MAYBS

Conditioning Probabilistic Databases
Dan Olteanu (Oxford University Computing Laboratory)

Joint work with Christoph Koch (Cornell University Database Systems Group)

Main goals of the MayBMS project

Create a scalable DBMS for uncertain/probabilistic data

@ Representation and storage mechanisms
@ Uncertainty-aware query and data manipulation language

@ Efficient processing techniques for queries and constraints

This talk covers aspects of (3).

MayBMS available at sourceforge.net !

Conditioning c-table-like Probabilistic Databases

‘Transform a probabilistic database of priors into a posterior probabilistic database.

Example: Probabilistic database representing four weighted instances of relation
R defining social security numbers and names:

R! | SSN NAME R?2 | SSN NAME
1 John 7 John
4 Bill 4 Bill
P=.06 P=24
R3 | SSN NAME R* | SSN NAME
1 John 7 John
7 Bill 7 Bill
P=14 P =56

Events: A, = Bill has SSN x; B = SSN is unique in R.

@1 = select SSN, conf() from R where NAME = 'Bill’ group by SSN;
assert SSN—NAME on R;Q;

P(AsAB
P(As) = .3 P(Aqs | B) = (P(A.‘;\)) = .06+.é311+.14 ~ .68

Challenges

Conditioning/confidence computation is NP-hard on succinct representations.
@ No prior work on conditioning probabilistic databases (i.e., on using assert)
@ Some prior work on confidence computation (MystiQ, Trio, MayBMS, ...)

Exact versus approximate computation.

@ Approximation problematic for compositional query languages for
probabilistic databases.

> Introduced errors aggregate and grow.
» conf() used in comparison predicates.

Materialize the (succinct) probabilistic database result of conditioning.

@ assert is natural for data cleaning under possible worlds semantics.

Our representation system: U-Relational Databases

@ Discrete independent (random) variables.
@ Representation: U-relations + table W representing distributions.
@ The schema of each U-relation consists of

> a set of column pairs WSD = (Var — Dom) representing variable assignments,
> a set of value columns,

> (a tuple id column).

W | Var Dom P Ug | WSD | SSN NAME
7 1 2 =17 | 1 John
J 7 .8 {i—T7} 7 John
b 4 3 (brsa} | 4 Bill
b 7 7 (b1} | 7 Bill

Properties of U-relational databases
@ Complete representation system for finite sets of possible worlds.
9 Purely relational representation of uncertainty at attribute-level.
o Efficient relational evaluation of SPJ queries (without conf()).

Our representation system: U-Relational Databases

W | Var Dom P Ug | WSD | SSN NAME
7 1 2 =17 | 1 John
J 7 .8 {i—T7} 7 John
b 4 3 (b4} | 4 Bill
b 7 7 (b7} | 7 Bill

Our representation system: U-Relational Databases

W | Var P Ur | WSD | SSN NAME
J 1 2 {i—1} 1 John
J 7 .8 {i—T7} 7 John
b 4 3 {b+ 4} 4 Bill
b 7 7 {b— T} 7 Bill

R! R2 | SSN NAME
7 John
4 Bill
P— P=28-3=.24
R3 R* | SSN NAME
7 John
7 Bill
P= P=238 = .56

Our representation system

Dom

- U-Relational Databases

w | Var P Ugr | WSD | SSN NAME
j 1 2 {j— 1} 1 John
J 7 .8 {i—7} 7 John
b 4 3 {b— 4} 4 Bill
b 7 7 {b+— 7} 7 Bill

R! | SSN NAME R? | SSN NAME
1 John 7 John
4 Bill 4 Bill
P=.2.-.3=.06 P=.8-3=.24
R3 | SSN NAME R* | SSN NAME
1 John 7 John
7 Bill 7 Bill
P=2.-7=.14 P=.8-.7=.56

Our representation system: U-Relational Databases

W | Var Dom P Ur | WSD | SSN NAME
J 1 2 {i—1} 1 John
J 7 .8 {i—T7} 7 John
b 4 3 {b+— 4} 4 Bill
b 7 7 {b— 7} 7 Bill

R! | SSN NAME R?2 | SSN NAME
1 John 7 John
4 Bill 4 Bill
P=.2..3=.06 P=.8-3=.24
R3 SSN NAME R* SSN NAME
1 John 7 John
7 Bill 7 Bill

Our representation system: U-Relational Databases

W | Var

WSD

NAME

J
J

b
b

Rl

Nwo T

{i—1}
=7
{b+— 4}
{b— T}

John

John
Bill
Bill

Queries on U-Relational Databases

W | Var Dom P Ug | WSD | SSN NAME
7 1 2 =17 | 1 John
J 7 .8 {i—T7} 7 John
b 4 3 (b4} | 4 Bill
b 7 7 (b7} | 7 Bill

@1 = select SSN, conf() as P from R where NAME = "Bill’ group by SSN;

Q. | SSN P
4 P({b—4))
7 P{b—T})

What makes confidence computation hard?

@ Succinct representation of uncertainty.
» Each tuple in a probabilistic database is associated with a world-set descriptor
that succinctly encodes the set of worlds containing that tuple.
World-set descriptor = Conjunction of variable assignments.
Examples: {j — 1},{j — 1,b — 4}.
> Arbitrary combinations of input world-set descriptors produced by query joins.

@ Queries with projections can create duplicate answer tuples.
» Distinct tuples can be associated with sets of world-set descriptors.
Set of world-set descriptors = DNF expression over variable assigments.
Examples: {{j — 1}} and {{{ = 1},{j — 1,b — 4}, {b— T}}.

© #SAT (Model counting) is #P-hard for arbitrary DNF expressions.
» Model counting is a special case of confidence computation.
> Arbitrary sets of world-set descriptors can be created by queries.
» The sets of models of different conjunctions in a DNF expression can overlap
and have exponential size.

Knowledge Compilation Techniques to the Rescue

@ Useful for compiling formulas into propositional theories with tractable
properties, e.g., (#)SAT.
ROBDDs (Bryant), d-NNFs (Darwiche), and variations thereof.

@ Successfully applied to system modelling and verification.

In this paper: ws-sets compiled into ws-trees.
@ more succinct than OBDDs and similar to d-NNFs
@ structurally limited (trees) and with multistate variables

@ ws-sets can be compiled into ws-trees of exponential size
but like OBDDs tend to behave well in practice

Idea behind ws-tree construction: Given a tuple t with a ws-set S, partition S
@ into independent subsets (exploit contextual independence)

@ by variable elimination (Davis-Putnam procedure)

Building ws-trees

S={{x—=1}{x—2y—1}{x—2z=1}{v—1v—1}{v—2}}
Assume dom, = {1,2,3} and dom, = dom, = dom, = dom, = {1,2}.

TN

XI—>1/ \XI—>2 U*—>E]é/ \;Hz
/N

(<) @
»—>1| |Z|—>1
) 0

vi—> 1

|
0

Apply independence partitioning to S:
o left: {({x—1},{x—2,y—1},{x—2,z— 1}}
o right: {{u—1,v— 1} {ur— 2}}.

Building ws-trees

S={{x—=1}{x—2y—1}{x—2z=1}{v—1v—1}{v—2}}
Assume dom, = {1,2,3} and dom, = dom, = dom, = dom, = {1,2}.

N

xr—>1/ \XI—>2 u»—>619/ \;»—>2
N

<) @
»—>1| |Z|—>1
) 0

vi—> 1

|
0

Apply variable elimination to {{x — 1},{x — 2,y — 1}, {x+— 2,z — 1}}.
o left: x —1:0
o right: x — 2: {{y — 1},{z+— 1}}.

Building ws-trees

S={{x—=1}{x—2y—1}{x—2z=1}{v—1v—1}{v—2}}
Assume dom, = {1,2,3} and dom, = dom, = dom, = dom, = {1,2}.

®

@/ \®
XI—>1/ \xr—>2 u+—>1/ \ur—>2
0 ® ® 0
/. | vt

@ D)
yHl’ |z»—>1
0 0

Apply independence partitioning to {{y — 1},{z+— 1}}.

o left: {{y— 1}}
o right: {{z— 1}}

Building ws-trees

S={{x—=1}{x—2y—1}{x—2z=1}{v—1v—1}{v—2}}
Assume dom, = {1,2,3} and dom, = dom, = dom, = dom, = {1,2}.

PN

xr—>1/ \XI—>2 ur—>1/ \u»—>2
@ 0

| vi—1
@ 0
| z—1
0

Apply variable elimination to {{u+ 1,v — 1}, {u— 2}}.

o left: u—1:{{v—1}}
@ right: u—2:0

Confidence computation using ws-trees

S={{x—1}{x—=2,y—=1},{x—=2,z— 1} {u— 1L v 1} {u— 2}}
Assume: dom, = {1,2,3} and dom, = dom, = dom, = dom, = {1,2}.

1 4 2 4 7 3 5
x>l x—=2y—=1lz—1lu1lus2 vl

/\

EB
xnil/ \Xr—>2 un—>1/ \u»—>2
o <l ol o
VN | vi21
e | o[l |
Y'£>1| 'zi)l
| |

Conditioning using ws-trees

Assert constraint ¢ on U-relational database U.
@ Compute the ws-set S that describes the worlds in which ¢ holds.
Evaluation of Boolean query for ¢ followed by complement with W.
@ Compile S into a ws-tree T.

© Renormalize T such that the probabilities of all remaining worlds sum up to 1.
Introduce new variables to reflect renormalization.

© Update the ws-descriptors WSD in U according to renormalized T.
While traversing T, remove from WSD the encountered variables and add
the newly created ones.

The last three steps can be done together and T need not be materialized.

Data cleaning example: Evaluate

W | Var Dom P Ug | WSD | SSN NAME
7 1 2 =17 | 1 John
J 7 .8 {i—T7} 7 John
b 4 3 (b4} | 4 Bill
b 7 7 (b7} | 7 Bill

Keep only those worlds that satisfy the key constraint on R:
assert SSN— NAME on R;

Expressed as a Boolean query as a complement of my(R <5 R) where
¢ := (1.SSN = 2.55N A 1.NAME # 2.NAME). On U-relation Ug,

Twsp (Ur >UpA1.WSD consistent with 2.wsp Ur)-

Result consists of WSD {j — 7, b+ 7}. Its complement with the (entire)
world-set given by W is:

o {{j—1},{j—7,b— 4}}, or (equivalently)

o {{b—4},{b—17,j— 1}}.

Data cleaning example: Compile and Renormalize

W | Var Dom P Uz | WSD | SSN NAME
I 2 =17 | 1 John
J 7 .8 {i—T7} 7 John
b 4 3 (b4} | 4 Bill
b7 7 b7} | 7 Bill

SSN—NAME holds in the worlds defined by S = {{j — 1},{j — 7,b — 4}}.
Compile S into a ws-tree and renormalize the latter.

@ .8-.3
j»ﬁl/\jnﬁ? /441/\ 87
0 @

Data cleaning example: Update the Database

W | Var Dom P Ug | WSD | SSN NAME
J 1 2 =1y | 1 John
J 7 .8 {i—T7} 7 John
b 4 3 (b4} | 4 Bil
b 7 7 (b7t | 7 Bill
U /&N U b/ e\t |
jﬁa/' \<£7 ’4j// \\fﬁﬁ
0 @] Us 0 o1
|b£4 |H$4
0 0

The U-relation tuples to be conditioned are passed down the ws-tree:

U =j—1:Ug | WSD | SSN NAME
{j—1} 1 John
{—1b—4} | 4 Bill
{—1b—7| 7 Bill

Data cleaning example: Update the Database

W | Var Dom P Ug | WSD | SSN NAME
j 1 2 =17 | 1 John
J 7 .8 {i—T7} 7 John
b 4 3 (b4} | 4 Bil
b 7 7 (b7} | 7 Bill
U/ @\ U U/ e\
JHa// \\fﬁ7 ’“a// \\!E§7
| Us 0 &1 U
|bH4 |H$4
0 0

The U-relation tuples to be conditioned are passed down the ws-tree:

Up=j—7:Ug | WSD | SSN NAME
{i—T7} 1 John
{—7,b—4} | 4 Bill
—=T7b—7| 7 Bill

Data cleaning example: Update the Database

W | Var Dom P Ug | WSD | SSN NAME
j 1 2 =11 | 1 John
J 7 .8 {i—T7} 7 John
b 4 3 (bd} | 4 Bill
b 7 7 (b1} | 7 Bill
TN U e\
j'£>1/ it "“‘1/ \j’§7
0 ol Us 0 @1 U
| b3 4 | b kg
0 1]

The U-relation tuples to be conditioned are passed down the ws-tree:

Us=b—4:U, | WSD | SSN NAME
{j—7,b— 4} 1 John
{i—7b—4}| 4 Bill

Data cleaning example: Update the Database

W | Var Dom P Ug | WSD | SSN NAME

j 1 2 =11 | 1 John

J 7 .8 {i—T7} 7 John

b 4 3 (bd} | 4 Bill

b 7 7 (b1} | 7 Bill

U/ @&\ U , W/ a0
j.ﬁl/ \\j»‘—8>7 j’»El/ \j’E?
0 @ | Us 0 o1 U

b3 4 | bk 4
1] 0

Replace old variables by new variables in the U-relations to be pushed up the
normalized ws-tree:

UL = Replace b by b' in U3 | WSD | SSN NAME
=70 =4 | 1 John
(=70 —4 | 4 Bill

Data cleaning example: Update the Database

W | Var Dom P Ug | WSD | SSN NAME

j 1 2 =17 | 1 John

J 7 .8 {i—T7} 7 John

b 4 3 (b4} | 4 Bill

b 7 7 (b7} | 7 Bill

U/ @\ U U/ e\ U

i3 1/ N.ﬂ 7 Ji & 1/ \J o

0 ® 1 Us @1 U
b4 |HH4
0 0

Replace old by new variables in the U-relation tuples to be pushed up the
normalized ws-tree:

U} = Replace j by j/ in U} | WSD | SSN NAME
=70 =4 | 1 John
(=76 —4} | 4 Bill

Data cleaning example: Update the Database

W | Var Dom P Ug | WSD | SSN NAME

j 1 2 =17 | 1 John

J 7 .8 {i—T7} 7 John

b 4 3 (b4} | 4 Bill

b 7 7 (b7} | 7 Bill

U/ &\ U u e\ Uy 83
j»'—2>1/ N.ﬁ? "“‘1/ \J e
0 @ | Us o1U
b3 a |HH4
0 0

Replace old by new variables in the U-relation tuples to be pushed up the
normalized ws-tree:

U{ = Replace j by j/ in U1 | WSD | SSN NAME
7 = 1] 1T John
{—1b—4 | 4 Bill
{—=1,b-7}| 7 Bill

Data cleaning example: Update the Database

W | Var Dom P Ug | WSD | SSN NAME
j 1 2 =17 1 John
J 7 .8 {i—T7} 7 John
b 4 3 {(bda} | 4 Bill
b 7 7 b1} | 7 Bill
U/ @&\ U , /et
j»'—2>1/ N.ﬁ7 j'31/ \j/@?
0 @ Us 0 e
|b£4 |U$4
0 0

The U-relational database after conditioning (b’ and j are useless and removed):

U, =U/uU, | WSD SSN NAME

W’ | Var Dom P R 1 ;| 7Ty | > A
g A7l ? {J/ = 7,0 — 4} 1 John
o1 2/.44 (' —1b—4a) | 4 Bill
i 8-.3/.44 {'—1,b—7} 7 Bill
’ s {/—=7,b—4} | 4 Bill

Experiments

Tuple-independent TPC-H Data
Queries
0 select distinct true from customer c, orders o, lineitem | where c.mktsegment =

'BUILDING' and c.custkey = o.custkey and o.orderkey = l.orderkey and o.orderdate >
'1995-03-15'

@ select distinct true from lineitem where shipdate between '1994-01-01" and '1996-01-01’
and discount between '0.05" and '0.08" and quantity < 24

Query Size of TPC-H | #lInput | Size of User
ws-desc. Scale Vars ws-set || Time(s)
0.01 77215 9836 5.10
@ 3 0.05 | 382314 43498 99.76
0.10 | 765572 63886 356.56
0.01 60175 3029 0.20
@ 1 0.05 | 299814 15545 8.24
0.10 | 600572 30948 33.68

Tractable cases of query evaluation on probabilistic databases beyond safe plans:

@ Using OBDDs for Efficient Query Evaluation on Probabilistic Databases.
O. and Huang. In Proc. SUM 2008.

@ Lazy versus Eager Query Plans for Tuple-Independent Probabilistic Databases.
0., Huang, and Koch. 2008.

#P-hard cases

Input: ws-sets similar to those associated with the answers of non-safe Boolean
queries on probabilistic databases.

Compared agorithms for confidence computation
@ INDVE: independence partitioning and variable elimination
@ VE: only variable elimination

o KL: (adapted) optimal Monte Carlo simulation based on Karp-Luby FPRAS
for DNF counting
Given a DNF formula with m clauses, compute an (e, §)-approximation & of
the number of solutions ¢ of the DNF formula such that

Prilc—¢|<e-c]>1-9§

for any given 0 < ¢ < 1, 0 < § < 1. It does so within [4 - m - log(2/5)/€?]
iterations of an efficiently computable estimator.

INDVE is now part of the MayBMS engine!

#variables and #wsds differ by orders of magnitude

Few variables (100), many ws-descriptors, r=4(2), s=4

T T T T T T
1000 ¢ ki(e.01) —— E
e indve --—------ P
2 100 klie.l) - — E
c ve /7,,,,,/ s }}}'1
5 o T E
@ 457
n 1k e SH kS -
£ I A
e o1f 3]
£ ' e #5553
001 iy 1 1 1 1
1k 2k 5k 10k 25k 50k

Size of ws-set (In scale)

r = domain size of variables; s = size of wsds = #joins used to produce them.

#variables and #wsds differ by orders of magnitude

Many variables (100k), few ws-descriptors, r=4, s=2

T 6 .
100 F]

10 F

o1 | M1 T ;

time in sec (In scale)

001 gt T - 1 1 1 1
0.1k 0.2k 0.5k 1.0k 2.5k 6.0k
Size of ws-set (In scale)

r = domain size of variables; s = size of wsds = #joins used to produce them.

#variables and #wsds are close: Easy-hard-easy pattern

Number of variables close to ws-set size, 70 variables, r=4, s=4

10000 F indve(ymax) -~ ' P B \ 1' i
) I indve(median) : \ L E
§ 1000 ki(e.001) A \ | :
7] [indve(ymin) - il 'l]
g wpomemRea |
L h Al -
g Y
£ 1F 0T
o L i
E o1f /‘
Y e el . .
5 90 200 500 825 5000

Size of ws-set (In scale)

Known that the computation becomes harder in this case. The hard area is
smaller for SAT than for #SAT.

Thanks!

Order of Variable Elimination Matters!

S={{x—=1}{x—2y—1}{x—2z=1}{v—1v—1}{v—2}}
Assume dom, = {1,2,3} and dom, = dom, = dom, = dom, = {1,2}.

S
vie 1| z—2)/ \zr—>1| u—2,/ '\
1] ®(a) o

Different ws-tree for the same ws-set S!

