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tGoodman, Greenberg, Madras and Mar
h gave a lower bound of n�
(logn) for themaximum arrival rate for whi
h the n-user binary exponential ba
ko� proto
ol is stable.Thus, they showed that the proto
ol is stable as long as the arrival rate is at mostn�
(log n). We improve the lower bound, showing that the proto
ol is stable for arrivalrates up to O(n�(:75+Æ)), for any Æ > 0.1 Introdu
tionA multiple-a

ess 
hannel is a broad
ast 
hannel that allows multiple users to 
ommuni
atewith ea
h other by sending messages onto the 
hannel. If two or more users simultaneouslysend messages, then the messages interfere with ea
h other (
ollide), and the messages arenot transmitted su

essfully. The 
hannel is not 
entrally 
ontrolled. Instead, the users use a
ontention-resolution proto
ol to resolve 
ollisions. Thus, after a 
ollision, ea
h user involvedin the 
ollision waits a random amount of time (whi
h is determined by the proto
ol) beforere-sending. Perhaps the best-known 
ontention-resolution proto
ol is the Ethernet proto
olof Met
alfe and Boggs [10℄. The Ethernet proto
ol is based on the following simple binaryexponential ba
ko� proto
ol. Time is divided into dis
rete units 
alled steps. If the i'thuser has a message to send during a given step, then it sends this message with probability2�bi , where bi denotes the number of 
ollisions that this message has already had. Withprobability 1 � 2�bi , user i does not send during the step. The Ethernet proto
ol is basedon binary exponential ba
ko�, but some modi�
ations are made to make it easier to build.See [7, 10℄ for details.H�astad, Leighton and Rogo� [7℄ have studied the performan
e of the binary exponentialba
ko� proto
ol in the following natural model. The system 
onsists of n users. Ea
h usermaintains a queue of messages that it wishes to send. At the beginning of the t'th timestep, the length of the queue of the i'th user is denoted qi(t) and the number of times thatthe message at the head of its queue has 
ollided is denoted bi(t). At the beginning of thet'th step, ea
h queue re
eives 0 or 1 new messages. In parti
ular, a new message is added�hesham�d
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to the end of ea
h queue independently with probability �=n, where � is the arrival rate ofthe system. (Thus, the length of the i'th queue is now qi(t) + Z, where Z is a Bernoullirandom variable, whi
h is 1 with probability �=n and 0 otherwise.) After the new messagesare added to the queues, ea
h user makes an independent de
ision about whether or not tosend the message at the head of its queue, using the binary exponential ba
ko� proto
ol. (Ifthe message at the head of the i'th queue has never been sent before then bi = 0, so it is nowsent. Otherwise, bi = bi(t), so it is sent independently with probability 2�bi(t).) If exa
tly onemessage is sent (so there are no 
ollisions), then this message is delivered su

essfully, and itleaves its queue. Otherwise, the messages that are sent 
ollide and no messages are deliveredsu

essfully.Sin
e the arrivals are modelled by a sto
hasti
 pro
ess, the evolution of the whole systemover time 
an be viewed as a Markov 
hain in whi
h the state just before step t is X(t) =((q1(t); : : : ; qn(t)); (b1(t); : : : ; bn(t))) and the next state is X(t + 1). The start state of the
hain, X(0), is ((0; : : : ; 0); (0; : : : ; 0)). The 
hain is said to be re
urrent if, with probability 1,it returns to its start state. That is, it is re
urrent ifPr(X(t) = X(0) for some t � 1) = 1:It is said to be positive re
urrent if the expe
ted time that it takes to return to the start stateis �nite. In parti
ular, let Tret = minft � 1 j X(t) = X(0)g:The 
hain is said to be positive re
urrent if E[Tret℄ <1. Note that if the 
hain is not positivere
urrent then the proto
ol is not a very good one. Informally, on
e it enters a \bad" state(one with a large ba
klog of messages), the expe
ted time that it takes to get ba
k to a statewhi
h is not bad is in�nite. For this reason, we say that a proto
ol is stable if and only if the
orresponding Markov 
hain is positive re
urrent.1 H�astad et al. [7℄ proved that if the arrivalrate is too high, then the binary exponential ba
ko� proto
ol is unstable, in the sense thatthe 
orresponding Markov 
hain is not positive re
urrent.Theorem 1 (H�astad, Leighton, and Rogo�) Suppose that for some positive �, � � 12+�.Suppose that n is suÆ
iently large (as a fun
tion of �). Then E[Tret℄ =1.On the other hand, Goodman, Greenberg, Madras and Mar
h [5℄ showed that if the arrivalrate is suÆ
iently low, then the proto
ol is stable.Theorem 2 (Goodman, Greenberg, Madras and Mar
h) There is a positive 
onstant �su
h that E[Tret℄ is �nite for the n-user system, provided that � < 1n� log n .While Goodman, Greenberg, Madras, and Mar
h's result is the only known stabilityresult for the �nitely-many-users binary-exponential-ba
ko� proto
ol, their upper bound (� <1n� log n ) is very small. In this paper, we narrow the gap between the two results. In parti
ular,we prove the following theorem.Theorem 3 There is a positive 
onstant � su
h that for any � < 0:25, as long as n issuÆ
iently large and � < 1�n1�� then E[Tret℄ is �nite for the n-user system.1For further information about Markov 
hains, re
urren
e, positive re
urren
e and stability, see [2℄ andChapter 6 of [6℄. 2



The main point of Theorem 3 is to show that n-user Binary Exponential Ba
ko� is stablefor an arrival rate that is the inverse of a polynomial in n, and in fa
t the inverse of a sublinearpolynomial in n. With our spe
i�
 proof te
hnique, it seems that we 
annot prove stabilityfor rates higher than about n�:75, and thus a natural open problem is to improve this bound.Perhaps the most interesting (and diÆ
ult) question raised by this work is whether an n-usersystem is stable for some 
onstant arrival rate. For further dis
ussion about improving ourresult, see Se
tion 4.The organisation of the paper is as follows. In Se
tion 2 we summarise other related work.In Se
tion 3 we give the proof of Theorem 3.2 Related WorkWe now summarize some other related work. We start by observing that the results in The-orem 1 and 2 
an be extended to more general models. For example, the result of Goodmanet al. 
an be extended to a more general model of sto
hasti
 arrivals in whi
h the expe
tednumber of arrivals at user i at time t (
onditioned on all events up to time t) is a quantity,�i, and Pi �i is required to be equal to �. The result of H�astad et al. 
an be extended tosmall values of n, provided that � > :568 + 1=(4n � 2). The instability result of H�astad etal. implies that, when � is suÆ
iently large, the expe
ted average waiting time of messages isin�nite.Next, we mention that the binary exponential ba
ko� proto
ol is known to be unstablein the in�nitely-many-users Poisson-arrivals model. Kelly and Ma
Phee [8, 9℄ showed this for� > ln 2 and Aldous [1℄ showed that it holds for all positive �.2While the goal of this paper is to understand the binary-exponential ba
ko� proto
ol, onwhi
h Ethernet is based, there are other a
knowledgement-based proto
ols whi
h are knownto be stable in the same model for larger arrival rates. In parti
ular, H�astad et al. have shownthat polynomial-ba
ko� proto
ols are stable as long as � < 1. The expe
ted waiting time ofmessages is high in polynomial-ba
ko� proto
ols, but Raghavan and Upfal [11℄ have given aproto
ol that is stable for � < 1=10, in whi
h the expe
ted waiting time of every messageis O(logn), provided that the users are given a reasonably good estimate of logn. Finally,Goldberg, Ma
Kenzie, Paterson and Srinivasan [4℄ have given a proto
ol that is stable for� < 1=e, in whi
h the expe
ted average message waiting-time is O(1), provided that the usersare given an upper bound on n.We 
on
lude by observing that the te
hnique of Goldberg and Ma
Kenzie [3℄ 
an be usedto extend Theorem 3 so that it applies to a non-geometri
 version of binary-exponentialba
ko�, whi
h is 
loser to the version used in the Ethernet. (Instead of de
iding whether tosend on ea
h step independently with probability 2�bi , the user simply 
hooses the number ofsteps to wait before sending uniformly at random from [1; : : : ; 2bi ℄.) The ideas are the sameas those used in the proof that follows, but the details are messier. Our result 
an also beextended along the lines of [7℄ to show that, when � is suÆ
iently low, the expe
ted averagemessage waiting time is �nite.32Note that it 
an be misleading to view the in�nitely-many-users model as the limit (as n tends to in�nity) ofthe n-users model. For example, the \polynomial ba
ko�" proto
ol is known to be unstable (for any positive �)in the in�nitely-many-users Poisson-arrivals model [8, 9℄, but it is stable (for any � < 1) in the n-users model[7℄. Thus, Aldous's result does not rule out the possibility that there is a positive 
onstant �� su
h that then-user binary exponential ba
ko� proto
ol is stable whenever � < ��.3The word \stable" is not used 
onsistently in the literature. For example, [7℄ in
orporates the expe
ted3



3 The stability proofIn this se
tion, we will prove Theorem 3. Let � be a suÆ
iently large positive 
onstant andlet � be a 
onstant in the range (0; :25). Suppose that the arrival rate � is 1�0n1�� for some�0 � �. We will show that, if n is suÆ
iently large, the Markov 
hain 
orresponding to thebinary exponential ba
ko� proto
ol is positive re
urrent.The most 
ommon tool for proving that a Markov 
hain is positive re
urrent is Foster'stheorem.4Theorem 4 (Foster) A time-homogeneous irredu
ible aperiodi
 Markov 
hain X with a
ountable state spa
e A is positive re
urrent i� there exists a positive fun
tion f(�), � 2 A, anumber � > 0, and a �nite set C � A, su
h that the following inequalities hold.E[f(X(t+ 1))� f(X(t)) j X(t) = �℄ � ��; � 62 C (1)E[f(X(t+ 1)) j X(t) = �℄ < 1; � 2 C: (2)Basi
ally, the idea is to use a \potential fun
tion" f to follow the progress of the 
hain. The
hain is positive re
urrent i� there is a potential fun
tion f whi
h1. usually de
reases (Equation 1), and2. 
annot in
rease mu
h (Equation 2)in a single step. Equation 1 implies that, from any state � 62 C, the expe
ted time to rea
h Cfrom � is at most f(�)=�. This (
ombined with Equation 2) implies that the expe
ted returntime to C is �nite, whi
h in turn implies that the 
hain is positive re
urrent. (For moredetails, see [2℄.)In pra
ti
e, it 
an be diÆ
ult to �nd a potential fun
tion satisfying the 
riteria in Foster'stheorem. We will use the following generalisation of the theorem due to Fayolle, Malyshevand Menshikov [2℄.Theorem 5 (Fayolle, Malyshev, Menshikov) A time-homogeneous irredu
ible aperiodi
Markov 
hain X with a 
ountable state spa
e A is positive re
urrent i� there exists a positivefun
tion f(�), � 2 A, a number � > 0, a positive integer-valued fun
tion k(�), � 2 A, and a�nite set C � A, su
h that the following inequalities hold.E[f(X(t+ k(X(t)))) � f(X(t)) j X(t) = �℄ � ��k(�); � 62 C (3)E[f(X(t+ k(X(t)))) j X(t) = �)℄ < 1; � 2 C: (4)average waiting time into the de�nition of \stability". Re
all that in this paper, as in [5℄, stability meanspositive re
urren
e.4A Markov 
hain is said to be time-homogeneous if its transition probabilities are �xed (for all time). It isirredu
ible if, for every pair of states (x; y), it is possible, in some number of steps, for the 
hain to move fromstate x to state y. It is aperiodi
 if, for any state x, the greatest 
ommon divisor of the setft j the 
hain 
an move from state x to state x in exa
tly t stepsgis one. See [6℄ for details. The Markov 
hain 
orresponding to the binary exponential ba
ko� proto
ol istime-homogeneous, irredu
ible, and aperiodi
. 4



The reason that the generalisation is easier to use than Foster's theorem is that, while itmay be diÆ
ult to �nd a potential fun
tion f whi
h (usually) goes down in a single step, itmay be easier to �nd one whi
h goes down over several steps. In the generalised version ofthe theorem, it is only ne
essary to show that from a state �, the potential goes down by afa
tor of k over k steps, where k is allowed to depend upon �.We will now de�ne the potential fun
tion that we will use. The value � in the potentialfun
tion is a 
onstant in the range [�; 0:5 � �). Let f(X(t)) be the following fun
tion of thestate just before step t. f(X(t)) = �n2���� nXi=1 qi(t) + nXi=1 2bi(t):We use the following notation, where � = 3. For a state X(t), let m(X(t)) denotethe number of users i with qi(t) > 0 and bi(t) < lg � + lgn, and let m0(X(t)) denote thenumber of users i with qi(t) > 0 and bi(t) < (1 � � � �) lg n + 1. We will take � to be1 � 2=� and C to be the set 
onsisting of the single state ((0; : : : ; 0); (0; : : : ; 0)). We de�nek(((0; : : : ; 0); (0; : : : ; 0))) = 1, so Equation 4 is satis�ed. For every state � 62 C, we will de�nek(�) in su
h a way that Equation 3 is also satis�ed. We give the details in three 
ases.3.1 Case 1: m0(X(t)) = 0 and m(X(t)) < n1����.For every state � su
h that m0(�) = 0 and m(�) < n1���� we de�ne k(�) = 1. We wish toshow that, if � 6= ((0; : : : ; 0); (0; : : : ; 0)) and X(t) = �, then E[f(X(t + 1)) � f(X(t))℄ � ��.First, we give some intuition as to why the potential f is expe
ted to drop in a single step.In this 
ase (sin
e m0(X(t)) = 0) all users whi
h have messages to send have large ba
ko�
ounters. Furthermore (sin
e m(X(t)) < n1����) most ba
ko� 
ounters (all but at mostn1����) are very large. This means that 
ollisions are fairly unlikely. The expe
ted drop in fmainly 
omes from the fa
t that if user i does send (whi
h happens with probability 2�bi)and su

eeds (whi
h is fairly likely), then f drops by 2bi � 1. The proof that f is expe
ted togo down 
omes from a 
areful analysis of a single step and uses the same general approa
has the one used in the proof of Lemma 5.7 of [7℄. For 
onvenien
e, we use m as shorthandfor m(X(t)) and we use ` to denote the number of users i with qi(t) > 0. Without loss ofgenerality, we assume that these are users 1; : : : ; `. We use pi to denote the probability thatuser i sends on step t. (So pi = 2�bi(t) if i 2 [1; : : : ; `℄ and pi = �=n otherwise.) We letT denote Qni=1(1 � pi) and we let S denote Pni=1 pi1�pi . Note that the expe
ted number ofsu

esses at step t is ST . Let Ia;i;t be the 0=1 indi
ator random variable whi
h is 1 i� thereis an arrival at user i during step t and let Is;i;t be the 0=1 indi
ator random variable whi
his 1 i� user i su

eeds in sending a message at step t. ThenE[f(X(t+ 1))� f(X(t))℄ = �n2���� nXi=1 (E[Ia;i;t℄�E[Is;i;t℄) + nXi=1 �E[2bi(t+1)℄� 2bi(t)� ;= �n2������ �n2����ST + nXi=1 �2bi(t)�i � (2bi(t) � 1)�i� ; (5)= �n2������ �n2����ST + nXi=1�2bi(t)pi(1� T1� pi )� (2bi(t) � 1)pi T1� pi� ;= �n2������ �n2����ST + X̀i=1(1� T1� pi ) + nXi=`+1 �n(1� T1� pi )� `T;5



= �n2������ �n2����ST + `� `T + (n� `)�n � T 0�X̀i=1 11� pi + nXi=`+1 pi1� pi1A ;= �n2������ �n2����ST + `� `T + (n� `)�n � ST � `T;= �n2�����+ `+ (n� `)�n � T ((�n2���� + 1)S + 2`); (6)where �i in Equality 5 denotes the probability that user i 
ollides at step t and �i denotes theprobability that user i sends su

essfully at step t. (To see why Equality 5 holds, note thatwith probability �i, bi(t + 1) = bi(t) + 1, with probability �i, bi(t + 1) = 0, and otherwise,bi(t+ 1) = bi(t).) We now �nd lower bounds for S and T . First,S = nXi=1 pi1� pi= X̀i=1 2�bi(t)1� 2�bi(t)!+ �(n� `)n� �� mXi=1� 1�n� 1�+ �(n� `)n� �= m�n� 1 + �(n� `)n� � : (7)Next, T = nYi=1(1� pi)� (1� 12n1���� )m(1� 1�n)`�m(1� �n)n�`� 1� m2n1���� � `�m�n � �(n� `)n (8)Combining Equations 6, 7 and 8, we get the following equation.E[f(X(t+ 1))� f(X(t))℄ � �n2�����+ `+ (n� `)�n � (9)�1� m2n1���� � `�m�n � �(n� `)n ��(�n2���� + 1)� m�n� 1 + �(n� `)n� � �+ 2`� :We will let g(m; `) be the quantity in Equation 9 plus � and we will show that g(m; `) isnegative for all values of 0 � m < n1���� and all ` � m. In parti
ular, for every �xedpositive value of m, we will show that1. g(m;m) is negative,2. g(m;n) is negative, and3. �2�`2 g(m; `) > 0. (g(m; `) is 
on
ave up as a fun
tion of ` for the �xed value of m so g(m; `)is negative for all ` 2 [m;n℄.) 6



We will handle the 
ase m = 0 similarly ex
ept that m = ` = 0 
orresponds to the start state,so we will repla
e Item 1 with the following for m = 0.1'. g(0; 1) is negative.The details of the proof are now merely 
al
ulations.1. g(m;m) is negative:g(m;m) � 2�0 n(2�2 �) (� n� 1) (�0 n2 � n�) =n(�2 �+5)m2 ��02 + 2n� 2m� 2n(�2 �+4) "�02 � 2n(�2 �+5) �02m�+ 2� n3 + 2n(�2 �+5) " � �02 � 2n(��+3) "�0 � � n(��+4)m2 �� �0� 2n(����+4) �� � 4m2 � 2n(�3 ���+6) �m�02 + 2n(�2 ���+5)m��0 + 6mn+ 2n(�2 ���+5)m��0 � � 2n(�2 ���+4)m2 ��0 + 2n(��+3)m� �0� n(��+4)m��0 � 2n2 + 2n(����+5) �� � 2� n2 + 2n(����+3) �+ n(�+3)m�0 � + 6m2 � n� 8� n2m+ n(��+5)m�� �0 + 2n(����+3) �m� 2n(��+3)m�0 � 3n(�+2)m2 �0 � + 4n(��+4) m� �0 + 2n(����+3)m2 ��� 2n(����+4) �+ 2n(��+2) "�0 + 2m2 n(�+1) �0 + 2n(��+�+4)m2 � �02� 4n(����+4) �m� � 4n(��+3)m2 � �0 � n(��+�+3)m2 �02 + 2n(��+2)m2 �0� n(�+2)m�0 + 2� nmSin
e � + � < :5, the dominant term is �2n(�3���+6)�m�02. Note that there is a positiveterm (n(�2�+5)m2��02) whi
h 
ould be half this big if m is as big as n1���� (the upperbound for Case 1), but all other terms are asymptoti
ally smaller.2. g(m;n) is negative:g(m;n)� 2�0 � n (� n� 1) =2�n(��+3) �2 � 2� n(��+2) � � 2�0 �2 n3 + 2�0 � n2� 2m�n(����+3) �0 � � 2�0 � nm+ �0 � n2m2 �+m2 n(�+�) �0 �+ 2mn(�+�+2) �0 �2 � 2mn(�+�+1) �0 � + 2m�n(����+3) �0 + 6�0 nm+ 4�0 � n3 � 4�0 n2 � 2n(����+2)m2 ��0 � 2�0 m2 � 4�0 � n2m+ 2 "�0 �2 n2� 2 "�0 � nSin
e � + � < :5 and � > 2, the term �2�0�2n3 dominates +4�0�n3. For the samereason, the term �2m�n(����+3)�0� dominates the two terms +2m�n(����+3)�0 and+�0�n2m2�. The other terms are asymptoti
ally smaller.3. �2�`2 g(m; `) > 0: �2�`2 g(m; `) = �2 (� 1� n + �n) (�(�n(����+2) + 1)�n� � + 2)
7



1'. g(0; 1) is negative:g(0; 1) � �0 � n(2�2 �) (�0 n2 � n�) =�n(�2 ���+3) ��0 � n(��+2) �0 � + n(����+2) �� + � n2� n(��+2) " � �0 + 2n(�2 �+3) �02 � n(�2 �+4) �02 � + 2n(��+3) � �0+ n(�2 �+4) " � �02 + n(����+4) �� + n(��+2) �0 + n(�2 ���+4) ��0+ n(�2 ���+4) �� �0 + 4� � 3n(��+1) �0 � 5� n� 3n(����+3) ��Sin
e �0(1 � �) � �(1 � �) > 1, � + � < :5, and � � �, the term �n(�2�+4)�02�(1 � �)dominates the term +n(����+4)��. The other terms are asymptoti
ally smaller.3.2 Case 2: m(X(t)) � n1���� or m0(X(t)) > n:4.For every state � su
h that m(�) � n1���� or m0(�) > n:4, we will de�ne an integer k (whi
hdepends upon �) and we will show that, if X(t) = �, then E[f(X(t + k)) � f(X(t))℄ � ��k,where � = 1� 2=�.For 
onvenien
e, we will usem as shorthand form(X(t)) andm0 as shorthand form0(X(t)).If m � n1���� then we will de�ne r = m, W = n�+�dlg re2�8, A = W , b = lg � + lgn andv = n. Otherwise, we will de�ne r = m0, W = dlg re2�8, A = 0, b = (1� � � �) lgn+ 1, andv = 2dn1����e. In either 
ase, we will de�ne k = 4(r + v)dlg re.The intuition behind the proof is as follows. First, sin
e many users have small ba
ko�
ounters, it is fairly likely that a 
ollision o

urs on the �rst step. So we do not expe
tthe potential f to drop in a single step. Instead, we study the evolution of the system overk steps. With suÆ
iently high probability, the ba
ko� 
ounters get driven up during the �rst�(r log r) steps. (We refer to these steps as \the preamble".) During the remaining steps,the ba
ko� 
ounters stay reasonably high ex
ept during steps whi
h o

ur shortly after1. arrivals (but there are likely to be few of these sin
e we only run for k steps), and2. su

essful sends (whi
h help to redu
e f).We refer to these as \ex
eptional steps". Without loss of generality, there are few of them,sin
e otherwise there are many su

esses and the potential goes down. Although the ba
ko�
ounters stay high (as we just explained), most of them do not get too high, sin
e we only runfor k steps. So the probability of su

ess during any given step whi
h is not ex
eptional or inthe preamble is high. Finally, with suÆ
iently high probability, there are at leastW su

esses,and this redu
es the potential.A te
hni
al diÆ
ulty in the proof is 
larifying the independen
e between some of theevents and for this reason, it is helpful to identify \preamble steps" (steps in �0), \ex
eptionalsteps" (steps in �1), and also \following steps". (The formal de�nition of \following steps" isgiven later. Typi
ally, these steps follow at least W su

esses). The details of this partitionof steps will be des
ribed later.Let � be the set of all steps ft; : : : ; t + k � 1g and let S be the random variable whi
hdenotes the number of su

esses that the system has during � . Let p denote Pr(S � W ).Then we haveE[f(X(t+ k))� f(X(t))℄ � �n2�����k � �n2����E[S℄ + nXi=1 t+kXt0=t+1E[2bi(t0) � 2bi(t0�1)℄8



� �n2�����k � �n2����Wp+ kn� ��k;where the �nal inequality holds as long as �p � 213 and n is suÆ
iently big (see the Appendix).Thus, it suÆ
es to �nd a positive lower bound for p whi
h is independent of n. We do thiswith plenty to spare. In parti
ular, we show that p � 1� 5� 10�5.We start with a te
hni
al lemma, whi
h des
ribes the behaviour of a single user.Lemma 6 Let j be a positive integer, and let Æ be a positive integer whi
h is at least 2.Suppose that qi(t) > 0. Then, with probability at least 1 � dlg jejÆ=(2 ln 2) , either user i su

eeds inat least one of the steps in the interval [t; : : : ; t+ Æjdlg je � 1℄, or bi(t+ Æjdlg je) � dlg je.Proof: Suppose that user i is running in an externally-jammed 
hannel (so every sendresults in a 
ollision). Let Xz denote the number of steps t0 2 [t; : : : ; t + dÆj lg(j)e℄ withbi(t0) = z. We 
laim that Pr(Xz > Ædlg je2z�1) < j�Æ=(2 ln 2). This proves the lemmasin
e Pdlg je�1z=0 Ædlg je2z�1 � Æjdlg je. To prove the 
laim, note that X0 � 1, so Pr(X0 >Ædlg je2�1) = 0 < j�Æ=(2 ln 2). For z > 0, note thatPr(Xz > Ædlg je2z�1) � (1� 2�z)Ædlg je2z�1 < j�Æ=(2 ln 2): 2Next, we de�ne some events. We will show that the events are likely to o

ur, and,if they do o

ur, then S is likely to be at least W . This will allow us to 
on
lude thatp � 1�5�10�5, whi
h will �nish Case 2. We start by de�ning B = dW e+dAe, k0 = 4rdlg re,and k00 = 4BdlgBe. Next, we give names to some of the steps in � = ft; : : : ; t + k � 1g. Let�0 be the preamble of � 
onsisting of steps ft; : : : ; t+ k0 � 1g. For every i, let � 0(i) be the setof times in � when user i will \de�nitely" send. In parti
ular, t0 2 � 0(i) if and only if1. bi(t0) = 0 and qi(t0) > 0, or2. bi(t0) = 0 and there is an arrival at user i at t0.�2 will be the suÆx of following steps in � . In parti
ular, t0 2 �2 if and only if there areat least B pairs (t00; i) with t00 < t0 and t00 2 � 0(i). (Informally, by the time �2 is entered,there will have been at least B \de�nite sends", some of whi
h may have 
oin
ided in time.)Note that �2 is a random variable. Finally, �1 will be a (possibly non-
ontiguous) subsetof � � �0 � �2. Informally, �1 will 
ontain all steps whi
h o

ur during or shortly after\de�nite sends." Formally, �1 will be the set of all t0 2 � � �0 � �2 su
h that, for some i,� 0(i) \ [t0 � k00 + 1; t0℄ 6= ;. See Figure 1.We 
an now de�ne the events E1{E4.E1. There are at most A arrivals during � .E2. Every station with qi(t) > 0 and bi(t) < b either sends su

essfully during �0 or hasbi(t+ k0) � dlg re.E3. At least half of the stations with qi(t) > 0 and bi(t) < b have bi(t0) � b + dlg lg(r)e + 6for all t0 2 � . 9
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t

�2Followingsteps
Figure 1: A possible out
ome for the random variables �0, �1 and �2. For illustration, weassume that there are no arrivals or su

esses during the last k00 steps of the preamble.E4. For all t0 2 � 0(i) and all t00 > t0 su
h that t00 2 � � �0 � �1 � �2, either qi(t00) = 0 orbi(t00) � dlgBe.Next, we show that E1{E4 are likely to o

ur.Lemma 7 If n is suÆ
iently large then Pr(E1) � 10�5.Proof: The expe
ted number of arrivals in � is �k. Ifm � n1����, thenA = n�+�dlg re2�8 �2�k. By a Cherno� bound, the probability that there are this many arrivals is at moste��k=3 � 10�5. Otherwise, A = 0 and �k = o(1). Thus, Pr(E1) � (1� �=n)nk � 1� �k �1� 10�5. 2Lemma 8 If n is suÆ
iently large then Pr(E2) � 10�5.Proof: Apply Lemma 6 to ea
h of the r users with Æ = 4 and j = r. Then Pr(E2) �r dlg rer2=(ln 2) � 10�5. 2Lemma 9 If n is suÆ
iently large then Pr(E3) � 10�5.Proof: Note that k � 16v lg r. Also note that the probability of a given user i sending atstep t0 when bi(t0) = b+ dlg lg(r)e+ 6 is at most 1=(64v lg r). Thus the probability that useri sends at all in the k steps of � is at most 1=4. By a Cherno� bound, the probability thatover half of the r users with qi(t) > 0 and bi(t) < b send when bi(t0) = b + dlg lg(r)e + 6 forsome t0 2 � is at most e��(r) < 10�5. 2Lemma 10 If n is suÆ
iently large then Pr(E4) � 10�5.Proof: We 
an apply Lemma 6 separately to ea
h of the (up to B) pairs (t0; i) with Æ = 4and j = B. The probability that event E4 does not hold is at most BdlgBeB2=(ln 2) � 10�5. 2We now wish to show that Pr(S < W j E1 ^ E2 ^ E3 ^ E4) � 10�5. We begin with thefollowing lemma. 10



Lemma 11 Given any �xed sequen
e of states X(t); : : : ;X(t+ z) whi
h does not violate E2or E4, and satis�es t+ z 2 � � �0 � �1 � �2, qi(t+ z) > 0, and bi(t+ z) � b+ dlg lg(r)e+ 6,the probability that user i su

eeds at step t+ z is at least 12142b lg r .Proof: The 
onditions in the lemma imply the following.� There are no users j with qj(t+ z) > 0 and bj(t+ z) < dlgBe (sin
e E4 holds).� There are at most B users j with bj(t+ z) < dlg re (sin
e E2 holds and at most B userssu

eed or have new arrivals).� There are at most r+B users j with bj(t+z) < b (sin
e r started that way and at mostB su

eed or have new arrivals).� There are at most m+B users j with bj(t+ z) < lg � + lgn (for similar reasons).Thus, the probability that user i su

eeds is at least2�(b+dlg lg(r)e+6)�1� 1B�B�1� 1r�r�1� 12b�m�r�1� 1�n�n�m�B� 12b lg r27 14 14 14 �1� n�m�B�n �� 12142b lg r : 2Corollary 12 Given any �xed sequen
e of states X(t); : : : ;X(t + z) whi
h does not violateE2, E3, or E4, and satis�es t+ z 2 � � �0 � �1 � �2, the probability that some user su

eedsat step t+ z is at least (r=2)�B2142b lg r � r218v lg r .Proof: Sin
e t + z 62 �2, at least r � B of the users i with qi(t) > 0 and bi(t) < b havenot su

eeded before step t + z. Sin
e E3 holds, at least r=2 � B of these have bi(t + z) �b+ dlg lg(r)e+ 6. For all i and i0, the event that user i su

eeds at step t+ z is disjoint withthe event that user i0 su

eeds at step t+ z. Finally, note that (r=2)�B > r=4 and 2b � 4v.2Lemma 13 If n is suÆ
iently large then Pr(S < W j E1 ^ E2 ^ E3 ^ E4) � 10�5:Proof: If E1 is satis�ed then �2 does not start until there have been at least W su

esses.Sin
e j� � �0 � �1j � k � k0 � Bk00 � vdlg re=2, Corollary 12 shows that the probability ofhaving fewer than W su

esses is at most the probability of having fewer than W su

essesin vdlg re=2 Bernoulli trials with su

ess probability r218v lg r . Sin
e W is at most half of theexpe
ted number of su

esses, a Cherno� bound shows that the probability of having fewerthan W su

esses is at most exp(� rvdlg re222v lg r ) � 10�5. 2We 
on
lude Case 2 by observing that p is at least 1�Pr(E1)�Pr(E2)�Pr(E3)�Pr(E4)�Pr(S < W j E1^E2^E3^E4). By Lemmas 7, 8, 9, 10, and 13, this is at least 1� 5� 10�5.11



3.3 Case 3: 0 < m0(X(t)) � n:4 and m(X(t)) < n1����.For every state � su
h that 0 < m0(�) � n:4 and m(�) < n1����, we will de�ne k =32m0(�)dlgm0(�)e+dn1����e. We will show that, ifX(t) = �, then E[f(X(t+k))�f(X(t))℄ ���k.The intuition behind the proof in this 
ase is similar to that of Case 2 ex
ept that we donot have enough small ba
ko� 
ounters to a
hieve W su

esses (as in Case 2) even though wemay have too many to make the potential drop in a single step (as in Case 1). We study theevolution of the system over k steps. The ba
ko� 
ounters are likely to be driven up in the�rst �(m0 logm0) steps. After that, we are likely to have a single su

ess, whi
h is enough tomake the potential drop.On
e again, we will use m as shorthand for m(X(t)) and m0 as shorthand for m0(X(t)).Let � = ft; : : : ; t+ k � 1g, let S be the number of su

esses that the system has in � . Let pdenote Pr(S � 1). As in Case 2, E[f(X(t + k)) � f(X(t))℄ � �n2�����k � �n2����p+ kn,and this is at most ��k as long as �p > 9. Thus, we will �nish by �nding a positive lowerbound for p whi
h is independent of n.Sin
e m0 > 0, there is a user 
 su
h that b
(t) < (1� ���) lgn+1. Let k0 = 32m0dlgm0eand �0 = ft; : : : ; t+ k0 � 1g. We will now de�ne some events, as in Case 2.E1. There are no arrivals during � .E2. Every station with qi(t) > 0 and bi(t) < (1 � � � �) lg n + 1 either sends su

essfullyduring �0 or has bi(t+ k0) � dlgm0e.E3. b
(t0) < (1� � � �) lgn+ 7 for all t0 2 � .Lemma 14 If n is suÆ
iently large then Pr(E1) � 10�5.Proof: As in the proof of Lemma 7,Pr(E1) � �1� �n�nk � 1� �k � 1� 10�5: 2Lemma 15 Pr(E2) � 10�5.Proof: We use lemma 5 with Æ = 32 and j = m0 to getPr(E2) � m0 � dlgm0e(m0)16= ln(2) � 10�5: 2Lemma 16 If n is suÆ
iently large then Pr(E3) � 10�5.
12



Proof: For E3 to be violated, user 
 must make at least 6 attempts, one ea
h with ba
ko�
ounter d(1� � � �) lgn+ re for r 2 f1; : : : ; 6g. The probability of this happening isPr(E3) �  k6! 6Yr=1 2�d(1����) lgne�r� �ke6 �6� 1n1�����62�P6r=1 r� � 2en1����6n1����23�6� 10�5: 2Lemma 17 Given any �xed sequen
e of states X(t); : : : ;X(t+ z) whi
h does not violate E1,E2, or E3 su
h that t+ z 2 � � �0 and there are no su

esses during steps [t; : : : ; t + z � 1℄,the probability that user 
 su

eeds at step t+ z is at least 1212n1���� .Proof: The 
onditions in the statement of the lemma imply the following.� q
(t+ z) > 0 and b
(t+ z) < (1� � � �) lgn+ 7.� There are no users j with bj(t+ z) < dlgm0e.� There are at most m0 users j with bj(t+ z) < (1� � � �) lgn+ 1.� There are at most m users j with bj(t+ z) < lg � + lgn.� There will be no arrivals on step t+ z.The probability of su

ess for user 
 is at least2�((1����) lg n+7)�1� 1m0�m0�1�1� 12n1�����m�m0�1� 1�n�n�m� 127n1���� 14 14 12� 1212n1���� : 2Lemma 18 If n is suÆ
iently large then Pr(S < 1 j E1 ^E2 ^E3) � e�1=212 .Proof: Lemma 17 implies that the probability of having no su

esses is at most the proba-bility of having no su

esses in j���0j Bernoulli trials, ea
h with su

ess probability 1212n1���� .Sin
e j� � �0j � n1����, this probability is at most�1� 1212n1�����n1���� � e�1=212 : 2We 
on
lude Case 3 by observing thatp � 1� Pr(E1)� Pr(E2)� Pr(E3)� Pr(S < 1 j E1 ^ E2 ^ E3):By Lemmas 14, 15, 16, and 18, this is at least 1� 3� 10�5 � e�1=212 � :0002:13



4 ImprovementsIn this paper, we showed that n-user Binary Exponential Ba
ko� is stable as long as thearrival rate is O(n�(:75+Æ)) for any 
onstant Æ > 0. A natural question is whether the proto
olremains stable for higher arrival rates. In parti
ular, it would be very interesting to knowwhether it is stable for some 
onstant arrival rate.Re
all Foster's Theorem (Theorem 4) and Fayolle, Malyshev and Menshikov's generalisa-tion of it (Theorem 5) from Se
tion 3. Both theorems show that the relevant Markov 
hain ispositive re
urrent if and only if there is a potential fun
tion f satisfying the given 
onditions.Thus, if it turns out that binary exponential ba
ko� is stable for higher arrival rates, thesame proof te
hnique 
ould be used to prove the theorem.On the other hand, �nding an appropriate potential fun
tion might get in
reasingly dif-�
ult as the arrival rate gets higher. Furthermore, the number of 
ases that need to be
onsidered may grow. Using our parti
ular potential fun
tion, and our 
hoi
e of 
ases to be
onsidered,5 we 
annot prove stability for rates higher than about n�:75. We suspe
t thatour analysis would have to be improved substantially to show that the proto
ol is stable forany 
onstant arrival rate. In parti
ular, the analysis te
hnique that we use in Case 2 seemstoo weak. After the preamble �0, the ba
ko� 
ounters are suitably high but still we do notshow that a 
onstant fa
tor of the remaining steps have su

esses. Showing this (if indeed itis true!) would require a 
areful analysis of the situation immediately following ea
h su

ess,perhaps along the lines of the \
apture" analysis in [7℄.Referen
es[1℄ D. Aldous, Ultimate instability of exponential ba
k-o� proto
ol for a
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hannels, IEEE Trans. Inf.Theory IT-33(2) (1987) 219{233.[2℄ G. Fayolle, V.A. Malyshev and M.V. Menshikov, Topi
s in the Constru
tive Theory ofCountable Markov Chains, (Cambridge Univ. Press, 1995)[3℄ L.A. Goldberg and P.D. Ma
Kenzie, Analysis of pra
ti
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ko� proto
ols for 
ontentionresolution with multiple servers, Journal of Computer and Systems S
ien
es, 58 (1999)232{258.[4℄ L.A. Goldberg, P.D. Ma
Kenzie, M. Paterson and A. Srinivasan, Con-tention resolution with 
onstant expe
ted delay, Pre-print (1999) available athttp://www.d
s.warwi
k.a
.uk/�leslie/pub.html. (Extends a paper by the�rst two authors in Pro
. of the Symposium on Foundations of Computer S
ien
e (IEEE)1997 and a paper by the se
ond two authors in Pro
. of the Symposium on Foundationsof Computer S
ien
e (IEEE) 1995.)[5℄ J. Goodman, A.G. Greenberg, N. Madras and P. Mar
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Appendix: Supplementary Cal
ulations for Case 2Here we show the inequality�n2�����k � �n2����Wp+ kn � ��kholds when �p � 213 and n is suÆ
iently large.Case A: (m � n1����) In this 
ase, r = m, W = n�+�dlg re2�8, v = n, and k = 4(r +v)dlg re. Then, sin
e k � 8ndlogme, for large n,�n2�����k � �n2����Wp+ kn� �n2����(�0n1��)�1k � 213n2����W + kn� (�=�0)n1��k � 213n2����n�+�dlogme2�8 + kn� (�=�0)n1��(4(m+ n)dlogme)� 25n2dlogme+ 4(m+ n)dlogmen� 8n2��dlogme � 32n2dlogme+ 8n2dlogme� �16n2dlogme� �2nk� ��k:Case B: (m < n1����, m0 > n:4) In this 
ase, r = m0, W = dlg re2�8, and v =2dn1����e, and k = 4(r + v)dlg re. Note that by de�nition, m0 < n1����. Then, sin
ek � 12dn1����edlogm0e, for large n,�n2�����k � �n2����Wp+ kn� �n2����(�0n1��)�1k � 213n2����W + kn� (�=�0)n1��k � 213n2����dlogm0e2�8 + kn� (�=�0)n1��(4(m0 + 2dn1����e)dlogm0e)� 25n2����dlogm0e+4(m+ 2dn1����e)dlogm0en� 12n1��dn1����edlogm0e)� 25n2����dlogm0e+ 12ndn1����edlogm0e� 12n1��dn1����edlogm0e)� 32n2����dlogm0e+ 13n2����dlogm0e� �18n2����dlogm0e� �nk� ��k:
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