The 2019 Comparison of Tools for the
Analysis of Quantitative Formal Models*
(QComp 2019 Competition Report)

Ernst Moritz Hahn'2, Arnd Hartmanns®, Christian Hensel?,
Michaela Klauck®, Joachim Klein®, Jan Kretinsky’, David Parker®,
Tim Quatmann?, Enno Ruijters®, and Marcel Steinmetz®

1 School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast, United Kingdom
2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
3 University of Twente, Enschede, The Netherlands
4 RWTH Aachen University, Aachen, Germany
5 Saarland Informatics Campus, Saarland University, Saarbriicken, Germany
5 Technische Universitit Dresden, Dresden, Germany
7 Technische Universitdt Miinchen, Munich, Germany
8 University of Birmingham, Birmingham, United Kingdom

Abstract. Quantitative formal models capture probabilistic behaviour,
real-time aspects, or general continuous dynamics. A number of tools
support their automatic analysis with respect to dependability or perfor-
mance properties. QComp 2019 is the first, friendly competition among
such tools. It focuses on stochastic formalisms from Markov chains to
probabilistic timed automata specified in the JANI model exchange for-
mat, and on probabilistic reachability, expected-reward, and steady-state
properties. QComp draws its benchmarks from the new Quantitative Ver-
ification Benchmark Set. Participating tools, which include probabilistic
model checkers and planners as well as simulation-based tools, are evalu-
ated in terms of performance, versatility, and usability. In this paper, we
report on the challenges in setting up a quantitative verification competi-
tion, present the results of QComp 2019, summarise the lessons learned,
and provide an outlook on the features of the next edition of QComp.

1 Introduction

Classic verification is concerned with functional, qualitative properties of models
of systems or software: Can this assertion ever be violated? Will the server always

* The authors are listed in alphabetical order. This work was supported by BMBF
grant 16KIS0656 (CIspA), DFG grants 383882557 (suv), 389792660 (part of
CRC 248), and HO 2169/5-1, DFG SFB 912 (HAEC), ERC Advanced Grants 695614
(POWVER) and 781914 (FRAPPANT), Natural Science Foundation of China (NSFC)
grants 61761136011 and 61532019, NWO and BetterBe B.V. grant 628.010.006,
NWO VENI grant 639.021.754, and the TUM IGSSE project 10.06 (PARSEC).

eventually answer a request? To evaluate aspects of dependability (e.g. safety,
reliability, availability or survivability) and performance (e.g. response times,
throughput, or power consumption), however, quantitative properties must be
checked on quantitative models that incorporate probabilities, real-time aspects,
or general continuous dynamics. Over the past three decades, many modelling
languages for mathematical formalisms such as Markov chains or timed automata
have been specified for use by quantitative verification tools that automatically
check or compute values such as expected accumulated rewards or PCTL formu-
lae. Applications include probabilistic programs, safety-critical and fault-tolerant
systems, biological processes, queueing systems, privacy, and security.

As a research field matures, developers of algorithms and tools face increas-
ing challenges in comparing their work with the state of the art: the number of
incompatible modelling languages grows, benchmarks and case studies become
scattered and hard to obtain, and the tool prototypes used by others disappear.
At the same time, it is hard to motivate spending effort on engineering generic,
user-friendly, well-documented tools. In several areas, tool competitions have suc-
cessfully addressed these challenges: they improve the visibility of existing tools,
motivate engineering effort, and push for standardised interfaces, languages, and
benchmarks. Examples include ARCH-COMP [29] for hybrid systems, the In-
ternational Planning Competition [I8] for planners, the SAT Competition [51]
for satisfiability solvers, and SV-COMP [§] for software verification.

In this paper, we present QComp 2019: the first, friendly competition among
quantitative verification tools. As the first event of its kind, its scope is inten-
tionally limited to five stochastic formalisms based on Markov chains and to
basic property types. It compares the performance, versatility, and usability of
four general-purpose probabilistic model checkers, one general-purpose statistical
model checker, and four specialised tools (including two probabilistic planners).
All competition data is available at |qcomp.org. As a friendly competition in a
spirit similar to ARCH-COMP and the RERS challenge [52], QComp’s focus is
less on establishing a ranking among tools, but rather on gathering a community
to agree on common formats, challenges, and evaluation criteria. To this end,
QComp is complemented by a new collection of benchmarks, the Quantitative
Verification Benchmark Set (QVBS, [46]). All models in the QVBS are avail-
able in their original modelling language as well as the JANI model exchange
format [I5]. While JANI is intended as the standard format for QComp, not
all tools implement support for it yet and were thus executed only on those
benchmarks for which they support the original modelling language.

Quantitative verification is rich in formalisms, modelling languages, types of
properties, and verification approaches, of which we give an overview in Sect.
We summarise the selections made by QComp among all of these options as well
as the overall competition design in Sect.[3] The authors of the participating tools
describe the features and capabilities of their tools in Sect. [} we then compare
their usability and versatility in Sect. [5] Finally, Sect. [6] contains the technical
setup and results of the performance comparison, followed by an outlook on the
next edition of QComp, based on the lessons learned in this round, in Sect. [7}

http://qcomp.org/competition/2019/

SHA Key: SHA stochastic hybrid automata [28]

/ \ PHA probabilistic hybrid automata [70]
STA stochastic timed automata [9
PHA STA | continuous HA hybrid automata .
/ \ / \ probabiity PTA probabilistic timed automata [59]
HA PTA MA MA Markov automata |25]
d@,‘igﬁﬁgg / ‘ / TA timed automata
TA MDP CTMDP MDP Markov decision processes
+ real _— CTMDP continuous-time MDP
time / ‘ ‘ LTS labelled transition systems
LTS DTMC CTMC DTMC discrete-time Markov chains
nr%gfstg) prgll)fzcbriitteies efep:né::f;gl CTMC continuous-time Markov chains

Fig. 1. The family tree of automata-based quantitative formalisms

2 The Quantitative Verification Landscape

Quantitative verification is a wide field that overlaps with safety and fault toler-
ance, performance evaluation, real-time systems, simulation, optimisation, and
control theory. In this section, we give an overview of the formalisms, modelling
languages, property types, and verification methods considered for QComp.

2.1 Semantic Formalisms

The foundation of every formal verification approach is a formalism: a mathe-
matically well-defined class of objects that form the semantics of any concrete
model. Most modelling languages or higher-level formalisms eventually map to
some extension of automata: states (that may contain relevant structure) and
transitions (that connect states, possibly with several annotations). In Fig. (1}
we list the automata-based formalisms supported by JANI, and graphically show
their relationships (with a higher-up formalism being an extension of the lower-
level formalisms it is connected to). LTS are included as the most basic non-
quantitative automata formalism; TA then add the quantity of (continuous)
time, while DTMC and CTMC provide probabilistic behaviour. The list is clearly
not exhaustive: for example, every formalism is a 1- or 1.5-player game, and the
list could be extended by games with two or more players that capture com-
petitive behaviour among actors with possibly conflicting goals. It also does not
include higher-level formalisms such as Petri nets or dataflow that often provide
extra information for verification compared to their automata semantics.

2.2 Modelling Languages

Modelling complex systems using the formalisms listed above directly would
be cumbersome. Instead, domain experts use (textual or graphical) modelling
languages to compactly describe large automata. Aside from providing a con-
crete human-writable and machine-readable syntax for a formalism, modelling

languages typically add at least discrete variables and some form of compo-
sitionality. The current benchmarks in the QVBS were originally specified in
the Galileo format [72] for fault trees, the GreatSPN format [I] for generalised
stochastic Petri nets, the process algebra-based high-level modelling language
Modest [36], the PGCL specification for probabilistic programs [32], PPDDL
for probabilistic planning domains [77], and the lower-level guarded-command
PRISM language [57]. For all benchmarks, the QVBS provides a translation to
the tool-independent JSON-based JANI model exchange format [I5]. The purpose
of JANI is to establish a standard human-readable (though not easily human-
writable) format for quantitiative verification that simplifies the implementation
of new tools and fosters model exchange and tool interoperability. Many other
quantitative modelling languages not yet represented in the QVBS exist such as
Uppaal’s XML format [7] for timed automata or those supported by Mébius [19].

2.3 Properties

Models are verified w.r.t. properties that specify a requirement or a query for a
value of interest. The basic property types for stochastic models are probabilistic
reachability (the probability to eventually reach a goal state), expected accumu-
lated rewards (or costs; the expected reward sum until reaching a goal state), and
steady-state values (the steady-state probability to be in certain states or the
long-run average reward). In case of formalisms with nondeterminism, properties
ask for the minimum or maximum value over all resolutions of nondeterminism.
Probabilistic reachability and expected rewards can be bounded by a maximum
number of transitions taken, by time, or by accumulated reward; we can then
query for e.g. the maximum probability to reach a goal within a cost budget.
We refer to properties that query for probabilities as probabilistic, to those that
deal with expected rewards as reward-based, and to steady-state properties.

From these basic properties, logics can be constructed that allow the expres-
sion of nested quantitative requirements, e.g. that with probability 1, we must
reach a state within n steps from which the probability of eventually reaching
an unsafe state is less than 107°. Examples are CSL [5] for CTMC, PTCTL [59]
for PTA, rPATL [I7] for stochastic games, and STL [61] for hybrid systems.
Another interesting class of properties are multi-objective tradeoffs [26], which
query for Pareto-optimal strategies balancing multiple goals.

2.4 Verification Methods and Results

The two main quantitative verification approaches are probabilistic model check-
ing and statistical model checking a.k.a. Monte Carlo simulation. Probabilistic
planners use ideas similar to probabilistic model checking, but focus on heuristics
and bounding methods to avoid the state space explosion problem.

Probabilistic model checking [4] is to explore a model’s state space followed by or
interleaved with a numeric analysis, e.g. using value iteration, to compute prob-
abilities or reward values. It aims for results with hard guarantees, i.e. precise

statements about the relationship between the computed result and the actual
value. For example, a probabilistic model checker may guarantee that the actual
probability is definitely within e = £10~3 of the reported value. Due to the need
for state space exploration, these tools face the state space explosion problem
and their applicability to large models is typically limited by available memory.

Statistical model checking (SMC, [49J78]) is Monte Carlo simulation on formal
models: generate n executions of the model, determine how many of them sat-
isfy the property or calculate the reward of each, and return the average as an
estimate for the property’s value. SMC is thus not directly applicable to models
with nondeterminism and provides only statistical guarantees, for example that
P(|p—p| > €) < 6 where p is the (unknown) actual probability, p is the estimate,
and 1 — ¢ is the confidence that the result is e-correct. As € and § decrease, n
grows. SMC is attractive as it only requires constant memory independent of the
size of the state space. Compared to model checking, it replaces the state space
explosion problem by a runtime explosion problem when faced with rare events:
it is desirable that ¢ < p, but since n depends quadratically on € for a fixed
0 (e.g. in the Okamoto bound [63]), n becomes prohibitively large as p reaches
around 104, Rare event simulation [68] provides methods to tackle this problem
at the cost of higher memory usage, lack of automation, or lower generality.

Probabilistic planning uses MDP heuristic search algorithms, e.g. [I0JTT], that try
to avoid the state space explosion problem by computing values only for a small
fraction of the states, just enough to answer the considered property. Heuristics—
admissible approximations of the optimal values—are used to initialise the value
function, which is subsequently updated until the value for the initial state has
provably converged. The order of updates depends on the current values; this
sometimes allows to prove states to not be part of any optimal solution before
actually visiting all of their descendants. Such states can safely be ignored. Many
heuristic search algorithms assume a specific class of MDP. To apply them to
general MDP, they need to be wrapped in FRET iterations [54]: between calls
to the search algorithm, FRET eliminates end components from the subgraph of
the state space induced by optimal actions w.r.t. the current values. FRET-7t [71]
is a variant that only picks a single optimal path to the goal.

Results. The answer to a property may be a concrete number that is in some
relation to the actual value (e.g. within #1072 of the actual value). However,
properties—such as PCTL formulae—may also ask qualitative questions, i.e.
whether the value of interest is above or below a certain constant bound. In that
case, there is an opportunity for algorithms to terminate early: they may not
have computed a value close to the actual one yet, but the current approximation
may already be sufficient to prove or disprove the bound. In the case of models
with nondeterminism, those choices can be seen as scheduling freedom, and a
user may be more interested in an optimal or sufficient strategy than in the
actual value, i.e. in a way to resolve the nondeterministic choices to achieve the
optimal or a sufficient probability or reward. Further types of quantitative results

include quantiles [73], Pareto curves in multi-objective scenarios, and a function
in terms of some model parameter in case of parametric model checking.

3 Decisions and Competition Setup

Seeing the wide range of options in quantitative verification described in the
previous section, and taking into account that QComp 2019 was the first event
of its kind, several decisions had to be made to limit its scope. The first was
to build on JANI and the QVBS: only benchmarks available in JANI and sub-
mitted to the QVBS with a description and extensive metadata would become
part of the QComp performance evaluation. We further limited the formalisms to
DTMC, CTMC, MDP, MA and PTA (cf. Fig. . We thus included only stochas-
tic formalisms, excluding in particular TA and HA. This is because stochastic
formalisms provide more ways to exploit approximations and trade precision
for runtime and memory than non-stochastic ones where verification is rather
“qualitative with more complicated states”. Second, we only included formalisms
supported by at least two participating tools, which ruled out STA, PHA and
SHA. For the same reason, we restricted to the basic properties listed at the be-
ginning of Sect. [2:3] While many competitions focus on performance, producing
an overall ranking of tools w.r.t. their total runtime over all benchmarks, QComp
equally considers versatility and usability (see Sect. . For the performance com-
parison, many technical decisions (such as comparing quantitative results with
an a priori fixed precision and not considering comparisons or asking for strate-
gies) were made as explained in Sect. @ In particular, the set of benchmarks
was determined based on the wishes of the participants and announced a priori;
not expecting tool authors to dubiously tweak their tools for the selected bench-
marks is in line with the friendly nature of QComp 2019. The entire competition
was then performed offline: participants submitted benchmarks and tools, the
performance comparison was done by the organisers on a central server accord-
ing to tool setup instructions and scripts provided by the participants, and the
evaluation of versatility and usability is based on submitted tool descriptions.

4 Participating Tools

QComp is open to every tool that can check a significant subset of the mod-
els and properties of the QVBS. In particular, a participating tool need not
support all model types, the JANI format, or all included kinds of properties.
For example, a tool specialising in the analysis of stochastic Petri nets is not ex-
pected to solve JANI DTMC models. Nine tools were submitted to QComp 2019:
DFTRES [69] (by Enno Ruijters), ePMC [40] (by Ernst Moritz Hahn), mcsta [42]
and modes [I4] (by Arnd Hartmanns), Modest FRET-t LRTDP (by Michaela
Klauck, MFPL for short), PRISM [57] (by Joachim Klein and David Parker),
PRISM-TUMheuristics (by Jan Kfetinsky, P-TUM for short), Probabilistic Fast
Downward [71] (by Marcel Steinmetz, PFD for short), and Storm [23] (by Chris-
tian Hensel). We summarise the tools’ capabilities w.r.t. the supported modelling

Table 1. Tool capabilities

o ; & 2 s Properties

o B m o4 A @A

= § 5 g 8 E 2 DTMC| CTMC MDP MA PTA
Tool U s 2A&A&~anlPREIPRES|PRBE|PRES|IPRE
ePMC v Vs ViV vV Vv v v
mcsta v v VIV VY Y VERARA ARV v vV v
PRISM Vaa VIV V VY v v v v
P-TUM Vara v v
Storm VR4 v VIV V VIV VYV YV Y V@ «)
DFTRES | v) v v «))
modes v v VvV ViYLV)) D@ & @ ©) ©))
MFPL v Vv)
PFD) Ve “))

languages, formalisms, and properties in Table [I} We only include the property
types most used in the QComp benchmarks; P, B, and R refer to unbounded,
reward-bounded, and time-bounded reachability probabilities, respectively; E in-
dicates expected accumulated rewards, and S steady-state probabilities. A (v)
entry signifies limited support as described in the tool-specific sections below.

4.1 Model Checkers

QComp 2019 included four general-purpose probabilistic model checkers that
handle a variety of formalisms and property types as well as the more specialised
PRISM-TUMpheuristics tool focused on unbounded probabilistic properties.

ePMC (formerly iscasMC [40)]) is mainly written in Java, with some performance-
critical parts in C. It runs on 64-bit Linux, Mac OS, and Windows. ePMC par-
ticularly targets extensibility: it consists of a small core while plugins provide
the ability to parse models, model-check properties of certain types, perform
graph-based analyses, or integrate BDD packages [24]. In this way, ePMC can
easily be extended for special purposes or experiments without affecting the sta-
bility of other parts. It supports the PRISM language and JANT as input, DTMC,
CTMC, MDP, and stochastic games as formalisms, and PCTL* and reward-based
properties. ePMC particularly targets the analysis of complex linear time prop-
erties [39] and the efficient analysis of stochastic parity games [41]. It has been
extended to support multi-objective model checking [37] and bisimulation min-
imisation [38] for interval MDP. It also has experimental support for parametric
Markov models [3160]. Specialised branches of ePMC can model check quantum
Markov chains [27] and epistemic properties of multi-agent systems [30]. The
tool is available in source code form at github.com/liyi-david/ePMC.

mcsta is the explicit-state model checker of the Modest Toolset [42]. It is imple-
mented in C# and works on Windows as well as on Linux and Mac OS via the
Mono runtime. Built on common infrastructure in the Modest Toolset, it sup-
ports MODEST, xSADF [44] and JANI as input languages, and has access to a fast

https://github.com/liyi-david/ePMC
https://www.mono-project.com/

state space exploration engine that compiles models to bytecode. mcsta computes
unbounded and reward-bounded reachability probabilities and expected accumu-
lated rewards on MDP and MA, and additionally time-bounded probabilities on
MA. By default, it uses value iteration and Unif+ [16]; for probabilistic reacha-
bility, it can use interval iteration [33] instead. mcsta supports PTA via digital
clocks [58] and STA via a safe overapproximation [35]. It can analyse DTMC and
CTMC, but treats them as (special cases of) MDP and MA, respectively, and
thus cannot achieve the performance of dedicated algorithms. To deal with very
large models, mcsta provides two methods to efficiently use secondary storage:
by default, it makes extensive use of memory-mapped files; alternatively, given
a model-specific partitioning formula, it can do a partitioned analysis [43]. For
reward-bounded properties with large bounds (including time bounds in PTA),
mcsta implements two unfolding-free techniques based on modified value itera-
tion and state elimination [34]. The Modest Toolset, including mcsta, is available
as a cross-platform binary package at modestchecker.net. mcsta is a command-
line tool; when invoked with -7, it prints a list of all parameters with brief
explanations. The download includes example MODEST models with mcsta com-
mand lines. MODEST is documented in [36] and on the toolset’s website.

PRISM [57] is a probabilistic model checker for DTMC, CTMC, MDP, PTA,
and variants annotated with rewards. Models are by default specified in the
PRISM language, but other formats, notably PEPA [50], SBML (see sbml.org),
and sparse matrix files, can be imported. Properties are specified in a language
based on temporal logic which subsumes PCTL, CSL, LTL, and PCTL¥; it also
includes extensions for rewards, multi-objective specifications, and strategy syn-
thesis. PRISM incorporates a wide selection of analysis techniques. Many are
iterative numerical methods such as Gauss-Seidel, value iteration, interval it-
eration [33], and uniformisation, with multiple variants. Others include linear
programming, graph-based algorithms, quantitative abstraction refinement, and
symmetry reduction. Their implementations are partly symbolic (typically us-
ing binary decision diagrams) and partly explicit (often using sparse matrices).
PRISM also supports statistical and parametric model checking. It can be run
from a graphical user interface (featuring a model editor, simulator, and graph
plotting), the command line, or Java-based APIs. It is primarily written in Java,
with some C++, and works on Linux, Mac OS, and Windows. PRISM is open
source under the GPL v2.0. It has been connected to many other tools using
language translators, model generators, and the HOA format [3]. The tool’s
website at [prismmodelchecker.org provides binary downloads for all major plat-
forms, extensive documentation, tutorials, case studies, and developer resources.

PRISM-TUMheuristics is an explicit-state model checker for DTMC, CTMC,
and MDP. It is implemented in Java and works cross-platform. It uses PRISM
as a library for model parsing and exploration, and hence handles models in the
PRISM language, with JANI support planned. It supports probabilistic reach-
ability, safety, propositional until, and step-bounded reachability properties on
MDP and DTMC as well as unbounded reachability for CTMC. At its heart,

http://www.modestchecker.net/
http://sbml.org/
http://www.prismmodelchecker.org/

PRISM-TUMheuristics uses the ideas of [I2] to only partially explore state spaces:
states which are hardly reached can be omitted from computation if one is only
interested in an approximate solution. Sound upper and lower bounds guide the
exploration and value propagation, focusing the computation on relevant parts
of the state space. Depending on the model’s structure, this can yield significant
speed-ups. The tool and its source code are available at prism.model.in.tum.del

Storm [23] features the analysis of DTMC, CTMC, MDP, and MA. It supports
PRISM and JANI models, dynamic fault trees [74], probabilistic programs [32],
and stochastic Petri nets [1]. Storm analyses PCTL and CSL properties plus ex-
tensions of these logics with rewards, including time- and reward-bounded reach-
ability, expected rewards, conditional probabilities, and steady-state rewards. It
includes multi-objective model checking [45J65], parameter synthesis [22164], and
counterexample generation [21]. Storm allows for explicit-state and fully symbolic
(binary decision diagram-based) model checking as well as mixtures of these ap-
proaches. It implements many analysis techniques, e.g. bisimulation minimisa-
tion, sound value iteration [66], Unif+ [16], learning-based exploration [12], and
game-based abstraction [56]. Dedicated libraries like Eigen, |Gurobi, and Z3 [62]
are used to carry out sophisticated solving tasks. A command-line interface, a
C+-+ API, and a Python API provide flexible access to the tool’s features. Storm
and its documentation (including detailed installation instructions) are available
at stormchecker.org. It can be compiled from source (Linux and Mac OS), in-
stalled via Homebrew (Mac OS), or used from a Docker container (all platforms).

4.2 Statistical Model Checkers

Two simulation-based tools participated in QComp 2019: the DFTRES rare event
simulator for fault trees, and the general-purpose statistical model checker modes.

DFTRES is the dynamic fault tree rare event simulator [69]: a statistical model
checker for dynamic fault trees that uses importance sampling with the Path-
ZVA algorithm [67]. It is implemented in Java and works cross-platform. It sup-
ports the Galileo format [72] by using DFT Calc [2] as a converter, and a subset of
JANI for CTMC and MA provided any nondeterminism is spurious. Path-ZVA
allows for efficient analysis of rare event models while requiring only a modest
amount of memory. This algorithm is optimised for steady-state properties, but
also supports probabilistic reachability (currently implemented for time-bounded
properties). Simulations run in parallel on all available processor cores, resulting
in a near-linear speedup on multi-core systems. DFTRES is a command-line tool;
its source code is available at github.com/utwente-fmt/DFTRES, with instruc-
tions provided in a README file. Galileo format support requires the installation
of DFTCalc, available at fmt.ewi.utwente.nl/tools/dftcalc, and its dependencies.

modes [14] is the Modest Toolset’s statistical model checker. It shares the input
languages, supported property types, fast state space exploration, cross-platform
support, and documentation with mcsta. modes supports all formalisms that

http://prism.model.in.tum.de/
http://eigen.tuxfamily.org
http://www.gurobi.com
http://www.stormchecker.org/
https://github.com/utwente-fmt/DFTRES
https://fmt.ewi.utwente.nl/tools/dftcalc

can be specified in JANI. It implements methods that address SMC’s limitation
to purely stochastic models and the rare event problem. On nondeterministic
models, modes provides lower (upper) bounds for maximum (minimum) reach-
ability probabilities via lightweight scheduler sampling [20]. For rare events, it
implements automated importance splitting methods [I3]. Simulation is easy to
parallelise, and modes achieves near-linear speedup on multi-core systems and
networked computer clusters. It offers multiple statistical methods including con-
fidence intervals, the Okamoto bound [63], and the SPRT [75]. Unless overridden
by the user, it automatically selects the best method per property.

4.3 Probabilistic Planners

The probabilistic planners that participated in QComp 2019 consider the analy-
sis of maximum reachability in MDP specifically. They both incorporate FRET-
7, but differ in the MDP heuristic search algorithm and the heuristic used.

Modest FRET-7t LRTDP implements FRET-7t with LRTDP to solve maximum
probabilistic reachability on MDP. It is implemented within the Modest Toolset
and motivated by an earlier performance comparison between planning algo-
rithms usable for model checking purposes [53]. LRTDP [11] is an asynchronous
heuristic search dynamic programming optimisation of value iteration that does
not have to consider the entire state space and that converges faster than value
iteration because not all values need to be converged (or even updated) before
terminating. The tool supports the same input languages as mcsta and modes,
and runs on the same platforms. Modest FRET-7t LRTDP is available as a bi-
nary download at dgit.cs.uni-saarland.de| that includes a detailed README file.
When invoked on the command line with parameter -help, it prints a list of all
command-line parameters with brief explanations.

Probabilistic Fast Downward [71] is an extension of the classical heuristic planner
Fast Downward [48]. It supports expected accumulated rewards and maximum
probabilistic reachability on MDP specified in PPDDL [77]. Limited JANI sup-
port is provided by a translation to PPDDL [53]. Probabilistic Fast Downward
features a wide range of algorithms, including two variants of FRET [5471] com-
plemented by various heuristic search algorithms such as LRTDP [11], HDP [I0],
and other depth-first heuristic search algorithms [7I]. Due to being based on
Fast Downward, plenty of state-of-the-art classical planning heuristics are readily
available. To make them usable for MDP, Probabilistic Fast Downward supports
different methods to determinise probabilistic actions, notably the all-outcomes
determinisation [76]. The code is a mixture of C++ and Python, and should
compile and run on all common systems. The tool version that participated in
QComp 2019 has some functionality removed but also adds performance en-
hancements. Both versions can be downloaded at fai.cs.uni-saarland.de, and in-
clude README files detailing how to build and run the tool. The configuration used
for QComp 2019 was FRET-7t with HDP [10] search and the h!-heuristic [47] via
the all-outcomes determinisation to obtain an underapproximation of the states
that cannot reach the goal with positive probability.

10

https://dgit.cs.uni-saarland.de/Michaela/modest-fret-pi-lrtdp
https://fai.cs.uni-saarland.de/software.html#probabilistic

5 Versatility and Usability Evaluation

Once a tool achieves a base level of performance, its versatility and usability may
arguably become more important to its acceptance among domain experts than
its performance. As versatility, we consider the support for modelling languages
and formalisms, for different and complementary analysis engines, and config-
urability (e.g. to make runtime—precision tradeoffs). Usability is determined by
the tool’s documentation, the availability of a graphical interface, its installation
process, supported platforms, and similar aspects. A user-friendly tool achieves
consistently good performance with few non-default configuration settings.

Versatility. The five general-purpose tools—ePMC, mcsta, modes, PRISM, and
Storm—support a range of modelling languages, formalisms, and properties (cf.
Table (1| and Sect. . In terms of languages, Storm is clearly the most versatile
tool. Those based on the Modest Toolset and ePMC connect to many languages
via JANI. mcsta and modes implement analysis methods for all of the formalisms
supported by JANI (cf. Fig. 1) while Storm still covers all of those considered
in QComp. PRISM only lacks support for MA. However, on the formalisms that
they support, PRISM and Storm implement the widest range of properties, fol-
lowed by ePMC. These three tools in particular support many properties not
considered in QComp 2019 such as LTL, PCTL¥, multi-objective queries, and
parametric model checking. PRISM and Storm also implement many algorithms
for the user to choose from that provide different tradeoffs and performance char-
acteristics; Probabilistic Fast Downward is similar in this regard when it comes
to planning algorithms and heuristics. While modes is limited to deterministic
MDP, MA and PTA when exact results are required as in QComp, it can tackle
the nondeterminism via lightweight scheduler sampling to provide bounds.

Usability. The most usable among all tools is clearly PRISM: it provides extensive
online documentation, a graphical user interface, and binary downloads for all
platforms that only depend on Java. The Modest Toolset is less documented and
contains command-line tools only, but again ships cross-platform binaries that
only require the Mono runtime on non-Windows systems. All in all, the tools
based on the Modest Toolset and those mainly implemented in Java (ePMC,
DFTRES, PRISM, and PRISM-TUMheuristics) provide the widest platform sup-
port. Storm is notably not available for Windows, and Fast Downward partly
works cross-platform but is only supported for Linux. The default way to install
Storm, and the only way to install DFTRES, ePMC, PRISM-TUMheuristics, and
Probabilistic Fast Downward, is to compile from source code. Storm in particular
requires a large number of dependencies in a long build process, which however is
well-documented on its website. All tools come with a default analysis configura-
tion adequate for QComp except for Probabilistic Fast Downward, which requires
the explicit selection of a specific engine and heuristics. The performance evalua-
tion results in Sect. highlight that PRISM and Storm can benefit significantly
from using non-default configuration settings tuned by experts to the individual
benchmarks, with mcsta showing moderate improvements with simpler tuning.

11

6 Performance Evaluation

To evaluate the performance of the participating tools, they were executed on
benchmark instances—a model, fixed values for the model’s parameters, and a
property—taken from the QVBS. Prior to the performance evaluation, all partic-
ipants submitted a wishlist of (challenging) instances, from which the organisers
chose a final set of 100 for the competition: 18 DTMC, 18 CTMC, 36 MDP,
20 MA and 8 PTA instances covering 40 unbounded and 22 bounded proba-
babilistic reachability, 32 expected-reward, and 6 steady-state properties. The
selection favoured models selected by multiple participants while aiming for a
good balance in terms of formalisms, modelling languages, and property types.
As a baseline, every tool should have a good number of supported instances in-
cluded; still, some tools that were particularly restricted in terms of languages
and property types (such as DFTRES and Probabilistic Fast Downward) could
only check up to 10 of them. By taking every participant’s wishlist into account,
QComp naturally included instances that a certain tool would do well on (sug-
gested by the participant who submitted the tool) as well as instances that it
was not expected to perform best with (suggested by the authors of other tools).

After finalisation of the benchmark instances, participants submitted tool
packages: installation instructions for the tool (or the tool itself) and a script to
generate a JSON file (or the file itself) containing, for every instance, up to two
command lines to invoke the tool. One of them was required to run the tool in its
default configuration, while the other could use instance-specific parameters to
tweak the tool for maximum performance. The performance evaluation was then
done by the organisers on one central computer: a standard desktop machine
with an Intel Core i7-920 CPU and 12 GB of RAM running 64-bit Ubuntu
Linux 18.04. Tools were given 30 minutes per instance. The choice for a rather
modest machine was intentional: the slower CPU increased the performance
differentiation for moderately-challenging instances, and the moderate amount
of memory allowed for some evaluation of memory efficiency by observing the
number of out-of-memory results. In particular, a tool’s actual memory usage is
not a good measure of quality since the ideal tool will make use of all available
memory to speed up the verification as much as possible on challenging instances.

6.1 The Precision Challenge

Almost all properties queried for a value, with only few asking whether a prob-
ability is equal to 1. Participants were required to submit a script that extracts
the value of an instance’s property from the tool output. Since quantitative
verification tools can often trade precision for performance, QComp required a
tool’s result r; for instance ¢ to be within [0.999 - v;,1.001 - v;] with v; being
the instance’s property’s correct result—i.e. we required a relative error of at
most 1073, We chose this value as a tradeoff between the advantages of model
checkers (which easily achieve high precision but quickly run out of memory on
large state spaces) and simulation-based tools (which easily handle large state
spaces but quickly run out of time when a high precision is required).

12

Reference results. Unfortunately, the actual result for a property is difficult to
obtain: tools that scale to large models use inexact floating-point arithmetic, and
any tool result may be affected by tool bugs. At the same time, it does not make
sense to report performance data when a tool provides an incorrect result as this
may be due to an error that drastically reduces or increases the analysis time.
QComp 2019 adopted the following pragmatic approach: the organisers used
the “most trustworthy” analysis approach available (usually an exact-arithmetic
solver for small and a model checker using a sound iterative numerical method for
large models) to produce reference results for all selected instances. Participants
were then invited to use any other tool to try and refute the correctness of those
results, and would discuss the result or benchmark in case of refutation. In the
end, only one of the reference results was shown to be incorrect, and this was
due to a model translation error that could be corrected before the competition.

Sound and unsound model checking. Practical quantitative model checkers typ-
ically use iterative numerical algorithms relying on floating-point arithmetic.
Here, certain algorithms can ensure error bounds (such as interval iteration [6IT233]
and sound value iteration [66] for probabilistic reachability, and uniformisation
for time-bounded reachability in CTMC). The most common approaches, e.g.
value iteration for probabilistic reachability with the standard termination cri-
terion, however provide “good enough” results for many models encountered in
practice but may also be widely off for others. It is clearly unfair to compare the
runtimes of tools that provide proper precision guarantees against tools without
such guarantees where the result happens to be just close enough to the reference
value, perhaps even after heavy parameter tweaking to find the sweet spot be-
tween runtime and precision. For QComp 2019, since it is the first of its kind and
a friendly event, participants agreed to avoid such parameter tweaking. In partic-
ular, for iterative methods with an “unsound” convergence check, all participants
agreed on using a relative error threshold of e = 107° for checking convergence.

6.2 Performance Results

The QComp 2019 performance evaluation produced a large amount of data,
which is available at qcomp.org; we here summarise the outcomes in comparative
plots. In all of them, we use a logarithmic scale for runtime.

Configurations. mcsta, modes, PRISM and Storm provided instance-specific tool
parameters that significantly changed their performance characteristics. All three
model checkers switched to an exact-arithmetic or sound iterative method for
models with known numerical issues (i.e. the haddad-monmege model). Other
than that, mcsta was run with some runtime checks disabled (as was modes),
and its disk-based methods were disabled for models with relatively small state
spaces. On PTA, it was configured to compress linear chains of states, and to
use state elimination for time-bounded properties. PRISM was configured to use
the best-performing of its four main analysis engines for every instance. This
typically meant switching from the default “hybrid” engine to “sparse” for added

13

http://qcomp.org/competition/2019/

1800 1800
— 1200 ff- —. 1200 fof- /
S 600 foff € 600 [f-f
3]
% 7
= i
% @
o 60 o 60 |
S E
S S
= =
Z 3 ePMC (28)
g 6 e ePMC (35) g 6 m—— mcsta (31)
8 m—— mcsta (40) 8 s PRISM (39)
@ m Storm (45) @ e Storm (37)
<1 + + ; ; <1 + + ;
10 20 30 40 10 20 30
solved instances (out of 58) solved instances (out of 43)

Fig. 2. Quantile plots for the general-purpose model checkers (default configuration)

1800 1800
~ 1200 /' I’ ~ 1200 /'I’
g 600 S 600
S]
% 7
= =
?03 60 E 60
S E
S 2
< z
3 & PMC (28
E 6 PMC E 6 / —e o
Q / el (35) o / mesta (31)
Q O
3 s mcsta (40) bl s PRISM (41)
@ m—— Storm (53) @ m— Storm (43)
<1 1 1 <1 1 1 1 :
20 40 10 20 30 40
solved instances (out of 58) solved instances (out of 43)

Fig. 3. Quantile plots for the general-purpose model checkers (specific configurations)

speed when the state space does not result in memory issues, and to “mtbdd” for
larger models with regularity. A Gauss-Seidel variant of each analysis method
was used for acyclic models. Storm’s specific configurations were set in a similar
way to use the fastest out of its four main engines (“sparse”, “hybrid”, “dd”, and
“dd” with symbolic bisimulation minimisation) for every instance. Observe that
the specific configurations of PRISM and Storm could only be obtained by testing
all available engines a priori, which cannot be expected from normal users.

modes by default rejects models with nondeterminism, and runs until the
required error is met with 95 % confidence, often hitting the 30-minute timeout.
In the specific configurations, modes was instructed to resolve nondeterminism
ad hoc, and to return the current estimate irrespective of statistical error after 28
minutes. It can thus solve more instances (where the nondeterminism is spurious,
and where the statistical method is too strict), but risks returning incorrect
results (when nondeterminism is relevant, or the error is too large).

Quantile plots. We first compare the performance of the general-purpose model
checkers by means of quantile plots in Figs. 2] and [3] Each plot only considers

14

the instances that are supported by all of the tools shown in the plot; this is to
avoid unsupported instances having a similar visual effect to timeouts and errors.
58 instances are supported by all three of ePMC, mcsta and Storm, while still
43 instances (those in the PRISM language) are also supported by PRISM. The
plots’ legends indicate the number of correctly solved benchmarks for each tool
(i.e. where no timeouts or error occurred and the result was relatively correct up
to 1073). A point (z,y) on the line of a tool in this type of plot signifies that the
individual runtime for the x-th fastest instance solved by the tool was y seconds.

We see that PRISM and Storm are the fastest tools for most of the common
instances in the default configuration, closely followed by mcsta. The perfor-
mance of PRISM and Storm improves significantly by selecting instance-specific
analysis engines, with Storm taking a clear lead. PRISM solves the largest number
of instances in default configuration while Storm leads in specific configurations.

Scatter plots. In Figs. [] to [6] we show scatter plots for all tools that compare
their performance over all individual instances to the best-performing other tool
for each instance. These plots provide more detailed information compared to
the previous quantile plots since they compare the performance on individual
instances. A point (x,y) states that the runtime of the plot’s tool on one instance
was x seconds while the best runtime on the same instance among all other tools
was y seconds. Thus points above the solid diagonal line indicate instances where
the plot’s tool was the fastest; it was more than ten times faster than any other
tool on points above the dotted line. Points on the vertical “TO”, “ERR” and
“INC” lines respectively indicate instances where the plot’s tool encountered a
timeout, reported an error (such as nondeterminism not being supported or a
crash due to running out of memory), or returned an incorrect result (w.r.t. the
relative 1072 precision). Points on the horizontal “n/a” line indicate instances
that none of the other tools was able to solve. The “default” plots used the default
configuration for all tools, while the “specific” plots used the specific per-instance
configurations for all tools. We do not show plots for the specific configurations
of the four specialised tools since they are not significantly different.

Overall, we see that every tool is the fastest for some instances. PRISM (de-
fault), Storm (specific) and modes in particular can solve several models that
no other tool can. The specialised and simulation-based tools may not win in
terms of overall performance (except for Probabilistic Fast Downward, on the few
instances that it supports), but they all solve certain instances uniquely—which
is precisely the purpose of a specialised tool, after all. The selected instances
contain a few where unsound model checkers are expected to produce incorrect
results, in particular the haddad-monmege model from [33]; we see this clearly
in the plots for ePMC, mcsta and Storm. PRISM aborts with an error when a
numeric method does not “converge” within 10000 iterations, which is why such
instances appear on the “ERR” line for PRISM. ePMC and mcsta do not yet
implement exact or sound iterative methods, which is why they keep incorrect
results in the specific configurations. The difference between default and specific
configurations for modes is different, as explained; it shows that several instances

15

‘- DTMC ¢ CTMC A MDP & MA PTA ‘

‘- DTMC ¢ CTMC A MDP & MA @ PTA ‘

. 4 e
<4 n = ’\w@O
««n mame < <«un|" Q
* T @O
< b | &0
R B <
‘ AAA- 3
AIIAA <« 190
<
S,
« le
+A

S[00} I91}0 JO 3S9q

ePMC (specific, fastest on 0/63)

ePMC (default, fastest on 1/63)

< |
o .
) <
.. "
<« ° ®
<« i
<
4 o 4
Fl |
> |
. « <
. .
.
. J &
t t t
o © —

©

n/a 4
1800 |
600 +

S[00) I9J0 JO 180q

I I
—+—t t

8O O o © —
~Oo O ©
g0 ©

—

S[00Y 19730 JO }s9q

RN

| 4200
| 600

| &0

N

wRE

mcsta (specific, fastest on 18/86)

default, fastest on 21/86)

(

mcsta

< i
L Aﬂ < g
° * NP
: < «
e N\ <« |
° e *® |
+—— t t t
CE==] o © —
~—Oo O ©
g 00 ©
—

S[00} 1930 JO 3S9q

PRISM (specific, fastest on 14/58

PRISM (default, fastest on 19/58)

Fig. 4. Runtime of specific tools compared with the best results (1/3)

16

‘- DTMC ¢ CTMC A MDP & MA PTA ‘

‘- DTMC ¢ CTMC A MDP & MA @ PTA ‘

600

.
—t—t t t
SO O =] © —
~9o O ©
g0 ©

—

S[00} I91}0 JO 3S9q

Storm (specific, fastest on 48/96)

Storm (default, fastest on 33/96)

G
WO
‘,@m%()
1O B
| 4200 &
60 3
E
O B
L © 3
&
Y S
()
&
Ly %5\
o
o
€

*> " o cee = o oo
= -
- i
h had
. L]
.. (]
.
<
<
n
< |
°
1 @1 Y
t t t
= © -

©

n/a 4
1800 +
600

S[00) I9J0 JO 180q

modes (default, fastest on 7/50)

I I
—+—t t

8O O o © —
~Oo O ©
g0 ©

—

S[00Y 19730 JO }s9q

. L
.
.
¢ .
< i
+—— t t t
== = ©
~2o O ©
n.omﬁ
S[00Y} 19730 JO 9s9q
¢ eman < 8
<
<«
< i
<
< .
N
—+—t t t t
S0 © = ©
~9o 2 ©
s 00 ©
i

S[00} 1930 JO 3S9q

DFTRES (default, fastest on 1/10

PRISM-TUM (default, fastest on 1/23)

Fig. 5. Runtime of specific tools compared with the best results (2/3)

17

ll DTMC ¢ CTMC AMDP # MA o PTA ll DTMC ¢ CTMC A MDP @« MA @ PTA

n/a 4 A n/a 4 A
1800 + 1800
600 | - 600 1 a
3 ' 8
+ A +
5 60| 1l 5 60|
g 4 =
o o
5 67 R 5 60 4
F % f RN P :
T T A
Q i, a
A
L 2 [R \C\T v o e e v 3d
> 2L e
=] [

Modest FRET-7t LRTDP (default, fastest on 3/15) Prob. Fast Downward (default, fastest on 6/9)

Fig. 6. Runtime of specific tools compared with the best results (3/3)

are spuriously nondeterministic, and several results are good enough at a higher
statistical error, but many instances also turn from errors to incorrect results.

7 Conclusion and Outlook

QComp 2019 achieved its goal of assembling a community of tool authors, moti-
vating the collection of a standardised benchmark set in the form of the QVBS,
and sparking discussions about properly comparing quantitative verifiers. It also
improved JANI tool support and resulted in a set of reusable scripts for batch
benchmarking and plotting. Throughout this process, some lessons for changes
and requests for additions to the next instance of QComp surfaced:

— The issue that caused most discussion was the problem of how to treat tools
that use “unsound” methods as explained in Sect. In the future, we plan
to provide several tracks, e.g. one where exact results up to some precision
are required without per-instance tweaking of parameters, and one that allows
fast but “imprecise” results with a nuanced penalty depending on the error.

— The evaluation of default and specific configurations provided important in-
sights, but might not be continued; we expect tools to use the QComp 2019 re-
sults as a push to implement heuristics to choose good defaults automatically.

— The current versatility and usability evaluation was very informal and needs
to move to clear pre-announced criteria that tool authors can plan for.

— The only addition to formalisms requested by participants is stochastic games,
e.g. as in PRISM-games [55]; however, these first need standardisation and JANI
support. In terms of properties, LTL is supported by several tools and will
be included in the next edition of QComp. Other desirable properties include
multi-objective queries, and the generation of strategies instead of just values.

18

— Finally, all benchmarks of QComp 2019 were known a priori. As QComp slowly
transitions from a “friendly” to a more “competitive” event, the inclusion of
obfuscated or a priori unknown benchmarks needs to be considered.

Acknowledgements. QComp 2019 was organised by Arnd Hartmanns and Tim
Quatmann. The authors thank their tool co-developers: Yi Li (Peking Univer-
sity), Yong Li (Chinese Academy of Sciences), Andrea Turrini, and Lijun Zhang
(Chinese Academy of Sciences and Institute of Intelligent Software) for ePMC;
Pranav Ashok, Tobias Meggendorfer, and Maximilian Weininger (Technische
Universitdt Miinchen) for PRISM-TUMheuristics; and Sebastian Junges and Mat-
thias Volk (RWTH Aachen) for Storm.

Data availability. The tools used and data generated in the performance evalu-
ation are archived and available at |qcomp.org/competition/2019.

References

1. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years of
GreatSPN. In: Principles of Performance and Reliability Modeling and Evaluation.
pp. 227-254. Springer (2016)

2. Arnold, F., Belinfante, A., van der Berg, F., Guck, D., Stoelinga, M.I.A.: DFTCalc:
a tool for efficient fault tree analysis. In: SAFECOMP. LNCS, vol. 8153, pp. 293—
301. Springer (2013)

3. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Kretinsky, J., Miiller, D.,
Parker, D., Strejcek, J.: The Hanoi omega-automata format. In: CAV. LNCS, vol.
9206, pp. 479-486. Springer (2015)

4. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)

5. Baier, C., Katoen, J.P., Hermanns, H.: Approximate symbolic model checking
of continuous-time Markov chains. In: CONCUR. LNCS, vol. 1664, pp. 146-161.
Springer (1999)

6. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the relia-
bility of your model checker: Interval iteration for Markov decision processes. In:
CAV. LNCS, vol. 10426, pp. 160-180. Springer (2017)

7. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Pettersson, P., Yi, W., Hen-
driks, M.: UPPAAL 4.0. In: QEST. pp. 125-126. IEEE Computer Society (2006)

8. Beyer, D.: Competition on software verification (SV-COMP). In: TACAS. LNCS,
vol. 7214, pp. 504-524. Springer (2012)

9. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.. MODEST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812-830 (2006)

10. Bonet, B., Geffner, H.: Faster heuristic search algorithms for planning with uncer-
tainty and full feedback. In: IJCAIL pp. 1233-1238. Morgan Kaufmann (2003)

11. Bonet, B., Geffner, H.: Labeled RTDP: Improving the convergence of real-time
dynamic programming. In: ICAPS. pp. 12-21. AAAT (2003)

12. Brazdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretinsky, J., Kwiatkowska,
M.Z., Parker, D., Ujma, M.: Verification of Markov decision processes using learn-
ing algorithms. In: ATVA. LNCS, vol. 8337, pp. 98-114. Springer (2014)

19

http://qcomp.org/competition/2019/

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated importance split-
ting for transient rare events. In: SETTA. LNCS, vol. 10606. Springer (2017)
Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: TACAS. LNCS, vol. 10806, pp.
340-358. Springer (2018)

Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANTI: Quantitative model and tool interaction. In: TACAS. LNCS, vol. 10206, pp.
151-168. Springer (2017)

Butkova, Y., Hatefi, H., Hermanns, H., Krcal, J.: Optimal continuous time Markov
decisions. In: ATVA. LNCS, vol. 9364, pp. 166-182. Springer (2015)

Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic ver-
ification of competitive stochastic systems. FMSD 43(1), 61-92 (2013)

Coles, A.J., Coles, A., Olaya, A.G., Celorrio, S.J., Linares Lopez, C., Sanner, S.,
Yoon, S.: A survey of the seventh international planning competition. AI Magazine
33(1) (2012)

Courtney, T., Gaonkar, S., Keefe, K., Rozier, E., Sanders, W.H.: Mébius 2.3: An
extensible tool for dependability, security, and performance evaluation of large and
complex system models. In: DSN. pp. 353-358. IEEE Computer Society (2009)
D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model check-
ing in nondeterministic continuous time. In: ISoLA. LNCS, vol. 11245, pp. 336-353.
Springer (2018)

Dehnert, C., Jansen, N., Wimmer, R., Abraham, E., Katoen, J.P.: Fast debugging
of PRISM models. In: ATVA. LNCS, vol. 8837, pp. 146-162. Springer (2014)
Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J., Abraham, E.: PROPhESY: A probabilistic parameter synthesis tool. In: CAV.
LNCS, vol. 9206, pp. 214-231. Springer (2015)

Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: A modern
probabilistic model checker. In: CAV. LNCS, vol. 10427. Springer (2017)

van Dijk, T., Hahn, E.M., Jansen, D.N., Li, Y., Neele, T., Stoelinga, M., Turrini,
A., Zhang, L.: A comparative study of BDD packages for probabilistic symbolic
model checking. In: SETTA. LNCS, vol. 9409, pp. 35-51. Springer (2015)
Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS. pp. 342-351. IEEE Computer Society (2010)

Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. LMCS 4(4) (2008)

Feng, Y., Hahn, E.M., Turrini, A., Ying, S.: Model checking omega-regular prop-
erties for quantum Markov chains. In: CONCUR. LIPIcs, vol. 85, pp. 35:1-35:16.
Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik (2017)

Franzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: HSCC. ACM (2011)
Frehse, G., Althoff, M., Bogomolov, S., Johnson, T.T. (eds.): ARCH18. 5th In-
ternational Workshop on Applied Verification of Continuous and Hybrid Systems,
EPiC Series in Computing, vol. 54. EasyChair (2018)

Fu, C., Turrini, A., Huang, X., Song, L., Feng, Y., Zhang, L.: Model checking
probabilistic epistemic logic for probabilistic multiagent systems. In: IJCAI (2018)
Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric
Markov chains. In: ATVA. LNCS, vol. 11138, pp. 300-316. Springer (2018)
Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE. pp. 167-181. ACM (2014)

Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111-131 (2018)

20

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded proba-
bilistic model checking techniques. In: SETTA. LNCS, vol. 9984. Springer (2016)
Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. Electronic Communications of the EASST 70 (2014)
Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. FMSD 43(2), 191-232
(2013)

Hahn, E.M., Hashemi, V., Hermanns, H., Lahijanian, M., Turrini, A.: Multi-
objective robust strategy synthesis for interval Markov decision processes. In:
QEST. LNCS, vol. 10503, pp. 207-223. Springer (2017)

Hahn, E.M., Hashemi, V., Hermanns, H., Turrini, A.: Exploiting robust optimiza-
tion for interval probabilistic bisimulation. In: QEST. LNCS, vol. 9826, pp. 55-71.
Springer (2016)

Hahn, E.M., Li, G., Schewe, S., Zhang, L.: Lazy determinisation for quantitative
model checking. CoRR abs/1311.2928 (2013)

Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: A web-based
probabilistic model checker. In: FM. LNCS,; vol. 8442, pp. 312-317. Springer (2014)
Hahn, E.M., Schewe, S., Turrini, A., Zhang, L.: A simple algorithm for solving
qualitative probabilistic parity games. In: Chaudhuri, S., Farzan, A. (eds.) CAV.
LNCS, vol. 9780, pp. 291-311. Springer (2016)

Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for
quantitative modelling and verification. In: TACAS. LNCS, vol. 8413, pp. 593-598.
Springer (2014)

Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP us-
ing partitioning and secondary storage. In: ATVA. LNCS, vol. 9364, pp. 131-147.
Springer (2015)

Hartmanns, A., Hermanns, H., Bungert, M.: Flexible support for time and costs
in scenario-aware dataflow. In: EMSOFT. pp. 3:1-3:10. ACM (2016)

Hartmanns, A., Junges, S., Katoen, J.P., Quatmann, T.: Multi-cost bounded reach-
ability in MDP. In: TACAS. LNCS, vol. 10806, pp. 320-339. Springer (2018)
Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: TACAS. LNCS, vol. 11427. Springer (2019)
Haslum, P., Bonet, B., Geffner, H.: New admissible heuristics for domain-
independent planning. In: AAAT/TAAIL pp. 1163-1168. AAAI/MIT Press (2005)
Helmert, M.: The Fast Downward planning system. J. Artif. Intell. Res. 26, 191—
246 (2006)

Hérault, T, Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: VMCAIL LNCS, vol. 2937, pp. 73-84. Springer (2004)
Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

Jarvisalo, M., Berre, D.L., Roussel, O., Simon, L.: The international SAT solver
competitions. AT Magazine 33(1) (2012)

Jasper, M., Mues, M., Schliiter, M., Steffen, B., Howar, F.: RERS 2018: CTL, LTL,
and reachability. In: ISOLA. LNCS, vol. 11245, pp. 433-447. Springer (2018)
Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Compiling probabilistic
model checking into probabilistic planning. In: ICAPS. pp. 150-154. AAAT (2018)
Kolobov, A., Mausam, Weld, D.S., Geffner, H.: Heuristic search for generalized
stochastic shortest path MDPs. In: ICAPS. AAAT (2011)

Kwiatkowska, M., Parker, D.; Wiltsche, C.: PRISM-games: verification and strat-
egy synthesis for stochastic multi-player games with multiple objectives. STTT
20(2), 195-210 (2018)

21

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

e

78.

Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based abstraction for Markov
decision processes. In: QEST. pp. 157-166. IEEE Computer Society (2006)
Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: CAV. LNCS, vol. 6806, pp. 585-591. Springer (2011)
Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis of
probabilistic timed automata using digital clocks. FMSD 29(1), 33-78 (2006)
Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101-150 (2002)

Li, Y., Liu, W., Turrini, A., Hahn, E.M., Zhang, L.: An efficient synthesis alg. for
param. Markov chains against linear time properties. CoRR abs/1605.04400 (2016)
Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
FORMATS/FTRTFT. LNCS, vol. 3253, pp. 152-166. Springer (2004)

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: TACAS. LNCS, vol.
4963, pp. 337-340. Springer (2008)

Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Annals of the Institute of Statistical Mathematics 10(1), 29-35 (1959)
Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.P.: Parameter syn-
thesis for Markov models: Faster than ever. In: ATVA. LNCS, vol. 9938, pp. 50-67
(2016)

Quatmann, T., Junges, S., Katoen, J.P.: Markov automata with multiple objec-
tives. In: CAV. LNCS, vol. 10426, pp. 140-159. Springer (2017)

Quatmann, T., Katoen, J.P.: Sound value iteration. In: CAV. LNCS, vol. 10981,
pp. 643-661. Springer (2018)

Reijsbergen, D., de Boer, P.T., Scheinhardt, W., Juneja, S.: Path-ZVA: General, ef-
ficient, and automated importance sampling for highly reliable Markovian systems.
TOMACS 28(3), 22:1-22:25 (2018)

Rubino, G., Tuffin, B.: Rare Event Simulation Using Monte Carlo Methods. Wiley
(2009)

Ruijters, E., Reijsbergen, D., de Boer, P.T., Stoelinga, M.I.A.: Rare event simula-
tion for dynamic fault trees. Reliability Engineering & System Safety To appear.
Sproston, J.: Decidable model checking of probabilistic hybrid automata. In:
FTRTFT. LNCS, vol. 1926, pp. 31-45. Springer (2000)

Steinmetz, M., Hoffmann, J., Buffet, O.: Goal probability analysis in probabilistic
planning: Exploring and enhancing the state of the art. J. Artif. Intell. Res. 57,
229-271 (2016)

Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In:
FTCS-29. pp. 232-235. IEEE Computer Society (1999)

Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: FOS-
SACS. LNCS, vol. 7794, pp. 353-368. Springer (2013)

Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Industrial Informatics 14(1), 370-379 (2018)
Wald, A.: Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics 16(2), 117-186 (1945)

Yoon, S.W., Fern, A., Givan, R.: FF-Replan: A baseline for probabilistic planning.
In: ICAPS. p. 352. AAAT (2007)

Younes, H.L.S., Littman, M.L., Weissman, D., Asmuth, J.: The first probabilistic
track of the Int. Planning Competition. J. Artif. Intell. Res. 24, 851-887 (2005)
Younes, H.LL.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: CAV. LNCS, vol. 2404, pp. 223-235. Springer (2002)

22

	The 2019 Comparison of Tools for theAnalysis of Quantitative Formal Models

