
Quantitative Verification of
Numerical Stability for Kalman Filters

Alexandros Evangelidis and David Parker

School of Computer Science, University of Birmingham, UK
{a.evangelidis, d.a.parker}@cs.bham.ac.uk

Abstract. Kalman filters are widely used for estimating the state of a
system based on noisy or inaccurate sensor readings, for example in the
control and navigation of vehicles or robots. However, numerical insta-
bility may lead to divergence of the filter, and establishing robustness
against such issues can be challenging. We propose novel formal verifica-
tion techniques and software to perform a rigorous quantitative analysis
of the effectiveness of Kalman filters. We present a general framework for
modelling Kalman filter implementations operating on linear discrete-
time stochastic systems, and techniques to systematically construct a
Markov model of the filter’s operation using truncation and discretisa-
tion of the stochastic noise model. Numerical stability properties are then
verified using probabilistic model checking. We evaluate the scalability
and accuracy of our approach on two distinct probabilistic kinematic
models and several implementations of Kalman filters.

1 Introduction

Estimating the state of a continuously changing system based on uncertain infor-
mation about its dynamics is a crucial task in many application domains ranging
from control systems to econometrics. One of the most popular algorithms for
tackling this problem is the Kalman filter [16], which essentially computes an
optimal state estimate of a noisy linear discrete-time system, under certain as-
sumptions, with the optimality criterion being defined as the minimisation of
the mean squared estimation error.

However, despite the robust mathematical foundations underpinning the
Kalman filter, developing an operational filter in practice is considered a very
hard task since it requires a significant amount of engineering expertise [20]. This
is because the underlying theory makes assumptions which are not necessarily
met in practice, such as there being precise knowledge of the system and the
noise models, and that infinite precision arithmetic is used [12,24]. Avoidance of
numerical problems, such as round-off errors, remains a prominent issue in filter
implementations [11,12,24,26]. Our goal in this paper is to develop techniques
that allow the detection of possible failures in filters due to numerical instability
arising as a result of these assumptions.

The Kalman filter repeatedly performs two steps. The first occurs before the
next measurements are available and relies on prior information. This is called

2 A. Evangelidis and D. Parker

the time update (or prediction step) and propagates the “current” state estimate
forward in time, along with the uncertainty associated with it. These variables
are defined as the a priori state estimate x̂− and estimation-error covariance
matrix P−, respectively. The second step is called the measurement update (or
correction step) and occurs when the next state measurements are available. The
Kalman filter then uses the newly obtained information to update the a priori
x̂− and P− to their a posteriori counterparts, denoted x̂+ and P+, which are
adjusted using the so-called optimal Kalman gain matrix K.

The part of the filter that could hinder its numerical stability, and so cause it
to produce erroneous results, is the propagation of the estimation-error covari-
ance matrix P in the time and measurement updates [4,12,20]. This is because
the computation of the Kalman gain depends upon the correct computation
of P and round-off or computational errors could accumulate in its computa-
tion, causing the filter either to diverge or slow its convergence [12]. While, from
a mathematical point of view, the estimation-error covariance matrix P should
maintain certain properties such as its symmetry and positive semidefiniteness
to be considered valid, subtle numerical problems can destroy those properties
resulting in a covariance matrix which is theoretically impossible [17]. Out of the
two update steps in which the filter operates, the covariance update in the correc-
tion step is considered to be the “most troublesome” [20]. In fact, the covariance
update can be expressed with three different but algebraically equivalent forms,
and all of them can result in numerical problems [4].

To address the aforementioned challenges, we present a general framework
for modelling and verifying different filter implementations operating on linear
discrete-time stochastic systems. It consists of a modelling abstraction which
maps the system model whose state is to be estimated and a filter implementation
to a discrete-time Markov chain (DTMC). This framework is general enough to
handle the creation of various different filter variants. The filter implementation
to be verified is specified in a mainstream programming language (we use Java)
since it needs access to linear algebra data types and operations.

Once the DTMC has been constructed, we verify numerical stability proper-
ties of the Kalman filter being modelled using properties expressed in a reward-
based extension [10] of the temporal logic PCTL (probabilistic computation
tree logic) [13]. This requires generation of non-trivial reward structures for the
DTMC computed using linear algebra computations on the matrices and vectors
used in the execution of the Kalman filter implementation. The latter is of more
general interest in terms of the applicability of our approach to analyse complex
numerical properties via probabilistic model checking.

We have implemented this framework within a software tool called VerFilter,
built on top of the probabilistic model checker PRISM [18]. The tool takes the
filter implementation, a description of the system model being estimated and
several extra parameters: the maximum time the model will run, the number of
intervals the noise distribution will be truncated into, and the numerical pre-
cision, in terms of the number of decimal places, to which the floating-point
numbers which are used throughout the model will be rounded.

Quantitative Verification of Numerical Stability for Kalman Filters 3

The decision to let the user specify these parameters is particularly impor-
tant in the modelling and verification of stochastic linear dynamical systems,
where the states of the model, which comprise of floating-point numbers, as well
as the labelling of the states, are the result of complex numerical linear alge-
bra operations. Lowering the numerical precision usually means faster execution
times at the possible cost of affecting the accuracy of the verification result. This
decision is further motivated by the fact that many filter implementations run
on embedded systems with stringent computational requirements [24], and being
able to produce performance guarantees is crucial.

We demonstrate the applicability of our approach by verifying two distinct
filter implementations: the conventional Kalman filter and the Carlson-Schmidt
square-root filter. This allows us to evaluate the trade-offs of one versus the
other. In fact, our tool has been tested on five implementations, but we restrict
our attention to these two due to space restrictions. For the system models, we
use kinematic state models, since they are used extensively in the areas of navi-
gation and tracking [4,19]. We evaluate our approach with two distinct models.
We demonstrate that our approach can successfully analyse a range of useful
properties relating to the numerical stability of Kalman filters, and we evaluate
the scalability and accuracy of the techniques.

Related Work. Studies of Kalman filter numerical stability outside of for-
mal verification are discussed above and in more detail in the next section. To
the best of our knowledge, there is no prior work applying probabilistic model
checking to the verification of Kalman filters. Perhaps the closest is the use of
non-probabilistic model checking on a variant of the filter algorithm is the work
by [21], which applied model checking to target estimation algorithms in the
context of antimissile interception. In general, applying formal methods in state
estimation programs is an issue which has concerned researchers over the years.
For example, [23,25] combined program synthesis with property verification in
order to automate the generation of Kalman filter code based on a given spec-
ification, along with proofs about specific properties in the code. Other work
relevant to the above includes [22], which used the language ACL2 to verify the
loop invariant of a specific instance of the Kalman filter algorithm.

2 Preliminaries

2.1 The Kalman filter

The Kalman filter tracks the state of a linear stochastic discrete-time system of
the following form:

xk+1 = Fkxk + wk zk = Hkxk + vk (1)

where xk is the (n × 1) system state vector at discrete time instant k, Fk is a
square (n× n) state transition matrix, which relates the system state vector xk
between successive time steps in the absence of noise. In addition, zk is the (m×1)

4 A. Evangelidis and D. Parker

measurement vector, Hk is the (m× n) measurement matrix, which relates the
measurement with the state vector. Finally, wk and vk represent the process and
measurement noises, with covariance matrices Qk and Rk, respectively. Given
the above system and under certain assumptions, the Kalman filter is an optimal
estimator in terms of minimising the mean squared estimation error.

The task of the Kalman filter is to find the optimal Kalman gain matrix Kk in
terms of minimising the sum of estimation-error variances, which can be obtained
by summing the elements of the main diagonal of the a posteriori estimation-
error covariance matrix P+. The estimation process begins by initialising x̂+0 =
E[x0], and P+

0 = E[(x0 − x̂+0)(x0 − x̂+0)T]. Then, the conventional Kalman filter
algorithm proceeds by iterating between two steps. The time update is given as:

x̂−k+1 = Fkx̂
+
k P−

k+1 = FkP
+
k F

T
k +Qk (2)

The measurement update is given as:

yk+1 = zk+1 −Hk+1x̂
−
k+1 Sk+1 = Hk+1P

−
k+1H

T
k+1 +Rk+1 (3)

Kk+1 = P−
k+1H

T
k+1S

−1
k+1 (4)

x̂+k+1 = x̂−k+1 +Kk+1yk+1 P+
k+1 = (I −Kk+1Hk+1)P−

k+1 (5)

2.2 Numerical Instability of the Kalman filter

In order for P to be statistically valid it must be (symmetric) positive definite.
Briefly, this means that all of its eigenvalues are positive real numbers. This is for
two reasons. First, from a modelling perspective, if its eigenvalues were zero, this
would translate to a filter which completely trusts its estimates and consequently
would avoid taking into account the subsequent measurements, placing all of its
“belief” in the system model [4]. Second, from a numerical stability perspective,
it does not suffice for the eigenvalues of P to be greater than zero, because if
they are in close proximity to zero, then round-off errors could cause them to
become negative, rendering it totally invalid [2,12,15].

In fact, the three equivalent forms to express the covariance measurement
update are susceptible to numerical errors [4] and cannot guarantee the numer-
ical stability of P . For example, the covariance update P+

k = (I −KkHk)P−
k is

generally not preferred because it is too sensitive to round-off errors [4], which
means neither the symmetry nor the positive definiteness of Pk can be guar-
anteed. That is because this update takes the product of nonsymmetric and
symmetric matrices, a form which has been characterised as undesirable [20].

Alternatively, changing the covariance measurement update equation to P+
k =

P−
k −KkSkK

T
k could potentially pose a “serious numerical problem” [20], such as

Pk losing positive definiteness. Finally, while Joseph’s stabilised form [8], given
by P+

k = (I −KkHk)P−
k (I −KkHk)T +KkRkK

T
k , is considered to preserve the

numerical robustness of P+, it is not totally insensitive to numerical errors [4].
An additional disadvantage is the high computational complexity, which is O(n3)
[12,20], since the number of arithmetic operations such as additions and multi-
plications is considerably higher compared to the simpler form.

Quantitative Verification of Numerical Stability for Kalman Filters 5

To ameliorate these numerical problems, an alternative form of expressing the
covariance time and measurement updates is using so-called square-root filters.
These are generally considered superior to conventional filter implementations
mainly because of their ability to increase the numerical stability of the propaga-
tion of the estimation-error covariance matrix P , and have often been described
as outstanding [17,20]. It should be noted that the term square-root filter is
mostly used to refer to the measurement update of the Kalman filter algorithm,
since it is this part that can cause numerical problems [11]. They were moti-
vated by the need for increased numerical precision because of word lengths of
limited size in the 1960s [24] and by the concern with respect to the numerical
accuracy of P in the measurement update of the Kalman filter equations [11].
Potter [5] proposed the idea of the so-called square-root filters and this idea was
evolved ever since. The idea, which was limited to noiseless systems, is that P
is factored into its square root C, such that P = CCT , and as a result C is
propagated through the measurement update equations, instead of P . Replacing
P with its square-root factor C has the effect of doubling the numerical pre-
cision of the filter, thus making it particularly suitable for matrices which are
not well-conditioned or when increased precision cannot be obtained from the
hardware [11,12,20,24].

2.3 The Carlson-Schmidt Square-Root Filter

The Carlson-Schmidt filter is a form of a square-root filter which relies on the
decomposition of P into its Cholesky factors in the time and measurement up-
date equations. The Carlson part of the filtering algorithm, originally given by
Carlson [9], corresponds to the measurement update, while the Schmidt part
corresponds to the time update of the Kalman filter equations, respectively.
Carlson’s algorithm is capable of handling noise and, like Potter’s algorithm,
processes measurements as scalars. It factors P into the product of an upper-
triangular Cholesky factor and its transpose such that P = CCT . Note that
unlike Potter’s initial square-root filter where the factor C is not required to
be triangular, in Carlson’s square-root implementation the Cholesky factor C is
an upper-triangular matrix. Maintaining C in upper-triangular form has been
shown to provide several advantages in terms of storage and computational speed
compared to Potter’s algorithm [9,20]. While the choice between a lower and
upper-triangular Cholesky factor C is arbitrary [20], Carlson motivated the pref-
erence to choose an upper-triangular Cholesky factor by the fact that in the time
update part of the algorithm, fewer retriangularisation operations are required
especially when someone designs a filter to be applied in a tracking or in a
navigation problem, respectively [9].

3 Quantitative Verification of Kalman Filters

In this section, we describe our approach to modelling and verifying the numeri-
cal stability of Kalman filter implementations. This is based on the construction

6 A. Evangelidis and D. Parker

and analysis of a probabilistic model (a discrete-time Markov chain) representing
the behaviour of a particular Kalman filter executing in the context of estimat-
ing the state of a linear stochastic discrete-time system. The probabilistic model
is automatically constructed based on a specification of the filter and the sys-
tem whose state it is trying to estimate. Numerical stability properties are then
verified using probabilistic model checking queries. We describe these phases in
the following two sections.

3.1 Constructing Probabilistic Models of Kalman Filter Execution

We define a high-level modelling abstraction which can be instantiated to con-
struct models of various different Kalman filter implementations. The modelling
abstraction comprises three components: the first and second correspond to the
system and measurement models along with their associated noise distributions;
the third is the Kalman filter implementation itself used to estimate the state
of the system model in the presence of uncertainty. The first two of these are
defined mathematically along the lines described in Section 2.1. The third is
specified in detail using a mainstream programming language, since it requires
linear algebra data types and operations. Our implementation (see Section 4)
uses Java and associated numerical libraries.

The DTMC which represents the evolution of the system model along with
the filter estimates is not a static process. Rather it occurs in a dynamic fashion,
involving the interaction of several components. For example, we do not assume
that the measurements emitted from the system model are already given to us or
that the filter estimates are already predetermined. Rather, as the system model
evolves from state to state, the Kalman filter executes and tries to estimate its
true state, imitating a real-time tracking scenario.

DTMC States and Transitions. The variables which define the Markov
chain’s states correspond to the system, measurement and filter models. All
of these variables can be made independent of the filter implementations. For
example, in a square-root filter implementation, C+ can be either reconstructed
or not in each time step, before being passed into the Markov chain’s state,
which demonstrates the modularity and extensibility of our approach.

The evolution of the states of the Markov chain corresponds to the system
model perturbed by different noise values. Each of the Markov chain’s states
stores the ‘true” values of the system model’s state and the noisy measurements
emitted at each time step k. These variables, along with the a posteriori state
estimate and the estimation-error covariance, are included in the state of the
Markov chain because they are needed for verification purposes. Then, before
the Markov chain transitions to the next state (between time k and k + 1), the
time update of the corresponding filter variant is invoked. Both of the a priori
variables depend on their a posteriori counterparts.

Specifically, once we are in a state for time instant k, our goal is to compute in
the next state at time k+1 both the system model’s updated state vector and the
a posteriori variables of the respective filter, x̂+ and P+. The a priori variables

Quantitative Verification of Numerical Stability for Kalman Filters 7

of the Kalman filter types are encapsulated between these two updates as an
intermediate step. Note that x̂ and P are essentially the same variables which
are used in the computation of both the a priori and a posteriori state estimates
and estimation-error covariance matrices, respectively. What distinguishes x’s
semantics is whether the measurement z has been processed. This allows us to
concretely define the notion of time k in each of the Markov chain’s states.

In particular, a time instant k in the Markov chain can be thought of as en-
compassing: (i) state variables before the measurement is processed; and (ii) state
variables after the measurement has been processed. Combining this temporal
order into one state allows us to save storage by merging what would otherwise
require two states to be represented.

The number of outgoing transitions and their probability values are deter-
mined by a granularity level of the noise, that we denote gLevel. The Gaussian
distribution of the noise is discretised into gLevel disjoint intervals. The intervals
used for each granularity level are shown in Table 1.

The measure used to determine these intervals is the standard deviation σ,
which is a common practice in statistical contexts; see for example the so-called
68−95−99.7 rule, which states that, assuming the data are normally distributed,
then 68%, 95% and 99.7% of them will fall between one, two and three standard
deviations of the mean, respectively. This statement can be expressed probabilis-
tically as well by computing the cumulative distribution function (CDF) of a
normally distributed random variable X, usually by converting it to its standard
counterpart and using the so-called standard normal tables. While computing
the probability that a noise value will fall inside an interval is relatively easy,
the computation of its expected value is slightly more difficult. This is because
we can choose to either truncate the distribution to intervals which contain the
mean value of the distribution, which is the easier case, or to intervals which
do not. For the first case, the expected value will be 0, which is the mean of
distribution; for the second, this is not true.

Usually, for those cases, one might use a simple heuristic such as dividing
the sum of the two endpoints of the interval by two, which is actually quite
common. However, this might not be representative of the actual expected value
since it does not weigh the values lying inside the interval according to the
corresponding value of the density correctly. In other words, since the mean is
also interpreted as the “centre of gravity” of the distribution [6], in the case of
truncated intervals which do not contain the mean, more accurate techniques
are needed. The probabilities of the Markov chain for a given granularity level
are computed by first standardising the random variable, the noise in our case,
and then evaluating its CDF at the two endpoints of the corresponding interval.
Then, by subtracting them, we obtain the probability that it will fall within a
certain interval.

Once the probabilities have been computed, it remains to find the expected
value of the random variable for the corresponding intervals. In order to avoid the
situation described earlier, and obtain the mean in a more accurate way, we have
used the truncated normal distribution to compute the mean for the respective

8 A. Evangelidis and D. Parker

Table 1: Intervals according to the granularity level.
gLevel Intervals

2 [−∞..µ], [µ..+∞]

3 [−∞..− 2σ], [−2σ..+ 2σ], [+2σ..+∞]

4 [−∞..− 2σ], [−2σ..µ], [µ..+ 2σ], [+2σ..+∞]

5 [−∞..− 2σ], [−2σ..− σ], [−σ..+ σ], [+σ..+ 2σ], [+2σ..+∞]

6 [−∞..− 2σ], [−2σ..− σ], [−σ..µ], [µ..+ σ], [+σ..+ 2σ], [+2σ..+∞]

intervals. Formally, if a normal random variable X is normally distributed and
lies within an interval [a..b], where −∞ ≤ a ≤ b ≤ +∞, then X conditioned
on a < X < b has a truncated normal distribution. The PDF of a normally
truncated random variable X is characterised by four parameters: (i-ii) the mean
µ and standard deviation σ of the original distribution and (iii-iv) the lower and
upper truncation points, a and b. Compactly, the mean value of the noise for a
corresponding interval can be expressed as the conditional mean, E[X|a < X <
b], given by the following formula [14]:

E[X|a < X < b] = µ+ σ
φ(a−µσ)− φ(b−µσ)

Φ(b−µσ)− Φ(a−µσ)
(6)

Note that in the expression above, φ and Φ denote the PDF and CDF of the
standard normal distribution, respectively. Also note that the denominator has
already been computed in the previous step, when the transition probabilities
were computed. As a result, the computation of the transition probabilities and
the conditional mean values for each of the corresponding intervals can be done
in a unified manner.

3.2 Verification of Numerical Stability

Next, we discuss how to capture numerical stability properties for our Kalman
filter models (see the earlier summary in Section 2) using the probabilistic tem-
poral logic [10] of the PRISM model checker [18]. We explain the properties
below, as we introduce them, and refer the reader to [10] for full details of the
logic.

Verifying positive definiteness. In order to construct this property, we per-
form an eigenvalue-eigenvector decomposition of P+ into the matrices [V,D].
The eigenvalues are obtained from the diagonal matrix D, and their positivity
is determined and used to label each state of the Markov chain accordingly: we
use an atomic proposition isPD for states in which P+ is positive definite.

We can then specify the probability that the matrix remains positive definite
for the duration of execution of the filter using the formula P=?[� isPD], where
the temporal logic operator �, which is often referred to as as “always” or
“globally”, is used to represent invariance.

Quantitative Verification of Numerical Stability for Kalman Filters 9

Examining the condition number of the estimation-error covariance
matrix. The verification of certain numerical properties, such as those related
to positive definiteness, is a challenging task and should be treated with caution.
This is because, while convenient, focusing the verification on whether an event
will occur or not, might not capture inherent numerical difficulties related to the
numerical stability of state estimation algorithms. In other words, it does not
suffice to check whether P+ is positive definite or not by checking its eigenvalues
because, as mentioned earlier, if they are in close proximity to zero, then round-
off errors could cause them to become negative [12].

For example, it is often the case that estimation practitioners want to detect
matrices that are close to becoming singular, a concept which is often referred
to as “detecting near singularity” [7]. In other words, since a positive definite
matrix is nonsingular, one wants to determine the “goodness” of P+ in terms
of its “closeness” to singularity, within some level of tolerance, usually the ma-
chine precision [12]. A matrix is said to be well-conditioned if it is “far” from
singularity, while ill-conditioned describes the opposite. In order to quantify the
goodness of P+, we use the so-called condition number, which is a concept used
in numerical linear algebra to provide an indication of the sensitivity of the solu-
tion of a linear equation (e.g. Ax = b), with respect to perturbations in b [12,20].
In our case, this concept is used to obtain a measure of goodness of P+.

The condition number of P+ is given as κ(P+) = σmax/σmin, where σmax
and σmin are the maximum and minimum singular values, respectively [11,20].
These can be obtained by performing the singular value decomposition (SVD)
of P+. A “small” condition number indicates that the matrix is well-conditioned
and nonsingular, while a “large” condition number indicates the exact opposite.
Note that the smallest condition number is 1 when σmax = σmin.

We express this property as the formula Rcond=? [I=k], which gives the expected
value of the condition number after k time steps. We assign the condition number
to each state of the DTMC using a reward function cond and we set k to be
maxTime, the period of time for which we verify the respective filter variant.

Providing bounds on numerical errors. Another useful aspect of the condi-
tion number is that it can be used to obtain an estimate of the precision loss that
numerical computations could cause to P+. For instance, for a single precision
and a double precision floating-point number format, the precision is about 7
and 16 decimal digits, respectively. Since our computations take place in the dec-
imal number system, the logarithm of the condition number (e.g. log10(κ(P+))),
gives us the ability to define more concretely when a condition number will be
considered “large” or “small” [3,20,24]. For example, a log10(κ(P+)) > 6 and a
log10(κ(P+)) > 15 could cause numerical problems in the estimation-error co-
variance computation and render P+ as ill-conditioned when implemented in a
single and a double precision floating-point number format, respectively.

So, to verify this property we construct a closed interval whose endpoints will
be based on the appropriate values of the numerical quantity of log10(κ(P+)).
This lets us label states whose log10(κ(P+)) value will fall within “acceptable”
values in the interval, when, for instance, double precision is used. We then use

10 A. Evangelidis and D. Parker

Table 2: User inputs for each of the models.
Input Description Used in: Type

x̂+0 A posteriori state estimate vector Filter RealVector

P+
0 A posteriori estimation-error covariance matrix Filter RealMatrix

x State vector System RealVector

w Process noise vector System RealVector

v Measurement noise vector System RealVector

F State transition matrix Shared RealMatrix

Q Process noise covariance matrix Filter RealMatrix

H Measurement matrix Shared RealMatrix

R Measurement noise covariance matrix Shared RealMatrix

gLevel Granularity of the noise Shared int

decPlaces Number of decimal places Shared int

maxTime Maximum time the model will run Shared int

filterType Type of filter variant Shared int

the property P=?[� isCondWithin], in a similar fashion to the first property
above, where isCondWithin labels the “acceptable” states. A probability value
of less than 1 should raise an alarm that numerical errors may be encountered.

4 Tool Support: VerFilter

Next, we provide some details about the tool, VerFilter, which is the software
implementation of the framework defined in Section 3. The VerFilter tool is writ-
ten in the Java programming language in order to be seamlessly integrated with
the PRISM libraries, which are written in Java as well. The tool and supporting
files for the results in the next section are available from [27].

VerFilter Inputs. In Table 2 we show the user inputs available to VerFilter,
by distinguishing which of those refer to the system and measurement model,
which refer specifically to the filter models and which are shared between them.
The RealVector and RealMatrix shown in Table 2 are implemented as one-
dimensional and two-dimensional arrays of type double, respectively. VerFilter
also takes as inputs four extra parameters: (i) gLevel which takes an integer
between 2 and 6, and has been discussed in Section 3.1; (ii) decPlaces which
allows the user to specify an integer between 2 and 15, the number of decimal
places, to which the numerical values used in the computations will be rounded;
(iii) maxTime which is an integer and determines the maximum time the model
will run; and (iv) filterType which is the type of filter to be executed.

VerFilter Algorithms. In this paper, we focus on two of our filter variants:
the conventional Kalman filter (CKFilter) and the Carlson-Schmidt square-root
filter (SRFilter). In VerFilter, several of the numerical linear algebra computa-
tions for implementing Kalman filters are done using the Apache Commons Math
library [1], while other parts have been manually implemented. In CKFilter, for

Quantitative Verification of Numerical Stability for Kalman Filters 11

example, the library is used for “basic” matrix operations and for the eigen and
singular value decomposition of P . For SRFilter, algorithms implemented man-
ually include the upper-triangular Cholesky factorisation and Carlson’s measure-
ment update with Schmidt’s time update using Householder transformations.

5 Experimental Results

We now illustrate results from the implementation of our techniques on the
two filters CKFilter and SRFilter mentioned above. For the system models in
our experiments, we use two distinct kinematic state models which describe the
motion of objects as a function of time. For the first, the discrete white noise
acceleration model (DWNA), the initial estimation-error covariance matrix P+

0

is defined as

[
10 0
0 10

]
. Defining P+

0 as a diagonal matrix is quite common, since

it is initially unknown whether the state variables are correlated to each other.
The process noise covariance matrix is given by Q = Γσ2

wΓ
T where the noise

gain matrix Γ = [12∆t
2 ∆t]T is initialised by setting the sampling interval ∆t

to 1, which results in Γ = [0.5 1]T . The variance σ2
w is set to 0.001 initially.

For the second model, the continuous white noise acceleration model (CWNA),
σ2
w is initially set to 0.001. Note that each of these models results in a different

process noise covariance matrix Q. For more details on these models, see [27].

5.1 Verification of Kalman Filter Implementations

In the first set of experiments, shown in Fig. 1, we analyse the condition number
of P+, in order to verify that it remains well-conditioned in terms of maintaining
its nonsingularity as it is being propagated forward in time (as discussed in
Section 3.2). This property is verified against two inputs which we vary; the first
is the numerical precision in terms of the number of decimal places, which we
vary from 3 to 6 inclusive. The second input is the time horizon of the model
which in our case is measured in discrete time steps and is varied from 2 to 20.

Our goal is twofold. Firstly, we examine whether an increase in the numerical
precision has a meaningful effect on how accurately the condition number is
computed. This is important since, as we show in Section 5.2, a decrease in
the numerical precision usually makes verification more efficient. Being able to
consider an appropriate threshold above which an increase in the numerical
precision will not have an effect on the property to be verified can determine
the applicability of these verification mechanisms in realistic settings. Secondly,
we examine whether letting the model evolve for a greater amount of time could
have an impact on the property that is being verified.

The first observation between Fig. 1a and 1b is that the increased numerical
precision actually determines the verification result. For example, we note that
for maxTime values in the range of [4 − 20], when the input to our model for
the numerical precision is 3 decimal places, the instantaneous reward jumps to
infinity. An infinite reward in this case means that the condition number of P+

12 A. Evangelidis and D. Parker

(a) 3 decimal places

0

5000

R
=

{"
c
o

n
d

"}
=

?
 [

I=
m

a
x
T

im
e

]

0 2 4 6 8 10 12 14 16 18 20

Time horizon(maxTime)

(b) 4 - 6 decimal places

Fig. 1: Condition number of P+ over time under various degrees of precision.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

2

w

10 2

10 3

R
{"

c
o

n
d

"}
=

?
 [

I=
2

0
]

Fig. 2: Verifying goodness of P+

is ≈ 1.009e+16, which practically means that P+ is “computationally” singular
and consequently positive definiteness is not being preserved. Conversely, when
we increase the numerical precision to a value > 4, positive definiteness is pre-
served and the instantaneous reward assigned to the states fluctuates around
small values close to zero. Another interesting observation is that the instanta-
neous rewards stabilise to a value of ≈ 3, irrespective of whether the numerical
precision is 4, 5 or 6. In fact, the actual absolute difference of the rewards over the
states in which positive definiteness is preserved between a numerical precision
of 5 and 6 decimal places, is ≈ 0.1.

In the second set of experiments the system model is a CWNA kinematic
model. Our goal is to examine how VerFilter can be used to examine heuristic-
based approaches and ad-hoc methods such as artificial noise injection in terms
of their usefulness in correcting potential numerical problems in P+. This is also
helpful in situations where it is challenging to determine the elements of Q, by

Quantitative Verification of Numerical Stability for Kalman Filters 13

Table 3: Comparison between two filter variants.

CKFilter SRFilter CKFilter SRFilter

P=?[� isPD] P=?[� isPD] Rcond=? [I=maxTime] Rcond=? [I=maxTime]

1 1 5001 69.88
1 1 6.85 2.48
0 1 +∞ 2.01
0 1 +∞ 1.94
0 1 +∞ 1.94
0 1 +∞ 1.94

performing an automatic search over those values which will produce an optimal
performance, in this case in terms of the numerical robustness of P .

To this end, we verify whether P+ will remain well-conditioned or not, by
varying the elements of Q. The noise variance σ2

w, which determines the elements
of Q, is the input to our model, P+ is being verified against. We do not vary
the maximum time; rather, we let the Markov chain evolve to a fixed maxTime

value of 20 time steps, which corresponds to ≈ 1× 106 states.
In Fig. 2 we show the effects of increasing the variance of the noise by small

increments, which is then multiplied with the elements of Q. The first point
of the plot (0.1, 1000), means that for a value of σ2

w = 0.1, the corresponding
instantaneous reward which corresponds to the condition number of P+ in a set
of states where maxTime=20, is 1000. As we increase σ2

w, the “quality” of P+

increases, reaching a condition number of ≈ 43.
In summary, for this particular example, the optimal σ2

w = 1.3. It is important
to note that when performing verification on Markov chains whose trajectories
evolve over multiple states, to verify that the positive definiteness of P+ is not
destroyed between successive states (i.e. successive time steps). To this end, it is
advisable to use a property of the form P=?[� isPD] and reject models in which
the previous property is not satisfied with probability one.

In Table 3 we compare two of the filter variants available in VerFilter; the
CKFilter and the SRFilter. In this set of experiments, the setup is similar to the
first one. First, our purpose is to demonstrate the correctness of our approach by
comparing the condition numbers of P+ and C+, respectively. The superiority of
the SRFilter compared to CKFilter, is demonstrated from the fact that for the
same set of parameters the numerical robustness of P+ is preserved. This can
be seen by comparing the computed results of the reward-based properties as
shown in the third and fourth column of Table 3. We note that when choosing the
CKFilter, the reward value shoots up to +∞, representing an estimation-error
covariance matrix in which the PD property is destroyed, while in the SRFilter

case the corresponding reward value settles around the small value of 1.94. This
is also evident by observing the first and second columns of Table 3 which tell
us whether the PD invariant will be maintained in all the states of the model.
Notably, the PD property in the CKFilter does not hold for every state, in fact

14 A. Evangelidis and D. Parker

3 4 5 6

Decimal places

0

50

100

150

200

250

300

M
o

d
e

l
c
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
s
e

c
s
)

CKFilter

SRFilter-1

SRFilter-2

(a) Model construction time

3 4 5 6

Decimal places

0

0.5

1

1.5

2

2.5

3

3.5

M
o

d
e

l
c
h

e
c
k
in

g
 t

im
e

 (
s
e

c
s
)

CKFilter

SRFilter-1

SRFilter-2

(b) Model checking time

Fig. 3: Time comparisons between three filters.

the probability is zero, while for the SRFilter the PD property holds for every
state with probability one.

5.2 Scalability analysis

In this section, we report on the scalability of our approach in terms of the model
construction and model checking time, across three filter variants. The model
has been generated by letting the Markov chain evolve to a fixed maxTime value
of 20 time steps, which corresponds to ≈ 1 × 106 states. The rationale behind
this section is to emphasise the careful analysis that needs to be performed to
systematically evaluate the trade-offs between the accuracy of the verification
result and the fastness of the verification algorithms.

In Fig. 3 we show the time comparisons, for varying degrees of precision,
between a model which encodes the conventional Kalman filter (CKFilter),
and our two implementations of the Carlson-Schmidt square-root filter with
(SRFilter-1) and without (SRFilter-2) reconstruction of the estimation-error
covariance matrix, respectively. The model checking time refers to the total time
it takes to verify the first and second property of Section 3.2. These sets of ex-
periments were run on a 16GB RAM machine with an i7 processor at 1.80GHz,
running Ubuntu 18.04.

By observing Fig. 3a it is apparent that the increased numerical precision
affects the construction time of the models. The average model construction time
of the three filter variants increased by a factor of ≈ 3 from 3 to 6 decimal places.
Specifically, the average time is ≈ 83 seconds for 3 decimal places compared to
≈ 249 seconds, when 6 decimal places were used. Moreover, the construction of
the CKFilter was the fastest in all the degrees of precision considered, however,
as it was noted in Section 5.1 it produces an inaccurate verification result when
the number of decimal places is 3.

Quantitative Verification of Numerical Stability for Kalman Filters 15

Conversely, the construction times of the two square-root filters were about
the same, and it seems that the extra computational step (P = CCT) did not
have a significant effect on the performance of the model construction. However,
it should be borne in mind that these experiments were conducted on systems
represented by two-dimensional matrices. The model checking times are shown
in Fig. 3b and one can observe that they follow a similar pattern with the model
construction times shown earlier, in terms of the increase in time from 3 to 6
decimal places. For instance, the average model checking time increases by a
factor of ≈ 3 when 6 decimal places are used, compared to 3.

Another observation is that the model checking time appears to be indepen-
dent of the type of the filter used. This can be seen from the limited variability
the model checking time experiences between the three filter variants, since for
the degrees of precision considered, it remains at approximately the same level.
This is in contrast to the model construction time which appears to be affected
by the filter type, since it is considerably less for the CKFilter compared to
its square-root variants. In fact, for a precision of 6 decimal places, and once
CKFilter is chosen as an input we experience a drop in the model construction
time of about 53 seconds. However, for the same amount of precision, the time
it takes to model check all the three filters is around 3 seconds.

6 Conclusion

We have presented a framework for the modelling and verification of Kalman
filter implementations. It is general enough to analyse a variety of different im-
plementations, and various system models, and to study a range of numerical
issues which may hinder the effective deployment of the filters in practice. We
have implemented the techniques in a tool and illustrated its applicability and
scalability with a range of experiments. Due to space limitations, we showed re-
sults for two filters, the conventional Kalman filter and for the Carlson-Schmidt
square-root filter, but our implementation already supports three others.

In general, the evaluation of Kalman filters in terms of their performance
has attracted considerable attention, since the early days of their development.
However, formal methods such as probabilistic model checking have not been
used for their verification. This is, to the best of our knowledge, the first work
where these types of problems are applied to a probabilistic verification setting.
Our main contribution in this work is that we show that probabilistic verification
can be a promising alternative in verifying these types of systems.

Acknowledgements. This work has been partially supported by an EPSRC-
funded Ph.D. studentship (award ref: 1576386) and the PRINCESS project (con-
tract FA8750-16-C-0045) funded by the DARPA BRASS programme.

16 A. Evangelidis and D. Parker

References

1. Math - Commons-Math: The Apache Commons Mathematics Library, http://
commons.apache.org/math/

2. Anderson, B., Moore, J.: Optimal Filtering. Dover Books on Electrical Engineering,
Dover Publications (2012)

3. Bar-Shalom, Y.: Tracking and Data Association. Academic Press Professional, Inc.,
San Diego, CA, USA (1987)

4. Bar-Shalom, Y., Li, X.R.: Estimation with Applications to Tracking and
Navigation. John Wiley & Sons, Inc., New York, NY, USA (2001).
https://doi.org/10.1002/0471221279

5. Battin, R.H.: Astronautical guidance. Electronic sciences, McGraw-Hill (1964)

6. Bertsekas, D., Tsitsiklis, J.: Introduction to Probability. Athena Scientific opti-
mization and computation series, Athena Scientific (2008)

7. Bierman, G.J.: Factorization Methods for Discrete Sequential Estimation (1977)

8. Bucy, R.S., Joseph, P.D.: processes with applications to guidance. Interscience
Publishers New York (1968)

9. Carlson, N.A.: Fast triangular formulation of the square root filter. AIAA Journal
11(9), 1259–1265 (1973). https://doi.org/10.2514/3.6907

10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) Formal Meth-
ods for Eternal Networked Software Systems (SFM’11). LNCS, vol. 6659, pp. 53–
113. Springer (2011). https://doi.org/10.1007/978-3-642-21455-4 3

11. Gibbs, B.P.: Advanced Kalman Filtering, Least Squares and Modeling: A Practical
Handbook. John Wiley & Sons, Inc. (2011). https://doi.org/0.1002/9780470890042

12. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice Using MAT-
LAB. Wiley-IEEE Press, 4th edn. (2014)

13. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

14. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous univariate distributions.
New York: Wiley (1994)

15. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs, N.J (1980)

16. Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME
Journal of Basic Engineering (1960)

17. Kaminski, P., Bryson, A., Schmidt, S.: Discrete square root filtering: A survey
of current techniques. IEEE Transactions on Automatic Control 16(6), 727–736
(December 1971). https://doi.org/10.1109/TAC.1971.1099816

18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11). LNCS, vol. 6806, pp.
585–591. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1 47

19. Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking. part i. dynamic
models. IEEE Transactions on Aerospace and Electronic Systems 39(4), 1333–
1364 (Oct 2003). https://doi.org/10.1109/TAES.2003.1261132

20. Maybeck, P.S.: Stochastic models, estimation, and control: Volume 1. Mathematics
in science and engineering, Elsevier Science, Burlington, MA (1982)

21. Moulin, M., Gluhovsky, L., Bendersky, E.: Formal verification of maneuvering tar-
get tracking. AIAA Guidance, Navigation, and Control Conference and Exhibit
(2003). https://doi.org/10.2514/6.2003-5716

http://commons.apache.org/math/
http://commons.apache.org/math/
https://doi.org/10.1002/0471221279
https://doi.org/10.2514/3.6907
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/0.1002/9780470890042
https://doi.org/10.1007/BF01211866
https://doi.org/10.1109/TAC.1971.1099816
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/TAES.2003.1261132
https://doi.org/10.2514/6.2003-5716

Quantitative Verification of Numerical Stability for Kalman Filters 17

22. R. Gamboa, J. Cowles, J.V.B.: On the verification of synthesized kalman filters. In:
4th International Workshop on the ACL2 Theorem Prover and Its Applications.
(2003)

23. Roşu, G., Venkatesan, R.P., Whittle, J., Leuştean, L.: Certifying Optimality of
State Estimation Programs, pp. 301–314. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45069-630

24. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. Wiley-Interscience (2006)

25. Whittle, J., Schumann, J.: Automating the implementation of kalman fil-
ter algorithms. ACM Trans. Math. Softw. 30(4), 434–453 (Dec 2004).
https://doi.org/10.1145/1039813.1039816

26. Zarchan, P., Musoff, H.: Fundamentals of Kalman filtering : a practical approach.
American Institute of Aeronautics and Astronautics, Reston, VA, 4 edn. (2015)

27. Supporting material, www.prismmodelchecker.org/files/fm19kf/

https://doi.org/10.1007/978-3-540-45069-630
https://doi.org/10.1145/1039813.1039816
http://www.prismmodelchecker.org/files/fm19kf/

	Quantitative Verification of Numerical Stability for Kalman Filters

