Verification of Probabilistic
Real-time Systems

David Parker

Abstract—Probabilistic model checking is a formal verification technique for systems that exhibit stochastic behaviour. It has been used
to analyse a wide range of systems, including communication protocols, such as Bluetooth and FireWire, randomised security protocols,
e.g. for anonymity and contract signing, and many others. This paper gives a short introduction to probabilistic model checking, with a
particular focus on systems that incorporate real-time behaviour. We describe the model of probabilistic timed automata (PTAs), which
can be used to represent systems with both probabilistic and real-time characteristics. We illustrate how to formally specify quantitative
properties of PTAs, and give a brief summary of the techniques and tools that can be used to verify them. Pointers are provided

throughout to further reading on this and related topics.

Index Terms—Probabilistic verification, probabilistic model checking, real-time systems, probabilistic timed automata.

1 INTRODUCTION

Model checking [1] is a successful and widely used tech-
nique for formal verification. It works by systematically
exploring a model of a real-life system, in order to verify
that certain correctness properties, typically specified
using temporal logic, are satisfied by the model.

In many cases, however, it also necessary to consider
quantitative aspects of the system, such as probabilistic
behaviour or real-time constraints. Probability is widely
used to model real-life systems. This could be to quantify
unreliable or unpredictable behaviour, for example the
failure of a system component, or the possibility of
message loss across a wireless communication channel.
Another common source of probabilistic behaviour is the
explicit use of randomisation, for example as a symmetry
breaker in back-off schemes for communication protocols
such as IEEE 802.11 or Bluetooth. In many of these cases,
it is also important to precisely model the timing of
the system, for example to quantify the delay associated
with the transmission of a message or the response time
to a detected failure or a user request.

Probabilistic model checking is a generalisation of model
checking to formally verify quantitative properties of
such systems. This done by building and analysing a
probabilistic model, such as a Markov chain, a Markov
decision process, or a probabilistic timed automaton.
Properties to be checked against these models are ex-
pressed in probabilistic or timed extensions of temporal
logics, which allow us to specify requirements such as
“the maximum probability of an airbag failing to deploy
within 0.02 seconds is at most 107%”.

e D. Parker is with the School of Computer Science, University of Birming-
ham, Birmingham, B15 2TT, UK
E-mail: d.a.parker@cs.bham.ac.uk.

2 PROBABILISTIC TIMED AUTOMATA

Probabilistic model checking techniques have been de-
veloped for a wide variety of types of probabilistic
models. Some of these models assume a discrete notion
of time, others assume it is continuous (dense). Another
useful classification is between those that incorporate
nondeterministic behaviour (e.g., to model concurrency
or control), and those that are instead fully probabilistic.
A non-exhaustive list of models in common use, classi-
fied along these lines, is as follows:

Fully probabilistic Nondeterministic
Discrete discrete-time Markov decision processes
-time Markov chains probabilistic automata
probabilistic timed
automata
Continuous continuous-time continuous-time Markov
-time Markov chains decision processes
interval Markov chains

In this paper, we give a short introduction to prob-
abilistic timed automata (PTAs) [2], [3], which permit
modelling of probabilistic, nondeterministic and real-
time behaviour. For more in-depth coverage of this topic,
see for example [4]. For tutorial material on probabilistic
checking for other models, see, e.g., [5] for fully proba-
bilistic models, and [6], [7] for discrete-time models.

Probabilistic timed automata are labelled transition
systems in which transitions to successor states occur
randomly, according to discrete probability distribu-
tions, and which incorporate clocks: real-valued variables
whose values increase simultaneously over time. As in
standard timed automata [8], we annotate states and
transitions of PTAs with invariants (predicates on clocks
specifying how long a state can be occupied) and guards
(predicates on clocks indicating when transitions can
occur). Each time a transition between states occurs, one

quit
tries >N

Fig. 1. A simple PTA, with clock = and integer variable
tries, modelling the attempted message transmission of
a message over an unreliable communication channel.

or more clocks may be reset to zero.

Syntactically, invariants and guards are expressed us-
ing clock constraints. Letting X denote a set of clocks, the
set of all possible clock constraints CC(X) is defined by
the following grammar:

xu=true |z <d|c<z|zt+c<y+d|-x|XxAX

where z,y € X and ¢,d € N.
The formal definition of a PTA is then as follows.

Definition 1 (Probabilistic timed automaton). A prob-
abilistic timed automaton (PTA) is defined by a tuple
P=(L,l, X, Act, inv, enab, prob, L) where:
o L is a finite set of locations;
o l € L is an initial location;
o X is a finite set of clocks;
o Act is a finite set of actions;
e inv: L—CC(X) is the invariant condition;
e enab : LxAct— CC(X) is the enabling condition;
o prob : Lx Act— Dist(2¥ x L) is a (partial) probabilistic
transition function;
o L : L—2%7 is g labelling function mapping each
location to a set of atomic propositions from a set AP.

The semantics of a PTA is defined as an (infinite-state)
Markov decision process whose states take the form
(ILLv) € L x (Rso)*, where [is a location and v is a
valuation for all clocks in X. Informally, the behaviour
of a PTA can be described as follows. The initial state
is (1,0), where 0 indicates that all clocks have value 0.
For each state (I,v), there is a nondeterministic choice
between either of the following events:

(i) time elapses, i.e. all clocks increase in value, subject
to the invariant inv(l) remaining true;

(ii) an action « is taken, assuming that prob(l,a) is
defined and the guard enab(l, a) is satisfied; in this
case, prob(l,a) is a distribution over pairs (X,!’) €
2% x L, which gives the probability of moving to
location I’ and resetting the clocks in X to zero.

States of a PTA are also labelled (by £) with atomic

propositions, indicating properties of interest that may

be used during model checking. For a precise definition

of the semantics of a PTA, see for example [4].

pta
const int N;
module transmitter
// Local variables
s:[0..3] init O;
tries : [0..N+1] init 0;
x : clock;
// Invariants
invariant
(s=0 = <2) & (s=1 = 2<5)
endinvariant
// Guarded commands
[send] s=0& z>1 & tries<N — 0.9: (s'=3)
+ 0.1: (s'=1)&(tries’=tries+1)&(z'=0);
[retry] s=1& >3 — (s'=0)&(z'=0);
[quit] s=0& tries>N — (s'=2);
endmodule

rewards “energy” (s=0) : 2.5; endrewards

Fig. 2. PRISM modelling language description of the
example PTA shown in Fig.[T]

Example. Fig. [I| shows a simple example of a PTA
modelling repeated attempts to transmit a message over
a faulty communication channel. The PTA has 4 locations
(denoted s=0,1,2,3) and a single clock z. There is also
an integer variable {¢ries, which is used to count the
number of transmission attempts so far. For simplicity,
we omitted such variables from Definition [} but we can
easily make the PTA of Fig. [l| conform to this definition
by expanding it to a larger one with locations of the form
(s, tries), rather than just s.

Each location of the PTA is labelled with its invariant
(in the lower half of the circle representing it). Transi-
tions, shown as grouped arrows, are annotated with:
actions (from the set Act = {send, retry, quit), guards
(e.g. « > 3), clock resets (e.g. x := 0) and probabilities.

In the system modelled by the PTA, each send happens
after at most 2 time-units (because of the invariant <2
in location s=0), after which the transmission succeeds
with probability 0.9 and fails with probability 0.1. In the
latter case, there is a delay of between 3 and 5 time
units before transmission is re-attempted (captured by
the invariant <5 in location s = 1 and the guard >3 on
its outgoing transition). Once the counter variable tries
exceeds a constant /N, message transmission is aborted
and the PTA moves to location s=2.

3 LoGics AND MODEL CHECKING
3.1 Property specification

Typically, in probabilistic model checking, properties to
be verified against a model are specified in extensions of
classical temporal logics such as CTL [9] and LTL [10].
For probabilistic systems, the most common logic is
PCTL (Probabilistic Computational Tree Logic) [11], [12],
which generalises CTL with a P operator, referring to
the probability of an event (specified as a path formula)
occurring. There is also an extension of PCTL specifically
for PTAs called PTCTL [3] which adds operators from
the timed temporal logic TCTL [13].

In [4], a temporal logic for PTAs is proposed that also
incorporates several useful features from the property
specification language of the PRISM model checker [14].
This includes an R operator, used to reason about ex-
pected rewards (or dually costs), and numerical opera-
tors such as Ppax—?, which reason directly about proba-
bility values, rather than asserting than the probability
exceeds some threshold. We omit a full description of
the syntax and semantics, and instead give a selection
of example properties, taken from [4]:

o P50 s[F<F ack,] — “the probability that the sender
has received n acknowledgements within £ clock-
ticks is at least 0.8”;

o trigger — P(.0001[G=2° —~deploy] — “the probability of
the airbag failing to deploy within 20 milliseconds
of being triggered is strictly less than 0.0001”,

e Ppax=[—sent U fail] - “what is the maximum prob-
ability of a failure occurring before message trans-
mission is complete?”;

o RHME [F end] — “what is the maximum expected time
for the protocol to terminate?”;

o REVT[C=0Y] - “the expected energy consumption dur-
ing the first 60 seconds is < ¢”.

By way of illustration, Fig. 3| shows numerical results
obtained using the penultimate property from the list
above, applied to a PTA model of the IEEE 1394 FireWire
protocol [15]. In particular, an analysis is made of the
FireWire root contention protocol, designed to resolve
conflicts in a leader election algorithm, used when mul-
tiple FireWire devices assemble into a network. The algo-
rithm uses a combination of randomisation and timing
constraints to break symmetry: a probabilistic choice
is made by each device whether to wait for a ‘short’
or ‘long’ delay before resubmitting a message after a
collision. Fig. (3| shows the worst-case expected time for
the root contention protocol to execute, for a range of
different coin biases (i.e., values of the probability of
choosing ‘short’). Interestingly, this confirms a conjecture
from [16] that performance can be optimised by using
a biased coin (one that chooses a ‘short’ delay with
probability approximately 0.56).

3.2 Model checking for PTAs

Model checking algorithms for PTAs need to combine
techniques from existing algorithms for discrete-time
probabilistic systems (notably for Markov decision pro-
cesses) and for classical (non-probabilistic) timed au-
tomata. The challenge is to reduce the problem of ver-
ifying PTAs, which are inherently infinite-state models,
to an analysis of a finite-state model.
Several different methods have been developed:

« Digital clocks [17], which translates a PTA (provided
that it does not contain any strict inequalities in
clock constraints) into a finite-state MDP, by digi-
tising (real-valued) clocks to integer variables. The

3900

3850

3800

ns

w
hy
a
=)

Expected time
w
N
o
o

36501

3600

0.45 0.5 0.55 0.6 0.65 0.7
Probability of choosing 'short’

Fig. 3. Worst-case performance (maximum expected
completion time) of the FireWire root contention protocol
for a range of coin biases.

MDP can then verified using standard model check-
ing techniques [12], [18], [7].

o Backwards reachability [19], which traverses the state
space of a PTA backwards using symbolic (e.g.,
zone-based) data structures, again resulting in a
finite-state MDP than can be analysed in standard
fashion. Several useful optimisations to improve the
efficiency of this technique can be found in [20].

o Abstraction refinement with stochastic games [21],
which applies the quantitative abstraction refine-
ment approach of [22] to iteratively construct in-
creasingly precise abstractions of a PTA (represented
as stochastic two-player games), finally resulting in
exact results for the PTA model checking problem.

See the tutorial paper [4] for more information, or the
references cited above for the full details.

3.3 Tool support for PTAs

There are now several software tools that can be used
for probabilistic model checking of PTAs. One is the
probabilistic model checker PRISM [14], which has sup-
port for many different types of probabilistic model, in-
cluding Markov chains, Markov decision processes and
PTAs. Models are specified using PRISM’s modelling
language, which is a textual language based on guarded
commands. Fig. [2| shows the PRISM model description
for the example PTA from Fig.|1| Properties are specified
in temporal logic, as in the examples given earlier.

Other tools include: mcpta [23], part of the Modest
[24] Toolset, which uses the “digital clocks” method and
a connection to PRISM to verify a subset of the Modest
modelling language; Fortuna [20], a tool that specialises
in reward-based properties of PTAs; and UPPAAL PRO,
a probabilistic extension of the popular timed automaton
verifier UPPAAL [25].

REFERENCES

(1]
(2]

(3]

(4]

(5]

6]
(7]

(8]
(9]

[10]

[11]

[12]

[13]

E. Clarke, O. Grumberg, and D. Peled, Model Checking. The MIT
Press, 2000.

H. Jensen, “Model checking probabilistic real time systems,” in
Proc. 7th Nordic Workshop on Programming Theory, 1996, pp. 247-
261.

M. Kwiatkowska, G. Norman, R. Segala, and]. Sproston, “Auto-
matic verification of real-time systems with discrete probability
distributions,” Theoretical Computer Science, vol. 282, pp. 101-150,
2002.

G. Norman, D. Parker, and J. Sproston, “Model checking for
probabilistic timed automata,” Formal Methods in System Design,
2012.

M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model
checking,” in Formal Methods for the Design of Computer, Communi-
cation and Software Systems: Performance Evaluation (SFM'07), ser.
LNCS (Tutorial Volume), M. Bernardo and J. Hillston, Eds., vol.
4486. Springer, 2007, pp. 220-270.

C. Baier and].-P. Katoen, Principles of Model Checking. MIT Press,
2008.

V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, “Auto-
mated verification techniques for probabilistic systems,” in For-
mal Methods for Eternal Networked Software Systems (SFM'11), ser.
LNCS, M. Bernardo and V. Issarny, Eds., vol. 6659. Springer,
2011, pp. 53-113.

R. Alur and D. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, pp. 183-235, 1994.

E. Clarke and A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching time temporal logic,” in Proc.
Workshop on Logic of Programs, ser. LNCS, vol. 131. Springer, 1981.
A. Pnueli, “The temporal logic of programs,” in Proc. 18th Annual
Symposium on Foundations of Computer Science (FOCS’77). IEEE
Computer Society Press, 1977, pp. 46-57.

H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512-535,
1994.

A. Bianco and L. de Alfaro, “Model checking of probabilistic and
nondeterministic systems,” in Proc. 15th Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS'95),
ser. LNCS, P. Thiagarajan, Ed., vol. 1026. Springer, 1995, pp. 499-
513.

T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
model checking for real-time systems,” Information and Compu-
tation, vol. 111, no. 2, pp. 193-244, 1994.

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011,
pp. 585-591.

M. Kwiatkowska, G. Norman, and J. Sproston, “Probabilistic
model checking of deadline properties in the IEEE 1394 FireWire
root contention protocol,” Formal Aspects of Computing, vol. 14,
no. 3, pp. 295-318, 2003.

M. Stoelinga, “Alea jacta est: Verification of probabilistic, real-
time and parametric systems,” Ph.D. dissertation, University of
Nijmegen, 2002.

M. Kwiatkowska, G. Norman, D. Parker, and]. Sproston, “Per-
formance analysis of probabilistic timed automata using digital
clocks,” Formal Methods in System Design, vol. 29, pp. 33-78, 2006.
L. de Alfaro, “Formal verification of probabilistic systems,” Ph.D.
dissertation, Stanford University, 1997.

M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang, “Symbolic
model checking for probabilistic timed automata,” Information and
Computation, vol. 205, no. 7, pp. 1027-1077, 2007.

J. Berendsen, D. Jansen, and F. Vaandrager, “Fortuna: Model
checking priced probabilistic timed automata,” in Proc. 7th Inter-
national Conference on Quantitative Evaluation of SysTems (QEST’10),
2010, pp. 273-281.

M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic games
for verification of probabilistic timed automata,” in Proc. 7th
International Conference on Formal Modelling and Analysis of Timed
Systems (FORMATS'09), ser. LNCS,]. Ouaknine and F. Vaan-
drager, Eds., vol. 5813. Springer, 2009, pp. 212-227.

M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker,
“A game-based abstraction-refinement framework for Markov
decision processes,” Formal Methods in System Design, vol. 36,
no. 3, pp. 246-280, 2010.

A. Hartmanns and H. Hermanns, “A modest approach to check-
ing probabilistic timed automata,” in Proc. 6th International Con-
ference on Quantitative Evaluation of Systems (QEST'09), 2009, to
appear.

H. Bohnenkamp, P. D’Argenio, H. Hermanns, and J.-P. Katoen,
“Modest: A compositional modeling formalism for hard and
softly timed systems,” IEEE Trans. Software Engineering, vol. 32,
no. 10, pp. 812-830, 2006.

K. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,”
International Journal on Software Tools for Technology Transfer, vol. 1,
no. 1-2, pp. 134-152, 1997.

	Introduction
	Probabilistic Timed Automata
	Logics and Model Checking
	Property specification
	Model checking for PTAs
	Tool support for PTAs

	References

