> A |
77 % N
74 n ("\i‘f
P R e
y)
a= AD W%
|| ARDUA| AL
| ARD! TA (e
=) m}/;i = J‘,“

=3

Automatic Verification of
Competitive Stochastic Systems

Dave Parker

University of Birmingham

Joint work with:

Taolue Chen, Vojtéch Forejt, Marta Kwiatkowska, Aistis Simaitis

University of Liverpool, May 2012

Verifying stochastic systems

- Quantitative verification
— probability, time, costs/rewards, ...
— in particular: systems with stochastic behaviour
— e.g. due to unreliability, uncertainty, randomisation, ...
- 8 — often: subtle interplay between probability/nondeterminism

- Automated verification
— probabilistic model checking
— tool support: PRISM model checker
— techniques for improving efficiency, scalability

AR

Practical applications

— wireless communication protocols, security protocols,
systems biology, DNA computing, robotic planning, ...

Adding competitive behaviour

Open systems

— need to account for the behaviour of components not under
our control, possibly with differing/opposing goals

— giving rise to competitive behaviour

- - Many occurrences in practice
— e.g. security protocols, algorithms for distributed consensus,
energy management or sensor network co-ordination
Natural to adopt a game-theoretic view
— widely used in computer science, economics, ...

- This talk

— verifying systems with competitive and stochastic behaviour
— stochastic multi-player games

AR

— temporal logic, model checking, tool support, case studies

Overview

Probabilistic model checking

— probabilistic models, property specifications

- Stochastic multi-player games (SMGs)
= — the model, probability spaces, rewards

Property specification: rPATL
— syntax, semantics, subtleties

rPATL model checking

3 — algorithm, numerical computation, tool support

- Case study: energy management in microgrids

AN

System

System
require-
ments

Probabilistic model checking

Probabilistic model
e.g. Markov chain,
Markov decision process

Probabilistic
temporal logic
specification
e.g. PCTL, CSL, LTL, ...

—

Probabilistic

model checker

e.g. PRISM

—) Result

v X

~ Quantitative
results

)

) Counter-
example

owa 3

Probabilistic model checking

Property specifications based on temporal logic
— PCTL, CSL, probabilistic LTL, PCTL*, ...

- Simple examples:
iz — P_p.01 [F “crash”] - “the probability of a crash is at most 0.01”
— S.0999 [“up”] - “long-run probability of availability is >0.999"

Usually focus on quantitative (numerical) properties:

— P_, [F “crash”]
“what is the probability
of a crash occurring?”

-

o
(3]

— then analyse trends in
quantitative properties
as system parameters vary

Probability of choosing X

oo
v

Probabilistic model checking

- Typically combine numerical + exhaustive aspects

. — P2 [F=10 “fail”] - “worst-case probability of a failure
& occurring within 10 seconds, for any possible scheduling of
- system components”

= — P_,[G=0-02 I“deploy” {“crash”{max}] - “the maximum
¥ probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

— model checking: graph analysis + numerical solution + ...

Reward-based properties (rewards = costs = prices)

— Reimen— [F “end”] - “expected algorithm execution time”

AN

— Reenergyimax=7 [CS7_200] - “V\{orst—case expected energy
consumption during the first 2 hours”

Stochastic multi-player games

- Stochastic multi-player game (SMGs)
— probability + nondeterminism + multiple players

.~ - A (turn-based) SMG is a tuple (TT, S, <Sp..r, A, A, L):
— TTis a set of n players
s — Sis a (finite) set of states
- — (S)icr is a partition of S
— Ais a set of action labels
— A :S X A — Dist(S) is a (partial)
transition probability function
— L:S — 277 is a labelling with
atomic propositions from AP

Notation:
— A(s) denotes available actions in state A

Paths, strategies + probabilities

Path: is an (infinite) sequence of connected states in SMG
— represents a system execution (i.e. one possible behaviour)

Strategy for player i: resolves choices in S, states
- — based on execution history, i.e. o, : (SA)*S, — Dist(A)

— 2, denotes the set of all strategies for player i

Strategy profile: strategies for all players: o=(o0,,...,0,)

— can be: deterministic (pure), o
memoryless, finite-memory, ... S0

O O O

5 S
: Probability measure over paths: Pr.° S

— for strategy profile o, over set of all paths Path, from s
— any (w-)regular property over states/actions is measurable
— E.9[X] : expected value of measurable function X : Path, — R_,

Rewards

- Rewards (or costs)
) — real-valued quantities assigned to states (and/or transitions)
- Wide range of possible uses:

— elapsed time, energy consumption, size of message queue,
number of messages successfully delivered, net profit, ...

- We use:
— state rewards: r : S — N (but can generalise to Q_)
— expected cumulative reward until a target set T is reached

- 3 interpretations of rewards
— 3 reward types * € {,c,0}, differing where T is not reached
— reward is assumed to be infinite, cumulated sum, zero, resp.
— o0: e.g. expected time for algorithm execution
— C: e.g. expected resource usage (energy, messages sent, ...)
— 0: e.g. reward incentive awarded on algorithm completion

AR

Property specification: rPATL

New temporal logic rPATL:
— reward probabilistic alternating temporal logic

- CTL, extended with:
el — coalition operator «(C)) of ATL
3 — probabilistic operator P of PCTL
— generalised version of reward operator R from PRISM

Example:
— ({1,2P) P_g oy [F<'0error]
- — “players 1 and 2 have a strategy to ensure that the probability

of an error occurring within 10 steps is less than 0.01,
regardless of the strategies of other players”

rPATL syntax

- Syntax:
™ du=Tlal-d|dAdd|UOHP W] | KCHRT, [F*d]
5 Wu=Xb US| Fkd |G
- - where:
e — a€AP is an atomic proposition, C<TT is a coalition of players,

<E{<,<,>,=}, q€[0,1]nQ, xeQ. 4, k € NU{o}
r is a reward structure and *€{0,00,c} is a reward type

¢ (CHP, o[W]

— “players in coalition C have a strategy to ensure that the
probability of path formula @ being true satisfies < q,
regardless of the strategies of other players”

» (CHRT 4y [FP]

— “players in coalition C have a strategy to ensure that the
expected reward r to reach a ¢-state (type *) satisfies < X,
regardless of the strategies of other players”

rPATL semantics

- Semantics for most operators is standard
- Just focus on P and R operators...

s — present using reduction to a stochastic 2-player game
— (as for later model checking algorithms)

- Coalition game G, for SMG G and coalition C<TI
— 2-player SMG where C and TT\C collapse to players 1 and 2

- {C)HP_,[W] is true in state s of G iff:
— in coalition game G¢:
— d0,€2, such that Vo,€%, . Pr.%1%2 () X @

- Semantics for R operator defined similarly...

Examples

<<O>>PZ%[F V]
true in initial state

CONP.y [F V]

Examples

COMP.ylF v]

true in initial state

KOMP.y, [F V]
false in initial state

Examples

COMP.ylF v]

true in initial state

CONP.y [F V]

false in initial state

true in initial state

Equivalences + extensions

- Two useful equivalences:

. <<C>>P2q[ﬁLIJ] = <<C>>PS]_q[LIJ]
— negation to derive path properties e.g. G a = —-F—a
— model checking essentially just focuses on reachability

. <<C>>P2q[L|J] = = (IT \ C>>P<q[L|)]
— thanks to standard determinacy results
— model checking focuses on min/max values for P1/P2

- Quantitative (numerical) properties:
— best/worst-case values

- e.g. KCHP, ., [W] = SUPg, es, infcrzezz Pr.o1:92 ()

Independence of strategies

. Strategies for each coalition operator are independent
— for example, in: (1) P_;[G (1,2 P_, [FVv])]
— no dependencies in player 1 strategies in quantifiers
— branching-time temporal logic (like ATL, PCTL, ...)

Introducing dependencies is problematic

— e.g. subsumes existential semantics for PCTL on
Markov decision processes (MDPs), which is undecidable

— (does there exist a single adversary satisfying one formula?)
— N PG PIFY]]

AR

But nested properties still have natural applications
— e.g. sensor network, with players: sensor, repairer
— ((senson) P_y o[F (—«repairer)) P.4q9s[F “Operational”])]

Why do we need multiple players?

- SMGs have multiple (>2) players

— but semantics (and model checking) reduce to 2-player case

— due to (zero sum) nature of queries expressible by rPATL
— so why do we need multiple players?

1. Modelling convenience

— and/or multiple rPATL queries on same model

2. May also exploit in nested queries, e.g.:
— players: sensorl, sensor2, repairer

— {(sensorl)) P_y o[F (—«repairer)) P,y 5[F “Operational”])]

Model checking rPATL

Basic algorithm: as for any branching-time temporal logic
— recursive descent of formula parse tree
— compute Sat(db) = { s€S | s=d } for each subformula ¢

Main task: checking P and R operators
¥ — reduction to solution of stochastic 2-player game G
— e.g. (CHP_, W] < SUPg es, infcrzezz Pr.o1:92 () >q
— complexity: NP N coNP (without any R[F°] operators)
— compared to, e.g. P for Markov decision processes
— complexity for full logic: NEXP N coNEXP (due to R[F°] op.)

AR

In practice though:
— evaluation of numerical fixed points (“value iteration”)
— up to a desired level of convergence
— usual approach taken in probabilistic model checking tools

Probabilities for P operator

- E.g. KCHP_[F &]: max/min reachability probabilities
— compute sup;_ s infcrzezz Pr.91:92 (F ¢) for all states s

; — deterministic memoryless strategies suffice
2
- Value is:
= — 1 if s € Sat(¢$), and otherwise least fixed point of:

MaX,cae (E A(s,a)(s’) - f(s')) ifs €S,
f(s) = $

Min,ca (E A(s,a)(s") - f(s')) ifseS,

- Computation:

— start from zero, propagate probabilities backwards
— guaranteed to converge

rPATL: «O,O0»P.y [F V']

Player 1: O,[0 Player 2:

Compute: SUP;. es, infcrzezz Pr.°1:%2 (F V)

Rewards for R[F¢] operator

-+ E.g. KO)HR" [Fe &] : max/min expected rewards for P1/P2

— again: deterministic memoryless strategies suffice

- Value is:

— oo if s € Sat(«C)P_,[G F “pos_rew” |),
— 0 if s € Sat(d), and otherwise least fixed point of:

r(s) + maXx,cac (2 A(s,a)(s") - f(s')) ifs €S,

s'ES

f(s) =
r(s) +min,c,, (E A(s,a)(s") - f(s')) ifseSs,
L s'ES

Rewards for R[F*] operator

- E.g. KCHR'_,[F* & | : max/min expected rewards for P1/P2
— again: deterministic memoryless strategies suffice

- Value is:

£ — oo if s € Sat(«C))P_,[G F “pos_rew” |),
— 0 if s € Sat(¢), and otherwise greatest fixed point over R of:

r(S) + MaX, (E A(s,a)(s") - f(s')) ifseSs,

s'ES

f(s) = -

r(s) + min,c,, (2 A(s,a)(s’) - f(s')) ifses,

- Computation:

— 1. set zero rewards to €, compute least fixed point
— 2. evaluate greatest fixed point, downwards from step 1

Example: Finite memory for R[FO]

-+ E.g. KCO)HR"_[FO &] : max/min expected rewards for P1/P2

— now: deterministic memoryless strategies do not suffice

2 -

1

Z.

«O,ONR", [FO v]

b: reward O

a, b: expected reward 0.5

a, a, b: expected reward 0.5

a, a, a, b: expected reward 0.375

What if incoming reward is 2?

b: reward 2
a, b: expected reward 1.5

Rewards for R[F°] operator

E.g. KCHR" [FO & | : max/min expected rewards for P1/P2
— now: deterministic memoryless strategies do not suffice

- There exists a finite—-memory optimal strategy for P1
= — there exists a bound B, beyond which strategy is memoryless
=2 — B is exponential in worst-case, but can be computed...

- Computation:

— compute bound B (using simpler rPATL queries)
— perform value iteration for each level 0,...,B; combine results

Tool support: PRISM-games

Prototype model checker for stochastic games
— integrated into PRISM model checker

— using new explicit-state model checking engine

- SMGs added to PRISM modelling language

— guarded command language, based on Reactive Modules
— finite data types, parallel composition, proc. algebra op.s, ...

rPATL added to PRISM property specification language
— implemented value iteration based model checking

- Available now:

— http://www.prismmodelchecker.org/games/

Case studies

Evaluated on several case studies:

— team formation protocol [CLIMA’T 1]

— futures market investor model [Mclver & Morgan]

— collective decision making for sensor networks [TACAS’12]
=< — energy management in microgrids [TACAS’12]

Energy management in microgrids

- Microgrid: proposed model for future energy markets
— localised energy management

- Neighbourhoods use and
=< store electricity generated
from local sources S

— wind, solar, ... S

Batteryless
Grid-Tie
- Inverters

- Needs: demand-side
management

— active management
of demand by users

AN

— to avoid peaks

Generator Sends Power if
There Isn’t Enough Solar
Power for Household Loads.

Batteries

Microgrid demand-side management

Demand-side management algorithm [Hildmann/Saffre’11]
) — N households, connected to a distribution manager
; — households submit loads for execution
- — load submission probability: daily demand curve
= — load duration: random, between 1 and D steps
— execution cost/step = number of currently running loads

- Simple algorithm:

— upon load generation, if cost is below an agreed limit ¢;;,,,,
execute it, otherwise only execute with probability P,

- Analysis of [Hildmann/Saffre’11]
— define household value as V=loads_executing/execution_cost

— simulation-based analysis shows reduction in peak demand
and total energy cost reduced, with good expected value V

— (if all households stick to algorithm)

Microgrid demand-side management

- The model

— SMG with N players (one per household)

; — analyse 3-day period, using piecewise
- approximation of daily demand curve

— fix parameters D=4, ¢;,,=1.5
— add rewards structure for value V

Power demand

0 3 6 9 12 15 18 21 24
Time of the day (hours)

Built/analysed models
— for N=2,...,7 households

States Transitions
743,904 2,145,120
2,384,369 7,260,756
6,241,312 19,678,246

- Step 1: assume all households
follow algorithm of [HS’11] (MDP)

— obtain optimal value for P,

N O U | 2

- Step 2: introduce competitive behaviour (SMG)
— allow coalition C of households to deviate from algorithm

Results: Competitive behaviour

- Expected total value V per household
— in rPATL: «C)Rc_ ., _, [FO time=max time] / |C]
— where r- is combined rewards for coalition C

20
s
= _ >trong Al follow alg.
P incentive to
5] 15 =
(g ________
O No use of alg.
-
g _
-E 10 —
% ‘g Deviations of
: O varying size
e ying
S I I T I I T)

1 2 3 4 5 6 7 8
Number of households

Results: Competitive behaviour

- Algorithm fix: simple punishment mechanism
— distribution manager can cancel some loads exceeding ¢,

20 A
B

4 2 Better to
< 15 - - collaborate All follow alg.
2 (with all) _
o —
=
§_ Deviations of
S 10 - varying size
@
=

" @

3 x

5 T |

1 2 3 4 5 6 7 8
Number of households

Conclusions

Conclusions
) — verification for stochastic systems with competitive behaviour
; — modelled as stochastic multi-player games
- — new temporal logic rPATL for property specification
- — rPATL model checking algorithm based on num. fixed points
— prototype model checker PRISM-games

— case studies: energy management for microgrid

Future work
— more realistic classes of strategy, e.g. partial information
— further objectives, e.g. multiple objectives, Nash equilibria, ...
— new application areas, security, randomised algorithms, ...

AR

