
Symbolic Representations and Analysis of
Large Probabilistic Systems

Andrew Miner1� and David Parker2��

1 Dept. of Computer Science, Iowa State University, Ames, Iowa, 50011
2 School of Computer Science, University of Birmingham, UK

Abstract. This paper describes symbolic techniques for the construc-
tion, representation and analysis of large, probabilistic systems. Sym-
bolic approaches derive their efficiency by exploiting high-level structure
and regularity in the models to which they are applied, increasing the
size of the state spaces which can be tackled. In general, this is done
by using data structures which provide compact storage but which are
still efficient to manipulate, usually based on binary decision diagrams
(BDDs) or their extensions. In this paper we focus on BDDs, multi-val-
ued decision diagrams (MDDs), multi-terminal binary decision diagrams
(MTBDDs) and matrix diagrams.

1 Introduction

This paper provides an overview of symbolic approaches to the validation of
stochastic systems. We focus on those techniques which are based on the con-
struction and analysis of finite-state probabilistic models. These models comprise
a set of states, corresponding to the possible configurations of the system being
considered, and a set of transitions which can occur between these states, labeled
in some way to indicate the likelihood that they will occur. In particular, this
class of models includes discrete-time Markov chains (DTMCs), continuous-time
Markov chains (CTMCs) and Markov decision processes (MDPs).

Analysis of these models typically centers around either computation of tran-
sient or steady-state probabilities, which describe the system at a particular time
instant or in the long-run, respectively, or computation of the probability that the
system will reach a particular state or class of states. These are the key constitu-
ents of several approaches to analyzing these models, including both traditional
performance or dependability evaluation and more recent, model checking based
approaches using temporal logics such as PCTL or CSL.

As is well known, one of the chief practical problems plaguing the implemen-
tations of such techniques is the tendency of models to become unmanageably
large, particularly when they comprise several parallel components, operating
concurrently. This phenomenon is often referred to as ‘the state space explo-
sion problem’, ‘largeness’ or ‘the curse of dimensionality’. A great deal of work

� Supported in part by fellowships from the NASA Graduate Student Researchers
Program (NGT-1-52195) and the Virginia Space Grant Consortium.

�� Supported in part by QinetiQ and EPSRC grant GR/S11107.

C. Baier et al. (Eds.): Validation of Stochastic Systems, LNCS 2925, pp. 296–338, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Symbolic Representations and Analysis of Large Probabilistic Systems 297

has been put into developing space and time efficient techniques for the storage
and analysis of probabilistic models. Many of the recent approaches that have
achieved notable success are symbolic techniques, by which we mean those us-
ing data structures based on binary decision diagrams (BDDs). Also known as
implicit or structured methods, these approaches focus on generating compact
model representations by exploiting structure and regularity, usually derived
from the high-level description of the system. This is possible in practice be-
cause systems are typically modeled using structured, high-level specification
formalisms such as Petri nets and process algebras. In contrast, explicit or enu-
merative techniques are those where the entire model is stored and manipulated
explicitly. In the context of probabilistic models, sparse matrices are the most
obvious and popular explicit storage method.

The tasks required to perform analysis and verification of probabilistic mod-
els can be broken down into a number of areas, and we cover each one separately
in this paper. In Section 2, we consider the storage of sets of states, such as the
reachable state space of a model. In Section 3, we look at the storage of the prob-
abilistic model itself, usually represented by a real-valued transition matrix. We
also discuss the generation of each of these two entities. In Section 4, we describe
how the processes of analysis, which usually reduce to numerical computation,
can be performed in this context. Finally, in Section 5, we discuss the relative
strengths and weaknesses of the various symbolic approaches, and suggest some
areas for future work.

2 Representing Sets of States

We begin by focusing on the problem of representing a set of states. The most
obvious task here is to represent the entire set of states which the system can
possibly be in. Usually, some proportion of the potential configurations of the
system are impossible. These are removed by computing the set of reachable
states, from some initial state(s), and removing all others. Note that in some
verification technologies, non-probabilistic variants in particular, this reachabili-
ty computation may actually constitute the verification itself. Here, though, it is
seen as part of the initial construction of the model since probabilistic analysis
cannot be carried out until afterwards.

In addition to storing the set of reachable states of the model, it may often
be necessary to represent a particular class of states, e.g. those which satisfy
a given specification. For model checking, in particular, this is a fundamental
part of any algorithm. Clearly, in both cases, there is a need to store sets of
states compactly and in such a way that they can be manipulated efficiently. In
this section, we consider two symbolic data structures for this purpose: binary
decision diagrams (BDDs) and multi-valued decision diagrams (MDDs).

2.1 Binary Decision Diagrams

Binary decision diagrams (BDDs) are rooted, directed, acyclic graphs. They
were originally proposed by Lee [55] and Akers [3], but were later popularized

298 A. Miner and D. Parker

by Bryant [13], who refined the data structure and presented a number of al-
gorithms for their efficient manipulation. A BDD is associated with a finite set
of Boolean variables and represents a Boolean function over these variables. We
denote the function represented by the BDD B over K variables xK , . . . , x1 as
fB : IBK → IB.

The vertices of a BDD are usually referred to as nodes. A node m is ei-
ther non-terminal, in which case it is labeled with a Boolean variable var(m) ∈
{xK , . . . , x1}, or terminal, in which case it is labeled with either 0 or 1. Each
non-terminal node m has exactly two children, then(m) and else(m). A terminal
node has no children. The value of the Boolean function fB, represented by BDD
B, for a given valuation of its Boolean variables can be determined by tracing
a path from its root node to one of the two terminal nodes. At each node m,
the choice between then(m) and else(m) is determined by the value of var(m): if
var(m) = 1, then(m) is taken, if var(m) = 0, else(m) is taken. Every BDD node
m corresponds to some Boolean function fm. The terminal nodes correspond to
the trivial functions f0 = 0, f1 = 1.

For a function f , variable xk, and Boolean value b, the cofactor f |xk=b is
found by substituting the value b for variable xk:

f |xk=b = f(xK , . . . , xk+1, b, xk−1, . . . , x1).

An important property of BDDs is that the children of a non-terminal node m
correspond to cofactors of function fm. That is, for every non-terminal node m,
fthen(m) = fm|var(m)=1, and felse(m) = fm|var(m)=0. We will also refer to the co-
factor of a BDD node m, with the understanding that we mean the BDD node
representing the cofactor of the function represented by node m.

A BDD is said to be ordered if there is a total ordering of the variables such
that every path through the BDD visits nodes according to the ordering. In an
ordered BDD (OBDD), each child m′ of a non-terminal node m must therefore
either be terminal, or non-terminal with var(m) > var(m′).

A reduced OBDD (ROBDD) is one which contains no duplicate nodes, i.e.
non-terminal nodes labeled with the same variable and with identical children,
or terminal nodes labeled with the same value; and which contains no redundant
nodes, i.e., non-terminal nodes having two identical children. Since the function
represented by a redundant node m does not depend on the value of variable
var(m), redundant nodes are sometimes referred to as don’t care nodes.

Any OBDD can be reduced to an ROBDD by repeatedly eliminating, in a
bottom-up fashion, any instances of duplicate and redundant nodes. If two nodes
are duplicates, one of them is removed and all of its incoming pointers are re-
directed to its duplicate. If a node is redundant, it is removed and all incoming
pointers are redirected to its unique child.

A common variant of the above reduction scheme is to allow redundant nodes
but not duplicate nodes. In particular, an OBDD is said to be quasi-reduced if
it contains no duplicate nodes and if all paths from the root node (which must
have label xK) to a terminal node visit exactly one node for each variable. Note
that a quasi-reduced OBDD (QROBDD) can be obtained from any ROBDD by
inserting redundant nodes as necessary.

Symbolic Representations and Analysis of Large Probabilistic Systems 299

0

x3

x1

1

x4

x2

0 1

x3

x4

x1

1

x1

x4

x3

x2

x6

x5

0

x3

x1

1

x4

x2

x6

x5

0 1 1

x1

x3

x2 x2

x4

0

x3

x1

1

x4

x2

x6

x5

x3

x4

0 1

x6

x5

x3

x1

x2

x4

x3

x4

x1

x3

x2

x1

x2

x3

x5

(a) BDD (b) OBDD (c) ROBDD (d) QROBDD

Fig. 1. Example BDDs for the same Boolean function

Figure 1 shows four equivalent data structures, a BDD, an OBDD, an ROB-
DD and a QROBDD, each representing the same Boolean function, f . Tracing
paths from the root node to the terminal nodes of the data structures, we can
see, for example, that f(0, 0, 1, 0, 0, 1) = 1 and f(0, 1, 0, 1, 1, 1) = 0. The most
commonly used of these four variants is the ROBDD and this will also be the case
in this paper. For simplicity, and by convention, from this point on we shall refer
to ROBDDs simply as BDDs. On the occasions where we require QROBDDs,
this will be stated explicitly.

It is important to note that the reduction rules for BDDs described in the
previous paragraphs have no effect on the function being represented. They
do, however, typically result in a significant decrease in the number of BDD
nodes. More importantly still, as shown by Bryant [13], for a fixed ordering of
the Boolean variables, BDDs are a canonical representation. This means that
there is a one-to-one correspondence between BDDs and the Boolean functions
they represent. Similarly, it can also be shown that QROBDDs are a canonical
representation for a fixed variable ordering.

The canonical nature of BDDs has important implications for efficiency. For
example, it makes checking whether or not two BDDs represent the same func-
tion very easy. This is an important operation in many situations, such as the im-
plementation of iterative fixed-point computations. In practice, these reductions
are taken one step further. Many BDD packages will actually store all BDDs in
a single, multi-rooted graph structure, known as the unique-table, where no two
nodes are duplicated. This means that comparing two BDDs for equality is as
simple as checking whether they are stored in the same place in memory.

It is also important to note that the choice of an ordering for the Boolean
variables of a BDD can have a tremendous effect on the size of the data struc-
ture, i.e. its number of nodes. Finding the optimal variable ordering, however,
is known to be computationally expensive [10]. For this reason, the efficiency of

300 A. Miner and D. Parker

BDDs in practice is largely reliant on the development of application-dependent
heuristics to select an appropriate ordering, e.g. [38]. There also exist techniques
such as dynamic variable reordering , which can be used to change the ordering
for an existing BDD in an attempt to reduce its size, see e.g. [66].

BDD Operations. One of the main appeals of BDDs is the efficient algorithms
for their manipulation which have been developed, e.g. [13, 14, 12]. A common
BDD operation is the ITE (IfThenElse) operator, which takes three BDDs, B1,
B2 and B3, and returns the BDD representing the function “if fB1 then fB2 else
fB3”. The ITE operator can be implemented recursively, based on the property
ITE(B1, B2, B3)|xk=b = ITE(B1|xk=b, B2|xk=b, B3|xk=b).

The algorithm to perform this is shown in Figure 2. Lines 1–8 cover the triv-
ial base cases. In lines 14 and 15, the algorithm splits recursively, based on the
cofactors of the three BDD operands. The variable, xk, used to generate these
cofactors is the top-most variable between the three BDDs. The resulting BDD,
H, is generated by attaching the BDDs from the two recursive calls to a node
labeled with xk. In line 16, reduction of H is performed. Assuming that the op-
erands to the algorithm were already reduced, the only two checks required here
are that: (a) then(H) and else(H) are distinct; and (b) the root node of H does
not already exist.

ITE(in: B1, B2, B3)

• B1, B2, B3 are BDD nodes
1: if B1 = 0 then
2: Return B3;
3: else if B1 = 1 then
4: Return B2;
5: else if (B2 = 1) ∧ (B3 = 0) then
6: Return B1;
7: else if B2 = B3 then
8: Return B2;
9: else if ∃ computed-table entry (B1, B2, B3, H) then

10: Return H;
11: end if
12: xk ←top variable of B1, B2, B3;
13: H ← new non-terminal node with label xk;
14: then(H) ← ITE(B1|xk=1, B2|xk=1, B3|xk=1);
15: else(H) ← ITE(B1|xk=0, B2|xk=0, B3|xk=0);
16: Reduce(H);
17: Add entry (B1, B2, B3, H) to computed-table;
18: Return H;

Fig. 2. Algorithm for the BDD operator ITE

A crucial factor in the efficiency of the ITE algorithm is the computed-table,
which is used to cache the result of each intermediate call to the algorithm. Notice
how, in line 9, entries in the cache are checked and reused if possible. In practice,

Symbolic Representations and Analysis of Large Probabilistic Systems 301

many recursive calls would typically be repeated without this step. Furthermore,
this means that the computational complexity of the algorithm is bounded by
the maximum number of distinct recursive calls to ITE, O(|B1| · |B2| · |B3|), where
|B| denotes the number of nodes in BDD B.

Another common operation is Apply, which takes two BDDs, B1 and B2, plus
a binary Boolean operator op, such as ∧ or ∨, and produces the BDD which rep-
resents the function fB1op fB2 . For convenience we often express such operations
in infix notation, for example, B1 ∨ B2 ≡ Apply(∨, B1, B2). The Apply operator
can be implemented using a recursive algorithm similar to the one for ITE, de-
scribed above, again making use of the computed-table. Alternatively, any Apply
operator can be expressed using ITE; e.g. Apply(∧, B1, B2) ≡ ITE(B1, B2, 0). The
latter has the advantage that it is likely to increase the hit-rate in the com-
puted-table cache since only one operation is required, as opposed to several
operations with their own computed-table caches (one for each binary Boolean
operator op).

2.2 Multi-Valued Decision Diagrams

Multi-valued decision diagrams (MDDs) are also rooted, directed, acyclic graphs
[47]. An MDD is associated with a set of K variables, xK , . . . , x1, and an MDD
M represents a function fM : INK × · · · × IN1 → IM, where INk is the finite set of
values that variable xk can assume, and IM is the finite set of possible function
values. It is usually assumed that INk = {0, . . . , Nk−1} and IM = {0, . . . , M−1}
for simplicity. Note that BDDs are the special case of MDDs where IM = IB and
INk = IB for all k. MDDs are similar to the “shared tree” data structure described
in [71].

Like BDDs, MDDs consist of terminal nodes and non-terminal nodes. The
terminal nodes are labeled with an integer from the set IM. A non-terminal node
m is labeled with a variable var(m) ∈ {xK , . . . , x1}. Since variable xk can assume
values from the set INk, a non-terminal node m labeled with variable xk has Nk

children, each corresponding to a cofactor m|xk=c. We refer to child c of node m
as child(m, c), where fchild(m,c) = fm|var(m)=c. Every MDD node corresponds to
some integer function.

The BDD notion of ordering can also be applied to MDDs, to produce or-
dered MDDs (OMDDs). A non-terminal MDD node m is redundant if all of its
children are identical, i.e., child(m, i) = child(m, j) for all i, j ∈ INvar(m). Two
non-terminal MDD nodes m1 and m2 are duplicates if var(m1) = var(m2) and
child(m1, i) = child(m2, i) for all i ∈ INvar(m). Based on the above definitions,
we can extend the notion of reduced and quasi-reduced BDDs to apply also to
MDDs. It can be shown [47] that reduced OMDDs (ROMDDs) are a canonical
representation for a fixed variable ordering. The same can also be shown for qua-
si-reduced OMDDs (QROMDDs). Finally, like BDDs, the number of ROMDD
nodes required to represent a function may be sensitive to the chosen variable
ordering.

Example MDDs are shown in Figure 3, all representing the same function
over three variables, x3, x2, x1 with N3 = N2 = N1 = 4 and M = 3. The value

302 A. Miner and D. Parker

x1

0 1

x1

x2

x3

x1 x2

2 1

x2

0 1

x1

x2

x3

x1

x2

20

x1

1 0 1

x1

x2

x3

x1

x2

2 0 1

x1

x2

x3

x1

x2

2

x1

(a) MDD (b) OMDD (c) ROMDD (d) QROMDD

Fig. 3. Example MDDs for the same function

of the function is zero if none of the variables has value 1, one if exactly one of
the variables has value 1, and two if two or more of the variables have value 1.
Figure 3(a) shows an MDD that is not ordered, Figure 3(b) shows an OMDD
that is not reduced, and Figure 3(c) and Figure 3(d) show the ROMDD and
QROMDD for the function, for the given variable ordering. Unless otherwise
stated, the remainder of the paper will assume that all MDDs are ROMDDs.

MDD Operations. Like BDDs, MDDs can be manipulated using various op-
erators. One such operator is the Case operator, defined in [47] as:

Case(F, G0, . . . ,GM−1)(xK , . . . , x1) = GfF(xK ,...,x1)(xK , . . . , x1).

Thus, Case selects the appropriate MDD Gi based on the value of F. Note that
Case is a generalization of ITE for BDDs: ITE(A, B, C) ≡ Case(A, C, B). A recur-
sive algorithm to implement Case for MDDs is presented in [47], and is shown
in Figure 4(a). It is based on the recurrence:

Case(F, G0, . . . ,GM−1)|xk=i = Case(F|xk=i, G
0|xk=i, . . . ,G

M−1|xk=i)

with appropriate terminal conditions (e.g. if F is a constant). The Case algo-
rithm is quite similar to the ITE algorithm: both algorithms first handle the
trivial cases, then handle the already-computed cases by checking entries in the
computed-table. The computation is performed for the other cases, and the re-
sulting node is reduced. The main difference is that, since Case operates on
MDDs, a loop is required to generate the recursive calls to Case, one for each
possible value of top variable xk.

As a simple example, the MDD produced by Case(F, 1, 1, 0) is shown in
Figure 4(b), where F is the MDD shown in Figure 3(c).

As with ITE, a simple recursive implementation of Case without using a
computed-table can be computationally expensive: each call to Case with top
variable xk will generate Nk recursive calls to Case. This leads to a computa-
tional complexity of O(

∏K
k=1 Nk) (assuming constant time for node reduction),

which is often intractable. Again, the number of distinct recursive calls to Case

Symbolic Representations and Analysis of Large Probabilistic Systems 303

Case(in: F, G0, . . . , GM−1)

• F, G0, . . . , GM−1 are MDD nodes
1: if F = c, c ∈ IM then
2: Return Gc;
3: else if (G0 = 0) ∧ · · · ∧ (GM−1 = M − 1) then
4: Return F;
5: else if G0 = G1 = · · · = GM−1 then
6: Return G0;
7: else if ∃ computed-table entry (F, G0, . . . , GM−1, H) then
8: Return H;
9: end if

10: xk ←Top variable of F, G0, . . . , GM−1;
11: H ← new non-terminal node with label xk;
12: for each i ∈ INk do
13: child(H, i) ← Case(F|xk=i, G

0|xk=i, . . . , G
M−1|xk=i);

14: end for
15: Reduce(H);
16: Add entry (F, G0, . . . , GM−1, H) to computed-table;
17: Return H;

01

x2

x3

x1

x2

(a) Algorithm (b) Example

Fig. 4. MDD operator Case

is bounded by |F| · |G0| · · · |GM−1|; thus, the use of the computed-table bounds
the worst-case computational complexity of Case by:

O(|F| · |G0| · · · |GM−1| · max{NK , . . . , N1}),

since each non-trivial call to Case with top variable xk has computational cost
of O(Nk). Note that the resulting MDD will have at most |F| · |G0| · · · |GM−1|
nodes, regardless of implementation.

2.3 State Set Representation and Generation

We now describe how the data structures introduced in the previous two sec-
tions, BDDs and MDDs, can be used to represent and manipulate sets of states
of a probabilistic model. We also consider the problem of generating the set of
reachable states for a model using these data structures.

Representing Sets of States. To represent a set of states using BDDs or
MDDs, each state s must be expressible as a collection of K state variables,
s = (xK , . . . , x1), where each state variable can assume a finite number of
values. If INk is the set of possible values for state variable xk, then the set
of all possible states is S = INK × · · · × IN1. Thus, any set of states will be a
subset of S.

The basic idea behind BDD and MDD state set representations is to encode
the characteristic function of a subset S ′ of the set of states S, i.e. the function

304 A. Miner and D. Parker

χS′ : S → {0, 1} where χS′(xK , . . . , x1) = 1 if and only if (xK , . . . , x1) ∈ S ′.
If states are encoded as Boolean vectors, i.e. a state is an element of IBK , then
INk = IB and the characteristic function can be encoded using a BDD in the
usual way. To use BDDs when INk �= IB, it becomes necessary to derive some en-
coding of the state space into Boolean variables. This process must be performed
with care since it can have a dramatic effect on the efficiency of the represen-
tation. We will return to this issue later. Alternatively, MDDs can encode the
characteristic function in a straightforward way as long as each set INk is finite.

Example. We now introduce a small example which will be reused in sub-
sequent sections. Consider an extremely simple system consisting of three coop-
erating processes, P3, P2 and P1, each of which can be in one of four local states,
0, 1, 2 or 3. The (global) state space S is {0, 1, 2, 3} × {0, 1, 2, 3} × {0, 1, 2, 3}.

To represent sets of states using MDDs, we can use K = 3 state variables,
x3, x2 and x1, with N3 = N2 = N1 = 4. To represent sets of states using BDDs,
we must adopt a Boolean encoding. In this simple example, we can allocate two
Boolean variables to represent each local state, and use the standard binary
encoding for the integers {0, 1, 2, 3}. Hence, we need K = 6 variables, where
x2n, x2n−1 represent the state of process Pn.

Let us suppose that when a process in local state 1, it is modifying shared
data and requires exclusive access to do so safely. Consider the set of states S ′,
in which at most one process is in local state 1. The MDD and BDD representing
S ′ can be seen in Figure 4(b) and Figure 1(c), respectively.

Manipulating and Generating Sets of States. Basic manipulation of state
sets can easily be translated into BDD or MDD operations. For example, the
union and intersection of two sets, S1 and S2, represented by BDDs, S1 and S2,
can be computed using Apply(∨, S1, S2) and Apply(∧, S1, S2), respectively. Simi-
larly, sets S1 and S2, represented by MDDs S1 and S2, can be manipulated using
Case; for example, S1 \S2 and S1∪S2 can be computed using Case(S2, S1, 0) and
Case(S1, S2, 1), respectively.

Of particular interest are the operations required to compute the BDD or
MDD representing the set of reachable states of a model. To do so effectively
requires a next-state function, which reports the states that are reachable from
a given state in a single step. The next-state function must be represented in a
format that is suitable for BDD and MDD manipulation algorithms.

One approach is to represent the next-state function using another BDD or
MDD. Since the next-state function is a relation R over pairs of states from a set
S, a BDD or MDD can encode its characteristic function χR : S × S → {0, 1}
where χR(s, s′) = 1 if and only if (s, s′) ∈ R for all s, s′ ∈ S. Note that this
BDD or MDD R requires two sets of variables, {xK , . . . , x1} and {yK , . . . , y1},
where fR(xK , . . . , x1, yK , . . . , y1) = χR(s, s′); variables {xK , . . . , x1} represent
the “source” states, while variables {yK , . . . , y1} represent the “target” states.

Given a BDD or MDD S′ in variables {xK , . . . , x1}, representing a set of
states S ′, the BDD or MDD S′′ for the set of states S ′′ reachable in exactly one

Symbolic Representations and Analysis of Large Probabilistic Systems 305

step from any state in S ′ can be computed relatively easily, a process sometimes
known as image computation. With BDDs, for example, we can use the following:

S′′ = ∃{xK . . . , x1}(S′ ∧ R)

where ∃xk.B = B|xk=0 ∨ B|xk=1 and ∃{xK , . . . , x1}.B = ∃xK . . .∃x1.B. Note
that S′′, the resulting BDD, will be in variables {yK , . . . , y1} but can easily be
converted back to {xK , . . . , x1} if required.

Returning to our running example from the previous section, suppose that a
process can asynchronously change from local states 1 to 2, from 2 to 3, or from
3 to 0. Processes can also change from local state 0 to 1, but only if no other
process is already in its local state 1. The portion of the next-state function
that characterizes the possible local state changes of process P3, represented by
a BDD over variables {x6, . . . , x1}, {y6, . . . , y1}, is shown in Figure 5(a), where
terminal node 0 and all of its incoming arcs are omitted for clarity. The overall
next-state function can be obtained by constructing similar BDDs for process-
es P2 and P1, and combining them using Apply(∨, ·, ·). Note that the variable
ordering of the BDD in Figure 5(a) interleaves the variables for “source” and
“target” states. This is a well-known heuristic for reducing the size of BDDs
which represent transition relations [36].

x1

1

x6

x5

x4

y5

y4

y2

y1y1

x1

y2y2

x2x2

y3y3 y3 y3

x3x3 x3

y4y4 y4

x4

y5y5

x5x5

y6y6 Relation Table

Re3
3 = {(0, 1)}







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0







Re3
2 = Re3

1 = {(0, 0), (2, 2), (3, 3)}







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1







Re6
3 = {(1, 2), (2, 3), (3, 0)}







0 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0







Re6
2 = Re6

1 = {(0, 0), (1, 1), (2, 2), (3, 3)}







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







(a) BDD (b) Tabular

Fig. 5. Next-state function representations

Another approach is to decompose the next-state function and represent
its parts using tables. In practice, models are usually described using some

306 A. Miner and D. Parker

high-level formalism; this approach requires to represent a separate next-state
function for each model “event” (e.g. a Petri net transition) [60]. This implies
that the next-state relation R can be expressed as χR(s, s′) =

∨
e∈E χRe(s, s′),

where Re represents the next-state relation due to event e, and E is the (finite)
set of all possible events. To represent the relation Re efficiently, it is required
that Re can be expressed in a “product-form”

χRe((xK , . . . , x1), (yK , . . . , y1)) = χRe
K

(xK , yK) ∧ · · · ∧ χRe
1
(x1, y1)

of “local” relations Re
k. Each relation Re

k can be stored using a Boolean table of
size Nk × Nk (or in a sparse format).

Returning again to the running example, the next-state relation can be di-
vided into events e1, . . . , e6, where events ek correspond to process Pk changing
from local state 0 to 1, and events e3+k correspond to process Pk changing from
local state 1 to 2, 2 to 3, or 3 to 0. The local relations required to represent Re3

and Re6 , and their corresponding Boolean tables, are shown in Figure 5(b). Rep-
resentations for relations Re1 and Re2 are similar to Re3 , and the representations
for Re4 and Re5 are similar to Re6 .

Techniques based on tabular representation of the next-state function are
typically applied to MDD-based storage of sets, rather than BDD-based stor-
age (often the product-form requirement does not allow decomposition of the
next-state function into Boolean components). Given an MDD S′ representing
a set of states S ′, and the “product-form” representation for relation Re, the
set of states reachable in exactly one step via event e from any state in S ′ can
be determined using recursive algorithm Next, shown in Figure 6. Note that the
algorithm should be invoked with k = K at the top level. The overall set of
states reachable in one step from S ′ can be determined by calling Next once for
each event and taking the union of the obtained sets.

Using either of the two approaches outlined above for determining the states
reachable in one step from a given set of states, it is relatively trivial to com-
pute the set of all reachable states of a model. Starting with the BDD or MDD
for some set of initial states, we iteratively compute all the states reachable in
one step from the set of reachable states already discovered. These newly ex-
plored states are then added to the set of discovered states using set union. The
algorithm can be terminated when the latter set ceases to increase.

This process equates to performing a breadth-first search of the model’s state
space. BDDs and MDDs are often well suited to this purpose for several reasons.
Firstly, they can be extremely good at storing and manipulating sets of states,
and exploiting regularity in these sets. Algorithms which require manipulation
of individual states, such as depth-first search are less well suited. Secondly,
checking for convergence of the algorithm, which requires verification that two
sets are identical, reduces to testing two BDDs or MDDs for equality, a process
which is efficient due to their canonicity.

It is important to emphasize that the state space generation techniques pre-
sented here are actually quite simplistic. Since the bulk of this paper focuses
on issues specific to probabilistic models, we provide only an introductory pre-
sentation to this area. A wide range of much more sophisticated approaches,

Symbolic Representations and Analysis of Large Probabilistic Systems 307

Next(in: k, Re, S′)

• Re is the product of local relations, Re
K × · · · × Re

1.
• Returns states reachable from S′ in one step via event e.
1: if S′ = 0 then
2: Return 0;
3: else if k = 0 then
4: Return 1;
5: else if computed-table has entry (k, Re, S′, H) then
6: Return H;
7: end if
8: H ← new non-terminal node with label xk;
9: for each i ∈ INk do

10: child(H, i) ← 0;
11: end for
12: for each (i, j) ∈ Re

k do
13: D ← Next(k − 1, Re, S′|xk=i);
14: child(H, j) ← Case(child(H, j), D, 1);
15: end for
16: Reduce(H);
17: Add entry (k, Re, S′, H) to computed-table;
18: Return H;

Fig. 6. Image computation using a decomposed next-state relation

particularly those based on BDDs, have been presented in the literature. For
instance, more sophisticated BDD-based state space generation techniques for
Petri net models are described in [63, 64, 32]. Furthermore, BDDs have proved
extremely successful in more complex applications than simple state space gener-
ation, such as in formal verification [19, 30]. The well-known (non-probabilistic)
symbolic model checker SMV [56], for example, is based on BDD technology.

MDD-based approaches have also proved very successful in practice and,
again, a number of enhanced techniques have been developed. Examples are
those that exploit the concept of event locality : the fact that some events will
only affect certain state variables [23, 57, 20]. In particular, [21] introduces the
concept of node saturation: when a new MDD node is created corresponding to
submodel k, it is immediately saturated by repeatedly applying all events that
affect only submodels k through 1. Recently, more flexible next-state representa-
tions have been investigated that allow MDD-based reachability set generation
algorithms to handle complex priority structure and immediate events [59], al-
lowing for elimination of vanishing states both on-the-fly and after generation.

2.4 Indexing and Enumerating States

Once the set of reachable states of a model has been determined, it may be used
for a variety of purposes. Of particular interest in the case of probabilistic models
is the fact that it is usually required when performing numerical computation
to analyze the model. Three operations that are commonly required are: (a) de-

308 A. Miner and D. Parker

termining if a particular state is reachable or not; (b) enumerating all reachable
states in order; and (c) determining the index of a given state in the set of all
states. The latter, for example, is needed when a vector of numerical values, one
for each state, is stored explicitly in an array and the index of a state is needed
to access its corresponding value.

To perform these three operations efficiently, the BDD or MDD representa-
tion of the state space needs to be augmented with additional information. This
process is described in [24, 57] for MDDs and in [62] for BDDs. In this section,
we will describe how it can be done using the quasi-reduced variants of the da-
ta structures (i.e. QROBDDs and QROMDDs). Similar techniques can also be
applied to fully reduced decision diagrams, but these require more complex al-
gorithms to correctly handle cases where levels are “skipped” due to redundant
nodes. In the following, we will assume that S denotes the set of all possible
states of the model and that S ′ ⊆ S is the set of all reachable states.

Given a K-variable BDD or MDD representation for S ′, determining if an
arbitrary state (sK , . . . , s1) is contained in the set S ′ can be done by traversing
the data structure, as described earlier: if the given variable assignments produce
a path leading to terminal node 1, then the state is contained in the set. Note
that, if each node has direct access to the downward pointers (i.e., an arbitrary
child can be found in constant time), then the computational cost to determine
if a state is reachable is exactly O(K) for reachable states, and at worst O(K)
for unreachable states.

In order to enumerate the set of states S ′, one possibility is to go through
all the states in S, and for each one, determine if it is in the set S ′ as described
above. However, this has a computational cost of O(K · |S|), which is often un-
acceptable since it is possible for the set S to be several orders of magnitude
larger than S ′. A more efficient approach is to follow all paths in the BDD or
MDD for S ′ that can lead to terminal node 1. That is, for each node, we visit all
children except those whose paths lead only to terminal node 0. Note that nodes
whose paths lead only to terminal node 0 represent the constant function 0, and
thus can be detected (and passed over) thanks to the canonicity property.

Figure 7(a) shows the recursive algorithm Enumerate, which enumerates all
the states represented by QROMDD S′, as just described. For the enumeration
to be efficient, we must be able to visit only the non-zero children of each node;
this can be done quickly if sparse storage is used for the children in each node,
or if a list of the non-zero children is kept for each node. Assuming constant
time access to the non-zero children (i.e. the ability to find the first or next
non-zero child in constant time), it can be shown that algorithm Enumerate has
a computational cost of O(|S ′|) in the best case (when each non-terminal node
has several non-zero children) and O(K · |S ′|) in the worst case (when most
non-terminal nodes have a single non-zero child).

Note that, if the values sk are selected in order in line 5 of Figure 7(a),
then the states will be visited in lexicographical order. An example QROMDD,
corresponding to the set of reachable states with process 2 in its local state 2
for our running example, is shown in Figure 7(b). Nodes corresponding to the

Symbolic Representations and Analysis of Large Probabilistic Systems 309

Enumerate(in: S′)

1: if S′ = 1 then
2: Visit(sK , . . . , s1);
3: else if S′ �= 0 then
4: xk ← var(S′);
5: for each sk : fS′ |xk=sk �= 0 do
6: Enumerate(child(S′, sk));
7: end for
8: end if 1

x1

x2

x3

x1

x2

0: (0, 2, 0) 7: (2, 2, 0)
1: (0, 2, 1) 8: (2, 2, 1)
2: (0, 2, 2) 9: (2, 2, 2)
3: (0, 2, 3) 10: (2, 2, 3)
4: (1, 2, 0) 11: (3, 2, 0)
5: (1, 2, 2) 12: (3, 2, 1)
6: (1, 2, 3) 13: (3, 2, 2)

14: (3, 2, 3)

(a) Enumeration algorithm (b) QROMDD (c) Visited states

Fig. 7. Enumerating all states in a QROMDD-encoded set

constant function 0 are omitted from the figure for clarity. The states visited by
Enumerate for this QROMDD are shown in Figure 7(c), where the integer to the
left of the state indicates the order in which states are visited.

For numerical solution, it is often necessary to assign a unique index to each
state using some one-to-one indexing function ψ : S ′ → {0, . . . , |S ′| − 1}. A
commonly-used function ψ is to assign indices in lexicographical order; i.e., ψ(s)
is the number of states in S ′ that precede s in lexicographical order. Using an
MDD to encode ψ will lead to a rather large MDD, one with |S ′| terminal nodes
(this is essentially the multi-level structure described in [23]). An alternative is
to use an edge-valued MDD (EV+MDD), a data structure described in [25], to
represent the function ψ. An EV+MDD is an MDD where each edge in the MDD
from a non-terminal node m to child c has a corresponding value, value(m, c).
The edge values are summed along a path to obtain the function value. With
certain restrictions, EV+MDDs are also a canonical representation for functions
[25]. The edge values are sometimes referred to as offsets [24, 57, 62].

Given a QROMDD representing a set S ′, the EV+MDD for ψ, corresponding
to the lexicographical indexing function for states, can be constructed by assign-
ing appropriate edge values in a bottom-up fashion, using algorithm BuildOffsets
shown in Figure 8. The algorithm is based on the property that the index of a
state is equal to the number of paths “before” the path of that state (in lex-
icographical order), which can be counted by enumerating the paths. Indeed,
algorithm BuildOffsets is quite similar to algorithm Enumerate, except that once
the paths from a given node to terminal node 1 have been counted, they do not
need to be counted again. A computed-table is used to keep track of the number
of paths from each non-terminal node to node 1. For the QROMDD shown in
Figure 7(b), the resulting MDD with offset values (i.e., the EV+MDD) produced
by algorithm Enumerate is shown in Figure 9(a), where the state indices match
those shown in Figure 7(c). For instance, the index for state (3, 2, 1) is found by
following the appropriate path through the EV+MDD and summing the edge
values 11 + 0 + 1 = 12. Note that the edge values are unnecessary for children
corresponding to the constant function 0, since it is impossible to reach terminal
node 1 following these paths. As such, edge values for these children can be set

310 A. Miner and D. Parker

BuildOffsets(in: S′)

• Returns the number of paths from S′ to terminal 1.
1: if S′ = 0 then
2: Return 0;
3: else if S′ = 1 then
4: Return 1;
5: else if computed-table contains entry (S′, n) then
6: Return n;
7: end if
8: xk ← var(S′);
9: n ← 0;

10: for each sk : fS′ |xk=sk �= 0 do
11: value(S′, sk) ← n;
12: n ← n + BuildOffsets(child(S′, sk));
13: end for
14: Add (S′, n) to computed-table;
15: Return n;

Fig. 8. Constructing “offset” edge-values

to any value, including “undefined”, since the values will never be used; these are
represented by dashes in Figure 9(a). Note that the pointers in the bottom-level
nodes become unnecessary in this case: if the edge value is undefined, then the
child must be terminal node 0, otherwise the child is terminal node 1. Other
implementation tricks, including how to combine offsets with direct access and
non-zero-only access, are described in [24, 57].

The QROBDD version of the set S ′ and indexing function ψ is shown in
Figure 9(b). In this case, the MDD-encoded state (3, 2, 1) is encoded as the bi-
nary state (1, 1, 1, 0, 0, 1), and the state index is given by 7+4+0+0+0+1 = 12.
However, in the special case of BDDs, a simplification is possible. Since child 0
will always have either an edge value of zero or an undefined edge value (this
is true for both MDDs and BDDs), the edge value for the else child in a BDD
does not need to be explicitly stored in the node. Instead, it is sufficient to store
only the edge value for the then child. This produces the QROBDD shown in
Figure 9(c), where the label for each non-terminal node is the edge value for the
then child (the variable for each node is shown to the left, for all nodes with the
same variable). Note that the dashed values of Figure 9(b) have been changed to
zeroes in Figure 9(c) by choice [62]. In this case, when tracing a path through the
BDD corresponding to a particular state, the index can be computed by sum-
ming the offsets on nodes from which the then child was taken. For the example,
the index for state (1, 1, 1, 0, 0, 1) is given by 7 + 4 + 0 + 1 = 12.

3 Model Representation

In the previous section, we have seen ways of storing and manipulating sets of
states of a probabilistic model, in particular, the set of all of its reachable states.

Symbolic Representations and Analysis of Large Probabilistic Systems 311

x2

- - 0 -
x2

- - 0 -

x3

0 4 7 11

x1

0 - 1 2
x1

0 1 2 3

x1

0 1

x2

0 2

x3

0 -

x4

- 0

x5

0 4

x6

0 7

x5

0 4

x1

0 -

x2

0 1

x3

0 -

x4

- 0

1

x6

x5

x3

x4

x1

x2

7

44

0 0

0 0

2 1

1 0

(a) MDD with offset values (b) BDD with offset values (c) Offset-labeled BDD

Fig. 9. Decision diagrams with offset information

The latter can provide some useful information about the model, for example,
whether or not it is possible to reach a state which constitutes an error or failure.
Typically, though, we are interested in more involved properties, for example,
the probability of reaching such a state. Studying properties of this kind will
generally require numerical calculation, which needs access to the model itself,
i.e. not just the set of reachable states, but the transitions between these states
and the probabilistic information assigned to them.

In this section, we concern ourselves with the storage of the model. For two
of the most common types of probabilistic models, DTMCs and CTMCs, this
representation takes the form of a real-valued square matrix. In the following sec-
tions we will see how symbolic data structures such as BDDs and MDDs can be
extended to achieve this task. We will also mention extensions for more complex
models such as MDPs. The two principal data structures covered are multi-ter-
minal binary decision diagrams (MTBDDs) and matrix diagrams. The latter
is based on the Kronecker representation. We also provide an introduction to
this area. In addition, we will discuss two further data structures: decision node
binary decision diagrams (DNBDDs) and probabilistic decision graphs (PDGs).

3.1 Multi-Terminal Binary Decision Diagrams (MTBDDs)

Multi-terminal binary decision diagrams (MTBDDs) are an extension of BDDs.
The difference is that terminal nodes in an MTBDD can be labeled with arbi-
trary values, rather than just 0 and 1 as in a BDD. In typical usage, these values
are real (or in practice, floating point). Hence, an MTBDD M over K Boolean
variables xK , . . . , x1 now represents a function of the form fM : IBK → IR.

The basic idea behind MTBDDs was originally presented by Clarke et al.
in [28]. They were developed further, independently, by Clarke et al. [27] and

312 A. Miner and D. Parker

Bahar et al. [5], although in the latter they were christened algebraic decision
diagrams (ADDs).

These papers also proposed the idea of using MTBDDs to represent vectors
and matrices. Consider a real-valued vector v of size 2K . This can be represented
by a mapping from integer indices to the reals, i.e. fv : {0, . . . , 2K − 1} → IR.
Given a suitable encoding of these integer indices into K Boolean variables, this
can instead be expressed as a function of the form fV : IBK → IR, which is exact-
ly what is represented by an MTBDD V over K Boolean variables. Similarly, a
real-valued matrix M of size 2K×2K can be interpreted as a mapping from pairs
of integer indices to the reals, i.e. fM : {0, . . . , 2K − 1} × {0, . . . , 2K − 1} → IR,
and hence also as fM : IBK × IBK → IR, which can represented by an MTBDD
M over 2K Boolean variables, K of which encode row indices and K of which
encode column indices.

Figure 10 shows an example of an MTBDD R which represents a 4 × 4 ma-
trix R. Since we are introducing MTBDDs in the context of a representation for
probabilistic models, the matrix R is actually the transition rate matrix for a
4 state CTMC. This CTMC is also shown in Figure 10. Note that structure of
an MTBDD is identical to a BDD, except for the presence of multiple terminal
nodes labeled with real values. The function fR represented by the MTBDD R
can also be read off in identical fashion to a BDD. This process is illustrated by
the rightmost five columns of the table in Figure 10.

0 1

32

2
5

2

7 7

5

R =







2 5 0 0
2 5 0 7
0 0 0 0
0 7 0 0







2 5 7

x

y

y

x 2

2

1

1

R

Entry in R x2 x1 y2 y1 x2 y2 x1 y1 fR

(0, 0) = 2 0 0 0 0 0 0 0 0 2
(0, 1) = 5 0 0 0 1 0 0 0 1 5
(1, 0) = 2 0 1 0 0 0 0 1 0 2
(1, 1) = 5 0 1 0 1 0 0 1 1 5
(1, 3) = 7 0 1 1 1 0 1 1 1 7
(3, 1) = 7 1 1 0 1 1 0 1 1 7

Fig. 10. A CTMC, its transition rate matrix R and an MTBDD R representing it

Symbolic Representations and Analysis of Large Probabilistic Systems 313

The table also demonstrates how the matrix R is represented by the MTBDD.
We use four Boolean variables: x2 and x1, which are used to encode row indices;
and y2 and y1, which are used to encode column indices. In both cases, we have
used the standard binary encoding of integers. For the matrix entry (3, 1), for
example, x2 = 1 and x1 = 1 encode the row index 3 and y2 = 0 and y1 = 1 en-
code the column index 1. Note that, in the MTBDD, the variables for rows and
columns are interleaved, i.e. x2 > y2 > x1 > y1. This is a well-known heuristic
for MTBDDs which represent transition matrices (or analogously, as mentioned
previously in Section 2.3, for BDDs which represent transition relations) and typ-
ically gives a significant improvement in the size of the data structure. Therefore,
to establish the value of entry (3, 1) in R, we trace the path 1, 0, 1, 1 through R
and determine that it is equal to 7.

MTBDD Operations. Operations on MTBDDs can be defined and imple-
mented on MTBDDs in a similar way to BDDs. The Apply operator, for exam-
ple, extends naturally to this data structure. In this case, the operation applied
can be a real-valued function, such as addition or multiplication, for example
Apply(+, M1, M2) produces the MTBDD representing the function fM2 + fM2 .
The MTBDD version of Apply can be implemented in essentially identical fash-
ion to the BDD version, based on a recursive descent of the data structures and
using a computed-table to cache intermediate results. The only difference is the
handling of the terminal cases. Its time complexity is O(|M1| · |M2|), where |M|
denotes the number of nodes in MTBDD M.

We are particularly interested in operations which can be applied to MTBDDs
representing matrices and vectors. The Apply operation can be used to perform
point-wise operations such as addition of two matrices or scalar multiplication of
a matrix by a real constant. Of more interest are operations specifically tailored
to matrices and vectors. The most obvious example is the matrix-vector or ma-
trix-matrix multiplication operation. Crucially, because matrix-based multiplica-
tions can be expressed in a recursive fashion, they can be efficiently implemented
using a similar approach as for the Apply operator. Three slight variants have
been presented in [28, 27, 5]. In [5], empirical results are presented to compare
the efficiency of the three algorithms.

Model Representation with MTBDDs. Some classes of probabilistic mod-
els, such as DTMCs and CTMCs, are described simply by a real valued matrix
and can hence be represented by an MTBDD using the techniques described
above. These observations have been made in numerous places, e.g. [39, 40, 8,
44]. We have already seen an example of the representation for a CTMC in
Figure 10. In addition, we describe here how a third type of model, Markov
decision processes (MDPs), can be represented as MTBDDs. This was initially
proposed in [7, 6], the first concrete implementation of the idea was presented in
[34] and the ideas have since been extended in [62].

The chief difference between MDPs and DTMCs or CTMCs is the presence of
nondeterminism. A DTMC or CTMC is specified by the likelihood of making a
transition from each state to any other state. This is a real value, a discrete prob-

314 A. Miner and D. Parker

ability for a DTMC or a parameter of an exponential distribution for a CTMC.
In either case, the values for all pairs of states can be represented by a square,
real-valued matrix. In an MDP, each state contains several nondeterministic
choices, each of which specifies a discrete probability for every state. In terms of
a matrix, this equates to each state being represented by several different rows.
This can be thought of either as a non-square matrix or as a three-dimensional
matrix. In any case, we can treat non-determinism as a third index, meaning that
an MDP is effectively a function of the form f : S×{1, . . . , n}×S → [0, 1], where
S is the set of states and n is the maximum number of nondeterministic choices
in any state. By encoding the set {1, . . . , n} with Boolean variables, we can store
the MDP as an MTBDD over three sets of variables, one for source states, one
for destination states and one to distinguish between nondeterministic choices.

Model Generation with MTBDDs. The process of generating the MTBDD
which represents a given probabilistic model is particularly important as it can
have a huge impact on the efficiency of the MTBDD as a representation. This
is an issue considered in [44], which presents a number of heuristics for this pur-
pose. The most important of these is that one should try to exploit structure and
regularity . In practice, a probabilistic model will be described in some high-level
specification formalism, such as a stochastic process algebra, stochastic Petri
nets or some other, custom language. Typically, this high-level description is in-
herently structured. Therefore, the most efficient way to construct the MTBDD
representing the model is via a direct translation from the high-level description.
This is demonstrated in [44] on some simple examples using formalisms such as
process algebras and queuing networks. These findings have been confirmed by
others, e.g. [34, 49, 62, 43] on a range of formalisms. Like BDDs, attention should
also be paid to the ordering of the Boolean variables in the MTBDD. Discussions
can be found in [44, 62, 43].

Direct translation of a model from its high-level description usually results in
the introduction of unreachable states. This necessitates the process of reachabil-
ity: computing all reachable states. This can be done with BDDs, as discussed
in Section 2, and then the unreachable states can be removed from the MTBDD
with a simple Apply operation. This process is facilitated by the close relation
between BDDs and MTBDDs.

In practice, it has been shown that MTBDDs can be used to construct and
store extremely large probabilistic models [39, 44, 34]. This is possible by ex-
ploitation of high-level structure in the description of the model. Often, the
construction process itself is also found to be efficient. This is partly due to
the fact that the symbolic representation is constructed directly from the high-
level description and partly because the process can integrate existing efficient
techniques for BDD-based reachability.

3.2 Kronecker Algebra

A well-accepted compact representation for certain types of models (usually
CTMCs) is based on Kronecker algebra. Relevant well-known properties of Kro-

Symbolic Representations and Analysis of Large Probabilistic Systems 315

necker products are reviewed here; details can be found (for example) in [33]. The
Kronecker product of two matrices multiplies every element of the first matrix
by every element of the second matrix. Given square matrices M2 of dimension
N2 and M1 of dimension N1, their Kronecker product

M2 ⊗ M1 =






M2[0, 0] · M1 · · · M2[0, N2 − 1] · M1

...
. . .

...
M2[N2 − 1, 0] · M1 · · · M2[N2 − 1, N2 − 1] · M1






is a square matrix of dimension N2N1. This can be generalized to the Kronecker
product of K matrices M = MK ⊗ · · · ⊗ M1 since the Kronecker product is
associative. In this case, the square matrix M has dimension

∏K
k=1 Nk, where

Nk is the dimension of square matrix Mk.
Kronecker algebra has been fairly successful in representing large CTMCs

generated from various high-level formalisms [16, 35, 37, 46, 65]. The key idea be-
hind Kronecker-based approaches is to represent the portion of the transition
rate matrix for the CTMC due to a single event e, denoted as Re, as the Kro-
necker product of matrices We

k, which describe the contribution to event e due
to each model component k. The overall transition rate matrix is the sum of each
Re over all events e. Note that each matrix We

k is a square matrix of dimension
Nk, and the dimension of the represented matrix is NK · · ·N1. Thus, just like
MDDs, to use a Kronecker representation, a model state must be expressible
as a collection of K state variables (sK , . . . , s1), where sk ∈ INk. Unless matrix
elements are allowed to be functions [37], the state variables and events must be
chosen so that the rate of transition from state (sK , . . . , s1) to state (s′K , . . . , s′1)
due to event e can be expressed as the product

λe((sK , . . . , s1), (s′K , . . . , s1)) = λe
K(sK , s′K) · · ·λe

1(s1, s
′
1)

which means that the transition rates cannot arbitrarily depend on the global
state. When the above product-form requirement is met, all matrix elements are
constants: We

k[sk, s′k] = λe
k(sk, s′k).

We now return to the running example. Let us assume that the model is a
CTMC, i.e. each transition of the model is associated with a rate. Let the rate
of transition from local state 2 to local state 3 be 2.3, from local state 3 to local
state 0 be 3.0, from local state 0 to local state 1 be 5.0+0.1 ·k for process k, and
from local state 1 to local state 2 be 1.5+0.1 ·k for process k. The corresponding
Kronecker matrices for Re3 and Re6 are shown in Figure 11. For this example,
according to Re6 , the rate of transition from state (1, 2, 1) to state (2, 2, 1) is
1.8 · 1.0 · 1.0 = 1.8. Note that the matrices We6

2 and We6
1 are identity matrices;

this occurs whenever an event does not affect, and is not affected by, a particular
component. Also note the similarities between the matrices of Figure 11 and the
tables in Figure 5(b). The tabular next-state representation is in fact a Kro-
necker representation, where the table for relation Re

k corresponds to a Boolean
matrix We

k.

316 A. Miner and D. Parker

We3
3 =







0 5.3 0 0
0 0 0 0
0 0 0 0
0 0 0 0





 We3

2 =







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1





 We3

1 =







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1







We6
3 =







0 0 0 0
0 0 1.8 0
0 0 0 2.3

3.0 0 0 0





 We6

2 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





 We6

1 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







Fig. 11. Kronecker matrices for the running example

For in-depth discussion of Kronecker representations and algorithms for effi-
cient numerical solution of Markov chains expressed using Kronecker algebra,
see for example [15, 18, 69].

3.3 Matrix Diagrams

Matrix diagrams (abbreviated as MDs or MxDs) are, like BDDs, MDDs and
MTBDDs, rooted directed acyclic graphs. A matrix diagram is associated with
K pairs of variables, (xK , yK), . . . , (x1, y1), and a matrix diagram M represents
a matrix (or function) fM : (INK ×· · ·×IN1)2 → IR. Note that both variables in a
pair have the same possible set of values: xk, yk ∈ INk. Matrix diagrams consist
of terminal nodes labeled with 1 and 0, and non-terminal nodes m labeled with
variable pairs var(m) ∈ {(xK , yK), . . . , (x1, y1)}. A non-terminal node with label
(xk, yk) is sometimes called a level -k node. According to the original definition
[24], for a given node and pair of variable assignments, there is an associated
set of children nodes, and each child node has a corresponding real edge value.
We denote this as a set of pairs, pairs(m, i, j) ⊂ IR × M, where (i, j) are the
variable assignments for var(m), and M is the set of matrix diagram nodes. If a
set contains more than one pair, then a given group of variable assignments can
lead to multiple paths through the matrix diagram. The value of a matrix ele-
ment corresponding to the appropriate variable assignments is found by taking
the product of the real values encountered along each path, and summing those
products over all paths.

Like decision diagrams, the concept of ordering can be applied to obtain or-
dered MDs (OMDs). Two non-terminal matrix diagram nodes m1 and m2 are du-
plicates if var(m1) = var(m2) and if pairs(m1, i, j) = pairs(m2, i, j), for all pos-
sible i, j ∈ INvar(m1). The usual notion of quasi-reduction can be applied (using
the above definition for duplicates) to obtain quasi-reduced OMDs (QROMDs).
An element of the matrix encoded by a QROMD m can be computed using the
recurrence:

fm(xk, . . . , x1, yk, . . . , y1) =
∑

∀(r,m′)∈pairs(m,xk,yk)

r · fm′(xk−1, . . . , x1, yk−1, . . . , y1)

with terminating conditions f1 = 1 and f0 = 0. However, QROMDs are not a
canonical representation. Additional rules can be applied to matrix diagrams to

Symbolic Representations and Analysis of Large Probabilistic Systems 317

obtain a canonical form, as described in [58]: sets of pairs are eliminated, so that
each group of variable assignments corresponds to exactly one path through the
matrix diagram, and the possible edge values are restricted. For the remainder
of the paper, we assume that all matrix diagrams are QROMDs (with sets of
pairs).

A simple example of a matrix diagram is shown in Figure 12(a). Each matrix
element within a non-terminal node is either the empty set (represented by blank
space) or a set of pairs (represented by stacked boxes). At the bottom level, the
only possible child is terminal node 1 (pairs with terminal 0 children or zero edge
values can be removed); thus, the pointers can be omitted. The matrix encoded
by the matrix diagram is shown in Figure 12(b). The large blocks of zeroes are
due to the blank spaces in the (x3, y3) matrix diagram node.

(x3, y3)
1.0

1.6

1.82.0

(x2, y2)

1.0

1.2

(x2, y2)

1.5

(x2, y2)

1.51.0

1.6

1.8

(x1, y1)
3.0

(x1, y1)

1.0

2.0

(x1, y1)

1.0 1.0

























0 0 0 0 0 0 0 0 0 0 0 0
1.6 1.6 0 0 0 0 0 0 0 0 0 0
0 3.0 0 3.6 0 0 0 0 0 0 0 0

1.0 2.5 0 1.8 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 5.7 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 3.2 0 0
0 0 0 0 0 0 0 0 0 1.6 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2.8 2.8 0 0 0 0 0 0
0 0 0 0 0 5.4 0 6.4 0 0 0 0

3.0 3.0 0 0 1.8 4.5 0 3.2 0 0 0 0

























(a) Matrix diagram (b) Encoded matrix

Fig. 12. Example matrix diagram

Matrix Diagram Operations. In this section, we describe three useful op-
erations for matrix diagrams: constructing a matrix diagram from a Kronecker
product, addition of matrix diagrams and selection of a submatrix from a matrix
diagram.

Building a Kronecker product: Given matrices MK , . . . ,M1, we can easily con-
struct a matrix diagram representation of their Kronecker product MK ⊗ · · · ⊗
M1. The matrix diagram will have one non-terminal node for each of the K
matrices, where the level-k node mk corresponds to matrix Mk, and the entries
of node mk are determined as follows. If Mk[i, j] is zero, then pairs(mk, i, j)
is the empty set; otherwise, pairs(mk, i, j) is the set containing only the pair
(Mk[i, j], mk−1). The level-0 node m0 is terminal node 1. The matrix diagrams
obtained for the Kronecker products for the running example are shown in Fig-
ure 13. Since the matrix diagrams are QROMDs, the variable pairs for each node
are omitted from the figure to save space.

318 A. Miner and D. Parker

Addition of two matrix diagrams: Given two level-k matrix diagram nodes m1

and m2, the level-k matrix diagram node m encoding their sum, i.e., fm =
fm1 + fm2 , can be easily constructed by set union

pairs(m, i, j) = pairs(m1, i, j) ∪ pairs(m2, i, j)

for each possible i, j ∈ INk. For example, the sum of matrix diagrams for Re1

and Re2 from Figure 13 is shown in Figure 14(a). While this produces a correct
matrix diagram, a more compact representation can sometimes be obtained. For
instance, if a set contains pairs (r1, m) and (r2, m) with the same child m, the
two pairs can be replaced with the single pair (r1 +r2, m), since r1 ·M+r2 ·M =
(r1 + r2) · M. Note that this implies that level-1 nodes never need to have sets
with more than one pair. Reduction may be possible when a set contains pairs
(r, m1) and (r, m2) with the same edge value r, by replacing the two pairs with
the pair (r, m), where m encodes the sum of m1 and m2 (computed recursively).
When this is done for the sum of Re1 and Re2 , we obtain the matrix diagram
shown in Figure 14(b). Note that this replacement rule does not always reduce
the size of the matrix diagram. For canonical matrix diagrams that do not allow
sets of pairs [58], addition is still possible but requires more complex algorithms.

5.1

1.0

1.0

1.0

1.0

1.0

1.0 5.2

1.0

1.0

1.0

1.0

1.0

1.0 5.3

1.0

1.0

1.0

1.0

1.0

1.0

2.3

3.0

1.0

1.0

1.0

1.6

1.0

1.0

1.0

1.0

1.0 1.7

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.3

3.0

1.8

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.3

3.0

Re1 Re2 Re3 Re4 Re5 Re6

Fig. 13. Matrix diagrams built from Kronecker products for running example

Selecting a submatrix from a matrix diagram: Given a matrix diagram represen-
tation of a matrix, we can select a submatrix with specified rows and columns
by using MDD representations for the sets of desired rows and columns. Us-
ing a QROMDD R over variables xK , . . . , x1 for the set of rows, a QROMDD
C over variables yK , . . . , y1 for the set of columns, and a QROMD M over vari-
able pairs (xK , yK), . . . , (x1, y1) allows for a straightforward recursive algorithm,
shown in Figure 15(a), to construct M′ = Submatrix(M, R, C). Note that, in ad-
dition to checking for duplicate nodes, Reduce also replaces nodes containing no

Symbolic Representations and Analysis of Large Probabilistic Systems 319

(x3, y3)

(x2, y2)

(x1, y1) 5.1

1.0

1.0

1.0

1.0

1.0

1.0

1.01.0

1.01.0

1.01.0

5.2

5.1

1.0

1.0

1.0

1.0

1.0

1.0 5.2

1.0

1.0

1.0

(a) Set union (b) Set union and replacement

Fig. 14. Addition of Re1 and Re2 from Figure 13

pairs (i.e., pairs(M, i, j) is the empty set for all i, j) with terminal node 0. The
Submatrix operator can also be implemented using ROMDD representations for
R and C, using a slightly more complex algorithm. Note that it is also possible to
physically remove the undesired rows and columns (rather than setting them to
zero, as done by Submatrix); this may produce matrices with different dimensions
within matrix diagram nodes with the same labels, and leads to more complex
implementation [24, 57]. Figure 15(b) shows the matrix diagram obtained using
Re6 (from Figure 13) for the input matrix and the MDD encoding of the set
of reachable states (from Figure 4(b)) for the desired rows and columns. Note
that the rate of transition from state (1, 2, 1) to state (2, 2, 1) is 1.8 · 1.0 · 0 = 0
in the obtained matrix diagram, since state (1, 2, 1) is unreachable according to
the MDD shown in Figure 4(b).

Model Representation and Construction with Matrix Diagrams. Giv-
en a high-level formalism that supports construction of the low-level model (e.g.,
CTMC) as a sum of Kronecker products, as described in Section 3.2, it is straight-
forward to construct the corresponding matrix diagram representation. Matrix
diagrams can be constructed for each individual Kronecker product; these can
then be summed to obtain the overall model. Note that both the overall matrix
diagram and the Kronecker representation describe a model with states S. The
matrix diagram corresponding to the “reachable” portion of the model can be
obtained using the Submatrix operator, using the set of reachable states S ′ as
the set of desired rows and columns. This operation is important particularly for
numerical solution, especially when |S| � |S ′|. Note that this requires construc-
tion of the MDD representing the reachability set S ′, as described in Section 2.3.
Summing the matrix diagrams in Figure 13 (using the replacement rules) and se-
lecting the reachable portion of the matrix using Submatrix produces the matrix
diagram shown in Figure 16.

320 A. Miner and D. Parker

Submatrix(in: M, R, C)

1: if R = 1 ∧ C = 1 then
2: Return M;
3: else if R = 0 ∨ C = 0 then
4: Return 0;
5: else if ∃ computed-table entry (M, R, C, M′) then
6: Return M′;
7: end if
8: (xk, yk) ← var(M);
9: M′ ← new non-terminal node with label (xk, yk);

10: for each i, j : fR|xk=i �= 0 ∧ fC|yk=j �= 0 do
11: for each (r, m) ∈ pairs(M, i, j) do
12: m′ ← Submatrix(m, child(R, i), child(C, j));
13: if m′ �= 0 then
14: pairs(M′, i, j) ← pairs(M′, i, j)∪{(r, m′)};
15: end if
16: end for
17: end for
18: Reduce(M′);
19: Add entry (M, R, C, M′) to compute table;
20: Return M′;

1.8

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.3

3.0

1.0

1.0

1.0

1.0

1.0

1.0

(a) Selection algorithm (b) Select(Re6 ,S ′,S ′)

Fig. 15. Submatrix selection for matrix diagrams

Another method to construct a matrix diagram is to do so explicitly, by add-
ing each non-zero entry of the matrix to be encoded into the matrix diagram, one
at a time [58]. This approach essentially visits each non-zero entry, constructs a
matrix diagram representing a matrix containing only the desired non-zero en-
try, and sums all the matrix diagrams to obtain the representation for the overall
matrix. Overhead is kept manageable by mixing unreduced and reduced nodes
in the same structure: in-place updates are possible for the unreduced nodes,
but may contain duplicates. The unreduced portion is periodically merged with
the reduced portion.

3.4 Other Data Structures

MTBDDs and matrix diagrams are not the only symbolic representations pro-
posed for probabilistic models. There are a number of others, typically all ex-
tensions in some fashion of the basic BDD data structure. We describe two
notable examples here: decision node binary decision diagrams (DNBDDs) and
probabilistic decision graphs (PDGs).

Decision node binary decision diagrams (DNBDDs) were proposed by Siegle
[67, 68] to represent CTMCs. While MTBDDs extend BDDs by allowing multiple
terminal nodes, DNBDDs do so by adding information to certain then and else
edges. Again, the purpose of this information is to encode the real values which
the function being represented can take. This approach has the advantage that

Symbolic Representations and Analysis of Large Probabilistic Systems 321

1.8

2.3

3.0

1.0

5.31.0

1.0

1.0

2.3

3.0

1.0

1.0

1.0

3.0

2.3

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.3

3.0

1.6

5.1

1.0

1.0

1.0

1.0

3.0

1.7

2.3

5.2

Fig. 16. Matrix diagram for the rate matrix of the running example

the DNBDD for a CTMC is identical in structure to the BDD which repre-
sents its transition relation, as might be used for example during reachability
computation.

Figure 17 shows a simple example of a 4 × 4 matrix and the DNBDD which
represents it. As for our MTBDD representation of a matrix of this size in
Figure 10, the DNBDD uses two (interleaved) pairs of Boolean variables: x2, x1

to encode row indices and y2, y1 to encode column indices. The path through
the DNBDD M which corresponds to each entry of matrix M is shown in the
table in Figure 17. The nodes of the DNBDD which are shaded are decision
nodes. Each node which has both then and else edges eventually leading to the
1 terminal node is a decision node. The value corresponding to a given path
through the DNBDD is equal to the value which labels the edge from the last
decision node along that path. For the matrix entry (2, 3), for example, the row
index is encoded as 1, 0 and the column index as 1, 1. Tracing the path 1, 1, 0, 1
through the DNBDD, we see that the last labeled edge observed is 9, which is
the value of the entry. In cases, where a single path corresponds to more than
one matrix entry, the distinct values are differentiated by labeling the edge with
an ordered list of values, rather than a single value.

In [45], DNBDDs were used to implement bisimulation algorithms for CT-
MCs. They proved to be well suited to this application, since it can be seen as
an extension of the non-probabilistic case, for which BDD-based algorithms had
already been developed. It has not been shown, though, how DNBDDs could
be used to perform analysis of CTMCs requiring numerical computation, as we
consider in the next section.

Probabilistic decision graphs (PDGs) were proposed by Bozga and Maler in
[11]. A PDG is a BDD-like data structure, designed specifically for storing vec-

322 A. Miner and D. Parker

M =







0 3 0 8
7 0 0 0
0 0 0 9
0 0 0 0







1

x

y

y

x 2

2

1

1

9

7
3

8

M

Entry in M Path in M
x2 y2 x1 y1

(0, 1) = 3 0 0 0 1
(1, 0) = 7 0 0 1 0
(0, 3) = 8 0 1 0 1
(2, 3) = 9 1 1 0 1

Fig. 17. A matrix and a DNBDD representing it

v =
[

1
6

1
12

1
2

1
4

]

4
3

4
1

3
1

3

1

v

2

v(0) = 1 · 1
4
· 2

3
= 1

6

v(1) = 1 · 1
4
· 1

3
= 1

12

v(2) = 1 · 3
4
· 2

3
= 1

2

v(3) = 1 · 3
4
· 1

3
= 1

4

Fig. 18. A vector and the PDG representing it

tors and matrices of probabilities. Figure 18 shows a simple example of a PDG
with two levels of nodes representing a vector of length 4. Nodes are labeled
with probabilities and the values for all the nodes on each level must sum to
one. Intuitively, these represent conditional probabilities: the actual value of
each vector element can be determined by multiplying the conditional prob-
abilities along the corresponding path, as illustrated in the figure. Like in a
BDD, duplicate nodes are merged to save space. The hope is that some func-
tions which have no compact representation as an MTBDD, perhaps because
of an excessive number of distinct values, can be stored more efficiently as a
PDG.

Buchholz and Kemper extended this work in [17]. They modified the PDG
data structure to allow more than two children in each node, like in an MDD.
They then used PDGs to store vectors and Kronecker representations to store
matrices, combining the two to perform numerical solution of CTMCs. It was
found, though, that the additional work required to manipulate the PDG data
structure slowed the process of numerical computation.

Symbolic Representations and Analysis of Large Probabilistic Systems 323

4 Numerical Solution

In the preceding two sections, we have seen how symbolic data structures can be
used to construct and store probabilistic models and their state spaces. In this
section, we discuss how to actually perform analysis of the models when they are
represented in this way. In the probabilistic setting, the most commonly required
types of analysis will be those that require some form of numerical solution to
be performed. Hence, this is the problem which we shall focus upon.

The exact nature of the work that needs to be performed will depend on sev-
eral factors, for example, the type of probabilistic model being studied and the
high-level formalisms which are used to specify both the model and the proper-
ties of the model which are to be analyzed. In probabilistic model checking , for
example, properties are typically expressed in probabilistic extensions of tempo-
ral logics, such as PCTL [41] and CSL [4, 9]. This allows concise specifications
such as “the probability that the system fails within 60s is at most 0.01” to be
expressed. Model checking algorithms to verify whether or not such specifica-
tions are satisfied can be found in the literature (for surveys, see for example
[26, 29]). In more traditional performance analysis based approaches, one might
be interested in computing properties such as throughput, the average number
of jobs in a queue, or average time until failure. In this presentation, we will
avoid discussing the finer details of these various approaches. Instead, we will
focus on some of the lower level numerical computations that are often required,
regardless of the approach or formalism used. One of the most common tasks
likely to be performed is the computation of a vector of probabilities, where one
value corresponds to each state of the model. If the model is a continuous-time
Markov chain (CTMC), this vector might, for example, contain transient or
steady-state probabilities, which describe the model at a particular time instant
or in the long-run, respectively. For the latter, the main operation required is
the solution of a linear system of equations. For the former, a technique called
uniformization provides an efficient and numerically stable approach. Another
common case is where the values to be computed are the probabilities of, from
each state in the model, reaching a particular class of states. If the model is a
discrete-time Markov chain (DTMC), the principal operation is again solution of
a linear system of equations; if the model is a Markov decision process (MDP),
it is the solution of a linear optimization problem.

An important factor that all these types of computation have in common is
that they can be (and often are) performed iteratively . Consider, for example,
the problem of solving a linear equation system. This is, of course, a well-studied
problem for which a range of techniques exist. For analysis of very large models,
however, which is our aim, common direct methods such as Gaussian elimination
are impractical because they do not scale up well. Fortunately, iterative tech-
niques, such as the Power, Jacobi and Gauss-Seidel methods, provide efficient
alternatives. There is a similar situation for the linear optimization problems
required for analysis of MDPs. One option would be to use classic linear pro-
gramming techniques such as the Simplex algorithm. Again, though, these are
poorly suited to the large problems which frequently occur in these applications.

324 A. Miner and D. Parker

Fortunately, in this instance, there exist alternative, iterative algorithms to solve
the problem. Lastly, we note that the aforementioned uniformization method for
transient analysis of CTMCs is also an iterative method.

There is an important feature common to the set of iterative solution tech-
niques listed in the previous paragraph. The computation performed depends
heavily, of course, on the probabilistic model: a real matrix for DTMCs and
CTMCs or a non-square matrix for MDPs. However, in all of these techniques,
with the possible exception of some initialization steps, the model or matrix does
not need to be modified during computation. Each iteration involves extracting
the matrix entries, performing some computation and updating the solution vec-
tor. This is in contrast to some of the alternatives such as Gaussian elimination
or the Simplex method which are based entirely on modifications to the matrix.

In the remainder of this section, we consider the issue of performing such
numerical solution techniques, when the model is being represented either as an
MTBDD or as a matrix diagram.

4.1 MTBDDs

Numerical solution using MTBDDs was considered in some of the earliest pa-
pers describing the data structure: [27, 5] gave algorithms for L/U decomposition
and Gaussian elimination. The experimental results presented in the latter pa-
per illustrated that, in comparison to more conventional, explicit approaches,
MTBDDs were relatively poor for these tasks. They also identified the reasons
for this. Methods such as Gaussian elimination are based on access to and mod-
ification of individual elements, rows or columns of matrices. MTBDDs, though
are an inherently recursive data structure, poorly suited to such operations.
Moreover, compact MTBDD representations rely on high-level structure in the
matrix. This is typically destroyed by many such operations, increasing MTBDD
sizes and time requirements.

Subsequently, Hachtel at al. [39, 40] and Xie and Beerel [70] presented
MTBDD-based algorithms for iterative solution of linear equation systems, find-
ing them better suited to symbolic implementation than direct methods. We
have already observed that such techniques are preferable in our circumstances
anyway because of the size of problems involved.

The basic idea of an iterative method is that a vector containing an estimate
to the solution is repeatedly updated. This update is based on operations which
use the matrix. Often, the main operation required is matrix-vector multiplica-
tion. For example, when solving the linear equation system A · x = b using the
Jacobi method, the kth iteration, which computes the solution vector x(k) from
the previous approximation x(k−1) is as follows:

x(k) := D−1 · (L + U) · x(k−1) + D−1 · b

where D, L and U are diagonal, lower- and upper-triangular matrices, respec-
tively, such that A = D − L − U. As we saw earlier, matrix multiplication
is well suited to MTBDDs because it can be implemented in a recursive fash-

Symbolic Representations and Analysis of Large Probabilistic Systems 325

ion. The other operations required here, i.e. matrix addition, vector addition
and inversion of a diagonal matrix can all be implemented using the Apply
operator.

Hachtel et al. applied their implementation to the problem of computing
steady-state probabilities for DTMCs derived from a range of large, benchmark
circuits. The largest of these DTMCs handled had more than 1027 states. MT-
BDDs proved invaluable in that an explicit representation of a matrix this size
would be impossible on the same hardware. The MTBDDs were able to exploit
a significant amount of structure and regularity in the DTMCs. However, it
was observed that the MTBDD representation of the solution vector was more
problematic. Hachtel et al. were forced to adopt techniques such as rounding all
values below a certain threshold to zero.

Following the discovery that MTBDDs could be applied to iterative numerical
solution, and inspired by the success of BDD-based model checking implemen-
tations, numerous researchers proposed symbolic approaches to the verification
and analysis of probabilistic models. These included PCTL model checking of
DTMCs [8, 42, 7, 6], PCTL model checking of MDPs [6, 53, 34, 31], computation
of steady-state probabilities for CTMCs [44] and CSL model checking for CTMCs
[9, 48]. While some of these papers simply presented algorithms, others imple-
mented the techniques and presented experimental results. Their conclusions can
be summarized as follows.

Firstly, MTBDDs can be used, as mentioned earlier, to construct and store
extremely large, probabilistic models, where high-level structure can be exploit-
ed. Furthermore, in some instances, MTBDD-based numerical solution is also
very successful. For example, [54] presented results for symbolic model checking
of MDPs with more than 1010 states. This would be impossible with explicit
techniques, such as sparse matrices, on the same hardware. However, in general,
it was found that MTBDD-based numerical computation performed poorly in
comparison to explicit alternatives, in terms of both time and space efficiency.
The simple reason for this is that, despite compact MTBDD-based storage for
probabilistic models, the same representation for solution vectors is usually in-
efficient. This is unsurprising since these vectors will usually be unstructured
and contain many distinct values. Both of these factors generally result in great-
ly increased MTBDD sizes which are not only more expensive to store, but are
slower to manipulate. By contrast, in an explicit (e.g. sparse matrix based) im-
plementation, solution vectors are typically stored in arrays which are fast to
access and manipulate, regardless of structure.

4.2 Offset-Labeled MTBDDs

To combat the problems described above, modifications to the MTBDD-based
approach have been proposed [52, 62]. The basic idea is to combine the compact
model representation afforded by symbolic techniques with the fast and efficient
numerical solution provided by explicit approaches. This is done by performing
numerical computation using an MTBDD for matrix storage but an array for
the solution vector.

326 A. Miner and D. Parker

As above, the most important operation to be implemented is matrix-vector
multiplication. A crucial observation is that this requires access to each of the
non-zero entries in the matrix exactly once and that the order in which they are
obtained is unimportant. The non-zero entries of a matrix stored by an MTBDD
can be extracted via a recursive depth-first traversal of the data structure. Es-
sentially, this traces every path from the root node of the MTBDD to a terminal
node, each path corresponding to a single non-zero matrix entry.

During this process, we need to be able to compute the row and column index
of each matrix entry. This is done by augmenting the MTBDD with additional
information: we convert the MTBDD into an offset-labeled MTBDD , each node
of which is assigned an integer offset. This is essentially the same as the indexing
scheme we described for BDDs and MDDs in Section 2.4. Like in the simpler case,
when tracing a path through an MTBDD, the required indices can be computed
by summing the values of the offsets. More specifically, the row and column index
are computed independently: the row index by summing offsets on nodes labeled
with xk variables from which the then edge was taken; and the column index by
summing those on nodes labeled with yk variables where the then edge was taken.

Figure 19 shows an example of an offset-labeled MTBDD R′, the transition
rate matrix R it represents, and a table explaining the way in which the infor-
mation is represented. The matrix R is the same as used for the earlier example
in Figure 10. State 2 of the CTMC which the matrix represents (see Figure 10)
is unreachable. All entries of the corresponding row and column of R are zero.
In Figure 19, this is emphasized by marking these entries as ‘–’.

Let us consider a path through the offset-labeled MTBDD: 1, 0, 1, 1. This
is the same as used for the MTBDD example on page 313. The path leads to
the 7 terminal, revealing that the corresponding matrix entry has value 7. To
compute the row index of the entry, we sum the offsets on xk nodes from which
the then edge was taken. For this path, the sum is 2 + 0 = 2. For the column
index, we perform the same calculation but for yk nodes. The then edge was
only taken from the y1 node, so the index is 1, the offset on this node. Hence,
our matrix entry is (2, 1) = 7. Notice that the corresponding matrix entry last
time was (3, 1) = 7, i.e. the offsets encode the fact that the unreachable state is
not included in the indexing.

Compare the MTBDD R from Figure 10 with the offset-labeled variant R′ in
Figure 19, both of which represent the same matrix. Firstly, R′ has been con-
verted to its quasi-reduced form so that offsets can be added on each level (as
was the case for BDDs in Section 2.4). Secondly, note that two additional nodes
have been added (rightmost x1 and y1 nodes). These nodes would be duplicates
(and hence removed) if not for the presence of offsets. This situation occurs when
there are two paths through the MTBDD passing through a common node and
the offset required to label that node is different for each path. Empirical results
show that, in practice, this represents only a small increase in MTBDD size. For
further details in this area, see [62].

Each row of the table in Figure 19 corresponds to a single path through R′

which equates to a single non-zero entry of R. The entries are listed in the order

Symbolic Representations and Analysis of Large Probabilistic Systems 327

R =







2 5 − 0
2 5 − 7
− − −

0 7 − 0







2

2 2

0

1 0 1

2 5 7

x 1 1

y

y

x 2

2

1

1

R’

Path Offsets Entry of R
x2 y2 x1 y1 fR′ x2 y2 x1 y1

0 0 0 0 2 - - - - (0, 0) = 2
0 0 0 1 5 - - - 1 (0, 1) = 5
0 0 1 0 2 - - 1 - (1, 0) = 2
0 0 1 1 5 - - 1 1 (1, 1) = 5
0 1 1 1 7 - 2 1 0 (1, 2) = 7
1 0 1 1 7 2 - 0 1 (2, 1) = 7

Fig. 19. An offset-labeled MTBDD R′ representing a matrix R

TraverseRec(m, row , col)

• m is an MTBDD node
• row is the current row index
• col is the current column index
1: if m is a non-zero terminal node then • Terminal case
2: Found matrix element (row , col) = val(m)
3: else if m is the zero terminal node then • Terminal case
4: Return
5: else if m is an xk variable then • Recurse
6: TraverseRec(else(m), row , col)
7: TraverseRec(then(m), row + offset(m), col)
8: else if m is an yk variable then • Recurse
9: TraverseRec(else(m), row , col)

10: TraverseRec(then(m), row , col + offset(m))
11: end if

Fig. 20. Offset-labeled MTBDD traversal algorithm

in which they would be extracted by a recursive traversal of the offset-labeled
MTBDD. Figure 20 shows the recursive algorithm, TraverseRec, used to perform
such a traversal. Its first argument is the current MTBDD node m. Initially,
this is the root node of the MTBDD being traversed. The other two arguments,

328 A. Miner and D. Parker

row and col , keep track of the row and column indices respectively. Initially,
these are both zero. Line 2 is where each matrix entry is found. In practice, this
would actually use the matrix entry to perform a matrix-vector multiplication.
We denote by offset(m) the offset labeling the node m. Note that, in essence,
this algorithm is very similar to Enumerate in Figure 7(a).

Empirical results for the application of offset-labeled MTBDDs to several
numerical solution problems can be found in [52, 62]. In practice, a number of
optimizations are applied. For example, since TraverseRec is typically performed
many times (once for every iteration of numerical solution), it is beneficial to
cache some of the results it produces and reuse them each time. See [52, 62]
for the details of these techniques. With these optimizations in place, that the
speed of numerical solution using offset-labeled MTBDDs almost matches that
of explicit methods based on sparse matrices. More importantly, because of the
significant savings in memory made by storing the matrix symbolically, offset-
labeled MTBDDs can usually handle much larger problems. An increase of an
order of magnitude is typical.

4.3 Matrix Diagrams

In [24, 57], algorithms were given to compute the steady-state probabilities of a
CTMC using the Gauss-Seidel iterative method, when the CTMC is represented
with matrix diagrams and the steady-state probabilities are stored explicitly. To
perform an iteration of Gauss-Seidel, we must be able to efficiently enumerate
the columns of the transition rate matrix R. This can be done using matrix di-
agrams, provided the matrix for each node is stored using a sparse format that
allows for efficient column access [24, 57]. Column construction proceeds from the
bottom level nodes of the matrix diagram to the top node. A recursive algorithm
to perform the computation is shown in Figure 21. The algorithm parameters
include the current “level”, k, a level-k matrix diagram node M which encodes
a matrix M, a QROMDD node R with offsets which encodes the desired set of
rows R (i.e., an EV+MDD encoding the lexicographical indexing function ψ for
R), and the specification of the desired column (yk, . . . , y1). Using an ROMDD
with offsets is also possible for R, but leads to a slightly more complex algo-
rithm to handle removed redundant nodes. Algorithm GetColumn returns the
desired column of matrix M over the desired rows only, which is a vector of
dimension |R|. The offset information of R is used to ensure that an element at
row (xK , . . . , x1) in the desired column is returned in position ψ(xK , . . . , x1) of
the column vector. The algorithm assumes that the undesired rows have been
removed from the matrix already using the Submatrix operator.

Since probabilistic systems tend to produce sparse matrices, the algorithm
assumes that the desired column will also be sparse, i.e. that the number of non-
zero elements it contains will be much less than |R|. Hence, a sparse structure
is used for the columns. Since the maximum number of non-zeros present in any
column can be determined in a preprocessing step, we can bound the size of the
sparse vector that is necessary for any call to GetColumn, and use an efficient
array-based structure to represent the sparse columns. This allows for efficient

Symbolic Representations and Analysis of Large Probabilistic Systems 329

GetColumn(k, M, R, yk, . . . , y1)

• R is an MDD with offsets, encoding the set of rows R to consider.
• M is a matrix diagram, where rows /∈ R of the encoded matrix are zero.
• (yk, . . . , y1) is the desired column to obtain.
1: if k = 0 then • Terminal case
2: Return [1];
3: else if ∃ computed-table entry (k, M, R, yk, . . . , y1, col) then
4: Return col;
5: end if
6: col ← 0; • col is a sparse vector
7: for each xk : pairs(M, xk, yk) �= ∅ do
8: for each (r, M′) ∈ pairs(M, xk, yk) do
9: d ← GetColumn(k − 1, M′, child(R, xk), yk−1, . . . , y1);

10: for each i : d[i] �= 0 do
11: col[i + value(R, xk)] ← col[i + value(R, xk)] + r · d[i];
12: end for
13: end for
14: end for
15: Add entry (k, M, R, yk, . . . , y1, col) to computed-table;
16: Return col;

Fig. 21. Recursive algorithm to select a matrix diagram column

implementation of the loop in lines 10 through 12. Note that the algorithm works
correctly for dense matrices, but may not be the most efficient approach.

As with most recursive algorithms for decision diagrams, it is possible (and
in fact likely) that a single top-level call to GetColumn will produce several iden-
tical recursive calls to GetColumn. Thus, GetColumn utilizes a computed-table,
like many of the algorithms for decision diagram operators. The computed-table
is also useful when performing a sequence of column operations, such as during
numerical solution, which requires obtaining each reachable column in turn dur-
ing a single iteration. However, results cannot be stored in the computed-table
indefinitely; doing so would require storage space comparable to explicit sparse
storage of the entire transition rate matrix once all columns have been comput-
ed. The solution to this problem adopted in [24, 57] is to save only the most
recent column result for each node. Note that this allows simplification to lines
3 and 15 in Figure 21, since each matrix diagram node will have at most one
computed-table entry. Other benefits of this approach are that memory usage is
not only relatively small, but fixed: by traversing the matrix diagram once in a
preprocessing step, we can determine the largest column that will be produced
by each node, and allocate a fixed-size computed-table of the appropriate size.
Also, the algorithm GetColumn can be implemented to use the computed-table
space directly, thus avoiding the need to copy vectors into the table.

As an example, the computed-table entries after obtaining column (2, 2, 1) for
the running example are shown in Figure 22(b). Note that the matrix diagram

330 A. Miner and D. Parker

x2

0 4 7 11
x2

0 - 3 6

x3

0 15 24 39

x1

0 - 1 2
x1

0 1 2 3

1.8

1.0

1.0

5.1

1.0

1.7

[31:5.1]

[]

[]

[0:5.1]

[7:5.1]

(a) MDD plus offsets for S ′ (b) Entries accessed by GetColumn

Fig. 22. Obtaining column (2, 2, 1) for the running example

shown corresponds to the relevant portion of the matrix diagram of Figure 16.
The reachable rows are encoded using the MDD with offset values shown in
Figure 22(a). Note that column 1 of the rightmost level-1 matrix diagram node
is empty; thus, the resulting column has no non-zero entries. The only transition
to state (2, 2, 1) is from state (2, 2, 0), with rate 5.1 · 1.0 · 1.0 = 5.1. Since state
(2, 2, 0) has index 24 + 7 + 0 = 31 according to the MDD, the resulting column
has a single non-zero entry at position 31, with value 5.1.

The computed-table must be invalidated at level k whenever the specified
column changes for any component less or equal to k, since columns are con-
structed in a bottom-up fashion. For instance, if we just computed the column
(yK , . . . , y1) and we want to compute the column (yK , . . . , yk+1, y

′
k, yk−1, . . . , y1)

then the computed-table columns at levels K through k must be cleared. Thus,
to improve our chances of hits in the computed-table (by reducing the number
of times we must clear columns), after visiting the reachable column for state
(yK , . . . , y1), we should next visit the reachable column for the state that fol-
lows (yK , . . . , y1) in lexicographic order reading the strings in reverse; that is,
the order obtained when component K is the least significant (fastest changing)
and component 1 is the most significant (slowest changing). Note that this or-
der is not reverse lexicographic order. As described in [24], this order can be
quickly traversed by storing the set of columns using an “upside-down” var-
iable order. That is, if the reachable rows are stored using an MDD R with
variable ordering xK , . . . , x1, and the matrix diagram M is stored using order-
ing (xK , yK), . . . , (x1, y1), then the reachable columns should be stored in an
MDD C with variable ordering y1, . . . , yK . Enumerating the reachable columns
of C as described in Section 2.4 will treat component K as the fastest changing
component.

Symbolic Representations and Analysis of Large Probabilistic Systems 331

Numerical solution can then proceed, using explicit storage for solution vec-
tors (with dimension |R|), MDDs to represent the reachable states for the rows
and columns, and a matrix diagram to represent the transition rate matrix R.
Often, the diagonal elements of Q must be easily accessible during numerical
solution; these can be stored either explicitly in a vector (at a cost of increased
storage requirements), or implicitly using a second matrix diagram (at a cost of
increased computational requirements) [24].

Using matrix diagrams allows for the numerical solution of large models [24,
57]. Storage requirements for the required MDDs and for the matrix diagram
itself are often negligible compared to the requirements for the solution vector;
essentially, all available memory can be used for the solution vector. In practice,
using matrix diagrams instead of explicit sparse matrix storage allows for solu-
tion of models approximately one order of magnitude larger.

5 Discussion and Conclusion

In this paper, we have surveyed a range of symbolic approaches for the gen-
eration, representation and analysis of probabilistic models. We conclude by
summarizing some of their relative strengths and weaknesses and highlighting
areas for future work.

In Section 2, we presented techniques for the representation and manipulation
of state sets using BDDs and MDDs. These are at the heart of non-probabilistic
symbolic model checking approaches and have proved to be extremely successful.
They have also been examined at great length in the literature. Of more interest
here are the extensions of these techniques to handle problems which are specific
to the validation of probabilistic models.

In Sections 3 and 4, we focused on methods to construct, store and manip-
ulate probabilistic models. We have seen that symbolic data structures such
as MTBDDs and matrix diagrams can be successfully applied to this problem,
allowing large, structured models to be constructed quickly and stored compact-
ly. Furthermore, we have seen that, with suitable adaptations and algorithms,
these data structures can be used to perform efficient numerical computation,
as required for analysis of the probabilistic models. It is important to note that
such results are reliant on high-level structure and regularity in these models.
Furthermore, heuristics for state space encoding and variable ordering may need
to be employed, especially where a binary encoding must be chosen. Implemen-
tations of both techniques are available in the tools PRISM [51, 1] and SMART
[22, 2], respectively. These tools have been applied to a wide range of case stud-
ies. Overall, the conclusion is that we can increase by approximately an order of
magnitude the size of problems which can be handled.

While the symbolic techniques discussed here have been successful in this
respect, there remain important challenges for future work. One interesting ar-
ea would be to investigate more closely the similarities and differences between
the various data structures. This paper was broken into two distinct threads,

332 A. Miner and D. Parker

describing the use of first BDDs and MTBDDs and then MDDs and matrix dia-
grams. It is evident that there are many similarities between the two approaches.
There are also important differences though, leaving room for experimentation
and exchanges of ideas.

The two principal issues are as follows. Firstly, the variables in BDDs and
MTBDDs are Boolean, whereas in MDDs and matrix diagrams, they are mul-
ti-valued. For BDDs and MTBDDs, this simplifies both the storage of the data
structure and the operations which are performed on it. However, it is not clear
whether forcing everything to be encoded as Boolean variables is a good idea. It
may be more intuitive or even more efficient to treat models as a small number
of fixed-size submodels, as is the case for MDDs and matrix diagrams. Further-
more, larger variables will generally imply fewer levels to encode a given model,
possibly implying less overhead during manipulation.

The second key difference is that matrix diagrams are implicitly tied to the
Kronecker representation, where large matrices are stored as Kronecker-alge-
braic expressions of smaller matrices. This may well produce a more compact
representation than MTBDDs, particularly where it results in many distinct val-
ues being stored. However, this may lead to more overhead in terms of actually
computing each matrix entry than is necessary for MTBDDs, since floating-point
multiplications are required.

Given these points, it is tempting to compare the two approaches experimen-
tally. However, we feel that including experimental results here is inappropriate
for the following reasons. First, since we are unaware of any single software tool
that incorporates both approaches, it would be necessary to use different tools
for each technique, introducing numerous uncertainties. For example, observed
differences in performance could be due to the implementation quality of the
respective tools, or to the fact that one tool handles a more general (but more
computationally expensive) class of models. Second, without a thorough study
of the differences between the two approaches, it would be unclear whether ex-
perimental differences apply in general, for a particular type of model, or simply
for the models used in the experiments. Finally, results presented here would
essentially duplicate those already published elsewhere. Clearly, further work is
necessary to study the differences between the approaches in detail, in order to
understand how the techniques can best be used in practice (to date, we are
unaware of any work in this area).

There is one issue which unites the two schemes. We have seen that both
usually allow an increase of approximately an order of magnitude in model size
over explicit alternatives. While this is useful, improvement beyond this range is
difficult. This is because, despite compact storage of the state space using BDDs
or MDDs and of the model itself using MTBDDs or matrix diagrams, solution
vectors proportional to the size of the model’s state space must still be stored
explicitly to allow acceptable speed of solution. This generally represents the
limiting factor in terms of memory requirements. Hence, MTBDDs and matrix
diagrams can be used to construct and store much larger models than can at
present feasibly be solved. Attempts to store vectors symbolically using either

Symbolic Representations and Analysis of Large Probabilistic Systems 333

MTBDDs or PDGs have met with only limited success. It appears that the effi-
cient representation for these cases is a much more difficult problem. In fact, it
may be asked whether there is even structure there to exploit. Further research
is needed to clarify this issue.

One possibility for alleviating the above difficulties, though, is by using par-
allel, distributed or out-of-core approaches, as in e.g. [50]. Also, it is also worth
mentioning that these problems apply only to the computation of an exact so-
lution. The ability to represent and manipulate a large model exactly using
symbolic techniques may lead to new and intriguing approximation algorithms.
Indeed, initial efforts in this area have been promising [61]. Much work is needed
in this new area.

References

1. PRISM web site. www.cs.bham.ac.uk/˜dxp/prism.

2. SMART web site. http://www.cs.wm.edu/˜ciardo/SMART/.

3. S. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-
27(6):509–516, 1978.

4. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In R. Alur and T. Henzinger, editors, Proc. 8th International Conference
on Computer Aided Verification (CAV’96), volume 1102 of LNCS, pages 269–276.
Springer, 1996.

5. I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E.Macii, A. Pardo, and F. Somenzi.
Algebraic decision diagrams and their applications. In Proc. International Confer-
ence on Computer-Aided Design (ICCAD’93), pages 188–191, 1993. Also available
in Formal Methods in System Design, 10(2/3):171–206, 1997.

6. C. Baier. On algorithmic verification methods for probabilistic systems. Habilita-
tion thesis, Fakultät für Mathematik & Informatik, Universität Mannheim, 1998.

7. C. Baier and E. Clarke. The algebraic mu-calculus and MTBDDs. In Proc. 5th
Workshop on Logic, Language, Information and Computation (WOLLIC’98), pag-
es 27–38, 1998.

8. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.
Symbolic model checking for probabilistic processes. In P. Degano, R. Gorrieri,
and A. Marchetti-Spaccamela, editors, Proc. 24th International Colloquium on Au-
tomata, Languages and Programming (ICALP’97), volume 1256 of LNCS, pages
430–440. Springer, 1997.

9. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time Markov chains. In J. Baeten and S. Mauw, editors, Proc. 10th
International Conference on Concurrency Theory (CONCUR’99), volume 1664 of
LNCS, pages 146–161. Springer, 1999.

10. B. Bollig and I. Wegner. Improving the variable ordering of OBDDs is NP-com-
plete. IEEE Transactions on Computers, 45(9):993–1006, 1996.

11. M. Bozga and O. Maler. On the representation of probabilities over structured
domains. In N. Halbwachs and D. Peled, editors, Proc. 11th International Con-
ference on Computer Aided Verification (CAV’99), volume 1633 of LNCS, pages
261–273. Springer, 1999.

334 A. Miner and D. Parker

12. K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD pack-
age. In Proc. 27th Design Automation Conference (DAC’90), pages 40–45. IEEE
Computer Society Press, 1990.

13. R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

14. R. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293–318, 1992.

15. P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-effi-
cient Kronecker operations with applications to the solution of Markov models.
INFORMS J. Comp., 12(3):203–222, SUMMER 2000.

16. P. Buchholz and P. Kemper. Numerical analysis of stochastic marked graphs. In 6th
Int. Workshop on Petri Nets and Performance Models (PNPM’95), pages 32–41,
Durham, NC, October 1995. IEEE Comp. Soc. Press.

17. P. Buchholz and P. Kemper. Compact representations of probability distribu-
tions in the analysis of superposed GSPNs. In R. German and B. Haverkort,
editors, Proc. 9th International Workshop on Petri Nets and Performance Models
(PNPM’01), pages 81–90. IEEE Computer Society Press, 2001.

18. P. Buchholz and P. Kemper. Kronecker based matrix representations for large
Markov models. This proceedings, 2003.

19. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proc. 5th Annual IEEE Symposium
on Logic in Computer Science (LICS’90), pages 428–439. IEEE Computer Society
Press, 1990.

20. G. Ciardo, G. Luettgen, and R. Siminiceanu. Efficient symbolic state-space con-
struction for asynchronous systems. In Mogens Nielsen and Dan Simpson, editors,
Application and Theory of Petri Nets 2000 (Proc. 21st Int. Conf. on Applications
and Theory of Petri Nets), LNCS 1825, pages 103–122, Aarhus, Denmark, June
2000. Springer-Verlag.

21. G. Ciardo, G. Luettgen, and R. Siminiceanu. Saturation: an efficient iteration
strategy for symbolic state space generation. In Tiziana Margaria and Wang Yi,
editors, Proc. Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), LNCS 2031, pages 328–342, Genova, Italy, April 2001. Springer-
Verlag.

22. G. Ciardo and A. Miner. SMART: Simulation and Markovian analyser for
reliability and timing. In Proc. 2nd International Computer Performance and
Dependability Symposium (IPDS’96), page 60. IEEE Computer Society Press,
1996.

23. G. Ciardo and A. Miner. Storage alternatives for large structured state spaces. In
R. Marie, B. Plateau, M. Calzarossa, and G. Rubino, editors, Proc. 9th Interna-
tional Conference on Modelling Techniques and Tools for Computer Performance
Evaluation, volume 1245 of LNCS, pages 44–57. Springer, 1997.

24. G. Ciardo and A. Miner. A data structure for the efficient Kronecker solution of
GSPNs. In P. Buchholz and M. Silva, editors, Proc. 8th International Workshop
on Petri Nets and Performance Models (PNPM’99), pages 22–31. IEEE Computer
Society Press, 1999.

25. G. Ciardo and R. Siminiceanu. Using edge-valued decision diagrams for symbolic
generation of shortest paths. In Mark D. Aagaard and John W. O’Leary, editors,
Proc. Fourth International Conference on Formal Methods in Computer-Aided De-
sign (FMCAD), LNCS 2517, pages 256–273, Portland, OR, USA, November 2002.
Springer.

Symbolic Representations and Analysis of Large Probabilistic Systems 335

26. F. Ciesinski and F. Grössner. On probabilistic computation tree logic. This pro-
ceedings, 2003.

27. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-termi-
nal binary decision diagrams: An efficient data structure for matrix representation.
In Proc. International Workshop on Logic Synthesis (IWLS’93), pages 1–15, 1993.
Also available in Formal Methods in System Design, 10(2/3):149–169, 1997.

28. E. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for
large Boolean functions with applications to technology mapping. In Proc. 30th
Design Automation Conference (DAC’93), pages 54–60. ACM Press, 1993. Also
available in Formal Methods in System Design, 10(2/3):137–148, 1997.

29. L. Cloth. Specification and verification of Markov reward models. This proceedings,
2003.

30. O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential
machines based on symbolic execution. In J. Sifakis, editor, Proc. International
Workshop on Automatic Verification Methods for Finite State Systems, volume 407
of LNCS, pages 365–373. Springer, 1989.

31. P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of prob-
abilistic systems by successive refinements. In L. de Alfaro and S. Gilmore, editors,
Proc. Joint International Workshop on Process Algebra and Probabilistic Methods,
Performance Modeling and Verification (PAPM/PROBMIV’01), volume 2165 of
LNCS, pages 39–56. Springer, 2001.

32. I. Davies, W. Knottenbelt, and P. Kritzinger. Symbolic methods for the state space
exploration of GSPN models. In T. Field, P. Harrison, J. Bradley, and U. Harder,
editors, Proc. 12th International Conference on Modelling Techniques and Tools
for Computer Performance Evaluation (TOOLS’02), volume 2324 of LNCS, pages
188–199. Springer, 2002.

33. M. Davio. Kronecker products and shuffle algebra. IEEE Transactions on Com-
puters, C-30(2):116–125, February 1981.

34. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbol-
ic model checking of concurrent probabilistic processes using MTBDDs and the
Kronecker representation. In S. Graf and M. Schwartzbach, editors, Proc. 6th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’00), volume 1785 of LNCS, pages 395–410. Springer, 2000.

35. S. Donatelli. Superposed stochastic automata: A class of stochastic Petri nets
amenable to parallel solution. Performance Evaluation, 18:21–36, 1993.

36. R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic mod-
el checking in CCS. In K. Larsen and A. Skou, editors, Proc. 3rd International
Workshop on Computer Aided Verification (CAV’91), volume 575 of LNCS, pages
203–213. Springer, 1991.

37. P. Fernandes, B. Plateau, and W. Stewart. Efficient descriptor-vector multiplica-
tion in stochastic automata networks. Journal of the ACM, 45(3):381–414, 1998.

38. M. Fujita, Y. Matsunaga, and T. Kakuda. On the variable ordering of binary deci-
sion diagrams for the application of multi-level synthesis. In European conference
on Design automation, pages 50–54, 1991.

39. G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Probabilistic analysis of large
finite state machines. In Proc. 31st Design Automation Conference (DAC’94),
pages 270–275. ACM Press, 1994.

40. G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian analysis of large finite
state machines. IEEE Trans. on CAD, 15(12):1479–1493, 1996.

41. H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, 6(5):512–535, 1994.

336 A. Miner and D. Parker

42. V. Hartonas-Garmhausen. Probabilistic Symbolic Model Checking with Engineering
Models and Applications. PhD thesis, Carnegie Mellon University, 1998.

43. H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On the
use of MTBDDs for performability analysis and verification of stochastic systems.
Journal of Logic and Algebraic Programming: Special Issue on Probabilistic Tech-
niques for the Design and Analysis of Systems, 56(1-2):23–67, 2003.

44. H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision di-
agrams to represent and analyse continuous time Markov chains. In B. Plateau,
W. Stewart, and M. Silva, editors, Proc. 3rd International Workshop on Numerical
Solution of Markov Chains (NSMC’99), pages 188–207. Prensas Universitarias de
Zaragoza, 1999.

45. H. Hermanns and M. Siegle. Bisimulation algorithms for stochastic process alge-
bras and their BDD-based implementation. In J.-P. Katoen, editor, Proc. 5th Inter-
national AMAST Workshop on Real-Time and Probabilistic Systems (ARTS’99),
volume 1601 of LNCS, pages 244–264. Springer, 1999.

46. J. Hillston and L. Kloul. An efficient Kronecker representation for PEPA mod-
els. In Proc. Joint International Workshop on Process Algebra and Probabilistic
Methods, Performance Modeling and Verification (PAPM/PROBMIV’01), pages
120–135. Springer-Verlag, September 2001.

47. T. Kam, T. Villa, R.K. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued
decision diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62,
1998.

48. J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic
CTMC model checking. In L. de Alfaro and S. Gilmore, editors, Proc. Joint In-
ternational Workshop on Process Algebra and Probabilistic Methods, Performance
Modeling and Verification (PAPM/PROBMIV’01), volume 2165 of LNCS, pages
23–38. Springer, 2001.

49. M. Kuntz and M. Siegle. Deriving symbolic representations from stochastic process
algebras. In H. Hermanns and R. Segala, editors, Proc. 2nd Joint International
Workshop on Process Algebra and Probabilistic Methods, Performance Modeling
and Verification (PAPM/PROBMIV’02), volume 2399 of LNCS, pages 188–206.
Springer, 2002.

50. M. Kwiatkowska, R. Mehmood, G. Norman, and D. Parker. A symbolic out-of-core
solution method for Markov models. In Proc. Workshop on Parallel and Distrib-
uted Model Checking (PDMC’02), volume 68.4 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2002.

51. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic mod-
el checker. In T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Proc. 12th
International Conference on Modelling Techniques and Tools for Computer Perfor-
mance Evaluation (TOOLS’02), volume 2324 of LNCS, pages 200–204. Springer,
2002.

52. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. In J.-P. Katoen and P. Stevens, editors,
Proc. 8th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’02), volume 2280 of LNCS, pages 52–66. Spring-
er, 2002.

53. M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model checking
of concurrent probabilistic systems using MTBDDs and Simplex. Technical Report
CSR-99-1, School of Computer Science, University of Birmingham, 1999.

Symbolic Representations and Analysis of Large Probabilistic Systems 337

54. M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a random-
ized distributed consensus protocol using Cadence SMV and PRISM. In G. Berry,
H. Comon, and A. Finkel, editors, Proc. 13th International Conference on Comput-
er Aided Verification (CAV’01), volume 2102 of LNCS, pages 194–206. Springer,
2001.

55. C. Lee. Representation of switching circuits by binary-decision programs. Bell
System Technical Journal, 38:985–999, 1959.

56. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
57. A. Miner. Data Structures for the Analysis of Large Structured Markov Chains.

PhD thesis, Department of Computer Science, College of William & Mary, Virgin-
ia, 2000.

58. A. Miner. Efficient solution of GSPNs using canonical matrix diagrams. In R. Ger-
man and B. Haverkort, editors, Proc. 9th International Workshop on Petri Nets
and Performance Models (PNPM’01), pages 101–110. IEEE Computer Society
Press, 2001.

59. A. Miner. Efficient state space generation of GSPNs using decision diagrams. In
Proc. 2002 Int. Conf. on Dependable Systems and Networks (DSN 2002), pages
637–646, Washington, DC, June 2002.

60. A. Miner and G. Ciardo. Efficient reachability set generation and storage using
decision diagrams. In S. Donatelli and J. Kleijn, editors, Proc. 20th International
Conference on Application and Theory of Petri Nets (ICATPN’99), volume 1639
of LNCS, pages 6–25. Springer, 1999.

61. A. Miner, G. Ciardo, and S. Donatelli. Using the exact state space of a Markov
model to compute approximate stationary measures. In Proc. 2000 ACM SIGMET-
RICS Conf. on Measurement and Modeling of Computer Systems, pages 207–216,
Santa Clara, CA, June 2000.

62. D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham, 2002.

63. E. Pastor and J. Cortadella. Efficient encoding schemes for symbolic analysis of
Petri nets. In Design Automation and Test in Europe (DATE’98), Paris, February
1998.

64. E. Pastor, J. Cortadella, and M. Peña. Structural methods to improve the sym-
bolic analysis of Petri nets. In 20th International Conference on Application and
Theory of Petri Nets, Williamsburg, June 1999.

65. B. Plateau. On the stochastic structure of parallelism and synchronisation mod-
els for distributed algorithms. In Proc. 1985 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, volume 13(2) of Performance
Evaluation Review, pages 147–153, 1985.

66. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Proc. International Conference on Computer-Aided Design (ICCAD’93), pages 42–
47, 1993.

67. M. Siegle. Compositional representation and reduction of stochastic labelled tran-
sition systems based on decision node BDDs. In D. Baum, N. Mueller, and R. Roe-
dler, editors, Proc. Messung, Modellierung und Bewertung von Rechen- und Kom-
munikationssystemen (MMB’99), pages 173–185. VDE Verlag, 1999.

68. M. Siegle. Behaviour analysis of communication systems: Compositional model-
ling, compact representation and analysis of performability properties. Habilitation
thesis, Universität Erlangen-Nürnberg, 2002.

69. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton, 1994.

338 A. Miner and D. Parker

70. A. Xie and A. Beerel. Symbolic techniques for performance analysis of timed cir-
cuits based on average time separation of events. In Proc. 3rd International Sympo-
sium on Advanced Research in Asynchronous Circuits and Systems (ASYNC’97),
pages 64–75. IEEE Computer Society Press, 1997.

71. D. Zampunièris. The Sharing Tree Data Structure, Theory and Applications in
Formal Verification. PhD thesis, Department of Computer Science, University of
Namur, Belgium, 1997.

