
PRISM: Probabilistic Symbolic Model Checker?

Marta Kwiatkowska, Gethin Norman, and David Parker

School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom

{mzk,gxn,dxp}@cs.bham.ac.uk

Abstract. In this paper we describe PRISM, a tool being developed
at the University of Birmingham for the analysis of probabilistic sys-
tems. PRISM supports three probabilistic models: discrete-time Markov
chains, continuous-time Markov chains and Markov decision processes.
Analysis is performed through model checking such systems against spec-
ifications written in the probabilistic temporal logics PCTL and CSL.
The tool features three model checking engines: one symbolic, using
BDDs (binary decision diagrams) and MTBDDs (multi-terminal BDDs);
one based on sparse matrices; and one which combines both symbolic and
sparse matrix methods. PRISM has been successfully used to analyse
probabilistic termination, performance, dependability and quality of ser-
vice properties for a range of systems, including randomized distributed
algorithms [2], polling systems [22], workstation clusters [18] and wireless
cell communication [17].

1 Introduction

Probability is widely used in the design and analysis of software and hardware
systems: as a means to derive efficient algorithms (e.g. the use of electronic
coin flipping and randomness in decision making); as a model for unreliable or
unpredictable behaviour (e.g. fault-tolerant systems, computer networks); and as
a tool to analyse system performance (e.g. the use of steady-state probabilities
in the calculation of throughput and mean waiting time). Probabilistic model
checking refers to a range of techniques for calculating the likelihood of the
occurrence of certain events during the execution of the system, and can be
useful to establish properties such as “shutdown occurs with probability 0.01 or
smaller” and “the video frame will be delivered within 5ms with probability 0.97
or greater”.

In this paper we introduce PRISM, a probabilistic model checking tool being
developed at the University of Birmingham. Conventional model checkers input
a description of a model, represented as a state transition system, and a speci-
fication, typically a formula in some temporal logic, and return “yes” or “no”,
indicating whether or not the model satisfies the specification. In the case of
probabilistic model checking, the models are probabilistic, in the sense that they
? Supported in part by EPSRC grant GR/M04617 and MathFIT studentship for David

Parker.

P. Kemper (Eds.), Tools Session of Aachen 2001 International Muliconference on Measurement,
Modelling and Evaluation of Computer-Communication Systems, Technical Report 760/2001, pages
7–12, University of Dortmund, 2001.

encode the probability of making a transition between states instead of simply
the existence of such a transition, and analysis normally entails calculation of
the actual likelihoods through appropriate numerical or analytical methods.

2 Probabilistic model checking

A number of probabilistic models exist. The simplest are discrete-time Markov
chains (DTMCs), which specify the probability π(s, s′) of making a transition
from state s to some target state s′, where the probabilities of reaching the tar-
get states from a given state must sum up to 1, i.e.

∑
s′ π(s, s′) = 1. Markov

decision processes (MDPs) extend DTMCs by allowing both probabilistic and
non-deterministic behaviour. Non-determinism enables the modelling of asyn-
chronous parallel composition of probabilistic systems, and permits the under-
specification of certain aspects of a system. Continuous-time Markov chains
(CTMCs), on the other hand, specify the rates ρ(s, s′) of making a transition
from state s to s′, with the interpretation that the probability of moving from s
to s′ within t time units (for positive real valued t) is 1− e−ρ(s,s′)·t.

Probabilistic specification formalisms include PCTL [16,10,9], a probabilistic
extension of the temporal logic CTL applicable in the context of MDPs and
DTMCs, and the logic CSL [8], a specification language for CTMCs based on
CTL and PCTL.

PCTL allows us to express properties of the form “under any scheduling
of processes, the probability that event A occurs is at least p (at most p)”.
By way of illustration, we consider Pnueli and Zuck’s randomised solution to
mutual exclusion [26] which gives rise to an MDP. In this algorithm, processes
make random choices based on coin tosses to ensure that they can all enter
their critical sections eventually (although not simultaneously). We use atomic
propositions try i and crit i to label states where process i is either trying to enter
its critical section or is in it, respectively. Some examples of properties we would
wish to verify can be expressed in PCTL as follows:

• try1 → P≥1[true U crit1] - “under any scheduling, if process 1 tries to enter
its critical section, then it eventually succeeds with probability 1”

• P<0.5[¬(crit2 ∨ crit3) U crit1] - “under any scheduling, the probability of
process 1 entering its critical section before process 2 or 3 is less than 0.5”.

The specification language CSL includes the means to express both transient and
steady-state performance measures of CTMCs. Transient properties describe the
system at a fixed real-valued time instant t, whereas steady-state properties refer
to the behaviour of a system in the “long run”. For example, consider a queueing
system where the atomic proposition full labels states where the queue is full.
CSL then allows us to express properties such as:

• P≤0.01[true U≤t full] - “the probability that the queue becomes full within
t time units is less than or equal to 0.01”

• S≥0.98[¬full] - “in the long run, the chance that the queue is not full is
greater than or equal to 0.98”.

3 The Tool

3.1 Functionality

PRISM takes as input a description of a system written in a probabilistic variant
of Reactive Modules [1]1. It first constructs the model from this description and
computes the set of reachable states. The model can be a DTMC, an MDP or a
CTMC. PRISM accepts specifications in either the logic PCTL or CSL depend-
ing on the model type. The tool then performs model checking to determine
which states of the system satisfy each specification. For PCTL properties and
DTMC or MDP models, PRISM implements the algorithms of [16,10,9] (includ-
ing fairness) and the subsequent improvements of [3]. For CSL and CTMCs,
methods based on [7] are used. It is also possible to export the transition matrix
of the model, enabling analysis in other applications and visualisation of the
model. Fig. 1 shows the structure of the tool and Fig. 2 shows a screen-shot of
the tool running.

Modules

Parser

Parser

Hybrid

Engine

Sparse

Engine Engine
Results

(States/Probabilities)

CUDD

MTBDD

PCTL/CSL
Properties

System

Description

PCTL/CSL

Prism Kernel

Fig. 1. PRISM System Architecture

In PRISM, model construction and reachability are implemented using MTB-
DDs and BDDs respectively. It has been shown in [15] that space efficient repre-
sentations of structured probabilistic models can be constructed using MTBDDs.
Reachability analysis using BDDs forms the basis of non-probabilistic symbolic
model checking which has proven to be very successful [11,24].

For both PCTL and CSL, model checking generally reduces to a combina-
tion of reachability-based computation (manipulation of sets of states) and the
solution of linear equation systems or linear optimisation problems. Again, reach-
ability based computation is performed using BDDs. In the case of numerical
computation, however, PRISM supports three different model checking engines.
The first is based on symbolic model checking using MTBDDs (multi-terminal
BDDs) [13]; more details can be found in [5,15]. The second uses more conven-
tional data structures for numerical analysis: sparse matrices and full vectors.
The latter engine nearly always provides faster numerical computation than its
MTBDD counterpart. MTBDDs can, however, sometimes exploit structure in
models and represent them far more compactly than a sparse matrix can [15].
In cases where high regularity occurs, we have been able to perform quantita-
tive analysis for models substantially larger than those representable in a sparse
matrix form. The third engine can be seen as a hybrid of the other two. It stores
1 For further information on the language, see www.cs.bham.ac.uk/~dxp/prism

www.cs.bham.ac.uk/~dxp/prism

Fig. 2. The PRISM User Interface

models in a MTBDD-like structure which is adapted so that numerical computa-
tion can be carried out in combination with a full vector. This hybrid approach
is faster than MTBDDs and can handle larger systems than sparse matrices.

3.2 Implementation

PRISM is implemented using a combination of Java and C++. All high-level
parts of the tool, such as the user interface and parsers are written in Java. Low-
level code and libraries are mostly in C++. For BDDs and MTBDDs, PRISM
uses the CUDD package [28], which is written in C.

4 Results

We have used PRISM to build and analyse probabilistic models for a num-
ber of case studies. For MDP models, we have considered several randomised
distributed algorithms, including the randomised mutual exclusion protocols of
[27,26] and the randomised consensus protocol of [2]. In the latter case, we were
able to verify quantitative PCTL properties for MDPs with up to 1010 states
using the MTBDD engine [23]. We have also considered a number of CTMC
models. These include a cyclic polling system [22], a tandem queueing network
[21], a kanban flexible manufacturing system [12], a workstation cluster [18] and
a cell of a wireless communication network [17]. For example, in the workstation
cluster case study, we have used the hybrid engine in PRISM to verify the prop-
erty “the chance that the quality of service drops below minimum quality within

85 time units is less than 10%” for systems of up to 9 million states. Fig. 3 below
includes statistics for some of the case studies mentioned above.

model number model model number time per iteration (in sec)
of construction size of MTBDD Sparse Hybrid

states time (in sec) (KB) iterations engine engine engine

consensus 4.3× 108 13.2 106 181,791 6.0 - -
protocol 1.0× 1010 16.0 170 85,641 11.5 - -

workstation 2.3× 106 33.6 1878 2570 - - 11.3
cluster 9.4× 106 151.2 3908 2630 - - 44.5

polling 73, 728 0.4 36 584 1.29 0.17 0.25
system 159, 744 0.8 42 584 3.03 0.32 0.55

Fig. 3. Statistics for model checking with PRISM

Further information about these examples, additional case studies and the tool
itself can be found on the PRISM web site at www.cs.bham.ac.uk/~dxp/prism.

5 Conclusions and Future Work

We have introduced PRISM, a tool to build and analyse probabilistic systems
which supports three types of models (DTMCs, MDPs and CTMCs) and two
probabilistic logics (PCTL and CSL). Several DTMC and CTMC analysis tools
are available, for example MARCA [29] and TIPPtool [19], which do not allow
logic specifications and instead support steady-state and transient analysis. Of
the two probabilistic model checking tools that we are aware of, ProbVerus
[4] only supports DTMCs and a subset of PCTL, whereas E ` MC2 [20] only
supports the model checking of CTMCs using CSL specifications. PRISM is the
only model checking tool which allows the quantitative model checking of MDPs.

The development of PRISM is an ongoing activity. In the near future we
plan to consider extensions of PCTL for expressing expected time and long
run average properties [14] and of CSL to include rewards [6]. We are also in
the process of making efficiency improvements to the tool, in particular to the
hybrid engine. Details of this work will be available in [25].

References

1. R. Alur and T. Henzinger. Reactive modules. In Proc. LICS’96, 1996.
2. J. Aspnes and M. Herlihy. Fast Randomized Consensus using Shared Memory.

Journal of Algorithms, 15(1), 1990.
3. C. Baier. On algorithmic verification methods for probabilistic systems. Universität

Mannheim, 1998.
4. C. Baier, E. Clarke, and V. Hartonas-Garmhausen. On the semantic foundations

of Probabilistic VERUS. In Proc. PROBMIV ’98, volume 21 of ENTCS, 1998.
5. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.

Symbolic model checking for probabilistic processes. In Proc. ICALP’97, 1997.

www.cs.bham.ac.uk/~dxp/prism

6. C. Baier, B. Haverkort, H. Hermanns, and J. Katoen. On the logical characterisa-
tion of performability properties. In Proc. ICALP 2000, 2000.

7. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking
continuous-time Markov chains by transient analysis. In CAV 2000, 2000.

8. C. Baier, J.-P. Katoen, and H. Hermanns. Approximative symbolic model checking
of continuous-time Markov chains. In Proc. CONCUR’99, 1999.

9. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11(3), 1998.

10. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proc. FST & TCS, 1995.

11. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proc. LICS’90, 1990.

12. G. Ciardo and M. Tilgner. On the use of Kronecker operators for the solution
of generalized stocastic Petri nets. ICASE Report 96-35, Institute for Computer
Applications in Science and Engineering, 1996.

13. E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. Multi-terminal binary
decision diagrams: An efficient data structure for matrix representation. In Proc.
IWLS’93, 1993.

14. L. de Alfaro. How to specify and verify the long-run average behavior of proba-
bilistic systems. In Proc. LICS’98, 1998.

15. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of concurrent probabilistic processes using MTBDDs and the Kro-
necker representation. In Proc. TACAS 2000, volume 1785 of LNCS, 2000.

16. H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6, 1994.

17. G. Haring, R. Marie, R. Puigjaner, and K. Trivedi. Loss formulae and their applica-
tion to optimization for cellular networks. In IEEE Trans. on Vehicular Technology,
2000.

18. B. Haverkort, H. Hermanns, and J.-P. Katoen. On the use of model checking
techniques for dependability evaluation. In Proc. 19th IEEE Symposium on Reliable
Distributed Systems, 2000.

19. H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Composi-
tional performance modelling with the TIPPtool. Perf. Eval., 39(1-4), 2000.

20. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov Chain
Model Checker. In Proc. TACAS 2000, volume 1785 of LNCS, 2000.

21. H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision dia-
grams to represent and analyse continuous time Markov chains. In Proc. NSMC’99,
1999.

22. O. Ibe and K. Trivedi. Stochastic Petri net models of polling systems. IEEE
Journal on Selected Areas in Communications, 8(9), 1990.

23. M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a ran-
domized distributed consensus protocol using Cadence SMV and PRISM. In Proc.
CAV’01, 2001. To appear.

24. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
25. D. Parker. Implementation of symbolic model checking for probabilistic system.

PhD thesis, University of Birmingham, 2001. To appear.
26. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-

tributed Computing, 1(1), 1986.
27. M. Rabin. N -process mutual exclusion with bounded waiting by 4 log2 N -valued

shared variable. Journal of Computer and System Sciences, 25(1), 1982.

28. F. Somenzi. CUDD: CU Decision Diagram package. Public software, Colorado
University, Boulder, 1997.

29. W. Stewart. MARCA: Marcov chain analyzer. a software package for Markov
modelling. In Proc. NSMC’91, 1991.

	PRISM: Probabilistic Symbolic Model Checker
	Introduction
	Probabilistic model checking
	The Tool
	Functionality
	Implementation

	Results
	Conclusions and Future Work

