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Abstract. When deploying classifiers in the real world, users expect them
to respond to inputs appropriately. However, traditional classifiers are not
equipped to handle inputs which lie far from the distribution they were
trained on. Malicious actors can exploit this defect by making adversarial
perturbations designed to cause the classifier to give an incorrect output.
Classification-with-rejection methods attempt to solve this problem by
allowing networks to refuse to classify an input in which they have low
confidence. This works well for strongly adversarial examples, but also
leads to the rejection of weakly perturbed images, which intuitively could
be correctly classified. To address these issues, we propose Reed-Muller
Aggregation Networks (RMAggNet), a classifier inspired by Reed-Muller
error-correction codes which can correct and reject inputs. This paper
shows that RMAggNet can minimise incorrectness while maintaining good
correctness over multiple adversarial attacks at different perturbation
budgets by leveraging the ability to correct errors in the classification
process. This provides an alternative classification-with-rejection method
which can reduce the amount of additional processing in situations where
a small number of incorrect classifications are permissible.

Keywords: Deep Neural Networks · Adversarial Examples · Classification-
with-rejection · Error-correction codes · ML Security

1 Introduction

Deep Neural Networks (DNNs) have shown incredible performance in numerous
classification tasks, including image classification [1], medical diagnosis [2] and
malware detection [3]. However, a fundamental shortcoming is that they pass
judgement beyond their expertise. When presented with data outside of the
distribution they were trained on, DNNs will attempt to classify that data by
selecting from one of the finite labels available, often reporting high confidence
in the classifications they have made. The most egregious examples of this occur
when a DNN is presented with an input which is far outside of the domain it has
been trained on (for example, presenting an image of a cat to a text classification
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model), which it will confidently assign a class to. This behaviour is also present
in adversarial examples, which were introduced in the seminal paper by Szegedy
et al. in 2018 [4], where an (almost) invisible perturbation pushes an input far
from the training distribution, leading to a confident misclassification [5]. Since
then, extensive research has been conducted exploring new, more sophisticated,
attacks on networks of different architectures [6,7,8] and defences that attempt
to mitigate their effectiveness [9,10,11]. This results in hesitation when applying
DNN models to safety- and security-critical applications where there is a high
cost of misclassification.

Classification-with-rejection (CWR) methods [11,12,13,14] attempt to address
this limitation by refusing to assign a label to an input when the confidence in the
classification is low. In this paper, we present an approach to CWR that parallels
ideas from Error-Correcting Output Codes (ECOCs) [11,14], where an ensemble
of networks perform classification by generating binary strings, extending them
with a reject option. ECOC methods have received little attention as a defence
mechanism against adversarial attacks, even though the independence of the
individual networks offers a natural defence. A notable property of adversarial
attacks is that they are highly transferable between models, meaning an ad-
versarial attack crafted for one network will likely deceive another with high
probability, provided the networks perform a similar task [15]. Since ECOC
methods promote diversity in the constituent network’s tasks, an adversarial
attack crafted to change the output reported by one network is less likely to
fool another in a way which would result in further misclassification. Moreover,
due to the aggregated nature of the resulting classification, an adversary would
need to create a perturbation which can fool multiple networks simultaneously,
necessitating precise bit-flipping strategies which lead to a valid target class.

In this paper, we introduce Reed-Muller Aggregation Networks (RMAggNet),
which apply error correcting codes to the correction and rejection of classifications,
ultimately producing a new kind of ECOC classifier. Similar to existing ECOCs,
these consist of multiple DNNs, each performing a simple classification task which
determines if an input belongs to a defined subset of the classes, resulting in
a binary answer. The results of these networks are aggregated together into a
binary string which we compare to class binary strings which represent each of
the classes from the dataset. If the resulting binary string is the same as a class
binary string, we return the associated label as a result, otherwise we attempt to
correct the result (if we have a small enough Hamming distance), or reject the
result and refuse to classify the input. Thus, unlike existing CWR methods our
approach has the ability to both correct and reject inputs.

We evaluate the effectiveness of RMAggNet by comparing it to two other
CWR approaches: an ensemble of networks (with a voting-based rejection process)
and Confidence Calibrated Adversarial Training (CCAT) [16]. After performing
tests using the EMNIST and CIFAR-10 datasets with open-box PGD L∞ and
PGD L2 adversarial attacks, we conclude that RMAggNet can greatly reduce the
amount of rejected inputs in certain circumstances, making it a viable alternative
to methods such as CCAT if some incorrectness is acceptable. We expand on this
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finding using the MNIST dataset, along with closed-box adversarial attacks, in
an extended version of this paper [17].

In summary, this paper makes the following contributions:

– We introduce RMAggNet, a novel ECOC classification method which leverages
the power of Reed-Muller codes to create a classifier which can both correct
and reject inputs (Section 3)3.

– We show the effectiveness of RMAggNet on the EMNIST and CIFAR-10
datasets with open-box gradient-based adversarial attacks (Sections 4 & 5).

– We discuss the application of RMAggNet to classification tasks, providing
guidance on when it may be a strong alternative to other CWR methods
(Section 6).

2 Related work

2.1 Error correcting output codes

Verma and Swami defined an error-correcting output code (ECOC) classification
method which uses an ensemble of models, each trained to perform a subset of
the classification [11]. Their model uses Hadamard matrices to construct binary
codes, which are assigned to classes from the dataset. Multiple DNNs are then
defined to generate a set amount of bits from each code for each class, essentially
following a set membership classification approach. When an input is passed to
the multiple networks, a vector of real numbers is generated, and the similarity
between this vector and the class vectors is calculated, with the most similar
vector being returned as the final classification.

The authors argue that this classification method has greater resilience to
adversarial attacks than traditional ensemble methods due to the independence
of the models, encouraged by the diverse classification tasks. This reduces the
chance of multiple coordinated bit-flips occurring due to a single perturbation as
a result of the transferability of adversarial attacks. Verma and Swami focus their
attention on multi-bit outputs, where four networks produce a combined total
of 16, 32, or 64 bits, encoding the input into 4, 8 or 16 bits, respectively. This
approach to ECOC classification leads to similar networks being trained, where,
in many cases, the entire set of classes is being used by all networks. This results
in each network learning similar features, reducing independence and lowering
resilience to transfer attacks.

Song et al., proposed a method which extends the work by Verma and
Swami, introducing Error Correcting Neural Networks (ECNN) [14]. This paper
improves ECOCs by increasing the number of networks to one per output bit and
optimising the codeword matrix using simulated annealing [18] which encourages
each classifier to learn unique features, enhancing robustness against direct and
transfer adversarial attacks. However, in practice, the ECNN implementation
trains a single network with each classifier having a unique top layer. This reduces
3 Code available at: https://github.com/dfenth/RMAggNet

https://github.com/dfenth/RMAggNet
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the independence between networks since each of them share the same low level
features which can be used by adversaries.

These approaches are similar to the method proposed in this paper; however,
there are a few key differences. While Verma and Swami [11] and Song et al. [14]
discuss the use of error correction, it is not actively utilised in the classification
process. In addition, error correction provides a natural implementation of CWR
where outputs which deviate significantly from existing classes can trigger a reject
option where the classifier refuses to return a result. This paper aims to address
these gaps by exploring the application of error correction and classification-with-
rejection approaches to ECOC methods. We hope to provide insights into the
effectiveness, practicality and benefits of these strategies.

2.2 Confidence Calibrated Adversarial Training

Many CWR methods have been proposed over the years [12,13,16]. We focus on
the Confidence Calibrated Adversarial Training (CCAT) CWR method which
was introduced by Stutz et al. in 2020 [16]. CCAT attempts to produce a
model which is robust to unseen threat models which use different Lp norms or
larger perturbations when generating adversarial examples. CCAT achieves good
rejection performance through adversarial training where the model is trained
to predict the classes of clean data with high confidence and produce a uniform
distribution for adversarial examples within an ϵ-ball of the true image.

3 Reed-Muller Aggregation Networks (RMAggNet)

3.1 Reed-Muller codes

We begin with some brief background on Reed-Muller codes, which are multi-error
detecting and correcting codes [19,20]. This extends earlier work on Hamming
codes [21] and generalise many other error correction methods.

Reed-Muller is often represented with the notation [2m, k, 2m−r]q. We set q,
the number of elements in the finite field, to 2, meaning any codes we create will
be binary. In the low-degree polynomial interpretation, m denotes the number
of variables and r denotes the highest degree of the polynomial both of which
influence the properties of the Reed-Muller code. The first element of the tuple
(2m) represents the length of the codewords we will use. The second element (k)
represents the length of the message we can encode and is calculated as

k =

r∑
i=0

(
m

i

)
(1)

The final element (2m−r) is the minimum Hamming distance between any two
codes we generate, and influences the amount of error correction that can be
applied. For simplicity, we set n = 2m and d = 2m−r condensing the notation to
[n, k, d]2.
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A key advantage of Reed-Muller codes is that they allow us to unambiguously
correct a number of bits equal to the Hamming bound t:

t =

⌊
(d− 1)

2

⌋
(2)

due to the guaranteed Hamming distance between any two codewords. This can
be thought of as an open Hamming sphere around each codeword with a radius
of 2m−r−1 which does not intersect any other sphere.

To build Reed-Muller codes with pre-determined Hamming distances, we
start by selecting values for m and r which fit our use case, i.e., we can generate
codewords of appropriate length with a desired amount of correction. Once we
have chosen m and r, we can calculate k (see equation 1) and we can define
the low-degree polynomial, which will have k coefficients, m variables and a
maximum degree of r. This allows us to generate the codewords with a minimal
Hamming distance of d between any two of the codes.

We specify the coefficients of the polynomial in k different ways where a single
coefficient is set to one, and all others are zero. This gives us k polynomials with
fixed coefficients and m free variables. We can then define the basis vectors of
the space by instantiating every possible combination of variables for each of
the fixed coefficient polynomials. This creates k codewords of length 2m all of
which have a guaranteed Hamming distance of at least d. We can have up to 2k

valid codewords which satisfy the Hamming distance guarantee. These additional
codewords can be generated by performing an XOR operation on all possible
combinations of the basis vectors generating a closed set. We refer to these binary
vectors as codewords.

3.2 Reed-Muller Aggregation Networks

We can now define a Reed-Muller Aggregation Network (RMAggNet) which uses
multiple networks, trained on separate tasks, to create a binary vector which
we can classify, correct, or reject. To create an RMAggNet we start by defining
Reed-Muller codes which act as class codewords for the dataset classes we intend
to recognise. To define appropriate Reed-Muller codes, we have to consider a
number of factors related to the problem we are solving.

The first is the number of classes in the dataset (|C|). We must make sure that
the message length k is adequate for the number of classes, such that, |C| ≤ 2k.
From the definition of k (equation 1) we can see that it depends on both m and
r, therefore these values are influenced by |C| and must be considered early on
in the design process. The number of classes in the dataset is the primary point
to consider when deciding on values for m and r, because if we do not satisfy
|C| ≤ 2k then we will not have an effective classifier.

The second factor we must consider, is whether we have appropriate error
correction for the problem. The maximum number of errors we can correct is
represented by the Hamming bound t (equation 2) which relies on d which is
2m−r, so we also need to take this into account when deciding on m and r.
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The third factor is that we must have a low probability of assigning a valid
codeword to a random noise image. A fundamental flaw with traditional DNNs
is that they will assign a class to any input, even if the input is far from the
distribution they have been trained on. The probability of assigning a random
noise image a valid class is |C|/2n where we have no error correction, however,
with error correction, the probability increases to (|C| ·

∑t
i=0

(
n
i

)
)/2n. This means

that it is advantageous to only use the amount of error correction that is necessary
for the problem at hand, even if that means we are not correcting the maximum
number of bits theoretically possible.

Once we have a set of codewords which fit the problem specification, the
length of the codewords (n) determines the number of networks included in the
aggregation. We can assign each network a unique index value corresponding
to an index within the class codeword binary strings. The values at the index
positions define a set partition which determines which classes a network is
trained to return a 1 for and which it returns a 0 for (i.e., the network returns a 1
for all classes with a 1 at the index and 0 otherwise). We can also view the class
codewords as a matrix, with each network assigned to a column with 1s and 0s
indicating the partition between sets. By randomly shuffling the class codewords,
each network is trained to recognise a set of approximately half of the classes.

With the classification task for each network defined, we can move on to
training. The training process requires us to adjust the true labels of each input
with each network having a unique set of true labels for the training data, where
the true labels correspond to the set partition label. Once the dataset has been
adjusted each network is trained independently.

During inference we pass the same input to the n networks which produces n
real values v ∈ Rn. We select a threshold value τ which acts as a bias, with a
large τ leading to codewords consisting of more 0 bits. We compare each of the
n real values of v to τ with the following rule:

vi =

{
1 if vi ≥ τ

0 otherwise

This produces a binary string which we can compare to the class codewords.
If any of the class codewords match the predicted binary string exactly, we can
return the label associated with it as the result; however, if none match, we
calculate the Hamming distance between the prediction and the class codewords.
If we find a Hamming distance less than or equal to t, then we can unambiguously
correct to, and return, that class codeword due to the properties of Reed-Muller
codes. Otherwise, we refuse to classify the input and return a rejection.

4 Evaluation methodology

4.1 Threat model

We begin by establishing the threat model under which we expect the RMAggNet
defence to operate effectively as per the recommendations made by Carlini et
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al. [22]. Our assumptions consider an adversary who knows the purpose of the
model (i.e., the classes the model can output) and is capable of providing the
model with inputs. The actions of the adversary are constrained by a limited
perturbation cost, where the Lp-norm between the original (x) and perturbed
(x̃) image must be below some threshold ϵ, i.e., (|x− x̃|p ≤ ϵ), where p is either 2
or ∞ depending on the attack used. The norm used for an attack changes the
focus of the adversarial perturbation. The L2 attacks encourage small changes
across all input dimensions, which distributes the perturbation across multiple
features, whereas the L∞ attack encourages perturbations which focus on a single
feature, maximising this as much as the budget (ϵ) allows. The ultimate aim of
the adversary is to generate perturbed images which are not noticeable to a time
constrained human.

The level of access to the model granted to the adversary depends on the
specific adversarial attack being employed. In the case of open-box attacks,
the adversary has full access to the target model and can generate adversarial
perturbations tailored to deceive that particular network. This represents the
worst-case scenario. On the other hand, closed-box attacks represent a more
realistic setting where the adversary does not have access to the model parameters.
In this case it is necessary to train a surrogate model which performs the same
classification task as the target model. Adversarial examples are then generated
for this surrogate model, which leverage transferability to create adversarial
examples for the target model. In this paper we focus on the more challenging
open-box attacks. Experiments using closed-box attacks can be found in the
extended version of this paper [17].

We employ two attacks to generate adversarial examples, focusing on the
gradient-based Projected Gradient Descent (PGD) attack [23], using both the L2-
and L∞-norm. In the extended paper we also include the gradient-free Boundary
attack in the L2-norm [24], and transfer attacks to demonstrate the adversarial
robustness of these approaches in a closed-box setting. The use of both gradient
and gradient-free attacks allows us to more thoroughly evaluate the robustness
of the models. While gradient based attacks tend to produce stronger adversarial
examples, they can fail to produce effective perturbations if the target model
performs any kind of gradient masking. To ensure that we have a fair and reliable
evaluation of the robustness we include gradient-free attacks to eliminate the
possibility that any results are solely due to masking the model gradients.

4.2 Comparison methods

To evaluate the classification and rejection ability of RMAggNet we have imple-
mented two other comparison methods.

The first is a traditional ensemble method which consists of n networks (where
n is the same number of networks used for RMAggNet) each of which are trained
to perform the full classification task, as opposed to RMAggNet where each
network is trained to perform set membership over two partitions. To aggregate
the ensemble method results from the multiple networks, we have set up a simple
voting system with an associated threshold (σ). When an input is passed to the
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ensemble, each network classifies the data producing a predicted class. If we
exceed the threshold with the percentage of networks that agree on a single class,
that class is returned as the most likely answer, otherwise, the input is rejected
and no class is returned.

The second is the CCAT method (see Section 2.2) which uses adversarial
training as per the original paper [16] using the original code which is slightly
modified 4. The adversarial training process allows CCAT to reject adversarial
inputs within an ϵ-ball by learning to return a uniform distribution over all of
the classes. This is then extrapolated beyond the ϵ-ball to larger perturbations.
A threshold (τ) is specified which represents the confidence bound that must be
exceeded so that the result is not rejected. Unlike the original paper where an
optimal τ is calculated based on performance on the clean dataset, we vary τ to
determine the effect on the rejection ability.

4.3 Datasets

We use multiple datasets to evaluate the effectiveness of RMAggNet on a variety
of classification tasks. We focus on the EMNIST (balanced) [25] and CIFAR-10
datasets. The EMNIST dataset provides us with a simple classification task
which consists of 131,600 grey-scale images of size 28 × 28, with 47 balanced
classes including handwritten digits, upper- and lower-case letters (with some
lower case classes excluded). Since we have 47 classes, the number of networks
in RMAggNet is expanded to 32, with the same amount used for the Ensemble
method. CIFAR-10 represents a more challenging classification task, increasing
the image complexity with full colour images of size 32 × 32 over 10 possible
classes which uses 16 networks for RMAggNet and Ensemble.

4.4 Generation of adversarial examples

To generate adversarial images from the selected datasets we use the FoolBox
library [26,27]. We generate adversarial images using PGD L2 and PGD L∞
attacks. Due to the complex nature of some of the networks, adjustments needed
to be made to generate adversarial examples.

RMAggNet: Due to the non-differentiable nature of RMAggNet from thresh-
olding, direct attacks are difficult to generate. Following approaches such as
BPDA [28] we implement a hybrid RMAggNet which replaces the final mapping
from a binary string to class (or reject) with a Neural Network. This allows
us to backpropagate through the entire model to produce effective adversarial
examples.

Ensemble: We implement an ensemble via logits method [29] where the
result of each network is weighted. Due to the voting system for the rejection we
set equal weights over all networks. This approach allows us to have an ensemble
method which mimics the voting output, except it is differentiable, therefore we
can generate adversarial examples using the multiple networks directly.
4 https://github.com/davidstutz/confidence-calibrated-adversarial-training

https://github.com/davidstutz/confidence-calibrated-adversarial-training
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CCAT: Since CCAT is a standard Network which has undergone specific
adversarial training, the generation of adversarial attacks is simple. Many attacks
in the FoolBox library are able to generate adversarial examples without any
modification of the network.

5 Results

5.1 EMNIST Dataset

Results for the EMNIST dataset use RMAggNet with m = 5, r = 1 which gives
us 32 networks with 7 bits of error correction (EC). We also use 32 networks for
the Ensemble method for parity. All methods use ResNet-18 models [30]. Table 1
shows the results on the clean EMNIST dataset where we expect to maximise
correctness. All three models perform similarly, with Ensemble achieving the
highest correctness, closely followed by RMAggNet and CCAT. However, all
models come close to state-of-the-art performance (91.06%) [31], with minimal
negative impacts from the adversarial defence.

Table 1: Results for the clean EMNIST dataset showing the percentage of
classifications that are correct, rejected and incorrect. Bold text indicates the
metric of interest. Higher correctness is better.
CCAT
τ Correct Rejected Incorrect
0 88.68 0.00 11.32

0.10 88.60 0.15 11.24
0.20 87.54 2.41 10.05
0.30 85.46 6.45 8.09
0.40 83.16 10.29 6.55
0.50 80.70 14.22 5.08
0.60 77.95 18.03 4.02
0.70 74.23 22.71 3.06
0.80 69.48 28.46 2.06
0.90 60.74 38.05 1.20
1.0 0.00 100.00 0.00

Ensemble
σ Correct Rejected Incorrect
0 89.78 0.00 10.22

0.10 89.78 0.00 10.22
0.20 89.78 0.01 10.21
0.30 89.76 0.05 10.19
0.40 89.70 0.28 10.03
0.50 89.20 1.41 9.39
0.60 87.76 4.45 7.79
0.70 85.94 7.68 6.38
0.80 83.89 11.05 5.06
0.90 80.60 15.60 3.80
1.0 68.34 30.15 1.51

RMAggNet [32, 6, 16]2
EC Correct Rejected Incorrect
7 89.16 2.14 8.70
6 87.93 4.59 7.48
5 86.54 6.98 6.48
4 84.99 9.49 5.52
3 83.29 12.03 4.68
2 80.85 15.15 4.00
1 77.19 19.59 3.23
0 70.02 27.72 2.26

The performance on adversarial datasets generated with open-box attacks
is shown in Tables 2 and 3. For both of these experiments we aim to minimise
incorrectness, either by correctly classifying or rejecting the data. Correctly
classifying the data is preferred since it reduces the reliance on downstream
rejection handling.

Table 2 shows the results of the PGD L∞ attack at varying perturbation
budgets (ϵ). The CCAT results demonstrate strong performance with 0% in-
correctness for τ > 0 for all ϵ. At τ = 0 we effectively disable the confidence
threshold of CCAT and see 100% incorrectness as it is trained to return a uniform
distribution for adversarial inputs. It is worth noting that the 0% incorrectness
of CCAT is achieved through the rejection of all of the inputs, even at lower
ϵ where both Ensemble and RMAggNet show that correct classifications can
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be recovered. This points towards a disadvantage of the conservative nature of
CCAT. In situations where we want the option to reject, but can tolerate some
incorrectness, CCAT often becomes ineffective for classification. Comparing En-
semble and RMAggNet, RMAggNet can achieve significantly lower incorrectness
over all ϵ, translating the incorrectness into correct or rejected classifications
depending on the amount of EC. This leads to RMAggNet being able to achieve
higher correctness than both Ensemble and CCAT.

The results of the PGD L2 attacks are in Table 3. The results are similar to
those in Table 2, with CCAT reducing incorrectness to 0% through rejection alone.
RMAggNet outperforms Ensemble in both maximum correctness and minimum
incorrectness for ϵ = 0.30 and ϵ = 1.0. However, Ensemble can achieve higher
correctness for ϵ = 3.0 at the cost of incorrectness, which remains significantly
higher than RMAggNet’s.

From these results, we can conclude that RMAggNet provides more flexibility
where small amounts of incorrectness is tolerable. The error correction process
allows us to make trade-offs between maximising correctness and minimising
incorrectness, with RMAggNet outperforming Ensemble in both of these metrics.
RMAggNet comes close to CCAT in minimising incorrectness with the added
advantage that, for small ϵ, we can recover and correctly classify many of the
inputs, reducing pressure on downstream rejection handling.

Table 2: Results of PGD L∞ adversaries generated using open-box attacks on
EMNIST images with percentages of correct, rejected and incorrect classifications.
Lower incorrectness is better.

PGD(L∞)
CCAT
τ ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect

0.00 0.05 0.00 0.00 100.00 0.10 0.00 0.00 100.00 0.30 0.00 0.00 100.00
0.30 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
0.70 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
0.90 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
Ensemble
σ ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect

0.00 0.05 71.70 0.00 28.30 0.10 29.40 0.00 70.60 0.30 0.00 0.00 100.00
0.30 71.70 0.00 28.30 29.40 0.00 70.60 0.00 0.00 100.00
0.70 64.10 15.20 20.70 20.80 22.60 56.60 0.00 0.00 100.00
1.00 31.40 60.10 8.50 3.20 73.70 23.10 0.00 4.60 95.40
RMAggNet
EC ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect
7 0.05 80.70 3.60 15.70 0.10 62.90 8.70 28.40 0.30 0.50 39.50 60.00
6 78.00 8.50 13.50 59.30 15.60 25.10 0.40 54.00 45.60
5 75.00 13.70 11.30 54.10 23.40 22.50 0.30 68.30 31.40
4 71.90 17.90 10.20 48.20 31.50 20.30 0.10 77.80 22.10
3 68.90 22.20 8.90 41.40 41.50 17.10 0.10 87.90 12.00
2 63.20 29.10 7.70 29.30 56.70 14.00 0.00 94.40 5.60
1 54.30 39.60 6.10 16.80 72.40 10.80 0.00 98.50 1.50
0 28.50 67.10 4.40 2.30 92.00 5.70 0.00 100.00 0.00
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Table 3: Results of PGD L2 adversaries generated using open-box attacks on
EMNIST images with percentages of correct, rejected and incorrect classifications.
Lower incorrectness is better.

PGD(L2)
CCAT
τ ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect

0.00 0.30 0.20 0.00 99.80 1.0 0.00 0.00 100.00 3.0 0.00 0.00 100.00
0.30 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
0.70 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
0.90 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
Ensemble
σ ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect

0.00 0.30 84.80 0.00 15.20 1.0 62.40 0.00 37.60 3.0 19.60 0.00 80.40
0.30 84.80 0.00 15.20 62.40 0.00 37.60 19.60 0.00 80.40
0.70 79.50 9.10 11.40 57.10 13.00 29.90 19.50 0.20 80.30
1.00 60.60 35.90 3.50 47.40 39.80 12.80 18.50 9.80 71.70
RMAggNet
EC ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect
7 0.30 86.00 3.10 10.90 1.0 70.40 6.60 23.00 3.0 9.20 25.70 65.10
6 84.40 6.20 9.40 67.60 12.20 20.20 6.40 37.60 56.00
5 82.70 9.10 8.20 65.20 17.40 17.40 5.00 45.60 49.40
4 80.70 12.40 6.90 61.70 23.40 14.90 3.10 55.60 41.30
3 77.70 16.40 5.90 57.40 29.30 13.30 2.00 65.00 33.00
2 74.10 20.90 5.00 50.30 38.10 11.60 1.00 75.60 23.40
1 68.00 28.20 3.80 39.10 51.50 9.40 0.70 86.10 13.20
0 56.00 41.30 2.70 15.10 78.60 6.30 0.00 94.60 5.40

5.2 CIFAR-10 Dataset

Results for the CIFAR-10 dataset use RMAggNet with m = 4, r = 1 which
gives us 16 networks with 3 bits of error correction. We use 16 networks in the
Ensemble method for parity. All networks use an architecture outlined in the
extended paper.

Table 4 shows the results on the clean CIFAR-10 dataset where we aim to
maximise correctness. Ensemble reports the highest correctness, followed by
RMAggNet, then CCAT. All models report correctness within 3% of one another,
so, we can conclude that all are equally capable in terms of classification ability.

Table 5 shows the results for the L∞ attacks on CIFAR-10, with Table 5a
reporting the results of the open-box attack on the surrogate model. This indicates
that the attack on the surrogate model is very effective, leading to low accuracy
of the model at all ϵ > 0. The L∞ closed-box transfer attacks on the CIFAR-10
models can be seen in Table 5b, where we aim to reduce incorrectness. The
results show a strong adversarial attack due to low correctness from Ensemble
and RMAggNet, even for low values of ϵ. The CCAT model is able to reliably
reject all adversarial inputs for all non-zero confidence thresholds. The Ensemble
method classifies significantly more inputs correctly compared to RMAggNet for
all values of ϵ that we tested, however, the percentage of correct classifications
are still low, leading to an ineffective classifier. This result shows that CCAT is
an effective method for avoiding adversarial results when strong attacks are used.
Further results from closed-box transfer attacks can be found in the full paper
[17].
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Table 4: Results for the clean CIFAR-10 dataset showing the percentage of
classifications that are correct, rejected and incorrect. Bold text indicates the
metric of interest. Higher correctness is better.
CCAT
τ Correct Rejected Incorrect
0 76.41 0.00 23.59

0.10 76.41 0.00 23.59
0.20 76.21 0.68 23.11
0.30 75.10 3.76 21.14
0.40 72.62 9.38 18.00
0.50 68.59 17.41 14.00
0.60 64.04 25.55 10.41
0.70 58.81 33.72 7.47
0.80 52.81 42.39 4.80
0.90 44.64 52.54 2.82
1.0 1.09 98.91 0.00

Ensemble
σ Correct Rejected Incorrect
0 79.34 0.00 20.66

0.10 79.54 0.00 20.46
0.20 79.35 0.00 20.65
0.30 79.53 0.02 20.45
0.40 79.24 1.05 19.71
0.50 77.14 6.73 16.13
0.60 75.31 11.23 13.46
0.70 68.79 22.62 8.59
0.80 65.38 28.00 6.62
0.90 56.57 40.23 3.20
1.0 39.21 59.83 0.96

RMAggNet [16, 5, 8]2
EC Correct Rejected Incorrect
3 77.11 12.76 10.13
2 68.32 27.23 4.45
1 57.90 40.09 2.01
0 42.46 59.96 0.58

The performance on the CIFAR-10 datasets using open-box attacks is shown
in Tables 6 and 7. We, again, aim to minimise incorrectness.

The PGD L∞ results in Table 6 show low correctness for both Ensemble and
RMAggNet for all ϵ which indicates that this is a strong adversarial attack, which
is reduced to unrecognisable images at ϵ = 0.3. With this in mind, it is better
to compare the methods focusing on incorrectness and rejection performance.
Ensemble struggles to reject inputs, leading to nearly 100% incorrectness across
all ϵ which indicates that the adversarial examples are able to fool the multiple
networks that form this method. RMAggNet shows slightly better performance,
with much higher rejection for EC = 0. CCAT can achieve the lowest incorrectness
scores, which are significantly lower for ϵ = 0.75 and ϵ = 2.5. This indicates that
when we expect strong adversaries with little chance of recovery, CCAT is the
best-performing model.

Table 7 shows the results for PGD L2 on CIFAR-10. Interestingly, RMAggNet
can outperform both Ensemble and CCAT at ϵ = 0.30 with a lower incorrectness
and higher correctness than both methods. For ϵ = 0.75 and ϵ = 2.5 CCAT can
report the lowest incorrectness by a significant margin. Over all ϵ values RMAg-
gNet reports lower incorrectness than Ensemble, achieving higher correctness at
ϵ = {0.30, 0.75}.

These results show the effect that strong adversaries have on the classification
ability of these models. In this circumstance, CCAT is the better model, rejecting
most adversaries, while Ensemble struggles to reject the inputs, and RMAggNet
has varying performance when attempting to correct the images. However, this
is a worst-case scenario.

6 Discussion

The results from Section 5 allow us to determine how RMAggNet can be used,
and when it may have advantages over competing methods.

We start by discussing the hyperparameters of RMAggNet (see extended
paper [17], Section 5.1). The selection of hyperparameters is dependent on the
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Table 5: Results for the transfer attacks using PGD L∞. Table 5a shows the
accuracy of the surrogate model on the PGD L∞ adversarial datasets. Table
5b shows the results of the adversarial datasets on the CCAT, Ensemble and
RMAggNet models.

(a) Accuracy of the surrogate CIFAR-10 classifier on the adversarial datasets generated
using PGD L∞ with different perturbation budgets (ϵ).

ϵ Accuracy (%)
0.00 81.21
0.05 0.10
0.10 0.10
0.30 0.00

(b) Percentage of correct, rejected and incorrect classifications of the models using
transfer attacks on a surrogate CIFAR-10 classifier using the PGD L∞ attack. Lower
incorrectness is better.

PGD(L∞)
CCAT
τ ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect

0.00 0.05 14.80 0.00 85.20 0.10 9.50 0.00 90.50 0.30 11.20 0.00 88.80
0.30 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
0.70 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
1.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
Ensemble
σ ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect

0.00 0.05 57.30 0.00 42.70 0.10 37.70 0.00 62.30 0.30 16.60 0.00 83.40
0.30 56.80 0.00 43.20 38.50 0.10 61.40 16.90 0.00 83.10
0.70 42.30 32.70 25.00 26.80 29.50 43.70 7.90 38.20 53.90
1.00 16.80 77.90 5.30 10.00 75.60 14.40 0.50 83.80 15.70
RMAggNet
EC ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect
3 0.05 44.90 15.30 39.80 0.10 21.70 12.90 65.40 0.30 2.10 5.20 92.70
2 34.20 39.20 26.60 16.10 29.70 54.20 1.10 11.10 87.80
1 24.80 58.30 16.90 9.30 48.30 42.40 0.50 23.20 76.30
0 16.20 75.60 8.20 4.40 70.10 25.50 0.30 49.40 50.30
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Table 6: Results of PGD L∞ adversaries generated using open-box attacks on
CIFAR-10 images with percentages of correct, rejected and incorrect classifications.
Lower incorrectness is better.

PGD(L∞)
CCAT
τ ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect

0.00 0.05 9.00 0.00 91.00 0.10 7.10 0.00 92.90 0.30 5.40 0.00 94.60
0.30 0.00 99.00 1.00 0.00 97.50 2.50 0.20 83.00 16.80
0.70 0.00 99.50 0.50 0.00 98.50 1.50 0.00 86.40 13.60
0.90 0.00 99.70 0.30 0.00 98.80 1.20 0.00 89.50 10.50
Ensemble
σ ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect

0.00 0.05 1.10 0.00 98.90 0.10 0.00 0.00 100.00 0.30 0.00 0.00 100.00
0.30 0.90 0.00 99.10 0.00 0.00 100.00 0.00 0.00 100.00
0.70 0.50 2.70 96.80 0.00 0.10 99.90 0.00 0.00 100.00
1.00 0.20 14.80 85.00 0.00 1.60 98.40 0.00 0.10 99.90
RMAggNet
EC ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect
3 0.05 18.50 12.90 68.60 0.10 6.40 9.50 84.10 0.30 0.20 11.10 88.70
2 15.60 27.20 57.20 5.00 24.10 70.90 0.20 26.20 73.60
1 12.80 43.70 43.50 4.00 44.90 51.10 0.00 50.80 49.20
0 9.50 65.20 25.30 3.10 67.60 29.30 0.00 82.30 17.70

Table 7: Results of PGD L2 adversaries generated using open-box attacks on
CIFAR-10 images with percentages of correct, rejected and incorrect classifications.
Lower incorrectness is better.

PGD(L2)
CCAT
τ ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect

0.00 0.30 29.20 0.00 70.80 0.75 12.50 0.00 87.50 2.5 10.20 0.00 89.80
0.30 0.50 92.10 7.40 0.00 97.50 2.50 0.00 99.50 0.50
0.70 0.00 96.00 4.00 0.00 99.20 0.80 0.00 99.80 0.20
0.90 0.00 97.40 2.60 0.00 99.70 0.30 0.00 99.80 0.20
Ensemble
σ ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect

0.00 0.30 54.30 0.00 45.70 0.75 26.70 0.00 73.30 2.5 13.40 0.00 86.60
0.30 53.30 0.00 46.70 26.50 0.00 73.50 13.30 0.00 86.70
0.70 42.00 28.60 29.40 23.30 12.90 63.80 13.00 0.90 86.10
1.00 23.10 70.20 6.70 16.20 54.70 29.10 12.20 6.30 81.50
RMAggNet
EC ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect ϵ Correct Rejected Incorrect
3 0.30 64.00 15.30 20.70 0.75 39.80 17.00 43.20 2.5 11.10 10.80 78.10
2 52.40 36.30 11.30 32.90 37.90 29.20 9.60 23.20 67.20
1 41.20 52.10 6.70 25.60 54.90 19.50 8.20 41.80 50.00
0 28.70 69.10 2.20 19.40 71.70 8.90 5.60 63.00 31.40
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problem, with the most important aspect being the number of classes the dataset
has. If a dataset has |C| classes, then we require at least ⌈log2 |C|⌉ networks to
generate a unique encoding for each class. This works well for datasets such as
MNIST or CIFAR-10, with ten classes each, which requires at least four networks,
however, this approach is less optimal for datasets with a small number of classes.
For datasets with few classes we are only able to produce

(|C|
s

)
unique networks

(where s is the number of classes we allow in the partitioned set) which limits
the number of networks we can use and increases the probability that a random
noise input will be assigned a valid class, which decreases adversarial defence.

When deciding on the number of networks to aggregate over (n), we have two
constraints. The number of networks must be a power of 2, and we must ensure
that |C| ≤ 2k, (i.e. we have enough class codewords for the number of classes in
the dataset). Since n = 2m, and the value of k is influenced by both m and r, we
must balance n with the amount of error correction we need and the probability
of a random noise input being assigned a valid class. The results presented in
this paper have focused on datasets with 10 and 47 classes, requiring 16 and 32
networks respectively. If we consider extending this approach to ImageNet with
1000 classes, we can see the effect of scaling on RMAggNet. For 1000 classes
we have the restriction that 1000 ≤ 2k, therefore k ≥ 10. If we use 32 networks
(m = 5, r = 2) we get k = 16 with 3 errors corrected (t = 3) with a probability of
a random noise input being assigned a valid class of 1.28× 10−3. This indicates
that scaling to datasets with more classes is feasible using RMAggNet.

The comparisons between RMAggNet, Ensemble and CCAT over the EM-
NIST and CIFAR-10 datasets on clean and adversarial inputs allow us to place
RMAggNet in context with the other methods. The results for these tests are in
sections 5.1, and 5.2 (more results available in the extended paper [17]).

Results on the clean testing data (Tables 1 and 4) show that RMAggNet is
able to train models which are competitive with the other architectures, equalling
Ensemble for some datasets. This result shows that the RMAggNet method has
minimal impact on clean dataset performance.

Across the adversarial tests CCAT is able to reject the most adversarial
inputs leading to nearly 0 incorrect classifications. However, CCAT does not
attempt correction of any inputs which leads to 0 correct classifications at most
confidence thresholds. This even occurs when both Ensemble and RMAggNet
recover over 80% of the labels from an adversarial attack (Table 3). This approach
to rejection means that CCAT is ideal for situations where any uncertainty in
the correctness of a result cannot be tolerated. However, if we can allow some
incorrectness, and want the option to reject, then Ensemble and RMAggNet allow
us to classify many inputs correctly, greatly reducing the reliance on downstream
rejection handling, at the risk of small amounts of incorrectness. If we compare
the Ensemble method with RMAggNet, over many of the datasets RMAggNet is
able to outperform Ensemble with a slightly higher (or equal) number of correct
classifications, and lower incorrectness for comparable correctness as it uses the
reject option more effectively. This becomes more pronounced at higher ϵ. The
application of RMAggNet to datasets with many more classes, such as ImageNet,



16 D. Fentham et al.

would be interesting future work since we have stated that |C| ≤ 2k (section
3.2), and this can be achieved by either adding more networks (increasing m) or
increasing the polynomial degree (r) which decreases error correction ability and
increases the probability of assigning random noise a class. Striking this balance
would lead to interesting results regarding the applicability of RMAggNet to
larger datasets.

7 Conclusion

In this paper we have seen how an architecture leveraging Reed-Muller codes can
be used to create an effective CWR method which (to our knowledge) is the first
approach combining its rejection and correction ability. The experimental results
show the advantages of RMAggNet and allow us to determine situations where it
can be beneficial to a system. Comparing the results of RMAggNet to CCAT,
shows that CCAT is able to reject nearly 100% of the adversarial images over all
attacks and datasets we tested. However, this comes at the cost of rejecting inputs
that could otherwise be classified correctly. The sensitive approach of CCAT could
be detrimental to a system where the rejected inputs still need to be processed,
either using more computationally expensive processes, or reviewed by a human.
RMAggNet is able to achieve low incorrectness, often with higher correctness,
meaning that, provided the system can accept small amounts of incorrectness,
we can reduce the reliance on downstream rejection handling. From the results,
we can see that this can be a significant improvement for small perturbations
on the EMNIST dataset. Comparing the results of RMAggNet to Ensemble, the
results show that RMAggNet appears to be more resilient to adversarial attacks,
particularly open-box attacks, often achieving lower incorrectness than Ensemble
by having higher correctness for small ϵ, or higher rejection for larger ϵ. This
means that we can expect RMAggNet to be a better choice in situations where
adversaries are present.
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