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Abstract. We present an approach for applying symmetry reduction
techniques to probabilistic model checking, a formal verification method
for the quantitative analysis of systems with stochastic characteristics.
We target systems with a set of non-trivial, but interchangeable, com-
ponents such as those which commonly arise in randomised distributed
algorithms or probabilistic communication protocols. We show, for three
types of probabilistic models, that symmetry reduction, similarly to the
non-probabilistic case, allows verification to instead be performed on a
bisimilar quotient model which may be up to factorially smaller. We
then propose an efficient algorithm for the construction of the quotient
model using a symbolic implementation based on multi-terminal binary
decision diagrams (MTBDDs) and, using four large case studies, demon-
strate that this approach offers not only a dramatic increase in the size
of probabilistic model which can be quantitatively analysed but also a
significant decrease in the corresponding run-times.

1 Introduction

Probabilistic model checking is a formal verification technique for the analysis
of systems which exhibit stochastic behaviour. It has been successfully applied
to case studies from a wide range of application domains, including randomised
distributed algorithms, communication and security protocols, dynamic power
management schemes and biological systems. The key strength of the technique
is the ability to automatically compute precise quantitative results based on an
exhaustive analysis of a formal model. This allows reasoning about, for example,
“the worst-case probability of system failure within 7" seconds” or “the minimum
expected power consumption over all possible schedulings”.

As with conventional model checking, the principal limiting factor with such
techniques is the size of the models to be analysed. Although the development
of symbolic implementations, which use binary decision diagrams (BDDs) and
related data structures, have provided a significant increase in the applicability
of the techniques, model size remains a major issue. In this paper we employ
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symmetry reduction, a way of exploiting the presence of replication in a model
which has yielded considerable success in non-probabilistic verification. In fact,
this is particularly appealing in the context of probabilistic model checking since
one of its more common, and indeed promising, applications is for the analysis
of randomised distributed algorithms. These algorithms, which use electronic
coin-flipping or random number generation, are increasingly used to provide
elegant and efficient symmetric solutions to distributed coordination problems,
as evidenced by the fact that they represent crucial components of many modern
communication protocols such as Firewire, Bluetooth and Zeroconf.

We consider the case of component symmetry, in which any pair from a
set of symmetric components in a model can be exchanged with no effect on
the overall behaviour. We show that the key ideas of symmetry reduction in this
case, namely that verification of a model can instead be performed on a bisimilar
quotient model which is up to factorially smaller, carry across with relative ease
to the probabilistic verification of three types of models: discrete-time Markov
chains, continuous-time Markov chains and Markov decision processes.

We then propose an efficient algorithm for the construction of these quo-
tient models which builds on the existing efficient symbolic implementations of
probabilistic model checking in the tool PRISM [15, 24], based on the MTBDD
(multi-terminal BDD) data structure [9, 3]. In doing so, we use ideas from the
dynamic symmetry reduction technique of Emerson and Wahl [13]. Once the quo-
tient model has been constructed, it can be analysed with existing algorithms
and their implementations. Using experimental results from four large case stud-
ies, we show that our approach results in significant increases in both the size of
models which can be verified and the speed with which this can be performed.

2 Background

2.1 Symmetry reduction

Symmetry reduction is a way of exploiting the occurrence of replication in a
model. Consider a transition system M = (S, R) comprising a (finite) set S of
states and a transition relation R C S'x S. A permutation 7 : S — S on the state
space is called an automorphism when it preserves the transition relation R, i.e.
if (s,s’) € R, then (w(s),m(s")) € R. Given a group G of such automorphisms
under function composition, there is a corresponding equivalence relation 6 on
the set of states S where (s,s’) € 6 if there is a permutation in G mapping s to
s, i.e. if s and s’ are symmetric. This relation 6 is known as the orbit relation
and its equivalence classes are called orbits.

If we then choose a set S containing a unique representative state for each
equivalence class, we can define a function rep : S — S which selects the cor-
responding unique representative rep(s) € S for each state s € S and use this
to induce a new transition relation R = {(rep(s),rep(s’)) | (s,s’) € R}. Since
all permutations in G preserve the transition relation R, this quotient transition
system (S, R) is bisimilar to the original transition system (S, R).
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In many cases, this means that an analysis of the full system can instead
be performed on the (smaller) quotient model. For example, if the states of the
transition system (S, R) are labelled with atomic propositions from some set AP
and we wish to model check a formula in the temporal logic CTL, then provided
the atomic propositions in AP are preserved by the orbit relation, model checking
can safely be carried out on the reduced model [11, 8].

In this paper, we consider component symmetry in which a model contains N
symmetric components, any pair of which can be exchanged without any effect
on the behaviour of the system. For a (global) state s of the model, we denote
the local states of the N components by s1, ..., sy, respectively. A permutation
7 of S operates by mapping s to s’ in which the values s1, ..., sy are themselves
permuted. Applying symmetry reduction to such a model where each of the N
symmetric components has M local states provides, in the best case, a reduction
in state space size from M to (**~!), which tends towards N!as M increases.

In the case of component symmetry, one way to define a unique representative
for each set of symmetric states is to select the lexicographically least (given
some ordering of the local states). This can be obtained by sorting the elements
of the state. An alternative is to count the number of processes which are in each
possible local state. Consider the case of 4 symmetric processes each with two
local states A and B (where A < B). The states (A4, B, A, A) and (A, A, B, A) are
equivalent. Using the two schemes described above, they would both be mapped
to (A, A, A, B) and (A =3, B = 1), respectively.

2.2 Symmetry reduction for symbolic model checking

The practicalities of exploiting symmetry reduction in the context of model
checking have been studied at some length in the literature. Given a method
of computing the representative rep(s) for any state s it is possible, as shown
by Ip and Dill [17], to compute the quotient transition system directly with a
simple modification of a conventional, explicit state-space exploration algorithm:
at every step of the exploration, each newly discovered state is immediately
converted to its unique representative.

Clearly it would be desirable to combine symbolic model checking techniques,
which have proven very successful for improving the efficiency of model checking,
with symmetry reduction. Early results were discouraging: in [8], it was proved
that for common types of symmetry, including component symmetry, the size of
the BDD representing the orbit relation 6 is exponential in either the number N
of symmetric processes or the number M of local states that each can occupy.
Progress was made in this area with several ways of reducing BDD sizes by,
for example, allowing multiple representatives for each state [8], or attempting
an under-approximation of reachability (aimed principally at falsification rather
than verification) [5].

Recently, a promising approach known as dynamic symmetry reduction was
proposed by Emerson and Wahl [13]. Their technique bypasses the construction
of the orbit relation by only computing representatives for the set of states
that are found during the process of model exploration (which, depending on
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the property, may not even be the set of all reachable states). This is achieved
by sorting the components of all the currently explored states at each step.
This procedure works using a bubble sort algorithm, applied directly to a BDD
representation of the state set.

An alternative approach to symmetry reduction for systems exhibiting com-
ponent symmetry, which is amenable to both explicit and symbolic model check-
ing techniques, is counter abstraction [23] or generic representatives [12]. This
is based on the idea of counting the number of processes in each local state, a
process which in many cases can be carried out with a conversion of the model
in the context of the high-level formalism in which it is described. Counter ab-
straction has been shown to perform particularly well, especially in situations
where there are a large number of processes with a relatively small number of
local states. For larger local state spaces, however, the exponential blow-up in
variables required makes it very inefficient.

It should be noted that the work described above represents only a fraction
of the available literature on symmetry reduction, the focus being on techniques
for component symmetry and those targeted at a symbolic implementation.

2.3 Probabilistic model checking

Probabilistic model checking is an extension of model checking that is applied
to transition systems augmented with information about the likelihood that
each transition will occur. For a model with set of states S, its behaviour is
specified not by a transition relation on S but a transition function. We most
commonly deal with three types of probabilistic model: discrete-time Markov
chains (DTMCs), continuous-time Markov chains (CTMCs) and Markov decision
processes (MDPs). See e.g. [25] for an overview.

DTMC:s are defined by a function P : SxS — [0, 1] satisfying ), g P(s,s') =
1 for each s € S. This function, known as the transition probability matriz, gives
the probability P(s,s’) of making a transition from each state s to any other
state s’. DTMCs are typically used to represent synchronous systems with a dis-
crete model of time. CTMCs, on the other hand, are defined by a transition rate
matriz R : S x S — Rx>( giving the rate R(s, s’) at which transitions between
state pairs (s, s’) occur. This rate is interpreted as the parameter of a negative
exponential distribution, resulting in a dense model of time. Lastly, MDPs are
defined by a function Steps : S — 2P#t(S) mapping each state s to a finite, non-
empty set Steps(s) of probability distributions over the state space S. Intuitively,
this is interpreted as a nondeterministic choice between several probabilistic be-
haviours, and is thus useful for example to represent the asynchronous parallel
composition of several stochastic processes.

Probabilistic model checking is applied to DTMCs, CTMCs and MDPs by
formulating properties in the temporal logics PCTL and CSL which are proba-
bilistic extensions of the logic CTL. This allows reasoning about, for example,
“the probability of the algorithm terminating in error”, “the probability that k
packets are successfully transmitted within ¢ seconds” or “the expected number
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of rounds for the protocol to complete”. Because these are quantitative in na-
ture, probabilistic model checking algorithms must perform numerical computa-
tion (typically iterative solution of linear equation systems or linear optimisation
problems) in addition to the usual reachability-based algorithms.

Probabilistic model checking has been successfully applied to a large number
of case studies from a wide range of application domains; see for example [20,
24]. In this paper, we have implemented our techniques using the open-source
probabilistic model checker PRISM [15, 24].

2.4 Symbolic techniques for probabilistic model checking

Symbolic model checking techniques, i.e. those using BDDs or similar data struc-
tures have been successfully adapted to the field of probabilistic model checking.
As in the non-probabilistic case, the key idea is that, by exploiting high-level
structure and regularity in a model, it is possible to derive a very compact rep-
resentation which can be efficiently manipulated. A popular data structure for
this purpose, and the one used in the probabilistic model checker PRISM upon
which our implementation is based, is multi-terminal BDDs (MTBDDs) [9, 3].

An MTBDD M is a directed acyclic graph, the nodes of which are labelled
with Boolean variables from some set x = {x1, ..., %, }. The MTBDD represents a
real-valued function fm(x1,...,xn) : {0,1}™ — IR . A BDD is thus a special case
of an MTBDD which only maps to the two values 0 and 1. Given an encoding
of the state space S of a probabilistic model into n Boolean variables, and two
disjoint sets of n such variables x = {x1,...,x,} and y = {y1,...,yn}, the
transition probability /rate matrix of a DTMC or a CTMC can be represented
as an MTBDD over these 2n variables. An MDP, although defined as a mapping
to sets of probability distributions, can also be represented as a non-square
k-|S| x | S| matrix (where there are k = max;eg | Steps(s)| rows corresponding to
each state) and represented in similar fashion [14].

Given a high-level description of a probabilistic model in some formalism, e.g.
a stochastic process algebra or, as in our case, the PRISM modelling language, it
is possible to construct the corresponding MTBDD directly, in a compositional
fashion [14], often resulting in a very compact representation. Subsequently, we
usually implement probabilistic model checking in one of two ways: (a) entirely
with MTBDDs; or (b) using a combination of MTBDDs and explicit data struc-
tures such as sparse matrices and arrays [19]. In the PRISM tool, these are
referred to as the “MTBDD” and “hybrid” engines, respectively. The former,
where applicable, has successfully been applied to huge probabilistic models (see
e.g. [21]) but this is highly dependent on model regularity and in many cases,
where irregularities introduced during numerical solution become a factor, has
infeasible time and/or memory usage. The “hybrid” approach is usually faster
but, due to storage requirements linear in the size of the state space, is generally
limited to models of approximately 107 —108 states. It is frequently the case that
compact symbolic representations can be constructed for extremely large prob-
abilistic models, but that verification, in particular via numerical computation,
of these models is prohibitively expensive, both in terms of time and space.
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3 Symmetry reduction for probabilistic model checking

The notion of symmetry in DTMCs, CTMCs and MDPs can be formulated
analogously to the non-probabilistic case, described in Section 2.1. We consider
permutations 7 : S — S on the state space which preserve the transition func-
tion. For DTMCs, we require that P(n(s),n(s")) = P(s,s’) for all s,s" € S.
Similarly, for CTMCs, we need R(w(s),7(s")) = R(s,s’) for all s,s" € S. In the
case of MDPs, for each s € S and each distribution u € Steps(s), there must be
a distribution p' € Steps(n(s)) such that p/(w(s")) = u(s’) for all s’ € S.

As before, we consider a group G of such permutations on S and the corre-
sponding orbit relation 6. From the equivalence classes of the latter we define
a reduced state space S containing a unique representative for each orbit and
a function rep : S — S which computes the representative for each state. Con-
struction of the quotient model can then be carried out as follows. For a DTMC
(S, P), we build (S, P) where for each pair of states 5,5 € S:

P(s,5) = > P(5,5'). (1)

{s’€S | rep(s’)=s"}

For a CTMC (S, R), the quotient model is (S, R) where for 3,5 € S:

R(35,5) = > R(3,s'). (2)

{s’€S | rep(s’)=s"}

Finally, for an MDP (S, Steps), the quotient model is (S, Steps) where if 5 € S,
then Steps(3) contains a distribution 7z if and only if there exists u € Steps(3)
such that for each 5’ € S:

A=Y u). (3)

{s’€S | rep(s’")=3"}

Constructed in such a way, the quotient model in each of the three cases can
easily be shown to be equivalent to the original unreduced model in the context
of (strong) probabilistic bisimulation, which is well understood for DTMCs [22],
CTMCs [6] and MDPs [26]. Furthermore, from results in [2, 4, 26], we can hence
deduce that for formulas in the temporal logics PCTL (for DTMCs or MDPs)
and CSL (for CTMCs) using a set of atomic propositions AP which is preserved
by symmetry, probabilistic model checking can be performed equivalently on the
quotient model rather than the original, unreduced model. Additionally, quanti-
tative analysis of cost- and reward-based specifications are similarly preserved.

3.1 Example

We now consider a simple illustrative example: an MDP representing two sym-
metric processes with three states (0, 1 and 2) which interact as follows. Initially,
both are in state 0. First, one moves randomly to state 1 or 2 (each with proba-
bility 0.5). The other then does likewise. If, in the second step, state 2 is chosen
and a process is already in state 2, the one which moved first moves to state 1.
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Fig. 1. A simple example: (a) full MDP (b) state representatives (c) quotient MDP

W

Figure 1(a) shows the MDP. States are denoted by circles labelled ij, where
1 and j represent the state of process 1 and 2, respectively. Each of the possible
probability distributions from a state is denoted by a set of probability-labelled
transitions (arrows) grouped by an arc. Figure 1(b) gives the function rep which
maps each state from the MDP to a unique symmetric representative and Fig-
ure 1(c) shows the resulting quotient model over the reduced state space.

4 A symbolic implementation

We now consider in more detail how to exploit symmetry reduction for proba-
bilistic model checking. More precisely, we consider the problem of constructing,
for a DTMC, CTMC or MDP exhibiting component symmetry, the correspond-
ing quotient model upon which probabilistic model checking can instead be per-
formed. Although the method of Ip and Dill [17] can readily be adapted for this
purpose, it is only applicable only to the construction of models in an explicit
fashion. As stated earlier, we wish to instead build upon the efficient symbolic
model checking framework that already exists.

One way that this could be achieved is to use counter abstraction, which
works by applying symmetry reduction at a higher level: on the language de-
scription of the model. Preliminary results for the application of such techniques
to probabilistic model checking can be found in [10]. An advantage of this is that
existing efficient methods for the construction of a symbolic model can be used
unmodified; however it is known, from applications of this to non-probabilistic
model checking, that performance is typically poor for examples where symmet-
ric processes have many local states.

Previous experience with symbolic methods for probabilistic model checking
suggests that the most desirable way of constructing an MTBDD representing
the quotient model would be to do so directly from a high-level model descrip-
tion and in a compositional manner. Unfortunately, there is no obvious way of
achieving this due to the implicit introduction, during symmetry reduction, of
a large number of inter-component dependencies. Hence, our approach proceeds
by first building a symbolic representation for the full model and then reducing
it to the quotient model. Working in an explicit context, this would negate any
benefit of symmetry reduction, since constructing and storing the model itself
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represents the bottleneck. In a symbolic setting, though, this is not so: it is very
often the case that it is possible to build the MTBDD representing extremely
large models but that model checking cannot be carried out, either in a fully
symbolic fashion (because irregularity in the computation causes a blow-up in
MTBDD sizes) or with the use of explicit data structures (because of exces-
sive memory requirements). It is in such cases that symmetry reduction has the
potential to be very useful. In Section 5 we will demonstrate exactly this on a
number of large case studies.

4.1 The algorithm

We now present our algorithm for converting a probabilistic model with N sym-
metric components to its reduced quotient form which is applicable to all three
model types: DTMCs, CTMCs and MDPs. In the following we shall refer to the
transition matriz, which corresponds to P, R and Steps, respectively, for the
three models. As described in Section 2.4, for an MDP, Steps can be thought of
as non-square matrix where there are multiple rows corresponding to each state.

Our algorithm proceeds in three steps. Firstly, we identify the quotient state
space: the set S. Secondly, every row in the transition matrix corresponding to
states not in S is removed (replaced with a row of zeros). Thirdly, we modify
each of the remaining rows, moving entries in column s’ to column rep(s’). More
precisely, since a row may contain multiple non-zero entries which move to the
same column, we replace each element of row s of the matrix with the sum of
the values from columns s’ for which s = rep(s’). Note that this corresponds
precisely to our three definitions of the quotient model in Section 3.

The full algorithm, expressed in terms of the operations on BDDs and MTB-
DDs, is shown in Figure 2. The inputs to the algorithm are a BDD reach over set
of variables x representing the set of reachable states S and an MTBDD trans
over the variable sets x and y representing the transition matrix (see Section 2.4).
Since this MTBDD is constructed in a compositional fashion, the variable sets x
and y are conveniently partitioned into subsets x; and y; for 1<i<N, one for each
of the N symmetric processes. We can illustrate this as follows. Let us assume
that the state space S of the model is simply the product of the (identical) local
state spaces S of each of the N symmetric components, i.e. S = SN We have
both an encoding v : § — {O, 1}™ of the whole state space S into n Boolean vari-
ables and an encoding & : S — {0, 1}/ of the local state space S into Boolean
variables. Consider for example an MTBDD M over variables x = {x1,...,%,}.
This MTBDD represents a real-valued function over the state space S which, for
a state s = ($1,...,sy) in S, can be defined either as fy(a(s)) or, equivalently,
fm(@(s1),...,a(sn)).

The output of the algorithm is a modified copy of the trans MTBDD repre-
senting the quotient transition matrix. This MTBDD is also over the variable
sets x and y, meaning that we retain the same encoding of the state space and
remove (set to zero) all entries of rows and columns of the matrix correspond-
ing to states not in S, rather than select a new encoding for the set S. This is
important in order to preserve the regularity of the original data structure.
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// Step 1: Identify quotient state space, i.e. all representative states
1. repr := reach

2. for (1:=1..N —1)

3. sorted; := VARIABLESLESSTHANEQUALS(yi, yi+1) A reach

4. repr := repr A sorted;

// Step 2: Remove rows corresponding to non-representative states
5. trans := APPLY (X, trans, SWAPVARIABLES(repr, y, x))

// Step 3: Construct matriz for quotient model via bubble sort
6. for (i:=N,...,2)

7. trans_prev := trans

8. for (j:=1,...,i—1)

9. good := APPLY(X, trans, sorted;)

10. bad := APPLY(X, trans, —sorted;)

11. fixed := SWAPVARIABLES(bad, yj, yj+1)
12. trans := APPLY(+, good, fixed)
13. if (trans = trans_prev) return trans

14. return trans

Fig. 2. MTBDD-based algorithm for computing the quotient model

In the first step of the algorithm (lines 1-4) we compute the BDD repr repre-
senting the set S. This is in fact relatively easy. Since our unique representative
function rep simply sorts the values of symmetric components, S is the subset
of S containing states s in which s; < s5 < --- < sy. Hence symm is formed
from the conjunction of reach and N—1 BDDs, the ith of which, denoted sorted;,
encodes all states in which s; < s;41. Given the BDD variable sets y; and yj;1,
encoding the ith and (i+1)th processes, the latter are small (linear in the size of
yi) and easy to construct (in the CUDD library which we use, there is a built-in
function to do so).

The second step of the algorithm (line 5) requires a single application of the
AppPLY function, a fundamental MTBDD operation which performs a pointwise
application of a binary function on two MTBDDs. We use a pointwise multipli-
cation of the BDD (0-1 valued MTBDD) repr and MTBDD trans. Since we are
removing rows from the matrix, not columns, we first swap the variables in repr
from y to x.

The third and most important step (lines 6-14) permutes and sums matrix
elements to compute the MTBDD for the quotient matrix. Essentially, each el-
ement in column s of the matrix needs to move to column s’ where the latter
can be determined by sorting the components (s1,...,sn) of s into ascending
numerical order. We do this using a standard bubble sort algorithm comprising
N—1 passes, the ith of which compares s; and s;41 for all j<¢ and swaps the
two values if s; > s;41. The novelty is that we perform this sorting process for
all elements of each row simultaneously and, furthermore, for all rows simulta-
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Fig. 3. Executing the algorithm from Figure 2 on the MDP from Figure 1(a): (a) trans
(initially) (b) trans (after step 2) (c) good (d) bad (e) fixed (f) trans (finally)

neously. This concurrent approach to algorithm design is typical of symbolic, i.e.
BDD-based, implementations.

In terms of MTBDDs, each iteration of bubble sort, as described above, is
achieved as follows. We partition the current copy of the matrix trans into two
parts, good and bad, the latter containing all columns of the matrix for which in
the column index s, s; > s;41. We can then use the primitive MTBDD operation
SWAPVARIABLES and the variable sets yj and yj+1 to convert bad to an equivalent
MTBDD fixed in which s; and s;11 have been swapped for all column indices.
Summing (using AppLY) the MTBDDs good and fixed gives the new version of
trans for this iteration.

A feature of bubble sort is that, if no swaps are performed in an entire outer
iteration, then we can deduce that the sort has been completed early. Thanks to
the canonicity property of MTBDDs, it is trivial to compare two MTBDDs for
equality. Hence, for each outer iteration of our algorithm, we check whether the
MTBDD trans has been modified (lines 7 and 13), terminating early if not.

4.2 Example

We now return to our example of Section 3.1 (Figure 1). Figure 3 illustrates
the execution of the algorithm from Figure 2 on the MDP from Figure 1(a).
Figure 3(a) shows the matrix trans for the full MDP. Figure 3(b) shows trans
after step 2 (line 5 of Figure 2). Since this example comprises just two processes,
we require only a single iteration of bubble sort. The matrices good, bad and
fixed from this iteration are shown in Figures 3(c), 3(d) and 3(e), respectively.
The final resulting version of trans (i.e. good + fixed) is shown in Figure 3(f)
which corresponds exactly to the quotient MDP in Figure 1(c).
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4.3 Efficiency of the algorithm

Clearly, the most costly part of our method is the sorting process. As mentioned
previously our decision to use the bubble sort algorithm for this is motivated by
[13], where it is argued that, despite being a poor choice in general, bubble sort
is well suited for a BDD-based implementation. Firstly, it allows each step of the
algorithm to be applied in parallel to several separate sorting problems: in the
case of [13], values for all states in a set are sorted simultaneously, whereas in our
case we take this a step further, sorting values in all rows and columns of an entire
real-valued matrix. Secondly, the most costly operation at the BDD or MTBDD
level is the permutation of two sets of Boolean variables, the performance of
which worsens with an increase in the distance between the two sets in the
variable ordering. Bubble sort has the advantage that it only swaps the variables
corresponding to adjacent processes which are very close in the ordering.

The complexity of bubble sort is O(IN?). Since model sizes are typically expo-
nential in the number of processes they contain, N will usually be comparatively
small. More crucial from a performance point of view will be the effect that the
sorting process will have on the size of the MTBDD representation of the ma-
trix. The unavoidable loss in regularity associated with this process would be
expected to have at least some detrimental effect in this respect but, as is always
the case with BDD and MTBDD-based implementations, the exact effect is hard
to predict. We will give an analysis based on empirical data in the next section.

5 Results

We now present experimental results to illustrate the performance of our ap-
proach, which has been implemented as a prototype extension of the PRISM
probabilistic model checker [15, 24] using the CUDD BDD/MTBDD library
[27]. For this, we have used four case studies: the IEEE 802.3 CSMA/CD com-
munication protocol [16], the shared coin component of Aspnes and Herlihy’s
randomised consensus protocol [1], studied in [21]; the randomised Byzantine
agreement protocol of Cachin, Kursawe and Shoup [7], studied in [18]; and a
simple peer-to-peer (P2P) protocol based on BitTorrent. The first three have
been modelled as MDPs, the latter as a CTMC. In all cases, we model check a
single quantitative property. All PRISM models and properties are available [24].
At this stage, symmetry has been identified manually; future work will involve
modifying the PRISM input language to facilitate automation of this process.

The table in Figure 4 summarises the results of our experiments, which were
executed on a 2.80GHz Pentium 4 PC with 1GB RAM running Linux. The first
two columns show the range of values of N (number of symmetric processes) for
which we have obtained results with each case study. The next three columns
show the sizes of the full and symmetry-reduced state spaces (i.e. |S| and |S])
and the factor of reduction achieved. In the next two columns, we give the size
of the MTBDD (number of nodes) representing the transition matrix for the
original model and the reduced quotient model.
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Case |N |[[State space MTBDD size Time (sec.)
study Size Reduct. || (nodes) Model[Model[Model checking
Normal [Symm. |factor Normal[Symm. [|build [sort [Normal®* [Symm.*

CSMA|4 (/678,831 35,270 [19.2 64,857 37,653 (|9.25 |1.05 |134 (H)[26.5 (H)
5 ||1.7e+7 |203,271(81.9 207,837|105,768|(45.3 [4.17 [1,988 (H) |131 (H)
6 |[3.2¢+8 |813,520(392 538,031(244,970([158 [13.1 |21,511 (M)|491  (H)
7 1|5.7e+9 |2.8e+6 [2,073 1.1e+6 [510,618(|499 31.5 |Mem. out (1,934 (H)
8 ||1.0e+11|8.4e46 {11,962 ||2.1e+6 |1.1e+6 [|1,831 |76.8 |Mem. out |5,281 (H

)
Cons- |8 ||6.1e+7 [46,482 [1,313 15,529 (15,883 |[[1.41 [0.46 [5,447 (M)|74.6 (H)
ensus [10(|2.8e+9 [136,708(20,198 |[29,419 [29,939 ||3.01 |1.02 27,668 (M)|412 (H)
12[|1.2e+11339,729(352,407 ||50,037 50,741 ||5.71 |2.11 |[>24hrs |2,047 (H)
14||5.0e4+12|747,243|6.7e+6 ||78,171 79,123 (|9.59 [5.05 |> 24 hrs 6,816 (H)
16(|2.1e4+14|1.5e+6 |1.4e+8 ||115,385(116,691((19.0 [7.56 |> 24 hrs 19,168 (H)
Byza- |8 [[6.4e+8 [298,993(2,142 713,143[167,587(|21.0 [5.15 [111 (M)[10.8 (M)
ntine |12(|3.6e+12|3.3e+6 |1.1e+6 ||2.6e+6 |529,619(|86.0 |23.9 |1,430 (M)[56.6 (M)
16||1.9e+16|1.2e+7 |9.3e+8 ||6.6e+6 |1.2e+6 |[241 75.3 |Mem. out |186 (M)
20(|19.5e+19|9.1e+7 [1.0e+12||1.3e+7 |2.3e+6 ||1,503 |237 Mem. out |740 (M)
P2P |4 ||1.0e+6 [52,360 [20.0 2,735 (28,684 [[0.10 [0.34 [34.1 (H)|[8.75 (H)

5 ||3.4e+7 [376,992(89.0 12,230 |67,764 [|0.08 [0.88 |1,756 (H)|70.1 (H)
6 ||1.1e+9 |2.3e+6 (462 26,555 |134,641(|0.16 |1.77 |Mem. out |547 (H)
7 1|3.4e+10|1.3e+7 |2,723 40,880 |233,068((0.28 [3.38 |Mem. out |3,556 (H)

(M) denotes use of MTBDD engine, (H) denotes use of hybrid engine

Fig. 4. Experimental results for the four case studies

We first note that, as expected, we can obtain large (several orders of magni-
tude) reductions in state space size using component symmetry and that these
reductions improve with an increase in N. Of equal importance, however, is the
size of the MTBDD representation of the quotient model. Our result shows that
in some cases this is actually smaller (approximately half the size for CSMA,
even smaller for Byzantine), in others there is little change (Consensus) but that
there can also be a significant increase in size (P2P). There are two contrast-
ing factors which influence this. Firstly, the removal of a large number of rows
decreases MTBDD size. The BDD representing the set of representative states
(repr in Figure 2) is normally quite regular, unlike for example the set of all
reachable states. On the other hand, the permutation of a large number of ma-
trix elements during sorting destroys a great deal of the matrix’s regularity and
hence increases MTBDD size. This is confirmed by a more detailed analysis of
the MTBDD size during the process of constructing the quotient model which
usually exhibits an initial decrease followed by a steady increase.

We thus observe that the example exhibiting the most regularity before sym-
metry, P2P (compare the MTBDD size and state space), suffers the highest
increase. Although the Consensus and Byzantine examples are also regular, the
fact that we can work with larger values of N results in a greater reduction
in state space and hence the gain from removal of rows outweighs the loss in
structure. Similarly, we can see that the effect of loss in regularity (increase in
MTBDD size) decreases with increasing N on the P2P example.

The last four columns in Figure 4 show the times taken for each part of
our experiments: building the original full model (including reachability), con-
struction of the quotient model via bubble sort and performing model checking
on each of the two models. In the latter case we use the fastest PRISM engine
which can complete the task: either the MTBDD (M) or hybrid (H) engine. All
experiments requiring more than 24 hours were discounted.
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We see that the times for constructing the quotient model (i.e. to run the
algorithm in Figure 2), although slower on the CSMA and Byzantine examples
for which the MTBDDs are larger, are generally fast, certainly with respect to
the time required for model checking. More significantly, we observe that using
symmetry reduction we can obtain a dramatic increase in the size of models that
can be successfully verified. Note that this is true even on the P2P example for
which the MTBDD sizes increase. For three of our case studies, this is because
the large reduction in state space makes use of the hybrid engine possible after
symmetry reduction. Another consequence of this is that we also observe a sig-
nificant improvement in run-time using symmetry reduction. On the Consensus
case study, the total time required for solution drops from several weeks to a
few hours. For the Byzantine case study, where we use the MTBDD engine both
before and after reduction, the decrease in MTBDD size means that we still
obtain huge improvements in both state space and run-time.

6 Conclusion

We have presented an efficient approach for the exploitation of component sym-
metry in three types of probabilistic models: discrete-time Markov chains, contin-
uous time Markov chains and Markov decision processes. Our algorithm, based
on multi-terminal BDDs and implemented in the PRISM tool, has been ap-
plied to four large case studies and demonstrates that the technique performs
extremely well. In comparison to existing state-of-the-art implementations, it
allows quantitative verification to be performed on models many orders of mag-
nitude larger and results in significantly faster run-times.

Our work can be extended in several directions. Following ideas put forward
in [13], we hope to able to apply our technique to a wider range of symmetric
systems, including those based on rotational, rather than component, symmetry
(i.e. rings). We would also like to extend the PRISM modelling language with
a notion of scalarsets [17] in order to facilitate the automation of detecting and
exploiting symmetry. Finally, we hope to undertake a comparison with symmetry
reduction methods based on counter abstraction [10].
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