
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Automatic Verification of Competitive Stochastic Systems

Taolue Chen · Vojtěch Forejt ·

Marta Kwiatkowska · David Parker ·

Aistis Simaitis

Received: date / Accepted: date

Abstract We present automatic verification techniques for the modelling and
analysis of probabilistic systems that incorporate competitive behaviour. These
systems are modelled as turn-based stochastic multi-player games, in which the
players can either collaborate or compete in order to achieve a particular goal.
We define a temporal logic called rPATL for expressing quantitative properties
of stochastic multi-player games. This logic allows us to reason about the collec-
tive ability of a set of players to achieve a goal relating to the probability of an
event’s occurrence or the expected amount of cost/reward accumulated. We give
an algorithm for verifying properties expressed in this logic and implement the
techniques in a probabilistic model checker, as an extension of the PRISM tool.
We demonstrate the applicability and efficiency of our methods by deploying them
to analyse and detect potential weaknesses in a variety of large case studies, in-
cluding algorithms for energy management in Microgrids and collective decision
making for autonomous systems.

Keywords Quantitative verification · Probabilistic model checking · Stochastic
multi-player games · Probabilistic temporal logic

Taolue Chen · Vojtěch Forejt · Marta Kwiatkowska · Aistis Simaitis
Department of Computer Science, University of Oxford, Oxford, United Kingdom
E-mail: firstname.lastname@cs.ox.ac.uk

David Parker
School of Computer Science, University of Birmingham, Birmingham, United Kingdom
E-mail: d.a.parker@cs.bham.ac.uk

2 Taolue Chen et al.

1 Introduction

Automatic verification techniques for probabilistic systems have been successfully
applied in a variety of fields, from wireless communication protocols to dynamic
power management schemes to quantum cryptography. These systems are inher-
ently stochastic, because of, for example, unreliable communication media, faulty
components or the use of randomisation. Automatic techniques such as probabilis-

tic model checking provide a means to model and analyse these systems against a
range of quantitative properties. In particular, when systems also exhibit nondeter-
ministic behaviour, for example due to concurrency, underspecification or control,
the subtle interplay between the probabilistic and nondeterministic aspects of the
system often makes a manual analysis difficult and error-prone.

When modelling open systems, the designer also has to account for the be-
haviour of components it does not control, and which could have differing or op-
posing goals, giving rise to competitive behaviour. This occurs in many cases, such
as algorithms and protocols for distributed consensus, energy management, sensor
network co-ordination or security. In such situations, it is natural to adopt a game-

theoretic view, modelling a system as a game between different players. Automatic
verification has been successfully deployed in this context, e.g. in the analysis of
security [27] or communication protocols [36].

In this paper, we present an extensive framework for modelling and automatic
verification of systems with both probabilistic and competitive behaviour, using
stochastic multi-player games (SMGs). We introduce a probabilistic alternating-time
temporal logic with rewards (rPATL) for expressing quantitative properties of this
model and develop model checking algorithms for it. We then build a probabilistic
model checker, based on the PRISM tool [28], which provides a high-level language
for modelling SMGs and implements rPATL model checking for their analysis. Fi-
nally, to illustrate the applicability of our framework, we develop several large case
studies in which we identify potential weaknesses and unexpected behaviour that
would have been difficult to find with existing probabilistic verification techniques.

We model competitive stochastic systems as turn-based SMGs, where, in each
state of the model, one player chooses between several actions, the outcome of
which can be probabilistic. Turn-based games are a natural way to model many
real-life applications. One example is when modelling several components execut-
ing concurrently under the control of a particular (e.g. round-robin, randomised)
scheduler; in this case, nondeterminism in the model arises due to the choices made
by each individual component. Another example is when we choose to explicitly
model the (possibly unknown) scheduling of components as one player and the
choices of components as other players.

The logic rPATL is an extension of the logic PATL [18], which is itself a prob-
abilistic extension of ATL [2], a widely used logic for reasoning about multi-player
games and multi-agent systems. rPATL allows us to state that a coalition of players
has a strategy which can ensure that either the probability of an event’s occurrence
or an expected reward measure meets some threshold, e.g. for a network protocol:
“can nodes 1 and 2 collaborate so that the probability of the protocol terminating
within 45 seconds is at least 0.95, whatever nodes 3 and 4 do?”

We place particular emphasis on reward (or, equivalently, cost) related mea-
sures. This allows us to reason quantitatively about a system’s use of resources,
such as time spent or energy consumed; or, we can use rewards as an algorithm de-

Automatic Verification of Competitive Stochastic Systems 3

sign mechanism to validate, benchmark or synthesise strategies for components by
rewarding or penalising them for certain behaviour. rPATL can state, for example,
“can sensor 1 ensure that the expected energy used, if the algorithm terminates, is
less than 75mJ , for any actions of sensors 2, 3, and 4?”. To the best of our knowl-
edge, this is the first logic able to express such properties.

We include in rPATL three different cumulative expected reward operators. Cu-
mulative properties naturally capture many useful system properties, as has been
demonstrated for verification of other types of probabilistic models [24], and as
proves to be true for the systems we investigate. Indicative examples from our
case studies are “the maximum expected execution cost of a task in a Microgrid”
and “the minimum expected number of messages required to reach a consensus”.
Several other reward-based objectives exist that we do not explicitly consider, in-
cluding discounted rewards (useful, e.g., in economics, but less so for the kind of
systems we target) and long-run average reward (also useful, but practical im-
plementations become complex in stochastic games [23]). We also mention that
discounted reward objectives could be expressed within our framework by modi-
fying the underlying game.

We present model checking algorithms for rPATL. A practical advantage of the
logic is that, like for ATL, model checking reduces to analysing zero-sum two-player

games. rPATL properties referring to the probability of an event are checked by
solving simple stochastic two-player games, for which efficient techniques exist [19,
23]. We also describe model checking for the extended logic, rPATL*, again by
reducing to known methods for two-player games [15]. For the reward operators
of rPATL, we devise new algorithms.

Lastly, we implement our model checking techniques in a prototype tool and
then develop and analyse several large case studies. In particular, we study algo-
rithms for smart energy management [26] and distributed consensus in a sensor
network [33]. In the first case, we use our techniques to reveal a weakness in the
algorithm: we show that users may have a high incentive to deviate from the orig-
inal algorithm, and propose modifications to solve the problem. For the consensus
algorithm, we identify unexpected trade-offs in the performance of the algorithm
when using our techniques to evaluate possible strategies for sensors.

Contributions. In summary, the contributions of this paper are:

– A comprehensive framework for analysis of competitive stochastic systems;
– A logic rPATL for specifying quantitative properties of stochastic multi-player

games including, in particular, novel operators for costs and rewards, and their
model checking algorithms;

– Implementation of a tool for modelling and rPATL model checking of SMGs;
– Development and analysis of several large new case studies.

This paper is an extended version of [16], which adds, in particular, the extended
logic rPATL∗, reward-bounded properties and operators for deciding the existence
of price-bounded coalitions to satisfy an rPATL formula. We also provide proofs
for the results and algorithms in the paper.

Paper structure. The remainder of the paper is structured as follows. In the next
section, we review related work in this area. Then, Section 2 provides some back-
ground material on stochastic multi-player games. Section 3 introduces the logic

4 Taolue Chen et al.

rPATL and its extensions. The corresponding model checking algorithms are pre-
sented in Section 4. Section 5 describes an implementation of our model checking
framework and its application to several large case studies. Proofs for the main
results in the paper are contained in the appendix.

1.1 Related work

There are various theoretical results relating to probabilistic temporal logics in a
game-theoretic setting [18,37,38,1,10,34,5] but, to our knowledge, this is the first
work to consider a practical implementation, as well as modelling and automated
verification of case studies. The logics PATL and PATL*, which we extend in this
paper, were first introduced in [18], where the complexity of model checking for
these logics was studied using a reduction to probabilistic parity games. In [37],
simulation relations for stochastic games are proposed and shown to preserve frag-
ments of PATL; an algorithm for computing such simulations is given in [38]. In [1],
the logic PATL* is used in a theoretical framework for analysing security proto-
cols. Various extensions of PATL have also been considered: [10] studies alternative
semantics for the logic, using the notion of prediction denotation functions; [34]
gives decidability and complexity results for a more expressive logic that incor-
porates partial information; and [5] presents (un)decidability results for another
richer logic, with emphasis on the subtleties of nested properties. We note that all
of the above, except [5], use concurrent, rather than turn-based, games and none
consider reward properties. Turn-based games can be viewed as a special case of
concurrent games where only one player has a choice of actions in every state.

There has been much research on algorithms to solve stochastic games, e.g. [19,
23,15,12,35], but these do not consider a modelling framework, implementation
or case studies. Moreover, the reward-based properties that we introduce in this
paper have not been studied in depth. Probabilistic model checking for a multi-
agent system (a negotiation protocol) is considered in [7], using PRISM [28], but
this is done by fixing a particular probabilistic strategy and analysing a Markov
chain rather than a stochastic game. In [32], a quantitative generalisation of the
µ-calculus is proposed, and shown to be able to encode stochastic parity games.
The techniques are illustrated using a model of futures market investor, to which
we will apply our techniques in Section 5. We will also analyse a model of a team
formation protocol taken from [17], which performs probabilistic model checking
using Markov chains and Markov decisions processes, as well as analysing simple
properties of stochastic two-player games.

Stochastic games are also useful for synthesis, as in, for example, [11], which
synthesises concurrent programs operating under randomised schedulers. Related
to this is the tool Gist [14], a stochastic game solver with support for qualitative

ω-regular objectives via a reduction to (non-probabilistic) two-player games. This
is targeted specifically at synthesis problems, rather than general modelling and
verification of competitive systems, as we do here. Finally, we also mention the
tools MCMAS [30] and MOCHA [3], which are powerful model checkers for non-

probabilistic multi-agent systems. In addition to the logic ATL, the former includes
support for epistemic operators that reason about the knowledge of agents, a
direction that we do not consider in this paper.

Automatic Verification of Competitive Stochastic Systems 5

2 Preliminaries

We begin with some background on stochastic multi-player games. For a finite set
X, we denote by D(X) the set of discrete probability distributions over X.

Definition 1 (SMG) A (turn-based) stochastic multi-player game (SMG) is a tuple
G = 〈Π, S, A, (Si)i∈Π ,∆, AP,χ〉, where: Π is a finite set of players; S is a finite, non-
empty set of states; A is a finite, non-empty set of actions; (Si)i∈Π is a partition of
S; ∆ : S × A → D(S) is a (partial) transition function; AP is a finite set of atomic

propositions; and χ : S → 2AP is a labelling function.

In each state s ∈ S of the SMG G, the set of available actions is denoted by

A(s)
def

= {a ∈ A | ∆(s, a) &=⊥}. We assume that A(s) &= ∅ for all s. The choice of
action to take in s is under the control of exactly one player, namely the player
i ∈ Π for which s ∈ Si. Once action a ∈ A(s) is selected, the successor state is
chosen according to the probability distribution ∆(s, a). A path of G is a possibly
infinite sequence λ = s0a0s1a1 . . . such that aj ∈ A(sj) and ∆(sj , aj)(sj+1) > 0 for
all j. We use stλ to denote s0s1 . . ., and stλ(j) for sj . Also, by λi we denote the
suffix of the path λ starting in state si, e.g. λ1 = s1a1s2 · · · . The set of all infinite
paths in G is ΩG and the set of infinite paths starting in state s is ΩG,s. Similarly,
we use Ω+

G and Ω+
G,s to denote the sets of finite paths.

A strategy for player i ∈ Π in G is a function σi : (SA)
∗Si → D(A) which, for

each path λ·s ∈ Ω+
G where s ∈ Si, selects a probability distribution σi(λ·s) over

A(s). The set of all strategies for player i is denoted Σi. A strategy σi is called
memoryless if σi(λ·s) = σi(λ

′·s) for all paths λ·s,λ′·s ∈ Ω+
G , and deterministic if

σi(λ·s) is a Dirac distribution for all λ·s ∈ Ω+
G . A strategy profile σ = σ1, . . . ,σ|Π|

comprises a strategy for all players in the game. Under a strategy profile σ, the
behaviour of G is fully probabilistic and we define a probability measure PrσG,s over
the set of all paths ΩG,s in standard fashion (see, e.g. [12]). Given a random variable

X : ΩG,s → R, we define the expected value of X to be EσG,s[X]
def

=
∫

ΩG,s
X dPrσG,s.

We also augment games with reward structures r : S → Q≥0, which are labelling
functions mapping each state to a non-negative rational reward. To simplify pre-
sentation, we only use state rewards, but note that transition/action rewards can
easily be encoded by adding an auxiliary state per transition/action to the model.

1:s0 2:s1 3:s2 1:s3

{t}
a

0.7
0.3

b 0.5
0.5

a

b

a

b

a

Fig. 1: Example SMG.

Example 1 Consider the SMG shown in Figure 1, with Π={1, 2, 3}. The player
i controlling a state s is shown as i:s in the figure, i.e. S1={s0, s3}, S2={s1},

6 Taolue Chen et al.

S3={s2}. We have actions A={a, b} and, e.g., ∆(s0, a)(s1)=0.7. State s3 is labelled
with atomic proposition t, and all others are labelled with no atomic propositions.
An example of an infinite path is λ = s0as0bs1bs2bs3(as3)ω; if player actions were
chosen without the use of randomisation, the measure of this path would be 0.15
(i.e. 0.3 · 0.5).

3 Property Specification: The Logic rPATL

3.1 rPATL

We now present a temporal logic called rPATL (Probabilistic Alternating-time
Temporal Logic with Rewards) for expressing quantitative properties of SMGs.
Throughout the section, we assume a fixed SMG G = 〈Π, S, A, (Si)i∈Π ,∆, AP,χ〉.

Definition 2 (rPATL) The syntax of rPATL is given by the grammar:

φ ::=) | a | ¬φ | φ ∧ φ | 〈〈C〉〉P&'q[ψ] | 〈〈C〉〉Rr
&'x[F

(φ]

ψ ::= Xφ | φU≤k φ | φUφ

where a ∈ AP , C ⊆ Π, +,∈ {<,≤,≥, >}, q ∈ Q ∩ [0, 1], x ∈ Q≥0, r is a reward
structure, - ∈ {0,∞, c} and k ∈ N.

rPATL is a CTL-style branching-time temporal logic, where we distinguish be-
tween state formulae (φ) and path formulae (ψ). We adopt the coalition operator
〈〈C〉〉 of ATL [2], combining it with the probabilistic operator P&'q and path formu-
lae from PCTL [25,8] and a generalisation of the reward operator R

r
&'x from [24].

An example of typical usage of the coalition operator is 〈〈{1, 2}〉〉P≥0.5[ψ], which
means “players 1 and 2 have a strategy to ensure that the probability of path for-
mula ψ being satisfied is at least 0.5, regardless of the strategies of other players”.
As path formulae, we allow the standard temporal operators X (“next”), U

≤k

(“bounded until”) and U (“until”). As usual, we can derive other common tem-
poral operators such as Fφ ≡)Uφ (“eventually”).

3.2 Rewards

Before presenting the semantics of rPATL, we discuss the reward operators in the
logic. We focus on the expected cumulative reward to reach a target, i.e. the expected
sum of rewards cumulated along a path until a state from a specified set T ⊆ S is
reached. To cope with the variety of different properties encountered in practice,
we introduce three variants, which differ in the way they handle the case where T
is not reached. The three types are denoted by the parameter -, one of 0, ∞ or c.
These indicate that, when T is not reached, the reward is zero, infinite or equal to
the cumulated reward along the whole path, respectively.

The motivation for selecting these particular types of rewards stems from our
experience of devising rPATL specifications for practical case studies (which we
present later in Section 5). Each reward type is applicable in different situations. If
our goal is, for example, to minimise the expected time for algorithm completion,

Automatic Verification of Competitive Stochastic Systems 7

then it is natural to assume a value of infinity upon non-completion (-=∞). Con-
sider, on the other hand, the case where we try to optimise a distributed algorithm
by designing a reward structure that incentivises certain kinds of behaviour and
then maximising it over the lifetime of the algorithm’s execution. In this case, we
might opt for type -=0 to avoid favouring situations where the algorithm does
not terminate. In other cases, e.g. when modelling algorithm’s resource consump-
tion, we might prefer to use type -= c, to compute resources used regardless of
termination.

We formalise these notions of rewards by defining reward functions that map
each possible path in the game G to a cumulative reward value.

Definition 3 (Reward Function) For an SMG G, a reward structure r, type
- ∈ {0,∞, c} and a set T ⊆ S of target states, the reward function rew(r, -, T) :
ΩG → R≥0 is a random variable defined as follows. For λ ∈ ΩG :

rew(r, -, T)(λ)
def

=

{

g(-) if ∀j ∈ N : stλ(j) /∈ T,
∑k−1

j=0 r(stλ(j)) otherwise, where k = min{j | stλ(j) ∈ T},

and where g(-) = - if - ∈ {0,∞} and g(-) =
∑

j∈N
r(stλ(j)) if - = c. The expected

reward from a state s ∈ S of G under a strategy profile σ is the expected value of
the reward function, EσG,s[rew(r, -, T)].

3.3 Semantics of rPATL

Now, we define the semantics of rPATL. Formulae are interpreted over states of
a game G; we write s |= φ to indicate that state s of G satisfies the formula φ

and define Sat(φ)
def

= {s ∈ S | s |= φ} as the set of states satisfying φ. The meaning
of atomic propositions and logical connectives is standard. For the 〈〈C〉〉P&'q and
〈〈C〉〉Rr

&'x operators, we give the semantics via a reduction to a two-player game
called a coalition game.

Definition 4 (Coalition Game) For a coalition of players C ⊆ Π of SMG G, we
define the coalition game of G induced by C as the stochastic two-player game
GC = 〈{1, 2}, S, A, (S′

1, S
′
2),∆, AP,χ〉 where S′

1 = ∪i∈CSi and S′
2 = ∪i∈Π\CSi.

Definition 5 (rPATL Semantics) The satisfaction relation |= for rPATL is de-
fined inductively for each state s of G, as follows:

s |=) always
s |= a ⇔ a ∈ χ(s)
s |= ¬φ ⇔ s &|= φ
s |= φ1 ∧ φ2 ⇔ s |= φ1 and s |= φ2
s |= 〈〈C〉〉P&'q[ψ] ⇔ In coalition game GC , ∃σ1 ∈ Σ1 such that ∀σ2 ∈ Σ2

Prσ1,σ2

GC ,s (ψ) +, q

s |= 〈〈C〉〉Rr
&'x[F

(φ] ⇔ In coalition game GC , ∃σ1 ∈ Σ1 such that ∀σ2 ∈ Σ2

Eσ1,σ2

GC ,s [rew(r, -,Sat(φ))] +, x

where Prσ1,σ2

GC ,s (ψ)
def

= Prσ1,σ2

GC ,s ({λ ∈ ΩGC ,s | λ |= ψ}) and for any path λ in ΩG :

λ |= Xφ ⇔ stλ(1) |= φ

λ |= φ1 U
≤k φ2 ⇔ stλ(i) |= φ2 for some i ≤ k and stλ(j) |= φ1 for 0 ≤ j < i

λ |= φ1 Uφ2 ⇔ λ |= φ1 U
≤k φ2 for some k ∈ N.

8 Taolue Chen et al.

Example 2 Consider again the example SMG in Figure 1. The rPATL formula
〈〈{1, 3}〉〉P≥0.5[F t] is satisfied in states s0, s2 and s3, i.e. players 1 and 3 can ensure
that the probability of reaching t is at least 0.5, by both taking action b in their
states. For example, from s0, the measure of path s0bs2bs3(as3)ω is 0.5, achieving
the required bound. The formula 〈〈{1, 2}〉〉P≥0.5[F t], on the other hand, is satisfied
only in s3 because player 3 can always take action a in state s2 ensuring that the
t-labelled state s3 is never reached from any other state.

Let r be a reward structure that assigns i to state si, i.e. r(s0) = 0, r(s1) = 1,
r(s2) = 2 and r(s3) = 3. rPATL formula 〈〈{1, 3}〉〉Rr

≤2[F
∞t] is true in states s2

(player 3 taking action b, ensuring the expected cumulated reward is exactly 2)
and s3 (expected reward is 0 by definition of F∞). Formula 〈〈{1}〉〉Rr

≥q[F
0t] is false

in all states for any q > 0 because players 2 and 3, by both taking action a, can
guarantee that s3 is never reached from states other than s3. However, 〈〈∅〉〉Rr

≥q[F
ct]

is true in all states for any q > 0, because any set of paths in the game which has
positive measure also has infinite reward, i.e. the only path that has finite reward
is s0(as0)ω, but the measure of this path is 0.

3.4 Equivalences and Extensions

We can handle negated path formulae in a 〈〈C〉〉P&'q operator by inverting the
probability threshold, e.g.:

〈〈C〉〉P≥q[¬ψ] ≡ 〈〈C〉〉P≤1−q[ψ].

This allows us to derive, for example, the G (“globally”) and R (“release”) opera-
tors, using the equivalences Gφ ≡ ¬(F¬φ) ≡ ¬()U¬φ) and φ1Rφ2 ≡ ¬(¬φ1 U¬φ2).
This is done in the same way as for PCTL [25,8] (but, interestingly, cannot be
done for ATL, as shown in [29]).

In addition, from the determinacy result of [31] for zero-sum stochastic two-
player games with Borel measurable payoffs, it follows that, e.g.:

〈〈C〉〉P≥q[ψ] ≡ ¬〈〈Π \ C〉〉P<q[ψ]. (1)

It is also useful to consider “quantitative” versions of the 〈〈C〉〉P&'q and 〈〈C〉〉Rr
&'x

operators, in the style of PRISM [28], which return numerical values. For the
probabilistic operator, we have:

〈〈C〉〉Pmin=?[ψ]
def

= Prmin,max
GC ,s (ψ)

def

= inf
σ1∈Σ1

sup
σ2∈Σ2

Prσ1,σ2

GC ,s (ψ)

〈〈C〉〉Pmax=?[ψ]
def

= Prmax,min
GC ,s (ψ)

def

= sup
σ1∈Σ1

inf
σ2∈Σ2

Prσ1,σ2

GC ,s (ψ)

and for the reward operator:

〈〈C〉〉Rr
min=?[F

(φ]
def

= Emin,max
GC ,s [rew(r, -,Sat(φ))]

def

= inf
σ1∈Σ1

sup
σ2∈Σ2

Eσ1,σ2

GC ,s [rew(r, -,Sat(φ))]

〈〈C〉〉Rr
max=?[F

(φ]
def

= Emax,min
GC ,s [rew(r, -,Sat(φ))]

def

= sup
σ1∈Σ1

inf
σ2∈Σ2

Eσ1,σ2

GC ,s [rew(r, -,Sat(φ))] .

Automatic Verification of Competitive Stochastic Systems 9

3.5 Reward-bounded Properties and Price-bounded Coalitions

Next, we consider two extensions of rPATL which provide additional ways to reason
about bounded rewards and coalition prices.

Reward-bounded properties. So far, rPATL’s reward-based operators only allow
us to reason about the existence of a coalition strategy to achieve a given bound
on expected rewards. These do not, however, rule out the possibility of paths in the
game that accumulate arbitrarily large (or even infinite) rewards, which may be
undesirable when modelling resource consumption. Here, we take another view on
the rewards by asking the question: does there exist a strategy for the coalition to
achieve a given rPATL property using bounded resources? In particular, we extend
the syntax of rPATL (see Definition 2) with the reward-bounded until temporal
operator φ1 U r

≤xφ2, where r is a reward structure, x ∈ Q≥0, and φ1 and φ2 are
rPATL state formulae. Satisfaction by a path λ is defined as:

λ |= φ1 U
r
≤xφ2 ⇔ there exists k ≥ 0 such that stλ(k) |= φ2, stλ(j) |= φ1 for

0 ≤ j < k and
∑k

i=0 r(stλ(i)) ≤ x.

For example, rPATL formula 〈〈C〉〉P>0.9[)U
r
≤100 success] means that coalition C

has a strategy to guarantee that, with probability greater than 0.9, a state satis-
fying success is reached whilst consuming no more than 100 units of reward r. We
will describe how to model check such formulae in Section 4.4.

Price-bounded coalitions. Next, we consider more general queries about the ex-
istence of coalition strategies. In addition to asking whether there exists a strategy
for a given coalition to ensure that a specified probability or reward bound is met,
it is also natural to ask whether there exists a coalition of a certain size, for ex-
ample, that has such a strategy. To formulate queries of this kind, we assume that
each player i ∈ Π has a prescribed non-negative price p(i), and we define the price
of a coalition C ⊆ Π to be the sum of the prices of its players. We then extend the
syntax of rPATL to allow the following price-bounded state formulae:

〈〈?〉〉≤yP&'q[ψ] and 〈〈?〉〉≤yR
r
&'x[F

(φ]

where y ∈ Q≥0 and the other parameters are as in Definition 2. Intuitively, these
formulae are true if there is a coalition whose price is at most y and which can
ensure that the probability or expected reward satisfies the given bound. Formally,
for a state s ∈ S, the semantics is defined as:

s |= 〈〈?〉〉≤yP&'q[ψ] ⇔ ∃C :
∑

i∈C p(i) ≤ y and s |= 〈〈C〉〉P&'q[ψ]

s |= 〈〈?〉〉≤yR
r
&'x[F

(φ] ⇔ ∃C :
∑

i∈C p(i) ≤ y and s |= 〈〈C〉〉Rr
&'x[F

(φ]

We will consider model checking for these formulae in Section 4.4.

3.6 rPATL*

Finally, in this section, we discuss the logic rPATL*, which extends rPATL in the
same way that PCTL* extends PCTL [8]. In particular, this allows LTL formulae

10 Taolue Chen et al.

to be provided as path formulae within the 〈〈C〉〉P operator. The syntax of rPATL*
is given by the following grammar:

φ ::=) | a | ¬φ | φ ∧ φ | 〈〈C〉〉P&'q[ψ] | 〈〈C〉〉Rr
&'x[F

(φ]

ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

where a ∈ AP , C ⊆ Π, +,∈ {<,≤,≥, >}, q ∈ Q ∩ [0, 1], x ∈ Q≥0, r is a reward
structure and - ∈ {0,∞, c}. Note that, for simplicity, we omit here the bounded
variant of the until operator.

The semantics for state formulae are the same as for rPATL. The semantics
for path formulae are as follows. For path λ ∈ ΩG :

λ |= φ ⇔ stλ(0) |= φ
λ |= ¬ψ ⇔ λ &|= ψ
λ |= ψ1 ∧ ψ2 ⇔ λ |= ψ1 and λ |= ψ2

λ |= Xψ ⇔ λ1 |= ψ
λ |= ψ1 Uψ2 ⇔ λi |= ψ2 for some i ∈ N and λj |= ψ1 for 0 ≤ j < i .

Examples of rPATL* formulae include:

– 〈〈{1, 3}〉〉P≥1[GF recharge] - players 1 and 3 have a strategy to make sure that a
“recharge” state is visited infinitely often with probability 1;

– 〈〈{4}〉〉P>0.5[(G safe) ∧ (FG success)] - player 4 has a strategy such that, with
probability greater than 0.5, the system ends up and remains in “success”
states, while only visiting “safe” states, for any strategies of the other players.

We will describe model checking for rPATL* in Section 4.5.

4 Model Checking for rPATL

We now discuss model checking for rPATL, the key part of which is computa-
tion of probabilities and expected rewards for stochastic two-player games. The
complexity of the rPATL model checking problem can be stated as follows.

Theorem 1 (a) Model checking an rPATL formula with no 〈〈C〉〉Rr
&'x[F

0φ] operator
and where k for the temporal operator U

≤k is given in unary is in NP ∩ coNP.

(b) Model checking an arbitrary rPATL formula is in NEXP ∩ coNEXP.

We give a proof of Theorem 1 in Appendix C. Note that our problem is at least
as hard as solving simple stochastic two-player games, which is known to be in
NP ∩ coNP [19] and for which the existence of polynomial time algorithms is
a long-standing open problem. Nevertheless, we present efficient and practically
usable algorithms for model checking rPATL, in which computation of numerical
values is done by evaluating fixpoints up to a desired level of convergence (in
the style of well-known value iteration algorithms [19]). In fact, this is the usual
approach taken in probabilistic verification tools for simpler classes of models such
as Markov chains and Markov decision processes.

It is possible to establish some complexity results for value iteration. For exam-
ple, it was shown in [19] that it can be decided precisely whether the values being
computed exceed a given threshold after a sufficiently large number of iterations.
However, the best known lower bound on the number of iterations is exponential

Automatic Verification of Competitive Stochastic Systems 11

in the size of the game. A detailed discussion of the number of iterations needed
to obtain a given precision can also be found in [13]. In practice, in our implemen-
tation, we decide when to terminate fixpoint computations based on a simple test
of numerical convergence. We discuss this in more detail in Section 5.1.

4.1 The Basic Model Checking Algorithm

The basic algorithm for model checking an rPATL formula φ on an SMG G pro-
ceeds as for other branching-time logics, determining the set Sat(φ) recursively.
Furthermore, as can be seen from the semantics, computing this set for atomic
propositions or logical connectives is trivial. Thus, we only consider the 〈〈C〉〉P&'q
and 〈〈C〉〉Rr

&'x operators. Model checking of these reduces to computation of opti-
mal probabilities or expected rewards, respectively, on the coalition game GC . For
example, if + ∈ {≥, >}, then:

s |= 〈〈C〉〉P&q[ψ] ⇔ Prmax,min
GC ,s (ψ) + q

s |= 〈〈C〉〉Rr
&x[F

(φ] ⇔ Emax,min
GC ,s [rew(r, -,Sat(φ))] + x.

Analogously, for operators ≤ and <, we simply swap min and max in the above.
The following sections describe how to compute probabilities (Prmax,min

GC ,s (ψ)) and

expected rewards (Emax,min
GC ,s [rew(r, -,Sat(φ))]) for the coalition game GC .

4.2 Computing Probabilities

Below, we show how to compute the probabilities Prmax,min
GC ,s (ψ) where ψ is each

of the temporal operators X, U≤k and U. We omit the dual case since, thanks to
determinacy (see equation (1)), we have that Prmin,max

GC ,s (ψ) = Prmax,min
GΠ\C ,s (ψ). The

following results follow in near identical fashion to the corresponding statements
for Markov decision processes [6]. We let opts denote either max or min, depending
on whether state s of GC is controlled by player 1 or 2:

opts =

{

max if s ∈ S1

min if s ∈ S2.

Then, for the X operator and state s ∈ S:

Prmax,min
GC ,s (Xφ) = optsa∈A(s)

∑

s′∈Sat(φ)
∆(s, a)(s′).

Probabilities for the U
≤k operator can be computed recursively. We have that

Prmax,min
GC ,s (φ1 U≤k φ2) is equal to: 1 if s ∈ Sat(φ2); 0 if s &∈ (Sat(φ1) ∪ Sat(φ2)); 0 if

k=0 and s ∈ Sat(φ1)\Sat(φ2); and otherwise:

Prmax,min
GC ,s (φ1 U

≤k φ2) = optsa∈A(s)

∑

s′∈S
∆(s, a)(s′) · Prmax,min

GC ,s′ (φ1 U
≤k−1 φ2).

The unbounded case can be computed via value iteration [19], i.e. using:

Prmax,min
GC ,s (φ1 Uφ2) = limk→∞ Prmax,min

GC ,s (φ1 U
≤k φ2).

In practice, this computation is terminated with a suitable convergence check
(see Section 5.1). In addition, we mention that, for the case Fφ ≡)Uφ, the
computation can also be reduced to quadratic programming [23].

12 Taolue Chen et al.

4.3 Computing Rewards

Now, we discuss computation for the expected reward operators. We remark that,
although phrased here in terms of rPATL model checking for SMGs, the techniques
presented have general applicability for stochastic two-player games.

We show how to compute the optimal values Emax,min
GC ,s [rew(r, -,Sat(φ))] for all

three types - ∈ {0,∞, c}. As above, we omit the dual case where max and min are
swapped. In this section, we fix a coalition game GC , a reward structure r, and a
target set T = Sat(φ). We first make the following modifications to GC :

– fresh atomic propositions t and arew are added to target and positive reward
states: AP := AP ∪ {t, arew}, ∀s ∈ T : χ(s) := χ(s) ∪ {t} and ∀s ∈ S . r(s) > 0 :
χ(s) := χ(s) ∪ {arew};

– target states are made absorbing: ∀s ∈ T : A(s) := {a},∆(s, a)(s)=1, r(s)=0.

Our algorithms, like the ones for similar properties on simpler models [6], rely
on computing fixpoints of certain sets of equations. As in the previous section,
we assume that this is done by value iteration with an appropriate convergence
criterion. As above, we let opts denote max if s ∈ S1 and min if s ∈ S2.

An important observation here is that optimal expected rewards for - ∈ {∞, c}
can be achieved by memoryless, deterministic strategies (see Appendix A.2). For
- = 0, however, finite-memory strategies are needed (see Appendix A.1).

4.3.1 The case - = c

First, we use the results of [22] to identify the states from which the expected
reward is infinite:

I := {s ∈ S | ∃σ1∈Σ1 ∀σ2∈Σ2 Prσ1,σ2

GC ,s (inf (arew)) > 0}

where inf (arew) is the set of all paths that visit a state satisfying arew infinitely
often. The states in I are assigned infinite reward. To compute values for the
remaining states, we remove the states in I from GC before continuing. We then
compute the least fixpoint of the following equations:

f(s) =

{

0 if s ∈ T

r(s) + optsa∈A(s)

∑

s′∈S ∆(s, a)(s′) · f(s′) otherwise
(2)

and let Emax,min
GC ,s [rew(r, c, T)] = f(s). For a proof of correctness of the procedure,

see Appendix B.1.

4.3.2 The case - = ∞

Again, we start by identifying and removing states with infinite expected reward;
in this case: I := {s ∈ S | s |= 〈〈{1}〉〉P<1[F t]}. Then, for all other states s, we
compute the greatest fixpoint, over R, of equations (2). The need for the greatest
fixpoint arises because, in the presence of zero-reward cycles, multiple fixpoints
may exist. For the previous case (- = c), a least fixpoint of (2) gives the correct
solution for such cases; here, the reward should be infinite. The computation is

Automatic Verification of Competitive Stochastic Systems 13

over R since, e.g., the function mapping all non-target states to ∞ may also be a
fixpoint, which is not the one we are interested in.

To find the greatest fixpoint over R, we first compute an over-approximation
by changing all zero rewards to any ε > 0 and then evaluating the least fixpoint
of (2) for the modified reward. Starting from the new initial values, value iteration
now converges from above to the correct fixpoint (for a proof, see Appendix B.2).
For the simpler case of Markov decision processes, an alternative approach based
on removal of zero-reward end-components is possible [21], but this cannot be
adapted efficiently to stochastic games.

4.3.3 The case - = 0

As mentioned above, it does not suffice to consider memoryless strategies in this
case. The optimal strategy may depend on the reward accumulated so far, which

we denote as r(λ)
def

=
∑

s∈stλ
r(s) for history λ. However, this is only needed until a

certain reward bound B is reached, after which the optimal strategy picks actions
that maximise the probability of reaching T (if multiple such actions exist, it
picks the one with the highest expected reward). The bound B can be computed
efficiently using algorithms for -=c and Prmax,min

GC ,s (ψ) and, in the worst case, can

be exponential in the size of G and the reward structure r (see Appendix B.3).
For clarity, we assume that rewards are integers.1 Let R(s,k) be the maximum

expectation of rew(r, 0, T) in state s after history λ with r(λ) = k:

R(s,k)
def

= max
σ1∈Σ1

min
σ2∈Σ2

[

k · Prσ1,σ2

GC ,s (F t) + Eσ1,σ2

GC ,s [rew(r, 0, T)]
]

,

and rmax = maxs∈S r(s). The algorithm works as follows:

1. Using the results of [22], identify the states that have infinite reward:

I := {s ∈ S | ∃σ1∈Σ1 ∀σ2∈Σ2 Prσ1,σ2

GC ,s (inf
t(arew)) > 0}}

where inf t(arew) is the set of all paths that visit a state satisfying P>0[F t]∧arew
infinitely often. Then, assign infinite reward to states in I and remove them
from the game.

2. For B ≤ k ≤ B + rmax − 1 and for each state s:

(a) Assign new reward r′(s) = r(s) · Prmax,min
GC ,s (F t);

(b) Remove from A(s) actions a that are sub-optimal for Prmax,min
GC ,s (F t), i.e.:

∑

s′∈S ∆(s, a)(s′) · Prmax,min
GC ,s′ (F t) < Prmax,min

GC ,s (F t);

(c) Compute R(s,k) using the algorithm for rew(r′, c, T):

R(s,k) = k · Prmax,min
GC ,s (F t) + Emax,min

GC ,s [rew(r′, c, T)].

1 Rational values can be handled by re-scaling all rewards by the lowest common multiple
of the denominators of rewards appearing in the game. Note that re-scaling does not increase
the size of the model, so the stated complexity results are not affected.

14 Taolue Chen et al.

3. Find, for all 0 ≤ k < B and states s, the least fixpoint of the equations:

R(s,k) =

{

k if s ∈ T

optsa∈A(s)

∑

s′∈S ∆(s, a)(s′) ·R(s′,k+r(s)) otherwise.

4. The required values are then Emax,min
GC ,s [rew(r, 0, T)] = R(s,0).

For a proof of correctness of the procedure, see Appendix B.3.

4.4 Reward-bounded Properties and Price-bounded Coalitions

Next, we consider the problem of model checking the reward- and price-bounded

rPATL formulae presented in Section 3.5.

Reward bounded properties. In a similar fashion to the bounded until oper-
ator (see Section 4.2), probabilities for the φ1 U r

≤xφ2 operator can be computed

recursively. We have that Prmax,min
GC ,s (φ1 U r

≤xφ2) is equal to: 1 if s ∈ Sat(φ2); 0 if

s &∈ (Sat(φ1) ∪ Sat(φ2)); 0 if x < r(s) and s ∈ Sat(φ1)\Sat(φ2); and otherwise:

Prmax,min
GC ,s (φ1 U

r
≤xφ2) = optsa∈A(s)

∑

s′∈S
∆(s, a)(s′) · Prmax,min

GC ,s′ (φ1 U
r
≤x−r(s)φ2).

Note that model checking a reward-bounded until operator is equivalent to model-
checking an unbounded until operator on an extended model that encodes the
accummulated reward in its state. As in Section 4.3.3 above, we can assume that
rewards in the model and the reward bound r are all integer values (to treat
rational values, we re-scale by the lowest common multiple of their denominators).
The state space of the extended model remains finite since rewards never need
to exceed the bound r. A similar approach is taken in [4] for bounded-reward
model-checking on the simpler model of discrete-time Markov chains.

Price-bounded coalitions. It follows from results for ATL [9] that the model
checking problem for rPATL extended with formulae of the form 〈〈?〉〉≤yP&'q[ψ] is
NP-hard. We argue that the problem lies within the class PNP of the polynomial
hierarchy if the logic is extended with formulae 〈〈?〉〉≤yP&'q[ψ] and 〈〈?〉〉≤yR

r
&'x[F

(φ],
but there are no formulae of the form 〈〈C〉〉Rr

&'x[F
0φ] or 〈〈?〉〉≤yR

r
&'x[F

0φ].

To see this, it suffices to realise that verifying any formula containing only one
temporal operator (without 〈〈C〉〉Rr

&'x[F
0φ]) is in NP, because there is a polynomial

witness comprising the optimal coalition together with a winning strategy of all
coalition players. Hence, for a formula containing multiple temporal operators, we
can run the model checking algorithm described earlier, where we compute the set
Sat(φ) using the NP oracle. For the case where the logic contains all operators,
including 〈〈C〉〉Rr

&'x[F
0φ] and 〈〈?〉〉≤yR

r
&'x[F

0φ], the problem is in NEXP∩ coNEXP.
In this case, we can reuse the idea of the proof of Theorem 1 (see Appendix C)
by showing that there is an exponential size certificate. We give the proof in
Appendix D.

Automatic Verification of Competitive Stochastic Systems 15

4.5 Model Checking for rPATL*

Finally, in this section, we discuss model checking for the extended logic rPATL*
introduced in Section 3.6. This can be done in a similar fashion to the logic PCTL*
for Markov decision processes [8]. Model checking for an rPATL* formula φ can be
performed as follows. Let φ1,φ2, · · · ,φn be a sequence of all (state) subformulae of
φ, partially ordered by subsumption and where φn = φ. We compute Sat(φi) for
each subformula φi in turn, starting from φ1. If ψi is an rPATL formula, then we
apply the rPATL model checking algorithm described above. Otherwise, it must
be of the form 〈〈C〉〉P&'q[ψ], where ψ is an LTL formula.

For the latter case, we need to compute the optimal probabilities of satisfying
LTL formula ψ for all states of the coalition game GC and then compare these
values with the bound q. Computing probabilities can be done in the following
(standard) way. First, we translate ψ into a deterministic parity automaton with

O(22
|ψ|

) states and O(2|ψ|) indices. Then, we build the product of the game GC and
the deterministic parity automaton, resulting in a stochastic two player zero-sum
game with parity winning conditions. From the results of [15], we can compute the

optimal value in O((|GC | · 22
|ψ|

)2
|ψ|

) = O(|GC |2
|ψ|

· 22
2|ψ|

) time, which entails that
model checking ψ can be done in 2EXPTIME. Hence, model checking rPATL* is
2EXPTIME-complete (where the lower bound follows from the fact that model
checking LTL formulae for Markov decision processes is 2EXPTIME-hard [20]).

5 Implementation and Case Studies

Based on the techniques in this paper, we have built a probabilistic model checker
for stochastic multi-player games, called PRISM-games2 which is an extension
of the PRISM tool [28]. For modelling of SMGs, we have adapted the PRISM
modelling language. This allows multiple parallel components (called modules),
which can either operate asynchronously or by synchronising over common action
labels. Now, a model also includes a set of players, each of which controls transitions
for a disjoint subset of the modules and/or action labels. Essentially, we retain the
existing PRISM language semantics (for Markov decision processes), but, in every
state, each nondeterministic choice belongs to one player. For the current work,
we detect and disallow the possibility of concurrent decisions between players.

Our tool constructs an SMG from a model description and then executes the
algorithms from Section 4 to check rPATL formulae. Currently, we have developed
an explicit-state model checking implementation, which we show to be efficient
and scalable for various large models. It would also be relatively straightforward
to adapt PRISM’s symbolic model checking engines for our purpose, if required.

5.1 Experimental Results

We have applied our tool to the analysis of four large case studies:

– mdsm: microgrid demand-side management;

2 The tool is currently available from: http://www.prismmodelchecker.org/games/.

http://www.prismmodelchecker.org/games/

16 Taolue Chen et al.

Case study
[parameters]

SMG statistics Model checking

Players States Transitions Property type
Constr. Check

(s) (s)

mdsm
[N]

5 5 743,904 2,145,120
〈〈C〉〉Rr

max=?
[F∞φ]

14.5 61.9
6 6 2,384,369 7,260,756 55.0 221.7
7 7 6,241,312 19,678,246 210.7 1,054.8

cdmsn
[N]

3 3 1,240 6,240
〈〈C〉〉P$%q [F

≤k φ]
0.2 0.2

4 4 11,645 73,948 0.8 0.8
5 5 100,032 760,430 3.2 6.4

investor
[vmax]

10 2 10,868 34,264
〈〈C〉〉Rr

max=?
[Fcφ]

1.4 0.7
100 2 750,893 2,474,254 9.8 121.8
200 2 2,931,643 9,688,354 45.9 820.8

team-
form
[N]

3 3 12,475 15,228
〈〈C〉〉Pmax=?[Fφ]

0.8 0.2
4 4 96,665 116,464 1.6 0.9
5 5 907,993 1,084,752 13.6 11.2

Table 1: Performance statistics for a representative set of models

– cdmsn: collective decision making for sensor networks;
– investor : the futures market investor example of [32];
– team-form: the team formation protocol of [17].

The first two of these case studies were developed solely for this work; the other
two have been adapted from existing models.3 Experimental results from the two
new case studies are described in detail in the following sections. First, we show
some statistics regarding the performance of our tool on a representative sample
of models from the four case studies.

Table 1 shows model statistics (number of players, states and transitions) for
three SMGs taken from each case study. It also gives the execution time for model
checking a sample property on each one, divided into the time for model construc-
tion (building an SMG from its high-level modelling language description) and
for executing the model checking algorithms of Section 4. Experiments were run
on a 2.80GHz PC with 32GB RAM. Our aim here is not to provide a detailed
analysis of the time required to model check different classes of rPATL formulae,
but simply to give an indication of the scalability and efficiency of our algorithms
and their implementation in PRISM-games.

We also briefly discuss how the performance of our model checking algorithms
is affected by the speed of convergence of the underlying numerical computation
methods. As mentioned in Section 4 above, our algorithms are mostly based on the
evaluation of numerical fixpoints, termination of which is decided using a simple
convergence test. More precisely, if Xk

s denotes the value computed for a state s in
iteration k and ε represents a pre-specified convergence threshold, we terminate the
computation when the maximum difference between values for successive iterations
falls below ε, i.e. when:

max
s∈S

|Xk
s −Xk−1

s | < ε

Figure 2 illustrates, for several of the models from Table 1, how the total number
of iterations of numerical computation required varies for different values of the
convergence threshold ε. For the cdmsn example, we check a property of the form
〈〈C〉〉P&'q[Fφ] since the bounded property in Table 1 always requires exactly k
iterations. We omit results for the team-form example since the corresponding

3 Models and properties are at: http://www.prismmodelchecker.org/files/fmsd-smg/.

http://www.prismmodelchecker.org/files/fmsd-smg/

Automatic Verification of Competitive Stochastic Systems 17

10
−10

10
−5

10
−2

10
−3

10
−4

10
−4

10
−6

10
−7

10
−8

10
−9

10
−9

0

100

200

300

400

500

600

700

800

900

Convergence threshold

It
e

ra
tio

n
s

mdsm (N=2)
mdsm (N=3)
investor (vmax=10)
investor (vmax=100)
cdsmn (N=3)

Fig. 2: Performance of numerical computation algorithms (number of iterations)
for varying convergence thresholds ε.

SMGs do not contain cycles, meaning that varying ε has no effect. From the plots
in Figure 2, a consistent pattern emerges: after (in some cases) initial irregularity
for large values of ε, values of ε = 10−n for increasing values of n result in only a
linear increase in the number of iterations required.

5.2 MDSM: Microgrid Demand-Side Management

Microgrid is an increasingly popular model for the future energy markets where
neighbourhoods use electricity generation from local sources (e.g. wind/solar power)
to satisfy local demand. The success of microgrids is highly dependent on demand-

side management : active management of demand by users to avoid peaks. Thus,
the infrastructure has to incentivise co-operation and discourage abuse in an envi-
ronment which is highly decentralised and gives a high degree of control to users.
Such systems are usually analysed using simulation studies, but these approaches
can fail to uncover important features or weaknesses of the models. In this case
study, we use rPATL model checking to analyse the MDSM infrastructure of [26]
and identify an important incentive-related weakness.

The algorithm. The system in [26] consists of N households connected to a single
distribution manager (DM). At every time-step, the DM randomly contacts a house-
hold for submission of a load for execution. Each load has an energy cost that is
required for its execution. The probability of it generating a load is determined by
a daily demand curve from [26] (see Figure 3). The duration of a load is random,
between 1 and D time-steps. The cost of executing a load for a single step is the
number of tasks currently running. Hence, the total cost increases quadratically
with households executing more loads in a single step.

Each household follows a very simple algorithm, the essence of which is that,
when it generates a load, if the cost is below an agreed limit clim, it executes it,
and otherwise it only does so with a pre-agreed probability Pstart. In [26], the
value for each household in a time-step is measured by V= loads executing

cost of execution and it is
shown (through simulations) that, provided every household sticks to this algorithm,

18 Taolue Chen et al.

Actual graph

Time Usage Rel Usage

0 5 0.74

1.5 3 0.44

3 2 0.29

4.5 1.8 0.26

6 2 0.29

7.5 2.5 0.37

9 4.2 0.62

10.5 4.3 0.63

12 4.1 0.6

13.5 4.05 0.6

15 4 0.59

16.5 4 0.59

18 5.1 0.75

19.5 6.6 0.97

21 6.8 1

22.5 6.5 0.96

24 5 0.74

Piecewise linear approximation graph

Time Usage Rel Usage

0 5 0.7353 0.0739

0 4 0.5882 0.0591

0 3 6 9 12 15 18 21 24

Time of the day (hours)

P
o
w
e
r

d
e
m
a
n
d

Fig. 3: MDSM energy demand curve from [26] and its piecewise approximation.

the peak demand and the total cost of energy are reduced significantly while still
providing a good (expected) value V for each household.

Modelling and analysis. We modelled the system as an SMG with N players, one
per household. We vary N ∈ {2, . . . , 7} (the size of the underlying SMG model
is exponential in N and so we are unable to analyse systems with more than
7 households) and fix D=4 and clim=1.5. We analyse a period of 3 days, each
consisting of 16 time-steps (using a piecewise approximation of the daily demand
curve, shown in Figure 3). First, as a benchmark, we assume that all households
follow the algorithm of [26]. We define a reward structure ri for the value V for
household i at each step, and let rC =

∑

i∈C ri be the total reward for a set of
households C. To compute the expected value per household, we use the rPATL
query:

1
|C| 〈〈C〉〉RrC

max=?[F
0 time=max time]

Initially, we fix C to be the set Π of all N players (households). We use this to
determine the optimal value of Pstart achievable by a memoryless strategy for each
player, which we will then fix. These results are shown by the bold lines in Figure 4.
We also plot (as a dotted line) the values obtained if no demand-side management
is applied.

Next, we consider the situation where the set of households C is allowed to
deviate from the pre-agreed strategy, by choosing to ignore the limit clim if they
wish. We check the same rPATL query as above, but now varying C to be coalitions
of different sizes, C ∈ {{1}, {1, 2}, . . . ,Π}. The resulting values are also plotted in
Figure 4a, shown as horizontal dashes of width proportional to |C|: the shortest
dash represents individual deviation, the longest is a collaboration of all house-
holds. The former shows the maximum value that can be achieved by following the
optimal collaborative strategy, and in itself presents a benchmark for the perfor-
mance of the original algorithm. The key result is that deviations by individuals
or small coalitions guarantee a better expected value for the households than any

larger collaboration: a highly undesired weakness for an MDSM system.

Automatic Verification of Competitive Stochastic Systems 19

1 2 3 4 5 6 7 8

5

10

15

20

Number of households

R
e

w
a

rd
 p

e
r

h
o

u
s
e

h
o

ld

(a) Original version.

1 2 3 4 5 6 7 8

5

10

15

20

Number of households

R
e

w
a

rd
 p

e
r

h
o

u
s
e

h
o

ld

(b) Version with punishment.

Fig. 4: Expected value per household for MDSM. The bold line shows all house-
holds following the algorithm of [26]; the dotted line shows the case without DSM.
Horizontal dashes show deviations by collaborations of increasing size (shortest
dash: individual deviation; longest dash: deviation of all households).

Fixing the algorithm. We propose a simple punishment mechanism that addresses
the problem: we allow the DM to cancel one job per step if the cost exceeds clim.
The intuition is that, if a household is constantly abusing the system, its job could
be cancelled. Results for the same set of rPATL queries on a revised model that
incorporates the punishment mechanism are shown in Figure 4b. We see that the
modification of the algorithm inverts the incentives. The best option now is full
collaboration and small coalitions who deviate cannot guarantee better expected
values any more.

5.3 CDMSN: Collective Decision Making for Sensor Networks

Sensor networks comprise a set of low-power, autonomous devices which must act
collaboratively in order to achieve a particular goal. Strategic analysis of such
systems can help to establish performance boundaries (e.g., find the best value
achievable by the sensor network assuming full collaboration) and analyse per-
formability (e.g., look at the performance of the system in the presence of failure
or unexpected behaviour of some nodes). In this case study, we illustrate the use of
rPATL model checking to aid the analysis and design of such systems by studying
a distributed consensus algorithm for sensor networks [33].

The algorithm. There are N sensors deployed in an environment having a set of
targets K = {k1, k2, . . . }, each with quality Qkj

∈ [0, 1]. The goal is for the sensors
to agree on a target with maximum Qkj

. Each sensor i stores a preferred target
pi ∈ K, its quality Qpi and an integer li ∈ {1, . . . , L} to represent confidence in the
preference. The algorithm has the following non-linearity parameters:

– η, which affects the relative perceived quality of targets when a sensor is com-
paring one to the other;

20 Taolue Chen et al.

– λ, which affects the relative perceived quality of targets when two sensors are
comparing their preferred targets;

– γ, which affects the relative weight of the confidence level when two sensors
are comparing their preferred targets.

A sensor has three actions: sleep, explore and communicate. As proposed by [33],
each sensor repeatedly sleeps for a random time t and then either explores (with
probability Pexp) or communicates. For the explore action, sensor i picks a target
k ∈ K uniformly at random and with probability Pk = Qηk/(Q

η
k +Qηpi

) switches
its preference (pi) to k and resets confidence to 1. To communicate, it compares
its preference with that of a random sensor j. If they agree, both confidences are
increased. If not, with probability

Ps =
Qλpj

lγj

Qλpj
lγj +Qλpi

lγi
,

sensor i switches preference to pj , resets confidence to 1 and increases sensor j’s
confidence; with probability 1−Ps, the roles of sensors i and j are swapped, i.e.
sensor j switches preference to pi, resets confidence to 1 and increases sensor i’s
confidence.

The purpose of the system is to locate and agree upon the target having the
best quality by striking a balance between exploration of the environment (i.e.,
sensing) and communication with other sensors. Intuitively, a ‘good’ strategy for
sensors should be to actively communicate when they believe they have found
the best quality target and to explore otherwise. An example of an antagonistic
strategy could be one which actively communicates to advertise a low quality
target, thus not only polluting the system with false information, but also draining
the resources of the sensor network.

Modelling and analysis. We have modelled the system as an SMG with N players,
one per sensor. We consider models with N=3, 4, 5, three targets K={k1, k2, k3}
with qualities Qk1

=1, Qk2
=0.5, Qk3

=0.25 and two confidence levels li ∈ {1, 2}.
As in [33], we assume a random scheduling and fix parameters η=1 and λ=1.
In [33], two key properties of the algorithm are studied: speed of convergence and
robustness. We use our rPATL framework to evaluate both of these and explore
alternative strategies for sensors (i.e. allowing sensors to execute any action when
active). We also assume that only a subset C of the sensors are under our control,
e.g. because the others are faulty. We use rPATL queries (with coalition C) to
optimise performance, under the worst-case assumption about the other sensors.

First, we study the speed of convergence and the influence of parameter γ upon
it. In [33], it is shown that increasing γ improves the speed of convergence to a

decision and stability of it. Figure 5 shows the expected running time to reach the
best decision (i.e. select k1) for various values of γ and sizes of the coalition C. We
use the reward structure: r(s) = 1 for all s ∈ S and rPATL query:

〈〈C〉〉Rr
min=?[F

∞ ∧|Π|
i=1 pi = k1] .

where C ∈ {{1}, {1, 2}, . . . ,Π}. Figure 5 also shows the performance of the original
algorithm [33] (line ‘det’). We make several important observations. First, if we
lose control of a few sensors (e.g. because a fault occurs), we can still guarantee a

Automatic Verification of Competitive Stochastic Systems 21

0 1 2 3 4 5

5

50

500
1 2 3 det

ɣ

E
x
p

e
c
te

d
 r

u
n
n
in

g
 t
im

e

(a) N = 3

0 1 2 3 4 5

5

50

500
1 2 3 4 det

ɣ

E
x
p

e
c
te

d
 r

u
n
n
in

g
 t
im

e
(b) N = 4

0 1 2 3 4 5

5

50

500
1 2 3 4 5 det

ɣ

E
x
p

e
c
te

d
 r

u
n
n
in

g
 t
im

e

(c) N = 5

Fig. 5: Expected running time until the selection of the best quality target for
different models and increasing sizes of coalition C. Dotted lines show optimal
performance that can be achieved using the original algorithm from [33].

0 25 50 75 100

0

0.25

0.5

0.75

1

1 2 3 4 5

Time (n)

E
x
p
e

c
te

d
 p

ro
b
a

b
il
it
y

(a) Probability to select k1 within 10 steps
is greater than 0.9.

0 25 50

0

0.25

0.5

0.75

1

1 2 3 4 5

Time (n)

E
x
p
e

c
te

d
 p

ro
b
a

b
il
it
y

(b) Expected energy usage for coalition to
select k1 is less than 0.5mJ .

Fig. 6: Minimum probability to recover from a state where all sensors prefer the
lowest quality target, k3, within n steps for different coalition sizes. Graphs (a)
and (b) show results for two types of recovery state (see captions), with γ = 2.

good convergence time, indicating the fault tolerance potential of the system. On
the other hand, the original version performs almost as well as the optimal case
for large coalitions.

Secondly, we consider robustness: the ability of the coalition C to recover from

a ‘bad’ state (i.e.
∧|Π|

i=1 pi = k3) to a ‘good’ state in n steps; this can be specified

by rPATL formula 〈〈C〉〉Pmax=?[F
≤n φgood], where φgood represents ‘good’ states.

Below, we give two interpretations of a ‘good’ state and show that the results
for them are quite different. Note that the formulae below characterise a strategy
for coalition C that consists of two parts: first, the strategy from the outer 〈〈C〉〉
recovers to a ‘good’ state; and second, once the ‘good’ state is reached, the strategy
of the coalition switches to the one defined by the inner 〈〈C〉〉 operator.

22 Taolue Chen et al.

(1) For a ‘good’ state, there exists a strategy for coalition C to make all sensors,
with probability > 0.9, select k1 within 10 steps. So robustness in rPATL is:

〈〈C〉〉Pmax=?[F
≤n 〈〈C〉〉P>0.9[F≤10 ∧|Π|

i=1 pi = k1]] .

(2) For a ‘good’ state, there exists a strategy for coalition C to make all sensors
select k1 while using less than 0.5mJ of energy. We use a reward structure rC
representing energy usage by sensors in C: power consumption is 10mW for
each communication and 1mW for each exploration, and each activity takes
0.1s. Then, robustness in rPATL is:

〈〈C〉〉Pmax=?[F
≤n 〈〈C〉〉RrC

<50[F
c∧|Π|

i=1 pi = k1]] .

Figure 6 shows, for each definition and for a range of values of n, the worst-case

(minimum) value for the rPATL query from all possible ‘bad states’. For (1),
the results are intuitive: the larger the coalition, the faster it recovers. For (2),
however, the one-sensor coalition outperforms all others. Also, we see that, in the
early stages of recovery, 2-sensor coalitions outperform larger ones. This shows
that small coalitions can be more resource efficient in achieving certain goals.

Note that the performance results detailed here are in a complete-information
setting, which implicitly assumes that the members of the coalition (i.e., non-faulty
sensors) have knowledge of which sensors are faulty and can adjust their behaviour
accordingly, and therefore the values provided by our analysis are upper bounds
on the performance that can be achieved.

6 Conclusions

We have designed and implemented a framework for automatic verification of
systems with both probabilistic and competitive behaviour, based on stochastic
multi-player games. We proposed a new temporal logic rPATL, designed model
checking algorithms, implemented them in a tool and then used our techniques to
identify unexpected behaviour in several large case studies.

There are many interesting directions for future work in this area. Firstly, we
plan to further develop our probabilistic model checker PRISM-games, including
synthesis of strategies for rPATL and analysis of wider classes of properties for
SMGs (e.g., reward operators dealing with limit averages and discounted sums).
Secondly, we would like to investigate extensions of our techniques to incorporate
partial-information strategies or more complex solution concepts such as Nash,
subgame-perfect or secure equilibria. We would also like to explore the applicability
of our work as an underlying solution framework for more complex analysis of
multi-agent systems.

Acknowledgements

The authors are partially supported by ERC Advanced Grant VERIWARE, the
Institute for the Future of Computing at the Oxford Martin School and EPSRC
grant EP/F001096/1. Vojtěch Forejt is supported by a Royal Society Newton
Fellowship. We also thank the anonymous referees for various helpful comments.

Automatic Verification of Competitive Stochastic Systems 23

Appendix: Proofs

This appendix contains proofs for the results stated in the text. We begin by stating some
known results that we will require later.

Theorem 2 ([6,12]) The following statements hold:

1. Memoryless deterministic strategies suffice for achieving minimum/maximum values in
a state for extended reachability, Büchi, and coBüchi objectives in stochastic two-player
zero-sum games.

2. Finding minimum/maximum values in a state for Markov decision processes (MDPs) for
extended reachability, Büchi, and coBüchi objectives can be done in polynomial time.

A Proofs for Optimality of Expected Rewards

A.1 Finite-memory Strategies for - = 0

We first show that finite-memory strategies are required for optimality of expected rewards of
type ! = 0, i.e. for optimal values of Emax,min

GC ,s [rew(r, 0, T)]. Later, in the proof of Lemma 3 we

show that the finite memory is indeed sufficient. Let us consider the following example:

s1 s0 s2
a a

a b 0.1

0.9

The target set is T = {s1} and the reward structure r assigns 1 to s0 and 0 to the other states.
We analyse the optimal value of rew(r, 0, T) in s0. Let σ be a memoryless strategy that in s0
picks a with probability x and b with probability 1− x. The reward obtained is then:

∞
∑

i=1

i · 0.9i−1 · (1− x)i−1 · x =

=
x

(0.9− 0.9 · x)
·

∞
∑

i=1

i · (0.9− 0.9 · x)i

=
x

(0.9− 0.9 · x)
·

(0.9− 0.9 · x)
(

1− (0.9− 0.9 · x)
)2

=
x

(0.1 + 0.9 · x)2

which, for any x, is lower than 25
9 .

Now consider the strategy σ′ that is deterministic, and picks b on the first 8 visits to s0
and then a on the 9th visit. The value under this strategy is:

9 · 0.98 ≈ 3.8 >
25

9

Remark An optimal (memoryless deterministic) strategy in s0 for both ! = ∞ and ! = c is
to take the action b and thus achieve values ∞ and 10, respectively.

24 Taolue Chen et al.

A.2 Memoryless Strategies for - = {∞, c}

Secondly, we prove that memoryless (deterministic) strategies suffice for optimality of the

expected reward E
max,min
GC ,s [rew(r, !, T)] for types ! = {∞, c}.

If the expected value is infinite, then memoryless deterministic strategies suffice by Theo-
rem 2 because this cases reduces to the problem of reaching a state where the expected value
is infinite with positive probability. The states s ∈ T get value 0 by definition. Otherwise, the
values E

max,min
GC ,s [rew(r, !, T)] satisfy:

E
max,min
GC ,s [rew(r, !, T)] = r(s) + optsa∈A(s)

∑

s′∈S

∆(s, a)(s′) · Emax,min
GC ,s′

[rew(r, !, T)] (3)

Let Aopt(s) be the set of actions that realise the optimum in s, where opt is max or min, for
players 1 and 2, respectively; similarly opts is max if s ∈ S1 and min if s ∈ S2.

We first analyse the case ! = ∞. Any strategy σ∞
1 ∈ Σ1 that in s picks the action from

Aopt(s) is optimal. For player 2, any strategy σ∞
2 ∈ Σ2 is optimal if it picks the action from

Aopt(s) in s such that T is reached almost surely under any counter-strategy for player 1.

Next, assume ! = c and let T0 = {s | Emax,min
GC ,s [rew(r, c, T)] = 0}. To optimise rew(r, c, T),

we fix σc
1 ∈ Σ1 that uses an action Aopt(s) in s and ensures that T0 is reached almost surely.

For player 2, any strategy σc
2 ∈ Σ2 is optimal if it picks an action from Aopt(s) in s.

Proof of correctness of definitions of strategies. Given a state s and a strategy σ1 for
player 1, we denote:

errσ1 (s) =
minσ2∈Σ2

E
σ1,σ2

GC ,s [rew(r, !, T)]

E
max,min
GC ,s [rew(r, !, T)]

where we assume errσ1 (s) = 1 if the denominator is 0. Observe that we have errσ1 (s) ·

E
max,min
GC ,s [rew(r, !, T)] = minσ2∈Σ2

E
σ1,σ2

GC ,s [rew(r, !, T)].

Let ! = c. We prove that the maximiser’s strategy σ = σc
1 defined above is optimal.

Assume, for a contradiction, that it is not, i.e. errσ(s) < 1 for some s. For all s, we have:

errσ(s)·Emax,min
GC ,s [rew(r, c, T)] = r(s)+

∑

s′∈S

∆(s,σ(s))(s′)·errσ(s′)·Emax,min
GC ,s′

[rew(r, c, T)] (4)

and, for all s ∈ S2, there must be an action a such that:

errσ(s) · Emax,min
GC ,s [rew(r, c, T)] = r(s) +

∑

s′∈S

∆(s, a)(s′) · errσ(s′) · Emax,min
GC ,s′

[rew(r, c, T)] (5)

Fix s such that errσ(s) < 1 is minimal. Thanks to equations (3), (4) and (5), we get that the
value must also be minimal for all successors of s. However, this implies that T0 is not reached
with probability equal to 1 because, in every s′ ∈ T0, we have errσ(s′) = 1.

The other cases (σc
2, σ

∞
1 and σ∞

1) can be proved analogously.

B Proofs of Correctness for Section 4.3

In this section, we prove the correctness of the methods given in Section 4.3 for computing
rew(r, !, T) for the cases ! = {c,∞, 0}.

B.1 Proof of Correctness for - = c

Let us first consider the states with infinite value. Recall that we denote by inf (arew) the set
of paths that visit a state with positive reward infinitely often (and thus get infinite reward).
If, for a state s, there is σ1 ∈ Σ1 such that the probability Prσ1,σ2

GC ,s (inf (arew)) is positive for all

σ2 ∈ Σ2, then the strategy σ1 itself yields the infinite reward. In the other direction, suppose

Automatic Verification of Competitive Stochastic Systems 25

that for every σ1 ∈ Σ1 there is some σ2 ∈ Σ2 such that Prσ1,σ2

GC ,s (inf (arew)) is equal to zero.

It is straightforward to extend the results of [22] and prove that, for every σ1, a strategy σ2
exists which in addition ensures that the expected number of visits to a state satisfying arew is
finite and bounded from above. The rest follows easily because the rewards assigned to states
are also bounded from above.

Let us now consider finite values. Because of the assumption that no reward is accumulated
after visiting a target state, we can change the random variable and use

∑

j∈N
r(stλ(j)) instead

of rew(r, c, T). It can be shown by induction that the expected value w.r.t. this variable can
be obtained as limi→∞ fs(i) where:

fs(i) =

{

0 if i = 0

r(s) + opts
a∈Act(s)

∑

s′∈aS
∆(s, a)(s′) · fs′ (i− 1) otherwise

(6)

We can then apply the Kleene fixpoint theorem and prove that limi→∞ fs(i) is equal to the
least fixpoint of the equations (2).

B.2 Proof of Correctness for - = ∞

First, observe that if a state s is assigned infinite value in the initial step, then we indeed have
E
max,min
GC ,s [rew(r,∞, T)] = ∞ by definition. We prove the correctness for the other values. Let

u : S → Q be a function that assigns to each s a value such that u(s) ≥ E
max,min
GC ,s [rew(r,∞, T)].

Recall that we compute values of equations (2) by value iteration, i.e. we compute:

f(s)(i) =











0 if s ∈ T

u(s) if i = 0

r(s) + opts
a∈A(s)

∑

s′∈S ∆(s, a)(s′) · f(s′)(i− 1) otherwise

for sufficiently large i, and we show that limi→∞ f(s)(i) = E
max,min
GC ,s [rew(r,∞, T)].

Let us consider auxiliary functions rew i
u which assign numbers to paths as follows:

rew i
u(λ) =











∑

j<k

r(stλ(j)) ∃k ≤ i : stλ(k) ∈ T ∧ ∀j < k : stλ(j) /∈ T,

∑

j<i
r(stλ(j)) + u(stλ(i)) otherwise.

Intuitively, the function rew i
u alters the definition of rew(r,∞, T) by assigning rewards given

by r for the first i steps, and then assigning the reward given by u, if the target has not
been reached yet. One can easily prove by induction that the value of f(s)(i) is equal to

E
max,min
GC ,s [rew i

u].

We need to show that limi→∞ f(s)(i) ≥ E
max,min
GC ,s [rew(r,∞, T)]. This can be done by

inductively showing that f(s)(i) ≥ E
max,min
GC ,s [rew(r,∞, T)] for every i. The base case i = 0

follows from the definition of f and u, and the inductive steps follow by monotonicity of the
function f .

Furthermore, we show that limi→∞ f(s)(i) ≤ E
max,min
GC ,s [rew(r,∞, T)]. Let σmin ∈ Σ2 be a

memoryless strategy satisfying maxσ∈Σ1
E
σ,σmin

GC ,s [rew(r,∞, T)] = E
max,min
GC ,s [rew(r,∞, T)], i.e.

σmin is the optimal minimising strategy for player 2. Let τ(i) = minσ∈Σ1
Prσ,σmin

s ({λ ∈
ΩGC ,s | ∃j ≤ i : stλ(j) ∈ T}) be the minimal probability with which we end in T within i
steps when playing according to σmin. We have limi→∞ τ(i) = 1, because otherwise player 1
would have a strategy to prevent the target from being reached almost surely and the reward
obtained would be infinite. Thus, we have maxσ∈Σ1

E
σ,σmin
s [rew i

u] ≤ E
max,min
GC ,s [rew(r,∞, T)]+

(1− τ(i)) ·K where K = maxs∈S u(s). As we let i go to ∞, the second summand diminishes,

and so f(s)(i) = E
max,min
GC ,s [rew i

u] ≤ E
max,min
GC ,s [rew(r,∞, T)]. +,

26 Taolue Chen et al.

B.3 Proof of Correctness for - = 0

Lemma 1 supσ1∈Σ1
infσ2∈Σ2

E
σ1,σ2
s [rew(r, 0, T)] = ∞ iff there is σ1∈Σ1 such that for all

σ2∈Σ2 Prσ1,σ2

GC ,s (inf t(arew)) > 0.

Proof In the direction ⇐, let q ∈ R be any number. Player 1’s strategy σ to ensure that the ex-
pected reward achieved is at least q works as follows. Suppose σ1 ensures Prσ1,σ2

GC ,s (inf t(arew)) >

p for all σ2. By [22], we can safely assume that p > 0. The strategy σ mimics a strategy σ1 ∈ Σ1

if the history λ satisfies r(λ) < q

p·x|S| where x is the minimal probability that occurs in the

game. When r(λ) exceeds this bound and the formula P>0[F t] is satisfied in the last state of λ,
the strategy σ changes its behaviour and maximises the probability to reach T . Because mem-
oryless deterministic strategies are sufficient for both players for reachability queries, σ can
ensure that T is reached with probability at least x|S| from λ. The rest is a simple computation.

Let us analyse the direction ⇒. Similarly to the ! = c case, we can show that, if for every
σ1 ∈ Σ1 there is σ2 ∈ Σ2 such that Prσ1,σ2

GC ,s (inf (atrew)) is equal to zero, then there is σ2 which

ensures that the expected number of visits to a state satisfying atrew is finite. The rest follows
as in ! = c; we only need to further consider that if the state satisfies arew but not P>0[F t]
(i.e. it gets nonzero reward but is not labelled with atrew), then the reward achievable by player
1 in such a state is 0.

Given the state s, we denote the set of actions which can be taken by the strategy which
achieved maximum probability to reach T by A(s, T). We first show that, if player 1 wants to
maximise the expected reward w.r.t. rew(r, 0, T) using only actions from A(s, T) in each state,
he can do so using a memoryless deterministic strategy.

Lemma 2 Let ΣT
1 ⊆ Σ1 contain all strategies that use only the actions from A(s, T) and

∀σ1 ∈ ΣT
1 : minσ2∈Σ2

Prσ1,σ2

GC ,s (F t) = Prmax,min
GC ,s (F t). There is a memoryless deterministic

strategy σ∗
1 ∈ ΣT

1 satisfying:

min
σ2∈Σ2

E
σ∗
1
,σ2

GC ,s [rew(r, 0, T)] = max
σ1∈ΣT

1

min
σ2∈Σ2

E
σ1,σ2

GC ,s [rew(r, 0, T)] .

Proof Assume the game is restricted so that the only actions available in s are A(s, T) for all

s. We first create a new reward structure r′ defined by r′(s) = r(s) · Prmax,min
GC ,s (F t). We show

that, for all σ1 ∈ ΣT
1 and σ2 ∈ Σ2 with Prσ1,σ2

GC ,s (F t) = Prmax,min
GC ,s (F t), we have that:

E
σ1,σ2

GC ,s [rew(r′, c, T)] = E
σ1,σ2

GC ,s [rew(r, 0, T)] ,

from which the lemma follows directly, as memoryless deterministic strategies suffice for achiev-
ing the optimal value of rew(r′, c, T) (see the proof in Appendix A.2).

Automatic Verification of Competitive Stochastic Systems 27

Let ΩGC ,s(T)
def
= {λ ∈ ΩGC ,s | ∃i : stλ(i) ∈ T}, and t(λ) = mini∈N stλ(i) ∈ T . For any

strategy profile σ1,σ2 such that Prσ1,σ2

GC ,s (F t) = Prmax,min
GC ,s (F t),

E
σ1,σ2

GC ,s [rew(r, 0, T)] =

∫

ΩGC,s

rew(r, 0, T)(λ)dPrσ1,σ2

GC ,s

=

∫

ΩGC,s(T)

t(λ)
∑

n=0

r(stλ(n))dPr
σ1,σ2

GC ,s

=

∫

ΩGC,s(T)

∞
∑

n=0

r(stλ(n))dPr
σ1,σ2

GC ,s

=
∞
∑

n=0

∫

ΩGC,s(T)
r(stλ(n))dPr

σ1,σ2

GC ,s

=
∞
∑

n=0

∑

s′∈S

r(s′) · Prσ1,σ2

GC ,s (stλ(n)=s′ ∧ λ |=F t)

=
∞
∑

n=0

∑

s′∈S

r(s′) · Prσ1,σ2

GC ,s (stλ(n)=s′) · Prσ1,σ2

GC ,s (λ |=F t | stλ(n)=s′)

=
∞
∑

n=0

∑

s′∈S

r(s′) · Prσ1,σ2

GC ,s (stλ(n)=s′) · Prmax,min
GC ,s′

(F t)

=
∞
∑

n=0

∑

s′∈S

r′(s′) · Prσ1,σ2

GC ,s (stλ(n)=s′)

=
∞
∑

n=0

∫

ΩGC,s

r′(stλ(n))dPr
σ1,σ2

GC ,s

=

∫

ΩGC,s

rew(r′, c, T)(λ)dPrσ1,σ2

GC ,s

= E
σ1,σ2

GC ,s [rew(r′, c, T)].

This completes the proof. +,

Below, given a path h, we use Eσ1,σ2

GC ,s [rew(r, 0, T) | h] to denote the conditional expectation

of rew(r, 0, T) on infinite paths initiated in h, i.e.:

E
σ1,σ2

GC ,s [rew(r, 0, T) | h] =

∫

{λ|λ starts with h} r(λ) dPr
σ1,σ2

GC ,s

Prσ1,σ2

GC ,s ({λ | λ starts with h}

Lemma 3 For each state s ∈ S, there exists a finite-memory strategy σ∗ for player 1 which
maximises the expected reward rew(r, 0, T) from the state s. In particular, there exists some
bound B such that for r(h) ≥ B, σ∗(h) becomes memoryless.

Proof Fix two strategies σ1 ∈ Σ1 and σ2 ∈ Σ2. For each state s ∈ S and a path h =
s0a0s1 . . . sn ending in s′ we have that:

E
σ1,σ2

GC ,s [rew(r, 0, T) | h] = E
σh
1
,σh

2

GC ,s [rew(r, 0, T) + r(h)]

=

∫

{λ∈ΩGC,s|λ|=F t}
r(h)dPrσ1,σ2

s + E
σh
1
,σh

2

GC ,sn
[rew(r, 0, T)]

= Pr
σh
1
,σh

2

GC ,sn
(F t) · r(h) + E

σh
1
,σh

2

GC ,sn
[rew(r, 0, T)]

where rew(r, 0, T) + r(h) is a random variable assigning rew(r, 0, T)(λ) + r(h) to a path h
reaching T , and 0 otherwise; and where σh

i (h
′) = σi(s0a0s1 . . . sn−1an−1·h′).

28 Taolue Chen et al.

Given a state s, we use PRmax
s to denote the maximal reachability probability to reach T

under the strategies for which at s, actions in A(s, T) are disallowed for a single step, i.e.:

PRmax
s = max

a∈A(s)\A(s,T)

∑

s′∈S

∆(s, a)(s′) · Prmax,min
GC ,s′

(F t)

Intuitively, PRmax
s denotes the “second” maximal reachability probability. Below, we assume

that A(s, T) 0= ∆(s). Define:

Bs =
E
max,min
GC ,s [rew(r, c, T)]

Prmax,min
GC ,s (F t)− PRmax

s

Let B = maxs∈S Bs. We show that, on paths h ending in s and satisfying r(h) > B, no optimal
strategy of player 1 can use actions from A(s)\A(s, T) and, together with Lemma 2, we obtain
the statement of this lemma.

Let h be a path ending in sn ∈ S1 and satisfying r(h) > B. Assume σ1(h) deterministically
chooses action from A(s) \A(s, T) (for randomised choices the argument follows analogously).
By above we have, for any σ2 ∈ Σ2:

E
σ1,σ2

GC ,s [rew(r, 0, T) | h]

= Pr
σh
1
,σh

2

GC ,s (F t) · r(h) + E
σh
1
,σh

2

GC ,sn
[rew(r, 0, T)]

≤ PRmax
s · r(h) + E

σh
1
,σh

2

GC ,sn
[rew(r, 0, T)]

= Prmax,min
GC ,sn

(F t) · r(h)− (Prmax,min
GC ,sn

(F t)− PRmax
sn) · r(h) + E

σh
1
,σh

2

GC ,sn
[rew(r, 0, T)]

< Prmax,min
GC ,sn

(F t) · r(h)− (Prmax,min
GC ,sn

(F t)− PRmax
sn) ·B + E

σh
1
,σh

2

GC ,sn
[rew(r, 0, T)]

≤ Prmax,min
GC ,sn

(F t) · r(h)− E
max,min
GC ,sn

[rew(r, c, T)] + E
σh
1
,σh

2

GC ,sn
[rew(r, 0, T)]

≤ E
max,min
GC ,s [rew(r, 0, T) | h]

which contradicts that σ1 is optimal.
Clearly, the strategy optimising rew(r, 0, T) is of finite-memory with upper bound B on

the memory needed. +,

By the equalities from the proof of Lemma 2 and by Lemma 3, the procedure described
in step 2 of the algorithm on page 13 is correct. The procedure from step 3 of the algorithm is
correct because, for all paths h, we have that:

E
σ1,σ2

GC ,s [rew(r, 0, T) | h] = max
a∈A(s)

∑

s′∈S

∆(s, a)(s′) · Eσ1,σ2

GC ,s [rew(r, 0, T) | h·a·s′].

C Proof of Theorem 1

Theorem 1(a). Let ϕ be a rPATL formula with no 〈〈C〉〉Rr
%&x[F

0φ] operator and where k for
the temporal operator U≤k is given in unary. The problem of deciding whether the formula
is satisfied in s is in NP ∩ coNP.

Proof By equivalences such as the one in equation (1) on page 8, we can assume that all
probabilistic and reward operators only contain bounds ≥ or >, so in the proof we assume
*+∈ {>,≥}.

Let ϕ1,ϕ2, . . . ,ϕn be the sequence of all state formulae occurring in ϕ. Also, if ϕi’s out-
ermost operator is temporal, let Ci denote the outermost coalition in ϕi, and ΣC

j denote the
set of all memoryless deterministic strategies for player j in the coalition game GC .

We show that the problem is in NP ∩ coNP by describing a polynomial-size certificate c
that allows us to check that a formula is (not) satisfied. The certificate c is a function that

assigns an element of ΣCi
1 ∪ ΣCi

2 to each tuple (i, s) where s ∈ S and ϕi is a formula whose
outermost operator is temporal:

Automatic Verification of Competitive Stochastic Systems 29

– If ϕi ≡ 〈〈C〉〉P%&q [ψ] and s |= ϕi, then:
c(i, s) = σ1 for σ1 ∈ ΣC

1 such that minσ2∈Σ2
Prσ1,σ2

GC ,s (ψ) *+ q holds.

– If ϕi ≡ 〈〈C〉〉P%&q [ψ] and s 0|= ϕi, then:
c(i, s) = σ2 for σ2 ∈ ΣC

2 such that maxσ1∈Σ1
Prσ1,σ2

GC ,s (ψ) *+ q does not hold.

– If ϕi ≡ 〈〈C〉〉Rr
%&x[F

'φ] and s |= ϕi, then:
c(i, s) = σ1 for σ1 ∈ ΣC

1 such that minσ2∈Σ2
E
σ1,σ2

GC ,s [rew(r, !,Sat(φ))] *+ x holds.

– If ϕi ≡ 〈〈C〉〉Rr
%&x[F

'φ] and s 0|= ϕi, then:
c(i, s) = σ2 for σ2 ∈ ΣC

2 such that maxσ1∈Σ1
E
σ1,σ2

GC ,s [rew(r, !,Sat(φ))] *+ x does not hold.

The existence of the strategies assigned by c follows from Theorem 2 and from Appendix A.2.
To check the certificate in polynomial time, we compute Sat(ϕ′) for all state subformulae

ϕ′ of ϕ, traversing the parse tree of ϕ bottom-up. Suppose that we are analysing a formula
ϕ′ and that we have computed Sat(ϕ′′) for all state subformulae ϕ′′ of ϕ′. If ϕ′ is an atomic
proposition or its outermost operator is a boolean connective, we construct Sat(ϕ′′) in the
obvious way. Otherwise:

Sat(ϕ′) = {s | c(i, s) is a strategy for the first player in the coalition game} .

We verify that our choice of Sat(ϕ′) is correct as follows. For all s ∈ Sat(ϕ′), we construct an
MDP from the appropriate coalition game by fixing the decisions of the first player according
to c(i, s), and in polynomial time we check that the minimal probability (or reward) in the
resulting MDP exceeds the bound given by the outermost operator of ϕ′ (see Theorem 2). If
s 0∈ Sat(ϕ′), then we fix the decisions of the second player according to c(i, s) and proceed
analogously, computing the maximal probabilities.

Theorem 1(b). Model checking an arbitrary rPATL formula is in NEXP ∩ coNEXP.

Proof The proof is similar to that for Theorem 1(a) above. We only need to extend the certifi-
cate from the proof to provide a witnessing strategy for formulae of the form 〈〈C〉〉Rr

%&x[F
0φ].

This is straightforward since, in the proof of Lemma 3, we showed that players need only
strategies of exponential size.

In Lemma 3 we have shown that, for the optimal strategy, it suffices to play a deterministic
memoryless strategy after a certain reward bound B has been reached and, before that, the
strategy needs to remember only the reward accumulated along the history. The rewards are
integers, therefore, the strategy in a state may need a different action for each value of reward
below B, and one action for reward which is greater or equal to B. So, the overall size of the
memory will be O(|S| × B). A deterministic strategy suffices in this case; observe that one
could ‘embed’ the memory into the game by constructing a new game where the set of states
is S× {0, . . . , B+ rmax − 1}∪ {sf}. The transition relation is preserved for states (s, k) where
k < B, and states (s, k) where k ≥ B have a transition to sf only. The reward structure
r assigns reward R(s,k) to states where k ≥ B, which can be computed using step 2 of the
algorithm for ! = 0 in Section 4, and 0 to all other states. Then, the deterministic memoryless
strategy that maximises rew(r, c, {sf}) in this new game will also be an optimal strategy in
the original game (but requiring memory of size B). The size of B can be at most exponential
in the size of G, i.e. from Lemma 3 it follows that the size of B for a state s is bounded by

Bs =
E
max,min
GC ,s [rew(r, c, T)]

Prmax,min
GC ,s (F t)− PRmax

s

. (7)

We claim that all Emax,min
GC ,s [rew(r, c, T)], Prmax,min

GC ,s (F t) and PRmax
s can be represented as frac-

tions of integers whose binary representation is polynomial in the size of the input, from which
the bound on the size of Bs follows. For E

max,min
GC ,s [rew(r, c, T)] (or Prmax,min

GC ,s (F t), PRmax
s),

fixing the optimal strategies for both players we can construct a linear program whose size
is polynomial in the size of input, and whose solution is equal to E

max,min
GC ,s [rew(r, c, T)] (or

Prmax,min
GC ,s (F t), PRmax

s , respectively). Because the solution of the linear program can be rep-

resented as a fraction of two integers of polynomial binary representations, we get the claim.
Therefore, Bs is at most exponential in the size of G.

30 Taolue Chen et al.

D Proof of Correctness for Section 4.4

Price-bounded coalitions. In the proof of Theorem 1 (when all coalitions were fixed), we
exploited the fact that there is an exponential size certificate c, which is a function that assigns

an element of ΣCi
1 ∪ΣCi

2 to each tuple (i, s) where s ∈ S and ϕi is a formula whose outermost
operator is temporal.

We extend this approach by changing the certificate c so that it returns an element of
ΣC

1 ∪ ΣC
2 to each tuple (i, s, C), where s ∈ S, ϕi is a formula whose outermost operator is

temporal, C ⊆ Π, and *+∈ {>,≥}:

– If ϕi ≡ 〈〈C〉〉P%&q [ψ] or ϕi ≡ 〈〈?〉〉≤yP%&q [ψ], and s |= 〈〈C〉〉P%&q [ψ], then:
c(i, s, C) = σ1 for σ1 ∈ ΣC

1 such that minσ2∈Σ2
Prσ1,σ2

GC ,s (ψ) *+ q holds.

– If ϕi ≡ 〈〈C〉〉P%&q [ψ] or ϕi ≡ 〈〈?〉〉≤yP%&q [ψ] , and s 0|= 〈〈C〉〉P%&q [ψ], then:
c(i, s, C) = σ2 for σ2 ∈ ΣC

2 such that maxσ1∈Σ1
Prσ1,σ2

GC ,s (ψ) *+ q does not hold.

– If ϕi ≡ 〈〈C〉〉Rr
%&x[F

'φ] or ϕi ≡ 〈〈?〉〉≤yR
r
%&x[F

'φ], and s |= 〈〈C〉〉Rr
%&x[F

'φ], then:
c(i, s, C) = σ1 for σ1 ∈ ΣC

1 such that minσ2∈Σ2
E
σ1,σ2

GC ,s [rew(r, !,Sat(φ))] *+ x holds.

– If ϕi ≡ 〈〈C〉〉Rr
%&x[F

'φ] or ϕi ≡ 〈〈?〉〉≤yR
r
%&x[F

'φ], and s 0|= 〈〈C〉〉Rr
%&x[F

'φ], then:
c(i, s, C)=σ2 for σ2∈ΣC

2 such that maxσ1∈Σ1
E
σ1,σ2

GC ,s [rew(r, !,Sat(φ))] *+ x does not hold.

– If ϕi ≡ 〈〈C′〉〉P%&q [ψ] ϕi ≡ 〈〈C′〉〉P%&q [ψ], ϕi ≡ 〈〈C′〉〉Rr
%&x[F

'φ], or ϕi ≡ 〈〈C′〉〉Rr
%&x[F

'φ],
and C′ 0= C, then c(i, s, C) returns an arbitrary memoryless deterministic strategy from

ΣC′

1 ∪ΣC′

2 .

As before, the existence of strategies assigned by c follows from Theorem 2 and from Ap-
pendix A.2: for all formulae but 〈〈C〉〉Rr

%&x[F
0φ] and 〈〈?〉〉Rr

%&x[F
0φ], memoryless determinis-

tic strategies exist; and, for the aforementioned formulae, exponential memory deterministic
strategies suffice.

To check the certificate in polynomial time (in the worst-case size of c, which is exponential
in the size of the model), we compute Sat(ϕ′) for all state subformulae ϕ′ of ϕ, traversing
the parse tree of ϕ bottom-up. Suppose that we are analysing a formula ϕ′ and that we
have computed Sat(ϕ′′) for all state subformulae ϕ′′ of ϕ′. If ϕ′ is an atomic proposition
or its outermost operator is a boolean connective, we construct Sat(ϕ′) in the obvious way.
Otherwise, if the outermost coalition in ϕ′ is fixed to C:

Sat(ϕ′) = {s | c(i, s, C) ∈ ΣC
1 }

and, if the outermost coalition in ϕ′ is not specified, but a coalition of price ≤ y is required:

Sat(ϕ′) = {s | ∃C ⊆ Π :
∑

γ∈C

p(γ) ≤ y and c(i, s, C) ∈ ΣC
1 } .

We verify that our choice of Sat(ϕ′) is correct as follows. For all s ∈ Sat(ϕ′), we construct
an MDP from the appropriate coalition game by fixing the decisions of the first player according
to c(i, s, C) and in polynomial time we check that the minimal probability (or reward) in the
resulting MDP exceeds the bound given by the outermost operator of ϕ′ (see Theorem 2). If
s 0∈ Sat(ϕ′), and the outermost coalition of ϕ′ is C, then we fix the decisions of the second
player according to c(i, s, C) and proceed analogously, computing the maximal probabilities.
If s 0∈ Sat(ϕ′), and the outermost coalition of ϕ′ is not specified, but required to be of price at
most y, we need to construct MDPs from the coalition games GC for all C where

∑

γ∈C p(γ) ≤ y
by fixing the decisions of the second player and computing the maximal probabilities. There
are only polynomially many (in the size of c) possible choices of C (the number of different
coalitions is exponential in the size of G, but the certificate is exponential in G too), and each
choice can be checked in polynomial time.

References

1. M. Aizatulin, H. Schnoor, and T. Wilke. Computationally sound analysis of a probabilistic
contract signing protocol. In Proc. 14th European Symposium on Research in Computer
Security (ESORICS’09), volume 5789 of LNCS, pages 571–586. Springer, 2009.

Automatic Verification of Competitive Stochastic Systems 31

2. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of
the ACM, 49(5):672–713, 2002.

3. R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. MOCHA:
Modularity in model checking. In Proc. 10th International Conference on Computer Aided
Verification (CAV’98), volume 1427 of LNCS, pages 521–525, Vancouver, 1998. Springer.

4. S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards model-checked. In
Proc. Formal Modeling and Analysis of Timed Systems (FORMATS’03), volume 2791 of
LNCS, pages 88–104. Springer, 2003.

5. C. Baier, T. Brázdil, M. Größer, and A. Kucera. Stochastic game logic. In Proc. 4th
International Conference on Quantitative Evaluation of Systems (QEST’07), pages 227–
236. IEEE, 2007.

6. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
7. P. Ballarini, M. Fisher, and M. Wooldridge. Uncertain agent verification through proba-

bilistic model-checking. In Proc. 3rd International Workshop on Safety and Security in
Multi-agent Systems (SASEMAS’06), 2006.

8. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.
In P. Thiagarajan, editor, Proc. 15th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’95), volume 1026 of LNCS, pages 499–513.
Springer, 1995.

9. T. Brihaye, N. Markey, M. Ghannem, and L. Rieg. Good friends are hard to find! In
S. Demri and C. Jensen, editors, Proc. 15th International Symposium on Temporal Rep-
resentation and Reasoning (TIME’08), pages 32–40. IEEE, 2008.

10. N. Bulling andW. Jamroga. What agents can probably enforce. Fundamenta Informaticae,
93(1–3):81–96, 2009.

11. P. Cerný, K. Chatterjee, T. Henzinger, A. Radhakrishna, and R. Singh. Quantitative
synthesis for concurrent programs. In G. Gopalakrishnan and S. Qadeer, editors, Proc.
23rd International Conference on Computer Aided Verification (CAV’11), volume 6806
of LNCS, pages 243–259. Springer, 2011.

12. K. Chatterjee. Stochastic ω-Regular Games. PhD thesis, University of California at
Berkeley, 2007.

13. K. Chatterjee and T. Henzinger. Value iteration. 25 Years of Model Checking, pages
107–138, 2008.

14. K. Chatterjee, T. Henzinger, B. Jobstmann, and A. Radhakrishna. Gist: A solver for prob-
abilistic games. In Proc. 22nd International Conference on Computer Aided Verification
(CAV’10), LNCS, pages 665–669. Springer, 2010.

15. K. Chatterjee, M. Jurdzinski, and T. Henzinger. Quantitative stochastic parity games. In
J. Ian Munro, editor, Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’04), pages 121–130. SIAM, 2004.

16. T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. Automatic verification
of competitive stochastic systems. In C. Flanagan and B. König, editors, Proc. 18th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’12), volume 7214 of LNCS, pages 315–330. Springer, 2012.

17. T. Chen, M. Kwiatkowska, D. Parker, and A. Simaitis. Verifying team formation protocols
with probabilistic model checking. In Proc. 12th International Workshop on Computa-
tional Logic in Multi-Agent Systems (CLIMA XII 2011), volume 6814 of LNCS, pages
190–297. Springer, 2011.

18. T. Chen and J. Lu. Probabilistic alternating-time temporal logic and model checking algo-
rithm. In Proc. 4th International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD’07), pages 35–39. IEEE, 2007.

19. A. Condon. On algorithms for simple stochastic games. Advances in computational com-
plexity theory, DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, 13:51–73, 1993.

20. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal
of the ACM, 42(4):857–907, 1995.

21. L. de Alfaro. Computing minimum and maximum reachability times in probabilistic
systems. In J. Baeten and S. Mauw, editors, Proc. 10th International Conference on
Concurrency Theory (CONCUR’99), volume 1664 of LNCS, pages 66–81. Springer, 1999.

22. L. de Alfaro and T. Henzinger. Concurrent omega-regular games. In Proc. 15th Annual
IEEE Symposium on Logic in Computer Science, pages 141–154. IEEE Computer Society,
2000.

23. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.

32 Taolue Chen et al.

24. V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated verification techniques
for probabilistic systems. In M. Bernardo and V. Issarny, editors, Formal Methods for
Eternal Networked Software Systems (SFM’11), volume 6659 of LNCS, pages 53–113.
Springer, 2011.

25. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

26. H. Hildmann and F. Saffre. Influence of variable supply and load flexibility on demand-
side management. In Proc. 8th International Conference on the European Energy Market
(EEM’11), pages 63–68, 2011.

27. S. Kremer and J.-F. Raskin. A game-based verification of non-repudiation and fair ex-
change protocols. Journal of Computer Security, 11(3):399–430, 2003.

28. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–
591. Springer, 2011.

29. F. Laroussinie, N. Markey, and G. Oreiby. On the expressiveness and complexity of ATL. In
H. Seidl, editor, Proc. 10th International Conference on Foundations of Software Science
and Computational Structures (FOSSACS’07), volume 4423 of LNCS, pages 243–257.
Springer, 2007.

30. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verification of
multi-agent systems. In Proc. 21st International Conference on Computer Aided Verifi-
cation (CAV’09), volume 5643 of LNCS, pages 682–688. Springer, 2009.

31. D. Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,
63(4):1565–1581, 1998.

32. A. McIver and C. Morgan. Results on the quantitative mu-calculus qMu. ACM Transac-
tions on Computational Logic, 8(1), 2007.

33. F. Saffre and A. Simaitis. Host selection through collective decision. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 7(1), 2012.

34. H. Schnoor. Strategic planning for probabilistic games with incomplete information. In
Proc. 9th International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’10), pages 1057–1064, 2010.

35. M. Ummels. Stochastic Multiplayer Games: Theory and Algorithms. PhD thesis, RWTH
Aachen University, 2010.

36. W. van der Hoek and M. Wooldridge. Model checking cooperation, knowledge, and time
- A case study. Research In Economics, 57(3):235–265, 2003.

37. C. Zhang and J. Pang. On probabilistic alternating simulations. In C. Calude and V. Sas-
sone, editors, Proc. 6th IFIP Conference on Theoretical Computer Science (TCS’10),
volume 323 of IFIP, pages 71–85. Springer, 2010.

38. C. Zhang and J. Pang. An algorithm for probabilistic alternating simulation. In
M. Bieliková, G. Friedrich, G. Gottlob, S. Katzenbeisser, and G. Turán, editors, Proc.
38th Conference on Current Trends in Theory and Practice of Computer Science (SOF-
SEM’12), volume 7147 of LNCS, pages 431–442. Springer, 2012.

	Introduction
	Related work

	Preliminaries
	Property Specification: The Logic rPATL
	rPATL
	Rewards
	Semantics of rPATL
	Equivalences and Extensions
	Reward-bounded Properties and Price-bounded Coalitions
	rPATL*

	Model Checking for rPATL
	The Basic Model Checking Algorithm
	Computing Probabilities
	Computing Rewards
	Reward-bounded Properties and Price-bounded Coalitions
	Model Checking for rPATL*

	Implementation and Case Studies
	Experimental Results
	MDSM: Microgrid Demand-Side Management
	CDMSN: Collective Decision Making for Sensor Networks

	Conclusions
	Proofs for Optimality of Expected Rewards
	Finite-memory Strategies for =0
	Memoryless Strategies for ={,c}

	Proofs of Correctness for Section 4.3
	Proof of Correctness for =c
	Proof of Correctness for =
	Proof of Correctness for =0

	Proof of Theorem 1
	Proof of Correctness for Section 4.4

