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ABSTRACT
In the standard consensus problem there are n processes
with possibly different input values and the goal is to even-
tually reach a point at which all processes commit to exactly
one of these values. We are studying a slight variant of the
consensus problem called the stabilizing consensus problem
[2]. In this problem, we do not require that each process
commits to a final value at some point, but that eventually
they arrive at a common, stable value without necessarily
being aware of that. This should work irrespective of the
states in which the processes are starting. Our main result
is a simple randomized algorithm called median rule that,
with high probability, just needs O(logm log logn + logn)
time and work per process to arrive at an almost stable
consensus for any set of m legal values as long as an adver-
sary can corrupt the states of at most

√
n processes at any

time. Without adversarial involvement, just O(logn) time
and work is needed for a stable consensus, with high prob-
ability. As a by-product, we obtain a simple distributed
algorithm for approximating the median of n numbers in
time O(logm log logn+ logn) under adversarial presence.
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1. INTRODUCTION
Consensus problems occur in many contexts and have

therefore been extensively studied in the past (e.g., [8, 32]).
Interesting applications are the consolidation of replicated
states or information and the synchronization of processes
and devices. In the original consensus problem, every pro-
cess proposes a value, and the goal is to decide on a single
value from all those proposed. If all processes are working in
a correct and timely manner, the consensus problem is easy
to solve by performing a leader election, for example. How-
ever, if there are faulty or adversarial processes, the consen-
sus problem becomes much harder. In fact, Fischer, Lynch
and Paterson have shown that in an asynchronous message
passing system, where processes have no common clock and
run at arbitrarily varying speeds, the problem is impossible
to solve if one process may crash at any time [21]. Also in
a synchronous message passing system, where all processes
run at the same speed, consensus is impossible if at least a
third of the processes can experience Byzantine failures [20].
However, these two results only apply to deterministic algo-
rithms and only to the case where processes need to commit
to a value and this commitment can only be done once.

We are studying a slight variant of the consensus problem
called the stabilizing consensus problem [2]. In this problem,
we do not require that each process irrevocably commits to
a final value but that eventually they arrive at a common,
stable value without necessarily being aware of that. This
should work irrespective of the states in which the processes
are starting. In other words, we are searching for a self-
stabilizing algorithm for the consensus problem. Coming up
with such an algorithm is easy without adversarial involve-
ment, but we allow some adversary to continuously corrupt
the state of some processes. Despite these corruptions, we
would like most of the processes to arrive quickly at a com-
mon value that will be preserved for any polynomial in n



many steps. Interestingly, we will demonstrate that there is
a simple randomized algorithm for this problem that essen-
tially needs logarithmic time and work with high probability
to arrive at such a stable value.

1.1 Our approach
We will focus on synchronous message-passing systems

with adversarial state corruptions. The time proceeds in
synchronized rounds. In each round, every process can send
out one or more requests, receive replies to its requests, and
perform some local computation based on these replies.

We assume that we have a fixed set of n processes that
faithfully follow the protocol (based on their current state,
which might be corrupted), and every process knows all the
other processes in the system (i.e., there are no connectivity
constraints). As usual in the literature, the state of a pro-
cess contains all of its variables but does not include its con-
tact information about the other processes and the protocol
(which are fixed throughout the lifetime of the processes).
The system state includes all of the processes’ local states.
In general, a system is called self-stabilizing if in the absence
of state corruptions (caused by faults or adversarial behav-
ior) it holds that (1) when started in an arbitrary state, the
system eventually reaches a legal state (convergence) and (2)
given that the system is in a legal state, it will stay in a legal
state (closure). In the stabilizing consensus problem we are
more strict as we do not just demand that a consensus is
reached and from that point on a consensus is maintained
but that we have a stable consensus. That is, the n processes
may initially have arbitrary states with values v1, . . . , vn out
of some set S of legal values and the goal is to arrive at a
single, stable value among these values. A system state S
is called stable if in all possible executions starting from S,
the values of the processes do not change. If every process
has the same value x in a stable system state S, we say that
the values stabilize to x. A self-stabilizing consensus protocol
must satisfy the following properties (given that there are
no state corruptions):

• Stabilization: the protocol eventually reaches a sta-
ble state.

• Validity: if a process has some value v, then some
process must have had v in the previous round.

• Agreement: for every reachable stable state, all pro-
cesses have the same value.

Note that the validity rule prevents the processes from just
changing to a default value. Otherwise, the consensus prob-
lem would be trivial.

The runtime of a self-stabilizing consensus protocol is the
number of communication rounds it takes until a stable state
is reached. Besides the runtime, we will also consider the
work of such a protocol, which is the maximum number of
messages (i.e., requests and replies) a process has to han-
dle until a stable state is reached. This disqualifies simple
strategies like “everybody contacts process 1” as its work
would be n while its runtime is 1. For a distributed system
to be scalable, both the runtime and the work has to be as
low as possible, therefore we are focussing on protocols with
low runtime and work.

The adversary
We assume that adversarial state corruptions can continu-
ously happen during the self-stabilizing process. Most of the

self-stabilizing algorithms proposed in the literature are not
guaranteed any more to reach a legal state in this case, so
finding algorithms that still converge to a legal state is a
non-trivial problem. We assume that there is a T -bounded
adversary that knows the entire state of the system at the
end of each communication round. Based on that informa-
tion, it may corrupt the state of up to T processes in an
arbitrary way before the next round starts.

Of course, under a T -bounded adversary we cannot reach
a stable state any more. Therefore, we will only require the
system to reach a state S so that for any poly(n) many time
steps following S, all but at most O(T ) processes agree on
some stable value v (note that these O(T ) processes can be
different from round to round). We will call this an almost
stable state. The goal is to come up with an efficient protocol
so that for values of T that are as large as possible, an almost
stable state can be reached with a runtime and work that is
as low as possible.

1.2 Our contributions
We are focussing on stabilizing consensus problems based

on an arbitrary (finite or countably infinite) set S of legal
values with a total order. Classical examples are S = {0, 1}
and S = N. All initial values of the processes must be from
S and also the adversary is restricted to choosing only values
in S. (If the adversary chooses a value outside of S in some
process p, we may assume that p instantly recognizes that
and then switches over to some default value in S.)

If no process is ever corrupted, we can restrict S to be the
set of initial values as no new values will ever be introduced
by a protocol satisfying the validity rule. In this case, the
stabilizing consensus problem could easily be solved with
the following minimum rule: Suppose that the current value
of process i is vi. In each round, every process i contacts
some random process j in the system and updates its value
to vi := min{vi, vj}. It is easy to see that this rule needs
just O(logn) time and work with high probability (or short,
w.h.p.)1 until all processes have the same value, namely
the minimum of the initial values v1, . . . , vn. Since they will
not deviate from that value any more, we have reached a
stable state. However, if some processes can be corrupted,
then even for S = {0, 1} no runtime bound can be given for
the minimum rule to reach an (almost) stable state: if all
processes start with 1, then the adversary could inject 0 at
any time later to cause a change in the consensus. In fact, a
1-bounded adversary would be sufficient for that. Therefore,
we are proposing a different rule called the median rule:

In each round, every process i picks two processes j and k
uniformly and independently at random among all processes
(including itself) and requests their values. It then updates
vi to the median of vi, vj and vk. Any request sent to process
i will be answered with the value that i had at the beginning
of the current round.

For example, if vi = 10, vj = 12 and vk = 130, then the
new value of vi is 12. When taking the mean of a selected
group of values instead of the median, the convergence prop-
erties towards a single number have already been formally
analyzed [16]. However, with the mean rule we are no longer

1We write w.h.p. to refer to an event that holds with prob-
ability at least 1− n−c for any constant c > 1.



guaranteed to solve the stabilizing consensus problem as the
validity rule may be violated. Moreover, the approach in
[16] is quite different from our approach (as it is based on
a repeated all-to-all exchange of values and some filtering
mechanism before computing means), so its analysis cannot
be adapted to the median rule.

The median rule works surprisingly well. We prove the
following results that are also summarized in Figure 1.

Theorem 1.1. For any initial state it holds that if no
process is ever corrupted, then the median rule needs just
O(logn) time and work to reach a stable consensus w.h.p.

Hence, the median rule is as effective as the minimum
rule in the non-adversarial case. Contrary to the minimum
rule, the median rule also works for the adversarial case. Let
m = |S| be the number of legal values. Then it holds:

Theorem 1.2. For any
√
n-bounded adversary, the me-

dian rule needs just O(logm· log log n+logn) time and work
to reach an almost stable consensus w.h.p.

Of course, |S| may not be finite. In this case, Theorem 1.2
still holds if we define m as the number of legal values be-
tween v` and vr, where v` is the (n/2− c

√
n logn)-smallest

and vr is the (n/2 + c
√
n logn)-smallest value of the ini-

tial values for some sufficiently large constant c. As a by-
product, the median rule computes a good approximation of
the median, even under the presence of an adversary.

Corollary 1.3. For any
√
n-bounded adversary, the me-

dian rule needs just O(logm · log logn + logn) time and
work to compute an almost stable value that is between the
(n/2 − c

√
n logn)-largest value and the (n/2 + c

√
n logn)-

largest value of the initial values w.h.p.

The bound on T is essentially tight as T = Ω(
√
n logn)

would not allow the median rule to stabilize any more w.h.p.
because the adversary could keep two groups of processes
with equal values in perfect balance for at least a polynomi-
ally long time. A further improvement of Theorem 1.2 can
be obtained in an average-case setting:

Theorem 1.4. Let m ≤ n1/2−ε. If initially each pro-
cess chooses one out of m legal values uniformly at ran-
dom, then for any

√
n-bounded adversary, the median rule

needs Θ(logn) time and work w.h.p., if m is even, and
O(logm + log logn) time and work w.h.p., if m is odd, to
reach an almost stable consensus.

Finally, if the T -bounded adversary is static in a sense
that there is a fixed set of T faulty processes throughout the
execution, then we present a simple extension of the median
rule to a so-called careful median rule that reaches, within
the time bound given in Theorem 1.2, a consensus that is
stable for poly(n) many rounds for all non-faulty processes
w.h.p. This is not possible with the original median rule as
with T =

√
n there is a constant probability that some pro-

cess contacts two corrupted processes and therefore changes
its value to a value selected by the adversary.

With these results, the median rule is yet another demon-
stration of the power of two choices as the time needed by
the minimum rule (as well as the maximum rule) can be
unbounded even for S = {0, 1} and 1-bounded adversaries.
This power of two choices has also been demonstrated in

many other contexts [26, 15, 9, 13, 14, 18] (mostly in the
balls into bins model, which is why we will use that nota-
tion later), but we are not aware of any result using it in the
context of consensus.

1.3 Model discussion
Theorem 1.2 also holds for other adversarial models. We

just consider two of them:
Adversarial processes: Suppose that we have a

√
n/4-

bounded adversary that can pick any
√
n/4 processes at the

beginning of a round that behave in an arbitrary adversarial
manner throughout that round. Since these processes will
only be contacted by at most 3

√
n/4 other processes w.h.p.

when using the median rule, we can emulate the effect of√
n/4 adversarial processes on the system by

√
n adversarial

state corruptions, which is our original model. So our results
extend to adversarial processes.

Sleep scheduling: Suppose that we have a
√
n/4-bounded

adversary that can just put any
√
n/4 processes to sleep in

a round. Also this model can be simulated by our origi-
nal
√
n-bounded adversary using the same arguments as for

adversarial processes. More interestingly, one can already
show for the sleep scheduling model that if the adversary
can put Ω(

√
n logn) processes to sleep in each round, a con-

sensus cannot be reached any more for polynomially many
steps w.h.p. even if |S| = 2. (The proof as well as the strat-
egy achieving this is simple: given an imbalance of ∆, put
2∆ processes of the majority value to sleep. This increases
the presence of the minority value which reduces the im-
balance.) This implies that even a slight asynchrony that is
under the control of an adaptive adversary can lead to a fail-
ure of the median rule. However, we note that the protocol
by Angluin et al. [1] would suffer from the same problem, so
adaptive asynchrony seems to be hard to handle for simple
distributed algorithms.

1.4 Related work
Randomized algorithms are known that can solve the con-

sensus problem with probability approaching one in many
different cases ranging from asynchronous message passing
models to shared memory models (see, e.g., [34, 12, 19,
10, 17, 11, 30, 25, 4, 5, 27] or [3] for a survey). Most of
these algorithms can tolerate a constant fraction of Byzan-
tine fail/stop failures or nodes but at the cost of spending
Ω(n) expected individual work. Also several lower bounds
are known. Ben-Or and Bar-Joseph [10] have shown that
any consensus protocol that tolerates Θ(n) adaptive fail-

stop faults runs for Ω̃(
√
n) rounds. Attiya and Censor [7]

proved that Ω(n2) is a lower bound on the total work un-
der adaptive adversaries in the shared memory model. The
same authors [6] also showed for message passing as well as
shared memory systems that for every integer k, the prob-
ability that an f -resilient randomized consensus algorithm
for n processes does not terminate with agreement within
k(n− f) steps is at least 1/ck for some constant c.

Recently, Gilbert and Kowalski [22] presented a random-
ized consensus algorithm that runs in O(logn) time and uses
only O(n) bits in total for all messages. However, the adver-
sary is not fully adaptive; it has to specify the set of faulty
processes in advance. In addition, there are some processes
which have to send Ω(n/ logn) bits during the execution of
the algorithm. Very recently, King and Saia [29] presented a
randomized algorithm for Byzantine agreement that runs in



with adversary without adversary
worst-case, m = 2 O(logn) O(logn)
worst-case, arb. m O(logm log logn+ logn) O(logn)

average-case, arb. m
O(logm+ log logn) if m is odd

Θ(logn) if m is even
O(logm+ log logn) if m is odd

Θ(logn) if m is even

Figure 1: Our results on the time and work required to reach an almost stable consensus (with adversary) or
stable consensus (without adversary). m is the number of legal values. By average-case we refer to the case
where every initial value is chosen independently and uniformly at random among the m legal values. The
results for the average case with adversary require that m ≤ n1/2−ε for some constant ε > 0.

polylogarithmic time and only needs Õ(
√
n) bits per process

against an adaptive adversary.
The consensus problem has also been studied in the con-

text of population protocols, which are protocols for ex-
tremely simple, passively mobile systems. Angluin et al. [1]
show that with high probability, n agents that meet at ran-
dom reach consensus in O(n logn) pairwise interactions and
the value chosen is the majority provided that its initial
margin is at least ω(

√
n logn). This protocol has the addi-

tional property of tolerating Byzantine behavior in o(
√
n) of

the agents. We can also show these properties for the me-
dian rule, but we are more general than Angluin et al. as we
allow a set of legal values of arbitrary cardinality whereas
Angluin et al. only consider two different values. The result
by Angluin et al. can be extended to m different values, but
their analysis would only allow one to conclude a runtime
of O(logm logn) for the non-adversarial as well as the ad-
versarial situation whereas our runtime bounds are O(logn)
and O(logm log log n+ logn) respectively.

Due to the fact that even in the adversarial setting, the
median rule stabilizes to a value that is the k-smallest of the
initial values for some k ∈ [n/2−c

√
n logn, n/2+c

√
n logn]

w.h.p. and therefore gives a good approximation of the me-
dian of the initial values, it is also interesting to compare
the median rule with other distributed algorithms for find-
ing the median. Kempe et al. [28] proposed a gossip-based
algorithm that computes the median within O(log2 n) com-
munication rounds in a complete graph w.h.p. Patt-Shamir
[33] showed that the median can be approximated to within
εn distance from the median with just O((log log n)3) bit
transmissions per node if each element can be encoded with
O(logn) bits. Kuhn et al. [31] showed that in networks of
diameter D, the median can be found in O(D logD n) com-
munication rounds w.h.p. and also prove a matching lower
bound holding for a general class of distributed algorithms.
The median problem has also been studied in the context
of sensors networks (e.g., [35]), but mostly experimentally.
However, none of these previous results consider the adver-
sarial case.

2. TWO VALUES WITH ADVERSARY
In this section, we focus on the case that there are only two

legal values, x0 and x1 with x0 < x1. Before we analyze the
median rule for that case, we propose an alternative notation
for our consensus problem based on balls into bins. We have
n balls representing the processes and 2 bins representing the
two legal values. In that notation, the state of the system at
the beginning of a round is represented by a distribution of
the balls among the bins, and a T -bounded adversary may
pick up any T balls at the end of each round and throw
them into any of the two bins. Even though the two-bin

case sounds fairly restrictive, this case turns out to be of
general interest, as our analysis for more than two bins will
use some results of this section. For the two-bin case, the
median rule is equivalent to the majority rule, where a ball’s
next bin is chosen to be the bin that is used by the majority
of itself and the two random balls.

Theorem 2.1. For |S| = 2 and any initial distribution
of the balls, O(logn) rounds of the median (majority) rule
suffice for any

√
n-bounded adversary to reach an almost

stable consensus, w.h.p.

In this theorem as well as the other theorems below, we
will just focus on providing time bounds as the work bounds
in Section 1.2 immediately follow from the time bounds with
the help of standard Chernoff bounds when using the median
rule:

Lemma 2.2 (Chernoff Bounds). Let X1, . . . , Xn be
independent binary random variables, let X =

∑n
i=1Xi and

µ = E[X]. Then it holds for all δ > 0 that

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e−min[δ2, δ]·µ/3 .

Furthermore, it holds for all 0 < δ < 1 that

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
≤ e−δ

2µ/2 .

The rest of this section is dedicated to the proof of this
theorem. In the following, let Lt be the number of balls in
the left bin at (the end of) step t and let Rt be the number
of balls in the right bin at step t. Let Xt = min(Lt, Rt) and
let Yt = max(Lt, Rt). For simplicity, we focus on the case
with even n, since the proof for odd n follows along the same
lines. The imbalance at a step t is given by ∆t = (Yt−Xt)/2
(which is a non-negative integer). We will use X̃t, ∆̃t to
denote the corresponding numbers before the adversary is
allowed to change the location of up to T balls at the end of
round t. Based on the imbalance ∆t we distinguish between
three cases.

Case 1: ∆t ≥ n/4

We will show the following lemma whose proof uses standard
Chernoff bounds (see Lemma 2.2).

Lemma 2.3. If there is a step t0 with ∆t0 ≥ n/4, then
there is a step t1 = t0 + O(log logn) at which we reach a
stable consensus (if there is no adversary) or an almost sta-
ble consensus (for any

√
n-bounded adversary) w.h.p.

Proof. Note that initially Xt ≤ n/4 (as by assumption,
∆t ≥ n/4). Assume without loss of generality that the left



bin initially has fewer balls, so Lt0 = Xt0 and Rt0 = Yt0 ,
and for simplicity we may assume that t0 = 0. For any step
t, set pt := Lt/n.

Without adversary: For any ball i let the binary ran-
dom variable Lt,i be 1 if and only if ball i is in the left bin
after t rounds, and 0 otherwise. If ball i was in the left
bin in round t − 1, then writing pt−1 = Lt−1/n, we have
E[Lt,i] = Pr[Lt,i = 1] = 1 − (1 − pt−1)2. Similarly, if the
ball i was in the right bin, we have E[Lt,i] = p2t−1. As
Lt =

∑
i Lt,i is the total number of balls in the left bin after

r rounds, we have

E[Lt] = Lt−1 · (1− (1− pt−1)2) + (n− Lt−1) · p2t−1

= Lt−1pt−1 · (3− 2pt−1) ≤ L2
t−1/n · 3.

Hence, again by using a Chernoff bound argument, we get

Pr

[
Lt ≥

9L2
t−1

2n

]
≤ exp

(
−9L2

t−1

4n

)
,

which, if Lt−1 ≥
√
εn log(n), is polynomially small in n (de-

pending on the constant ε). To see that this needsO(log log n)
steps, note the successive squaring in the mapping x 7→
9x2/(2n). Once we are at a step t with Lt ≤

√
εn logn,

we get

Pr[Lt+1 ≥ 2C · logn]

≤

(√
εn logn

C logn

)
·

(
1−

(
1−
√
εn logn

n

)2
)C logn

+

(
n

C logn

)
·
(√

εn logn

n

)2C logn

≤
(

e
√
εn

C
√

logn

)C logn

·
(

2
√
εn logn

n

)C logn

+

(
en

C logn

)C logn

·
(√

εn logn

n

)2C logn

,

which is smaller than n−2 for sufficiently large C. If Lt ≤
2C · logn for some step t, then E[Lt+1] = O((logn)2/n)
and by Markov’s inequality Pr[Lt+1 ≥ 1] ≤ E[Lt+1] =
O((logn)2/n).

With adversary: As observed earlier, the adversary can
only change the location of T =

√
n balls at the end of each

round. Hence we obtain as above that after O(log log n)
steps we reach a step t with Lt ≤

√
εn logn. Then we know

from the analysis above, that in the next step we have Lt ≤
2C · logn+

√
n with high probability and this will hold for

polynomially many time steps with high probability.

Case 2: c
√
n lnn ≤ ∆t < n/4 for a sufficiently large

constant c
Here, we will show the following lemma. Again, the proof is
elementary and uses standard Chernoff bounds.

Lemma 2.4. If there is a step t0 with c
√
n lnn ≤ ∆t0 ≤

n/4 for a sufficiently large constant c, then for any
√
n-

bounded adversary there is a step t1 = t0 + O(logn) with
∆t1 ≥ n/4 w.h.p.

Proof. Recall that Xt = n/2−∆t is the number of balls
in the smaller bin at step t. Furthermore, we define δt :=
∆t/n and recall that by assumption, δt ∈ [c

√
lnn/

√
n, 1/4].

The probability that a ball that is in the smaller bin at
step t chooses its new median also in the same bin at step

t+1 is 1−(1/2+δt)
2 = 3/4−δt−δ2t . Similarly the probability

that a ball in the larger bin at step t chooses its new median
in the other bin is (1/2 − δt)2 = 1/4 − δt + δ2t . Recall that

X̃t+1 is the number of balls in the smaller bin before the
action of the adversary at the end of step t+ 1. Linearity of
expectation gives

E[X̃t+1] = (1/2− δt)n · (3/4− δt − δ2t )

+ (1/2 + δt)n · (1/4− δt + δ2t )

= (1/2− (3/2)δt + 2δ3t )n (1)

= n/2−∆t −
(
(1/2)δt − 2δ3t

)
n

≤ n/2−∆t − (1/4)δtn (using δt ≤ 1/4)

≤ Xt − (δt/2)Xt (using Xt ≤ n/2)

= (1− δt/2)Xt.

Since the choices of the balls are independent, it follows
from the Chernoff bounds that for ε = δt/4,

Pr[X̃t+1 ≥ (1− δt/4)Xt] ≤ Pr[X̃t+1 ≥ (1 + ε)E[X̃t+1]]

≤ e−ε
2E[X̃t+1]/3

≤ e−(δt/4)
2(1−δt/2)(n/2)/3

≤ e−(c2 lnn/n)n/96 = n−c
2/96.

This implies that X̃t+1 ≤ (1 − δ/4)Xt w.h.p. Since the
adversary can only change the location of at most T =

√
n

balls at the end of round t + 1, we have w.h.p. that Xt+1

is at most (1− δt/4)Xt +
√
n. Hence, w.h.p., n/2−∆t+1 ≤

(1− δt/4) · (n/2−∆t) +
√
n, and further rearranging gives

that, w.h.p.,

∆t+1 ≥ ∆t + δtn/8− δt∆t/4−
√
n

≥ ∆t + ∆t/8−∆t/16−∆t/32

≥ (1 + 1/32)∆t.

Hence, taking the union bound over O(logn) rounds, we
reach a step with an imbalance of at least n/4 w.h.p.

Case 3: ∆t < c
√
n lnn

In contrast to the previous cases, the imbalance is now rather
small which requires a more careful analysis.

In the next lemma, we use the Central Limit Theorem to
prove that with constant probability, we have a sufficiently
large imbalance regardless of the previous imbalance.

Lemma 2.5. Assume no adversary is present. Let γ > 0
be any constant. Then for any ∆t ≥ 0, Pr[∆t+1 ≥ γ

√
n] ≥

1√
4π(1+4γ/

√
3)
e−8γ2/3, provided n is large enough.

Proof. For the proof of Lemma 2.5, we need the follow-
ing notation. We say that a random variable Y stochasti-
cally dominates a random variable Z, and write Y � Z, if
Pr[Y ≥ x] ≥ Pr[Z ≥ x] for any x. Finally, we define the
labeled imbalance by Ψt = (Rt − Lt)/2.

Claim 2.6. For any two labeled imbalances Ψt and Ψ′t
with Ψt ≥ Ψ′t ≥ 0 it holds that Ψt+1 � Ψ′t+1.

Proof. We show stochastic domination for any two la-
beled imbalances Ψt and Ψ′t = Ψt − 1. The rest follows by
induction. Let z = n/2−Ψ′t. Without loss of generality, we
assume that balls 1 to z − 1 are in the left bin in both Ψt

and Ψ′t, and balls z + 1, . . . , n are in the right bin in both



Ψt and Ψ′t. Ball z is in the right bin in Ψt and in the left
bin in Ψ′t.

Let Ω be the space of all possible outcomes of the ran-
dom experiment in which every ball chooses two balls in-
dependently and uniformly at random. Consider any such
outcome w ∈ Ω.

Any ball b 6= z that does not choose ball z in w goes to
the same bin in both scenarios. If ball z goes to the right
bin in the Ψ′t scenario (in which it started in the left bin)
then it will also go the right bin in the Ψt scenario (in which
it started in the right bin). Finally, consider a ball b 6= z
that chooses ball z as one (or both) of its choices in w. If it
goes to the right bin in the Ψ′t scenario (in which the z ball
is dragging it left) it will also go to the right bin in the Ψt

scenario.
So Rt+1 dominates R′t+1 and L′t+1 dominates Lt+1, and

therefore, Rt+1−Lt+1 dominates R′t+1−L′t+1, which proves
the claim.

We now return to the proof of Lemma 2.5. We only need
to prove it for Ψt = 0 because the general case follows from
stochastic domination (see Claim 2.6). Assume that at step
t balls 1 to n/2 reside in the left bin and balls n/2 + 1 to n
reside in the right bin. Let Z1, . . . , Zn/2 ∈ {0, 1} be random
variables defined as follows:

Zi =

{
1 if ball i moves to the right bin,

0 otherwise.

Then the Zi are independent Bernoulli variables with Pr[Zi =
1] = 1/4. Analogously, for balls n/2 + 1 to n, we define the
random variables Zn/2+1 to Zn to be 1 if the corresponding
ball moves from the right bin to the left bin. We again have
Pr[Zi = 1] = 1/4 for these variables. Then

Ψt+1 =

n/2∑
i=1

Zi −
n∑

i=n/2+1

Zi.

Let Ψ
(1)
t+1 =

∑n/2
i=1 Zi and Ψ

(2)
t+1 =

∑n
i=n/2+1 Zi. Each Ψ

(j)
t+1

is binomially distributed with parameters n/2 and p = 1/4.

Thus, E[Ψ
(j)
t+1] = p·n/2 = n/8 and V[Ψ

(j)
t+1] = p(1−p)·n/2 =

(3/4) · n/8. Since Ψ
(1)
t+1 and Ψ

(2)
t+1 are stochastically inde-

pendent, it holds that E[Ψt+1] = E[Ψ
(1)
t+1] − E[Ψ

(2)
t+1] = 0

and V[Ψt+1] = V[Ψ
(1)
t+1] − V[Ψ

(2)
t+1] = 3n/16. Let Φ(x) =

1√
2π

∫ x
−∞ e

−u2/2du and let X =
∑n
i=1Xi be a sum of in-

dependent random variables Xi with finite µ = E[X] and
ν = V[X]. From the Central Limit Theorem it follows for
n→∞ that for any a < b,

lim
n→∞

Pr

[
a <

X − µ√
ν

< b

]
= Φ(b)− Φ(a)

Thus, it holds for any γ > 0 that

Pr[Ψt+1 ≥ γ
√
n] ≥ 1− Φ(

√
16/3γ)− ε

where ε → 0 as n → ∞. For x ≥ 0, the value of Φ(x) can
be bounded as follows (see e.g., [23] p. 17 and [24] p. 505):

1√
2π(1 + x)

· e−x
2/2 ≤ 1− Φ(x) ≤ 1√

π(1 + x)
· e−x

2/2.

Therefore, we can lower bound the above probability by

1√
2π(1 + 4γ/

√
3)
e−

8γ2

3 − ε ≥ 1√
4π(1 + 4γ/

√
3)
e−

8γ2

3

if n is sufficiently large, which finishes the proof.

Finally, we prove via standard Chernoff bounds that be-
yond an imbalance of about

√
n there is a strong drift to

increase the imbalance by a constant factor.

Lemma 2.7. If 6
√
n ≤ ∆t ≤ c

√
n logn, then for any

√
n-

bounded adversary,

Pr[∆t+1 ≥ (7/6)∆t] ≥ 1− exp
(
−Θ(∆2

t/n)
)
.

Proof. In the proof of Lemma 2.4 (Equation 1) we showed

that E[X̃t+1] = n/2 − (3/2)∆t + 2δ2∆t which implies that

E[∆̃t+1] = (3/2−2δ2)∆t. As δ = ∆t/n = o(1) by our upper
bound on ∆t, it follows from the Chernoff bounds that

Pr[∆̃t+1 ≤ (4/3)∆t] ≤ exp(−Θ(∆t)
2/n).

As ∆t+1 ≥ ∆̃t+1 −
√
n, we note that ∆̃t+1 ≥ (4/3)∆t im-

plies that ∆t+1 ≥ (4/3)∆t −
√
n ≥ (4/3)∆t − (1/6)∆t ≥

(7/6)∆t.

Now we can finish the case 3.

Lemma 2.8. If at a round t0 we have ∆t0 < c
√
n lnn

for the value of c needed by Lemma 2.4, then for any
√
n-

bounded adversary there is a round t1 = t0 + O(logn) with

∆t1 ≥ c
√
n lnn w.h.p.

Proof. Lemma 2.5 implies that the expected number of
steps until we are in the hypothesis of Lemma 2.7 is O(1).
That is, ∆t ≥ c

√
n. Now let Υτ = b∆t+τ−1/(c

√
n)c and let

q = b(n/2)/(c
√
n)c denote maximum value of Υτ , that is,

the possible values of Υτ are in {0, . . . , q}. To continue, we
need the following technical result. Its proof is omitted due
to space constraints.

Claim 2.9. Let (Xt)
∞
t=1 be a Markov Chain with state

space {0, . . . , q} that has the following properties:

• there are constants c1 > 1 and c2 > 0, such that for
any t ∈ N, Pr[Xt+1 ≥ min{c1Xt, q}] ≥ 1− e−c2Xt ,

• Xt = 0 ⇒ Xt+1 ≥ 1 with probability c3 which is a
constant greater than 0,

Let c4 > 0 be an arbitrary constant and T := min{t ∈
N : Xt ≥ c4 log q}. Then for every constant c6 > 0 there
is a constant c5 = c5(c4, c6) > 0 such that

Pr[T ≤ c5 · log q + logc1(c4 log q)] ≥ 1− q−c6 .

By this claim, O(log q) rounds suffice to achieve Υτ ≥
c4 log q, or ∆t+τ−1 ≥ c

√
n · c4 log q, w.h.p. for any constant

c4 > 0, which finishes the proof.

3. MORE THAN TWO VALUES
In this section we consider the more challenging case that
|S| > 2. We analyze the models with and without adversary
separately.

3.1 Convergence without Adversary
In this section, we prove Theorem 1.1. Our proof proceeds

as follows. Initially, we may have up to n non-empty bins
as there can be up to n different initial values, but after
just O(logn) rounds, we end up with at most 2 non-empty
bins. Then we can directly use our result for two bins to



conclude that after additional O(logn) rounds, the median
rule stabilizes.

Assume that the bins and balls are numbered from 1 to
n such that all balls with higher numbers are in higher bins
and balls in the same bin form consecutive numbers. As
an example, (1, 2, 3 | 4, 5 | | 6 | 7, 8) describes a distribution of
8 balls into 5 bins, where the first bin holds 3 balls with
numbers 1, 2 and 3, the second bin 2 balls, the third bin
none and so on.

We associate with each ball i ∈ [n] a value g(i) called
gravity, which is the expected number of balls that choose
i as their median for the next step (when considering the
ball ordering). The gravity g(i) can be computed as follows.
Ball i may either be chosen twice by a ball, or ball j ∈ {i+
1, . . . , n} chooses ball i and a ball i′ ∈ {1, . . . , i− 1}, or ball
j ∈ {1, . . . , i−1} chooses ball i and a ball i′ ∈ {i+1, . . . , n},
or ball i chooses one ball out of {1, . . . , i− 1} and the other
out of {i + 1, . . . , n}, or ball i chooses itself and some ball
j 6= i. This gives

g(i) = n · 1

n2
+ (n− i) · 2(i− 1)

n2
+ (i− 1) · 2(n− i)

n2
+

1 · 2(n− i)(i− 1)

n2
+ 1 · 2(n− 1)

n2

Simplifying this expression gives

g(i) = 6
(n− i)(i− 1)

n2
+

3n− 2

n2
. (2)

Note that the gravity of a ball i is maximized for the
median-ball, which has number dn/2e according to our or-
dering. Fix a bin j. By linearity of the expectation and the
definition of gravity, the expected load of j at a time t+ 1 is
equal to the sum of gravities of the balls in bin j at time t.

For each bin j ∈ [n] at step t, we define a set of heavy balls
Ht,j which is defined as the subset of the Φ = C

√
n logn

balls in bin j with largest gravity. C > 0 is a sufficiently
large constant. Note that by definition, 0 ≤ |Ht,j | ≤ Φ. We
first prove the following:

Lemma 3.1. If there is a ball i ∈ Ht,j with g(i) < 4/3,
then at step t+1 either there is a ball l ∈ Ht+1,j with g(l) <
4/3 or bin j is empty w.h.p.

Proof. Assume w.l.o.g. that j ≤ mt (the case j ≥ mt

follows with identical arguments), where mt is the median
ball at round t. Let i be the number of a ball in Ht,j with
gravity g(i) < 4/3. When plugging g(i) < 4/3 into Equation
(2), we get

4

3
> 6

(n− i)(i− 1)

n2
+O

(
1

n

)
,

which readily implies that i ≤ n/3 + O(1). Hence, there
are at most n/3 + Φ + O(1) balls in the bins 1 to j. Then
consolidate all bins from 1 to j into a superbin A, and all
other bins into a superbin B. Let Lt,A be the load of su-
perbin A in step t, so Lt,A ≤ n/3 + Φ + O(1). Using the
arguments from the two-bin case (Lemmas 2.3 and 2.4) we
conclude that ,w.h.p., Lt+1,A ≤ n/(3 + ε), for a constant
ε > 0. Hence by (2), every ball l ∈ Ht+1,j in bin j satisfies
g(l) < 4/3 w.h.p. (provided that Ht+1,j 6= ∅).

On the other hand, it holds:

Lemma 3.2. If |Ht,j | = Φ and there is no ball in Ht,j
with g(i) < 4/3, then |Ht+1,j | = Φ w.h.p.

Proof. Suppose that Ht,j ≥ Φ and there is no ball l ∈
Ht+1,j with g(l) < 4/3. Then it follows from the definition
of the gravity that the expected number of balls in bin j at
step t + 1 is at least (4/3) · Φ. Thus, the Chernoff bounds
imply that the number of balls in bin j at step t + 1 is at
least Φ w.h.p., and therefore, Ht+1,j ≥ Φ.

Using Lemma 3.1 and Lemma 3.2, we can now prove the
following.

Lemma 3.3. For any initial configuration it takes at most
O(logn) rounds until at least one of the following two cases
holds for all bins j w.h.p.:

1. at least one ball i ∈ Ht,j satisfies g(i) < 4/3 (or Ht,j
is empty), or

2. |Ht,j | = Φ.

Proof. Consider an arbitrary but fixed round t. Our
goal is to apply the following technical result. Its proof is
similar to Claim 2.9 and omitted due to space constraints.

Claim 3.4. Let (Xt)
∞
t=1 be a Markov Chain with state

space {0, . . . , q} that has the following properties,

• there are constants c1 > 1 and c2 > 0, such that for
any t ∈ N, Pr[Xt+1 ≥ min{c1Xt, q}] ≥ 1− e−c2Xt ,

• Xt = 0⇒ Xt+1 = 0 with probability 1,

• Xt = q ⇒ Xt+1 = q with probability 1.

Let c4 > 0 be an arbitrary constant and T := min{t ∈
N : Xt ∈ {0} ∪ {q}}. Then for every constant c6 > 0 there
is a constant c5 > 0 such that Pr[T ≤ c5 log q] ≥ 1− q−c6 .

We first identify two absorbing states concerning Ht,j :

1. There is a ball i ∈ Ht,j with g(i) < 4/3. Then Lemma 3.1
implies that Ht+1,j contains at least one ball l with
g(l) < 4/3, or Ht+1,j is empty, w.h.p.

2. |Ht,j | = Φ and all balls i ∈ Ht,j satisfy g(i) ≥ 4/3.
Then it follows from Lemma 3.2 that |Ht+1,j | = Φ
w.h.p.

IfHt,j does not fulfill one of these conditions, all balls inHt,j
have a gravity of at least 4/3. In this case, the expected
number of balls in bin j at step t + 1 would be at least
(4/3)|Ht,j |. Since the median rule is applied independently
at random to each ball, the Chernoff bounds imply

Pr

[
|Ht+1,j | ≥ min{Φ, 5

4
|Ht,j |}

]
≥ 1− exp(−Θ(|Ht,j |)).

Thus, applying Claim 3.4, we conclude that one of the two
absorbing states is reached within t1 = O(logn) rounds
w.h.p.

We are now ready to prove the main result of this section.

Proof of Theorem 1.1: Let t1 = O(logn) be the round
that satisfies Lemma 3.3. For this t1 let jmin and jmax be
the positions (w.r.t. our unique ball ordering) of the left-
most and rightmost balls in bin bt, where bin bt is the one
containing the median ball. Note that by Lemma 3.3, the
load of bin bt is at least Φ. We proceed by a case distinction
on the positions of jmin and jmax.



1. n/2− jmin ≤ Φ/2. Let bt − 1 be the left bin of bin bt.
Equation 2 implies that all heavy balls in bin bt − 1
have gravity at least 4/3. So, Lemma 3.3 implies that
the load of bin bt − 1 is at least Φ. Consolidate all
bins from 1, . . . , bt − 2 and all bins from bt + 1, . . . , n
into two superbins A and B, respectively. By our ar-
guments above, both superbins have a load of at most
n/2−Φ/2. Therefore for C large enough, Lemmas 2.3
and 2.4 imply that both superbins will die out within
the next O(logn) steps w.h.p. After this has hap-
pened, we only end up with two bins, bt − 1 and bt. A
final application of our two-bin analysis (Theorem 2.1)
reduces the number of bins from 2 to 1 within addi-
tional O(logn) rounds, and our theorem follows.

2. jmax − n/2 ≤ Φ/2. This case is handled in the same
way as before.

3. n/2− jmin > Φ/2 and jmax−n/2 > Φ/2: In this case,
it follows as in the previous cases that by Lemmas 2.3
and 2.4, all bins except bin bt will vanish after the next
O(logn) rounds.

3.2 Convergence with Adversary
In this section we prove Theorem 1.2. First, let m = |S|

and assume that m is finite.

Theorem 3.5. For any
√
n-bounded adversary, it will take

at most O(logm log logn+ logn) time w.h.p. until the me-
dian rule reaches an almost stable consensus.

Proof. We shall use the following Chernoff bound which
can be easily derived from the standard Chernoff bound for
binomial random variables.

Lemma 3.6. Consider some fixed 0 < δ < 1. Suppose
that X1, . . . , Xn are independent geometric random variables
on N with Pr[Xi = k] = (1 − δ)k−1δ for every k ∈ N. Let
X =

∑n
i=1Xi, µ = E[X]. Then it holds for all ε > 0 that

Pr[X ≥ (1 + ε)µ] ≤ e−ε
2/(2 (1+ε))·n.

Let the set of non-empty bins be {1, . . . ,m} at the begin-
ning. We divide the time into logm + 1 phases, numbered
from 1 to logm+ 1. Each phase i, 1 ≤ i ≤ logm takes only
O(log log n) steps in expectation, while the last phase will
take O(logn) steps. For each phase i with 1 ≤ i ≤ logm,
we shall prove by induction that at the end of the phase,
there is a set Si ⊆ {1, . . . ,m} of consecutive bins of size
|Si| ≤ m/2i + 1 that satisfies

min
{
R(Si), L(Si)

}
≥ n

2
+ C

√
n logn, (3)

where R(Si) (resp. L(Si)) denotes the total load of all bins
that are in the set Si or located right (resp. left) from Si,
respectively. The idea behind the definition is that at the
end of each phase i, we know that the bin that gets all
balls at the end (up to O(

√
n) balls due to the adversary)

is located in Si (which follows from applying the two-bin
analysis to the sets R(Si) and {1, . . . ,m} \R(Si) as well as
L(Si) and {1, . . . ,m} \ L(Si)).

Let us now prove (3) by induction. For the induction base,
cut the set of all bins into two equally-sized, consecutive

sets of bins Sleft
1 := {1, . . . , bm/2c} and Sright

1 := {bm/2c +

1, . . . ,m}. Now regard Sleft
1 and Sright

1 as two bins. Our
aim is to prove that after O(log logn) steps, one of the two
bins will have at least n

2
+ C
√
n logn balls. To show this,

we apply the Lemma 2.5 and Lemma 2.7 from the two-bin
analysis. Let t be the first time step of phase i and recall
that ∆t is the imbalance at time t.

First we apply Lemma 2.5 to get that with constant prob-
ability > 0, ∆t+1 ≥ 5

√
n holds (if there is no adversary).

Since the adversary can influence at most 4
√
n balls (w.h.p.),

we have ∆t+1 ≥
√
n with constant probability. Then we ap-

ply Lemma 2.7 to obtain

Pr[∆t+O(log logn) ≥ C
√
n logn]

≥
O(log logn)∏

k=1

(
1− exp(−Θ((4/3)k))

)
,

which is at least a constant greater than zero. As this holds
for any imbalance ∆t, the expected time to reach a step t0
with ∆t0 ≥ C

√
n logn is O(log logn), which completes the

induction base.
Assume now more generally, that at the end of phase i, a

set Si of size at most m/2i + 1 exists with

min{R(Si), L(Si)} ≥
n

2
+ C

√
n logn.

Again, we divide Si into two consecutive sets of bins Sleft
i

and Sright
i , each of size at most m/2i+1 + 1. Now regard

Sleft
i together with all bins left from it and Sright

i together
will all bins right from it as two separate bins, L(Sleft

i ) and

R(Sright
i ). Applying the same arguments as from the induc-

tion base, we obtain that after expected O(log logn) steps,

the imbalance between L(Sleft
i ) and R(Sright

i ) is at least
C
√
n logn. Assume w.l.o.g. that L(Sleft

i ) ≥ n
2

+ C
√
n logn.

Then we set Si+1 := Sleft
i and note that by assumption,

L(Si+1) = L(Sleft
i ) ≥ n

2
+ C

√
n logn.

Moreover, we know from the induction hypothesis, that at
the end of the previous phase, R(Si) ≥ n

2
+C
√
n logn. Also,

the proof of Lemma 2.4 implies that if the load of any set
of balls is above n/2 + C

√
n logn, it never decreases in any

following round with high probability. Hence using that the
leftmost bin in Sleft

i is also the leftmost bin in Si,

R(Si+1) = R(Sleft
i ) ≥ R(Si) ≥

n

2
+ C

√
n logn.

This completes the induction and proves (3).
So we have shown that the time to reach the end of phase

logm can be bounded by the sum of logm independent
geometric random variables, each with mean O(log logn).
Hence Lemma 3.6 implies that afterO(logm log log n+logn)
steps, we have completed phase logm with high probability.

Now at the end phase of logm, there is a set of two bins
S = Slogm = {j, j + 1} with

min{R(S), L(S)} ≥ n

2
+ C

√
n logn.

Applying Lemma 2.3 and Lemma 2.4 to R(S) and L(S),
we obtain that R(S) and L(S) are both larger than n −
(C/2)

√
n logn after additional O(logn) rounds with high

probability. Since the intersection of bins in R(S) and L(S)
is at most two, we conclude that there is a set of at most



two bins that contains n− C
√
n logn balls with high prob-

ability. Applying Theorem 2.1, we conclude that after ad-
ditional O(logn) rounds, we will have reached an almost
stable consensus.

As an alternative definition of m, we can also define m
to be the number of legal values between v` and vr, where
v` is the (n/2 − c

√
n logn)-smallest and vr is the (n/2 +

c
√
n logn)-smallest value of the initial values for some suffi-

ciently large constant c. Let us throw all values v < v` into
one superbin A and all values v > vr into one superbin B.
Then it follows from Lemmas 2.3 and 2.4 that after O(logn)
rounds, the superbins A and B run empty except for O(

√
n)

many balls, w.h.p., which implies the following lemma.

Lemma 3.7. For any
√
n-bounded adversary it holds that

after O(logn) rounds, all processes apart from O(
√
n) have

values between v` and vr w.h.p.

Using the outcome of this lemma as the starting point
in the analysis of Theorem 3.5, one can easily check that
Theorem 3.5 is still valid when defining m to be the number
of legal values between v` and vr.

3.3 Static Adversary
Suppose that the adversary has to choose a fixed set of√
n corrupted balls throughout the execution. Since this is

a special case of our T -bounded adversary, Theorem 3.5 still
holds. However, the expected number of non-corrupted balls
leaving the stable bin is at least (n−

√
n)·(1/

√
n)2 = 1−o(1)

in each round, and it can be up to Θ(log n) with probability
at least 1/n. Thus, they still have to do some update work.
To prevent any update work (i.e., all non-corrupted balls
stay at the stable bin for at least a polynomial number of
rounds w.h.p.), a simple extension of the median rule, called
the careful median rule, suffices:

Each process i executes the median rule as before but in
addition to this maintains a stable value svi and keeps track
of the last k outcomes of the median rule for some constant
k ≥ 3. Whenever the majority of the last k outcomes agrees
on a single value, say v, svi is set to v.

Our goal is to reach a consensus for the svi values that
holds as long as possible.

Theorem 3.8. For any static
√
n-bounded adversary, the

careful median rule needs at most O(logm log log n+ logn)
rounds to reach a stable consensus for all non-corrupted pro-
cesses that holds for poly(n) many steps w.h.p.

Proof. Theorem 3.5 implies that afterO(logm log logn+
logn) rounds the (standard median rule) values vi of the
honest processes form an almost stable consensus w.h.p.,
say, on value v. Now, focus on any honest process i. Once
an almost stable consensus is reached, the probability that vi
deviates from v at the end of round t is bounded by O(T/n),
which is the probability that i contacts one of the at most
O(T ) processes that deviate from the consensus, even if i it-
self deviates from the consensus at the beginning of t. Since
this upper bound on the probability holds independently for
each round, it follows that the probability that at least k/2
of the k last values of i deviate from v is at most(

k

k/2

)
O
(

1√
n

)k/2
= 2k · O

(
1

n

)k/4
= O

(
1

n

)k/4

for a constant k which implies the theorem.

4. AVERAGE CASE ANALYSIS
In this section, we investigate the case where all n balls are

initially put independently and uniformly at random into m
bins. Without the adversary, we get the following result.

Theorem 4.1. Assume that each of the n balls is initially
assigned uniformly at random to one of the m bins. Then
the median rule reaches a stable consensus w.h.p. after the
following time:

O(logm+ log logn) if m is odd,
Θ(logn) if m is even.

Intuitively, the reason for this dichotomy is that for odd m
there is already a large imbalance at the beginning when we
consider all balls that are in bins left to the middle bin versus
all the remaining balls. Hence we reach in just O(logm) an
imbalance of Ω(n), for which we have shown in Lemma 2.3
that already O(log logn) further steps are enough reach a
stable consensus. However, if m is even, then there is only
a relatively small imbalance at the beginning and it takes
Ω(logn) rounds to reach a sufficiently large imbalance.

Let us now analyze the adversarial model.

Theorem 4.2. Consider any
√
n-bounded adversary and

suppose that m ≤ n1/2−ε for some constant ε > 0. Then the
median rule reaches an almost stable consensus w.h.p. after
the following time:

O(logm+ log logn) if m is odd and
Θ(logn) if m is even.

5. CONCLUSIONS
In this paper we presented a surprisingly simple, efficient

and robust consensus mechanism demonstrating the power
of two choices. While we were able to prove a tight time
bound for this algorithm in the non-adversarial case, the
time bound for the adversarial case is not optimal yet (it
is O(logn log logn) instead of the suspected O(logn)), so
further work is needed. Also, it is open whether light-
weight self-stabilizing consensus mechanisms exist beyond
O(
√
n logn) adversarial processes.
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