

2

PRISM – An overview

•  PRISM is a probabilistic model checker
−  automatic verification of systems with stochastic behaviour
−  e.g. due to unreliability, uncertainty, randomisation, …

•  Construction/analysis of probabilistic models…
−  discrete- and continuous-time Markov chains, Markov

decision processes, probabilistic timed automata
−  modelling language, case study repository, benchmark suite

•  Verification of properties in probabilistic temporal logics…
−  PCTL, CSL, LTL, PCTL*, quantitative extensions, costs/rewards

•  Various model checking engines and techniques…
−  symbolic (multi-terminal BDDs), explicit-state data structures,  

symmetry reduction, quantitative abstraction refinement,  
simulation-based (approximate/statistical model checking), … 

3

PRISM - Probabilistic models

•  Discrete-time Markov chains (DTMCs)
−  discrete states + probability
−  for: randomisation, unreliable communication media, …

•  Continuous-time Markov chains (CTMCs)
−  discrete states + exponentially distributed delays
−  for: component failures, job arrivals, molecular reactions, …

•  Markov decision processes (MDPs)
−  in fact: probabilistic automata [Segala]
−  probability + nondeterminism (e.g. for concurrency)
−  for: randomised distributed algorithms, security protocols, …

•  Probabilistic timed automata (PTAs) [new in PRISM 4.0]
−  probability, nondeterminism + real-time
−  for wireless comm. protocols, embedded control systems, …

4

PRISM – Property specification

•  Temporal logic-based property specification language
−  subsumes PCTL, CSL, probabilistic LTL, PCTL*, …

•  Simple examples:
−  P≤0.01 [F “crash”] – “the probability of a crash is at most 0.01”
−  S>0.999 [“up”] – “long-run probability of availability is >0.999”

•  Usually focus on quantitative (numerical) properties:
−  P=? [F “crash”]  

“what is the probability  
of a crash occurring?”

−  then analyse trends in 
quantitative properties 
as system parameters vary

5

PRISM – Property specification

•  Properties can combine numerical + exhaustive aspects
−  Pmax=? [F≤10 “fail”] – “worst-case probability of a failure

occurring within 10 seconds, for any possible scheduling of
system components”

−  P=? [G≤0.02 !“deploy” {“crash”}{max}] - “the maximum
probability of an airbag failing to deploy within 0.02s,  
from any possible crash scenario”

•  Reward-based properties (rewards = costs = prices)
−  R{“time”}=? [F “end”] – “expected algorithm execution time”
−  R{“energy”}max=? [C≤7200] – “worst-case expected energy

consumption during the first 2 hours”

•  Properties can be combined with e.g. arithmetic operators
−  e.g. P=? [F fail1] / P=? [F failany] – “conditional failure prob.”

6

Probabilistic timed automata (PTAs)

•  Probability + nondeterminism + real-time
−  timed automata + discrete probabilistic choice, or…
−  probabilistic automata + real-valued clocks

•  PTA example: message transmission over faulty channel

“init”
x≤2

0.9

retry

“done”
true

“lost”
x≤5

“fail”
true

quit

send
x≥3

x:=0

0.1
x≥1∧tries≤N

tries:=0

tries>N

x:=0,  
tries:=tries+1

States
•  locations + data variables
Transitions
•  guards and action labels
Real-valued clocks
•  state invariants, guards, resets

Probability
•  discrete probabilistic choice

7

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

8

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

Basic ingredients:
•  modules
•  variables
•  commands

9

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

New for PTAs:
•  clocks
•  invariants
•  guards/resets

Basic ingredients:
•  modules
•  variables
•  commands

10

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

New for PTAs:
•  clocks
•  invariants
•  guards/resets

Basic ingredients:
•  modules
•  variables
•  commands

Also:
•  rewards 
 (i.e. costs, prices)
•  parallel composition

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

11

Model checking PTAs in PRISM

•  Properties for PTAs:
−  min/max probability of reaching X (within time T)
−  min/max expected cost/reward to reach X

 (for “linearly-priced” PTAs, i.e. reward gain linear with time)

•  PRISM has two different PTA model checking techniques…

•  “Digital clocks” – conversion to finite-state MDP
−  preserves min/max probability + expected cost/reward/price
−  (for PTAs with closed, diagonal-free constraints)
−  efficient, in combination with PRISM’s symbolic engines

•  Quantitative abstraction refinement
−  zone-based abstractions of PTAs using stochastic games
−  provide lower/upper bounds on quantitative properties
−  automatic iterative abstraction refinement

12

Also new in PRISM 4.0

•  Discrete-event simulation engine
−  newly rewritten for PRISM 4.0

•  Approximate/statistical model checking
−  approximate results (and confidence interval) for e.g. P=? […]
−  acceptance sampling (SPRT) for approximating e.g. P<p […]
−  offers improved scalability for fully-probabilistic models

•  Generation of optimal strategies (schedulers, adversaries)
−  for MDPs (and, via digital clocks, for PTAs)

•  New components for developers
−  explicit-state probabilistic model checking library
−  quantitative abstraction refinement component
−  discrete-event simulation engine

13

The PRISM benchmark suite

•  PRISM models are widely used for testing/benchmarking
−  but there are many case studies in several locations
−  can be hard to find the right type of examples for testing

•  The PRISM benchmark suite
−  collection of probabilistic model checking benchmarks
−  designed to make it easy to test/evaluate/compare tools
−  currently, approx. 20 models, of various types and sizes
−  wide range of model checking properties, grouped by type
−  PRISM can also export built models in various formats

•  See: www.prismmodelchecker.org/benchmarks

14

More information…

•  More info and resources at: www.prismmodelchecker.org
−  download PRISM (free, open source, runs on all major OSs)
−  documentation, tutorials, case studies
−  related papers, teaching material, benchmarks

•  Tool demo session: Tue pm
−  or just ask any time…

•  Coming soon:
−  probabilistic counterexample generation
−  multi-objective probabilistic model checking
−  assume-guarantee model checking
−  and more…

