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7.1 OUTLINE

Probabilistic model checking is a formal verification technique for the analysis of sys-
tems that exhibit stochastic behaviour. It has been successfully employed in an extremely
wide array of application domains including, for example, communication and multimedia
protocols, security and power management. In this chapter we focus on the applicability
of these techniques to the analysis of communication protocols. An analysis of the per-
formance of such systems must successfully incorporate several crucial aspects, including
concurrency between multiple components, real-time constraints and randomisation. Prob-
abilistic model checking, in particular using probabilistic timed automata, is well suited to
such an analysis. We provide an overview of this area, with emphasis on an industrially
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relevant case study: the IEEE 802.3 (CSMA/CD) protocol. We also discuss two contrast-
ing approaches to the implementation of probabilistic model checking, namely those based
on numerical computation and those based on discrete-event simulation. Using results
from the two tools PRISM and APMC, we summarise the advantages, disadvantages and
trade-offs associated with these techniques.

7.2 INTRODUCTION

Computer-controlled devices are today ubiquitous in many areas of industry, including
business- and safety-critical domains. For this reason, the use of communication protocols,
devised to govern the interactions between such devices, is extremely widespread. Recent
years have also seen considerable growth in the development and deployment of formal
verification methods, used to establish the correctness of and identify faults in a wide array
of real-life systems, a fact evidenced by the breadth of topics covered in this volume. In
this chapter, we describe work which has been carried out to apply formal verification
techniques to communication protocols. Such systems represent a particularly challenging
case in this respect because, in order to successfully model and analyse them, several
key aspects must be incorporated: concurrency between multiple components, potentially
operating in different locations and at unknown speeds; precise, real-time constraints,
imposed by the protocols and the mediums under which they are designed to operate; and
randomisation, which is often used to break symmetry between devices communicating
using the same protocol.

Probabilistic model checking is a formal verification technique for the analysis of sys-
tems that exhibit stochastic behaviour. It involves the construction of a probabilistic model
of some real-life system followed by a mathematical analysis of this model in order to
determine useful properties of the original system. Unlike conventional verification tech-
niques, probabilistic model checking can be used to ascertain not only correctness, but also
quantitative measures such as performance and reliability. These techniques can be applied
to a range of probabilistic models, typically variants of Markov chains, but of particular
relevance here are their application to probabilistic timed automata (PTAs), a model which
can ably express nondeterministic, real-time and probabilistic behaviour. In this chapter,
we give an overview of probabilistic timed automata, probabilistic model checking, and
the corresponding implementation techniques and tools. Furthermore, we illustrate their
usefulness in the domain of communication protocols through a case study: the IEEE 802.3
(CSMA/CD) protocol, as used for example in networking over Ethernet.

7.3 PROBABILISTIC TIMED AUTOMATA

Probabilistic timed automata (PTAs) are a formalism for modelling systems whose be-
haviour exhibits nondeterministic, real-time and probabilistic characteristics [25]. PTAs
are an extension of timed automata [1], one of the most prominent formalisms for the
formal verification of real-time systems.

In this section, we illustrate a number of basic concepts of (probabilistic) timed automata
using the example in Figure 7.1. The figure shows an automaton modelling a simple
communication protocol, in which a station attempts to transmit onto a bus. If the station’s
transmission is interrupted by a transmission from another station (a collision), then the
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z:=0
backoff :=RAND

WAIT TRANSMIT =5 DONE
x<backoff <5 true

r=backoff
z:=0

Figure 7.1 An example of a probabilistic timed automaton

station suspends its activity, waiting a randomly chosen amount of time, before starting to
send its message again. The control states of the model, TRANSMIT, WAIT, and DONE,
are shown by the nodes of the graph, and the possible transitions between the control states
are indicated by the graph’s edges. In the initial state, TRANSMIT, denoted by the double
border, a transmission is being made by the system. When 5 time units have elapsed from
the start of transmission, the message has been sent successfully, and the model moves
to state DONE. Dependency on time can be represented by clocks, guards and resets on
edges, and invariants in states. A clock is a real-valued variable which has the value O at the
start of execution of the system, and which increases at the same rate as real-time while the
model remains within the same control state. The illustrated model has a single clock, x.
The guard of the edge from TRANSMIT to DONE is z=5, and specifies that the edge can
be traversed when the value of the clock x equals 5. The invariant of the state TRANSMIT
is <5, and specifies that control must pass from TRANSMIT before the value of the clock
x exceeds 5.

The edge from TRANSMIT to WAIT is not labelled with a guard, which is interpreted
as denoting that the edge can always be traversed from TRANSMIT, regardless of the
value of the clock x. Whether this edge is taken or not, at any point in time in which
the automaton is in the state TRANSMIT, is a nondeterministic choice. The traversal
of this edge corresponds to interruption of the transmission caused by the simultaneous
transmission on the bus by another station in the network. The edge features a clock reset
denoted by x:=0, which indicates that, on entry to state WAIT, the clock z is reset to
the value 0. In addition to clocks, we also allow finite-domain variables to be referred
to in resets, guards and invariants; furthermore, we also allow probabilistic resets of such
variables, in contrast to the case of clock resets, which assign 0 deterministically to clocks.
On traversal of the edge from TRANSMIT to WAIT, the finite-domain variable backoff
is set to a random value according to the assignment backoff:=RAND (where RAND
is a probability distribution over a number of possible values of backoff, for example the
uniform distribution over the natural numbers between 3 and 10). Furthermore, the value
of backoff is subsequently used within the invariant of the state WAIT, and the guard of
the edge from WAIT to TRANSMIT, in order to ensure that, when the value of the clock x
reaches the value of backoff, control returns to the state TRANSMIT.

The example of Figure 7.1 is an example of a PTA. We note that replacing the probabilis-
tic assignment backoff :=RAND by a non-probabilistic assignment results in a standard
timed automaton. Although not illustrated by the example, probabilistic timed automata
can also be extended with a set of events, which label edges. These events can then be used
to define the parallel composition of a number of PTAs, where each such automaton is
regarded as a sub-component of the overall system, and where the automata synchronise on
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shared events. Such events will be used in Section 7.5 to define the parallel composition of
PTAs of a bus and two stations operating according to the CSMA/CD protocol. The parallel
composition operator was introduced in [27], based on precedents for timed automata [1]
and probabilistic transition systems [33].

The semantics of a PTA are formally defined as an infinite-state Markov decision
process (MDP), a probabilistic model which supports nondeterministic choice, and in which
transitions are made in discrete steps. The MDP will generally comprise infinite states
because the clocks of the PTA are real-valued variables. Similarly, the transitions available
in a state in which time can elapse will also be infinite in number because these correspond
to real-valued durations. Analysis of a PTA, which typically constitutes formal verification
of one or more properties specified in temporal logic, is therefore non-trivial because model-
checking algorithms usually operate on finite-state models. However, based on analogous
work on model checking of (non-probabilistic) timed automata, we can obtain faithful
finite-state representations of PTAs, which can be used in the analysis of a wide range of
correctness properties or performance indices. One example of such a representation is
based on digital clocks, in which the clocks of the PTA are interpreted as taking integer
values, rather than real values [23]. This approach requires that the comparisons involving
clocks in guards and invariants are non-strict; however, this is a common property in PTA
models of real-life systems, such as the CSMA/CD protocol considered in this chapter. The
digital-clocks approach has been, to date, the most successful in practice of the finite-state
representations proposed for PTAs: it has been used to verify the CSMA/CD protocol
[10, 28], part of the IEEE 802.11 standard for wireless local area networks [26, 31], the
FireWire root contention protocol [27], and the IPv4 Zeroconf protocol [23].

Alternative approaches for the analysis of PTAs have been developed based on the
manipulation of zones, i.e. convex polyhedra. In [25] such an approach, based on a
forwards traversal of the state space, is introduced. Subsequent work in [22] extends its
applicability through the use of abstraction refinement and stochastic games. On the other
hand, the techniques developed in [28] are based on a backwards exploration of the state
space and have since been applied to the analysis of cost and reward properties [5, 12].

7.4 PROBABILISTIC MODEL CHECKING

Probabilistic model checking is a formal verification technique for the modelling and
analysis of systems that exhibit stochastic behaviour. It can be applied to several different
types of probabilistic model. The three most commonly used are: discrete-time Markov
chains (DTMC:s), in which time is modelled as discrete steps, and randomness as discrete
probabilistic choices; Markov decision processes, which extend DTMCs with the ability to
represent nondeterministic behaviour; and continuous-time Markov chains (CTMCs) which
do not permit nondeterminism but allow specification of real (continuous) time behaviour,
through the use of exponential distributions. In this chapter, we focus principally on MDPs
since, as described in the previous section, in many cases analysis of PTAs reduces to
analysis of MDPs. We also refer to DTMCs, which can be seen as a special case of MDPs
where nondeterminism is absent.

Properties of DTMCs and MDPs are usually expressed in temporal logics, such as PCTL
[15, 6] and LTL [9].Using such logics one can reason about quantities such as:

e “the probability the protocol eventually terminates”
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e ‘“the probability that each request is followed by either an acknowledgement or a
time-out signal”

e “the probability that a message is successfully received within 35us”

In the case of MDPs, it is in fact not possible to compute exact probability values such
as these due to the presence of nondeterminism in the model. In this situation, the values
computed are the minimum or maximum probabilities over all possible resolutions of
nondeterminism. This corresponds to a best-case or worst-case analysis (depending on
the meaning of the probabilities). Furthermore, it is also often useful, both for DTMCs
and MDPs, to compute the minimum or maximum probability over a range of possible
configurations or parameters of a model, producing a different kind of best/worst-case
analysis. Finally, we note that it is also possible to augment DTMCs and MDPs with real-
valued costs or rewards, which can represent a wide range of measures, e.g. “system power
consumption”, “number of lost messages” or “message queue size”. It is then possible to
reason about the (possibly minimum or maximum) expected value of these measures, e.g.:

e “the expected power consumption during the first 20s of system operation”
e “the expected number of messages lost before protocol termination”

e “the expected number of messages queued for delivery after 500us”

7.4.1 Techniques for probabilistic model checking

Numerical solution. The conventional approach to probabilistic model checking is to
construct a representation of the entire probabilistic model, and from this derive one or more
numerical problems which will yield results for the properties of the model to be analysed.
The first phase of this process often requires only an analysis of the underlying graph
of the probabilistic model (e.g. reachability-based techniques). The remainder (which
often represents the bottleneck in terms of efficiency) requires numerical computation to
be performed. Commonly, solution of either a linear equation system (for DTMCs) or
a linear optimisation problem (for MDPs) is required. Although such problems can be
solved exactly with direct methods (e.g. Gaussian elimination or Simplex, respectively)
for efficiency reasons, iterative methods (e.g. Gauss-Seidel or dynamic programming,
respectively) are typically used. These converge towards the correct solution with each
iteration and are terminated when convergence indicates that the desired precision has been
reached. See e.g. [32] for more details.

Approximate probabilistic computation. An alternative approach is to use a combination of
discrete event simulation and Monte Carlo methods to estimate the probability associated
with a PCTL formula [17]. This is done by generating random paths of depth k£ in a DTMC
and computing the value of a random variable which estimates Proby[¢], the probability
that a formula ¢} is satisfied on paths of depth at most k. More specifically, the algorithm
which performs this process takes as input a succinct representation of DTMC z, a formula,
a positive integer k and two parameters € and ¢, producing a value A(x,e,d). This is a
Sfully polynomial randomised approximation scheme, meaning that the result satisfies

Prob[|A(z,e,8) — p(z)| <e] > 1-90
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where p(z) is the exact value of Proby[)]. We call € the approximation parameter and
0 the confidence parameter. The algorithm must generate O(E% log %) paths through
the DTMC. The main advantage of this approach is that, because random paths can be
generated from only a succinct representation of the DTMC, it avoids the (potentially very
costly) construction of the model and its state space, hence using a very small amount of
memory. A related technique based on acceptance sampling and hypothesis testing [37]
also uses random sampling in conjunction with discrete event simulation but is tailored to
checking whether the probability of satisfying a formula meets a given bound.

7.4.2 Probabilistic model checking tools

PRISM [18, 29] is is an open-source probabilistic model checker developed initially at the
University of Birmingham and now at the University of Oxford. It provides support for
analysis of DTMCs, MDPs and CTMCs. Models are described in the PRISM modelling
language, a relatively simple, state-based language based on the Reactive Modules for-
malism [2], and properties are specified in a logic which incorporates LTL, PCTL, CSL
(a variant of PCTL for CTMCs) and a number of custom extensions. PRISM also sup-
ports the modelling and analysis of costs and rewards. One of the key features of PRISM
is its symbolic implementation techniques using data structures based on binary decision
diagrams (BDDs). These allow compact representation and efficient manipulation of ex-
tremely large probabilistic models, by exploiting structure and regularity derived from their
high-level description. Such techniques have been successfully applied to the probabilistic
verification of models with as many as 100 states (see e.g. [24, 11]).

APMC (Approximate Probabilistic Model Checker) [17, 3] is a distributed model checker
developed in a joint collaboration between the universities of Paris VII and Paris-Sud
XI. It uses an efficient Monte-Carlo method to approximate satisfaction probabilities of
PCTL properties of DTMC:s, as described in the previous section. A recent version is also
capable of verifying CTMCs, but it was not used in this work. The tool comprises two
parts. The first is a compiler that produces an ad-hoc verifier (including a path generator
and a checker) for a DTMC, described in the PRISM language, and a property. APMC
implements different strategies to generate the code of this program with respect to the
synchronisations of the Reactive Modules: the most efficient is called sync at compile-time
which pre-computes all the combinations of rules, thus building the synchronised succinct
model representation.

The second component is a deployer that takes the ad-hoc verifier and a set of available
computing resources, deploys the verifier on these computers and collects the resulting
approximate satisfaction probability for the formula on the model. APMC implements a
massively (but natural) distributed method of model checking. The deployment is per-
formed following a tree topology in order to make the deployment efficient and scalable.
For instance, this provides a logarithmic latency to aggregate the results from all nodes to
the root. A drawback of this topology is that the system may over generate and verify some
samples but it ensures that there is no point of contention in the system. More information
about the implementation of APMC can be found in [14].

Other tools. Several other implementations of model checking for MDPs exist. LiQuor [8]
performs explicit-state model checking of LTL on MDPs modelled in an expressive lan-
guage called Probmela, a probabilistic extension of SPIN’s Promela language. RAPTURE
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[19] employs iterative abstraction-refinement techniques for verifying a subset of PCTL
properties. ProbDiVinE [4] supports parallel and distributed LTL model checking.

There are also many other tools that include support for probabilistic model checking of
DTMCs and CTMCs. These include MRMC [21], the PEPA Plug-in Project [34], CASPA
[30], the APNN-Toolbox [7] and Ymer [36].

7.5 CASE STUDY: CSMA/CD

In this section, we present an illustrative case study of a randomised communication pro-
tocol, analysed using probabilistic timed automata and probabilistic model checking. We
use the Carrier Sense Multiple Access/Collision Detection (CSMA/CD) protocol, which is
a fundamental part of the IEEE 802.3 international standard (Ethernet Network Communi-
cation protocol).

This protocol has been extensively studied with a variety of methods: simulation [35],
analytical methods [13, 20], and real-time model checking [38]. The first accurate formal
analysis with respect to the probabilistic aspects of the protocol was undertaken in [10]
and [28], where the system was modelled by a probabilistic timed automaton and the
correctness of the probabilistic behaviour of the protocol verified by analysing minimum
and maximum probabilities for reachability and time-bounded reachability properties.

The two papers take differing approaches to tackling the state space explosion problem
commonly encountered in probabilistic (and real-time) model checking. In [10], time is
discretized (using the digital clocks approach, mentioned in Section 7.3) and the resulting
model is analysed using PRISM [18, 29] and APMC [17, 3]. In [28] the probabilistic timed
automaton model is analysed using a probabilistic extension of the model checking approach
for classical timed automata [16], implemented in a prototype extension of PRISM.

7.5.1 The protocol

CSMA/CD is a distributed network arbitration protocol by which multiple Network Inter-
face Cards (NICs), referred to here as stations, may communicate over a single channel,
known as the carrier or bus. All stations can send messages onto the network (multiple
access) and each station can detect whether the bus is idle or is transmitting a message from
another station (carrier sense). When a station senses that the bus is busy, it will wait before
trying to transmit its own message. However, because of the propagation delay of signals
across the network, it is possible that stations will try to transmit messages simultaneously.
When this happens, a collision occurs, both messages are lost and the stations receive a
garbled signal. In this way, the stations are able to observe that messages have been lost
(collision detection). According to CSMA/CD, after this situation has occurred, stations
reschedule their own transmission by independently choosing a random delay (known as
backoff time), before which retransmission will be attempted. This random backoff time is
chosen uniformly over an interval whose length increases exponentially with the number
of collisions that have already occurred. We focus here on the half duplex version of the
protocol where only one message can be carried at a time.
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INIT DONE
true true
z; <delay
send; end,
TRANSMIT

Cdi
z;:=0
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z; <backoff z;=0
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be:=min{bc+1, K}

Figure 7.2 Probabilistic timed automaton model of a station

7.5.2 The PTA model

The model of the CSMA/CD protocol used here is a combination of the models from
[38, 10, 28] and considers the case of two stations. The PTA comprises three components
operating in parallel, representing the two stations and the bus. The model has two
parameters, o and A, representing the time taken for data to propagate along the bus and
the time required for an entire message to be sent.

The PTA for station ¢ (where ¢=1, 2) is shown in Figure 7.2. Each station has a clock
x;. It starts in the INIT state and tries to reach the DONE state where the message has
been correctly sent to the other station. When the station wants to send a message (after a
certain delay delay), it moves to state TRANSMIT. If no collision is detected within time A,
then the message will be delivered correctly and the station moves to DONE. Otherwise, a
collision is detected (label cd;) within o time units, and the station moves to the COLLIDE
state. It then draws a random waiting delay and waits for the corresponding time. When
the waiting time is over, there are two options: if the bus is free, the station tries resending
the message. If the bus is busy, the station increases the value of the collision counter bc
(up to a maximum value K') and selects another random delay.

The PTA for the bus connecting the two stations is shown in Figure 7.3. The bus starts
in state INIT and moves to state TRANSMIT when one of the stations begins sending a
message. If nothing else happens, the station will finish its transmission (label end;). In
the state TRANSMIT, the second station can only send a message before time o, which
represents the propagation time on the bus. After this time, the station senses that the bus
is busy and does not send. The bus uses the clocks y; and s to implement this process. If
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Figure 7.3 Probabilistic timed automaton model of the bus

two sending actions occur within time o, then the bus moves to the COLLIDE state. When
receiving the other station’s message, both stations will detect the collision, stop sending,
and the bus will return to the INIT state.

7.5.3 Analysis of the model

The PTA model from the previous section has been analysed using the digital clocks
approach, mentioned in Section 7.3. Probabilistic model checking of the resulting MDP
was performed with the two tools PRISM and APMC. For the CSMA/CD model parameters
o and A, we used values of 2 and 65, respectively. The choice of the delay before which
stations initially send a message (delay) is assumed to be nondeterministic (either 0, 1 or
2) for the PRISM analysis to ensure that all possibilities are considered. Using APMC, this
is not possible so the choice is randomised.

Experiments with PRISM were run on a 2.6GHz Pentium IV laptop with 1IGB RAM
running Red Hat Linux. Iterative numerical computations were terminated when the
maximum relative error between elements of solution vectors from successive iterations
dropped below 107,

APMC experiments were performed on a heterogeneous grid of 500 Athlon 3000+
workstations with 1GB RAM running NetBSD and 20 3GHz Pentium IV workstations with
512MB RAM mostly running Debian Linux, connected via 100MB Ethernet. APMC was
executed as a “cycle stealer”, i.e. running in the background of the workstations, whilst they
were used by students and staff at EPITA. Hence, timing statistics for the cost of verification
are imprecise. However, all experiments were completed in two days during a period of
low average load on the network. In all cases, the most efficient APMC strategy “sync at
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Figure 7.4 Probability that a message is sent by time 7’

compile-time” was used and, unless specified otherwise, the approximation parameter €
and confidence parameter § were fixed at e=10"2 and =101, respectively.

Probability of message transmission. The first property we consider is the probability that a
message has been successfully sent by a certain time point 7. In Figure 7.4, we show results
computed for three values of the maximum backoff limit & (1, 5 and 10; the value specified
in the standard is 10) and a range of values of 7. We give the maximum and minimum
transmission probability over all nondeterministic choices, as computed by PRISM, and
the average values, assuming a uniform choice over initial delays, as computed by APMC.

The results show that using larger values of K increases both the minimum, maximum
and average probabilities of sending a message by time 7'. Since we have constructed our
model in such a way that the stations initially collide, the probability is O for any time
bound 7" which does not allow the stations to enter backoff and send a message.

Notice that the exact plots in the graphs (minimum and maximum) contain discrete
jumps. These correspond to the fact that the probabilistic choice of backoff delay is over
a discrete set of delays. The plots for the average case are smoother and, as expected,
contained within the boundaries of the minimum and maximum values.

Collision probabilities. Secondly, we consider the probability that n collisions occur before
a single message is successfully sent. Results are shown in Figure 7.5, again for three values
of the maximum backoff limit K, and for n ranging between 1 and 10. As before, we show
both the minimum and maximum probability, computed by PRISM. Where possible, we
also show the average case, as computed by APMC. However, in the majority of cases,
computation of these values is not practical due to their small size. Recall that the number
of samples required is quadratic in the inverse of the desired approximation. For the set of
results corresponding to K =1 shown in the figure, we had to use a precision of 10~3, which
required approximately 2x10° samples. As is clear from the other graphs in Figure 7.5,
larger values of K would require considerably greater precision and hence an infeasible
number of samples.

Note that, since our model is constructed in such a way that the stations always collide
initially, for K equal to 1, 5 and 10, the minimum and maximum probability of one collision
occurring (n=1) is 1. In all three cases, the results for n=2 also agree, as do those for n<6
where K is 5 or 10. This is to be expected since the stations’ backoff counters cannot reach
n~+1 until the stations have collided n+1 times. Taking as an example the case where n=1,
we can illustrate the reasoning behind the results as follows.
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Figure 7.5 Probability that the stations collide n times before a message is sent

e The minimum probability equals 0.5 and corresponds to the situation when the
stations begin their first attempt at sending messages at the same time (with no
constraint on the propagation delay). In this scenario the stations will detect the first
collision at the same time, and therefore the probability that they collide a second
time is the probability that the stations select the same number of slots to wait.
Hence, since this is a random choice between waiting 1 or 2 slots, the stations collide
a second time with probability 0.5.

e The maximum probability equals 0.75 and corresponds to the case when the prop-
agation delay equals o and the difference between when the stations initially try to
send their messages is also o time units. In this case, the second station to attempt
transmission will detect this collision o time units before the other, and therefore
the stations will collide a second time if either the stations decide to wait the same
number of slots, or the first station waits for two slots while the second station decides
to wait one slot, i.e. the probability of colliding a second time is 0.75.

In general, as n increases, and since the range over which a station selects its backoff grows
exponentially each time the stations collide, while n < K +1 we see that the probability that
the station collide n times declines rapidly. However, once n > K41 the stations’ backoff
counters are no longer incremented after a collision (they have reached their maximum
value K), and therefore the range of values over which the stations choose to “backoff”
remains the same. Hence, the chance that they collide no longer falls as rapidly.

Expected costs. Finally, we consider two properties that can be analysed by augmenting
our probabilistic models with costs. First, we assign a cost of 1 to each transition in our
model which corresponds to a collision and then compute the expected number of collisions
that will occur for different values of the maximum backoff limit K. These results (again,
minimum and maximum values, over all resolutions of nondeterminism) are shown in
Figure 7.6(a). Second, we assign a cost of 1 to each transition which represents a discrete
time-step and then compute the expected time required for message sending to complete.
These results can be found in Figure 7.6(b). In principle, it would certainly be possible to
also generate average values for these properties using discrete event simulation and Monte
Carlo methods, as described above. However, these techniques are not yet supported in
APMC and so we do not include such results.

We see that both the expected number of collisions and expected time initially decrease
as K increases. This results from the fact that, as K is incremented, there is less chance
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Figure 7.6 Results for expected cost until a message is sent

of the stations colliding when they attempt to retransmit and a message will be sent sooner.
For the expected number of collisions, there is very little difference in the results once K
is greater than 2. This is because the probability of colliding more than three times is very
small (see Figure 7.5). A similar situation exists for larger values of K in the graph for
expected time. Note, though, that the expected time increases between K =2 and K =4 and
is at its smallest for K'=2. This is because, although the probability of 3 or 4 collisions
occurring is low, the larger amount of time spent in backoff in these cases increases the
impact on the expected time.

7.6 DISCUSSION AND CONCLUSION

In this chapter, we have illustrated the applicability of formal verification to the analysis of
communication protocols, in particular using probabilistic timed automata and probabilistic
model checking, either with numerical solution methods or approximate techniques based
on Monte-Carlo simulation and sampling. We conclude with a discussion comparing these
two approaches.

We first discuss the types of analysis which can be performed with each. The main
strength of the numerical solution approach is that it is based on the full model, constructed
via an exhaustive search of the state space. This means that it is possible to derive exact
answers to temporal logic property queries (in fact, as discussed earlier, iterative numerical
solution methods are usually used to construct an approximation up to the desired precision,
but exact methods are always available). Furthermore, this exhaustive approach makes it
possible to compute best- and worst-case results, for example over all possible initial
configurations for a model or all possible resolutions of nondeterminism (representing
e.g. concurrent scheduling between processes or multiple values for an unspecified model
parameter).

By comparison, sampling-based techniques are inherently approximate, and the results
represent a notion of average behaviour. However, the methods are applicable to a far wider
array of models and properties. Unlike numerical solution, which can only be used where
tractable solution algorithms are available, sampling can be applied to any model on which
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a random simulation can be accurately performed. Similarly, any property which can be
computed based on finite paths through the model can be analysed in this way.

Another important area of comparison is the relative efficiency of the two approaches.
Clearly the improved accuracy and coverage of numerical solution comes at a cost. One
of the principal advantages of sampling techniques is that the amount of memory required
to execute them is fractional compared to exact approaches. This is because they can be
performed on a succinct representation of the model (e.g. its description in some high-level
modelling formalism) and the simulation process typically needs only to store a single state
of the model at any time. This allows sampling to be performed on much larger models
than numerical solution, where the exhaustive exploration and construction of the model
could easily be infeasible. In the CSMA/CD case study presented earlier, for example, it
would certainly be possible to consider larger model configurations with more than two
stations.

A second advantage of the sampling is that it is significantly easier to implement in a
parallel or distributed setting, which can of course dramatically improve the run-time. This
is because the computations of each individual sample are independent, unlike paralleli-
sations of numerical solution, for which large amounts of process intercommunication are
necessary. In fact, this performance advantage is rather important since, as we have seen
earlier, to obtain accurate results it may be necessary to generate an extremely large number
of samples. In particular, this situation cannot be avoided when the actual values being
computed are very small.

Overall, it is clear that both exact approaches to probabilistic model checking, based
on exhaustive exploration of models followed by numerical solution, and approximate
approaches based on discrete-event simulation and sampling have contrasting advantages,
disadvantages and trade-offs. It is likely therefore that a successful analysis of large
probabilistic system, such as a communication protocol, would make use of both types of
technique.
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