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1 The settingNot a great deal is known about the 
omplexity of obtaining approximate so-lutions to 
ounting problems. A few problems are known to admit an eÆ
ientapproximation algorithm or \FPRAS" (de�nition below). Some others areknown not to admit an FPRAS under some reasonable 
omplexity-theoreti
assumptions. In light of the s
ar
ity of absolute results, we propose to examinethe relative 
omplexity of approximate 
ounting problems through the mediumof approximation-preserving redu
ibility. Through this pro
ess, a provisionallands
ape of approximate 
ounting problems begins to emerge. Aside from theexpe
ted 
lasses of interredu
ible problems that are \easiest" and \hardest"within the 
ounting 
omplexity 
lass #P, we identify an interesting 
lass ofnatural interredu
ible problems of apparently intermediate 
omplexity.A randomised approximation s
heme (RAS) for a fun
tion f : �� ! N is aprobabilisti
 Turing ma
hine1 (TM) that takes as input a pair (x; ") 2 ���(0; 1)and produ
es as output an integer random variable Y satisfying the 
onditionPr(e�" � Y=f(x) � e") � 3=4. A randomised approximation s
heme is saidto be fully polynomial if it runs in time poly(jxj; "�1). The unwieldy phrase\fully polynomial randomised approximation s
heme" is usually abbreviated toFPRAS.Suppose f; g : �� ! N are fun
tions whose 
omplexity (of approximation)we want to 
ompare. An approximation-preserving redu
tion from f to g is aprobabilisti
 ora
le TM M that takes as input a pair (x; ") 2 �� � (0; 1), andsatis�es the following three 
onditions: (i) every ora
le 
all made by M is ofthe form (w; Æ), where w 2 �� is an instan
e of g, and 0 < Æ < 1 is an errorbound satisfying Æ�1 � poly(jxj; "�1); (ii) the TMM meets the spe
i�
ation forbeing a randomised approximation s
heme for f whenever the ora
le meets thespe
i�
ation for being a randomised approximation s
heme for g; and (iii) therun-time of M is polynomial in jxj and "�1. If an approximation-preservingredu
tion from f to g exists we write f �AP g, and say that f is AP-redu
ibleto g. If f �AP g and g �AP f then we say that f and g are AP-interredu
ible,and write f �AP g.In arriving at a pre
ise de�nition of AP-redu
ibility a number of issues hadto be resolved. Should the redu
tion be deterministi
 or randomised? Should itbe Turing or many-one/Karp? Should " enter expli
itly into the time bound forthe redu
tion? As a general prin
iple, we have always 
hosen the most liberaloption, i.e., the one leading to the largest 
lass of redu
tions.2 However, weshall only rarely make use of the full generality of our de�nition, preferring inthe main to work within a more restri
ted 
lass of redu
tions.Two 
ounting problems play a spe
ial role in this arti
le.Name. #Sat.Instan
e. A Boolean formula ' in 
onjun
tive normal form (CNF).1All our Turing ma
hines will be transdu
ers, i.e., equipped with a write-only output tape.In what follows, we shall not mention this fa
t expli
itly.2At the other extreme, Saluja, Subrahmanyam and Thakur [16℄ propose a very demandingnotion of approximation-preserving redu
tion, whi
h is probably not suitable for our purposes.2



Output. The number of satisfying assignments to '.Name. #BIS.Instan
e. A bipartite graph B.Output. The number of independent sets in B.The problem#Sat is the 
ounting version of the familiar de
ision problem Sat,so its spe
ial role is not surprising. The (apparent) signi�
an
e of #BIS willonly emerge from an extended empiri
al study using the tool of approximation-preserving redu
ibility. This is not the �rst time the problem #BIS has ap-peared in the literature. Provan and Ball show it to be #P-
omplete [14℄, while(in the guise of \2BPMonDNF") Roth raises, at least impli
itly, the questionof its approximability [15℄. An independent set of a graph G is a subset I ofthe verti
es of G su
h that no two verti
es in I are adja
ent. Su
h a set issometimes 
alled a stable set of G.Three 
lasses of AP-interredu
ible problems are studied in this paper. The�rst is the 
lass of 
ounting problems (fun
tions �� ! N) that admit anFPRAS. These are trivially AP-interredu
ible, sin
e all the work 
an be em-bedded into the redu
tion (whi
h de
lines to use the ora
le). The se
ond isthe 
lass of 
ounting problems AP-interredu
ible with #Sat. As we shallsee, these in
lude the \hardest to approximate" 
ounting problems within the
lass #P. The third is the 
lass of 
ounting problems AP-interredu
ible with#BIS. These problems are naturally AP-redu
ible to fun
tions in#Sat, but wehave been unable to demonstrate the 
onverse relation. Moreover, no fun
tionAP-interredu
ible with #BIS is known to admit an FPRAS. Sin
e a num-ber of natural and reasonably diverse 
ounting problems are AP-interredu
iblewith #BIS, it remains a distin
t possibility that the 
omplexity of this 
lassof problems in some sense lies stri
tly between the 
lass of problems admittingan FPRAS and #Sat. Perhaps signi�
antly, #BIS and its relatives 
an be
hara
terised as the hardest to approximate problems within a logi
ally de�nedsub
lass of #P that we name #RH�1.2 Problems that admit an FPRASA very few non-trivial 
ombinatorial stru
tures may be 
ounted exa
tly using apolynomial-time deterministi
 algorithm; a fortiori, they may be 
ounted usingan FPRAS. The two key examples are spanning trees in a graph (Kir
hho�),and perfe
t mat
hings in a planar graph (Kasteleyn). Intriguingly, both of thesealgorithms rely on a redu
tion to a determinant, whi
h may be 
omputed inpolynomial time by Gaussian elimination. Details of both algorithms may befound in Kasteleyn's survey arti
le [13℄.There are some additional spe
imens that are more interesting in the 
ontextof this arti
le: problems that admit an FPRAS despite being 
omplete (withrespe
t to usual Turing redu
ibility) in #P. These are more 
ommon thanexa
tly solvable 
ounting problems, but still not numerous. Two representativeexamples are: 3



Name. #Mat
h.Instan
e. A graph G.3Output. The number of mat
hings (of all sizes) in G.Name. #DNF.Instan
e. A Boolean formula ' in disjun
tive normal form (DNF).Output. The number of satisfying assignments to '.#Mat
h may be approximated in the FPRAS sense by \Markov 
hainMonte Carlo" (Jerrum and Sin
lair [9℄), and #DNF by a more dire
t samplingte
hnique (Karp, Luby and Madras [12℄).3 Problems AP-interredu
ible with #SatSuppose f; g : �� ! N. A parsimonious redu
tion (Simon [17℄) from f to gis a fun
tion % : �� ! �� satisfying (i) f(w) = g(%(w)) for all w 2 ��, and(ii) % is 
omputable by a polynomial-time deterministi
 Turing ma
hine. In the
ontext of 
ounting problems, parsimonious redu
tions \preserve the number ofsolutions." The generi
 redu
tions used in the usual proofs of Cook's theoremare parsimonious, i.e., the number of satisfying assignments of the 
onstru
tedformula is equal to the number of a

epting 
omputations of the given Turingma
hine/input pair. Sin
e a parsimonious redu
tion is a very spe
ial instan
eof an approximation-preserving redu
tion, we see that all problems in #P areAP-redu
ible to #Sat. Thus #Sat is 
omplete for #P w.r.t. (with respe
t to)AP-redu
ibility. Zu
kerman[22℄ has shown that #Sat 
annot have an FPRASunless NP = RP. The same is obviously true of any problem in #P to whi
h#Sat is AP-redu
ible. In fa
t, Zu
kerman proves a stronger result | there isno FPRAS for the logarithm of #Sat(') unless NP = RP. AP-redu
tions donot in general preserve this stronger form of inapproximability.Let A : �� ! f0; 1g be some de
ision problem in NP. One way of ex-pressing membership of A in NP is to assert the existen
e of a polynomial pand a polynomial-time 
omputable predi
ate R (witness-
he
king predi
ate)satisfying the following 
ondition: A(x) i� there is a word y 2 �� su
h thatjyj = p(jxj) and R(x; y). The 
ounting problem, #A : �� ! N, 
orrespondingto A is de�ned by#A(x) = �� �y �� jyj = p(jxj) and R(x; y)	 ��:Formally, the 
ounting version #A of A depends on the witness-
he
king pred-i
ate R and not just on A itself; however, there is usually a \natural" 
hoi
efor R, so our notation should not 
onfuse. Note that our notation for #Satand Sat is 
onsistent with the 
onvention just established, where we take \y isa satisfying assignment to formula x" as the witness-
he
king predi
ate.3Note that the graph G is no longer restri
ted to be planar.4



Many \natural" NP-
omplete problems A have been 
onsidered, and inevery 
ase the 
orresponding 
ounting problem #A is 
omplete for #P withrespe
t to (
onventional) polynomial-time Turing redu
ibility. No 
ounterex-amples to this phenomenon are known, so it remains a possibility that thisempiri
ally observed relationship is a
tually a theorem. If so, we seem to befar from proving it or providing a 
ounterexample. Strangely enough, the 
or-responding statement for AP-redu
ibility is a theorem.Theorem 1 Let A be an NP-
omplete de
ision problem. Then the 
orrespond-ing 
ounting problem, #A, is 
omplete for #P w.r.t. AP-redu
ibility.Proof. That #A 2 #P is immediate. The fa
t that #Sat is AP-redu
ible to#A is more subtle. Using the bise
tion te
hnique of Valiant and Vazirani, weknow [21, Cor. 3.6℄ that #Sat 
an be approximated (in the FPRAS sense) bya polynomial-time probabilisti
 TMM equipped with an ora
le for the de
isionproblem Sat.4 Furthermore, the de
ision ora
le for Sat may be repla
ed byan approximate 
ounting ora
le (in the RAS sense) for #A, sin
e A is NP-
omplete, and a RAS must, in parti
ular, reliably distinguish none from some.(Note that the failure probability may be made negligible through repeated tri-als [11, Lemma 6.1℄.) Thus the TMM , with only slight modi�
ation, meets thespe
i�
ation for an approximation-preserving redu
tion from #Sat to #A. We
on
lude that the 
ounting version of every NP-
omplete problem is 
ompletefor #P w.r.t. AP-redu
ibility.The following problem is a useful starting point for redu
tions.Name. #LargeIS.Instan
e. A positive integer m and a graph G in whi
h every independent sethas size at most m.Output. The number of size-m independent sets in G.The de
ision problem 
orresponding to #LargeIS is, given an instan
e(m;G) of #LargeIS, to determine whether or not G has a size-m independentset. Garey et al. [7℄ have shown that this de
ision problem is NP-
omplete.Therefore, Theorem 1 implies the following:Observation 2 #LargeIS �AP #Sat.Another insight that 
omes out of the proof of Theorem 1 is that the set offun
tions AP-redu
ible to#Sat has a \stru
tural" 
hara
terisation as the 
lassof fun
tions that may be approximated (in the FPRAS sense) by a polynomial-time probabilisti
 Turing ma
hine equipped with an NP ora
le. Informally, ina 
omplexity-theoreti
 sense, approximate 
ounting is mu
h easier than exa
t
ounting: the former lies \just above" NP [19℄, while the latter lies above theentire polynomial hierar
hy [20℄.4Only a sket
h of the proof of this fa
t is presented in [21℄; for a detailed proof, 
onsultGoldrei
h's le
ture notes [8℄. 5



Theorem 1 shows that 
ounting versions of NP-
omplete problems are allAP-interredu
ible. Simon, who introdu
ed the notion of parsimonious redu
-tion [17℄, noted that many of these 
ounting problems are in fa
t parsimoniouslyinterredu
ible with #Sat. In other words, many of the problems 
overed byTheorem 1 are in fa
t related by dire
t redu
tions, often parsimonious, as op-posed to the rather ar
ane redu
tions impli
it in that theorem. Sin
e we areinterested in investigating exa
tly when the full power of AP-redu
ibility isne
essary, we also o�er a proof of Observation 2 by dire
t redu
tion, in Ap-pendix A.5An interesting fa
t about exa
t 
ounting, dis
overed by Valiant, is that aproblem may be 
omplete for #P w.r.t. usual Turing redu
ibility even thoughits asso
iated de
ision problem is polynomial-time solvable. So it is with ap-proximate 
ounting. A 
ounting problems may be 
omplete for #P w.r.t. AP-redu
ibility when its asso
iated de
ision problem is not NP-
omplete, and evenwhen it is trivial, as in the next example.Name. #IS.Instan
e. A graph G.Output. The number of independent sets (of all sizes) in G.Theorem 3 #IS �AP #Sat.Proof. We need only demonstrate that #Sat �AP #IS, sin
e the oppositedire
tion 
omes from the generi
 redu
tion of Cook's theorem. We'll a
tuallyshow #LargeIS �AP #IS, whi
h is suÆ
ient by Observation 2. The \boost-ing" te
hnique we use was presented by Sin
lair [18℄, but is repeated here witha view to providing a simple, 
on
rete example of an approximation-preservingredu
tion.Let m and G = (V;E) be an instan
e of #LargeIS, and set n = jV j.Constru
t an instan
e G0 = (V 0; E0) of #IS as follows:V 0 = V � [r℄;and E0 = n�(u; i); (v; j)	 : fu; vg 2 E and i; j 2 [r℄o;where r is a suÆ
iently large number, to be 
hosen later, and [r℄ = f0; : : : ; r�1gdenotes the set 
ontaining the �rst r natural numbers. Informally, verti
es in Gare transformed to r-independent sets in G0, and edges to 
omplete bipartitegraphs on r + r verti
es.5In Appendix A, we give a parsimonious redu
tion from#Sat to#LargeIS. This providesa (dire
t) proof of Observation 2. It turns out that Observation 2 remains true even when thede�nition of #LargeIS is modi�ed so that a \witness" is provided along with every probleminstan
e. In parti
ular, along with m and G, a proper m-vertex-
olouring of the 
omplementof G is provided. The 
olouring serves as a witness that every independent set of G has sizeat most m. The redu
tion in Appendix A shows how su
h witnesses 
an be in
orporated intothe 
onstru
ted problem instan
e. 6



An independent set I 0 in G0 proje
ts to an independent set I = �(I 0) in Gin the following natural wayI = �(I 0) = �v 2 V : there exists i 2 [r℄ su
h that (v; i) 2 I 0	:Furthermore, every independent set of size k in G arises in exa
tly (2r � 1)kways as a proje
tion of this kind. Thus, denoting by Im(G) the set of all size-mindependent sets in G and by I(G0) the set of all independent sets in G0,jI(G0)j � (2r � 1)m � jIm(G)j:On the other hand, at most (2r � 1)m�1 independent sets I 0 in G0 proje
t toea
h independent set I = �(I 0) in G of size stri
tly less than m. ThusjI(G0)j � (2r � 1)m � jIm(G)j + (2r � 1)m�12n:It follows from the two inequalities thatjIm(G)j = � jI(G0)j(2r � 1)m� ; (1)provided we 
hoose r � n+ 3. In fa
t, for this 
hoi
e of r we havejIm(G)j � jI(G0)j(2r � 1)m � jIm(G)j + 14 ;so taking the 
oor of Q = jI(G0)j=(2r � 1)m is the same as rounding Q to thenearest integer. The signi�
an
e of this is expanded upon below. Thus we have
onstru
ted an AP-redu
tion from #LargeIS to #IS: use an ora
le for #ISto approximate jI(G0)j, divide by (2r � 1)m, and round to the nearest integer.(The redu
tion is of a rather degenerate form, with one ora
le 
all and no useof randomisation.)As this is the �rst 
on
rete example of an approximation-preserving re-du
tion, we add some te
hni
al details 
on
erning the 
hoi
e of the a

ura
yparameter Æ in the de�nition of redu
tion. If it were not for the 
oor fun
tionin (1), we 
ould simply set Æ = ", sin
e division by a 
onstant preserves relativeerror. The dis
ontinuous 
oor fun
tion 
ould spoil the approximation when itsargument is small. However, we shall only apply the 
oor fun
tion in situationswhere its argument is in the range (say) [N;N + 1=4℄ for some integer N (aswe have done above, with N = jIm(G)j). This avoids te
hni
al problems, as wenow see.Suppose more generally that the true result N is obtained by rounding afra
tion Q with jQ � N j � 1=4. Suppose further that the ora
le provides anapproximation bQ to Q satisfying Qe�Æ � bQ � QeÆ (as it is required to do withprobability at least 3=4). Set Æ = "=21, where " is the a

ura
y parametergoverning the �nal result. There are two 
ases. If N � 2=", then a short
al
ulation yields j bQ �Qj < 1=4 implying that the result returned is exa
t. IfN > 2=", then the result returned is in the range [(N � 1=4)e�Æ � 1=2; (N +1=4)eÆ + 1=2℄ whi
h, for the 
hosen Æ, is 
ontained in [Ne�"; Ne"℄.Going ba
k to the 
urrent proof, we have shown that the argument of the
oor fun
tion, jI(G0)j(2r�1)m , is in the range [jIm(G)j; jIm(G)j+1=4℄. Thus, it suÆ
esto use Æ = "=21 as the a

ura
y parameter for the ora
le 
all.7



Other 
ounting problems 
an be shown to be 
omplete for #P w.r.t. AP-redu
ibility using similar \boosting redu
tions." There is a pau
ity of examplesthat are 
omplete for some more \interesting" reason. One result that mightqualify is the following:Theorem 4 #IS remains 
omplete for #P w.r.t. AP-redu
ibility even whenrestri
ted to graphs of maximum degree 25.Proof. This follows from a result of Dyer, Frieze and Jerrum [4℄, though ratherindire
tly. In the proof of Theorem 2 of [4℄ it is demonstrated that an FPRAS forbounded-degree #IS 
ould be used (as an ora
le) to provide a polynomial-timerandomised algorithm for an NP-
omplete problem, su
h as the de
ision versionof satis�ability. Then #Sat �AP #IS follows, as before, via the bise
tionte
hnique of Valiant and Vazirani.Let H be any �xed, q-vertex graph, possibly with loops. An H-
olouring ofa graph G is simply a homomorphism from G to H. If we regard the verti
esof H as representing 
olours, then a homomorphism from G to H indu
es aq-
olouring of G that respe
ts the stru
ture of H: two 
olours may be adja
entin G only if the 
orresponding verti
es are adja
ent in H. Some examples:Kq-
olourings, where Kq is the 
omplete q-vertex graph, are simply the usual(proper) q-
olourings; K12 -
olourings, where K12 is K2 with one loop added,
orrespond to independent sets; and S�q -
olourings, where S�q is the q-leaf starwith loops on all q + 1 verti
es, are 
on�gurations in the \q-parti
le Widom-Rowlinson model" from statisti
al physi
s.Name. #q-Parti
le-WR-Configs.Instan
e. A graph G.Output. The number of q-parti
le Widom-Rowlinson 
on�gurations in G, i.e.,S�q -
olourings of G, where S�q denotes the q-leaf star with loops on all q+1verti
es.We will return to the problem of 
ounting Widom-Rowlinson 
on�gurationslater in the paper. In parti
ular, we will show (in x4) that #2-Parti
le-WR-Configs is AP-interredu
ible with#BIS and (in x6) that #3-Parti
le-WR-Configs is at least as hard as #BIS in the sense that #BIS �AP#3-Parti
le-WR-Configs. We will also show (in x7) that for q � 4, #q-Parti
le-WR-Configs is AP-interredu
ible with #Sat.Aside from 
ontaining many problems of interest, H-
olourings provide anex
ellent setting for testing our understanding of the 
omplexity lands
ape of(exa
t and approximate) 
ounting. To initiate this programme we 
onsideredall 10 possible 3-vertex 
onne
ted Hs (up to symmetry, and allowing loops).The 
omplexity of exa
tly 
ounting H-
olourings was 
ompletely resolved byDyer and Greenhill [5℄. Aside from H = K�3 (the 
omplete graph with loopson all three verti
es) and H = K1;2 = P3 (Pn will be used to denote thepath of length n � 1 on n verti
es), whi
h are trivially solvable, the problemof 
ounting H-
olourings for 
onne
ted three-vertex Hs is #P-
omplete. Ofthe eight Hs for whi
h exa
t 
ounting is #P-
omplete, seven 
an be shown8



to be 
omplete for #P w.r.t. AP-redu
ibility using redu
tions very similar tothose appearing elsewhere in this arti
le. The remaining possibility for H isS�2 (i.e, 2-parti
le Widom-Rowlinson 
on�gurations) whi
h we return to in thenext se
tion. Other 
omplete problems 
ould be mentioned here but we preferto press on to a potentially more interesting 
lass of 
ounting problems.4 Problems AP-interredu
ible with #BISThe redu
tion des
ribed in the proof of Theorem 3 does not provide usefulinformation about#BIS, sin
e we do not have any eviden
e that the restri
tionof #LargeIS to bipartite graphs is 
omplete for #P w.r.t. AP-redu
ibility.6The fa
t that #BIS is interredu
ible with a number of other problems notknown to be 
omplete (or to admit an FPRAS) prompts us to study #BIS andits relatives in some detail. The following list provides examples of problemsAP-interredu
ible with #BIS; more will be added later.Name. #P4-Col.Instan
e. A graph G.Output. The number of P4-
olourings of G, where P4 is the path of length 3.Name. #Downsets.Instan
e. A partially ordered set (X;�).Output. The number of downsets in (X;�).Name. #1p1nSat.Instan
e. A Boolean formula ' in 
onjun
tive normal form (CNF), with atmost one unnegated literal per 
lause, and at most one negated literal.Output. The number of satisfying assignments to '.Name. #Bea
hConfigs.Instan
e. A graph G.Output. The number of \Bea
h 
on�gurations" in G, i.e., P �4 -
olourings of G,where P �4 denotes the path of length 3 with loops on all four verti
es.Note that an instan
e of #1p1nSat is a 
onjun
tion of Horn 
lauses, ea
hhaving one of the restri
ted forms x) y, :x, or y, where x and y are variables.Theorem 5 The problems #BIS, #P4-Col, #2-Parti
le-WR-Configs,#Bea
hConfigs, #Downsets and #1p1nSat are all AP-interredu
ible.6Note that this statement does not 
ontradi
t the general prin
iple, enun
iated in x3, that
ounting-analogues of NP-
omplete de
ision problems are 
omplete w.r.t. AP-redu
ibility,sin
e a maximum 
ardinality independent set 
an be lo
ated in a bipartite graph using network
ow. 9



Proof. The problems#BIS and #P4-Col are essentially the same. A graph Gis P4-
olourable i� it is bipartite, in whi
h 
ase two of the 
olours (the endones) point out an independent set. Conversely, ea
h independent set in a
onne
ted bipartite graph G arises from one of two distin
t P4 
olourings inthis manner.7 The 
orresponden
e between independent sets and P4-
olourings(trivially) 
onstitutes a mat
hing pair of approximation-preserving redu
tionsbetween the two problems.The problems #Downsets and #1p1nSat are also very 
lose; indeed,#Downsets is a restri
ted version of #1p1nSat in whi
h (a) all 
lauses havetwo literals, i.e., are of the form x ) y, and (b) there are no 
y
li
 
hains ofimpli
ations x0 ) x1 ) � � � ) x`�1 ) x0. But, given an arbitrary instan
eof #1p1nSat, any for
ed variables as in (a) may be removed by substitutingFALSE or TRUE and then simplifying; and any set of ` variables forming a
y
li
 
hain as in (b) may be repla
ed by a single variable. So #Downsetsand #1p1nSat are 
ertainly AP-interredu
ible.AP-interredu
ibility of all the problems other than#P4-Col and#1p1nSatfollows from the 
y
le of redu
tions#BIS �AP #2-Parti
le-WR-Configs�AP #Bea
hConfigs�AP #Downsets�AP #BISwhi
h are presented in Lemmas 6, 7, 8 and 9. Note that a redu
tion from#2-Parti
le-WR-Configs to #BIS was already known [1℄.Lemma 6 #BIS �AP #2-Parti
le-WR-Configs.Proof. Suppose B = (X;Y;A) is an instan
e of #BIS, where A � X � Y .For 
onvenien
e, X = fx0; : : : ; xn�1g and Y = fy0; : : : ; yn�1g. Constru
t aninstan
e G = (V;E) of #2-Parti
le-WR-Configs as follows. Let Ui : 0 �i � n� 1 and K all be disjoint sets of size 3n. Then de�neV = [i2[n℄Ui [ fv0; : : : ; vn�1g [KandE = [i2[n℄U (2)i [ �fv0; : : : ; vn�1g �K� [K(2) [[�Ui � fvjg : (xi; yj) 2 A	;where U (2)i , et
., denotes the set of all unordered pairs of elements from Ui. SoUi and K all indu
e 
liques in G, and all vj are 
onne
ted to all of K. Let theWidom-Rowlinson (W-R) 
olours be red, white and green, where white is the
entre 
olour. Say that a W-R 
on�guration (
olouring) is full if all the setsU0; : : : ; Un�1 and K are bi
hromati
. (Note that ea
h set is either mono
hro-mati
, or bi
hromati
 red/white or green/white.) We shall see presently that7The symmetry of P4 allows a renaming of 
olours; in general, the 
orresponden
e between
olourings and independent sets is 2� : 1, where � is the number of 
onne
ted 
omponentsof G. 10



full W-R 
on�gurations a

ount for all but a vanishing fra
tion of the set of allW-R 
on�gurations.Consider a full W-R 
on�guration C : V ! fred;white; greeng of G. As-sume C(K) = fred;whiteg; the other possibility, with green repla
ing red issymmetri
. Every full 
olouring in G may be interpreted as an independent setin B as follows: I = �xi : green 2 C(Ui)	 [ �yj : C(vj) = red	:Moreover, every independent set in B 
an be obtained in this way from exa
tly(23n � 2)n+1 full W-R 
on�gurations of G satisfying the 
ondition C(K) =fred;whiteg. So jW 0(G)j = 2(23n � 2)n+1 � jI(B)j;where W 0(G) denotes the set of full W-R 
on�gurations of G, and the fa
tor oftwo 
omes from symmetry between red and green.Crude 
ounting estimates providejW(G) n W 0(G)j � 3(n+ 1)(2 � 23n)n3n;where W(G) denotes the set of all W-R 
on�gurations of G. (One of the n+ 1sets in fU0; : : : ; Un�1;Kg is not bi
hromati
, and has at most 3 
olourings.Ea
h of the other sets has at most 2 � 23n 
olourings. There are at most 3nways to 
olour v0; : : : ; vn�1.) Sin
e3(n+ 1)(2 � 23n)n3n2(23n � 2)n+1 < 14for n suÆ
iently large (a
tually n � 17) we havejI(B)j = � jW(G)j2(23n � 2)n+1�and the result follows as in the proof of Theorem 3.Lemma 7 #2-Parti
le-WR-Configs �AP #Bea
hConfigs.Proof. Let G = (V;E) be an instan
e of #2-Parti
le-WR-Configs, withjV j = n. Constru
t an instan
e G0 = (V 0; E0) of #Bea
hConfigs as follows:V 0 = V [ fsg [ [r℄;and E0 = E [ (V � fsg) [ (fsg � [r℄);where r is a suÆ
iently large number, to be 
hosen later. There are four possible
olours that 
an be applied to the vertex s, but only two distin
t ones, up tosymmetry. If one of the \end" 
olours is used to 
olour s, then all the otherverti
es must re
eive one of two 
olours, and any assignment of the two 
oloursis permissible; thus there are 2n+r ways to 
omplete the 
olouring of G0. Ifone of the \middle" 
olours is used to 
olour s, then the indu
ed 
olouring11



on V is a W-R 
on�guration, and the remaining r verti
es may be tri
oloured.Combining these 
ounts,jB(G0)j = 2 � 3r � jW(G)j + 2 � 2n+r;where B(G0) denotes the set of all bea
h 
on�gurations of G0. Hen
ejW(G)j = � jB(G0)j2 � 3r � ;provided r is large enough. In fa
t r = 2n will do, as then 2n+r=3r = (8=9)n,whi
h is less than 1=4 when n � 12.Lemma 8 #Bea
hConfigs �AP #Downsets.Proof. Let G = (V;E) be an instan
e of #Bea
hConfigs, with jV j = n. We
onstru
t, as an instan
e of #Downsets, a partial order on the 3n-element setV �[3℄. For ea
h vertex v, we impose the relationships (v; 0) � (v; 1) � (v; 2); forea
h edge (u; v), the relationships (v; 0) � (u; 1), (v; 1) � (u; 2), (u; 0) � (v; 1)and (u; 1) � (v; 2). Given a downsetD and a vertex v, there are four possibilitiesfor the set D \ f(v; 0); (v; 1); (v; 2)g: these are the four 
olours of a Bea
h
on�guration. So there is a 1-1 
orresponden
e between Bea
h 
on�gurationsin G and downsets in (V � [3℄;�).Lemma 9 #Downsets �AP #BIS.Proof. Let (X;�) be an instan
e of #Downsets. For 
onvenien
e, identify Xwith [n℄. De�ne a bipartite graph B = (U; V;E) as follows. Let fUi; Vi : i 2 Xgbe a 
olle
tion of disjoint sets with jUij = jVij = 2n. Then de�ne U = Si2X Ui,V = Si2X Vi, and E = �(u; v) : u 2 Ui ^ v 2 Vj ^ i � j	:(Note that equality is allowed between i and j, so that Ui[Vi indu
es a 
ompletebipartite graph on 2n+ 2n verti
es.) Call an independent set I 2 I(B) full i�I \ (Ui [ Vi) 6= ; for all i 2 X. Denote by I 0(B) the set of all full independentsets in B, and by D(X;�) the set of all downsets in the partial order (X;�).Every full independent set I 2 I 0(B) 
orresponds to a downset D = fi 2 X :I \ Vi 6= ;g, and every downset D 2 D(X;�) arises from exa
tly (22n� 1)n fullindependent sets I in this way; thusjI 0(B)j = (22n � 1)n � jD(X;�)j:By a 
rude estimation of non-full independent sets,jI(B) n I 0(B)j � 3n(22n � 1)n�1:Sin
e 3n(22n � 1)n�1(22n � 1)n < 1412



(at least for n � 5), jD(X;�)j = � jI(B)j(22n � 1)n�and the result follows as in the proof of Theorem 3#2-Parti
le-WR-Configs and#Bea
hConfigs are in fa
t the �rst twoexamples in an in�nite sequen
e of #BIS-equivalent problems. Consider thefollowing sequen
e of 
ounting problems, parameterised by a positive integerparameter q:Name. #P �q -Col.Instan
e. A graph G.Output. The number of P �q -
olourings of G, where P �q is the path of length q�1with loops on all q verti
es.Observe that #2-Parti
le-WR-Configs and #Bea
hConfigs are thespe
ial 
ases q = 3 and q = 4, respe
tively. The redu
tions presented in theproofs of Lemmas 7 and 8 easily generalise to higher q so we immediately obtain.Theorem 10 #P �q -Col �AP #BIS, for all q � 3.Clearly, the 
ase q = 2 is trivially solvable.5 A logi
al 
hara
terisation of #BIS and its relativesSaluja, Subrahmanyam and Thakur [16℄ have presented a logi
al 
hara
terisa-tion of the 
lass #P (and of some of its sub
lasses), mu
h in the spirit of Fagin'slogi
al 
hara
terisation of NP [6℄. In their framework, a 
ounting problem isidenti�ed with a senten
e ' in �rst-order logi
, and the obje
ts being 
ountedwith models of '. By pla
ing a synta
ti
 restri
tion on ', it is possible to iden-tify a sub
lass #RH�1 of #P whose 
omplete problems in
lude all the onesmentioned in Theorem 5.We follow as 
losely as possible the notation and terminology of [16℄, anddire
t the reader to that arti
le for further information and 
lari�
ation. Avo
abulary is a �nite set � = f eR0; : : : ; eRk�1g of relation symbols of aritiesr0; : : : ; rk�1. A stru
ture A = (A;R0; : : : ; Rk�1) over � 
onsists of a universe(set of obje
ts) A, and relations R0; : : : ; Rk�1 of arities r0; : : : ; rk�1 on A; nat-urally, ea
h relation Ri � Ari is an interpretation of the 
orresponding relationsymbol eRi.8 We deal ex
lusively with ordered �nite stru
tures; i.e., the sizejAj of the universe is �nite, and there is an extra binary relation that is in-terpreted as a total order on the universe. Instead of representing an instan
eof a 
ounting problem as a word over some alphabet �, we represent it as astru
ture A over a suitable vo
abulary �. For example, an instan
e of #IS is a8We have emphasised here the distin
tion between a relation symbol eRi and its interpreta-tion Ri. From now on, however, we simplify notation by referring to both as Ri. The meaningshould be 
lear from the 
ontext. 13



graph, whi
h 
an be regarded as a stru
ture A = (A;�), where A is the vertexset and � is the (symmetri
) binary relation of adja
en
y.The obje
ts to be 
ounted are represented as sequen
es T = (T0; : : : ; Tr�1)and z = (z0; : : : ; zm�1) of (respe
tively) relations and �rst-order variables. Wesay that a 
ounting problem f (a fun
tion from stru
tures over � to numbers)is in the 
lass #FO if it 
an be expressed asf(A) = ���(T; z) : A j= '(z;T)	��;where ' is a �rst-order formula with relation symbols from � [ T and (free)variables from z. For example, by en
oding an independent set as a unaryrelation I, we may express #IS quite simply asfIS(A) = ���(I) : A j= 8x; y: x � y ) :I(x) _ :I(y)	��:Indeed, #IS is in the sub
lass #�1 � #FO (so named by Saluja et al.), sin
ethe formula de�ning fIS 
ontains only universal quanti�
ation. Saluja et al. [16℄exhibit a stri
t hierar
hy of sub
lasses#�0 = #�0 � #�1 � #�1 � #�2 � #�2 = #FO = #Pbased on quanti�er alternation depth. Among other things, they demonstratethat all fun
tions in #�1 admit an FPRAS.9All the problems introdu
ed in x4, in parti
ular those mentioned in Theo-rem 5, lie in a synta
ti
ally restri
ted sub
lass #RH�1 � #�1 to be de�nedpresently. Furthermore, they 
hara
terise #RH�1 in the sense of being 
om-plete for #RH�1 with respe
t to AP-redu
ibility (and even, as we shall see,with respe
t to a mu
h more demanding notion of redu
ibility). We say that a
ounting problem f is in the 
lass #RH�1 if it 
an be expressed in the formf(A) = ���(T; z) : A j= 8y:  (y; z;T)	��; (2)where  is an unquanti�ed CNF formula in whi
h ea
h 
lause has at most oneo

urren
e of an unnegated relation symbol from T, and at most one o

urren
eof a negated relation symbol from T. The rationale behind the naming of the
lass #RH�1 is as follows: \�1" indi
ates that only universal quanti�
ation isallowed, and \RH" that the unquanti�ed subformula  is in \restri
ted Horn"form. Note that the restri
tion on 
lauses of  applies only to terms involvingsymbols from T; other terms may be arbitrary.For example, suppose we represent an instan
e of #Downsets as a stru
-ture A = (A;�), where � is a binary relation (assumed to be a partial order).Then #Downsets 2 #RH�1 sin
e the number of downsets in the partiallyordered set (A;�) may be expressed asfDS(A) = ���(D) : A j= 8x 2 A; y 2 A:D(x) ^ y � x) D(y)	��; (3)where we have represented a downset in an obvious way as a unary relation Don A. The problem #1p1nSat is expressed by a formally identi
al expression,9The 
lass #�1 is far from 
apturing all fun
tions admitting an FPRAS. For example,#DNF admits an FPRAS even though it lies in #�2 n#�1 [16℄.14



but with � interpreted as an arbitrary binary relation (representing 
lauses)rather than a partial order.10The main result of this se
tion isTheorem 11 #1p1nSat is 
omplete for #RH�1 under parsimonious redu
ibil-ity.Proof. Consider the generi
 
ounting problem in #RH�1, as presented in equa-tion (2). SupposeT = (T0; : : : ; Tr�1), y = (y0; : : : ; y`�1) and z = (z0; : : : ; zm�1),where (Ti) are relations of arity (ti), and (yj) and (zk) are �rst-order variables.Let L = jAj` and M = jAjm, and let (�0; : : : ; �L�1) and (�0; : : : ; �M�1) beenumerations of A` and Am. ThenA j= 8y:  (y; z;T) i� A j= L�1̂q=0  (�q; z;T);and f(A) = M�1Xs=0 ���nT : L�1̂q=0  q;s(T)o���; (4)where  q;s(T) is obtained from  (�q; �s;T) by repla
ing every subformula that istrue (resp., false) in A by TRUE (resp., FALSE). Now VL�1q=0  q;s(T) is a CNFformula with propositional variables Ti(�i) where �i 2 Ati . Moreover, there isat most one o

urren
e of an unnegated propositional variable in ea
h 
lause,and at most one of a negated variable. Thus, expression (4) already providesan AP-redu
tion to #1p1nSat, sin
e f(A) is the sum of the numbers of satis-fying assignments to M (i.e. polynomially many) instan
es of #1p1nSat. (Toobtain a pre
ise 
orresponden
e we must add, in ea
h instan
e, trivial 
lausesTi(�i)) Ti(�i) for every propositional variable Ti(�i) not already o

urring inVL�1q=0  q;s(T), otherwise the number of models T will be underestimated by afa
tor 2u where u is the number of unrepresented variables Ti(�i).)The above redu
tion is not yet parsimonious. To a

omplish this, let usdistinguish the variables in the above set of instan
es of #1p1nSat as Tis(�i)(s = 0; 1; : : : ;M�1). Also, write 	 s = VL�1q=0  q;s(Ts) (s = 0; 1; : : : ;M�1). Wemay assume that 	 s 
ontains no one-literal 
lauses, sin
e the truth setting ofany su
h literal is for
ed, and the 
orresponding variable may be set to TRUEor FALSE. Let w1; w2; : : : ; wM�1 be new propositional variables, and supposew0 = FALSE, wM = TRUE for the sake of exposition. Let�s = r�1̂i=0 ^�i2Ati(Tis(�i)) ws+1 ) (s = 0; 1; : : : ;M � 2)and �s = r�1̂i=0 ^�i2Ati(ws ) Tis(�i) ) (s = 1; 2; : : : ;M � 1);10To be absolutely pre
ise, one also needs two unary relations, U and N say, to 
ode theone-literal 
lauses. 15



and 
onsider the formula' = M�1ŝ=0 	 s ^M�2ŝ=0 �s ^M�1ŝ=1 �s:Observe that ' is an instan
e of #1p1nSat. We 
laim that it has exa
tly f(A)satisfying assignments. To see this note that if, for a given s, Tis(�i) is assignedTRUE for some i, then for all p > s, Tjp(�j) must be assigned TRUE for everyj. This is for
ed by the �s; �s formulae. Thus there 
an only be one s su
hthat the Tis(�i) re
eive both truth assignments. This is the unique s su
h thatws is assigned FALSE and ws+1 is assigned TRUE. Any s = 0; 1; : : : ;M � 1is possible but, on
e it is �xed, it is easy to see that ' is satis�ed if and onlyif 	 s is satis�ed. The satisfying assignments are 
learly disjoint for di�erent s,and the 
laim follows.Corollary 12 The problems #BIS, #P4-Col, #P �q -Col (for q � 3, in
lud-ing as spe
ial 
ases #2-Parti
le-WR-Configs and #Bea
hConfigs) and#Downsets are all 
omplete for #RH�1 with respe
t to AP-redu
ibility.Proof (sket
h). Hardness is immediate from Theorems 5, 10 and 11. That ea
hof the problems is in the 
lass #RH�1 
an be established by 
onstru
tingsuitable logi
al formulas along the lines of (3). Suppose we represent an instan
eof #P �q -Col as a stru
ture A = (A;�) where A is the vertex set and � is abinary relation (assumed to represent adja
en
y). We 
an express the numberof P �q -
olourings as follows, where, for 1 � j < q, the unary relation Cj is \true"for a vertex i� its 
olour is in f
1; : : : ; 
jg.fP �q (A) = ���(C1; : : : ; Cq�1) : A j= 8x 2 A; y 2 A:(C1(x)) C2(x)) ^ � � � ^ (Cq�2(x)) Cq�1(x)) ^(C1(x) ^ x � y ) C2(y)) ^ � � � ^ (Cq�2(x) ^ x � y ) Cq�1(y))	��:We 
an represent an instan
e of #BIS as a stru
ture A = (A;L;�), whereA is the vertex set, L is the set of \left" verti
es and � is a binary relation(assumed to represent adja
en
y). We 
an express the number of independentsets as follows, where the unary relation X is \true" for left-verti
es whi
h arein the independent set, and for right-verti
es whi
h are not in the independentset.fBIS(A) = ���(X) : A j= 8x 2 A; y 2 A:L(x) ^ x � y ^X(x)) X(y)	��:Corollary 12 tells us something about the 
omplexity 
lass #RH�1. Inparti
ular, it is likely to be a stri
t subset of #�1. Indeed, sin
e #IS 2 #�1,#RH�1 = #�1 would imply #IS �AP #BIS (i.e., it would imply that #BISis 
omplete for #P with respe
t to AP-redu
ibility). It is 
lear that #RH�1 isnot a subset of the previous 
lass in the hierar
hy of Saluja et al. In parti
ular,#1p1nSat 2 #RH�1 n #�1 (this 
an be proved using arguments similar to16



those used by Saluja et al. to show that 
ounting satisfying assignments ofa 3CNF formula is not in #�1). Every problem in #�1 is (trivially) AP-redu
ible to the 
omplete problems in #RH�1, but we do not know whether#�1 � #RH�1.Clearly, Corollary 12 
ontinues to hold even if \AP-redu
ibility" is repla
edby a more stringent redu
ibility. In fa
t, most of our results remain true formore stringent redu
ibilities than AP-redu
ibility. One su
h tightening is to \re-stri
ted approximation-preserving redu
tion". The de�nition of RAP-redu
tionfollows 
losely that of AP-redu
tion, but the operation of the Turing ma
hineMis greatly restri
ted. On input (x; "), the ma
hine M may make a single ora
le
all (w; Æ) 2 ���R+ , and 
ompute a positive rational q 2 Q+ without re
ourseto the ora
le. Suppose the result from the ora
le 
all is y 2 N. Then the resultreturned by M is the integer 
losest to qy.All the results based on expli
it redu
tions in this arti
le (not just Theo-rem 11 and Corollary 12) hold with \RAP-redu
ibility" repla
ing \AP-redu
-ibility." The results that appeal to the bise
tion te
hnique of Valiant and Vazi-rani [21℄ seem to require a more liberal notion of redu
ibility.6 Problems to whi
h #BIS is redu
ibleThere are some problems that we have been unable to pla
e in any of the threeAP-interredu
ible 
lasses 
onsidered in this arti
le even though redu
tions from#BIS 
an be exhibited. The existen
e of su
h redu
tions may be 
onsideredas weak eviden
e for intra
tability, at least provisionally while the 
omplexitystatus of the 
lass #RH�1 is un
lear. Two examples are #3-Parti
le-WR-Configs (the spe
ial 
ase of #q-Parti
le-WR-Configs with q = 3) and#Bipartite q-Col:Name. #Bipartite q-Col.Instan
e. A bipartite graph B.Output. The number of q-
olourings of B.Three observations 
on
erning #Bipartite q-Col: (i) the spe
ial 
aseq = 2 is trivially solvable; (ii) the spe
ial 
ase q = 3 has an alternative 
hara
-terisation as 
ounting C6-
olourings of a general graph, where C6 is the 
y
leon six verti
es; and (iii) #Bipartite q-Col in
ludes the q-state ferromagneti
Potts model as a spe
ial 
ase. Observation (ii) follows from a similar argumentto that used to relate #BIS and #P4-Col in the proof of Theorem 5.To interpret observation (iii), suppose G is a graph on n verti
es, and setq = 3 (say). The 
on�gurations of the 3-state ferromagneti
 Potts system basedon G are the 3n possible 3-
olourings, not ne
essarily proper, of the graph G.De�ne the weight of a 
on�guration � to be 2m(�), where m(�) is the numberof edges of G that are mono
hromati
 under the 3-
olouring �. Consider theproblem of 
omputing the total weight of 
on�gurations: this is a simpli�edformulation of the problem of evaluating the partition fun
tion of the 3-stateferromagneti
 Potts model at a 
ertain non-zero temperature. The redu
tion17



of this (weighted) 
ounting problem to #Bipartite3-Col is a

omplished bymapping G to its \2-stret
h," i.e., the graph G0 obtained from G by subdivid-ing ea
h edge by a single additional vertex. An antiferromagneti
 system isobtained by giving weight �m(�) to 
on�guration �, where � < 1. Noti
e that(usual) graph 
olouring is obtained in the \zero temperature limit" as � ! 0;noti
e also that an antiferromagnet (repulsive) Potts system on the bipartitegraph G0 e�e
tively models a ferromagneti
 (attra
tive) Potts system on thegeneral graph G.An intermediate problem that features in our redu
tions is:Name. #BipartiteMaxIS.Instan
e. A bipartite graph B.Output. The number of maximum independent sets in B.Theorem 13 #BIS is AP-redu
ible to all three problems: #BipartiteMaxIS,#3-Parti
le-WR-Configs and #Bipartite q-Col for q � 3.Proof. Follows from the redu
tions guaranteed by Lemmas 15, 16 and 17.The �rst of the three problems is a
tually AP-interredu
ible with #BIS, as thefollowing lemma shows:Lemma 14 #BipartiteMaxIS �AP #BIS.Proof. Sin
e the maximum size, m, of an independent set in a bipartite graph
an be determined in polynomial time, the redu
tion from the proof of Theo-rem 3 may be used.We now give the lemmas whi
h we use to prove Theorem 13. We will usethe following de�nition.De�nition: Let f(a; b) denote the number of onto fun
tions from a set ofsize a to a set of size b.Lemma 15 #BIS �AP #BipartiteMaxIS.Proof. Let G be an instan
e of #BIS, with vertex set fv0; : : : ; vn�1g. We
onstru
t an instan
e, G0 of #BipartiteMaxIS as follows. The verti
es of G0are fv0; : : : ; vn�1g[fv00; : : : ; v0n�1g. The edges of G0 are the edges of G togetherwith f(vi; v0i)g. Now there is a bije
tion between the independent sets of G andthe maximum independent sets of G0.Lemma 16 #BipartiteMaxIS �AP #3-Parti
le-WR-Configs.Proof. Let B = (X;Y;A) be an instan
e of #BipartiteMaxIS, where X =fx0; : : : ; xn�1g and Y = fy0; : : : ; yn�1g. Let M be the size of a maximumindependent set in B. (Note that M 
an be determined from B in polynomialtime.) Constru
t an instan
e G = (V;E) of #3-Parti
le-WR-Configs asfollows, where s and t are integers to be 
hosen below. Let Ui : 0 � i � n�1 be18



disjoint sets of size s, and Vj : 0 � j � n� 1 be disjoint sets of size s. Further,let K be a set of size t. Then setV = K [ [i2[n℄Ui [ [j2[n℄Vjand E = K(2) [ [j2[n℄(Vj �K) [[�Ui � Vj : (xi; yj) 2 A	:Thus K is a 
lique, and there is a 
omplete bipartite graph between Sj Vjand K. An S�3 -
olouring 
orresponds to a 
olouring of G with 
olours b, r1, r2and r3 in whi
h, for % 6= �, there are no edges between verti
es 
oloured r% andverti
es 
oloured r�. A 
olouring is full if, for some %, K has verti
es 
oloured band r% (and no other 
olours). Every full 
olouring points out an independentset in B. The vertex yj is in the independent set if Vj 
ontains at least onevertex 
oloured r%. The vertex xi is in the independent set if Ui 
ontains atleast one vertex whose 
olour is not b or r%. The number of times that anindependent set with k ui's and ` vi's 
omes up (as a full 
olouring) is3(2t � 2)(4s � 2s)k(2s)n�k(2s � 1)`= 3(2t � 2)2sn(2s � 1)k+`:Let Z = 3(2t�2)2sn(2s � 1)M . Let N denote the number of maximum indepen-dent sets in B. We will say that a full 
olouring is M -large if the independentset that it points out has size M , and M -small otherwise. The number ofM -small full 
olourings is at most22n3(2t � 2)2sn(2s � 1)M�1 � 22nZ2s � 1 � Z=8;if s is suÆ
iently large with respe
t to n. The number of non-full 
olourings isat most 4 � 42sn, whi
h is at most Z=8 if t is suÆ
iently large with respe
t to sand n. Let Y denote the number of 
olourings. ThenN = �YZ � ;and the result follows.Lemma 17 For q � 3, #BipartiteMaxIS �AP #Bipartite q-Col.Proof. Let B = (X;Y;A) be an instan
e of #BipartiteMaxIS, where X =fx0; : : : ; xn�1g and Y = fy0; : : : ; yn�1g. Let M be the size of a maximumindependent set in B. Constru
t an instan
e G = (V;E) of #Bipartite q-Colas follows, where r, s and ` are integers to be 
hosen below. Let Ui : 0 � i � n�1be disjoint sets of size r, and Vi : 0 � i � n�1 be disjoint sets of size s. Further,19



let I1 be a set of size (q� 2)` and I2 be a set of size 2`. Let i0 be a vertex thatis not in any of these sets. Then setV = fi0g [ I1 [ I2 [ [i2[n℄Ui [ [j2[n℄Vjand E = (fi0g � I1) [ (I1 � I2) [ [i2[n℄(fi0g � Ui) [ [j2[n℄(Vj � I1)[ [�Ui � Vj : (xi; yj) 2 A	:Note that G is indeed bipartite, so it is an instan
e of #Bipartite q-Col.A q-
olouring ofG is full if exa
tly q�2 
olours are used to 
olour the verti
esin I1. Every full 
olouring points out an independent set in B. Consider a full
olouring in whi
h blue is not used to 
olour any verti
es in I1[fi0g. Vertex xiis in the independent set if Ui 
ontains at least one blue vertex and vertex yi isin the independent set if Vi 
ontains at least one blue vertex. Re
all that f(a; b)denotes the number of onto fun
tions from a set of size a to a set of size b. Letz = lg((q � 1)=(q � 2)). The number of times that an independent set with kxi's and j yi's 
omes up (as a full 
olouring) is2� qq � 2� f((q � 2)`; q � 2) 22` (q � 2)rn (2s � 1)j+k�2zr � 12s � 1 �k: (5)The � qq�2� in (5) 
orresponds to the 
hoi
e of the q � 2 
olours for I1. The 2
orresponds to the 
hoi
e of a remaining 
olour for i0. The f((q � 2)`; q � 2)fa
tor 
ounts the number of ways to 
olour I1 with the 
hosen 
olours. Thereare 22` ways to 
olour I2. If vertex xi is out of the independent set, then thereare (q � 2)r ways to 
olour Ui. Otherwise, there are (q � 1)r � (q � 2)r ways.Thus, the number of ways to 
olour the Ui's is(q � 2)rn�(q � 1)r � (q � 2)r(q � 2)r �k = (q � 2)rn(2zr � 1)k:Finally, the number of ways to 
olour the Vi's is (2s � 1)j.Let N denote the number of maximum independent sets in B. LetZ = 2� qq � 2� f((q � 2)`; q � 2) 22` (q � 2)rn (2s � 1)M :As in the proof of Lemma 16, we wish to show that the total 
ontributionof the non-full 
olourings is small. To this end, let%(y) = �qy� f((q � 2)`; y) (q � y)2`:%(y) is the number of 
olourings of I1 [ I2 in whi
h I1 is 
oloured with exa
tlyy 
olours. Thus, %(y) = 0 unless y 2 f1; : : : ; q � 1g. We will 
hoose ` to besuÆ
iently large that, for a positive 
onstant 
,%(q � 2) � q�1Xy=1 %(y) � %(q � 2)(1 + exp(�
`)): (6)20



(We will show later that equation (6) holds for an appropriate 
hoi
e of `.)Equation (6) implies that the total 
ontribution of the non-full 
olourings is atmost %(q � 2) exp(�
`)q1+rn+sn:If ` is at least a suÆ
iently large polynomial in q, n, r, and s then this is atmost %(q � 2) exp(�
`=2) whi
h is at most Z=8. As in the proof of Lemma 16,the number of M -small full 
olourings is also at most Z=8.Let Y be the number of 
olourings. Now we are almost �nished ex
ept that1. we still need to show that equation (6) holds as long as ` is suÆ
ientlylarge with respe
t to the 
onstant q, and2. unlike the situation in the proof of Lemma 16, the number of M -largefull 
olourings is not pre
isely NZ. That is, we have ignored the extrafa
tor of �2zr�12s�1 �k in equation (5). To �nish, we must show that theparameters r and s 
an be 
hosen su
h that for any k 2 [0; n℄e�" � �2zr � 12s � 1 �k � e"; (7)where " is a given a

ura
y parameter.Now we show that equation (6) holds as long as ` is suÆ
iently large withrespe
t to the 
onstant q. In parti
ular, we show that for suÆ
iently large `there is a positive 
onstant 
 su
h that for all y 2 f1; : : : ; q� 3; q� 1g, we have%(y) � %(q � 2) exp(�
`).First, 
onsider y 2 f1; : : : ; q � 3g. In this 
ase (as long as ` is at least2(q� 2) ln(q� 2)), Lemma 18 (whi
h follows) and the de�nition of % show that%(q � 2)%(y) � � qq�2��qy� �q � 2y �(q�2)`(1� exp(�`=2))� 2q � y�2`:If ` is suÆ
iently large then this is at least exp(
`), sin
e�q � 2y �(q�2)=2 = �1 + q � 2� yy �(q�2)=2 � 1 +�q � 22 ��q � 2� yy �= 1 +�q � 2� y2 ��q � 2y � > 1 + q � 2� y2 = q � y2 :Finally, 
onsider y = q � 1. As before,%(q � 2)%(q � 1) � � qq�2�� qq�1��q � 2q � 1�(q�2)`(1� exp(�`=2))22`:This is at least exp(
`), sin
e�q � 1q � 2�q�2 = �1 + 1q � 2�q�2 < 22:21



We now 
on
lude the proof by showing that the parameters r and s 
an be
hosen su
h that, for any k 2 [0; n℄ equation (7) holds. Note that we want rand s to be at most polynomial in n and "�1. Also, we must make s at least asuÆ
iently large multiple of n (say 1000n) so that the number of M -small full
olourings stays below Z=8. Let W be be a positive integer su
h that bzW 
 isat least 1000n. Let R = d(16(ln 2)Wn)=(7")e. Finally, let r = Wx, where x is
hosen from Corollary 20 whi
h is to follow.There are two 
ases. If zr � bzr
 � W=R then we set s = bzr
. Otherwise,we set s = dzre. To �nish, we just need to show that equation (7) is satis�edeither way. Let Æ = "=n. For the �rst 
ase,(ln 2)(zr � bzr
) � (ln 2)W=R � 7Æ=16 � ln(1 + Æ=2);where the rightmost inequality relies on the fa
t that Æ < 1=2. Exponentiatingboth sides, 2zr � 2bzr
(1 + Æ=2) � 2bzr
 + Æ(2bzr
 � 1):Thus, 2zr � 2bzr
2bzr
 � 1 � Æ:Adding 1 to both sides, 2zr � 12bzr
 � 1 � 1 + Æ � eÆ:The se
ond 
ase is analogous.We end the se
tion by stating and proving some te
hni
al lemmas whi
h weused in the proof of Lemma 17.Re
all that f(a; b) denotes the number of onto fun
tions from a set of size ato a set of size b.Lemma 18 If a and b are positive integers and a � 2b ln b thenba (1� exp(�a=(2b))) � f(a; b) � ba:Proof. The right-hand inequality is straightforward, and the left-hand inequal-ity 
an be derived as follows.f(a; b) � ba � b(b� 1)a = ba�1� b�1� 1b�a�� ba(1� b exp(�a=b)) = ba�1� exp��a�1b � ln ba ���� ba�1� exp��a2b �� :
22



Lemma 19 For any positive integer R there is an x 2 [1; : : : ; R℄ su
h thatmin(zx� bzx
; dzxe � zx) � 1=R:Proof. For i 2 [1; : : : ; R℄, let �i denote zi� bzi
. If there is an i su
h that �i �1=R then take x = i. Otherwise, there are i 6= j su
h that 0 � �i � �j � 1=R,so take x = ji� jj.Corollary 20 For any positive integer W and any positive integer R, there isan x 2 [1; : : : ; R℄ su
h thatmin(zWx� bzWx
; dzWxe � zWx) �W=R:7 An errati
 sequen
e of problemsIn this se
tion, we 
onsider a sequen
e of H-
olouring problems. Let Wrq bethe graph with vertex set Vq = fa; b; 
1; : : : ; 
qg and edge setEq = f(a; b)g [ f(b; b)g [[i f(b; 
i)g [[i f(
i; 
i)g:Wr0 is just K2 with one loop added. Wr1 is 
alled \the wren
h" in [2℄. Considerthe problem #q-Wren
h-Col, whi
h is de�ned as follows.Name. #q-Wren
h-Col.Instan
e. A graph G.Output. The number of Wrq-
olourings of G.In this se
tion, we prove the following theorem.Theorem 21� For q � 1, #q-Wren
h-Col is AP-interredu
ible with #Sat.� #2-Wren
h-Col is AP-interredu
ible with #BIS.� For q � 3, #q-Wren
h-Col is AP-interredu
ible with #Sat.Theorem 21 indi
ates that either (i) #BIS is AP-interredu
ible with #Sat(whi
h would be surprising) or (ii) the 
omplexity of approximately 
ountingH-
olourings is \non-monotoni
": when H is 
hosen from a regularly 
onstru
tedsequen
e, the 
omplexity may jump down and then up again. The statementabout Wr0-
olourings follows from Theorem 3 be
ause Wr0-
olourings are inde-pendent sets. The statement about Wr1-
olourings will be proved in Lemma 22.The easiness result for Wr2-
olourings follows from Lemma 23 and from Theo-rem 5. The hardness result for Wr2-
olourings follows from Lemma 24 and fromLemma 15. The statement for Wrq-
olourings for q � 3 follows from Lemma 25.As starting points for our redu
tions, we will use the following problems.23



Name. #LargeIS-Cubi
.Instan
e. A positive integer m and a 
onne
ted 
ubi
 graph G in whi
h everyindependent set has size at most m.Output. The number of size-m independent sets in G.Name. #LargeCut.Instan
e. A positive integer k and a 
onne
ted graph G in whi
h every 
ut11has size at most k.Output. The number of size-k 
uts of G.Garey et al. [7℄ have shown that the de
ision problems 
orresponding tothese 
ounting problems are NP-
omplete. Therefore, Theorem 1 shows that the
ounting problems are AP-interredu
ible with#Sat. A dire
t (nearly parsimo-nious) redu
tion from #Sat to #LargeIS-Cubi
 appears in Appendix A anda dire
t parsimonious redu
tion from #Sat to #LargeCut appears in [10℄.12Lemma 22 #LargeCut �AP #1-Wren
h-Col.Proof. Let k and G = (V;E) be an instan
e of #LargeCut. Constru
t aninstan
e G0 = (V 0; E0) of #1-Wren
h-Col as follows, where the size of V is nand s and t are integers to be determined below. For every vertex u of G letAu and A0u be disjoint sets of size 2s, let Bu and B0u be disjoint sets of size 7s,and let Vu = Au [ Bu [ B0u [ A0u. Let Bu[i℄ denote the ith element of Bu. Forevery edge e of G let Se and S0e be disjoint sets of size t. Then setV 0 =  [u2V Vu! [ [e2E Se [ S0e!and E0 =  [u2V Au �Bu [A0u �B0u [ [i2f1;:::;7sgf(Bu[i℄; B0u[i℄)g![ [e=(u;v)2EBu � Se [B0v � Se [B0u � S0e [Bv � S0e!:In a wren
h-
olouring of G0, every edge is 
oloured with one of the six
olourings (a; b), (b; a), (b; b), (b; 
1), (
1; b) and (
1; 
1). A wren
h-
olouring isfull if, for every vertex u of G, the set of 
olourings assigned to edges between Bu11Re
all that a \
ut" of a graph is a partition of its vertex set into two subsets and that thesize of the 
ut is the number of edges whi
h span the two subsets.12Re
all that it was possible to modify the de�nition of #LargeIS so that a \witness"was provided along with the instan
e. Similarly, it is possible to modify the de�nitions of#LargeIS-Cubi
 and #LargeCut so that witnesses are provided along with the input. Forexample, a witness for #LargeCut 
ould be used to 
he
k that the instan
e has no 
uts ofsize ex
eeding k. 24



andB0u is either exa
tly C1 = f(a; b); (b; b); (b; 
1); (
1; b); (
1; 
1)g or exa
tly C2 =f(b; a); (b; b); (
1 ; b); (b; 
1); (
1; 
1)g. Note that in the �rst 
ase Au is 
oloured band A0u has no a. In the se
ond 
ase, A0u is 
oloured b and Au has no a. Everyfull wren
h-
olouring points out a 
ut of G. The vertex u of G is in the left sideof the partition in the �rst 
ase and in the right side in the se
ond 
ase. Re
allthat f(x; y) denotes the number of onto fun
tions from a set of size x to a setof size y. The number of times that a size-j 
ut 
omes up (as a full 
olouring)is 2(f(7s; 5)22s)n2jt:Let Z = 2(f(7s; 5)22s)n2kt. Let N denote the number of k-
uts. We say thata full 
olouring is k-large if the 
ut that it points out has size k and k-smallotherwise. The number of k-small full 
olourings is at most 2nZ=2t whi
h is atmost Z=8 as long as t � n + 3. We 
on
lude the proof by showing that thenumber of non-full 
olourings is at most Z=8. In parti
ular, let C denote theset of 
olourings assigned to edges between Bu and B0u. In ea
h 
ase (below)the number of 
olourings is exponentially smaller (as a fun
tion of s) than Z.In our 
al
ulations, we use Lemma 18 and we assume that s is suÆ
iently large
ompared to t, so we do not have to worry about any additional fa
tor (up to32t(n2)) whi
h might arise due to having more possibilities for 
olouring verti
esin Se or S0e (for any e).1. jCj � 5 but C 6= C1 and C 6= C2: Au and A0u are 
oloured b, so thereare at most 67s possibilities for 
olouring the verti
es in Vu, whi
h isexponentially fewer than f(7s; 5)22s (sin
e 67 < 5722).2. jCj = 4: Au and A0u have no verti
es with 
olour a, so there are at most47s22s22s possibilities for 
olouring the verti
es in Vu, whi
h is exponen-tially fewer than f(7s; 5)22s (sin
e 472222 < 5722).3. jCj � 3: There are at most 37s32s32s possibilities for 
olouring the verti
esin Vu, whi
h is exponentially fewer than f(7s; 5)22s (sin
e 373232 < 5722).Lemma 23 #2-Wren
h-Col �AP #Downsets.Proof. Let G = (V;E) be an instan
e of #2-Wren
h-Col. Following theproof of Lemma 8, we 
onstru
t an instan
e of #Downsets, a partial order onthe 2n-element set V �[2℄. For ea
h edge (u; v) of G, we impose the relationships(u; 0) � (v; 1) and (v; 0) � (u; 1). Given a downset D and a vertex u of G, thereare four possibilities for the set Du = D \ f(u; 0); (u; 1)g. These possibilities
orrespond to the four 
olours of an Wr2-
olouring of G. If Du = f(u; 1)g then uis mapped to vertex a of Wr1 and if Du = f(u; 0)g then u is mapped to vertex bof Wr1. Now there is a 1-1 
orresponden
e between Wr1-
olourings of G anddownsets in (V � [2℄;�).Lemma 24 #BipartiteMaxIS �AP #2-Wren
h-Col.Proof. Similar to the proof of Lemma 16.25



Lemma 25 For q � 3, #LargeIS-Cubi
 �AP #q-Wren
h-Col.Proof. Let m and G be an instan
e of #LargeIS-Cubi
. Let n be the num-ber of verti
es of G. First, 
onstru
t a graph G0 from G. For every ver-tex u of G, let V [u℄ be the graph with vertex set fu1; u2; u3; u4; u5g and edgeset f(u1; u4); (u2; u4); (u3; u4); (u1; u5); (u2; u5); (u3; u5)g. G0 will be 
onstru
tedfrom the graphs V [u℄ and from some additional edges. In parti
ular, if v is thei'th smallest neighbour of u in G and u is the j'th smallest neighbour of v in G,then we add (ui; vj) to G0. Next, 
onstru
t a graph G00 from G0. Let r besuÆ
iently large with respe
t to n and let s = 1:1 r. Every vertex u1, u2, oru3 in G0 
orresponds to an independent set in G00 of size r. Every vertex u4 oru5 in G0 
orresponds to an independent set in G00 of size s. Every edge of G0
orresponds to a 
omplete bipartite graph in G00.A G0-map is is a 
olouring whi
h maps ea
h of the 5n verti
es of G0 to anon-empty subset of the vertex set Vq = fa; b; 
1; : : : ; 
qg in su
h a way that1. if verti
es � and � of G0 are adja
ent and the 
olour of � in
ludes a thenthe 
olour of � is fbg, and2. if verti
es � and � of G0 are adja
ent and the 
olour of � in
ludes 
i (forany i 2 f1; : : : ; qg) then the 
olour of � is a subset of fb; 
ig.We will say that a G0-map is \independent" if, for every vertex u of G either1. u1, u2 and u3 are 
oloured Vq and u4 and u5 are 
oloured fbg, or2. u1, u2 and u3 are 
oloured fbg and u4 and u5 are 
oloured Vq.There is a 1-1 
orresponden
e between independent sets of G and independentG0-maps. (u is in the independent set i� u1 is 
oloured Vq.) Furthermore,every Wrq-
olouring of G00 points out a G0-map and every size-M independentset of G 
orresponds to f(r; q + 2)3Mf(s; q + 2)2(n�M) Wrq-
olourings of G00,where f(x; y) denotes the number of onto fun
tions from a set of size x toa set of size y, as in the proof of Lemma 17. Let N denote the number ofsize-m independent sets in G. Let Y denote the number of Wrq-
olourings ofG00. We will say that an independent G0-map is \full" if the independent setthat it points out has size m. Claim 3 (below) shows that if C is a non-fullG0-map then the fra
tion of Wrq-
olourings of G00 whi
h 
orrespond to C isexponentially small (as a fun
tion of r). This implies thatN = $ Yf(r; q + 2)3mf(s; q + 2)2(n�m)% :We say that a G0-map C is \exponentially unlikely" when the fra
tion ofWrq-
olourings of G00 whi
h 
orrespond to C is exponentially small (as a fun
-tion of r). We now 
omplete the proof of the lemma by proving Claims 1{3. Inea
h 
ase, the fa
t that the spe
i�ed fra
tion is exponentially large in r followsfrom Lemma 18. 26



Claim 1 If, in G0-map C, some, but not all, of the verti
es in V [u℄ are 
olouredfb; 
ig (for some vertex u of G and some i 2 f1; : : : ; qg) then C is exponentiallyunlikely.Proof of Claim 1.1. Suppose that u1 is 
oloured fb; 
ig and both u4 and u5 are 
oloured fbg.Then theG0-map C 0 obtained by re
olouring u1 with Vq and all neighboursof u1 with fbg 
orresponds to a fa
tor of f(r; q + 2)=f(r; 2)2 more Wrq-
olourings of G00 than C. (Note that u4 and u5 are already 
oloured fbg,and u1 has at most one other neighbour.) This fa
tor is exponentiallylarge in r sin
e q > 2. If r is suÆ
iently large with respe
t to n then itex
eeds the number of G0-maps, so C is exponentially unlikely.2. Suppose that u1 and u4 are 
oloured fb; 
ig and u5 is 
oloured fbg. Thenthe G0-map C 0 obtained by re
olouring u5 with fb; 
ig 
orresponds to afa
tor of f(s; 2) more Wrq-
olourings of G00 than C.3. Suppose that u1 and u4 and u5 are 
oloured fb; 
ig and u3 is 
oloured fbg.Then the G0-map C 0 obtained by re
olouring u4 and u5 with Vq and u1, u2and u3 with fbg 
orresponds to a fa
tor of f(s; q + 2)2=(f(s; 2)2f(r; 2)2)more Wrq-
olourings of G00 than C.4. Suppose that u4 is 
oloured fb; 
ig and all of its neighbours are 
olouredfbg. Then the G0-map C 0 obtained by re
olouring u4 with Vq 
orrespondsto a fa
tor of f(s; q + 2)=f(s; 2) more Wrq-
olourings of G00 than C.By symmetry, these are the only 
ases.Claim 2 If, in G0-map C, some vertex of G0 has a 
olour other than Vq or fbg,then C is exponentially unlikely.Proof of Claim 2. Suppose (for 
ontradi
tion) that C is not exponentiallyunlikely and that it has a vertex z whose 
olour is not fbg or Vq. z must havea neighbour with a 
olour other than fbg (otherwise C would be exponentiallyunlikely, sin
e exponentially more Wrq-
olourings 
orrespond to the G0-mapobtained from C by re
olouring z with Vq). Sin
e the 
olour of z is not f
ig(otherwise C would be exponentially unlikely), it must be fb; 
ig (for some i 2f1; : : : ; qg). Now 
onsider the 
onne
ted 
omponent U 0 of G0 whi
h 
ontains zand has every vertex 
oloured fb; 
ig. Sin
e no vertex has 
olour f
ig, anyboundary surrounding U 0 must have 
olour fbg. By Claim 1, this 
orrespondsto a 
onne
ted 
omponent U of G, of size, say, `. We will show that C isexponentially unlikely. First, suppose that the maximum degree of a vertexin the subgraph of G indu
ed by U is less than three. In this 
ase, obtain aG0-map C 0 from C by re
olouring d`=2e of the verti
es in U with Vq and the restof them with fbg. (In this 
ase, the subgraph of G indu
ed by U is a 
olle
tionof paths and 
y
les, so every other vertex 
an be 
oloured with 
olour Vq andthe rest of them with fbg.) C 0 
orresponds to a fa
tor off(r; q + 2)3d`=2ef(s; q + 2)2b`=2
f(r; 2)3`f(s; 2)2`27



more Wrq-
olourings of G00 than C. If the subgraph of G indu
ed by U hasmaximum degree three then, sin
e it is not equal to K4 (otherwise it would beall of G), it has an independent set of size I of size at least `=3. (This followsfrom Brooks' theorem [3℄, whi
h says that if a 
onne
ted graph � is not a
omplete graph and has maximum degree � � 3, then it is �-
olourable.) Nowobtain C 0 from C by re-
olouring the verti
es in U 0 to en
ode the independentset I. (That is, if a vertex u is in the independent set, 
olour u1, u2 and u3with Vq as before.) Sin
e f(r; q + 2)3 � f(s; q+ 2)2, C 0 
orresponds to a fa
torof at least f(r; q + 2)(`=3)3f(s; q + 2)(2`=3)2f(r; 2)3`f(s; 2)2`more Wrq-
olourings of G00 than C. This fa
tor is exponentially large in r sin
eq > 2.Claim 3 If G0-map C is not full then it is exponentially unlikely.Proof of Claim 3. Suppose (for 
ontradi
tion) that C is not exponentiallyunlikely and that for some vertex u of G, some but not all of the verti
es infu1; u2; u3g have 
olour Vq. (By Claim 2, the others and u4 and u5 have 
olourfbg.) Then, C 
orresponds to exponentially fewer Wrq-
olourings of G00 (bya fa
tor of f(s; q + 2)2=f(r; q + 2)2) than the G0-map C 0 obtained from C byre
olouring u4 and u5 with Vq and u1, u2 and u3 with fbg. If all of u1, u2 and u3have 
olour fbg and C is not exponentially unlikely then u4 and u5 have 
olourVq. Thus, if C is not exponentially unlikely, it is independent. As we saw before,the number of Wrq-
olourings of G00 
orresponding to a size-M independentset of G is f(r; q + 2)3Mf(s; q + 2)2(n�M). Sin
e f(r; q + 2)3=f(s; q + 2)2 isexponentially large as a fun
tion of r, C is also full.Essentially the same redu
tion yields:Lemma 26 For q � 4, #LargeIS-Cubi
 �AP #q-Parti
le-WR-Configs.8 Con
lusionsWe have studied three 
lasses of 
ounting problems that are interredu
ible un-der approximation-preserving redu
tions: (i) those that admit an FPRAS, (ii)those that are AP-interredu
ible with #Sat (and therefore do not have anFPRAS unless NP=RP) and (iii) those that are AP-interredu
ible with #BIS.We show that the problems whi
h we study in the third 
lass are all 
ompletefor a logi
ally-de�ned subset of #P with respe
t to AP-redu
ibility. An im-portant open problem is to resolve the 
omplexity of the third 
lass | that is,to determine whether #BIS admits an FPRAS. Another open problem is toresolve the 
omplexity of #Bipartite q-Col. We have shown that this is atleast as hard as #BIS, but we do not know whether #Bipartite q-Col is aseasy as #BIS. 28



Appendix A: A dire
t redu
tion from #Sat to #LargeISGarey et al. [7℄ present a (
onventional) many-one/Karp redu
tion from 3-Sat(the de
ision version of #Sat restri
ted to formulas with three literals per
lause) to LargeIS-Cubi
 (the de
ision version of #LargeIS-Cubi
). Let' = C1 ^ � � � ^ Cr be an instan
e of 3-Sat in the variables x1; : : : ; xn. For
onvenien
e, assume that ea
h variable xi in ' o

urs ti times unnegated and(the same number) ti times negated; su
h a formula will be 
alled balan
ed.A 
ubi
 graph G = G(') is 
onstru
ted that has an independent set of sizem = r +Pi ti = 5r=2 i� ' is satis�able. For ea
h variable xi there is a 
y
leof length 2ti. For ea
h 
lause Cj there is a triangle (
omplete graph on threeverti
es or K3); ea
h vertex in the triangle stands for a parti
ular literal in Cj .Thus the total number of verti
es in G is 3r +Pi 2ti = 6r. Note that G isthe 
omplement of a m-partite graph, with m = 5r=2, so there is 
ertainly noindependent set of size greater than m. (Ea
h variable-
y
le 
ontains ti disjoint
opies of K2, and ea
h 
lause-triangle is a K3.)To a
hieve an independent set of size m it is ne
essary to 
hoose one oftwo possible independent sets of size ti in ea
h variable-
y
le. Interpret oneof these as xi = 0 and the other as xi = 1. Additional edges are added to Gjoining variable-
y
les to 
lause-triangles. These are pla
ed so as to allow avertex in a 
lause-triangle to be in
luded in an independent set of size m i� the
orresponding literal is true. Noti
e that this 
an be a
hieved by a 
olle
tionof edges whi
h are pairwise vertex disjoint. Thus G is 
ubi
. Refer to [7℄ for amore formal des
ription of G.The redu
tion as it stands is not parsimonious: ea
h satisfying assignmentin ' 
orresponds to Qj �j independent sets in G, where �j is the number ofliterals in Cj made true by the assignment. Rather than 
hange Garey etal.'s 
onstru
tion, we instead massage the formula ' to avoid the problem justidenti�ed. Starting with an arbitrary CNF formula ' we �rst 
onstru
t a 3-CNFformula '0 (i.e., one with three literals per 
lause) that has the same numberof satisfying assignments as '. Next, we 
onstru
t from '0 positive integers r1,r2 and r3 and a 3-CNF formula '00 that1. has the same number of satisfying assignments as '0,2. is balan
ed, and3. has the property that in every satisfying assignment, exa
tly r1 
lauseshave one true literal, exa
tly r2 
lauses have two true literals, and exa
tlyr3 
lauses have three true literals.Thus the 
omposite redu
tion ' 7! '0 7! '00 7! G('00) expands the solution setby a 
onstant fa
tor 2r23r3 : not a parsimonious redu
tion, but the next bestthing.The transformation ' 7! '0 is based on the equivalen
e of the two formulas(a_ b, x) and (a_ b_:x)^ (a_:b_x)^ (:a_ b_x)^ (:a_:b_x): (8)This enables us to introdu
e a new variable x and for
e it to be the disjun
tionof two existing variables a and b. In parti
ular, for k > 3, a k-term 
lause29



`0 _ � � � _ `k�1 may be rewritten (`0 _ � � � _ `k�3 _ x) ^ (`k�2 _ `k�1 , x),where x is a new variable, and then rewritten further as a �ve-
lause CNFformula using (8). By iterating this pro
ess we may eÆ
iently transform anarbitrary CNF formula ' into a 3-CNF formula '0. The transformation is
learly parsimonious.Let r0 denote the number of 
lauses in '0. Let r1 = 31r0, r2 = 16r0, andr3 = 5r0. We will 
onstru
t '00 using the equivalen
e of (a _ b , x) and thefollowing expression, whi
h is a balan
ed version of (8):(a _ b _ :x) ^ (a _ :b _ x) ^ (:a _ b _ x) ^ (:a _ :b _ x)^ (x _ :x _ :x) ^ (x _ :x _ :x): (9)Suppose that a_b_
 is a 
lause of '0. Let y; z1; z2; z3; z4; z5; z6 be new variables.The 
lause a _ b _ 
 of '0 will be transformed into the following equivalentexpression. Note that y has the same truth value as a_ b_ 
, and it is requiredby the expression to be TRUE. Also, the variables z1{z6 are only there toestablish the third property required of '00. Their values are \ignored".(a _ b, x) ^ (a _ :b, z1) ^ (:a _ b, z2) ^ (:a _ :b, z3)^ (x _ 
, y) ^ (x _ :
, z4) ^ (:x _ 
, z5) ^ (:x _ :
, z6)^ (y _ y _ y) ^ (y _ :y _ :y) ^ (y _ :y _ :y) ^ (y _ :y _ :y): (10)Ea
h of the �rst eight 
lauses in (10) is further transformed using (9). Thereader may verify that the resulting 52-
lause expression1. has exa
tly one satisfying assignment if a _ b _ 
 is TRUE and noneotherwise (regarding the truth assignments to a, b and 
 as �xed),2. is balan
ed, and3. has the property that for every satisfying assignment, exa
tly 31 
lauseshave one true literal, exa
tly 16 
lauses have two true literals, and exa
tly5 
lauses have three true literals.This 
ompletes the 
onstru
tion of '00.Appendix B: A glossary of problemsAs an aid to navigation, Table 1 
ontains a 
omplete list of problems 
onsideredin this arti
le, with their 
omplexity status and a note of where to �nd them.A
knowledgementsLemma 22 is due to Mike Paterson. We thank Domini
 Welsh for telling usabout referen
e [16℄ and Marek Karpinski for stimulating dis
ussions on thetopi
 of approximation-preserving redu
ibility.30



Problem name Def'd in Status Refer to#Bea
hConfigs x4 �AP #BIS Thm. 5#Bipartite q-Col x6 �AP #BIS Thm. 13#P4-Col x4 �AP #BIS Thm. 5#P �q -Col x4 �AP #BIS (q � 3) Thm. 10#q-Wren
h-Col x7 �AP #Sat (q � 1) Thm. 21#2-Wren
h-Col x7 �AP #BIS Thm. 21#q-Wren
h-Col x7 �AP #Sat (q � 3) Thm. 21#Downsets x4 �AP #BIS Thm. 5#IS x3 �AP #Sat Thm. 3#BIS x1 (primal) Thm. 5#LargeIS-Cubi
 x7 �AP #Sat App. A#LargeIS x3 �AP #Sat Obs. 2#BipartiteMaxIS x6 �AP #BIS Thm. 13, Lem. 14#Mat
h x2 FPRAS [9℄#Sat x1 (primal) Se
tion 3#DNF x2 FPRAS [12℄#1p1nSat x4 �AP #BIS Thm. 5#2-Parti
le-WR-Configs x3 �AP #BIS Thm. 5#3-Parti
le-WR-Configs x3 �AP #BIS Thm. 13#q-Parti
le-WR-Configs x3 �AP #Sat (q � 4) Lemma 26Table 1: A list of 
ounting problems
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