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Abstract. Probabilistic timed automata, a variant of timed automata extended with dis-
crete probability distributions, is a modelling formalism suitable for describing formally both
nondeterministic and probabilistic aspects of real-time systems, and is amenable to model
checking against probabilistic timed temporal logic properties. However, the previously devel-
oped verification algorithms either suffer from high complexity, give only approximate results,

or are restricted to a limited class of properties. In the case of classical (non-probabilistic)
timed automata it has been shown that for a large class of real-time verification problems
correctness can be established using an integral model of time (digital clocks) as opposed to a
dense model of time. Based on these results we address the question of under what conditions
digital clocks are sulfficient for the performance analysis of probabilistic timed automata and
show that this reduction is possible for an important class of systems and properties includ-
ing probabilistic reachability and expected reachability. We demonstrate the utility of this
approach by applying the method to the performance analysis of three probabilistic real-time
protocols: the dynamic configuration protocol for IPv4 link-local addresses, the IEEE 802.11
wireless local area network protocol and the IEEE 1394 FireWire root contention protocol.
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1. Introduction

Network protocols increasingly rely on the use of randomness and timing
delays, for example the exponential back-off in Ethernet and IEEE 802.11.
Since these protocols execute in a distributed environment, it is important
to also consider nondeterminism when modelling their behaviour. A natural
model for systems that exhibit nondeterminism, probability and real time,
calledprobabilistic timed automata a probabilistic extension of timed au-
tomata [2] — has been proposed in[[38]. In probabilistic timed automata,
real-valued clocks measure the passage of time, and transitions can be prob-
abilistic, that is, be expressed as a discrete probability distribution on the set
of target states. Ir_[38] model-checking algorithms for verifying the likeli-
hood of certain temporal properties being satisfied by such system models
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are introduced. These model checking algorithms are either baseg on
gion equivalencd?2], which results in prohibitively large state spaces for
realistic systems, or oforwards reachability which leads to approximate
results [38/_20]. An alternative approach, basedankwards reachability

is given in [39]42]; while this can be more efficient than the region equiv-
alence approach and leads to exact results, the approach has been applied
only to probabilistic temporal logics, and not to other classes of performance
properties such as expected-time or expected-cost.

When modelling real-time systems there is a trade off between expressive-
ness and complexity. For exampledansetime model is more expressive
than anintegraltime model. However, it is generally the case that an integral
time model is easier to verify, since it leads to a finite-state system and allows
one to apply the efficient symbolic methods developed for untimed systems.
Henzinger et al[[30] study the question of when real-time properties can be
verified using only integral durations (digital clocks), and show that such a
reduction is possible for a large class of systems and properties, such as time-
bounded invariance and response. Other related work includes [7], where it
was observed that to perform reachability analysis of certain classes of timed
automata one need only consider integer clock values,[and [13, 14] which
show that using BDDs and integral durations can lead to efficient methods
for performing reachability analysis of timed automata. We also merition [25]
and [45] which investigate the power of digital clocks.

The main contribution of this paper is to extend this direction of research
to the domain of probabilistic timed automata by showing that digital clocks
are sufficient for analysing a large class of probabilistic real-time systems and
performance measures. The models that can be considered are those which
can be represented plosed diagonal-freeprobabilistic timed automata,
intuitively automata whose clock constraints do not compare the values of
clocks with one another or contain strict comparisons with constants. The
performance measures inclugeobabilistic reachabilityproperties, which
for example allow us to check the correctness of the following statements:
‘with probability 0.05 or less, the system aborts’ and ‘with probability 0.99
or greater, a data packet will be delivered within 5 time units’. Additionally,
expected reachabilitproperties can be verified using digital clocks, which
enable us to validate statements such as: ‘the expected time until a data packet
is delivered is at most 20ms’, ‘the expected number of packets sent before
failure is at least 100’ and ‘the expected number of retransmissions before a
packet is sent is at most 5'.

We then demonstrate the applicability of this approach on three case stud-
ies using the probabilistic symbolic model checker PRISM [35, 47] to per-
form the analysis. In each case study the interplay between real-time, non-
determinism and probabilistic behaviour is critical and each can be modelled
naturally as a (closed, diagonal-free) probabilistic timed automaton. The first
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concerns the ZeroConf dynamic configuration protocol for IPv4 link-local
addresses [18] (preliminary results concerning this case study can be found in
[37]). The second extends the resultd of [40], and investigates the performance
of the contention resolution protocol of the IEEE 802.11 wireless local area
network standard [33]. In the third case study we consider the root contention
protocol of the IEEE 1394 FireWire standard|[32], previously studied using
probabilistic timed automata in [41, 20]. In the latter two publications, the
analysis was with respect to probabilistic reachability properties, whereas in
this paper we study expected reachability properties.

Outline. The next section introduces preliminary concepts that we will use
in the remainder of the paper. In Sect[dn 3 we introduce probabilistic timed
automata, their semantics for both the dense and integral models of time, two
corresponding performance measures (probabilistic and expected reachabil-
ity) and model checking techniques to compute these measures. Sgction 4
shows that, for closed diagonal-free probabilistic timed automata, computa-
tion of these measures can be performed using digital clocks (integral seman-
tics). In Sectiori b we address the limitations of digital clocks for analysing
probabilistic timed automata; that is, we identify a class of properties which
cannot be verified with digital clocks. In Sectiph 6 we present three prob-
abilistic timed automata case studies and give some experimental results to
compare the performance of the techniques described in this paper with alter-
native approaches from the literature. Finally, in Sedtion 7, we conclude the
paper.

2. Preliminaries

2.1. PROBABILITY AND MEASURE THEORY

We assume some familiarity with probability and measure theory, see e.g.
[26]. Consider a se®. A o-field on (2, denotedF, is a family of subsets df

that containg?, and is closed under complementation and countable union.
The elements of a-field are calledneasurable setand(£2, F) is called a
measurable space

Definition 1. Let (2, ) be a measurable space. A functién: 7 — [0, 1]
is a probability measuren (2, F), and (2, F, P) is a probability spacegif
P satisfies the following properties:

1. P(Q)=1;

2. if Ay, Ag, ... is a disjoint sequence of elements®fthen P(U;4;) =
> P(Ai).
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The measuré is also referred to as@robability distribution The sef
is called the sample space, and the elemenis afe called events.

Definition 2. Let (2, F) and (', ') be two measurable spaces. A function
f:Q — Qs said to be aneasurable functiofrom (2, F) to (', F') if
1A e Fforall A’ € F.

Theorem 3 ([16]). Let (2, F) and (€', ') be measurable spaces, and sup-
pose thatP is a measure of2, ) and the functior?” : Q2 — Q' is measur-
able. If f is a real non-negative measurable function(ri, '), then:

/ F(Tw)dP = / F(W)dPT .
weN w'eQY
A discrete probabilitydistribution over a countable s&b is a function
p o @ — [0,1] such thaty” ., u(q) = 1. For a possibly uncountable set
Q', let Dist(Q’) be the set of distributions over countable subsetQ’ofor
q € Q, let u, be thepoint distributionat ¢ which assigns probability 1 tg.

2.2. DISCRETETIME MARKOV CHAINS

We now introduce discrete-time Markov chains (DTMCs), a widely-studied
stochastic process.

Definition 4. ADTMC is atupleD = (S, 5, P) where:

— S is a set ofstatesincluding the initial states;
— P : S xS —[0,1] is atransition probability matrixsuch that for any
S € S : ZS’ESP(S?SI) =1.

Each elemenP (s, s") of the transition probability matrix gives the proba-
bility of making a transition from stateto states’. An execution of a system
which is being modelled by a DTMC is represented bpaah Formally,

a pathw is a non-empty finite or infinite sequence of states. In the case of a
finite pathsgs; - - - s,,, we requireP(s;, s;+1) > 0forall 0 < i < n, whereas,

for an infinite pathsgs;ss - - -, we requireP(s;, s;+1) > 0 for all i > 0. We
denote byw(¢) the (i+1)th state of a path, |w| the length ofw (number of
transitions), and for a finite path, the last state byust(w). Observe that a
path can comprise a single state, in which case its number of transitions is
zero. We say that a finite pathof lengthn is aprefixof the infinite pathy’ if

w(i) = W'(i) for 0 < i < n. Also, we uses¥) to denote the prefix of length

k of w. The sets of all finite and infinite paths starting in stare denoted
Path gy, (s) and Pathy, (s), respectively.

In order to reason about the probabilistic behaviour of the DTMC, we need
to be able to determine the probability that certain paths are taken. This is
achieved by defining, for each statec S, a probability measur&rob, over
Pathy,(s). Below, we give an outline of this construction. For further details,
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see [34]. The probability measure is induced by the transition probability
matrix P as follows. First, for any finite path € Pathgy,(s) of lengthn, we
define the probability? s (w):

et 1 ifn=0
Ps(w) = { P(w(0),w(1))---P(w(n —1),w(n)) otherwise

Next, we define theylinder setcyl(w) as:

eyl(w) &
thatis, the cylinder setyl(w) is the set of all infinite paths with prefix. Then
let ¥, be the smallest-algebra onPathy, (s) which contains all the sets
cyl(w), wherew ranges over paths iRathg,(s). We define the probability
measureProbs on X as the unique measure such thBiob(cyl(w)) =
P (w) forallw € Pathg,(s).

{w' € Pathp,(s)|wis a prefix ofw'}

2.3. TIMED PROBABILISTIC SYSTEMS

We now introducdimed probabilistic systemghich extend DTMCs by al-
lowing both non-deterministic and probabilistic behaviour and in which tran-
sitions are labelled with either a duration taken from a time domain or an
action. Timed probabilistic systems are an extension of Markov decision pro-
cesses [24] and a variant of Segala’s probabilistic timed autoimdta [50].

Definition 5. Atimed probabilistic systems a tupleTPS = (5, 5, Act, T, Steps)
where:

— S'is a set ofstatesincluding aninitial states € S;

— Act is afinite set ofictionssuch thatdct N R = (;

— T C Ris a set ofdurations taken from the set of non-negative reals;

— Steps € S x (Act UT) x Dist(.5) is aprobabilistic transition relatign
such that, if(s, a, u) € Steps anda € T, theny is a point distribution.

A probabilistic transitions = s’ is made from a state € S by first

nondeterministically selecting an action-distribution or duration-distribution
pair (a, 1) such that(s, a, 1) € Steps, and second by making a probabilistic
choice of target stat€ according to the distribution, such thag:(s")>0. We
require that only action-distributions can be probabilistic, that is, duration-
distribution pairs always comprise a point distribution.

We consider two ways in which a timed probabilistic system’s compu-
tation may be represented: using paths and adversaripatirepresents
a particular resolution of both nondeterminismd probability. Formally, a
path of a timed probabilistic system is a non-empty finite or infinite sequence
of probabilistic transitions

ao, o ai,p1 az, 2
W = S K S1 K S9 N
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We denote byw(i) the (i+1)th state ofw, last(w) the last state ok if w

is finite andstep(w, i) the action or duration associated with tfie-1)-th
transition (that isstep(w, i) = a;). By abuse of notation, we say that a single
states is a path of length 0. The set of finite and infinite paths starting in
the states is denoted byPathg,(s) and Paths,(s), respectively. For any

ag, Mo ai,K1

infinite pathw = s9 —— s; —~— - - -, the accumulated duration up to the
(n+1)-th state ofv is defined by:

dur(w,n+1) £ Y {la; | 0<i<n A a; € T}

In contrast to a path, aadversary(or scheduler) represents a particular res-
olution of nondeterminisnonly. More precisely, an adversary is a function
which chooses an outgoing distribution in the last state of a path. Formally,
we have the following definition.

Definition 6. Let TPS = (S, 5, Act, T, Steps) be a timed probabilistic sys-
tem. An adversaryl of TPS is a function mapping every finite pathof TPS
to a pair (a, i) such that(last(w), a, i) is an element ofteps. For any state
s € S, let Pathy, (s) and Pathj,(s) denote the subsets &fath g, (s) and
Pathy,(s) which correspond tol.

The behaviour of a timed probabilistic systdRS = (S, s, Act, T, Steps)
under a given adversary is purely probabilistic. More precisely, for a state
s € S, the behaviour from statecan be described by the infinite-state DTMC
D4 = (84,5, P4), where:

- S84 = Path}?n(s);
— for any two finite pathsy, ' € S2:

PA(w, o) = u(s") if W' is of the formw 2% s’ and A(w) = (a, p)
s 0 otherwise.

There is a one-to-one correspondence between the paihd ahd the set of
pathsPathﬁl(s) in the timed probabilistic system. Hence, using the proba-
bility measure over DTMCs given in Sectipn 2.2 we can define a probability
measureProb? over the set of pathEathﬁd(s).

To simplify proofs, we also usendomized adversariewhere a random-
ized adversanB is a functionB mapping every finite path to a distribution
over{(a, ) | (last(m),a, u) € Steps}. Similarly to the above, we can asso-
ciate with any randomized adversary a probability measure over the set of
paths of the adversary (see, for example| [22, 50]).

We restrict our attention ttme-divergent adversariea common restric-
tion imposed in real-time systems so that unrealisable behaviour (i.e. corre-
sponding to time not advancing beyond a time bound) is disregarded during
analysis. We say that an infinite pathis divergentif for any ¢ € R, there
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existsj € N such thatdur(w, j)>t. The following lemma shows that for any
adversaryA and states of a timed probabilistic system the set of divergent
paths with initial states is measurable under any adversary identified in the
previous paragraph.

Lemma7. LetTPS = (S, s, Act, T, Steps) be a timed probabilistic system.
For any adversaryAd of TPS ands € S the set of divergent paths of is
measurable.

Proof. For anyn,m € N, letC" = {w € Pathﬁ‘d(s) | dur(w, m)>n}, then

neN \meN

{w € Pathp,(s) |wis divergent} = () ( U C’,T)

and hence measurable. O

Definition 8. An adversaryA for a timed probabilistic systemPS is diver-
gentif and only if, for each state of TPS, the probabilityProbf assigned to
the divergent paths Wathﬁl(s) is 1. Furthermore, letddvrps be the set of
divergent adversaries afPS.

For motivation on why we consider sughobabilistic divergent adver-
saries, as opposed to a stronger notion in which an adversary is divergent if
and only if all its paths are divergent, seel[38].

3. Probabilistic Timed Automata

In this section we review the definition of probabilistic timed automata [38],

a modelling framework for timed probabilistic systems. The formalism is de-
rived from classical timed automata [1, 2] extended with discrete probability
distributions over edges.

3.1. TIME, CLOCKS AND CLOCK CONSTRAINTS

LetT € {R,N} be thetime domainof either the non-negative reals or nat-
urals. LetX be a finite set of variables call@ibckswhich take values from
the time domairf. A functionv € T? is referred to as alock valuation Let

0 € T* be the clock valuation which assigns 0 to all clockstinFor any

v € T¥ andt € T, the clock valuation & ¢ denotes théime incrementor v
with ¢ (we present two alternatives far in Sectior] 3.3; for the time domain
R it is standard addition-). We usev|[X:=0] to denote the clock valuation
obtained fromw by resetting all of the clocks iX C X to 0, and leaving the
values of all other clocks unchanged.
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Let CC(X) be the set oflock constraint®ver X', which are conjunctions
of atomic constraints of the form ~ ¢ forz € X, ~¢ {<,=,>}, and
¢ € N. The clock valuation satisfieshe zone(, writtenv < ¢, if and only
if ¢ resolves to true after substituting each clack X with the correspond-
ing clock value fromw. Readers familiar with timed automata will note that
we consider the syntax @losed, diagonal-free zoneshich do notfeature
atomic constraints of the form > c or x < ¢ (closed) orz—y ~ ¢ (diagonal
free).

3.2. SYNTAX OF PROBABILISTIC TIMED AUTOMATA

We now introduce formally probabilistic timed automata. Observe that we
extend the original definition of [38] with urgent events, a well-established
concept for classical timed automatal[29, 21].

Definition 9. A probabilistic timed automatoRTA is a tuple of the form
(L,1,X,%, inv, prob) where:

— L is afinite set oflocations

— [ € Lis theinitial locatior

— X is a finite set otlocks

— Y is afinite set oévents of whichX,, C ¥ are declared as beingrgent

— the functioninv : L — CC(X) is theinvariant condition

— the finite seprob C L x CC(X) x ¥ x Dist(2¥ x L) is theprobabilistic
edge relation

Note that we often refer to the model presented abowtossd, diagonal-
free probabilistic timed automatan order to distinguish the clock constraints
used with those in previous work [38].

A stateof a probabilistic timed automaton is a péirv) wherel € L and
v € T are such that < inv(l). Informally, the behaviour of a probabilistic
timed automaton can be understood as follows. The model starts in the initial
location! with all clocks set to 0, that is, in the statg0). In this, and any
other statg(/, v), there is a nondeterministic choice of either (1) making a
discrete transitioror (2) lettingtime passin case (1), a discrete transition can
be made according to any probabilistic eddg), o, p) € prob with source
location! which isenabledthat is, the zong is satisfied by the current clock
valuationv. Then the probability of moving to the locatiédrand resetting all
of the clocks inX to 0 is given byp(X, ). In case (2), the option of letting
time pass is available only if the invariant condition (1) is satisfied while
time elapses and there does not exist an enabled probabilistic edge with an
urgent event.

Note that atimed automatorf2] is a probabilistic timed automaton for
which every probabilistic edg€, g, o, p) is such thap = p(x ;) (the point
distribution assigning probability 1 10X, I')) for some(X, ') € 2% x L.
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x:=0, 4<x<8

Figure 1. A probabilistic timed automaton modelling a simple communication protocol.

Example 10. Consider the probabilistic timed automaton modelling a simple
probabilistic communication protocol given in Figre 1. The protocol starts in
locationinit (the double border indicatédsit is the initial location). After ex-
actly 2 time units, the process receives data to send and moves to the location
send. Before any time elapses the process attempts to send the data and, with
probability 0.99, the data is sent correctly (locatidane is reached) while,
with probability 0.01, the data is sent incorrectly (locatieait is reached). In
the latter case, the process waits between 4 and 8 time units before attempting
to resend the data (returns to locatieend).

In Figure[4 we present an example of the behaviour for the timed proba-
bilistic system which underlies the probabilistic timed automata of Figure 1.

Higher-level modelling. To aid higher-level modelling, it is often useful to
define complex systems as tparallel compositionof a number of inter-
acting sub-components. The definition of the parallel composition operator
|| of probabilistic timed automata uses ideas from the theory of (untimed)
probabilistic systemd [51] and classical timed automata [2]. REA; =

(Li, i, X;, %, inw;, prob,) for i € {1, 2} and assume that; N X5 = ().

Definition 11. Theparallel compositiomf two probabilistic timed automata
PTA; andPTA; is the probabilistic timed automaton

PTA1HPTA2 = (Ll X LQ, (l}, Zg), X1 U XQ, X1 U 22, mo, pmb)
such that

— 0 € X1 U Xy is declared as urgent if and only if it is declared urgent in
at least one oPTA; andPTAy;

— anv(l,l") = invi (1) A inva(l") forall (1,1') € Ly x Lo;

— ((l1,12),9,0,p) € prob if and only if one of the following conditions
holds:

1.0 € ¥;\ X2 and there exist$ly, g,0,p1) € prob; such thatp =
P19 15)
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(init, 0)
lz
(init, 2)

lI‘CC

(send, 0)

0.99 / send\ .01

(done, 0) (wait, 0)

4.72

(wait, 4.72)

retry

(send, 0)
0.99 / send\ .01
(done, 0) (wait, 0)
7.001

(wait, 7.001)

l retry

Figure 2. An example of behaviour for the simple communication protocol given in F[dure 1.

2.0 € 3y \ ¥; and there exist$ls, g, 0, p2) € prob, such thatp =
H(@,1,)®P2;

3. 0 € ¥1 NXy and there exist§l;, g;, o, p;) € prob, fori = 1,2 such
thatg = g1 A g2 andp = p1®p»

where foranyly € L1, s € Lo, X7 C X7 and Xy C A5:

p1®p2(X1 U Xo, (I1,12)) = p1(X1, 1) - p2( X2, l2) .

In addition to parallel composition, features which are present in tealdL
input syntax([48], 44], such as urgent locations, committed locations and inte-
ger variables can be added to the probabilistic timed automaton framework.
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3.3. EEMANTICS OF PROBABILISTIC TIMED AUTOMATA

We now give the semantics of probabilistic timed automata defined in terms
of timed probabilistic systems. Observe that the definition is parameterized
by both the time domaifT and the time increment operatar. The time
increment operator is a binary operator which takes a clock valuat®f'*

and a time duration € T, and returns a clock valuatianpt € T< which
represents, intuitively, the clock valuation obtained fromftert time units
have elapsed.

Definition 12. Let PTA = (L,1, X, %, inv, prob) be a probabilistic timed
automaton. Theemantics oPTA with respect to the time domaihand time
incrementd is the timed probabilistic systefRTA]S = (S, 5, 3, T, Steps)
such that:

— S C L x T* where(l,v) € S if and only if v < inv(1);
— 5= (,0);
— ((l,v),a, n) € Steps if and only if one of the following conditions holds:

Time transitions. a =t € T andy = 1,y Such that:
Lovdt <inv(l) forall 0 <t < ¢
2. for all probabilistic edges of the forrfl, g,0,—) € prob, if

v@®t <gforsomed < ' < ¢, theno ¢ X, (no urgent
transitions are enabled);

Discrete transitions.a« = o € X and there exist$l, g,0,p) € prob
such that < g and for any(’,v") € S:

M(l,7v/) = Z p(X, l/) :
XCX &
v’ =v[X:=0]

The summation in the definition of discrete transitions is required for the
cases in which multiple clock resets result in the same target state.

In our setting, the semantics falls into two classes, depending on whether
the underlying model of time is the positive reals or the natural¥ H
R we let® equal+ (standard addition) and refer ﬁ@TA]][‘Rf as thedense-
time semanticsf the probabilistic timed automatdhlA. In contrast, ifT =
N, we let® equal®y which is defined below, and refer {@TA]" as the
integral semanticef PTA. To definedy, first, for anyx € X, letk, denote
the greatest constant that the clacis compared to in the clock constraints of
PTA. If the value of the clock: exceedk,, then its exact value is not relevant
when deciding which probabilistic edges are enabled. This meank that
is the maximum value of clock that needs to be represented, because we can
interpret this value as corresponding to all clock values greaterkhaand
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leads us to the following definition @fy. For any clock valuatiom € N*
and time durationt € N, letv@®t be the clock valuation ok’ which assigns
the valuemin{v(z) + ¢, k, + 1} to all clocksz € X (although the operator
@y is dependent o TA, we elide a sub- or superscript indicating this for
clarity).

Note that the definition of integral semantics for probabilistic timed au-
tomata is a generalization of the analogous definition for the classical model
in [13]. As we always use the same type of time increment for a particular
choice of time domain, we henceforth omit theand®y superscripts from
the notation, and writ¢PTA]r and [PTA]y, respectively. The fact that the
integral semantics of a probabilistic timed automaton is finite, and the dense-
time semantics of probabilistic timed automaton is generally uncountable,
can be derived from the definitions.

It is not difficult to check that the semantics of the parallel composition of
two probabilistic timed automata corresponds to the semantics of the parallel
composition of their individual semantic timed probabilistic systems. For-
mally, we overload the parallel composition operdtsuch thafl PS; || TPS2
denotes the timed probabilistic system obtained from the parallel composition
of the timed probabilistic systemBPS; and TPS, in the standard manner
[51] and defined below.

Definition 13. The parallel compositiorof two timed probabilistic systems
TPS; and TPS, with the same domaii is the timed probabilistic system

TPS, ||TPS2 = (Sl X S9, (51, 52), Act1 U Acts, T, Steps)

such that(s1, s2), a, ) € Steps if and only if one of the following conditions
holds:

1. a € Act; \ Acty and there exist$sy,a, u1) € Steps; such thaty =
1R sy

2.a € Acty \ Acty and there exist$sa, a, u2) € Steps, such thaty =
/1’81®M2§

3. a € Acty N Acty and there exist$s;, a, u;) € Steps, fori = 1,2 such
that n = p1®pue;

4. a € T and there exist$s;, a, i1;) € Steps; for i = 1,2 such thaty =
M1 u2;

Two timed probabilistic systemBPS; = (51, 51,.Act, T, Steps;) andTPS, =
(S2, S9, Act, T, Steps,) areisomorphicif there exists a bijectiorf : S; —
Sy such that(sy,a, u) € Steps, if and only if (f(s1),a, f(1)) € Stepss,
wheref (1) € Dist(Ss) is the distribution defined by(x)(s2) = p(f(s2))
for eachsy € Ss. For the probabilistic timed automalta’A; andPTA, with
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disjoint clock sets[PTA;||PTAz]r and[PTA]r|[PTAz]r are isomorphic,
both for the integral and dense-time semantics.

3.4. PROBABILISTIC AND EXPECTED REACHABILITY

In this section, we consider two performance measures for probabilistic timed
automata. In fact these measures are defined at the level of timed probabilistic
systems, in terms of which the semantics of probabilistic timed automata are
defined. The first measure jisobabilistic reachability namely the maximal

and minimal probability of reaching, from the initial state, a certain set of
target states. For a timed probabilistic systéRt = (5, s, Act, T, Steps),

setF’ C S of target states, and adversatye Advtps, let:

p2(F) £ Probi{w € Pathfy(5) | Ji € N.w(i) € F}.

Definition 14. Themaximal and minimal reachability probabilitie§ reach-
ing the set of stateg' of the timed probabilistic systePS are defined as
follows:

p%llgé(F) = sup pé(F) and p%lans(F) = inf p§A(F) :
A€ Advrps A€ AdvTps

The second measure we consideexpected reachabilitywhich allows
us to compute the expected cost (or reward) accumulated before reaching a
certain set of states. Expected reachability is defined with respect to a set
F C S of target states and a cost function mapping state-action and state-
duration pairs to real values (the cost of performing an action or letting a
certain amount of time pass in the corresponding state, respectively). This
measure corresponds to the expected cost (with respect to the given cost
function) of reaching a state iR. More formally, for a timed probabilistic
systemTPS = (5, s, Act, T, Steps), cost functiorC : S x (Act UT) — R
(recall, R denotes the non-negative reals), $etC S of target states, and
adversaryA € Advtps, let ef(cost(C, F)) denote the usual expectation
of the functioncost(C, F') (which returns, for a given path, the total cost
accumulated until a state i is reached along) with respect to the measure
Prob{ over Pathi,,(s). That s:

e (cost(C, F)) = / cost(C, F)(w) dProb2
w€ Pathiy, (5)

where for anyw € Pathi(3):
min{j | w(j)EF}

cost(C, F)(w) & S C(wli-1), step(w,i—1))
=1
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14 Kwiatkowska, Norman, Parker and Sproston

if there existsj € N such thatu(j) € F, andcost(C, F)(w) £ co otherwise.

Note that, for simplicity, we define the cost of a path which does not reach
I to beoo, even though the total cost of the path may not be infinite. Hence,
the expected cost of reachidgfrom s is finite if and only if a state irF is
reached froms with probability 1.Expected time reachabilitfthe expected
time with which a given set of states can be reached) is a special case of
expected reachability, corresponding to the case wh@nha) = 0 for all
s € Sanda € Act andC(s,t) =tforall s € Sandt € T.

Definition 15. Themaximal and minimal expected costreaching a set of
statesF’ under the cost functio@ in the timed probabilistic systemPS are
defined as follows:

FB(C.F) = sup ef(cost(C, F))
vTPS
SBCF) = il Heost(C. ).

We note that calculating expected reachability is equivalent tetthas-
tic shortest path problenfor Markov decision processes; see for example
[12,123].

In practice, cost functions are defined not at the level of timed probabilis-
tic systems, but in terms of probabilistic timed automata. At this level cost
functions are often defined using a péi.,r), wherecs, : L x ¥ — R
is a function assigning the cost, in each location, of executing each event in
Y, andr € R gives the rate at which cost is accumulated as time passes
(independent of the current location). The associated cost fun€tiop is
defined as follows, for eacfi, v) € L x R* anda € S U T:

d_ef CZ(Z,G) IfaEZ
Ccz,r((lvv)’ a) - { a-r otherwise

A probabilistic timed automaton equipped with a gait, r) is a probabilistic
generalisation of uniformly priced timed automata [9]. In Secfior} 4.3 we
will restrict attention to such cost functions, while in Section] 4.4 we will
consider more general cost functions where the cost per unit of time can vary
depending on the current location, which can be considered as a probabilistic
extension of linearly priced timed automatal[10]. More precisely, cost func-
tions of the formC,.,, , wherer : L — R is a function assigning to each
location the rate at which costs are accumulated as time passes in that location
and for any(l,v) € L x RY anda € Y UR:

def [ cn(l,a) faeX
Ces.r((1,0), ) = { a-r(l) otherwise
Note that we only consider non-negative cost functidRsq the set of

non-negative reals). However, all the results presented also hold for the cor-
responding non-positive cost functions.
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For both probabilistic and expected reachability, we can consider reaching
a state satisfying a formula which is a conjunction of propositions identi-
fying locations and clock constraints (that is, constraints of the ferm c
forz € X, ~¢ {<,=,>} andc € N). Instead of considering these cases
separately, we just note that such reachability problems can be reduced to
those referring to locations only by modifying syntactically the probabilistic
timed automaton of interest (see [38]). Note that, if all the clock constraints
appearing in théTA and present in the formula are closed and diagonal-
free, then all the clock constraints appearing in the modifiéd are also
closed and diagonal-free.

In the case of probabilistic reachability the types of properties which can
be expressed can be classified as follows:

Probabilistic reachability: The system reaches a certain set of states with a
given maximal or minimal probability. For example, ‘with probability at
least 0.999, a data packet is correctly delivered'.

Probabilistic time-bounded reachability: The system reaches a certain set
of states within a certain time deadline and probability threshold. For
example, ‘with probability 0.01 or less, a data packet is lost within 5
time units’.

Probabilistic cost-bounded reachability: The system reaches a certain set
of states within a certain cost and probability bound. For example, ‘with
probability 0.75 or greater, a data packet is correctly delivered with at
most 4 retransmissions’.

Invariance: The system does not leave a certain set of states with a given
probability. For example, ‘with probability 0.875 or greater, the system
never aborts’.

Bounded response:The system inevitably reaches a certain set of states within
a certain time deadline with a given probability. For example, ‘with
probability 0.99 or greater, a data packet will always be delivered within
5 time units’.

On the other hand, expected time reachability allows us to express, for ex-
ample, ‘the (maximum) expected time until a data packet is delivered is at
most 20ms’ and ‘the (minimum) expected time until a packet collision occurs
is at least 100 seconds’. In general, expected reachability allows us to vali-
date properties including: ‘the expected number of retransmissions before the
message is correctly delivered is less than 3, ‘the expected number of packets
sent before failure is at least 300’ and ‘the expected number of lost messages
within the first 200 seconds is at most 10'.

We illustrate the expected reachability approach using the final property as
an example. We would first need to maodify the probabilistic timed automaton
under study by adding a distinct clock (to represent the elapsed time) and
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16 Kwiatkowska, Norman, Parker and Sproston

location such that, from all locations, once this clock has reached 200 seconds
the only transition is to this new location. The set of target states would then
be the set containing only the new location. The cost function would equal
0 on all time transitions and events except the event(s) corresponding to a
message being lost, whose cost would be set to 1.

Finally, using the more general cost functi@ghs ,, we can consider per-
formance measures such as:

— the expected time the channel is free befdfanessages are sent (by
settingr(l) to be 1 if location! corresponds to a state in which the
channel is free, and 0 otherwise);

— the expected time a sender spends waiting for an acknowledgement (by
settingr(l) to be 1 if locationl corresponds to a state in which the sender
is waiting for an acknowledgement, and 0 otherwise);

— the expected energy consumption within the fi'ge N) seconds (by
settingr(!) to the power usage (Watts) of the locatioa L andcs (1, o)
to be the energy consumption associated with performing the evient
location!).

3.5. MODEL CHECKING

To apply model checking methods we must first ensure that the system we
consider has only finitely many states and is finitely branching. From the
construction, the integral semantics has only finitely many states. However,
to ensure finite branching, we must restrict the delays in the integral semantic
models fromN to some finite set. For example, since we have not permitted
probabilistic choices over delays, we can restrict delays to have duration 1
only and, since any time transition of durationNican be modelled by a se-
guence of time transitions of duration 1 and we restrict attention to divergent
adversaries, nothing is lost by omitting delays of duration greater than 1 or of
duration O.

The model checking algorithms for both probabilistic and expected reach-
ability are available in the literature; for probabilistic reachability seél[l5, 8],
and for expected reachability seel[22] 23]. In both cases verification reduces
to solving a linear optimization problem for which one can apply iterative
methods. We also note that, [n [22], algorithms for checking for the presence
of divergent adversaries are given.

The integral semantic model can suffer from the state space explosion
problem; in particular, the size of the models is exponential in the number of
clocks and the largest constant that the clocks are compared to. An abstraction
technique which can be used to reduce the size of the model under study is
that of changing théme scalesince this can reduce the constants that clocks
are compared to. More formally, one can increase the time unit and then round
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upper bounds on the values of the constraints up, lower bounds down. For
(non-probabilistic) timed automata, it is established In [4] that the trace set of
the timed automaton after such a transformation includes that of the original
model. It follows that, in the probabilistic setting, carrying out our model-
checking on the transformed automaton gives bounds on the performance
indices of the original automaton. More precisely, the computegimum
probabilistic and expected reachability measures on the transformed model
areupperbounds and the minimum probabilistic and expected reachability
measures are lower bounds on those that would be obtained for the original
automaton.

3.5.1. The probabilistic model checker PRISM
PRISM [35,47] is a probabilistic model checker developed at the University
of Birmingham. The current implementation of PRISM supports the analy-
sis offinite-state probabilistic models of the following three types: discrete-
time Markov chains, Markov decision processes and continuous-time Markov
chains. Discrete-time Markov chains are defined in Seftign 2.2, while Markov
decision processes extend DTMCs by allowing both probabilistic and nonde-
terministic behaviour. Continuous-time Markov chains allow transitions to
occur in real-time as opposed to discrete steps, but differ from probabilistic
timed automata in that delays are represented by exponential distributions.
Furthermore, there is no nondeterminism in continuous-time Markov chains.
Models in PRISM are described in a high-level language, a variant of
reactive modules [3] based on guarded commands. The basic components of
the language anmodulesandvariables A system is constructed as a number
of modules which can interact with each other. A module contains a number
of variables which express the state of the module, and its behaviour is given
by a set of guarded commands of the form:

[<action>] <guard> — <updates>;

The guard is a predicate over the variables of the system and the updates
describe transitions which the module can make if the guard is true (using
primed variables to denote the next values of variables). Updates are specified
as follows:

<prob> : <atomic _update> + --- + <prob> : <atomic _update>

PRISM accepts specifications in probabilistic temporal logics. This allows
us to express various probabilistic properties such as ‘edmppens with
probability 1’, and ‘the probability of cost exceedingis 95%’. The model
checker then analyses the model and checks if the property holds in each
state. In the case of Markov decision processes, specifications are written
in the logic PCTL, and for the analysis PRISM implements the algorithms
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of [27,[15,[8]. The tool also supports verification of expected reachability
properties using the algorithms o0f [22,/23].

The underlying data structures used in PRISM are BDDs (binary decision
diagrams) and MTBDDs (multi-terminal BDDs) [19]. Model construction is
always performed using MTBDDs and BDDs. For numerical computation,
PRISM includes three separagagines The first uses MTBDDs to store the
model and iteration vector, while the second uses conventional data struc-
tures for numerical analysis: sparse matrices and arrays. The latter nearly
always provides faster numerical computation than its MTBDD counterpart,
but sacrifices the ability to conserve memory by exploiting structure. The
third, hybrid, engine provides a compromise by storing the models in an
MTBDD-like structure, which is adapted so that numerical computation can
be carried out in combination with array-based storage for iteration vectors.
This hybrid approach is generally faster than MTBDDs, while handling larger
systems than sparse matrices. For further details and comparisons between
the engines see [36, 146].

We note that, by using integral semantics and PRISM, and hence MTB-
DDs, we see similar advantages to those reported in [13, 14] for modelling
and verifying classical timed automata using integral semantics and BDDs.
In particular, by using only MTBDDs we are able to model and verify large
and complex probabilistic real-time systems.

3.5.2. Modelling probabilistic timed automata in PRISM
We now explain the techniques used for modelling (the integral semantic
models of) probabilistic timed automata as Markov decision processes in
PRISM. First, due to the compositionality of the integral semantic model,
if the system under study is a parallel composition of a number of proba-
bilistic timed automata, then the integral semantics of each automaton can be
modelled by a PRISM module and the system can be defined as the parallel
composition of the modules. The only complication in this approach is repre-
senting passage of time; this is accomplished by including a distinct action,
time, and then labelling the transitions of each module which correspond
to time passing with this action. Hence, when a time action is executed, all
modules must synchronize on this action.

Since, in the integral semantic model, the possible values of any clock
x are in the rang€0,1,2,...,k,,k, + 1}, we can model each clock as a
bounded integer-valued variable. Furthermore, we can use bounded integer-
valued variables to model the locations of an automaton. The possible transi-
tions of an automaton are then defined by a guarded command expressed in
terms of these variables. In the case of time transitions, supposing in location
[ the invariant is(y<4) and the automaton has two clocksindy, then the
time passage transitions (of duration 1) in locatiaran be modelled by the
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guarded command:
[time] I=1&y<4 —  (X'=min(x+1,kx+1))&(y’=min(y+1,ky+1)) ;

Note that the non-strict upper bound in the invariant condition is made strict,
because, if the clock equals 4, no more time can pass (if one more time unit
could elapse, then the value pfvould become 5 and the invariant would be
false).

In the case of discrete transitions, if in locatibthere is a discrete tran-
sition which has the enabling conditidlz <6, performs the eveni, and
moves to location 2 with probability 0.25, and to location 3 while resetting
the clocksr andy with probability 0.75, then this transition can be modelled
by the following guarded command:

[a] 1=1&x>=4 & x<=6 — 0.25:(I'=2) + 0.75:('=3)&(x'=0)&(y'=0) ;

4. Correctness of the Integral Semantics

In this section we show, under the restriction that the probabilistic timed
automaton under study is closed and diagonal-free, that probabilistic and
expected reachability values are the same in the integral and dense-time se-
mantics. Therefore, for this class of probabilistic timed automata, it suffices
to study the integral semantic model.

LetPTA = (L,1, X, %, inv, prob) be a probabilistic timed automaton. For
any set of locationg” C L, we denote by the set of all states c{PTA]]%9
which correspond to these locations; that is

Fr={(l,v)|l€F, veT"andvainv(l)}.

4.1. £-DIGITIZATION

In this section we extend the techniques developed in the classical timed
automata case. We begin with the following definition and lemma which are
taken from[[28] 30].

Definition 16. For anyt € R ande € [0, 1] let:

1t] ift < |t] +
[t = { [t Ltherwise )

Note that, from Definitiof 16, it trivially follows that:

[t <t <[t]o forallteR. 1)
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Lemma 17. For anyt, ¢’ € R, c € Nand~€e {<,=,>},ift —t' ~ cthen
[t]e — [t']e ~ cforall e € [0,1].

Next, we introduce the following property on paths of probabilistic timed
automata.

Lemma 18. For any pathw = (Iy, vg) —£% (I3, v1) =25 ... 2 € X and

i € N, there existg < ¢ such that;(z) = dur(w,i) — dur(w, j).
Proof. The proof follows from choosing < 7 such that(/;, v;) is the most
recent state where the cloelkwas reset. 0

Using the above, we now define thaligitizationof a path [30, 28].
Definition 19 (e-digitization). For any path:

W= (l_, 0) ao, o (ll,Ul) ai,p1 .

of [PTA]R, its e-digitization is the path

W] = (7,0) 21 1y, [in].) 2 .
of [PTA]x where for anyi € Nandz € X
— [vi]e(x) = min([dur(w, )] — [dur(w, j)]e, ks + 1) andj < i such that
vi(z) = dur(w,i) — dur(w, j) which exists by Lemnja[L8;

— if a; € ¥ andy; is constructed from a probabilistic edge BTA which
is of the form(—, —, a;, p;), thena, = a; and for any(I’,v') € L x N*:

(I v') = S om(X )
XCX &
v'=[v;]e[X:=0]
— if a; € R, thena; = [dur(w, i+1)]e—[dur(w, )] andp; = 1, jv;].@a!)-

The well-definedness of this construction — that is, the fact tbjatis
a path of[PTA]y — follows from Lemmd 17, Lemmfa 18, and the fact that
the clock constraints appearing RTA are closed and diagonal-free. For
example, for anyr € X andi > 0 such thate; € R, by Definition[19
there existg < ¢ such that:

min([vi]e (z)+a}, ke +1) = min([dur(w, i) — [dur(w, j)] + a}, ky+1)
= min([dur(w, )] —[dur(w, j)]c+[dur(w, i+1)].—[dur(w, )], ke+1)
by construction
= min([dur(w,i+1)]c — [dur(w, j)]c, ky+1) rearranging
= [vig1]e() by Definition[19.

We now introduce the following lemmas which relate the time and cost of a
path with those of its digitization.
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Lemma 20. For any pathw € Path,(5), € € [0,1] andi € N:
dur([wle, i) = [dur(w,q)]e .

Proof. Consider any patly = (,0) 2% (1;,v1) 2% ... € Pathpy(5).
We prove the lemma by induction ane N. If i = 0, then by definition
dur([wle, i) = [dur(w,i)]. = 0 as required.

Now suppose that the lemma holds for soieN. We have two cases to
consider.

— If a; € I, then[dur(w, i+1)]. = [dur(w,i)]. and from Definitior] 1P
we havedur([w]e,i+1) = dur([w]s, ), and hence the lemma holds by
induction.

— If a; € R, then by Definitior Ip we have

dur([wle,i4+1) = dur(jwe, ) + ([dur(w,i4+1)]: — [dur(w,)]c)
= [dur(w,?)]s + ([dur(w,i+1)]; — [dur(w,d)].) by induction
= [dur(w,i+1)]s as required

Since these are the only cases to consider, the lemma holds by induction on
ieN. 0

Lemma 21. For any pathw € Pathy,(5), set of locationd” C L and cost
functionC,,, » we have:

cost(Ces vy FiN) (Jw]1) < c05t(Ceg rs FR) (w) < co5t(Ceg, s Fiv) ([w]o) -

Proof. Consider any pathy € Pathg,(5), set of locations®” C L and cost
functionCey, .

— Ifthere does not existe N such thatu(i) € Fg, then, forany € [0, 1],
from Definition[19, there does not existe N such thafw(i)]. € Fy.
Therefore, by definition ofost(C.,, r, Fr), we have:

cost(Ces, vy Fiv) (Jw]e) = cost(Ceg v, FR)(w) = 00

for all e € [0, 1], and hence the lemma holds in this case.
— Ifthere exists € N such thatv(i) € Fg, then, by definition oflur(w, -)
andcost(Ce,, r, F), it follows that:

cost(Cey, vy FR) (w) = c05t(Cey, 0, FR) (W) + 1 - dur(w,ip) . (2.1)

whereip = min{j|w(j) € Fr}. Next, from Definitior] 1P we have, for
anye € [0,1],i € Nando € X:

o w(i) € Frifandonly if [w].(i) € Fy;
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o step(w,i) = o ifand only if step([w]., i) = o.
It then follows that:
cost(Cey, 0, FN) ([w]e) = cost(Cey 0, Fr)(w) foralle € [0,1]. (2.2)
Furthermore, using Lemnja]20 afd (1) (see page 19) we have:
dur([w),ir) < dur(w,ip) < dur([w]o,ir) . (2.3)
Finally, combining[(2.]1)[(2]3) and using the fact tlrat 0 we have
cost(Ces, vy FN) (Jw]1) < cost(Ceg, vy Fr)(w) < cost(Cey, v, Fiv)([w]o)
as required.

Since these are the only cases to consider the lemma holds. O

We now extend the notion of digitization from paths to adversaries. Note
that we extend the digitization notatidr. to setsof paths: for a sef) of
infinite paths, lefQ)]. = {[w]. |w € Q}. To simplify the presentation, when
considering a fixed adversary € Advprap,, We suppose that the domain of

the mapping]. is restrictedto the sets of path®ath, (s) and Pathi,(s).
More precisely, for any path of [PTA]x:

A /- -0 . 7T' ..
o {{w € Pathﬁn(j)l[w]g =} if 7 is finite @)

Il = {w € Path}y,(s) | [w]e = 7} otherwise
Using this interpretation we have the following result.

Lemma 22. For any adversaryd € Advppra),, pathm of [PTA[y ande €
[0, 1], the set of pathgr|-1 C Pathi, (3) is finite.

Proof. Consider any adversaty € Advjpra],, pathm of [PTA]y ande €
[0, 1], then the result is a direct consequence of the following two facts:

— foranyn € Nthe set of path$w € Pathg, (5) | |w|=n} is finite;

— |w| = |[w]e| forall w € Pathﬁn(g). 0
We now extend the notion of digitization to adversaries through the following
proposition in which we usé‘Path?l(g) to denote ther-algebra generated by
the adversaryl over the set of infinite pathBath}‘}Ll(E).

Proposition 23. For any adversaryA € Advppra), ande € [0,1], there

exists a (randomized) adversaBf € Advppraj, such that:Prob? (IT) =
A _

ProbZ ([IT)71) for all TT € }-Pathﬁf 5)"
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Proof. Consider any adversary of [PTA]r. First, to ease notation, for any
set of finite path$) C Path, (5) let:

Prob2(Q) = Prob2{u' € Pathﬁl(E) |w < W' for somew € Q}
and for any finite pathr € Pathﬁ‘n(g) and(a, u) € Steps(last(m)) let:

(r =5) £ {x’ € Pathji,(s)|Is € S. 7' =1 =5 s}

We define the adversarig® as follows. The set of paths dB® is given
by {[w]: |w € Pathp,(s)}, and, as usual, lePathg, (s) be the set of fi-

nite prefixes of these paths. For any pathe Pathﬁ;(g) and (a,p) €
Steps(last(m)), the probability of B choosing(a, 1) after = has been per-
formed is given by:

def Probg4 i ala 6_1
B (m)(a, p) = Pmé[A([ﬂ]l]) :

Note that the above probabilities are well defined since, ffdm (3), the sets of
paths[r 2% -1 and[x]-! are both finite. We are now in a position, using
the cylinder construction (see Sectjon|2.2), to define the probability measure
Prob?” over Pathf;, ().

To complete the proof it remains to show tiabb 2" (I1) = Prob2 ([T1)-1)
forallII € fPathffj (s)- Now, from the cylinder construction (see Sec 2.2),

it follows that it is sufficient to show that:
Prob?” (w) = Probf([n];') forall = € Pathf;, (3) (4)

which we now prove by induction on the length of Note that, again, it
follows from (3) that the set of pattis]_! is finite.

Therefore, consider any pathe Pathf;, (5). If [r| = 0 thenProb?” (z) =
1 = ProbZ([x]-") as required.

Next, suppose by induction the lemma holds for all paths of lengihd
7 is of lengthn + 1. Now,  is of the formz’ 2% & for some pathr’ of
lengthn such thaf(a, 1) € Steps(last(n’)) ands’ € S, and therefore:

Prob?” () = Probf"(x') - B*(w')(a, ) - u(s')
= Probd([x'171) - BS(n)(a, p) - p(s") by induction

Prob(( 25 1Y)

= Prob2([x']1) Prob A () (s’ by definition of B
= Probd([x’ 25171 - u(s)) rearranging
= Probw e Pathﬁ‘n(E) |[w]e = 7" 25 &'} by definition of Prob2
= Prob2([x]71) by construction ofr
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and hence (4) holds by induction.

Finally, to show thatz® € Advprap,, we must show thab® is divergent.
This result follows from[(§), the fact thad is divergent, and since from
Lemma[ 20 any (infinite) path is divergent if and only if #gdigitization is
divergent. O

4.2. BROBABILISTIC REACHABILITY

In this section we show that it is sufficient to consider the integral semantics
when computing probabilistic reachability properties. Note that an alternative
proof of Theorenj 24 appears in [41].

Theorem 24. For any (closed, diagonal-free) probabilistic timed automaton
PTA and set of location$’ C L:

PipTAl: (FR) = Piprag, (FN)

PipTAl (FR) = pﬁrg%A]]N(FN)-

Proof. First, from Definition, we have that(i) € Fg if and only if
[w]s(i) € Fy for any pathw of [PTA]r. We have seen in Propositipn|23
that for any adversaryl € Advpprap, ande € [0,1], we can define an
adversaryB® € Advppray, such that:ProbZ"(IT) = ProbZ ([I];1) for

all II € fpathgf(g)- Combining these results it follows that, for any adver-
sary A € Advpra), ande € [0, 1], we can construct an adversabj <
AdvpTaj, Such that:

i (Fr) = pP (Fv) ,
and hence:
inf MNFg) >  inf B(R

AeAiz%HPTA]]R ps (Fr) BGAZIJHPTAHN ps (Fiv)

and
sup  pi(Fr) < sup  pP(Fh).

AEAd’U[[pTA]]R BGAdU[[pTA]]N
On the other hand, by definition of the integral and dense-time semantics, for
any adversanB € Advptaj,, there exists an adversary € Advpraj,
such thap? (Fr) = pZ(Fy). Intuitively, the adversaryl behaves like the
integral semantic adversary; that is, it chooses to make timed transitions of
only integral duration. The result of Theorénj 24 then follows. 0
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4.3. EXPECTEDREACHABILITY AND UNIFORM COSTFUNCTIONS

In this section we consider expected reachability while restricting attention to
cost functions defined by paifsy, r), wherecy, : L x ¥ — Randr € R.

Note that an alternative characterization of the cost functions we consider is
those that satisfy the following property:

— C(s,t) =C(s,t) forall s,s' € S andt € R;
— C(s,t+1t')=C(s,t) +C(s,t') forall s € Sandt,t’ € R.

Before we give the proof of correctness under these assumptions, we require
the following lemma and proposition. Recall the definition of a measurable
function (Definitior] 2).

Lemma 25. For any adversaryA € Advjpta),, the mapping-| is a mea-
surable function fron(Pathful( 5), fpathA (5)) to the measurable space in-

duced from the set of pathév]. |w € Pathful(g)}.

Proof. Recall, from Sectioh 2|2, that for any finite paththe cylinder set of
w is given bycyl(w). The proof follows from the fact that for any finite path
T €{|w]e |w € Pathﬁn(é)}:

[eyl(m U{cyl ) |w e Pathﬁn(E) Alwle =7},

and the set of path&w € Pathﬁn(‘) | [w]e = =} is finite. That is, the set

[cyl(r)]=! is the finite union of measurable setsla&thful( 5), and hence a
measurable set. 0

Proposition 26. For any set of locationg” C L, adversaryA € Advipray,

and cost functiorC,,. ., if the adversariesB®, B! € AdvpTa, are con-
structed following Proposition 23, then:

eﬁl(COSt(Ccz,rv Fiy)) < e2(cost(Cey r, FR)) < B’

S S

(cost(Ces vy FN))
Proof. Consider any adversary € Advppta), and cost functiorCey, r.
First, for anye € [0, 1], sinceC,,, r is non-negativecost(Ce.y, r, Fiv) is a real
non-negative function ofPathf}; (5), Fp,yz° 5)), and hence using Proposi-
tion[23 and Lemmp 25 we can apply Theoligm 3 which gives:

/ €05t (Cop, r, Fiv) ([w]2) d Prob
wGPathfu,( 3)

= / c05t(Cop, r, Fiy) () dProb?" . (5)
wePathf} (s)
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Now by definition ofe2:

e?(cost(CcZ,r, R)) = / cost(Ces, vy FR) (w) dProb?
wEPath;;l(E)

< / €05t (Ces xy Fi) ([w]o) dProb2 by Lemmd 2]L
wEPathﬁl(g)

= cost(Ces, v, FiN) (T dProbgB0 b
/ ity 21 Conr BO() y ©

= P’ (cost(Coyr, Fiy)) by definition

Similarly, we can showe?' (cost(Cop, v, Ft)) < €2(cost(Cogxy Fr)). O

Theorem 27. For any (closed, diagonal-free) probabilistic timed automaton
PTA, set of locationg” C L and cost functioi®,, ,.:

max

efpTalg (Con.rs Fr) = efprap, (Cep.r, Fi)
efbtaL (Cosr Fi) = €fptag, (Cosrs FN) -

Proof. Consider any set of location8 C L and cost functiorC,.,, .. We
have seen in Propositipn |23 and Proposifioh 26 that for any advessary
Advpraj, We can construct adversarig8, B! € Advpraj, such that:

0

€2 (c08t(Cog i, ) < €2 (o5t (Cogx, F)) < €2 (c08t(Cogr F))
and hence it follows that:

inf  e2(cost(Coyr, FR)) > inf  eZ(cost(Cogr, F))

s s

AEAd”U[[pTA]]R - BEAd'U[[pTA]]N
and
sup  e2(cost(Coprs FR)) < sup  €B(cost(Copr, F)) -
AeAdUIIPTA]]]R BeAdUIIPTA]]N

On the other hand, as in the proof of Theorlem 24, for any adveiBagy
Advprap,, there exists an adversafye Advpta, such that:

eA(cost(CC&r, FRr)) = eB(cost(CCEvr, Fy)). O

S S

4.4, EXPECTEDREACHABILITY AND VARIABLE COSTFUNCTIONS

In this section we extend our results on expected reachability to the case
when, as in (non-probabilistic) linearly priced timed automata [10], the costs
associated with the time spent in locations can vary between locations. More
precisely, we consider cost functions of the fafm . where:
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— ¢y : L x ¥ — Ris afunction assigning the cost of executing events;

— r: L — Ris a function assigning to each location the rate at which
costs are accumulated as time passes in that location;

— forany(l,v) € L x RY anda € S UR:

w [es(la) facs
Cesr((1,0),0a) —{ a-r(l) otherwise

Note that, an alternative characterization of such cost functions are those that
satisfy:

C(s,t+t") = C(s,t) + C(s,t') forall s € S andt,t’ € R.

As in the previous section, the proof demonstrating that digital clocks are suf-
ficient for calculating expected reachability properties for such cost functions
relies on showing that, for any fixed (dense-time semantic) adversary, there
exist integral-time semantic adversaries whose expected costs of reaching a
set of target states within transitions bound that od. First, we require the
following results from linear programming.

Definition 28. A matrix A is totally unimodulaif each subdeterminant &
is0,+1or —1.

Theorem 29 ([49] Theorem 19.3).Let A be a matrix with entrie§, +1 and
—1. Then the following are equivalent:

1. A is totally unimodular;

2. each collection of columns & can be split into two parts so that the
sum of the columns in one part minus the sum of the columns in the other
part is a vector with entries onlfy, +1 and —1.

Theorem 30 ([49] Corollary 19.1.a).Let A be a totally unimodular ma-
trix, and letb and c be integral vectors. Then both problems in the linear
programming duality equation

max{cx|x >0 A Ax < b} =min{yb|y >0 A yA > c}

have integral optimum solutions.

We next define, for any adversasy a sequence of functiorts),,cx, where,

for any states, cost functiorC,,, - and set of target locatiors, e} (Cey, -, Fr, 5)
equals the expected cost, under the adverdanf reachingf’ from s within

n transitions. Since adversaries can choose on the basis of history, we first
definees over paths, then restrict to the case of the initial state (paths of
length 0).
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Definition 31. Let PTA = (L,1, X, %, inv, prob) be a probabilistic timed
automaton andlTPS = (S, s, Act, T, Steps) be its semantics for the time
domainT. For any subset of target location8 C L, cost functionC,, ,,
adversaryA € Advtps andw € Pathy,, if last(w) = (I,v) and A(w) =
(a, 1), leted (Ces, ry Fr,w) = 0 and for anyn>0 :

€£+1 (CCE,Tv FT7 w)

{ 0 if (I,v) € Fr

Cegr(lya)+ X pu(s)- e;?(CCE,T,FT,w Rl s') otherwise.

s'eS

Lemma 32. LetPTA = (L,l, X, %, inv, prob) be a probabilistic timed au-
tomaton andTPS = (S, s, Act, T, Steps) be its semantics for the time do-
main T. For any subset of target locations, cost functionC,,, , and ad-
versaryA € Advtps, <e;‘}(CCE7T,FT, 5))nen IS @ non-decreasing sequence
converging teeZ (cost(Cey, 1, Fir)).

Lemma 33. LetPTA = (L,I, X, %, inv, prob) be a probabilistic timed au-
tomaton and’,, , a (non-negative) cost function with rational coefficients.
For any adversaryA € Advjpra],, Set of target locationg” andn € N,
there exist adversarieB, C' € Advpta), such that:

eE(CcE,m FN7 5) < eri‘(ccE,m FR; §) < GS(CCZ,T, FN7 §) .

Proof. The first step in the proof involves constructing a set of constraints
on the time steps of the adversaries which follow the same choices as
(except in the actual duration of time transitions) up until thk discrete
transition. Using these constraints we then formulate a linear programming
problem, whose objective is either to maximize or minimize the expected cost
of reaching a set of target states withiriransitions. The result then follows
from showing that there exist integer solutions which achieve the maximum
and minimum. Below, we consider only the construction of the adveigary
(the construction oB follows similarly).

We therefore begin by constructing a set of linear constraints from which
we can derive a set of adversaries that behave ‘almost’ the sameNsre
precisely, we consider any sequence of real vatues(t@wepathﬁ" which

satisfy, for anyw € Pathﬁn, the following constraints:
— if jw| =0, then

lw

_tw

(6.1)
(6.2)

VoWV
o o

— if [w| > 0, then
| dur(w, |w|) — dur(w, k)| forallk <|w|  (6.3)
—[dur(w, |w|) + dur(w, k)] foralk < |w|. (6.4)

lw — L)
—lw + 1,0

VoWV
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Note that there exists a sequence of valtesich satisfy these constraints;
for example, letting,,, equaldur(w, |w|) or [dur(w, |w|)] for anye € [0, 1]
gives one possible solution.

Now suppose that we fix a sequence of real valuesich satisfy the
above constraints. From these values we can construct an advEfsainych
‘almost’ matches the behaviour df. The set of finite paths af} is given by

{[wlt|w € Pathﬁ‘n}, which we define inductively as follows: i§ = (I, 0),

then|w]; £ w, and ifw is of the formw’ 2% (1, v), then:

Q

= W] S (1,0

[w]t
where

— V(x) = ty—t, ;) andj < |w| suchthab(z) = dur(w, |w|)—dur(w, j),
which exists by Lemmj 18;

— ifa € %, last([w'];) = (I,) andy’ is constructed from a probabilistic
edge ofPTA which is of the form(-,-, a, p), thena’ = a and for any
(1" v") € L x NY:

,Uf/(l”, UN) — Z p(X, l//) :
XCX &
[ X :=0]=v"

— ifa € R, thena’ = t, —t,  andy’ = pi( ).

Following the approach used in Propositjor} 23, we can then use these paths
to construct an adversaxy,. The fact thatC; is an adversary ofPTA]y
follows from Lemma 1B, equationis (6.1)—(6.4) and since we restrict attention
to closed, diagonal-free probabilistic timed automata. For any @tatee .S,

let 7(I,v) = r(1). Now, from the construction of’; and Definition| 3[L, it

follows thategi(ccw, Fk, 5) equals:

Z Prob®t(w) - (tu—t 1) - (last(w)) + e%(CCZ,O, Fg, 3)
wGPathﬁnMwKn
AVi|w]. w(i) ¢ Fr
= S ProbAw) - (to—tyas) - r(last(@)) + €2 (Cogor Frrs)  (7)
wEPathﬁn/\\wKn
AVi<|w]. w(i)EFr

sinceA andC; make the same discrete choices.
Now, suppose we fix some € N and consider the following linear
programming problem over the variables,),c po4 s).» where Pathi (5)

is the set of paths oPathj%n(g) with length at most.: maximize ) such
that the constraints given by (6.1)-(6.4) are satisfied. First note that, under
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the assumption that all costs and probabilities are rational, we can scale the
objective function such that it contains only integer values. Furthermore,
from the construction of the constraints it follows that the corresponding
matrix is totally unimodular(using Theorenj 29 and the fact that, for any
collection of columns of the constraint matrix, the sum of the columns is
a vector with entries only, +1 and —1). Therefore, using Theorem |30, it
follows that the maximum solution is achieved by an integer vector. More pre-
cisely, there exists an advers&rye Advpraj, such thate (Cey, 1, Fi, 5) <

e (Ces,.r» Fiv, 5) as required. 0

Theorem 34. For any (closed, diagonal-free) probabilistic timed automaton
PTA (where all probability values are rational), set of locatioAsC L and
(non-negative) cost functiah.,, , with rational coefficients, we have:

6f[]rlé’a'l)'(A}]]R (CCZJ‘v FR) = 6[r[rFl’%I}'(A]]I\] (60277"7 FN)

ety Conrs Fr) = €y, (Conrs Fiv) -
Proof. From Lemmgd 3B it follows that for any € N and adversaryl
Adv[[PTA]]R:

. B _ A — c _
inf €n (CCE,T>FN55) < e, (CCE,MFR,S) < sup e, (CCE,T7FN75) )
BGAd’U[[pTA]]N CEAdU[[PTA]]N

and hence, taking limits as tends to infinity together with Lemnja 32, we
have:

lim  inf €5 Fy,5) < e F
n*)OOBeAdU[[pTA]]Sn (CCE:T? st) X €3 (60277'7 R)

. C _
< lim sup €, (Ceg rs FN, §) .
0 Ce Advpray,

Now, from [22] 23], we need only consider the (finite) subset of simple adver-
sarie when verifying expected reachability properties [BTA]y. It then
follows, again using Lemnfa B2, that:

inf 61-3(6827T,FN) < e‘f‘(CC&T,FR) < sup eg(CC&T,FN).

BGAd’U[[PTA]]NS s CeAdU[[PTA]]N

The proof then concludes similarly to that of Theoler 27. O

L An adversaryB is simple, if for any finite paths, 7’ such thatlast(7) = last(n') we
haveB(w) = B(r').
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=1 Iy
true
7Y
y=1
=1 I3
0<y<1

Figure 3. Example demonstrating that probabilistic stopwatch-bounded reachability proper-
ties are not preserved.

5. Limitations of Digital Clocks

In this section we investigate the limitations of digital clocks when analysing
probabilistic timed automata. In particular, in Sectjon 5.1 we show that the
integral-time semantics does not preserve probabilistic stopwatch-bounded
reachability properties, while in Sectipn .2 we show that the integral-time se-
mantics does not preserve the satisfaction of the probabilistic timed temporal
logic PTCTL [38].

5.1. FROBABILISTIC STOPWATCH-BOUNDED REACHABILITY

We now show, by means of a counter-example, that the integral-time seman-
tics does not preserve probabilistic stopwatch-bounded reachability proper-
ties; that is, properties concerned with the probability of reaching a certain
set of states before the time spent in a certain set of locations reaches a
bound. This means that properties such as ‘the probability that a message
is correctly delivered while spending at mdBttime units waiting for an
acknowledgement is greater than 0.9’ cannot, in general, be verified correctly
using the integral-time semantics.

Consider the probabilistic timed automaton of Figure 3, and suppose that
we associate a stopwatch with this automaton which increases at the same
rate as real-time (‘running’) in the locatiodsandls, and remains constant
(‘stopped’) in all other locations. The property we consider is the minimum
probability of reaching the locatioly while the stopwatch (i.e. time spent in
I; andl3) remains (less than or) equal to zero. First, under the integral-time
semantic model, the transition frolrcan be taken either when the clogk
equals 0 or 1.

— If = equals 0 when the transition froinis taken, then, on the upper
branch, 1 time unitis spent in locatiénbefore the locatioly is reached,
while, on the lower branch, 0 time units are spent in locatipbefore
the location, is reached.

— If z equals 1 when the transition froiis taken, then, on the upper
branch, 0 time units are spent in locatibnbefore the locatiori, is
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reached, while, on the lower branch, 1 time unit is spent in locdton
before the locationy is reached.

It then follows that, under the integral-time semantic model, the minimum
probability of reachind, while the stopwatch remains equal to zermisi(\, 1—
A).
On the other hand, for the dense-time semantic model, suppose that the
transition from/ is taken whenr = § € (0,1). Then, on the upper branch,
1—4§(>0) time units are spent in locatidn before the location, is reached,
while, on the lower brancla(>0) time units are spentin locatidabefore the
locationl, is reached. Therefore, for the dense-time semantic model, the min-
imum probability of reaching locatioh while the stopwatch remains equal
to zero is O (consider any adversary which lets s@me (0, 1) time units
pass before taking the discrete transition frymand hence the minimum
probabilities in the integral and dense-time semantic models disagree.

Note that, for the corresponding minimum and maximum expected reach-
ability properties, i.e. the expected time spent in the locatipandls until
the locationiy is reached, the integral and dense-time models agree. More
precisely, for the cost functio@,,, , such thatcx(l,a) = 0 foralll € L
anda € ¥ andr(l) = 1if [ € {l1,l3} and O otherwise, then, for both the
integral and dense-time semantics, the minimum and maximum expected cost
of reaching locatiori, equalmin(\, 1—\) andmax (A, 1—\) respectively.

5.2. THELOGICPTCTL

PTCTL is a combination of two extensions of the branching temporal logic
CTL, the real-time temporal logic TCTL_[31] and the probabilistic tempo-
ral logic PCTL [27,[15]. The logic TCTL can express timing constraints
referring to the clocks of the probabilistic timed automaton and a new set
of formula clocks and includes the reset quantifiers, used to reset the
formula clockz so thate is evaluated from a state at whieh= 0. PTCTL

is obtained by enhancing TCTL with the probabilistic operg®ay,[-] from
PCTL. In the derived logic we can express properties such as ‘with prob-
ability 0.95 or greater, the value of the system clackloes not exceed 3
before 8 time units have elapsed’, which is represented as the PTCTL formula
2. P=0.95[(z<3) U (2=8)]. For details on the formal syntax and semantics of
PTCTL see, for example, [38].

Note that, if we restrict attention to formulae which do not contain nested
P[] operators, it is straightforward to extend our results to show that the
satisfaction, in the initial state, of such formulae is preserved by the integral
semantics (under the restriction that all clock constraints appearing in the
formula are closed and diagonal-free). This result follows from the fact that
the satisfaction of such a formula reduces to computing either the maximum
or minimum reachability probability on a closed diagonal-free probabilistic
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Figure 4. Example demonstrating that the satisfaction of PTCTL formulae is not preserved.

timed automaton. However, as the following example demonstrates, digi-
tal clocks do not suffice for the verification of PTCTL formulae containing
nestedP. -] operators.

Consider the (probabilistic) timed automaton given in Fidure 4. In the
integral-time semantic model, no state of the corresponding timed proba-
bilistic system satisfies the formuta= z.P.;[true U (loc;, N 2<1)] (for
all adversaries the probability of reaching the locatipmithin 1 time unit
is less than 1). More precisely, if the automaton is in locaficand the
clock z has an integer value, then there exists an adversary such that (with
probability 1) location/; is reached within 1 time unit. Therefore, since no
state of the integral-time semantic model can reach a state satigfyihg
formulaP.1[true U ¢] (for all adversaries the probability of reaching a state
satisfying the formula is less than 1) is trivially true in the initial statg 0).

On the other hand, for the dense-time semantics, when the automaton is in
location! and the clockr is in the interval(1, 2), thenl; cannot be reached
without letting more than 1 time unit elapse. Hence, starting from the initial
state(/, 0) and letting time pass until € (1,2) the formulag becomes true,
and thusP[true U ¢] is not satisfied in the initial state.

6. Case Studies

In this section, we illustrate the utility of the integral-time semantics of prob-
abilistic timed automata by considering three case studies, where all experi-
ments were performed using the probabilistic symbolic model checker PRISM.
Further details on the case studies, including the model checking statistics,
can be found on the PRISM web pagel[47]. This section also includes experi-
mental results to compare the performance of the techniques described in this
paper with alternative approaches from the literature.

6.1. ZEROCONF DYNAMIC CONFIGURATION PROTOCOL FORIPV4
LINK -LOCAL ADDRESSES

The first case study concerns the ZeroConf dynamic configuration protocol
for IPv4 link-local addresses [118], which offers a distributed ‘plug-and-play’
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solution in which IP address configuration is managed by individual devices
connected to a local network. This work extends the results presented in [37].
The protocol has also been studied.in/[17,/54, 6].

The aim of the protocol is to configure an IP address for a device which
newly joins the local network. The IP address is then used to facilitate local
communication between the devices of the network. Henceforth, we refer
to devices which partake of the protocol flassts When a host connects to
the network, it first randomly selects an IP address from a pool of 65024
available addresses (the Internet Assigned Number Authority has allocated
the addresses from 169.254.1.0 to 169.254.254.255 for the purpose of such
link-local networks). The host waits a random time of between 0 and 2 sec-
onds before starting to send fosddress Resolution ProtocGARP) packets,
calledprobes to all of the other hosts of the network. Probes contain the IP
address selected by the host, operate as requests to use the address, and are
sent at 2 second intervals. A host which is already using the address will
respond with an ARP reply packet, asserting its claim to the address, and the
original host will restart the protocol by reconfiguring, where reconfiguration
involves randomly choosing a new address and sending new probes. Each
time a host withesses an ARP packet with an address which conflicts with the
address that it has chosen, a counter is incremented. If the counter reaches the
value 10, then the host ‘backs off’ and remains idle for at least one minute.
If the host sends four probes without receiving an ARP reply packet, then it
commences to use the chosen IP address. The host also sends confirmation of
this fact to the other hosts of the network by means of two further messages,
calledgratuitousARPs, which are also sent at 2 second intervals. The pro-
tocol has an inherent degree of redundancy, for example with regard to the
number of repeated ARP packets sent, in order to cope with message loss.
Indeed, message loss makes possible the undesirable situation in which two
or more hosts use the same IP address simultaneously.

A host which has commenced using an IP address must reply to ARP
packets containing the same IP addresses that it receives from other hosts.
It continues using the address unless it receives any ARP packet other than
a probe (for example, a gratuitous ARP) containing the IP address that it is
using currently. In such a case, the host can eitledendits IP address, or
deferto the host which sent the conflicting ARP packet. The host may only
defend its address if it has not received a previous conflicting ARP packet
within the previous ten seconds; otherwise it is forced to defer. A defending
host replies by sending an ARP packet, thereby indicating that it is using, and
will continue to use, the IP address. A deferring host does not send a reply;
instead, it ceases using its current IP address, and reconfigures its IP address
by restarting the protocol.

As in [54], we assume a broadcast-based communication medium with no
routers (for example, a single wire), in which messages arrive in the order
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in which they are sent. In contrast to the analytic analysis of the protocol
by Bohnenkamp et all [17], we model the possibility that a device could
surrender an IP address that it is using to another host; and in contrast to
the timed-automata-based analysis of Zhang and Vaandtager [54], we model
some important probabilistic characteristics of the protocol, and consider pa-
rameters more faithful to the standard (such as the maximum number of times
a device can witness an ARP packet with the same IP address as that which it
wishes to use before ‘backing off’ and remaining idle for at least one minute).

In the standard [18], there is ho mention of what a host should do with
messages corresponding to its current IP address (i.e. the probes and gratu-
itous ARP packets specified in the standard) which are in its output buffer
(i.e. those that have yet to be sent), when it reconfigures (chooses a new IP
address). However, when the host does reconfigure, unless it picks the same
IP address, which happens with a very small probability65024), these
messages are not relevant. In fact, such messages will slow down the network
and may even make hosts reconfigure when they do not need to. We therefore
considered two different versions of the protocol: one where the host leaves
the messages within its output bufféloReset) and another where the host
clears its buffer when it is about to choose a new IP address:().

6.1.1. Modelling the dynamic configuration protocol

We consider in detail oneoncrete hostwhich is attempting to configure an

IP address for a network in which there aveabstract hostsvhich have al-
ready configured IP addresses. These hosts are called abstract because we do
not study their behaviour in depth. When the concrete host picks an address,
the probability of this address beirfiggsh(not in use by an abstract host) is
(65024—N)/65024. We also assume that the concrete host never picks the
same |IP address twice, as this happens with a very small probability. Also,
the (continuous) uniform choice over [0,2], made by the concrete host to
determine the delay before it sends its first probe, is abstracted to a discrete
uniform choice ovef0, 1, 2}.

To enable the analysis of the protocol under various network scenarios we
consider two different values @¥ corresponding to networks with a different
numbers of hosts. More precisely, we consider the cases Whel000 (the
value taken in[[1[7]) andv =20.

Following the above assumptions, we require only trabstractIP ad-
dresses:

0 - an address of an abstract host which the concrete host previously chose;
1 - an address of an abstract host which is the concrete host’s current choice;

2 - afresh address which is the concrete host’s current choice.
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Table 1. Integer variables used in the probabilistic timed automata

variable description range
coll the number of collisions detected by the concrete host 0...10
iph the current address of the concrete host 1...2
defend equals 1 when the host is defending its address 0...1
probes the number of probes/ARPs sent by the concrete host 0...K
ip the address of the ARP packet currently being sent 0...2
n the number of packets in the concrete host’s output buffer  0...8
bli] the address of packetn the concrete host’s output buffer 0...2
mo the number of packets containing an IP address 0...20

of type 0 in the buffers of the abstract hosts

my the number of packets containing an IP address 0...8

of type 1 in the buffers of the abstract hosts

As in the standard _[18], we suppose that it takes between 0 and 1 seconds
to send a packet between hosts (where the choice of the exact time delay is
nondeterministic).

Since we suppose that the abstract hosts always defend their addresses
and have already picked their IP address, the concrete host will never receive
probes. Therefore, we do not need to record the type of message being sent,
but instead only the IP address in the message, and whether it is sent from the
concrete host to the abstract hosts or vice versa.

As in [54], we consider the case in which hosts use output buffers to store
the packets they want to send. We have chosen the size of the buffers such
that the probability of any buffer becoming full is negligible. We suppose that
the concrete host can send a packet to all the abstract hosts at the same time,
and only one of the abstract hosts can send a packet to the concrete host at a
time.

Variables. The set of variables of our probabilistic timed automata includes
both clocks ¢, y andz) andinteger variablesvhich are described in Tallé 1.

Note that the range of the integer variablebes is changed for different
verification instances, and since the abstract IP address 2 corresponds to a
fresh address chosen by the concrete host we need only two buffers for the
abstract hosts (corresponding to addresses of type 0 and 1).

Events. We model the protocol using two probabilistic timed automata, one
for the concrete host and one for the environment (which comprises both
abstract hosts and the output buffer of the concrete host); these models com-
municate through the three events, send andreset as described in Tabfg 2.
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Table 2. Events used in the probabilistic timed automata

event description

rec concrete host receives an ARP packet from the environment
send concrete host sends an ARP packet to the environment
reset concrete host (re)configures a new IP address
urgent the environment starts sending a packet

In Table[2 we have also included the evangent, which, although it is not

a communicating event, is urgent (no time can pass if it is enabled), since
a packet should be sent as soon as it is possible. Note that, in the model
Reset, we use the eventset to model the environment resetting the packets

in the buffers of both the concrete and abstract hosts when the concrete host
reconfigures.

6.1.2. Probabilistic timed automata for the protocol

In the following, we describe the modelling of tReset version of the pro-

tocol only. Recall that we use two probabilistic timed automata, one to model
the concrete host and one to model the environment (which contains the ab-
stract hosts and the output buffersadf hosts). Note that, in the description
below, we have omitted the labelling of the non-urgent events on which the
two automata do not synchronize, that is, the non-urgent events which do not
appear in the set of events of both automata.

The concrete host. The model for the concrete host is shown in Figure 5.
The host commences in the locatiBECONF (the double border indicates
the initial location). The locatiorRECONF is a committed location, and
therefore must be left immediately. RECONF, the host chooses a new IP
address by moving to the locatidifHOOSE if it has experienced less than
ten address collisions, and €HOOSEWAIT otherwise. These transitions
are labelled with the eventset to inform the environment that the host's
buffer is to be reset (all messages in its buffer are to be removed).

In both CHOOSE and CHOOSEWAIT, the address selection is repre-
sented by the assignmefith := RAND(1,2), which corresponds to the
host randomly selecting an IP address. That is, with probabNit$5024
the host setgph equal to 1 (selects an IP address already in use) and, with
probability (65024—N) /65024, setsiph equal to 2 (selects a fresh IP ad-
dress). Note that, IKTHOOSEWAIT, since the host has already experienced
at least ten address collisions, it waits 60 seconds before choosing a new
address. The assignment to the clacfa uniform choice betwee{0, 1, 2}),
which labels the transitions fro@HOOSE andCHOOSEWAIT to WAITSP,
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RECONF
committed

ip = iph
rec
coll:= min(coll+1, 10)

CHOOSE CHOOSEWAIT
urgent x < 60

=60
iph:=RAND(1, 2)
z:=RAND(0, 1, 2)
probes:=0

iph:=RAND(1, 2)
z:=RAND(0, 1, 2)
probes:=0

x=2Aprobes< K
send

probes:=probes+1
x:=0

ipF#iph
rec

r=2Aprobes=K
coll:=0, probes:=0
y:=0

WAITSG
z <2

ipF#iph

rec

r=2Aprobes<1
send
. probes:=probes+1
x:=0
r=2Aprobes=1
send

ip=1iph

defend:=0 defend=0Vy=10
send

defend:=1, y:=0

RESPOND
urgent

Figure 5. Probabilistic timed automaton for the concrete host (maedekt)

approximates the random delay of between 0 and 2 made by the host before
sending the first probe.

In the locationWAITSP, the host send# probes at 2 second intervals
(denoted by the self-loop labelled witend). The host may also receive
packets by means of the evemt. If it receives a packet which has a dif-
ferent IP addres§ip # iph), then the host ignores the packet (and remains in
WAITSP); however, if the packet has the same address, the host immediately
reconfigures (moves tRECONF).

After sending theth probe, the host remains in locatigyAI TSP for 2
seconds before moving WAITSG. The host then sends two ARPs separated
by a delay of 2 seconds. Note that the varigiiebesis used to count these
ARPs. After these ARPs have been sent, the host moveSEo However,
if while in WAITSG the host receives a packet with the same IP address,
it moves toRESPOND. In this location, the host can decide to reconfigure
(return toRECONF), or defend its IP address (by sending an ARP packet) if
it has either not yet defended the addresgdnd = 0) or 10 seconds have
passed since it previously defended the addrgss (0). This defence takes
the form of the sending of a defending packet, as denoted byitlddabelled
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Vi<7.b[i—1]:=b[3] L _
% < nimp—1 M1i=mi1 1 P

Vi<7.b[i—1]:=b[¢ urgent
CONC_SEND | IDLE
ip=2 7

z<1
ip=1

m1:=min(mj+1,8)

urgent my:=mq—1

my1>0 ipi=1 :
ENV_SEND | |
z< 1 :

A

ip=0 mo:=mo—1

mg:=min(mp+1, 20)

n<8 reset
=8 —
send " n:=0
i Q e Q U =0
n:=n+1 m1:=0

mg:=min(mo+m1, 20)

Figure 6. Probabilistic timed automaton for the environment (madealet)

transition fromRESPOND to WAITSG. Note that the clocl cannot actually
reachl0 in the locationWAITSG, and therefore this transition is only enabled

if the address has not been defended, although to be faithful to the standard
we have not removed this condition.

The environment. The model for the environment is shown in Figpfe 6. The
probabilistic transitions are indicated by thicker grey arrows. The dotted box
labelled with three transitions which surrounds the model denotes that these
transitions are available iall of the locations of the model. More precisely,

in all locations, the environment may receiveead event from the concrete
host and, if the host’s buffer is not futh&8), add the corresponding packet

to the buffer (otherwise it is lost). Also, in all locations, the environment may
receive areset event and clear the buffer of the concrete hast=£ 0) and,

since we assume that the concrete host will never choose the same IP address
twice, set the IP address in any packet being sent or to be sent to type O (i.e.
ip := 0, m; := 0 andmyg := min(mo+my, 20)).

The behaviour of the environment commences in the locabduk. The
transition which probabilistically moves to eith&LE or CONC_SEND cor-
responds to the sending of a packet from the concrete host's buffenrgde
labelling denotes that the transition should be taken as soon as it is enabled,
i.e. it should be taken as soon as there is a packet to send. Similarly, the transi-
tions which move probabilistically to eith&DLE or ENV_SEND correspond
to an abstract host sending a packet, and are again urgent. There are two such
transitions, since the address in the packet can either be of typg 80
or 1 (m;>0). For each of these transitions, the loop (remainindDhE)
corresponds to the packet being lost by the medium, while the other edge
corresponds to the packet being sent correctly (therefore the required buffers
are updated when one of these transitions is taken). Note that, since each of
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Table 3. Minimum probabilistic reachability results

number of abstract hosts equals 1000

no. of probes message loss rate 0.1 message loss rate 0.001 message loss rate 0
sent (K) NoReset Reset NoReset Reset NoReset Reset

1 5.6e-4 5.6e-4 6.2e-8 6.2e-8 0 0
2 l.1e-4 1l.1e-4 1.2e-10 1.2e-10 0 0
3 2.0e-5 2.0e-5 2.5e-13 2.5e-13 0 0
4 3.9e-6 3.9e-6 5.0e-16 5.0e-16 0 0
5 7.3e-7 7.3e-7 <1.0e-16 <1.0e-16 0 0

6 1.4e-7 1.4e-7 <1.0e-16 <1.0e-16 0 0

number of abstract hosts equals 20

no. of probes message loss rate 0.1 message loss rate 0.001 message loss rate 0
sent (K) NoReset Reset NoReset Reset NoReset Reset
1 1.1e-5 1.1e-5 1.2e-9 1.2e-9 0 0
2 2.1e-6 2.1e-6 2.4e-12 2.4e-12 0 0
3 4.0e-7 4.0e-7 4.9e-15 4.9e-15 0 0
4 7.6e-8 7.6e-8 <1.0e-16 <1.0e-16 0 0
5 1.4e-8 1.4e-8 <1.0e-16 <1.0e-16 0 0
6 2.8e-9 2.8e-9 <1.0e-16 <1.0e-16 0 0

these transitions corresponds to a message from a different host, when more
than one of these transitions is enabled, there is a nondeterministic choice as
to which one is taken. We vary the probability of message loss depending on
the verification instance. Once in eitté@NC_SEND or ENV_SEND, after a

delay of between 0 and 1 seconds, the model returti3iiB; this corresponds

to the message taking between 0 and 1 seconds to send.

6.1.3. Performance Analysis

In this section, we outline our results of using PRISM to verify the integral-
time models of the probabilistic timed automata of the dynamic configuration
protocol given in Sectiop 6.1.2. In the experiments, as explained above we
consider the cases when the number of hoats équals 1000 and 20, and
vary both the number of probes a host senf§ @nd the probability of
message loss.

Note that, because we have abstracted certain aspects of the network (for
example, the time taken to send a message), the presented results will give
upper and lower bounds on the performance of the protocol, for example the
actual reachability probability will lie between the minimum and maximum
reachability probabilities computed for the model under study.
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Table 4. Maximum probabilistic reachability results

number of abstract hosts equals 1000

no. of probes message loss rate 0.1 message loss rate 0.001 message loss rate 0
sent (K) NoReset Reset NoReset Reset NoReset Reset
1 0.01538 0.0154 0.0154 0.0154 0.0154 0.0154
2 0.00304 0.00296 1.9e-4 3.1e-5 1.6e-4 0
3 6.1e-4 5.6e-4 8.0e-5 6.2e-8 8.0e-5 0
4 l.le-4 1l.1le-4 1.2e-6 1.2e-10 1.2e-6 0
5 2.0e-5 2.0e-5 4.1e-7 2.5e-13 4.2e-7 0
6 3.9e-6 3.9e-6 8.4e-9 5.0e-16 8.5e-9 0

number of abstract hosts equals 20

no. of probes message loss rate 0.1 message loss rate 0.001 message loss rate 0
sent (K) NoReset Reset NoReset Reset NoReset Reset
1 3.1e-4 3.1e-4 3.1e-4 3.1e-4 3.1e-4 3.1e-4
2 5.8e-5 5.8e-5 6.8e-7 6.2e-7 6.3e-8 0
3 1.1e-5 1l.1e-5 3.3e-8 1.2e-9 3.2e-8 0
4 2.1e-6 2.1e-6 1.2e-11 2.5e-12 9.7e-12 0
5 4.0e-7 4.0e-7 3.2e-12 4.9e-15 3.2e-12 0
6 7.6e-8 7.6e-8 1.3e-15 <1.0e-16 1.3e-15 0

Probabilistic reachability. The probabilistic reachability property we con-
sider is the (minimum and maximum) probability of the host using an IP
address which is already in use by another host. In Tables 8land 4 we present
the minimum and maximum probabilistic reachability results obtained in the
cases when the number of abstract hoat}ié fixed at 1000 and 20.

For both models the results demonstrate that the probabilities decrease as
the number of probes increases, which is to be expected: if more probes are
sent then there is a greater chance of receiving a reply to a probe when an IP
address already in use is chosen (i.e. the chance that not all the probes and
responses get lost). Furthermore, the probabilities in the case Wher20
are smaller than wheWN = 1000; again this is to be expected, because when
N is smaller there are fewer abstract hosts, hence fewer IP addresses in use,
and therefore there is a smaller chance of the host choosing an IP address
which is already in use.

When the probability of message loss is 0, Taljle 4 shows that the maxi-
mum probability is O for the mod@leset (the model where the host clears its
buffer) provided the host sends more than one probe. On the other hand, for
the modelNoReset (Wwhen the host does not clear its buffer), even if the host
sends more than one probe, this maximum reachability probability is greater
than 0. To understand this result, consider the fact that, if a host does not clear
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its buffer, then there is a chance that the probes corresponding to its new IP
address will get delayed, and hence the host will not receive a reply to these
probes until after it starts using the address (since the probability of message
loss is 0, the host will eventually get a reply).

Inthe cases where the message loss probability is greater than 0, the results
presented in Tablgs 3 apd 4 demonstrate that, by allowing the host to clear its
buffer, the performance of the protocol improves; that is, the maximum reach-
ability probabilities decrease while the minimum reachability probabilities
remain the same.

Time-bounded probabilistic reachability. The time-bounded property we con-
sider is the (minimum and maximum) probability of the host using a fresh IP
address within tim&. For the modeReset when N=1000, the minimum
and maximum time-bounded reachability results are presented in Fipure 7
and Figurg B, respectively. Note that the graphs use a log scale and plot 1
minus the actual probabilities under study. The time-bounded reachability
results whenV=20 are similar except that the probabilities are higher and
the explanation for this is the same as for the probabilistic reachability case;
namely, whenV=20 there is a greater chance that the host will choose a fresh
IP address.

The results demonstrate that, for small time bounds, the probability of
the property is higher wheR is smaller. This is to be expected since sending
more probes takes more time. However, for larger time bounds the probability
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is larger when more probes are sent. This is due to the fact that, when more
probes are sent, there is less chance of using an IP address already in use, and
hence not reaching a state where the host uses a fresh IP address.

The results for the mod@loReset are similar to those presented for the
Reset, although, as for the maximum probabilistic reachability results, the
probabilities are larger for the mod&Reset.

Expected reachability. We consider the expected cost of a host choosing an
IP address and using it. As in [17], the cost is defined as the time to start
using an IP address plus an additional cégtdssociated with the host using
an address which is already in use. We consider two different valuds, for
namely10® and10'2. Note that the choice of the value of this additional cost
will depend on how damaging it is for two hosts to use the same IP address,
which in turn depends on the network and the nature of its devices.

The results for the mod@eset are presented in Figufé 9. In each graph
a log scale has been used to improve readability. The results for the model
NoReset are similar, although both the minimum and maximum costs are
larger for the modelioReset (see [47] for further details). This agrees with
our intuition, since, as the results for probabilistic reachability demonstrate,
when the host does not clear its buffer, there is a greater chance of using an
IP address which is already in use, and hence of incurring a greater cost.

These results are similar to those [0f[[17]: as the message loss probability
increases, one must increase the number of probes sent in order to reduce the
expected cost; however, if too many probes are sent, the expected cost may
start to increase. The rationale for this is that, although increasing the number
of probes sent decreases the probability of the host using an IP address which
is already in use (that is, decreases the chance of incurring the additional
cost), itincreases the expected time to choose an IP address (because sending
more probes takes more time).

Figure[9 also shows that, as the probability of message loss increases, to
minimize the expected costs one must send more probes (increase the value
of K). Similarly, the results presented demonstrate the fact that, when the
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cost of using an IP address which is already in use by another host increases,
one must send more probes to minimize the expected cost.

6.2. IEEE 802.11 WRELESSLAN

This case study concerns the IEEE 802.11 wireless local area network pro-
tocol [33] and focuses on the contention resolution protocol for ‘ad hoc net-
works’. Such networks comprise a number of stations communicating over a
shared channel, in a peer-to-peer manner and without a centralized medium
access control protocol to arbitrate requests to transmit on the channel. The
protocol includes a randomized, slotted exponential backoff procedure, which
is designed to break the symmetry between stations that are repeating previ-
ously failed transmissions, i.e. those which collided.

We assume a fixed network topology, consisting of two sending stations
and two destination stations, and consider the scenario in which both senders
are attempting to send a packet to their destinations. For detailed information
on the probabilistic timed automaton model, see [40, 47]. Preliminary results
concerning time-bounded probabilistic reachability can also be foundlin [40].
In our experiments, we investigate both the effect of changing the maximum
time it takes for a station to send a pack&fl{mazx), which is specified in the
standard as 15,8@@ec, and the maximum value which a station’s backoff
counter can takeb¢maz), which the standard specifies to be 6. Note that a
station increases its backoff counter (up to the valuécefax) each time a
collision occurs and that the value of the backoff counter influences the range
over which its next backoff is chosen. More precisely, a station chooses its
next backoff value uniformly from the rang@, 1,...,2***—1} when its
backoff counter equals.

Probabilistic reachability. First we calculate the minimal probability of both
stations eventually sending their packet. As expected, this has probability
1, regardless of the values @fT'max and bemaxz. The second probabilistic
reachability property we consider is the maximum probability of the stations
colliding at least: times.

The results obtained as the valuebefnaz varies are presented in Taple 5
(changing the value oT'T'maz does not influence the results). Observe that
the greater the value of the backoff counters, the greater the number of col-
lisions, and hence the longer it takes for a data packet to be sent correctly.
We observe that the probability falls rapidly &sincreases. This result is
to be expected since after each collision (up to &beazth collision), the
range over which each station chooses its backoff grows exponentially. Since
a station’s backoff counter is only incremented after a collision it follows that,
if the stations collide for théth time, where >2, their backoff counters equal
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Table 5. Performance results relating to the number of of collisions.

value of Maximum probability of at leagt collisions max expected

bemazx k=2 k=4 k=6 k=7 k=8 no. of collisions
0 0.183594 0.006188 0.000209 0.000038 7.03e-6 1.224872
1 0.183594 0.001580 0.000014 1.26e-6 1.17e-7 1.202366
2 0.183594 0.000794 1.73e-6 8.05e-8 3.75e-9 1.201459
3 0.183594 0.000794 4.34e-7 1.0le-8 2.37e-10 1.201440
4 0.183594 0.000794 2.17e-7 2.54e-9 2.98e-11 1.201439
5 0.183594 0.000794 2.17e-7 1.27e-9 7.45e-12 1.201439
6 0.183594 0.000794 2.17e-7 1.27e-9 3.72e-12 1.201439
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Figure 10. Model checking results for the time-bounded reachability properties

min(i—2, bemax) at this point, and hence for artythe results agree for all
bemaz such thatbemaz > k—2.

Time-bounded probabilistic reachability.The time bounded probabilistic
reachability properties we consider concern reaching states in which pack-
ets have been successfully delivered. More formally, we verify the following
properties: the minimum probability of both stations correctly delivering their
packets within timel” (P1); the minimum probability of either station cor-
rectly delivering its packet within tim& (P2); and the minimum probability

of station 1 correctly delivering its packet within tirtie(P3).

In Figure[ 10 we have plotted the results ft—P3 when using the max-
imum backoff value taken from the standatdaz=6) in the cases when
TTmaz equalss00, 1,250 and2, 500. Note that, since stations initially col-
lide with probability 1, the probability will be zero for any deadline which
does not allow the stations to collide, enter the backoff procedure, and then re-
send their data packets. In Figlre 10 the dotted line in the graphs corresponds
to the minimum probability of a station sending a packet correctly while not
entering backoff more than once; the results below this line correspond to
deadlines where only the first backoff procedure can influence the outcome
(that is, for these deadlines there is insufficient time for a station to enter the
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Table 6. Model checking results for the maximum expected time properties

TTmaz E1 (Maximum expected timey sec) until both stations correctly deliver packets)
(ps) bcmaz=0 bemaz=1 bcmazr=2 bcmaz=3 bemaz=4 bcmazr=6
500 3,792 3,865 3,882 3,883 3,883 3,883

10,000 34,401 34,265 34,274 34,275 34,275 34,275
15,800 52,944 52,677 52,680 52,682 52,682 52,682

TTmazx E2 (Maximum expected timey sec) until a station correctly delivers a packet)
(ps) bemaz=0 bemaz=1 bemaz=2 bemaz=3 bemaxr=4 bcmaz=6
500 2,525 2,551 2,558 2,559 2,559 2,559

10,000 23,636 23,451 23,450 23,451 23,451 23,451
15,800 36,429 36,113 36,107 36,108 36,108 36,108

TTmazx E3 (Maximum expected time4 sec) until station 1 correctly delivers a packet)
(ns) bemaz=0 bemazr=1 becmazr=2 bemaz=3 bemaxr=4 becmazr=6
500 3,322 3,352 3,359 3,360 3,360 3,360

10,000 31,899 31,685 31,679 31,680 31,680 31,680
15,800 49,200 48,839 48,826 48,826 48,826 48,826

backoff procedure more than once and send its data correctly). Furthermore,
the portions of the graph where the probability does not increase correspond
to deadlines which are not large enough for a station to enter backoff more
than once and successfully send its data packet, but are sufficient for all cases
when backoff is entered at most once.

Expected reachability. The first expected reachability property concerns the
maximum expected number of collisions before both stations correctly send
their packets. Similarly to the corresponding probabilistic reachability prop-
erty (maximum probability of the stations colliding at ledstimes), the
expected number of collisions decreases as the valtemix increases.

The remaining expected reachability properties we consider are the maxi-
mum expected time until both stations correctly deliver their packetl the
maximum expected time until either station correctly delivers its pa&®t (
and the maximum expected time until station 1 correctly delivers its packet
(E3). In Tablg[ 6 we present the results #61-E3 asbcmaz varies using both
the maximum transmission delay length from the standesd3(00) and two
other smaller delays. For eachif-E3, as the maximum value of the backoff
counter increases, the expected time initially decreases and then increases
slightly. The initial decrease is due to the fact that, as the backoff counter
increases, there is less chance of the stations colliding when they attempt to
retransmit, and hence the packets are sent sooner. The subsequent increase
arises from the fact that for larger values lafnaz the time that stations
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Figure 11. Maximum expected time to elect a leader

spend in backoff dominates the time that it takes for the stations to collide
and retransmit their packets correctly. More precisely, as the backoff counter
increases, the decrease in collisions is out-weighed by the increase in the time
that each station spends in backoff. The results for the other valiggahix
demonstrate the same pattern and, because for smaller val&saiz the

time to send a packet decreases, the value of the maximum backoff for which
the time spent in backoff out-weighs the time needed to retransmit packets
becomes smaller.

6.3. IEEE 1394 REWIRE ROOT CONTENTION PROTOCOL

The third case study we consider is the IEEE FireWire root contention pro-
tocol [32]. In this protocol, in order to elect a leader (the root), nodes ex-
change “be my parent” requests with their neighbours. Howeestention

may arise when two nodes simultaneously send “be my parent” requests to
each other. The solution adopted by the standard to overcome this conflict
is both probabilistic and timed: each node will flip a coin in order to decide
whether to wait for a short or for a long time for a request. For details on the
probabilistic timed automaton used in this case studyiseé [41, 47].

In our analysis, we will consider two cases for the maximum transmission
delay: 360 nanoseconds (ns) and 30ns. This models the distance between the
two nodes, i.e. the length of the connecting wires. A delay of 360ns repre-
sents the assumption that the nodes are separated by a distance close to the
maximum required for the correctness of the protocol (from the analysis of
[52]). A delay of 30ns corresponds more closely to the maximum separation
specified in the IEEE standard. In the following paragraphs, we will refer to
the two cases as ‘long wire’ and ‘short wire’, respectively.

Analysis with respect to probabilistic reachability and time-bounded prob-
abilistic reachability can be found in [41,120]. We concentrate instead on the
effect of using a biased coin with respect to expected reachability in terms of
the time to elect a leader, the power consumption before a leader is elected
and the number of rounds before a leader is elected. Note that we suppose the
nodes in root contention use coins of the same bias. Although it is possible
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to improve the performance of the protocol by supposing that the nodes’
coins have different biases, this is not feasible in practice since each node
follows the same procedure and it is not known in advance which nodes of
the network will take part in the root contention protocol.

In Figures Il an@l 12 we have plotted the effect of using a biased coin
on the maximum expected time until a leader is elected, and the maximum
expected number of rounds and expected power consumption (assuming that
the power usage when sending messages along the wires is 30W and all re-
maining power consumption is negligible). To consider the expected power
consumption we use a cost function which is of the form given in Section 4.4;
more precisely, we set the cost (per second) t6(bim locations where both
processes are sending messages, 30 in the locations where only one process
is sending a message and 0 otherwise.

The results for expected time reachability demonstrate that the (timing)
performance of the root contention protocol can be improved using a biased
coin which has a higher probability of flipping ‘fast’. The intuition behind this
result is that, although the use of such a biased coin decreases the likelihood
of the nodes flipping different values, when nodes flip the same values there
is a greater chance that less time passes before they flip again (i.e. when both
flip ‘fast’) [63]. There is a compromise here, because as the coin becomes
more biased towards ‘fast’, the probability of the nodes actually flipping
different values (which is required for a leader to be elected) decreases even
though the delay between coin flips will on average decrease. This decrease in
probability is demonstrated in Figyre]|12 since the expected number of rounds
increases as the bias of the coin increases. The results in Figure 11 further
demonstrate that, for a shorter wire length, there is a greater advantage when
using a biased coin. The reasoning behind this result is that for the short
wire length there is a greater saving in time when both nodes flip fast than
for a longer wire length, since the time required when both nodes flip fast is
dependent on a constant delay given by the protocol specification plus a delay
dependent on the wire length.
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On the other hand, the expected power consumption and expected number
of rounds obtain their minimum for a fair coin. This is unsurprising since, if
the nodes used a biased coin, the probability of them flipping the same value
would increase, and hence the expected number of rounds would also in-
crease. Similarly, the number of messages will increase if the coins are biased
leading to a higher power consumption. Furthermore, because increasing the
wire length leads to an increase in the time to send a message, and hence the
power consumed when sending a message, the expected power consumption
is greater for the longer wire length.

6.4. COMPARISON WITH ALTERNATIVE APPROACHES

In this section we compare the digital clocks approach for verifying prob-
abilistic timed automata with techniques already present in the Iiteﬁature
namely those based darwards reachability|38,(20] andbackwards reach-
ability [39,[42]. The following summarises the different approaches:

— the forwards reachability approach is applicable to general probabilistic
timed automata, but is restricted to computing upper bounds on maxi-
mum reachability probabilities;

— the backwards reachability approach is applicable to general probabilis-
tic timed automata and full PTCTL, but, at the time of writing, there
do not exist backwards reachability methods for the computation of
expected reachability values;

— as shown in this paper, the digital clocks approach is applicable to closed
and diagonal free probabilistic timed automata; it can be used to com-
pute probabilistic and expected reachability measures, but cannot be
used to verify general PTCTL formulae.

There are clear advantages in using the backwards and digital clocks methods
if one requires a comprehensive analysis of the automaton under study. On
the other hand, as one would expect, the applicability of these approaches is
restricted by both time and space requirements. It is difficult to provide a fair
comparison between these methods especially as one can use the “mature”
model checker PRISM for the digital clocks approach, while the other ap-
proaches have only prototype implementations. In particular, we could not
provide direct comparison for all the examples presented in the previous
sections as these models require complex interaction between sub-automata
which is not yet available in the prototype implementations. Below we try and
give some indication as to the difference in the time and space-complexity of

2 Note that we do not include results for thegion equivalencéased approach given in
[38], as this leads to prohibitively large state spaces even for relatively simple automata.
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Table 7. State spaces and MTBDD sizes (KB) when verifying maximal time-bounded
reachability probabilities for the FireWire case study

Time bound backward§ [42] forwards [20] digital clocks
(103ns) states size (KB) states size (KB) states size (KB)

2 1,219 7.24 825 18.9 80,980 554
4 4,844 30.6 2,329 35.2 434,364 730
6 10,981 55.0 3,833 51.9 1,093,658 860
8 - - 6,841 74.1 1,915,291 875

10 - - 9,661 90.1 2,746,691 875

20 - - 35,041 204 6,903,691 890

the approaches. Note that both the forwards and backwards approaches re-
quire a zone-based reachability analysis to construct a finite state probabilistic
system followed by the model checking of this system.

In situations where each approach can be applied, the digital clocks ap-
proach leads to the largest state space while the forwards and backwards
approaches lead to similar model sizes (sometimes the forwards approach
leads to a smaller state space, while at other times a smaller state space is
generated by the backwards approach). Note that the digital clocks approach
is the only one where the size of the model is highly dependent on the con-
stants appearing in the automaton under study; however, the impact of the
dependence of the state space size on verification experiments is overcome
partially by using the “symbolic” techniques available in PRISM, which take
advantage of any regularity of the automaton under study. Note that, because
such regularity is to some degree lost in the forwards and backwards approach
because only a subset of the state space is constructed, symbolic techniques
are not as applicable to these approaches. To illustrate this fact, i Table 7 we
present the results for the FireWire case study (see Séctipn 6.3) when com-
puting maximum reachability probabilities. Note that the results presented in
Table[ T do not take into account the space required by both the forwards and
backwards approaches when performing the initial zone-based reachability
analysis.

With regard to the time for model construction, the backwards reacha-
bility approach requires complex operations on zones which means that this
approach is, in general, the most time intensive. The forwards approach also
involves operations on zones but these operations are much simpler; the fact
that the forwards approach has been implemented using an adaptation of
the established tool KONOS whereas the implementation of the backward
approach is an early prototype, is another reason why model construction
is much faster for the forwards approach. The model construction with the
digital clocks approach is more straightforward than the other approaches,
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Table 8. Construction and model checking (m/c) times when verifying maximal time-bounded
reachability probabilities for the FireWire case study

Time bound backward§ [42] forwards [20] digital clocks

(103ns) construction m/c construction m/c construction m/c
2 544+33.0 0.106 0.42+ 0.69 0.383 10.2 7.87
4 26,992+753 0.345 0.94+ 2.08 0.802 38.3 43.9
6 618,493+4,388 1.31 1.64+3.76 1.40 85.8 145

8 - - 2.93+10.3 1.60 145 228

10 - - 4.27+20.3 2.54 205 335

20 - - 18.7+ 226 5.11 549 469

again for the reason that the symbolic techniques of PRISM exploit the regu-
larity which is present in the system. However, due to the larger state space,
the construction in the digital clocks case usually takes longer than that of
the forwards reachability approach (but less than that of the backwards ap-
proach). In terms of model checking times there is no significant difference
between the three approaches. Note that, although the digital clocks approach
generates much larger state spaces, this does not have a drastic effect on
the model checking times because of the regularity in the model and the
symbolic approach employed by PRISM. To illustrate these observations, in
Table[8 we have presented the model construction and model checking times
for the FireWire case study. The model construction times for the forwards
and backwards approaches have been separated into the time required by the
zone-based reachability computation and the time of the model construction
in PRISM.

7. Conclusions

In this paper, we have presented results demonstrating that digital clocks
are sufficient for analysing a large class of probabilistic timed automata and
performance properties. Since many of today’s protocols include both timing
and probabilistic behaviour, this approach is applicable to a wide area, which
we demonstrated by analysing the performance of three real-world protocols.
In particular, we have demonstrated that digital clocks are sufficient for the
analysis of probabilistic (timed-bounded) reachability and expected reacha-
bility against closed, diagonal-free probabilistic timed automata. In the case
of expected reachability, these results extend to the cases when the rate of cost
accumulation varies in different locations, as in priced or weighted timed au-
tomatal[10, 5]. Furthermore, we have shown the limitations of this approach:
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digital clocks are not sufficient for checking stopwatch properties or general
PTCTL specifications.

One possible area of future work is to apply the results presentéedlin [13,
14], concerning the verification of classical timed automata using integral
semantics and BDDs, to this setting (verifying probabilistic timed automata
using integral semantics and MTBDDs) in an attempt to improve efficiency.

There are still limitations in the size of the models that can be considered
using digital clocks. In the case of probabilistic reachability a more efficient
approach is to consider the symbolic model checking technique for prob-
abilistic timed automata against PTCTL introduced_in [42, 39]. However, in
the case of expected reachability, and in particular expected time reachability,
it is not clear if there is an alternative, since by using zones the exact timing
information may be lost, and hence the best one could hope for would be
approximate results. The application of zones to the verification of priced
timed automate [43] may be instructive to this line of research.
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