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Abstract

We present preliminary work on the application of prob-
abilistic model checking to motion planning for robot
systems, using specifications in co-safe linear temporal
logic. We describe our approach, implemented with the
probabilistic model checker PRISM, illustrate it with
a simple simulated example and discuss further exten-
sions and improvements.

1 Introduction
In this paper, we describe our first steps on using probabilis-
tic model checking to create robot controllers that satisfy a
set of (probabilistic) temporal logic specifications in a given
Markov decision process (MDP) model of the robot’s be-
haviour. Probabilistic model checking allows one to analyse
probabilistic properties of a model such as an MDP. These
properties are generally specified in a temporal logic formal-
ism, which allows reasoning over sequences of states of the
model. In this work, we use the probabilistic model checker
PRISM (Kwiatkowska, Norman, and Parker 2011) to solve
a specific problem in the mobile robotics domain: optimal
motion planning with linear temporal logic (LTL) goals.

To be more specific, we will minimize the expected time
required to satisfy formulas in the co-safe fragment of LTL.
This fragment represents LTL-specified “tasks” that can be
“completed” in a finite time. We will show that finding
strategies1 that minimize the expected cost to satisfy such
formulas in a given MDP model can be reduced to finding
strategies that minimize the cost to reach a set of states in
the MDP obtained by composing the MDP model with a
Rabin automaton that represents the LTL formula. We will
then show how one can create a “navigation” MDP from data
gathered from a robot platform, and provide an example of
finding optimal strategies for such a model. These strategies
represent time-optimal path plans for the robot, where the
goal is not simply reaching a given state, but can be tempo-
rally extended goals that require, for example, a set of states
to be visited in a given order. An example of such a task is
a mail delivery robot that needs to deliver mail to different
rooms in a building and minimize the time spent in delivery
so it can be available to do other tasks as soon as possible.

1Strategies are usually known as policies in the MDP literature.

In recent years, there has been growing interest in the
use of LTL as a task specification language for robot sys-
tems (Ding et al. 2011; Guo, Johansson, and Dimarogonas
2013; Jing and Kress-Gazit 2013; Lacerda and Lima 2011;
Svoreňová, Černá, and Belta 2013; Ulusoy, Wongpirom-
sarn, and Belta 2012; Wolff, Topcu, and Murray 2012;
2013). This interest stems from two properties of LTL that
make it a desirable specification language in the robotics do-
main: (i) LTL is a close-to-natural-language formalism and
(ii) one can build correct-by-construction controllers from a
model of the system and the LTL specification. Thus, LTL
provides the possibility to bridge the gap between the spec-
ification a designer has for a (robot) system, and an imple-
mentation of a controller that leads the system’s behaviour
to that specification.

The work in (Ding et al. 2011; Svoreňová, Černá, and
Belta 2013) tackles the problem of maximizing the proba-
bility of satisfying a given LTL formula while minimizing
the long-term average cost between two states that satisfy
a given “optimizing” atomic proposition pre-defined by the
designer. It is the work most closely related to ours. The
main difference is that, broadly speaking, the goal there is to
find the strategy that reaches the steady-state of the system
that minimizes a given infinite horizon cost function. In our
work, the goal is more related to transient analysis, where we
want to find the strategy that minimizes the accumulated cost
on a finite horizon. Also, the optimizing atomic proposition
used for the long-term optimization is somewhat artificial,
while in our case we can define the problem in a cleaner
way. In terms of application, the work in (Ding et al. 2011;
Svoreňová, Černá, and Belta 2013) is especially suited for
the execution of static and persistent tasks that do not have
an exact notion of being “completed”, e.g., patrolling a
building “forever”. In our case, we only allow for finite hori-
zon tasks. This enables the possibility of moving on to more
dynamic task allocation and on-line (re-)planning for mini-
mizing the mixing of different incoming tasks defined by the
end-user at different times.

In Section II, we present MDPs and co-safe LTL, the for-
malisms used in this work. In Section III our strategy gen-
eration approach using PRISM is described. We build upon
the general approach presented in (Kwiatkowska and Parker
2013), and show how it can be extended to handle the gener-
ation of strategies that minimize the cost of satisfying a co-



safe LTL formula. Section IV describes how one can build
an MDP model of a motion planning problem from data
learned by a robot platform, and Section V illustrates the
approach with a simulated application example. Finally, in
Section VI, we finish with a discussion about the current ap-
proach and on our plans for future work.

2 Preliminaries
2.1 Markov Decision Processes
We start by defining Markov decision processes with atomic
propositions labelling the states and a cost function associ-
ated with state-action pairs.
Definition 1 (Markov Decision Process with Cost Func-
tion). A Markov decision process (MDP) is a tuple M =
〈S, s,A, δM, AP, Lab, c〉, where:

• S is a finite set of states.
• s ∈ S is the initial state.
• A is a finite set of actions.
• δM : S × A → Dist(S) is a (partial) probabilistic tran-

sition function, mapping state-action pairs to probability
distributions over S. To simplify the notation, we also
define the set of enabled actions in s as A(s) = {a ∈
A | δM(s, a) is defined}.

• AP is a set of atomic propositions.
• Lab : S → 2AP is a labelling function, such that p ∈
Lab(s) if and only if the atomic proposition p is true in
state s.

• c : S × A → R≥0 is the cost function, associating each
state-action pair with a non-negative value.

An MDP model represents all the possible evolutions of
the state of the system, by nondeterministically applying an
enabled action in each state, and transitioning to a successor
state according to the probabilities specified by the transi-
tion function. This behaviour is explicitly represented by the
sets of finite paths (FPathM) and infinite paths (IPathM)
generated byM:

FPathM = {s0
a0→ s1

a1→ ...
an−1→ sn | n ∈ N, s0 = s,

si ∈ S for all i ∈ {0, ..., n}, ai ∈ A(si) and
δM(si, ai)(si+1) > 0 for all i ∈ {0, ..., n− 1}}

(1)

IPathM = {s0
a0→ s1

a1→ ... | s0 = s,

si ∈ S for all i ∈ N, ai ∈ A(si) and
δM(si, ai)(si+1) > 0 for all i ∈ N} (2)

We will be defining strategies over finite paths ofM and
evaluating the temporal logic formulas over infinite paths of
M. Note that, because of the nondeterminism between ac-
tions choices in an MDP, we cannot directly define probabil-
ity measures over FPathM or IPathM, i.e., the notion of
the probability that the system generates a given sequence is
not well-defined. This nondeterminism is resolved by adding
the notion of strategy.

Definition 2 (Strategy). LetM be an MDP. A strategy for
M is a function σ : FPathM → A such that, for all π =

s0
a0→ s1

a1→ ...
an−1→ sn ∈ FPathM, σ(π) ∈ A(sn).

A strategy chooses, at each step of the execution, an en-
abled action to be executed next, taking into account the fi-
nite history that occurred before the current step2.

Given an MDPM and a strategy σ for it, we have a fully
probabilistic system, for which one can check various quan-
titative properties. Note that the system is still probabilistic
because the outcome of executing an action in a given state is
a distribution over states. We will be particularly interested
in the following property:

• Let p ∈ AP . What is the expected value of the accumu-
lated cost to reach a state s ∈ S such that p ∈ Lab(s)?
This is denoted EσM(acc(c, Fp)), where acc(c, Fp) :
IPath→ R≥ ∪∞ is defined as:

acc(c, Fp)(s0
a0→ s1

a1→ ...) =
∞ if for all j ∈ N,

p 6∈ Lab(sj)
min{k∈N | p∈Lab(sk)}∑

j=0

c(sj , aj) otherwise

(3)

We will use this quantity to generate strategies that mini-
mize the cost of satisfying a given atomic proposition. This
is supported by the PRISM software and can be solved by
using “classic” MDP algorithms like value or policy itera-
tion, given that we are solving a (cost optimizing) proba-
bilistic reachability problems. In Section III we will extend
the specification language to allow the inclusion of the co-
safe fragment of LTL formulas.

2.2 Linear Temporal Logic
LTL is an extension of propositional logic which allows
reasoning over an infinite sequence of states. It was devel-
oped as a means for formal reasoning about concurrent sys-
tems (Pnueli 1981), and provides a convenient and powerful
way to formally specify a variety of qualitative properties of
a system.
Definition 3 (Syntax). An LTL formula over a set AP of
atomic propositions has the following syntax:
• true , false and p ∈ AP are LTL formulas;
• If ϕ and ψ are LTL formulas then (¬ϕ), (ϕ∨ψ), (ϕ∧ψ),

(Xϕ), (ϕUψ) and (ϕRψ) are also LTL formulas.
The temporal operators can be understood as follows:

• The X operator is read “next”, meaning that the formula
it precedes will be true in the next state.

• The U operator is read “until”, meaning that its first argu-
ment will be true until its second argument becomes true
(and the second argument must become true in some state,
i.e., a sequence where ϕ is always satisfied but ψ is never
satisfied does not satisfy ϕUψ).
2One can also define randomized strategies, but that is outside

of the scope of this document.



• The R operator is read “release”, meaning that its second
argument can only become false if its first argument be-
came true before (i.e., the occurrence of the first argument
releases the need for the second argument to be true). For
this operator, if the first argument never becomes true, the
second argument must remain true for all times.

We will be evaluating LTL formulas over infinite se-
quences in IPathM.

Definition 4 (Semantics). Let M be an MDP, π = s0
a0→

s1
a1→ ... ∈ IPathM and p ∈ AP . The notion of local

satisfaction, �, is defined as follows:

• π � true and π 6� false;
• π � p if and only if p ∈ Lab(s0);
• π � (¬ϕ) if and only if π 6� ϕ;
• π � (ϕ ∨ ψ) if and only if π � ϕ or π � ψ;
• π � (ϕ ∧ ψ) if and only if π � ϕ and π � ψ;

• π � (Xϕ) if and only if s1
a1→ s2

a2→ ... � ϕ;
• π � (ϕUψ) if and only if there exists t ≥ 0 such that
st

at→ st+1
at+1→ ... � ψ and for all t′ ∈ [0, t) st′

at′→
st′+1

at′+1→ ... � ϕ;

• π � (ϕRψ) if and only if for all t ≥ 0, if st
at→

st+1
at+1→ ... � ψ then there exists t′ ∈ [0, t) such that

st′
at′→ st′+1

at′+1→ ... � ϕ;

We denote by IPathϕ the set of elements of IPathM
that satisfy ϕ.

We will also use other temporal operators, which we
will define by abbreviation: (i) (Fϕ) ≡ (trueUϕ) and
(ii) (Gϕ) ≡ (falseRϕ) = (¬F (¬ϕ)). The F operator is
read “eventually” and requires the existence of a future state
where the formula it precedes is true. The G operator is read
“always” and requires the formula it precedes to be true in
all future states.

We now introduce the class of LTL formulas which we
will use to write our goals. We are interested in minimizing
the accumulated cost of reaching some goal. However, this
problem is not well defined for arbitrary LTL formulas, since
the accumulated value of the cost will be infinity. Thus, we
need to restrict ourselves to LTL formulas that can be “satis-
fied” in a finite-horizon. This is a well-defined class, called
co-safe formulas. These are formulas for which the satisfy-
ing infinite sequences always have a finite good prefix.

Definition 5 (Good Prefix). Let ϕ be an LTL formula and
π = s0

a0→ s1
a1→ ... such that π � ϕ. π has a good prefix

if there exists n ∈ N such that the truncated finite sequence
π|n = s0

a0→ s1
a1→ ...

an−1→ sn is such that π|n.π′ � ϕ for
any infinite sequence π′, where π|n.π′ is obtained by con-
catenating the finite sequence π|n with the infinite sequence
π′. We write π|n �fin ϕ when π|n is a good prefix for π.

Definition 6 (Co-Safe LTL). The LTL formula ϕ is said to
be co-safe if all the infinite sequences π such that π � ϕ
have a good prefix.

It is known that an LTL formula in the positive normal
form3 where only the the temporal operators X, F and U are
used is co-safe (Kupferman and Vardi 2001). We will keep
our formulas within this syntactic restriction.

3 Optimal Strategy Generation for Co-Safe
LTL

Our goal is to use PRISM to synthesise strategies that mini-
mize the expected value of the accumulated cost to satisfy
a given co-safe LTL formula. Thus, we are interested in,
given a co-safe LTL formula ϕ, finding a strategy that mini-
mizes the expected value of the accumulated cost to generate
a good prefix that satisfies ϕ:

σminM (c, ϕ) := argmin
σ:FPathM→A

EσM(acc(c, ϕ)) (4)

Defining kϕ = min{k ∈ N | s0
a0→ ...

ak−1→ sk �fin ϕ},
the acc function is now defined as:

acc(c, ϕ)(s0
a0→s1

a1→ ...) =
∞ if s0

a0→ s1
a1→ ... 6� ϕ

kϕ∑
j=0

c(sj , aj) otherwise

(5)
To find such a strategy, the automata-theoretical approach

to LTL model checking is used. It is known that any LTL for-
mula can be translated into a deterministic Rabin automaton
Aϕ that accepts exactly the infinite sequences that accept
ϕ. One can compose this automaton with the MDP, obtain-
ing the product MDP Mϕ = M ⊗ Aϕ which represents
the synchronous execution of M and Aϕ. Thus, the state
space of Mϕ is S × Q, where Q is the states of Aϕ, i.e.,
states are pairs (s, q), with s representing the current state
ofM’s execution and q the current state of Aϕ’s execution.
Furthermore, since we assume that ϕ is a co-safe LTL for-
mula,Aϕ has the following property: once an accepting state
is reached, the automaton will stay in an accepting state re-
gardless of what occurs afterwards. Thus, we just need to
minimize the cost to reach such a state. If we label all states
(s, q) ofMϕ for which q is an accepting state of Aϕ with a
new atomic proposition acc, the following holds:

EminM (c, ϕ) = EminMϕ
(c, Facc) (6)

Thus, by applying value or policy iteration on Mϕ, as
described before, we can find a memoryless strategy σ :
S × Q → A that minimizes the cost of reaching an accept-
ing state in Mϕ. Using this strategy and Mϕ, we can im-
plement a finite memory strategy for M, by keeping track
of the current state of Mϕ and executing the memoryless
strategy. Thus, the part of the state pair in the product MDP
corresponding to the current state of Aϕ can be seen as a
way to keep some memory about the path executed by the
MDP until a given moment.

3An LTL formula is said to be in the positive normal form if
only atomic propositions are negated.



4 Instantiation to a Motion Planning
Problem

In this section, we will discuss how the optimal strategy gen-
eration we presented can be used in a specific robot applica-
tion: motion planning. We assume that a navigation graph
is provided, and that some data was gathered about the time
taken between connected nodes in the graph or possibilities
of failure. We will call this a “learned” navigation graph4.
This navigation graph will then be translated into an MDP.
We choose to present the navigation graph first, and then
show how to build a navigation MDP from a learned naviga-
tion graph in order to simplify the presentation. The learned
navigation graph can be seen as a stepping stone to the final
navigation MDP that we will use for planning.

Definition 7 (Learned Navigation Graph).
A learned navigation graph is a tuple
nav = 〈V,E, SR, F, T 〉, where:

• V = {v0, ..., vn}, where vi = (xi, yi, θi) is a 2D robot
pose.

• E ⊆ V × V is a set of edges, specifying navigation con-
nections between different robot poses.

• SR : E → [0, 1] is a function that maps its edge (vi, vj)
to the probability that the robot will successfully navigate
from vi to vj without passing through any other naviga-
tion node, using its continuous navigation planner.

• F : E → Dist(V ) is a function that is defined for all
(vi, vj) such that SR(vi, vj) < 1 and maps each edge
(vi, vj) to a distribution over nodes.
– F (vi, vj)(vk) represents the probability of either (i) the

continuous navigation failing while trying to reach vj
and the closest point that the robot can navigate to after
failure is node vk or (ii) the robot passing through node
vk before reaching node vj .

• T : (E × {suc, fail}) → R≥0 is the expected time func-
tion:
– T ((vi, vj), suc) represents the expected time for the

robot to travel between nodes vi and vj , given that that
navigation is successful.

– T ((vi, vj), fail) is defined for edges (vi, vj) such that
SR(vi, vj) < 1 and represents the expected time be-
tween the robot starting to move from vi to vj , and a
failure occurring. A failure is either continuous navi-
gation failing or passing through a node that is not vj
while navigating to vj . We also include in this average
the time the robot takes to get to the closest navigable
point, when the navigation fails but is recoverable.

From this learned navigation graph, one can create a nav-
igation MDP.

Definition 8 (Navigation MDP). Let nav =
〈V,E, SR, F, T 〉, with V = {v0, ..., vn} be
a learned navigation graph. The navigation
MDP associated to nav is the MDP Mnav =
〈Snav, snav, Anav, δnav, APnav, Labnav, cnav〉 where:

4Our ongoing work also includes the development of an algo-
rithm to learn such a graph.

• S = Snormal ∪ Sfail ∪ Srec , where:

Snormal = {s1, ..., sn} (7)

Sfail =

n⋃
i=0

{sfij | (vi, vj) ∈ E} (8)

Srec =

n⋃
i=0

{srij | (vi, vj) ∈ E} (9)

The states of Snormal represent the navigation nodes
when no failure occurred. The states Sfail represents fail-
ures in a given edge. The states Srec represent the situa-
tions where the robot navigation failed, but the robot re-
covered and navigated back to the original node where it
started the navigation from. These states are used so that
the robot does not try to go through a blocked path indefi-
nitely, by adding a “one-step memory state” and disallow-
ing the robot from repeatedly trying to execute the same
navigation action and failing (in the transition function,
state srij will not have the action to move to sj enabled).

• snav ∈ Snormal is the initial state of the robot in its envi-
ronment

• Anav = Amov ∪ {recover}, where:

Amov =

n⋃
i=0

{gotoij | (vi, vj) ∈ E} (10)

• The transition function just mirrors the edges in the
learned navigation graph, with the addition of the recover
states, as explained above. We will show the cases for
which the transition function is not undefined:
– For si ∈ Snormal and a = gotoij for some j:

δnav(si, gotoij)(s
′) =


SR(vi, vj) if s′ = sj
1− SR(vi, vj) if s′ = sfij
0 otherwise

(11)
– For sfij ∈ Sfail and a = recover ,

δnav(s
f
ij , recover)(s

′) = F (vi, vj)(vk) if (s′ = sk, k 6= i)
F (vi, vj)(vi) if s′ = srij
0 otherwise

(12)

– For srij ∈ Srecover and a = gotoik, with k 6= j,
δnav(s

r
ij , gotoik) = δnav(si, gotoik)

• The set of atomic propositions is the nodes of the navi-
gation graph plus a failure proposition (we can add more
useful labels to the states if we want to, but for basic nav-
igation this suffices and makes the exposition simpler):

APnav = V ∪ {failure} (13)

• The labelling function maps its state to the node in the
graph it represents, and also the information if it is a state
where a failure occurred.

Labnav(s) =


{vi} if s = si
{vi, failure} if s = srij or

s = sfij , for some j
(14)



Figure 1: A navigation graph.

• The cost function mirrors the T function of the learned
navigation graph:

cnav(s, a) =

T ((vi, vj), suc) if (s = si or s = srij)
and a = gotoij

max{T (vi, vj), fail)−
T ((vi, vj), suc), 0} if s = sfij and

a = recover
0 otherwise

(15)

Note that for the recovery, we subtract the expected
value for the cost for succeeding, because T ((vi, vj), fail)
counts the time since the robot starts the navigation until
it fails.

Example 1. In Figure 1, we depict a possible navigation
graph nav, where all edges are bidirectional. For edges
(v1, v2) and (v1, v5), we have the following values:
• SR(v1, v2) = 0.9.
• F (v1, v2)(v1) = 0.8 and F (v1, v2)(v6) = 0.2.
• T ((v1, v2), suc) = 2 and T ((v1, v2), fail) = 3.
• SR(v1, v5) = 1 and T ((v1, v5), suc) = 1.

In Figure 2, we depict the navigation MDP built from the
fragment of nav for which we defined SR, F and T . For the
costs of the state-action pairs in the MDP, we have:
• cnav(s1, goto12) = T ((v1, v2), suc) = 2.
• cnav(sf12, recover) = max{T ((v1, v2), fail) −
T ((v1, v2), suc), 0} = 1.

• cnav(s1, goto15) = cnav(s
f
12, goto15) =

T ((v1, v5), suc) = 1.

5 Application Examples
In this section, we show some examples of motion plans ob-
tained for the navigation graph in Figure 1. We start by as-
suming that all the actions have zero probability of failure,
and that the cost of each edge is one. With this simplified
example, we will show the motion plans obtained for differ-
ent LTL formulas. Then, we will see the impact of different
costs and action outcomes on the plans obtained for a simple
LTL specification.

We start with an example where we want the robot to find
the shortest path to visit nodes v4 and v28. This can be spec-
ified by:

Figure 2: The navigation MDP obtained from a fragment of
the navigation graph in Fig. 1.

σminM (c, Fv4 ∧ Fv28) (16)

We kept the number of nodes to visit small so we are able
to illustrate the example. However, note that we can gener-
alize this type of formula, and create strategies that solve
the travelling salesman problem in a probabilistic domain.
In Figure 3, we illustrate the obtained strategy. Given that
this strategy is a finite memory strategy, we split the figure,
showing the actions to take in each node when (a) neither v4
nor v28 have been visited, (b) v4 has been visited but v28 has
not and (c) v28 has been visited but v4 has not.

We can see that the obtained strategy has some memory
about which goal states were already visited. As mentioned
previously, this is due to the fact that we are generating
memoryless strategies for the product MDP, for which the
space state is the Cartesian product of the states of the navi-
gation MDP and the states of the Rabin automaton obtained
for the LTL formula (which, informally, provide memory for
the strategy obtained for the original MDP). Also, note that
an optimal action is generated for all the states of the product
automaton, thus we have an optimal action for each state, in
each situation.

We now impose an ordering on how the nodes should be
visited. Node 15 should be visited after node 28. This can be
specified by the following co-safe LTL formula:

σminM (c, F (v28 ∧ Fv15)) (17)

Note that, in this case, an optimal strategy only needs to
consider two cases: (i) we already visited v28 and need to go
to v15 or (ii) we did not visit v28 yet, and need to visit it. In
Figure 4 (a) and (b), we depict the strategies generated from
PRISM for cases (i) and (ii), respectively.

Also, we note that this is a “soft” ordering, in the sense
that we not disallow v15 from being visited before v28, we
only require it to be visited after v15 is visited. If we want to
impose a “hard” ordering where the robot can only visit v15
after he visits v28, we can use the following strategy:

σminM (c, (¬v15Uv28) ∧ (Fv15)) (18)

The strategy for (18) is depicted in Figure 5. Note that,
when going to v28, the strategy avoids v15. Also, there is no



Figure 3: Depiction of the strategy obtained from equation (16). The arrows depict the action to be executed at each node. (a)
neither v4 nor v28 have been visited. (b) v4 has been visited but v28 has not. (c) v28 has been visited but v4 has not.

Figure 4: Depiction of the strategy obtained from equation (17). The arrows depict the action to be executed at each node. (a)
v28 has not been visited yet. (b) v28 has been visited but v15 has not.

Figure 5: Depiction of the strategy obtained from equation (18). The arrows depict the action to be executed at each node. (a)
v28 has not been visited yet. (b) v28 has been visited but v15 has not.



action defined for v15 in that situation because if v15 is vis-
ited before v28, the LTL formula is not satisfied, thus there
is no notion of optimal action in that state of the MDP.

Until now, we have ignored both the cost and the proba-
bilistic nature of the transitions, in order to more clearly il-
lustrate the different strategies generated from different LTL
formulas. However, our choice for using MDP models has
mainly to do with the fact that they elegantly handle the un-
certainty inherent in robot applications. We now illustrate
the impact of uncertainty on the outcome of actions and the
different costs in the motion plans generated by PRISM. We
will focus our attention on the specification:

σminM (c, Fv25 ∨ Fv28) (19)

For this specification, the robot needs to decide which
node, v25 or v28, to visit. In Figure 6 (a), we depict the strat-
egy obtained when all the weights are one and the probabil-
ity of action failures is zero. As expected, in each state, the
robot moves in direction to the closest goal, thus it will visit
the node closer to its initial state.

We now assume that edges connecting the first and sec-
ond row of our navigation graph5 have a cost of 10 (i.e., 10
times more than other edges). We also assume that there is a
10% probability of navigation failure when going from v13
to v17. We assume that when this happens, we can always re-
cover to v18 but we pay an extra cost of 10 to navigate from
the failure position to v18. In this case, we want to avoid
navigating through the high cost edges. Thus, the decision
on which node to go visit in each state changes. For exam-
ple, now when the robot is on v26, it goes in the direction of
v28 in order to avoid passing through the costly edge. This
can be seen in Figure 6 (b). We also added a grey arrow from
v13 to v18 to represent the failure possibility between v13 and
v17. Note that when that failure occurs, the robot stops going
towards v25 and starts going towards v28 instead, because
from v18 the less costly approach is to visit v28. We stress
that this change in goal is encompassed in our model, and
no re-planning was needed to cope with the move failure.
Finally, if we increase the probability of navigation failure
when going from v13 to v17, and/or increase the cost of re-
covering to v18, the strategy stops going through that “bad”
edge. We depict this in Figure 6 (c).

6 Discussion
We have presented an approach that uses the probabilis-
tic model checker PRISM to generate cost-optimal motion
plans for goals given as co-safe LTL formulas. This is still
preliminary work, and as such, there are many possible di-
rections for future work. These include:

• Develop a learning algorithm for the navigation graph.
We are developing an algorithm that, in an initial stage,
learns a navigation graph from the definition of the edges,
and when it is executing the navigation tasks given in
LTL also updates the navigation graph according to his
experience. Our final goal is to have these navigation

5Edges (v1, v2), (v5, v6), (v9, v10), (v13, v14), (v17, v18),
(v21, v22) and (v25, v26).

graphs dependent on time of day, so we can explore them
in long-term autonomy scenarios. Work on learning this
kind of graphs is, to the best of our knowledge, scarce,
with (Haigh and Veloso 1999) being one of the few re-
lated works known by us.

• Allow for addition of new tasks during execution of pre-
vious ones, minimizing the expected time of both tasks si-
multaneously. Given that the product of a navigation MDP
and a Rabin automaton is still an MDP, when the robot is
executing a plan for a given task and a new one arrives,
we can simply do a new product with the current prod-
uct MDP being executed. After this new product is done
- and given that we are using co-safe LTL - it is easy to
distinguish nodes that are accepting for each task. We can
choose to minimize the time to complete both tasks, or use
some new approach that allows us to, for example, min-
imize the expected time for a given task, while keeping
the expected time of the other under a given threshold. To
build strategies for this type of specification, we will use
the multi-objective strategy generation of PRISM. When
a given task is fulfilled, we can also “invert” the product
and shrink the product MDP by ignoring the Rabin au-
tomaton obtained for that task. Thus, we will have a dy-
namic structure that represents the navigation MDP and
the tasks being executed at a given moment.

• Integrate with a scheduler with notion of real time. In the
approach presented in this paper, there is not an exact no-
tion of real time, i.e., there is no notion of executing a
task at a given time of day. What we presented is an algo-
rithm that plans to execute tasks as soon as possible. One
can investigate how to use a real time scheduler that uses
PRISM as an oracle, asking it what is the expected time
of executing a given task at a given time of day, and then
places that task in the best time for it to be executed in
both a timely and as less conflicting with other tasks as
possible manner.

• Create a web-based interface where non-specialist users
can schedule tasks. Building upon the previous points,
one can think of building a system where a non-specialist
user can define tasks using some grammar (e.g. structured
english as defined in (Kress-Gazit, Fainekos, and Pap-
pas 2007)), which is then translated into LTL formulas
and time of day to be executed in. This would then go
to the integrated scheduler/motion planner which would
both schedule the task and create the optimal motion plan
to fulfil it.

• Expand tasks that can be specified:

– Add reactivity to the models. The approach we pre-
sented does not include reactivity to sensor readings
of the robot nor actions which are not motion based.
Adding this possibility would greatly increase the ex-
pressibility of the specification language, by allowing,
for example, the specification of a task where the robot
needs to find an object and then take it to a given point
in the environment. To handle this reactivity, we will
investigate the extension of the methodology presented
here to the domain of stochastic games. Also, we will



Figure 6: Depiction of the strategy obtained from equation (19), when neither v25 nor v28 have been visited. The arrows depict
the action to be executed at each node. (a) All costs equal to 1, and no uncertainty on action outcome. (b) Edges between first
and second row with cost 10, and 10% probability of failing navigation between v13 and v17, and then recovering to v18 with
a cost of 10. (c) Edges between first and second row with cost 10, and 50% probability of failing navigation between v13 and
v17, and then recovering to v18 with a cost of 55.

investigate how supervisory control theory (Cassandras
and Lafortune 2006), and notions such as uncontrol-
lable events and least-permissive supervisors can be
used in this domain.

– Investigate the use of other classes of LTL. In the work
presented here, we are only using co-safe LTL. One
can think of extending it to larger classes of LTL. One
particularly interesting example is the GR(1) class, for
which a translation from the structured english men-
tioned above is defined. This class also elegantly in-
cludes the notion of reactivity we just described. Also,
how one can create optimal plans for LTL in general
without the notion of “optimizing proposition” used in
(Ding et al. 2011; Svoreňová, Černá, and Belta 2013),
which is somewhat artificial, and does not allow the
minimization of expected time for finite-horizon tasks,
which, as illustrated in this work, are also interesting.

– Explore PRISM’s multi-objective capabilities. PRISM
allows generation of strategies for multi-objective spec-
ifications (Forejt et al. 2011). With this approach, one
can specify tasks like “minimize expected time while
maximizing the probability of keeping yourself inside
a safe region”. One first approach for this can be using
co-safe LTL for minimizing the expected time to fulfill
a task, and minimize or maximize the probability of sat-
isfying safe LTL formulas (broadly speaking, formulas
that enforce that something “bad” will never happen)
for maximization or minimization of probabilities.

Note that these approaches to increase the expressibility
of the specification language are complementary and can
all be integrated into a single framework.

The large amount of future work routes shows the poten-
tial of this work to be used in a wide array of applications.
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