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Abstract. Bisimulation between processes has been proven a successful method
for formalizing security properties. We argue that in certain cases, a scheduler
that has full information on the process and collaborates with the attacker can
allow him to distinguish two processes even though they are bisimilar. This phe-
nomenon is related to the issue that bisimilarity is not preserved by refinement.
As a solution, we introduce a finer variant of bisimulation in which processes
are required to simulate each other under the “same” scheduler. We formalize
this notion in a variant of CCS with explicit schedulers and show that this new
bisimilarity can be characterized by a refinement-preserving traditional bisimi-
larity. Using a third characterization of this equivalence, we show how to verify
it for finite systems. We then apply the new equivalence to anonymity and show
that it implies strong probabilistic anonymity, while the traditional bisimulation
does not. Finally, to illustrate the usefulness of our approach, we perform a com-
positional analysis of the Dining Cryptographers with a non-deterministic order
of announcements and for an arbitrary number of cryptographers.

1 Introduction

Process algebra provides natural models for security protocols in which non-determinism
plays an essential role, allowing implementation details to be abstracted ([1-3]). In this
setting, security properties are often stated in using equivalence relations, with bisimu-
lation commonly used. Its application takes two distinct forms. In the first, the protocol
is shown to be bisimilar to a specification which satisfies the required security property,
then since the protocol and specification are equivalent, we conclude that the protocol
satisfies the property. An example is the formalization of authenticity in [2], in which A
sends a message m and B wants to ensure that it receives m and not a different message
from some other agent. In the specification, we allow B to test the received message
against the real m (as if B knew it beforehand). Showing the protocol is bisimilar to the
specification ensures B receives the correct message.

The second form is substantially different: we establish a bisimulation relation be-
tween two distinct instances of the protocol. From this, we conclude that the instances
are indistinguishable to the attacker, that is the difference between the two instances
remains hidden from the attacker. An example of this approach is the formalization of
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secrecy in [2]. If P(m) is a protocol parametrized by a message m, and we demonstrate
that P(m) and P(m') are bisimilar, then the message remains secret. Another example
is privacy in voting protocols ([4]). The votes of A and B remain private if an instance
of the protocol is bisimilar to the instance in which A and B have exchanged votes.

In this paper we focus on the second use of bisimulation and we argue that, in the
presence of a scheduler who has full view of the process, an attacker could actually
distinguish bisimilar processes. The reason is that, in the definition of bisimulation,
non-determinism is treated in a partially angelic way. Letting ~ denote bisimilarity,
when P~(Q one requires that if P can make a transition « to P’, then @ can make a
transition o to some ' such that Q~Q’ (and vice-versa). In this definition, there are
two implicit quantifiers, the second being existential:

for all transitions P — P’

there exists a transition @Q —— Q' st. PP~ Q'

In other words, @ is not forced to simulate P, it only has to have the possibility to do so.
For P and () to remain indistinguishable in the actual execution, we have to count on the
fact that the scheduler of @) will guide it in a way that simulates P, that is the scheduler
acts in favour of the process. In security, however, we want to consider the worst case
scenario, thus we typically assume that the scheduler collaborates with the attacker. A
“demonic” scheduler in the implementation of @) can choose to do something different,
allowing the attacker to distinguish the two processes.

Consider the simple example of an agent broadcasting a message m on a network,
received by agents A and B and then acknowledged (with each agent including its
identity in the acknowledgement). We can model this protocol as:

P(m) = (ve)(e{m).c{m) | A| B) where A= c(z).a and B = ¢(x).b

Clearly, P(m) ~ P(m'), but does m remain secret? Both instances can perform two
visible actions, a and b, the order of which is chosen non-deterministically. The in-
distinguishability of the two processes relies on the schedulers of P(m) and P(m/)
choosing the same order for the visible actions. If, however, one scheduler chooses a
different order, then we can distinguish m from m’ through on the output of the pro-
tocol. This could be the case, for example, if an operation is performed upon reception
whose execution time is message dependent.

This consequence of angelic non-determinism can be also formulated in terms of
refinement, where @ refines P if it contains “less” non-determinism. While an imple-
mentation of a protocol is a refinement of it, bisimulation need not be preserved by re-
finement, thus security properties might no longer hold in the implementation, an issue
often called the “refinement paradox™ ([3, 6]). In the example above, P(m) and P(m')
could be implemented by (vc)(é(m).c(m) | c(z).a.c(x).b) and (vc)(e(m').c¢(m’) |
c(x).b.c(x).a) respectively which can be distinguished. Note that, in the specification-
based use of bisimulation this issue does not appear: as the protocol and specification
are bisimilar, the implementation will be a refinement of the specification which is usu-
ally enough to guarantee the required security property.

It should be noted that classical bisimulation does offer some control over non-
determinism as it is closed under contexts and contexts can restrict available actions.



More precisely, bisimulation is robust against schedulers that can be expressed through
contexts. However, contexts cannot control internal choices, like the selection of the
first receiver in the above example. The example could be rewritten to make this selec-
tion external, however, for more complex protocols this solution becomes challenging.
Also, when using contexts, it is not possible to give some information to the scheduler,
without making the corresponding action visible, that is, without revealing it to an ob-
server. This could be problematic when, for example, verifying a protocol in which the
scheduler, even if he knows some secret information, has no possibility to communicate
it to the outside.

In this paper we propose an approach based on a variant of bisimulation, called
demonic bisimulation, in which non-determinism is treated in a purely demonic way. In
principle, we would like to turn the existential quantifier into a universal one, but this
is too restrictive and the relation would not even be reflexive. Instead we require () to
simulate a transition « of P, not under any scheduler but under the same scheduler that
produced «:

for all schedulers S, if P —— P’
then under the same scheduler S: Q —— Q' with P’ ~ @’

Note that, in general, it is not possible to speak about the “same” scheduler, since dif-
ferent processes have different choices. Still, this is reasonable if the processes have a
similar structure (as in the case of P(m) and P(m’)), in this paper we give a framework
that allows us to formalize this concept. The basic idea is that we can choose the sched-
uler that can break our property, however we must test both processes under the same
one. This requirement is both realistic, as we are interested in the indistinguishability of
two processes when put in the same environment, and strong, since it leaves no angelic
non-determinism.

To formalize demonic bisimulation we use a variant of probabilistic CCS with ex-
plicit schedulers, which was introduced in [7] to study the information that a scheduler
has about the state of a process. This calculus allows us to speak of schedulers indepen-
dently from processes, leading to a natural definition of demonic bisimulation. Then,
we discuss how we can view a scheduler as a refinement operator that restricts the non-
determinism of a process. We define a refinement operator, based on schedulers, and we
show that demonic bisimilarity can be characterized as a refinement-preserving classi-
cal bisimilarity, for this type of refinement. Afterwards, we give a third characterization
of demonic bisimilarity, that allows us to obtain an algorithm to verify finite processes.
Finally, we apply the demonic bisimulation to the analysis of anonymity protocols and
show that demonic bisimulation, in contrast to the classical one, implies strong proba-
bilistic anonymity. This enables us to perform a compositional analysis of the Dining
Cryptographers protocol demonstrating that it satisfies anonymity for an arbitrary num-
ber of cryptographers.

2 Preliminaries

We denote by Disc(X) the set of all discrete probability measures over X, and by ()
(called the Dirac measure on x) the probability measure that assigns probability 1 to



{z}. We will also denote by >, [p;]u; the probability measure obtained as a convex
sum of the measures ;.

A simple probabilistic automaton is a tuple (S, q, A, D) where S is a set of states,
q € S is the initial state, A is a set of actions and D C S x A x Disc(S) is a transition
relation. Intuitively, if (s, a, 1) € D, also written s — yu, then there is a transition from
the state s performing the action @ and leading to a distribution p over the states of the
automaton. A probabilistic automaton M is fully probabilistic if from each state of M
there is at most one transition available. An execution « of a probabilistic automaton is
a (possibly infinite) sequence sga; syasss . . . of alternating states and actions, such that
q = o, and for each 7 : s; AR wi and p;(s;41) > 0. A scheduler of a probabilistic
automaton M = (5, ¢, A, D) is a function ( : exec* (M) — D where exec* (M) is the
set of finite executions of M, such that {(«) = (s,a, u) € D implies that s is the last
state of a. The idea is that a scheduler selects a transition among the ones available in
D and it can base its decision on the history of the execution. A scheduler induces a
probability space on the set of executions of M.

If R is arelation over a set S, then we can lift the relation to probability distributions
over S using the standard weighting function technique (see [8] for details). If R is an
equivalence relation then the lifting can be simplified: 11 R po iff for all equivalence
classes £ € S/R, 11(E) = pu2(E). We can now define simulation and bisimulation for
simple probabilistic automata.

Definition 1. Let (S, q, A, D) be a probabilistic automaton. A relation R C S x S is
a simulation iff for all (s1,s2) € R,a € A: if s1 —— i1 then there exists [ such that
Sy —s weo and p1 R po. A simulation R is a bisimulation if it is also symmetric (thus,
it is an equivalence relation). We define T, ~ as the largest simulation and bisimulation
on S respectively.

CCS with internal probabilistic choice Let a range over a countable set of channel
names and let « stand for a, a or 7. The syntax of CCS,, is:

PQ == aP|P|Q|P+Q|>,pP| (va)P |la.P |0

The term ), p; P; represents an internal probabilistic choice, all the remaining oper-
ators are from standard CCS. We will also use the notation P; +, P> to represent a
binary sum ), p; P; with p; = p and po = 1 — p. Finally, we use replicated input
instead of replication or recursion, as this simplifies the presentation. The semantics of
CCS,, is standard and has been omitted due to space constraints. The full semantics can
be found in the report version of this paper ([9]). We denote this transition system by
— to distinguish it from other transition systems defined later in the paper.

3 A variant of CCS,, with explicit scheduler

In this section we present a variant of CCS,, in which the scheduler is explicit, in the
sense that it has a specific syntax and its behaviour is defined by the operational se-
mantics of the calculus. This calculus was proposed in [7]; we will refer to it as CCS,.



I:=0I]|11I|¢€ labelindexes S, T = scheduler

L= labels L.S schedule single action
| (L,L).S synchronization
PQ = processes | if L label test
L:a.P prefix then S
| P|Q parallel else S
| P+Q nondeterm. choice | 0 nil
| LY. piPs internal prob. choice
| (va) restriction CP ::=P | S complete process
| 'L:a.P replicated input
| L:0 nil

Fig. 1. The syntax of CCS,

Processes in CCS,, contain labels that allow us to refer to a particular sub-process. A
scheduler also behaves like a process, using however a different and much simpler syn-
tax, and its purpose is to guide the execution of the main process using the labels that
the latter provides.

3.1 Syntax

Let a range over a countable set of channel names and [ over a countable set of atomic
labels. The syntax of CCS,, shown in Figure 1, is the same as the one of CCS,, except
for the presence of labels. These are used to select the subprocess which “performs”
a transition. Since only the operators with an initial rule can originate a transition, we
only need to assign labels to the prefix and to the probabilistic sum. We use labels of
the form [° where [ is an atomic label and the index s is a finite string of 0 and 1,
possibly empty. Indexes are used to avoid multiple copies of the same label in case of
replication. As explained in the semantics, each time a process is replicated we relabel
it using appropriate indexes. To simplify the notation, we use base labels of the form
l,...,1,, and we write ‘a.P for l;:a.P.

A scheduler selects a sub-process for execution on the basis of its label, so we use
[.S to represent a scheduler that selects the process with label [ and continues as S. In
the case of synchronization we need to select two processes simultaneously, hence we
need a scheduler of the form (I1,12).S. We will use S; to denote a scheduler of one of
these forms (that is, a scheduler that starts with a label or pair of labels). The if-then-
else construct allows the scheduler to test whether a label is available in the process (in
the top-level) and act accordingly. A complete process is a process put in parallel with a
scheduler, for example l1:a.l3:b || 11.l12. We define P, CP to be the sets of all processes
and all complete CCS,, processes respectively. Note that for processes with an infinite
execution path we need schedulers of infinite length.

3.2 Semantics for complete processes

The semantics of CCS,, is given in terms of a probabilistic automaton whose state space
is C’P and whose transitions are given by the rules in Figure 2. We denote the transitions
by — to distinguish it from other transition systems.
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P | if | then S; else Sz —— i P || if | then S; else So —

Fig. 2. The semantics of complete CCS, processes. SUM1 and PAR1 have corresponding right
rules SUM2 and PAR2, omitted for simplicity.

ACT is the basic communication rule. In order for /: a. P to perform «, the scheduler
should select this process for execution, so the scheduler needs to be of the form [.S.
After this execution the complete process will continue as P || S. The RES rule models
restriction on channel a: communication on this channel is not allowed by the restricted
process. We denote by (va)u the measure p/ such that p/((va)P || S) = w(P || S)
for all processes P and p/(R || S) = 0if R is not of the form (rva)P. SUMI models
nondeterministic choice. If P || S can perform a transition to y, which means that
S selects one of the labels of P, then P + @ | S will perform the same transition,
i.e. the branch P of the choice will be selected and ) will be discarded. For example
li:a.P+13:0.Q || .S —%, §(P || S). Note that the operands of the sum do not have
labels, the labels belong to the subprocesses of P and (). In the case of nested choices,
the scheduler must select the label of a prefix, thus resolving all the choices at once.

PARI1, modelling parallel composition, is similar: the scheduler selects P to perform
a transition on the basis of the label. The difference is that in this case () is not discarded;
it remains in the continuation. x | () denotes the measure p’ such that /(P | Q || S) =
w(P || S). COM models synchronization. If P || [; can perform the action a and Q || Io
can perform a, then (l1,l3).S can synchronize the two by scheduling both /; and o
at the same time. PROB models internal probabilistic choice. Note that the scheduler
cannot affect the outcome of the choice, it can only schedule the choice as a whole
(this is why a probabilistic sum has a label) and the process will move to a measure
containing all the operands with corresponding probabilities.

REP models replicated input. This rule is the same as in CCS, with the addition of
a re-labeling operator p;. The reason for this is that we want to avoid ending up with
multiple copies of the same label as the result of replication, since this would create
ambiguities in scheduling as explained in Section 3.3. p; P appends 7 € {0,1} to the
index of all labels of P, for example: p;I*:a.P = [**:cv.p; P and similarly for the other
operators. Note that we relabel only the resulting process, not the continuation of the
scheduler: there is no need for relabeling the scheduler since we are free to choose the
continuation as we please.



Finally if-then-else allows the scheduler to adjust its behaviour based on the labels
that are available in P. tI(P) gives the set of top-level labels of P and is defined as:
t(l:o.P) = t(l:) >, piP;) = ti(!l:a.P) = tl(1:0) = {l} and as the union of the
top-level labels of all sub-processes for the other operators. Then if / then 5 else Sy
behaves like S7 if [ is available in P and as S5 otherwise.

A process is blocked if it cannot perform a transition under any scheduler. A sched-
uler S is non-blocking for a process P if it always schedules some transition, except
when P itself is blocked.

3.3 Deterministic labelings

The idea in CCS,, is that a syntactic scheduler will be able to completely resolve the
nondeterminism of the process, without needing to rely on a semantic scheduler at the
level of the automaton. To achieve this we impose a condition on the labels of CCS,
processes. A labeling for P is an assignment of labels to the subprocesses of P that
require a label. A labeling for P is deterministic iff for all schedulers S there is at
most one transition of P || S enabled at any time, in other words the corresponding
automaton is fully probabilistic. In the rest of the paper, we only consider processes
with deterministic labelings.

A simple case of deterministic labelings are the /inear ones, containing pairwise
distinct labels (a more precise definition of linear labelings requires an extra condi-
tion and can be found in [10]). It can be shown that linear labelings are preserved by
transitions and are deterministic. However, the interesting case is that we can construct
labelings that are deterministic without being linear. The usefulness of non-linear label-
ings is that they limit the power of the scheduler, since the labels provide information
about the current state and allow the scheduler to choose different strategies through
the use of if-then-else. Consider, for example, the following process whose labeling is
deterministic but not linear:

I:(*a.Ry +, 'a.Ry) | *a.P | %a.Q (1)

Since both branches of the probabilistic sum have the same label [, the scheduler can-
not resolve the choice between P and () based on the outcome of the probabilistic
choice. Another use of non-linear labeling is the encoding of “private” value passing
([7D:
l:e(z).P = Y, l:cv;. Pl /] :é(v).P = l:e0.P

This is the usual encoding of value passing in CCS except that we use the same label in
all the branches of the nondeterministic sum. Thus, the reception of a message is visible
to the scheduler, but not the received value.

4 Demonic Bisimulation

As discussed in the introduction, classical bisimulation treats non-determinism in a par-
tially angelic way. In this section we define a strict variant of bisimulation, called de-
monic bisimulation, which treats non-determinism in a purely demonic way. We char-
acterize this equivalence in two ways, first in terms of schedulers, then in terms of
refinement.



4.1 Definition using schedulers

An informal definition of demonic bisimulation was already given in the introduction:
P is demonic-bisimilar to @, written P ~p Q if for all schedulers S, if P —— P’ then
under the same scheduler S: Q —— Q' with P’ ~p Q. To define demonic bisimulation
concretely, we need a framework that allows a single scheduler to be used with different
processes. CCS,, does exactly this: it gives semantics to P || .S for any process P and
scheduler S (of course, S might be blocking for some processes and non-blocking for
others).

If 11 is a discrete measure on P, we denote by p || .S the discrete measure p' on CP
such that p/(P || S) = p(P) forall P € P and /(P || ") = 0 for all S” # S (note
that all transition rules of Fig. 2 produce measures of this form).

Definition 2 (Demonic bisimulation). An equivalence relation R on P is a demonic
bisimulation iff for all (P, P2) € R,a € A and all schedulers S: if S is non-blocking
for Py and Py || S~ py || S’ then the same scheduler S is non-blocking for Py and
Py || S % po || S" with 11 R po. We define demonic bisimlarity ~p as the largest
demonic bisimulation on P.

Consider again the example of the introduction. We define:
A="1¢(x)2a B =3c(z).% P(m) = (ve)(Pe(m).5¢(m) | A| B)

Note that P(m), P(m’) share the same labels. This choice of labels states that whenever
a scheduler chooses an action in P(m), it has to schedule the same action in P(m’).
Then it is easy to see that P(m) ~p P(m’). A scheduler that selects A first in P(m)
will also select A first in P(m'), leading to the same order of actions. Under this defini-
tion, we do not rely on angelic non-determinism for P(m’) to simulate P(m), we have
constructed our model in a way that forces a scheduler to perform the same action in
both processes. Note that we could also choose to put different labels in ¢(m), é(m’),
hence allowing them to be scheduled in a different way. In this case ~p will no longer
hold, exactly because we can now distinguish the two processes using an if-then-else
scheduler that depends on the message. Finally we perform a usual sanity check:

Proposition 1. ~p is a congruence.

4.2 Characterization using refinement

Another way of looking at schedulers is in terms of refinement: a process () refines P
if it contains “less” non-determinism. A typical definition is in terms of simulation: )
refines P if ) C P. For example, a is a refinement of a + b where the non-deterministic
choice has been resolved. Thus, a scheduler can be seen as a way to refine a process
by resolving the non-determinism. For example, /; : @ can be seen as the refinement of
l1:a + Il : bunder the scheduler /,. Moreover, partial schedulers can be considered as
resolving only part of the non-determinism. For example, for the process 'a.(3c+*d) +
2p, the scheduler 1; will resolve the first non-deterministic choice but not the second.

It has been observed that many security properties are not preserved by refinement,
a phenomenon often called the “refinement paradox”. If we define security properties



@o(P) =P @
ea.s(A:a.P) = Xia.ps(P) 3)
orxs(P+ Q) =oas(P)+ prs(Q) 4)
pr.s((va)P) = (va)ex.s(P) )

wrs(l:22, piP) =137, pips () (6)

Araps(P| Q) if pA(P) == 86(P")
A pips(Pi | Q) if oa(P) ——c X2, [pild(F)
Arps(P | Q) if A= (I1,l2) and
1 (P) = 6(P'), 01, (Q) —¢ 6(Q")
v1.s(N:a.P) = l:a.ps(poP | 1z a.p1 P) (8)

prs(P Q)= )

( ps, (P) ifl € tI(P) where S = if [ then S, else S; ©)
Ps = .

ps,(P) ifl ¢ ti(P)
ps(P) =0 if none of the above is applicable (e.g. i, (I2:a.P) = 0) (10)

Fig. 3. Refinement of CCS, processes under a scheduler. The symmetric cases for the parallel
operator have been omitted for simplicity

using bisimulation this issue immediately arises. For example, a|b is bisimilar to a.b +
b.a but if we refine them to a.b and b.a respectively, they are no longer bisimilar. Clearly,
if we want to preserve bisimilarity we have to refine both processes in a consistent
way. In this section, we introduce a refinement operator based on schedulers. We are
then interested in processes that are not only bisimilar, but also preserve bisimilarity
under this refinement. We show that this stronger equivalence coincides with demonic
bisimilarity.

With a slight abuse of notation we extend the transitions —. (the traditional tran-
sition system for CCS,,) to CCS,, processes, by simply ignoring the labels, which are
then only used for the refinement. Let S be a finite scheduler and P a CCS,, process.
The refinement of P under S, denoted by g (P), is a new CCS,, process. The function
@gs : P — P is defined in Figure 3. Note that ¢ does not perform transitions, it only
blocks the transitions that are not enabled by S. Thus, it reduces the non-determinism of
the process. The scheduler might be partial: a scheduler 0 leaves the process unaffected
(2). Thus, the resulting process might still have non-deterministic choices. A prefix is
allowed in the refined process only if its label is selected by the scheduler (3), otherwise
the refined process is equal to 0 (10). Case (4) applies the refinement to both operands.
Note that, if the labeling is deterministic, at most one of the two will have transitions
enabled. The most interesting case is the parallel operator (7). There are three possi-
ble executions for P | Q). An execution of P alone, of ) alone or a synchronization
between the two. The refined version enforces the one selected by the scheduler (the
symmetric cases have been omitted for simplicity). This is achieved by explicitly pre-
fixing the selected action, for example l1 :a | l2:b refined by Iy becomes l1:a.(0 | I3:D).
If P performs a probabilistic choice, then we have to use a probabilistic sum instead of



an action prefix. The case of | P (8) is similar to the prefix (3) and the rest of the cases
are self-explanatory.

The intention behind the definition of ¢g is to refine CCS,, processes: ¢s(P) con-
tains only the choices of P that are selected by the scheduler S. We now show that the
result is indeed a refinement:

Proposition 2. For all CCS,, processes P and schedulers S: ¢s(P) C P

Note that T is the simulation relation on P wrt the classical CCS semantics —..
Also, let ~ be the bisimilarity relation on P wrt —.. A nice property of this type of
refinement is that it allows one to refine two processes in a consistent way. This enables
us to define a refinement-preserving bisimulation.

Definition 3. An equivalence relation R on P is an R-bisimulation iff for all (Py, Py) €
R and all finite schedulers S: ps(Py) ~ pgs(P2). We denote by ~g the largest R-
bisimulation.

Note that P, ~r P, implies P, ~ P, (for S = 0). We now show that processes
that preserve bisimilarity under this type of refinement are exactly the ones that are
demonic-bisimilar.

Theorem 1. The equivalence relations ~ g and ~ p coincide.

5 Verifying demonic bisimilarity for finite processes

The two characterizations of demonic bisimilarity, given in the previous section, have
the drawback of quantifying over all schedulers. This makes the verification of the
equivalence difficult, even for finite state processes. To overcome this difficulty, we
give a third characterization, this one based on traditional bisimilarity on a modified
transition system where labels annotate the performed actions. We then use this charac-
terization to adapt an algorithm for verifying probabilistic bisimilarity to our settings.

5.1 Characterization using a modified transition system

In this section we give a modified semantics for CCS, processes without schedulers.
The semantics are given by means of a simple probabilistic automaton with state space
P, displayed in Figure 4 and denoted by —,. The difference is that now the labels
annotate the actions instead of being used by the scheduler. Thus, we have actions of
the form A : « where A is [ or (I1,l3), and « is a channel, an output on a channel
or 7. Note that, in the case of synchronization (COM), we combine the labels [, 5
of the actions a,a and we annotate the resulting 7 action by (l1,3). All rules match
the corresponding transitions for complete processes. Since no schedulers are involved
here, the rules IF1 and IF2 are completely removed.
We can now characterize demonic bisimilarity using this transition system.

Definition 4. An equivalence relation 'R on ‘P is an A-bisimulation iff

i) it is a bisimulation wrt —,, and
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Fig. 4. Semantics for CCS, processes without schedulers. SUM1 and PAR1 have corresponding
right rules SUM2 and PAR2, omitted for simplicity.

ii) tl(Py) = tl(Py) for all non-blocked Py, P, € R
We define ~ 4 as the largest A-bisimulation on P.
Theorem 2. The equivalence relations ~p and ~ 4 coincide.

Essentially, we have encoded the schedulers in the actions of the transition system
—4. Thus, if two processes perform the same action in —, it means that they per-
form the same action with the same scheduler in — . Note that the relation ~ 4 is
stricter that the classical bisimilarity. This is needed because schedulers have the power
to check the top-level labels of a process, even if this label is not “active”, that is it
does not correspond to a transition. We could modify the semantics of the if-then-else
operator, in order to use the traditional bisimilarity in the above theorem. However, this
would make the schedulers less expressive. Indeed, it can be shown ([7]) that for any
semantic scheduler (that is, one defined on the automaton) of a CCS,, process P, we
can create a syntactic scheduler that has the same behaviour on P labeled with a linear
labeling. This property, though, is lost under the modified if-then-else.

5.2 An algorithm for finite state processes

We can now use ~ 4 to verify demonic bisimilarity for finite state processes. For this,
we adapt the algorithm of Baier ([11]) for probabilistic bisimilarity. The adaptation is
straightforward and has been omitted due to space constraints. The only interesting part
is to take into account the additional requirement of ~ 4 that related non-blocked pro-
cesses should have the same set of top-level labels. This can be done in a pre-processing
step where we partition the states based on their top-level labels. More details can be
found in the report version of this paper ([9]). The algorithm has been implemented and
used to verify some of the results of the following section.

6 An application to security

In this section, we apply the demonic bisimulation to the verification of anonymity
protocols. First, we formalize anonymity in terms of equivalence between different in-
stances of the protocol. We then show that this definition implies strong probabilistic



anonymity, which was defined in [12] in terms of traces. This allows us to perform an
easier analysis of protocols by exploiting the algebraic properties of an equivalence.
We perform such a compositional analysis on the Dining Cryptographers protocol with
non-deterministic order of announcements.

6.1 Probabilistic anonymity

Consider a protocol in which a set A of anonymous events can occur. An event a; € A
could mean, for example, that user ¢ performed an action of interest. In each execution,
the protocol produces an observable event o € O. The goal of the attacker is to de-
duce a; from o. Strong anonymity was defined in [12], here we use this definition in a
somewhat informal way, a more formal treatment is available in the report version of
the paper ([9]).

Definition 5 (strong anonymity). A protocol is strongly anonymous iff for all sched-
ulers, for all a;,a; € A and all o € O, the probability of producing o when a; is
selected is equal to the probability of producing o when a; is selected.

Let Prot; be the CCS, process modelling the instance of the protocol when a;
occurs. Typically, the selection of anonymous event is performed in the beginning of
the protocol (for example a user ¢ decides to send a message) and then the protocol
proceeds as Prot;. Thus, the complete protocol is modelled by Prot = 1:>, pi Prot;.
The observable events correspond to the traces of Prot. We can now give a definition
of strong anonymity based on demonic bisimulation:

Definition 6 (equivalence based anonymity). A protocol satisfies anonymity iff for all
anonymous events a;,a; € A : Prot; ~p Prot;.

The idea behind this definition is that, if Prot;, Prot; are demonic-bisimilar, they
should behave in the same way under all schedulers, thus producing the same obser-
vation. Indeed, we can show that the above definition implies Def. 5.

Proposition 3. If Prot; ~p Prot; for all i, j then the protocol satisfies strong proba-
bilistic anonymity (Def. 5)

It is worth noting that, on the other hand, Prot; ~ Prot; does not imply Def. 5, as we
see in the next section.

6.2 Analysis of the Dining Cryptographers protocol

The problem of the Dining Cryptographers is the following: Three cryptographers dine
together. After the dinner, the bill has to be paid by either one of them or by another
agent called the master. The master decides who will pay and then informs each of
them separately whether he has to pay or not. The cryptographers would like to find out
whether the payer is the master or one of them. However, in the latter case, they wish
to keep the payer anonymous.

The Dining Cryptographers Protocol (DCP) solves the above problem as follows:
each cryptographer tosses a fair coin which is visible to himself and his neighbour to
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Fig. 5. Encoding of the dining cryptographers protocol

the right. Each cryptographer checks the two adjacent coins and, if he is not paying,
announces agree if they are the same and disagree otherwise. However, the paying
cryptographer says the opposite. It can be proved that the master is paying if and only
if the number of disagrees is even ([13]).

We model the protocol, for the general case of a ring of n cryptographers, as shown
in Figure 5. The symbols @, ® represent the addition modulo n and modulo 2 (xor)
respectively. Crypt;, Crypt P; model the cryptographer ¢ acting as non-payer or payer
respectively. C'oin; models the i-th coin, shared between cryptographers ¢ and 7 & 1.
Finally, Prot; is the instance of the protocol when cryptographer ¢ is the payer, and
consists of C'ryptF;, all other cryptographers as non-payers, and all coins. An external
observer can only see the announcements out;(-). As discussed in [12], DCP satisfies
anonymity if we abstract from their order. If their order is observable, on the contrary,
a scheduler can reveal the identity of the payer to the observer by forcing the payer to
make his announcement first, or by selecting the order based on the value of the coins.

In CCS, we can be precise about the information that is revealed to the scheduler.
In the encoding of Fig. 5, we have used the same labels on both sides of the probabilistic
choice in Coin;. As a consequence, after performing the choice, the scheduler cannot
use an if-then-else to find out which was the outcome, so his decision will be indepen-
dent of the coin’s value. Similarly, the use of private value passing (see Section 3.3)
guarantees that the scheduler will not see which value is transmitted by the coin to the
cryptographers. Then we can show that for any number of cryptographers:

Prot; ~p Prot; V1<i,7<n (11)

For a fixed number of cryptographers, (11) can be verified automatically using the al-
gorithm of Section (5.2). We have used a prototype implementation to verify demonic
bisimilarity for a very small number of cryptographers (after that, the state space be-
comes too big). However, using the algebraic properties of ~p we can perform a com-
positional analysis and prove (11) for any number of cryptographers. This approach is
described in the report version of the paper.

This protocol offers a good example of the difference between classical and de-
monic bisimulation. Wrt the — transition system, Prot;, Prot; are both bisimilar
and demonic-bisimilar, and strong anonymity holds. Now let C'oin} be the same as
C'oin; but with different labels on the left-hand and right-hand side, meaning that now a
scheduler can depend its behaviour on the value of the coin. The resulting Prot;, Prot;-

processes are no longer demonic-bisimilar and strong-anonymity is violated. However,



classic bisimulation still holds, showing that it fails to capture the desired security prop-
erty.

7 Related work

Various works in the area of probabilistic automata introduce restrictions to the sched-
uler to avoid violating security properties ([ 14—16]). Their approach is based on dividing
the actions of each component of the system in equivalence classes (fasks). The order
of execution of different tasks is decided in advance by a so-called task scheduler. The
remaining nondeterminism within a task is resolved by a second demonic schedule.
In our approach, the order of execution is still decided non-deterministically by a de-
monic scheduler, but we impose that the scheduler will make the same decision in both
processes.

Refinement operators that preserve various security properties are given in [17, 18].
In our approach, we impose that the refinement operator should preserve bisimilarity,
obtaining a stronger equivalence.

In the probabilistic setting, a bisimulation that quantifies over all schedulers is used
in [19]. In this work, however, the scheduler only selects the action and the remain-
ing non-determinism is resolved probabilistically (using a uniform distribution). This
avoids the problem of angelic non-determinism but weakens the power of the sched-
uler.

On the other hand, [20] gives an equivalence-based definition of anonymity for the
Dining Cryptographers, but in a possibilistic setting. In this case the scheduler is clearly
angelic, since anonymity relies on a non-deterministic selection of the coins. Our def-
inition is the probabilistic counterpart of this work, which was problematic due to the
angelic use of non-determinism.

8 Conclusion and future work

We introduced a notion of bisimulation where processes are required to simulate each
other under the same scheduler. We characterized this equivalence in three different
ways: using syntactic schedulers, using a refinement operator based on schedulers and
using a modified transition system where labels annotate the actions. We applied this
notion to anonymity showing that strong anonymity can be defined in terms of equiv-
alence, leading to a compositional analysis of the dining cryptographers with non-
deterministic order of announcements.

As future work, we want to investigate the effect of angelic non-determinism to
other process equivalences. Many of them are defined based on the general schema:
when P does an action of interest (passes a test, produces a barb, etc) then ) should
be able to match it, employing an existential quantifier. Moreover, we would like to
investigate models in which both angelic and demonic non-determinism are present.
One approach would be to use two separate schedulers, one acting in favour and one
against the process, along the lines of [21].
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