

queries on probabilistic databases.

A different line of research is on randomized approximation

algorithms. It was first shown in work by Karp, Luby, and

Madras [15] that there is a fully polynomial-time randomized

approximation scheme (FPTRAS) for DNF counting based on

Monte Carlo simulation. This algorithm can be modified to

compute the probability of a DNF over independent discrete

random variables [12], [7], [23], [16].

The techniques based on [15] yield an efficiently com-

putable unbiased estimator that in expectation returns the

probability p of a DNF of n clauses such that computing the

average of a polynomial number of such Monte Carlo steps

(= calls to the Karp-Luby unbiased estimator) is an (ǫ, δ)-
approximation for the probability (i.e., a relative approxima-

tion): If the average p̂ is taken over at least ⌈3·n·log(2/δ)/ǫ2⌉
Monte Carlo steps, then Pr

[

|p− p̂| ≥ ǫ · p
]

≤ δ.
The work by Karp, Luby, and Madras has started a line

of research to derandomize these approximation techniques,

eventually leading to a polynomial time deterministic (ǫ, 0)-
approximation algorithm [24] (for k-DNF, i.e., the size of

clauses is bounded, which is not an unrealistic assumption for

probabilistic databases, where k is bounded by the number

of joins for DNFs constructed by positive relational algebra).

However, the constant in this algorithm is astronomical (above

250 for 3-DNF) and the algorithm is not practical. This is

in contrast to observations that the Karp-Luby Monte Carlo

algorithm is practical (e.g. [1], [23], and the experiments of

the present paper). In fact, it is the state-of-the-art (and only)

approximation algorithm used in current probabilistic database

management systems such as MystiQ [23] and MayBMS [2].

III. PRELIMINARIES

We denote the domain of a random variable x by Domx.

Atomic events (or atomic formulae) are of the form x = a
where x is a random variable and a ∈ Domx is one of its

domain values. Random variables with domain {true, false}



are called Boolean and we will write x and ¬x as shortcuts

for the atomic events x = true and x = false, respectively.

We define finite probability distributions via a set of inde-

pendent random variables with finite domains. Such a proba-

bility distribution is completely specified by a function P that

assigns a number P (x = a) ∈ (0, 1] to each atomic event

x = a such that, for each random variable x,
∑

a∈Domx

P (x = a) = 1.

A (positive propositional) formula (or event) is constructed

from atomic events using the binary operations ∨ (logical “or”)

and ∧ (logical “and”). A conjunction of atomic events (x1 =
a1)∧ · · · ∧ (xn = an) is called a clause. A DNF formula is a

disjunction of clauses.

A valuation of the random variables is an assignment of

each of the random variables to one of its domain values. We

can identify possible worlds with valuations, or equivalently,

with clauses that contain exactly one atomic event for each

of the random variables. A formula is consistent (satisfiable)

if there is at least one valuation of the random variables that

makes the formula true. For clauses, consistency is easy to

check: a clause is consistent iff it does not contain two atomic

formulae x = a and x = b where a 6= b. We will treat clauses

like sets of atomic formulae in that we will always assume the

absence of duplicate atoms.

We denote the set of valuations on which a formula φ is

true by ω(φ). The formulae φ and ψ are equivalent iff ω(φ) =
ω(ψ). We call two formulae φ and ψ independent if there is

no random variable that occurs in both φ and ψ.
Because of the independence of the random variables, the

probability of a consistent clause (x1 = a1)∧· · · ∧ (xn = an)
is

∏n

i=1 P (xi = ai); if n = 0 then it is 1. The probability

of a formula φ is the sum of the probabilities of all distinct

valuations of the random variables (rendered as clauses as

discussed above) on which φ is true, i.e.,

P (φ) =
∑

ψ∈ω(φ)

P (ψ).

The goal of this paper is to develop an efficient algorithm for

computing the (possibly approximate) probability of a DNF.

IV. COMPILING DNFS INTO D-TREES

Computing the probability of a formula is #P-hard. In

general, there is no efficient way of computing the probability

P (φ∧ψ) or P (φ∨ψ) from P (φ) and P (ψ). However, there are
important special cases in which this is feasible, in particular,

• if φ and ψ are independent, then

P (φ ∧ ψ) = P (φ) · P (ψ)

P (φ ∨ ψ) = 1 − (1 − P (φ)) · (1 − P (ψ))

• if φ and ψ are inconsistent with each other (i.e., there is

no valuation of the random variables on which both are

true: the disjunction is exclusive), then

P (φ ∨ ψ) = P (φ) + P (ψ).

We will use explicit notation to mark such ∧ and

∨-operations: We will use ⊗ for independent-or, ⊙ for

independent-and and ⊕ for exclusive-or (that is, “or” of

inconsistent formulae, as just introduced).

Example 4.1: Consider the formula (x ∨ y) ∧ ((z ∧ u) ∨
(¬z ∧ v)). It is easy to verify that this formula satisfies the

independence and mutual exclusiveness properties expressed

by the equivalent formula (x ⊗ y) ⊙ ((z ⊙ u) ⊕ (¬z ⊙ v)).
The probability of this formula thus is

(

1− (1−P (x)) · (1−
P (y))

)

·
(

P (z) · P (u) + P (¬z) · P (v)
)

. 2

For convenience, we also use the Boolean combinators

on sets of formulae; i.e., we write
∧

Φ for φ1 ∧ · · · ∧ φn
if Φ = {φ1, . . . , φn} and analogously

∨

Φ,
⊗

Φ,
⊕

Φ,

and
⊙

Φ. (All the operations are associative, and computing

the probabilities of formulae using these set operations is

straightforward.)

Definition 4.2: A (partial) d-tree (for decomposition tree) is

a formula constructed from ⊗, ⊕, ⊙ and nonempty DNFs (as

“leaves”). A d-tree in which each DNF is a singleton – i.e.,

contains a single clause – is called a complete d-tree. Given a

partial d-tree, the d-tree obtained by replacing a leaf DNF by

an equivalent partial d-tree is called a refinement. 2

Thus, in a d-tree (viewed as a parse tree of the d-tree

formula), an ∧ or ∨ node never occurs above a ⊕, ⊗, or

⊙ node.

It follows from the definitions of ⊕, ⊗, and ⊙ that

Proposition 4.3: Given the probabilities of all the DNF

leaves of a partial d-tree, its probability can be computed in

linear time (assuming unit-cost arithmetics). 2

Since computing the probability of a leaf requires just a

table lookup, the probability of a complete d-tree can be

computed in time linear in its size.

Next we present an algorithm for computing a complete (or,

if we stop the compilation early, a partial) d-tree from a DNF.

For this purpose, we assume a DNF is represented by a set of

sets of atomic formulae. In essence, the algorithm repeatedly

applies three decomposition methods that correspond to the

three types of inner nodes in a d-tree ⊕, ⊗, and ⊙:

• Independent-or ⊗: Partition Φ into independent DNFs

Φ1,Φ2 ⊂ Φ such that Φ is equivalent to Φ1 ∨ Φ2.

• Independent-and ⊙: Partition Φ into independent DNFs

Φ1,Φ2 ⊂ Φ such that Φ is equivalent to Φ1 ∧ Φ2.

• Exclusive-or ⊕: Choose a variable x in Φ. Replace Φ by
⊕

a∈Domx,Φ|x=a 6=∅

(

{{x = a}} ⊙ Φ |x=a
)

where the DNF Φ |x=a is obtained from Φ by removing

all clauses φ ∈ Φ for which φ ∧ (x = a) is inconsistent

and (syntactically) removing the atomic formula x = a
from the remaining clauses in which it occurs. Obviously,

(x = a) ∧ Φ is equivalent to (x = a) ∧ Φ |x=a. This
decomposition is called Shannon expansion.

Figure 1 sketches our general compilation approach, which

will be refined in the next sections. Here, we consider that

the compilation is exhaustive, i.e., the leaves of the d-tree

only hold DNFs that are singleton clauses. If approximate



Compile (DNF Φ with Φ 6= ∅) returns d-tree

if (∅ ∈ Φ) then return {∅}

1. remove all subsumed clauses Φ :

foreach s, t ∈ Φ such that s 6= t do

if (s ⊂ t) then Φ := Φ − {t}

2. apply independent-or:

if there are non-empty and pairwise indep. DNFs

Φ1, . . . ,Φ|I| such that Φ = Φ1 ∪ . . . ∪ Φ|I|

then return
⊗

i∈I

(

Compile(Φi)
)

3. apply independent-and:

if there are non-empty and pairwise indep. DNFs

Φ1, . . . ,Φ|I|

such that Φ is equivalent to Φ1 ∧ . . . ∧ Φ|I|

then return
⊙

i∈I

(

Compile(Φi)
)

4. apply Shannon expansion:

choose a variable x in Φ;

T := {φ | φ ∈ Φ, 6 ∃a ∈ Domx : (x = a) ⊆ φ};

∀a ∈ Domx : Φ |x=a:=
{

{y1 = b1, . . . , ym = bm} |

{x = a, y1 = b1, . . . , ym = bm} ∈ Φ
}

∪ T ;

return
⊕

a∈Domx,Φ|x=a 6=∅

(

{{x = a}} ⊙ Compile(Φ |x=a)
)

Fig. 1. Compiling DNFs into d-trees.

probabilities are sought for, however, the compilation need

not be exhaustive and the leaves can hold larger DNFs.

Example 4.4: Figure 2 shows a DNF and the complete

d-tree obtained by executing the algorithm of Figure 1 to

completion. 2

This algorithm is correct:

Proposition 4.5: Any DNF Φ is equivalent to Compile(Φ).
All three decompositions can be done efficiently. Shannon

expansion requires linear time for each subformula. The

independent-or partitioning is finding connected components

in the dependency graph of the input DNF Φ, which consists of

a node for each variable of Φ and, for each clause
∧n
i=1 xi =

ai of Φ, of the edges (xi, xi+1) for 1 ≤ i < n. This can

be done in time linear in the size of the Φ (using a well-

known depth-first algorithm for computing strongly connected

components, Tarjan’s algorithm). The independent-and parti-

tioning is a special algebraic factorization of DNFs [5]. For

relational encodings of DNFs, as obtained by query evaluation

on probabilistic databases [2], this factorization is unique and

requires time O(m · n · logn), where n and m are the sizes

of the DNF and of the constituent clauses, respectively [22].

The order of the variable choices in Shannon expansion

(a.k.a. variable elimination in the Davis-Putnam SAT solving

algorithm [9]) greatly influences the size of the d-tree. In gen-

⊗

⊕

{{x = 1}} ⊙

{{x = 2}} ⊗

{{y = 1}} {{z = 1}}

⊕

⊙

{{u = 1}} {{v = 1}}

{{u = 2}}

Fig. 2. D-tree of DNF Φ = {{x = 1}, {x = 2, y = 1}, {x = 2, z =

1}, {u = 1, v = 1}, {u = 2}}.

eral, the compilation of a DNF creates a d-tree of exponential

size, and it is important to find compilation strategies that lead

to d-trees of small sizes [8], [17]. Section VI-B gives a strategy

that applies to DNFs of tractable queries. If that strategy fails,

we choose a variable that occurs most frequently in the DNF.

Remark 4.6: D-trees are a generalization of the ws-trees of

[17]: We have added independent-and decompositions, which

are crucial for application of d-trees to tractable queries. Also,

we have generalized the formalism to partial decompositions,

which are the foundation of the approximation techniques of

Section V. The and/xor trees of [18] are modeled on the

ws-trees but are a weaker representation system in that they

have tuples, rather than clauses, at their leaves. Complete

d-trees with inner nodes ⊙ and ⊗ only capture read-once

functions [10] or formulas in one-occurrence forms [19]. 2

V. APPROXIMATE PROBABILITY COMPUTATION

As discussed in Section IV, the exact probability of a DNF

can be easily computed following the DNF compilation into a

complete d-tree. Such an exhaustive compilation is not practi-

cal in general. If an approximate probability suffices, then we

may only explore a few levels in a d-tree and approximate the

probability at its leaves using efficient heuristics.

The key challenge addressed in this section is the design (i)

of an efficient and good heuristic for approximating the prob-

ability of DNFs at the leaves of d-trees, and (ii) of an efficient

algorithm that can compute an approximate probability for a

given DNF by incrementally refining its d-tree compiled form.

A. Lower and Upper Probability Bounds for DNFs

We next discuss how to quickly compute lower and upper

bounds of the probabilities of DNFs at the leaves of a d-

tree without refining them. Figure 3 gives one heuristic that

partitions the input DNF Φ into a set of buckets such that the

exact probability of each bucket can be computed efficiently.

The lower and upper bounds of the exact probability of

Φ are computed as the maximum over the probabilities of

the buckets, and the sum of probabilities of the buckets,

respectively. Both bounds are correct: Assume that Bi is a

bucket with the maximal probability. Since Φ is a set of

clauses, Φ = Bi ∨ Φ′. Since each clause in Φ has a non-null

probability by definition, P (Bi) ≤ P (Bi ∨ Φ′) = P (Φ), and
thus P (Bi) is indeed a lower bound for P (Φ). To see why the



Independent (DNF Φ with Φ 6= ∅) returns [Lower, Upper]

minimally partition Φ into B1 ∨ . . . ∨Bn such that

∀1 ≤ i ≤ n, ∀d, d′ ∈ Bi : d, d′ are independent;

foreach bucket Bi do

P (Bi) := 0;

foreach clause d ∈ Bi do

P (Bi) := 1 − (1 − P (Bi)) · (1 − P (d));

return [
n

max
i=1

P (Bi),min(1,

n
∑

i=1

P (Bi))];

Fig. 3. Computing lower and upper bounds for the probability of DNFs.

sum of probabilities of the buckets is indeed an upper bound,

consider the following cases. If the buckets are negatively

correlated, then the probability of their disjunction is the sum

of their probabilities. In case they are independent or positively

correlated, then it follows by definition that the probability of

their disjunction is at most the sum of their probabilities.

Proposition 5.1: Let [L,U ] = Independent(Φ) for a DNF

Φ. It then holds that L ≤ P (Φ) ≤ U . 2

Let us now look closer at how the buckets are created. Each

bucket only contains pairwise independent clauses, and each

such bucket is maximal, i.e., for a given bucket B there is

no clause in Φ and not in B that is pairwise independent

with each clause in B. The probability of each bucket can

be computed efficiently, as shown in Figure 3. As there may

be several possible minimal partitionings of Φ, we empirically

noticed that the lower bound computed by this heuristic can be

further improved by first sorting Φ descending on the marginal

probability of its clauses, and then constructing a bucket that

contains the most probable clause and subsequent independent

clauses. It turns out that this heuristic behaves very well for all

of our experimental scenarios (see Section VII). This heuristic

requires time quadratic in the size of the input DNF, the most

expensive part being the minimal partitioning.

Example 5.2: Let the DNF Φ = c1 ∨ c2 ∨ c3, where

c1 = (x ∧ y), c2 = (x ∧ z), c3 = v

and P (x) = 0.3, P (y) = 0.2, P (z) = 0.7, P (v) = 0.8. One
minimal partitioning of Φ is B1 = c1 ∨ c3 and B2 = c2.
Then, P (B1) = 1 − (1 − 0.06) · (1 − 0.8) = 0.812, P (B2) =
0.21. The bounds are L(Φ) = P (B1) = 0.812 and U(Φ) =
min(1, 0.821 + 0.21) = 1. Another minimal partitioning can

be obtained by first sorting the clauses descending on their

marginal probabilities. Then, B1 = c2 ∨ c3, B2 = c1, and
P (B1) = 1 − (1 − 0.21) · (1 − 0.8) = 0.842, P (B2) = 0.06.
The new bounds are L(Φ) = 0.842 and U(Φ) = 0.848, which
approximates better the exact probability of 0.8456. 2

Remark 5.3: Finding fast heuristics that better approximate

the bounds of DNFs will be future work. A natural extension

to our heuristic is to allow positively correlated clauses in

the same bucket such that the DNF of each bucket can be

factored into one occurrence form, where each variable occurs

only once. For instance, Φ of Example 5.2 can be factored as

x ∧ (y ∨ z) ∨ v, in which case the whole Φ is allocated to

the first bucket. The probability of such factored forms can be

computed in linear time [19]. 2

B. Lower and Upper Probability Bounds for D-trees

The lower and upper bounds can be propagated from leaves

to the root of the d-tree. For this, we make use of the

observation that the formulas for probability computation of

each decomposition type are monotonically increasing. (A

function is monotonically increasing if for all x and y such that
x ≤ y, it holds that f(x) ≤ f(y).) If some of the children of

an inner node (⊗, ⊙, or ⊕) have smaller (larger) probabilities,

then it immediately follows that the probability at that node

becomes smaller (larger).

Given bounds at the children, the lower and upper bounds

at the parent node are obtained by replacing in the formulas

for computing the probability of nodes ⊕, ⊗, and ⊙, the exact

probability of the children with their lower and upper bounds,

respectively. We are now ready to generalize the result of

Proposition 5.1 from DNFs to d-trees.

Proposition 5.4: If a d-tree d for a DNF Φ has bounds

[L,U ], then it holds that L ≤ P (Φ) ≤ U . 2

Example 5.5: Consider the partial d-tree of Figure 4, where

the leaves are annotated with lower and upper bounds. Then,

the lower and upper bounds [L,U ] of the d-tree can be

computed as follows (denote x = 1 by Φ4):

L = L(Φ1) ⊗ [(L(Φ4) ⊙ L(Φ2)) ⊕ L(Φ3)]

= 1 − (1 − 0.1) · (1 − (0.5 · 0.4 + 0.35)) = 0.595.

U = U(Φ1) ⊗ [(U(Φ4) ⊙ U(Φ2)) ⊕ U(Φ3)]

= 1 − (1 − 0.11) · (1 − (0.5 · 0.44 + 0.38)) = 0.644.

2

Remark 5.6: Due to our heuristic to approximate bounds on

DNFs, refinement of a d-tree might not always lead to tighter

bounds. However, it eventually leads to complete d-trees and

hence to termination of the compilation procedure. 2

C. Absolute and Relative Approximation Errors

We consider here two types of approximations, given a fixed

error factor ǫ (0 ≤ ǫ < 1).
Definition 5.7: A value p̂ is an absolute (or additive) ǫ-

approximation of a probability p if p− ǫ ≤ p̂ ≤ p+ ǫ.
A value p̂ is a relative (or multiplicative) ǫ-approximation

of a probability p if (1 − ǫ) · p ≤ p̂ ≤ (1 + ǫ) · p. 2

Given a d-tree for a DNF Φ, its bounds [L,U ] may contain

several ǫ-approximations of P (Φ), although not every value

between these bounds is an ǫ-approximation. The connection

between the bounds of a d-tree for Φ and ǫ-approximations of

P (Φ) is given by the following proposition.

Proposition 5.8: Given a DNF Φ, a fixed error ǫ, and a

d-tree for Φ with bounds [L,U ].

• If U − ǫ ≤ L+ ǫ, then any value in [U − ǫ, L+ ǫ] is an
absolute ǫ-approximation of P (Φ).

• If (1 − ǫ) · U ≤ (1 + ǫ) · L, then any value in [(1 − ǫ) ·
U, (1 + ǫ) · L] is a relative ǫ-approximation of P (Φ). 2



In the sequel, we call a d-tree for a DNF Φ an (absolute or

relative) ǫ-approximation of Φ if its bounds satisfy the above

sufficient condition. Written differently, the condition becomes

U − L ≤ 2 · ǫ in the absolute case, and

(1 − ǫ) · U − (1 + ǫ) · L ≤ 0 in the relative case.

This condition can be checked in linear time in the size of

the d-tree: We need one pass over the d-tree to compute its

lower and upper bounds, and then check the above condition,

which only involves the bounds and the fixed error.

Example 5.9: Recall the DNF Φ from Example 5.2. Its

exact probability is p = 0.8456. With bounds [0.842,0.848],

we obtain precisely one absolute 0.003-approximation p̂ =
0.845, because 0.848− 0.003 = 0.842 + 0.003.
With the same bounds, any value in [0.844,0.846] is an

absolute 0.004-approximation, because 0.848 - 0.004 = 0.844

and 0.842 + 0.004 = 0.846. 2

D. An Incremental and Memory-Efficient Algorithm

Proposition 5.8 can be effectively used for approximate

probability computation as follows. While compiling a DNF

into a d-tree, we can ask before the construction of each

node of the d-tree whether the sufficient condition on the

approximation is reached. If this is the case, then we can stop

the compilation and output the interval of ǫ-approximations.

If this is not the case, then we continue with the compilation

and choose the leaf with the largest bounds interval and further

refine it. This already gives us an incremental algorithm for

computing ǫ-approximations.

The algorithm sketched above needs to keep every node it

creates in main memory. This is infeasible for large inputs. We

therefore consider next the practical question of whether the

sufficient condition for ǫ-approximation can still be fulfilled

after subsequent refinement even if some leaves are not refined

anymore. In the sequel, we call such leaves closed; an open

leaf may be further refined to completion.

The challenge we need to address is to derive an ǫ-
approximation condition in the presence of closed leaves.

Based on this, we can incrementally compile the input DNF

into a d-tree in depth-first left-to-right traversal, and decide

locally whether the current leaf under exploration can be

closed or must be refined further. When a leaf is closed, its

bounds are used to update a pair of aggregated bounds of all

the leaves already closed, and the leaf is released. This gives

us a very efficient algorithm that need only keep in memory

the current root-to-leaf path under construction and some local

information at each node along this path.

In the sequel, we consider d-trees, where at most one child

of each ⊙ node may be closed without being complete. This

does not restrict our encoding of variable elimination as given

in Figure 1, since the ⊙ nodes needed there are binary and

one of their children is always a clause, i.e., it is complete,

and for which the exact probability is known.

To understand the worst-case scenario in case we want to

close a leaf in a d-tree d, we need to compute the largest

bounds interval of d for any possible probability each open leaf

⊗

Φ1[0.1, 0.11] ⊕

⊙

{{x = 1}}[0.5, 0.5] Φ2[0.4, 0.44]

Φ3[0.35, 0.38]

Fig. 4. D-tree. Leaves: Φ1 is closed, Φ2 is current, Φ3 is open.

may take. If these bounds fail to satisfy the condition for an ǫ-
approximation, then we may not reach such an approximation

by refinements that complete the open leaves. In this case, we

must not close that leaf. We elaborate on this next.

Definition 5.10: The bound space of a d-tree d is the set

of possible bounds [L,U ] of d obtained by choosing for each

open leaf any point interval between the bounds of that leaf.2

Let us denote by L(d) the element of the bound space

obtained by choosing for each open leaf the point interval

[Li, Li], where Li is a lower bound for that leaf.

Lemma 5.11: For a d-tree d, L(d) is the pair of bounds

[L,U ] that maximizes each of U−L and (1−ǫ)·U−(1+ǫ)·L
over the entire bound space of d. 2

Proof: Consider the point interval of each open leaf be

[xi, xi], where xi is a distinct variable. The upper and lower

bounds of d can be then expressed as functions fU and fL,
respectively, of such variables. We show that for each such

variable x, δ(fU−fL)
δx

≤ 0 and hence fU − fL is maximized

when x is minimized. That is, when x = L, where L is the

lower bound of that open leaf.

Base case: We are at the open leaf with variable x. Let us
denote by n the level of this leaf. We have fnU = anU · x+ bnU
and fnL = anL · x+ bnL, where a

n
U = anL = 1 and bnU = bnL = 0.

It then holds that

δ(fnU − fnL)

δx
= anU − anL ≤ 0.

Assume now the property holds at a node c at level j + 1,
and c is an ancestor of the open leaf with x. We show that the

property also holds at the parent of c.
Case 1: The parent of c is a ⊕ node: ⊕(c1, . . . , ck), where

c is one of c1, . . . , ck. Then,

f jU = f j+1
U + αU = aj+1

U · x+ bj+1
U + αU

f jL = f j+1
L + αL = aj+1

L · x+ bj+1
L + αL

where αU and αL represent the sum of the upper bounds, and

lower bounds respectively, of all the siblings of c. We then

immediately have that

δ(f jU − f jL)

δx
= aj+1

U − aj+1
L ≤ 0.

Case 2: The parent of c is a ⊙ node: ⊙(c1, . . . , ck), where
c is one of c1, . . . , ck. Recall that we only consider restricted

⊙ nodes, where at most one child is not a clause and can have

different values for lower and upper bounds. If this child is

c, let q be the product of the (exact) probabilities of all other



children. Then, ajU = aj+1
U · q and ajL = aj+1

L · q and thus the

inequality ajU − ajL ≤ 0 is preserved.

Case 3: The parent of c is a ⊗ node: ⊕(c1, . . . , ck), where
c is one of c1, . . . , ck. Let

αL =
k

Π
i=1,ci 6=c

(1 − L(ci)), αU =
k

Π
i=1,ci 6=c

(1 − U(ci))

where L(ci) and U(ci) represent the formulas for the lower

and upper bounds, respectively, of node ci. Given that L(ci) ≤
U(ci) for each node ci, it holds that αL ≤ αU . Then,

f jU = 1 − αU · (1 − f j+1
U )

= αU · aj+1
U · x+ 1 − αU + αU · bj+1

U

f jL = 1 − αL · (1 − f j+1
L )

= αL · aj+1
L · x+ 1 − αL + αL · bj+1

L

δ(f jU − f jL)

δx
= αU · aj+1

U − αL · aj+1
L ≤ 0.

The latter inequality holds since αU ≤ αL (as discussed

above) and aj+1
U ≤ aj+1

L (by hypothesis).

For relative approximation, we need to find x that maxi-

mizes (1− ǫ) ·U − (1+ ǫ) ·L. This holds by a straightforward

extension of the previous proof: The coefficient of x is shown

to be greater in L than in U for U − L. Since 1 − ǫ ≤ 1 + ǫ,
this property is preserved.

Lemma 5.11 gives us the necessary strategy to decide

whether closing leaves in a d-tree still allows to obtain an

ǫ-approximation. Finding the maximal values of U − L and

(1−ǫ)·U−(1+ǫ)·L can be done very efficiently by computing

L(d) in just one scan of d. Our main result concerning the

closing of leaves follows then from Lemma 5.11 and the fact

that refinement eventually leads to completion of d.
Theorem 5.12: Given a d-tree d for a DNF Φ, and a fixed

error ǫ. If the bounds L(d) satisfy the sufficient condition

for an ǫ-approximation in Proposition 5.8, then there is a

refinement of d that is an ǫ-approximation of Φ. 2

Example 5.13: Consider the d-tree d of Figure 4 and an

absolute error ǫ = 0.012. We are at Φ2 and would like to know

(1) whether we can stop with an absolute ǫ-approximation, and

in the negative case, (2) whether we can close Φ2.

(1) We compute the lower and upper bounds of the d-tree

as if all the leaves are closed. We plug in the lower bounds of

the leaves and obtain L = 0.1⊗ ((0.5⊙ 0.4)⊕ 0.35) = 0.595.
Similarly for the upper bound: U = 0.11 ⊗ ((0.5 ⊙ 0.44) ⊕
0.38) = 0.644. The condition U − L = 0.049 ≤ 2 · 0.012 =
0.024 is not satisfied. Hence, we cannot stop now.

(2) We compute L(d) as before: L(d) = [L,U ′], where
U ′ = 0.11 ⊗ ((0.5 ⊙ 0.44) ⊕ 0.35) = 0.6173. We then have

that U ′−L = 0.0223 ≤ 0.024. We may thus close this point.2

Our incremental algorithm is the compilation scheme of Fig-

ure 1, where the variable choices are according to the variable

elimination order in Section IV and of Lemma 6.8 discussed

in the next section. The nodes in the d-tree are constructed

in depth-first manner. Before constructing a node, we perform

two checks: (1) the sufficient condition of Proposition 5.8,

which tells us whether we already reached an ǫ-approximation

E U V P φ
5 7 .9 e1
5 11 .8 e2
6 7 .1 e3
6 11 .9 e4
6 17 .5 e5
7 17 .2 e6

E′ U V ∈ P φ
5 7 1 .9 e1
5 7 0 .1 ¬e1
...

...
...

...

7 17 1 .2 e6
7 17 0 .8 ¬e6

(a) (b)

R φ
e3 ∧ e5 ∧ e6

R V φ
6 e5 ∧ e6 ∧ ¬e3
11 (e1 ∧ e2) ∨ (e3 ∧ e4)
17 e3 ∧ e5 ∧ ¬e6

(c) (d)

Fig. 5. Tuple-independent (a) and block-independent-disjoint representation
(b) of a social network, and results (c,d) of the queries in Section VI-A.

and we can safely stop, and (2) the condition of Theorem 5.12

on whether the current node to be constructed can be safely

closed, in case the condition at step (1) is not satisfied. In step

(2), we compute the bounds of the DNF at the leaf using the

Independent heuristic of Figure 3.

VI. TRACTABILITY RESULTS

We next discuss the connection between tractability of

query evaluation on probabilistic databases and polynomial-

time probability computation with d-trees. For this, we recall

how DNFs are obtained by query evaluation using a social

network example. We refer to the literature [3], [7], [2] for

techniques for evaluating queries on probabilistic databases

and casting tuple confidence computation as a problem of

computing the probability of a DNF: these techniques are well-

established, and we lack the space to cover them in detail.

A. Examples of Query Evaluation on Probabilistic Databases

Consider a representation of a social network as an undi-

rected graph in which nodes represent individuals and edges

represent friendship. Assume that the edges are associated with

a degree of belief in their presence (e.g., from mail server

logs). No correlations between the probabilities of edges are

known, so the edge probabilities are assumed independent.

Figure 5 (a) gives a so-called tuple-independent table that

encodes the edge relation of a social network. The Boolean

random variables e1, . . . , e6 represent the six edges – that is,

the i-th edge is present in those worlds in which ei is true. This
table represents 26 possible worlds, each holding a relation of

schema E(U, V ). For instance, the world with edges e1, e2,
and e3, but not the others, has probability .9 ∗ .8 ∗ .1 ∗ (1 −
.9) ∗ (1 − .5) ∗ (1 − .2).
The following query computes the probability that there is

a triangle (a 3-clique of friends) in this graph (such small

patterns are also called motifs):

select conf() as triangle_prob

from E n1, E n2, E n3

where n1.v = n2.u and n2.v = n3.v and

n1.u = n3.u and n1.u < n2.u and n2.u < n3.v;

The relational algebra part of this query computes the table

of Figure 5 (c). That is, there is a triangle in those worlds that



contain the third, fifth, and sixth edge.

Figure 5 (b) gives an alternative equivalent representation

E′ of the edge relation E. This is a block-independent-

disjoint table [7]. The difference to E is that the alternatives

– each edge is either present or not – are both represented.

Alternatives in a group are mutually exclusive and different

groups are independent from each other.

We can now ask queries involving the absence of an edge

from a world, such as the query for nodes within two, but

not one, degrees of separation from node 7. The query shall

be skipped here, although it is not hard to write in positive

relational algebra assuming a relation of those edges missing

with certainty from the graph is available. The result is the

table of Figure 5 (d).

In both examples, we need to compute the probability of the

query answers, or equivalently the probability of the DNFs φ
in Figures 5 (c) and (d).

B. From Tractable Queries to Linear-Size Complete D-Trees

DNFs associated with answers to known tractable queries

on tuple-independent probabilistic databases can be compiled

efficiently into d-trees. The classes of tractable queries consid-

ered here are (1) the hierarchical queries without self-joins [7],

(2) queries that are “hard” in general, but become tractable on

restricted databases [21], and (3) queries with inequalities [20].

The DNFs associated with answers to any tractable con-

junctive query without self-joins are factorizable into one

occurrence form (1OF), where each variable occurs exactly

once [19]. Such queries are called hierarchical, and can be eas-

ily defined using Datalog notation, where joins are expressed

by occurrences of query variables in several subgoals.

Definition 6.1 ([7]): A conjunctive query is hierarchical if

for any two non-head query variables, either their sets of

subgoals are disjoint or one set is contained in the other. 2

Example 6.2: The following queries are hierarchical:

q1():-R1(A,B), R2(A,C)

q2(D):-R1(A,B, C), R2(A, B),R3(A, D)

Formulas in 1OF can be arbitrarily nested using ∧ and ∨,
e.g., ((x1 ∨ x2) ∧ (¬y1 ∨ y2)) ∨ (x3 ∧ ¬y3). 2

Complete d-trees can represent 1OFs by turning ∨ into ⊗
and ∧ into ⊙. Following our compilation scheme of Figure 1,

Proposition 6.3: Any DNF formula factorizable in 1OF can

be compiled in polynomial time into a complete d-tree with

one leaf per distinct variable and inner nodes ⊗ and ⊙. 2

The query q:-R(X), S(X,Y ), T (Y ) is the prototypical #P-
hard query [7]. It is non-hierarchical since the sets of subgoals

of X and Y overlap, yet one does not include the other. The

DNFs for hard queries are factorizable in 1OF for restricted

tuple-independent databases. Due to lack of space, we only

state here a tractable case that exploits regularities in the

structure of table S.
Theorem 6.4: The DNFs associated with the hard query

pattern R(X), S(X,Y ), T (Y ) are factorizable in 1OF if each

connected component of the bipartite graph of S is

• functional, and S can be probabilistic or deterministic, or

• complete, and S is deterministic. 2

The bipartite graph G of table S can be obtained as follows:

The distinct X-values and Y -values in S form the two disjoint

sets of nodes in G, and each tuple (x, y) in S induces an edge

between the nodes of x and of y in G. A bipartite subgraph

of G over node sets X ′ and Y ′ is functional, if either there

are no two X ′-nodes connected to the same Y ′-node, or no

two Y ′-nodes connected to the same X ′-node.

Theorem 6.4 and Proposition 6.3 generalize an early

tractability result obtained for hard patterns where functional

dependencies hold on the entire table S [7], [21].

Very recent work defines tractable queries with inequalities

(<) [20]. We only consider here the core tractable language

of so-called IQ queries defined in that work, all extensions

presented in there carry over here as well.

Definition 6.5 ([20]): Let the disjoint sets of query vari-

ables x1, . . . , xn. A conjunction of inequalities over these sets

has the max-one property if at most one query variable from

each set occurs in inequalities with variables of other sets. 2

Definition 6.6 ([20]): An IQ query has the form

Q(x0):-R1(x1), . . . , Rn(xn),Φ

where R1, . . . , Rn are distinct tuple-independent tables, the

sets of query variables x1 − x0, . . . , xn − x0 are pairwise

disjoint, and Φ has the max-one property over these sets. 2

Example 6.7: The following are IQ queries

q1():-R(E, F ), T (D), T ′(G, H), E < D < H

q2():-R
′(E, F ), T (D), S(B, C), E < D, E < C

q3():-R(A), T (D)

q4():-R(A), T (D), R′(E, F ), T ′(G, H),A < E, D < E, D < G

2

We compile DNFs of IQ queries using the variable elimina-

tion order given next in Lemma 6.8. The following new result

captures the core observation of our previous work [20]. By

co-factor of a variable v in a DNF Φ, we denote the DNF Φ′

such that Φ = v∧Φ′ ∨Ψ, and the DNF Ψ does not contain v.
Lemma 6.8: Let Φ be the DNF of an IQ query over relations

R1, . . . , Rk. Then, there is a variable v from Ri (1 ≤ i ≤ k)
that occurs in clauses of Φ with all variables of all Rj , j 6= i.
Also, the co-factor of v subsumes Φ|v . 2

The variable v can be found as follows. We first compute

the number of variables in Φ from each relation R1, . . . , Rk.
We next do the same counting process, but now restricted to

those clauses that contain a given variable x. If we obtain the

same counts as in the unrestricted case for all but the relation

of x, then x is the chosen variable. Otherwise, we check for

a different variable until we exhaust the set of variables in Φ.

Counting the number of variables of a relation can be done by

scanning the clauses of Φ and marking for each variable all

but the first of its occurrences; the number of the unmarked

variables is the desired count. This requires time bounded by

the number of variables times the size of Φ.

The subsumption property is what makes IQ queries

tractable. We exemplify with query q():-R(X), S(Y ), X <
Y on a database with random Boolean variables x1, . . . , xn in

R and y1, . . . , ym in S (n ≥ m). Assume wlog that the indices



of variables correspond to the sorting order of relations R and

S. According to Lemma 6.8, x1 is chosen first and

Φ|x1
=

∨

j

(yj) ∨
∨

1<i≤n

(xi ∧ Φ|xi
) =

∨

j

(yj)

Φ|¬x1
=

∨

1<i≤n

(xi ∧ Φ|xi
).

The co-factor of x1 is
∨

j(yj), a disjunction of all the variables
in S that annotate Y -values that are greater than the X-value

annotated by x1. Following the semantics of the inequality

join, any other variable xi can only be paired with a disjunction
of a (non-necessarily strict) subset of variables in S, hence
∨

j(yj) ∨
∨

1<i≤n(xi ∧ Φ|xi
) =

∨

j(yj). Both DNFs Φ|x1

and Φ|¬x1
can be decomposed using the same heuristic: Any

variable yj is chosen in Φ|x1
, and variable x2 (or some yj) is

chosen in Φ|¬x1
. Also, the sum of their sizes is less than the

size of Φ. This observation leads to the following result.

Theorem 6.9: The DNF Φ of any IQ query can be compiled

in polynomial time into a complete d-tree with ⊕-nodes only,

such that for each literal in Φ there is at most one ⊕-node.2

VII. EXPERIMENTS

In this section, we report on experiments with our new

approximate probability computation algorithm.

1) Algorithms: We experimentally compare our approach

(called d-tree in the sequel) with the following algorithms:

aconf: The algorithm aconf() computes an (ǫ, δ)-
approximation of tuple confidence and takes ǫ and δ as

arguments. It is a combination of the Karp-Luby unbiased

estimator for DNF counting [15] in a modified version adapted

for confidence computation in probabilistic databases (cf. e.g.

[16]) and the Dagum-Karp-Luby-Ross optimal algorithm for

Monte Carlo estimation [6]. The latter is based on sequential

analysis and determines the number of invocations of the

Karp-Luby estimator needed to achieve the required bound

by running the estimator a small number of times to estimate

its mean and variance. We actually use the probabilistic

variant of a version of the Karp-Luby estimator described in

the book [26] which computes fractional estimates that have

smaller variance than the zero-one estimates of the classical

Karp-Luby estimator.

SPROUT: This efficient secondary-storage algorithm is the

state of the art exact confidence computation technique for

currently all known classes of conjunctive queries with in-

equalities and without self-joins on tuple-independent proba-

bilistic databases [21], [20].

2) Experimental Setup: The experiments were per-

formed on an AMD Athlon Dual Core Processor 5200B

64bit/3.9GB/Linux2.6.25/gcc 4.3.0.

Our technique was implemented within the SPROUT query

engine, which is part of the MayBMS probabilistic database

management system; the code was added to Release 2.1 beta

of MayBMS, which itself is based on Postgresql 8.3.3 (see

http://maybms.sourceforge.net). The aconf implementation is

the one supported in MayBMS 2.1 beta and was not al-

tered, and the parameter δ is 0.0001 for all the experiments.
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Fig. 6. Experimental results for tractable queries.

All resources needed to reproduce our experiments (algo-

rithms, queries, data sets, data set generators) are available

at http://web.comlab.ox.ac.uk/projects/SPROUT/.

3) Experiment Design: Our experiments were designed to

provide insight into the performance of our technique across a

variety of datasets and queries that are representative of future

applications of probabilistic databases. Since no benchmark

has been established so far for query processing in probabilis-

tic databases, and there is not even wide agreement yet on a

set of most relevant use cases, we have to rely on our un-

derstanding of the possible sources of hardness in probability

compution that may arise in a variety of applications.

In addition to the obvious sources of hardness, such as

large data and non-hierarchical queries, which create complex

DNFs, there are several subtle issues to be considered, as

discussed below. Our experiments are designed to study them.

1. Tuple-independent databases versus databases with

more complicated lineage. The queries in our experiments
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Fig. 7. Experimental results for hard TPC-H queries.

create complex “lineage” formulas. However, we focus on

queries whose relational algebra part is positive since the

relational difference operation is a substantial source of com-

plexity (cf. e.g. [22]). Thus, if we start with tuple-independent

relations in which each tuple is associated with its own

Boolean random variable, positive relational algebra queries

will only create positive DNFs. This has an effect on the

algorithms; in fact, for our algorithm, mixed positive and

negated variables in the conditions may possibly make con-

fidence computation easier, because it may allow the upper-

and lower-bounding mechanisms to converge more quickly.

2. Easy-hard-easy pattern. In [17], we observed such a pat-

tern similar to those observed in combinatorial algorithms for

propositional satisfiability and constraint satisfaction: When

the ratio of variables to clauses is very large, then the result

probability is rather small and the input to the algorithm is

small: such a case tends to be easy. Similarly, if the ratio of

variables to clauses is very small, then the result probability

tends to be very close to 1 and lower-bounding with sufficient

accuracy is easy. However, there is a critical region of variable-

to-clause ratios inbetween for which probability computation

is hard. For our experiments, this means that there is a pitfall

in increasing the instance sizes: If we do not proportionally

add interesting variability (and increase the probability space),

then the instances get easier rather than harder. On the other

hand, an easy-hard-easy pattern is also good news, because

it shows that hard instances are only restricted to a narrow

section of the space of possible input instances and on many

instances we will do well without difficulty.

3. Absolute versus relative approximation. When result

probabilities are reasonably close to 1, then there is no

great difference between absolute and relative approximation.

To study relative approximation, we thus have to construct

instances with small result probabilities. As pointed out in

the previous paragraph, this is not entirely trivial. However,

understanding the properties of relative approximation for the

d-tree algorithm is important, since relative approximation

is a staple of the Karp-Luby approximation scheme (aconf).

Designing a Monte Carlo algorithm for efficient absolute

approximation is trivial.

A. TPC-H Experiments

The first broad class of experiments was performed on data

generated by a modified version of the TPC-H data generator

which creates tuple-independent probabilistic databases [7],

that is, each tuple occurs in the database independently with a

given probability. We consider modified versions of the TPC-H

queries without aggregations but with confidence computation.

The queries of the TPC-H benchmark fall into two main

classes: tractable queries with inequalities (six hierarchical

queries used in [21] and three inequality queries used in

[20]), and four #P-hard queries. Queries marked with “B”

are Boolean. Two of the tractable queries are selections on

the large lineitem table, all other tractable queries are joins

of two large tables (e.g., lineitem with supplier, or orders,

or part). The hard queries are more complex: 20B is a join

on supplier, nation, partsupplier, and part, 21B is a join on

supplier, lineitem, orders, and nation, 2B is a join on part,

supplier, partsupplier, nation, and region, and 9B is a join on

part, supplier, lineitem, partsupplier, orders, and nation.

Fig. 6 shows the running times for computing the answers

to tractable queries and their confidences. Overall, d-tree

performs worse than SPROUT because SPROUT learns the

structure of the DNF from the query, whereas d-tree has to

rediscover it on its own. The timing of the two is however

comparable in almost all cases.

For hierarchical queries (Fig. 6(a) and (b)) we considered

input data with probability distributions in (0,1) and also in

(0,0.01). Our algorithm d-tree finishes in all cases within 100

seconds, even for computing the exact confidence. In contrast,
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Fig. 8. Experimental results for random graphs.

aconf only finishes in four out of the 12 experiments. Overall,

we obtain a better timing for error 0 than for relative error

0.01, because in the former case we do not need to compute the

lower and upper bounds of each leaf during compilation. This

becomes more evident in the case of small probabilities. In

case of queries B16 and B17 in Fig. 6(a), checking the bounds

clearly pays off: For these cases, no compilation is needed,

since the bounds are already approximated very well and we

stop early. Without checking the bounds, we would have to

construct the entire d-tree, which is then more expensive.

For tractable queries with inequalities (Fig. 6(c)), aconf does

not finish in the allocated time, and d-tree closely follows

SPROUT.

For all tractable queries, about 90% of the nodes in the d-

tree are ⊗ nodes, which suggests that our approximation of

lower and upper bounds for non-independent sets of clauses

works very well and avoids possible exponentiality introduced

by variable elimination. In addition, in case of inequality

joins, the clause subsumption procedure is very effective.

As explained in Section VI-B, this is vital for the overall

polynomial time computation. For instance, the IQ query 6

 0.1

 1

 10

 100

 300

 0.0001 0.0005 0.001 0.005 0.01 0.05

T
im

e
 i
n

 s
e

c
 (

ln
 s

c
a

le
)

Relative error (ln scale)

Dolphin social network

Timeout

aconf-p2
aconf-s2

aconf-t
d-tree-p3
d-tree-p2
d-tree-s2

d-tree-t

 0.1

 1

 10

 100

 300

 0.0001 0.0005 0.001 0.005 0.01 0.05

T
im

e
 i
n

 s
e

c
 (

ln
 s

c
a

le
)

Relative error (ln scale)

Karate social network

Timeout

aconf-p3
aconf-p2
aconf-s2

aconf-t
d-tree-p3
d-tree-p2
d-tree-s2

d-tree-t

Fig. 9. Experimental results for social networks.

has about 25 distinct answer tuples, each with a DNF of (on

average) 10,000 clauses and 550 variables. For each answer

tuple, d-tree creates (on average) 20,000 nodes, and subsumes

ca. one million clauses (overall, on all branches of the d-tree).

Our algorithm d-tree performs consistently better than aconf

also for hard queries. The hard queries have many joins, which

ultimately lead to overall low probabilities of clauses, and

with final confidences that range from 10−3 to 0.93, while

answers have up to 500 clauses and 500 variables (query 20),

up to 75,000 clauses and 150,000 variables (query 21), up to

640 clauses and 1,600 variables (query 2), and up to 350,000

clauses and 725,000 variables (query 9).

Statistics collected from d-tree traces show that in most

of the cases, as the size of DNF increases, the number of

nodes constructed by our algorithm also goes up. However,

two scenarios may change this trend. First, in the lower and

upper bound computation, with more input clauses, both the

lower and upper bounds increase but maximal values of upper

bounds are 1. If upper bounds reach 1 and lower bounds still

increase, this can lead to quick convergence. For instance,

for TPC-H query B2 and relative error 0.01, the number of

nodes constructed by our algorithm reaches its peak at scale

factor 0.5 and drops dramatically at scale factor 1. For larger

errors, the U-turn happens even earlier. Still, for TPC-H query

B2 but relative error 0.05, the maximal number of nodes

appear at scale factor 0.1. Second, the DNF of some TPC-H

queries (that have equality selections with constants) has the

property that very few variables from one input table occur in



most of the clauses. For instance, for queries B20 and B21,

there is only one variable coming from table nation. After we

eliminate this variable, the remaining DNF consists of many

independent clauses and our approximation approach captures

this and tightens the lower and upper bounds very quickly.

Therefore, the number of nodes constructed remains low and

is not affected by the DNF size.

B. Random Graph and Social Networks Experiments

The second broad class of experiments deals with graph

data in which edges are independently either in the graph or

absent. We consider two classes of datasets modelled as block-

independent disjoint tables. The first set consists of generated

random graphs where all edges have the same probability pe.
An undirected random graph with n nodes is a probabilistic

database in which the possible worlds are the subgraphs

(obtained by removing zero or more edges) of the n-clique.
In case the membership of each edge in the graph is uniform,

the probability distribution over this set of possible worlds is

uniform, too, and each world has probability (1/2)n·(n−1).

The second class of graph datasets are well-known social

networks taken from the literature: One is Zachary’s Karate

club [28], with 34 nodes, a classic, and the other represents

friendship among a group of dolphins. The social networks

generalize our random graphs in that some edges are missing

with certainty and the remaining edges have varying prob-

ability of being present in the graph. The idea here is that

friendship between nodes is established by observation and

there may be a varying degree of confidence in that a pair

of nodes are friends (very credible for dolphins), or varying

degrees of friendship (very credible for karatekas).

We consider four different queries. The first two, triangle (t)

and “path of length 2” (p2) were discussed in Section VI-A.

The query p3 computes the probability that the graph contains

at least one path of length 3. The “separation” query (s2)

computes the probability that two given nodes have at most

two degrees of separation.

Our experimental results for queries on random graphs

and social networks are reported in Figures 8 and 9. In

case of random graphs, for large edge probabilities (above

0.5), d-tree converges quickly, since each clause has a non-

negligible marginal probability. When we consider smaller

edge probabilities (below 0.1), d-tree needs more time to

converge, especially for queries involving more joins (such

as the path queries). We witness an easy-hard-easy pattern for

edge probabilities of 0.3 in case of triangle and path2 queries.

It is worth pointing out that while the random graphs and

social networks used here (on the order of 50 nodes) may

not seem very large, they are actually substantial; a 40-nodes

random graph has up to 780 edges. The triangle query uses a

three-way self-join and generates DNF of 780 variables and

9880 clauses; the path2 and path3 queries use a three-way and

eight-way self-joins, respectively.
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