

Verification with Stochastic Games: Advances and Challenges

Dave Parker

University of Birmingham

iFM 2020

Verification with Stochastic Games: Advances and Challenges

Dave Parker

University of Birmingham

Joint work with:

Gabriel Santos, Gethin Norman, Marta Kwiatkowska, ...

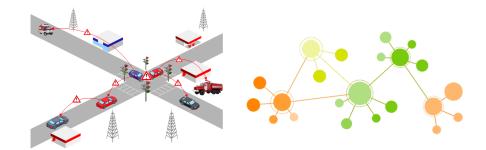
ERC Advanced Grant FUN2MODEL

Verification of stochastic systems

Formal verification needs stochastic modelling

faulty sensors/actuators

unpredictable/unknown environments



randomised protocols

Verification with stochastic games

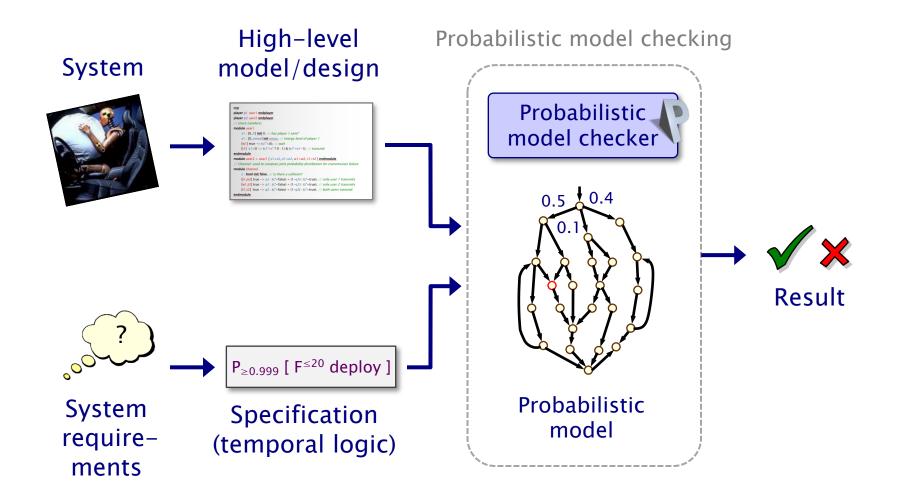
- How do we verify stochastic systems with...
 - multiple autonomous agents acting concurrently
 - competitive or collaborative behaviour between agents, possibly with differing/opposing goals
 - e.g. security protocols, algorithms for distributed consensus, energy management, autonomous robotics, auctions

- This talk: verification with stochastic multi-player games
 - verification (and synthesis) of strategies that are robust in adversarial settings and stochastic environments
 - models, logics, algorithms, tools, examples

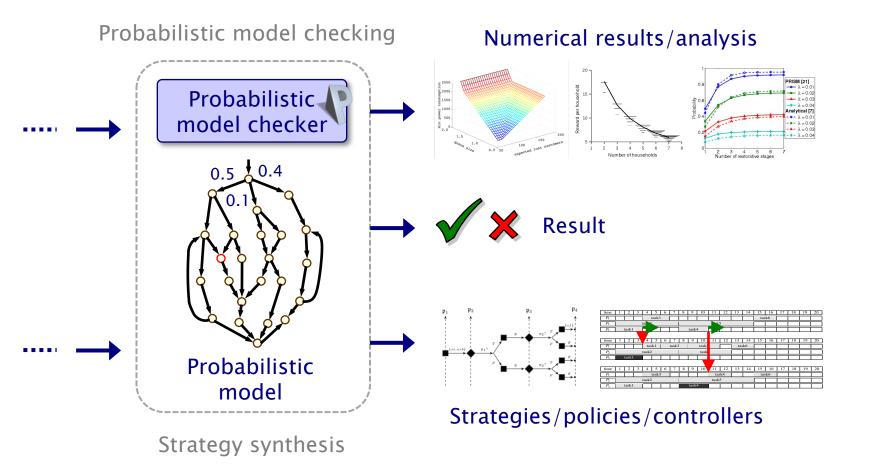
Overview

- Probabilistic model checking
 - Markov decision processes (MDPs)
 - example: robot navigation
- Stochastic multi-player games
 - example: energy management
- Concurrent stochastic games
 - example: investor models
- Equilibria-based properties
 - example: multi-robot coordination
- Future challenges

Probabilistic model checking

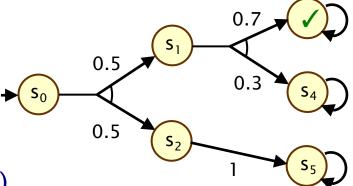


Probabilistic model checking



Probabilistic models

- Discrete-time Markov chains



b

0.3

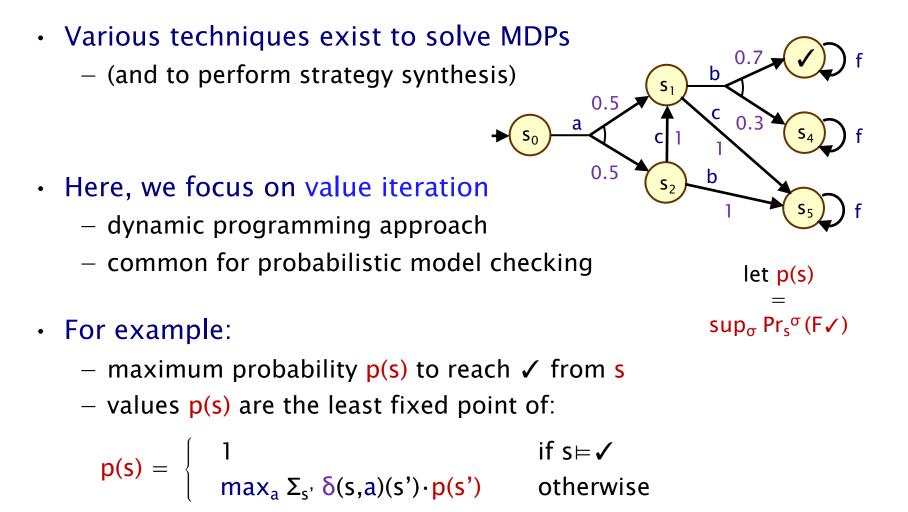
0.5

0.5

а

- Markov decision processes (MDPs)
 - strategies (or policies) resolve actions based on history
 - e.g. what is the <u>maximum</u> probability of reaching ✓ achievable by any strategy <u>o</u>?
 - and what is an optimal strategy?
- Formally:
 - we write: $sup_{\sigma} Pr_{s}^{\sigma}(F \checkmark)$
 - where Pr_s^{σ} denotes the probability from state s under strategy σ

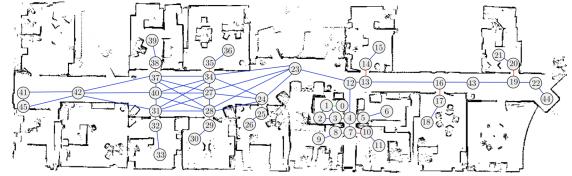
Solving MDPs



- basis for iterative numerical computation

Example: Robot navigation

- Robot planning with probabilistic guarantees
 - MDP models navigation in (learnt) uncertain environment
 - temporal logic for formal robot task specification
 - $\neg zone_3 U (room_1 \land (F room_4 \land F room_5) (co-safe LTL)$
 - strategy synthesis performed to generate controllers
 - also: costs & rewards, multi-objective, ..
 - PRISM built into a ROS module
 - · 100s of hrs of autonomous robot deployment

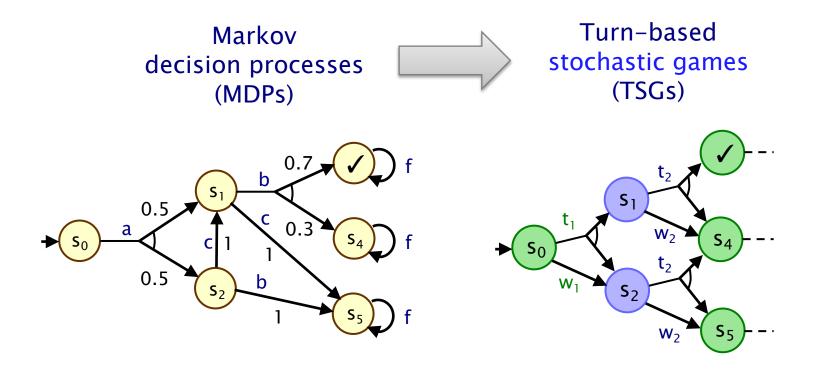


[IROS'14,IJCAI'15,ICAPS'17,IJRR'19]

Stochastic games

Stochastic multi-player games

- Stochastic multi-player games
 - strategies + probability + multiple players
 - for now: turn-based (player i controls states S_i)



Property specification: rPATL

- rPATL (reward probabilistic alternating temporal logic)
 - branching-time temporal logic for stochastic games
- CTL, extended with:
 - coalition operator $\langle\langle C \rangle\rangle$ of ATL
 - probabilistic operator P of PCTL
 - generalised (expected) reward operator R from PRISM
- In short:
 - zero-sum, probabilistic reachability + expected total reward
- Example:
 - $\langle \langle \{robot_1, robot_3\} \rangle \rangle P_{>0.99} [F^{\leq 10} (goal_1 \lor goal_3)]$
 - "robots 1 and 3 have a strategy to ensure that the probability of reaching the goal location within 10 steps is >0.99, regardless of the strategies of other players"

Model checking rPATL

- Main task: checking individual P and R operators
 - reduces to solving a (zero-sum) stochastic 2-player game
 - e.g. max/min reachability probability: $\sup_{\sigma_1} \inf_{\sigma_2} \Pr_s^{\sigma_1,\sigma_2}(F \checkmark)$
 - complexity: $NP \cap cONP$ (if we omit some reward operators)

- We again use value iteration
 - values p(s) are the least fixed point of:

$$p(s) = \begin{cases} 1 & \text{if } s \vDash \checkmark \\ \max_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \nvDash \checkmark \text{ and } s \in S_1 \\ \min_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \nvDash \checkmark \text{ and } s \in S_2 \end{cases}$$

- and more: graph-algorithms, sequences of fixed points, ...

S₄

 t_2

W₂

S₁

 \mathbf{S}_2

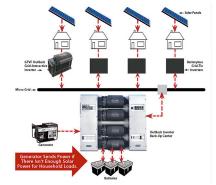
PRISM-games

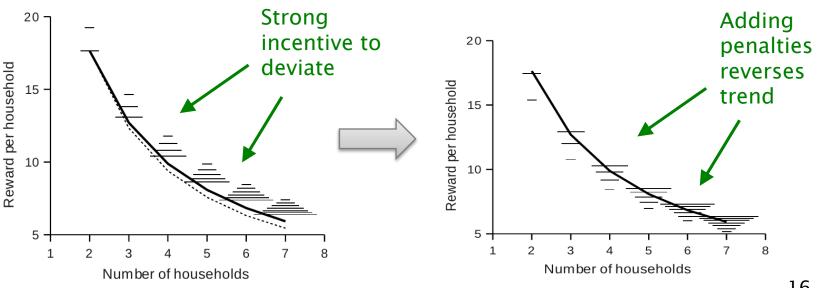
- PRISM-games: prismmodelchecker.org/games
 - extension of PRISM modelling language (see later)
 - implementation in explicit engine

- prototype symbolic (MTBDD) version also available
- Example application domains
 - security: attack-defence trees; DNS bandwidth amplification
 - self-adaptive software architectures
 - autonomous urban driving
 - human-in-the-loop UAV mission planning
 - collective decision making and team formation protocols
 - energy management protocols

Example: Energy management

- Demand management protocol for microgrids
 - random back-off to minimise peaks
- Stochastic game model + rPATL
 - exposes protocol weakness (incentive for clients to act selfishly)
 - propose/verify simple fix using penalties

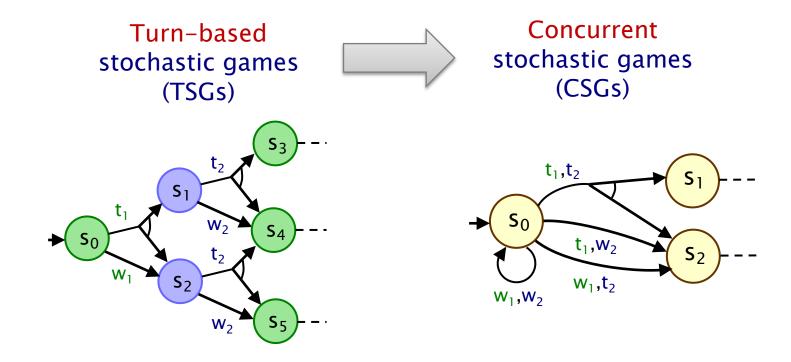




Concurrent stochastic games

Concurrent stochastic games

- Motivation:
 - more realistic model of components operating concurrently, making action choices <u>without</u> knowledge of others



Concurrent stochastic games

- Concurrent stochastic games (CSGs)
 - players choose actions concurrently & independently
 - jointly determines (probabilistic) successor state
 - $\ \delta: S \times (A_1 \cup \{\bot\}) \times \ldots \times (A_n \cup \{\bot\}) \rightarrow Dist(S)$
 - generalises turn-based stochastic games
- We again use the logic rPATL for properties
- Same overall rPATL model checking algorithm [QEST'18]
 - key ingredient is now solving (zero-sum) 2-player CSGs
 - this problem is in PSPACE
 - note that optimal strategies are now randomised

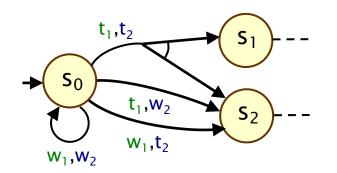
rPATL model checking for CSGs

- We again use a value iteration based approach
 - e.g. max/min reachability probabilities
 - $\sup_{\sigma_1} \inf_{\sigma_2} \Pr_s^{\sigma_1,\sigma_2}(F \checkmark)$ for all states s
 - values p(s) are the least fixed point of:

$$\mathbf{p(s)} = \begin{cases} 1 & \text{if } s \vDash \checkmark \\ \text{val}(\mathsf{Z}) & \text{if } s \nvDash \checkmark \end{cases}$$

- where Z is the matrix game with $z_{ij} = \Sigma_{s'} \delta(s,(a_i,b_j))(s') \cdot p(s')$

- so each iteration requires solution of a matrix game for each state (LP problem of size |A|, where A = action set)



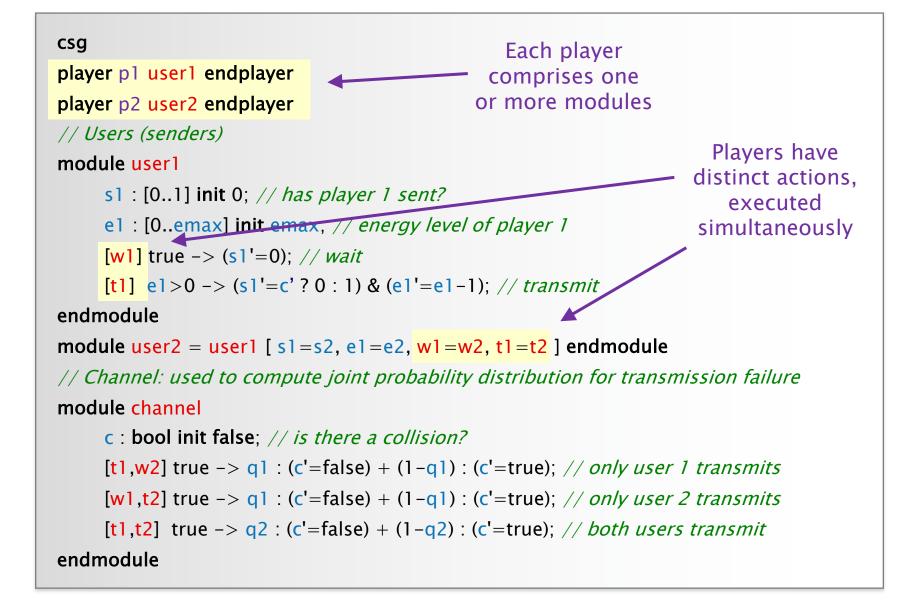
CSGs in PRISM-games

- CSG model checking implemented in PRISM-games 3.0
- Extension of PRISM modelling language
 - (see next slide)
- Explicit engine implementation
 - plus LP solvers for matrix game solution
 - this is the main bottleneck
 - experiments with CSGs up to ~3 million states
- Case studies:
 - future markets investor, trust models for user-centric networks, intrusion detection policies, jamming radio systems

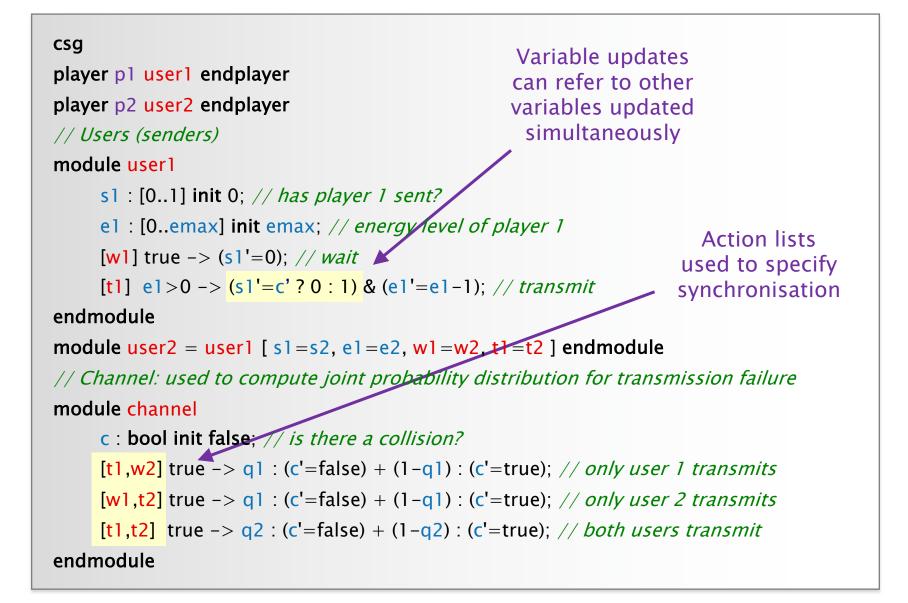
CSGs in PRISM-games 3.0

```
csg
player pl userl endplayer
                                                                Example model
player p2 user2 endplayer
                                                                (medium access
// Users (senders)
                                                                     control)
module user1
     s1 : [0..1] init 0; // has player 1 sent?
     e1 : [0..emax] init emax; // energy level of player 1
     [w]] true -> (s1'=0); // wait
     [t] e_1 > 0 -> (s_1'=c'? 0:1) \& (e_1'=e_1-1); // transmit
endmodule
module user2 = user1 [s1=s2, e1=e2, w1=w2, t1=t2] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
     c : bool init false; // is there a collision?
     [t],w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
     [w1,t2] true -> q1: (c'=false) + (1-q1): (c'=true); // only user 2 transmits
     [t1,t2] true \rightarrow q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule
```

CSGs in PRISM-games 3.0



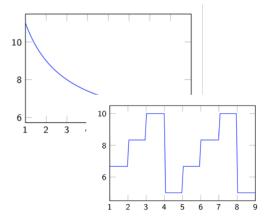
CSGs in PRISM-games 3.0



Example: Future markets investor

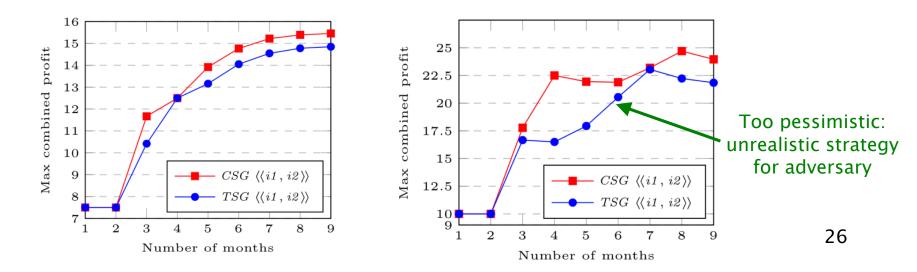
- Model of interactions between:
 - stock market, evolves stochastically
 - two investors i_1 , i_2 decide when to invest
 - market decides whether to bar investors
- Modelled as a 3-player CSG

- investing/barring decisions are simultaneous
- profit reduced for simultaneous investments
- market cannot observe investors' decisions
- Analysed with rPATL model checking & strategy synthesis
 - distinct profit models considered: 'normal market', 'later cash-ins' and 'later cash-ins with fluctuation'
 - comparison between TSG and CSG models



Example: Future markets investor

- Example rPATL query:
 - ((investor₁,investor₂)) $R_{max=?}^{profit_{1,2}}$ [F finished_{1,2}]
 - i.e. maximising joint profit
- Results: with (left) and without (right) fluctuations
 - optimal (randomised) investment strategies synthesised
 - CSG yields more realistic results (market has less power due to limited observation of investor strategies)



Equilibria-based properties

Equilibria-based properties

- Motivation:
 - players/components may have distinct objectives but which are not directly opposing (zero-sum)

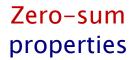
 $\langle (robot_1) \rangle_{max=?} P [F^{\leq k} goal_1]$

 $\langle (robot_1:robot_2) \rangle_{max=?}$ (P [F^{$\leq k$} goal₁]+P [F $\leq k$ goal₂])

- We use Nash equilibria (NE)
 - no incentive for any player to unilaterally change strategy
 - actually, we use ϵ -NE, which always exist for CSGs
 - a strategy profile $\sigma = (\sigma_{1,...}, \sigma_n)$ for a CSG is an ϵ -NE for state s and objectives $X_1, ..., X_n$ iff:
 - $Pr_{s}^{\sigma}(X_{i}) \geq sup \{ Pr_{s}^{\sigma'}(X_{i}) \mid \sigma' = \sigma_{-i}[\sigma_{i}'] \text{ and } \sigma_{i}' \in \Sigma_{i} \} \varepsilon \text{ for all } i$

Social-welfare Nash equilibria

- Key idea: formulate model checking (strategy synthesis) in terms of social-welfare Nash equilibria (SWNE)
 - these are NE which maximise the sum $E_s^{\sigma}(X_1) + \dots E_s^{\sigma}(X_n)$
 - i.e., optimise the players combined goal
- We extend rPATL accordingly



Equilibria-based properties

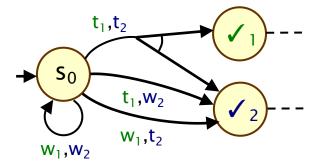
 $\langle (robot_1) \rangle_{max=?} P [F^{\leq k} goal_1]$

find a robot 1 strategy which maximises the probability of it reaching its goal, regardless of robot 2 $\langle (robot_1:robot_2) \rangle_{max=?}$ (P [F^{$\leq k$} goal₁]+P [F $\leq k$ goal₂])

find (SWNE) strategies for robots 1 and 2 where there is no incentive to change actions and which maximise joint goal probability

Model checking for extended rPATL

- Model checking for CSGs with equilibria
 - first: 2-coalition case [FM'19]
 - needs solution of bimatrix games
 - (basic problem is EXPTIME)
 - we adapt a known approach using labelled polytopes, and implement with an SMT encoding



• We further extend the value iteration approach:

$$p(s) = \begin{cases} (1,1) & \text{if } s \vDash \sqrt{1} \wedge \sqrt{2} \\ (p_{max}(s,\sqrt{2}),1) & \text{if } s \vDash \sqrt{1} \wedge \sqrt{2} \\ (1,p_{max}(s,\sqrt{1})) & \text{if } s \vDash \sqrt{1} \wedge \sqrt{2} \\ \text{val}(Z_1,Z_2) & \text{if } s \vDash \sqrt{1} \wedge \sqrt{2} \end{cases} \text{ standard MDP analysis}$$

- where Z_1 and Z_2 encode matrix games similar to before

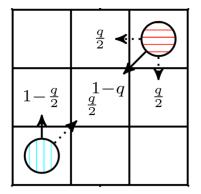
PRISM-games support

- Implementation in PRISM-games 3.0
 - bimatrix games solved using Z3/Yices encoding
 - optimised filtering of dominated strategies
 - scales up to CSGs with ~2 million states
 - extended to n-coalition case in [QEST'20]

- Applications & results
 - robot navigation in a grid, medium access control, Aloha communication protocol, power control
 - SWNE strategies outperform those found with rPATL
 - ϵ -Nash equilibria found typically have ϵ =0

Example: multi-robot coordination

- 2 robots navigating an I x I grid
 - start at opposite corners, goals are to navigate to opposite corners
 - obstacles modelled stochastically: navigation in chosen direction fails with probability q

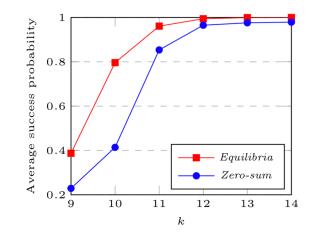


32

 We synthesise SWNEs to maximise the average probability of robots reaching their goals within time k

 $- \langle (robot1:robot2) \rangle_{max=?} (P [F^{\leq k} goal_1] + P [F^{\leq k} goal_2])$

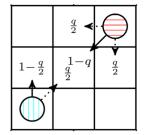
- Results (10 x 10 grid)
 - better performance obtained than using zero-sum methods, i.e., optimising for robot 1, then robot 2

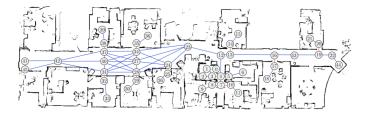


Future challenges

Challenges

- Partial information/observability
 - we need realisable strategies
 - leverage progress on POMDPs?
- Managing model uncertainty
 - integration with learning
 - robust verification
- Accuracy of model checking results
 - value iteration improvements; exact methods
- Scalability & efficiency
 - e.g. symbolic methods, abstraction, symmetry reduction
 - sampling-based strategy synthesis methods





PRISM-games

- See the PRISM-games website for more info
 - prismmodelchecker.org/games/
 - documentation, examples, case studies, papers
 - downloads: 🗯 Å 手 + CAV'20 artefact VM
 - open source (GPLV2): GitHub