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Abstract

Goodman, Greenberg, Madras and March gave a lower bound of n=?0987) for the
maximum arrival rate for which the n-user binary exponential backoff protocol is stable.
Thus, they showed that the protocol is stable as long as the arrival rate is at most
n—0°8n) - We improve the lower bound, showing that the protocol is stable for arrival
rates up to O(n~(7%9)) for any § > 0.

1 Introduction

A multiple-access channel is a broadcast channel that allows multiple users to communicate
with each other by sending messages onto the channel. If two or more users simultaneously
send messages, then the messages interfere with each other (collide), and the messages are
not transmitted successfully. The channel is not centrally controlled. Instead, the users use a
contention-resolution protocol to resolve collisions. Thus, after a collision, each user involved
in the collision waits a random amount of time (which is determined by the protocol) before
re-sending. Perhaps the best-known contention-resolution protocol is the Ethernet protocol
of Metcalfe and Boggs [10]. The Ethernet protocol is based on the following simple binary
exponential backoff protocol. Time is divided into discrete units called steps. If the i'th
user has a message to send during a given step, then it sends this message with probability
270 where b; denotes the number of collisions that this message has already had. With
probability 1 — 27% user i does not send during the step. The Ethernet protocol is based
on binary exponential backoff, but some modifications are made to make it easier to build.
See [7, 10] for details.

Hastad, Leighton and Rogoff [7] have studied the performance of the binary exponential
backoff protocol in the following natural model. The system consists of n users. Each user
maintains a queue of messages that it wishes to send. At the beginning of the #’th time
step, the length of the queue of the i’th user is denoted ¢;(¢) and the number of times that
the message at the head of its queue has collided is denoted b;(¢). At the beginning of the
t’th step, each queue receives 0 or 1 new messages. In particular, a new message is added
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to the end of each queue independently with probability A/n, where X is the arrival rate of
the system. (Thus, the length of the i’th queue is now ¢;(¢t) + Z, where Z is a Bernoulli
random variable, which is 1 with probability A/n and 0 otherwise.) After the new messages
are added to the queues, each user makes an independent decision about whether or not to
send the message at the head of its queue, using the binary exponential backoff protocol. (If
the message at the head of the i’th queue has never been sent before then b; = 0, so it is now
sent. Otherwise, b; = b;(t), so it is sent independently with probability 2% ().) If exactly one
message is sent (so there are no collisions), then this message is delivered successfully, and it
leaves its queue. Otherwise, the messages that are sent collide and no messages are delivered
successfully.

Since the arrivals are modelled by a stochastic process, the evolution of the whole system
over time can be viewed as a Markov chain in which the state just before step t is X (t) =
((qi(t), ... qn(t)), (b1 (t),...,by(t))) and the next state is X (¢ + 1). The start state of the
chain, X (0), is ((0,...,0),(0,...,0)). The chain is said to be recurrent if, with probability 1,
it returns to its start state. That is, it is recurrent if

Pr(X(t) = X(0) for some ¢t > 1) = 1.

It is said to be positive recurrent if the expected time that it takes to return to the start state
is finite. In particular, let

Tre = min{t > 1| X(t) = X(0)}.

The chain is said to be positive recurrent if F[Tyet] < co. Note that if the chain is not positive
recurrent then the protocol is not a very good one. Informally, once it enters a “bad” state
(one with a large backlog of messages), the expected time that it takes to get back to a state
which is not bad is infinite. For this reason, we say that a protocol is stable if and only if the
corresponding Markov chain is positive recurrent.! Héstad et al. [7] proved that if the arrival
rate is too high, then the binary exponential backoff protocol is unstable, in the sense that
the corresponding Markov chain is not positive recurrent.

Theorem 1 (Hastad, Leighton, and Rogoff) Suppose that for some positive €, A\ > %—Fe.
Suppose that n is sufficiently large (as a function of €). Then E[Tye] = oc.

On the other hand, Goodman, Greenberg, Madras and March [5] showed that if the arrival
rate is sufficiently low, then the protocol is stable.

Theorem 2 (Goodman, Greenberg, Madras and March) There is a positive constant a
1

such that E[Tye] is finite for the n-user system, provided that A < g -

While Goodman, Greenberg, Madras, and March’s result is the only known stability
result for the finitely-many-users binary-exponential-backoff protocol, their upper bound (A <
m) is very small. In this paper, we narrow the gap between the two results. In particular,
we prove the following theorem.

Theorem 3 There is a positive constant « such that for any n < 0.25, as long as n is
sufficiently large and N < —1= then E[Tye] is finite for the n-user system.

1
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'For further information about Markov chains, recurrence, positive recurrence and stability, see [2] and
Chapter 6 of [6].



The main point of Theorem 3 is to show that n-user Binary Exponential Backoff is stable
for an arrival rate that is the inverse of a polynomial in n, and in fact the inverse of a sublinear
polynomial in n. With our specific proof technique, it seems that we cannot prove stability
for rates higher than about n~""®, and thus a natural open problem is to improve this bound.
Perhaps the most interesting (and difficult) question raised by this work is whether an n-user
system is stable for some constant arrival rate. For further discussion about improving our
result, see Section 4.

The organisation of the paper is as follows. In Section 2 we summarise other related work.
In Section 3 we give the proof of Theorem 3.

2 Related Work

We now summarize some other related work. We start by observing that the results in The-
orem 1 and 2 can be extended to more general models. For example, the result of Goodman
et al. can be extended to a more general model of stochastic arrivals in which the expected
number of arrivals at user 7 at time ¢ (conditioned on all events up to time t) is a quantity,
i, and Y, \; is required to be equal to A. The result of Hastad et al. can be extended to
small values of n, provided that A > .568 4+ 1/(4n — 2). The instability result of Hastad et
al. implies that, when X is sufficiently large, the expected average waiting time of messages is
infinite.

Next, we mention that the binary exponential backoff protocol is known to be unstable
in the infinitely-many-users Poisson-arrivals model. Kelly and MacPhee [8, 9] showed this for
A > In2 and Aldous [1] showed that it holds for all positive A.2

While the goal of this paper is to understand the binary-exponential backoff protocol, on
which Ethernet is based, there are other acknowledgement-based protocols which are known
to be stable in the same model for larger arrival rates. In particular, Hastad et al. have shown
that polynomial-backoff protocols are stable as long as A < 1. The expected waiting time of
messages is high in polynomial-backoff protocols, but Raghavan and Upfal [11] have given a
protocol that is stable for A < 1/10, in which the expected waiting time of every message
is O(logn), provided that the users are given a reasonably good estimate of logn. Finally,
Goldberg, MacKenzie, Paterson and Srinivasan [4] have given a protocol that is stable for
A < 1/e, in which the expected average message waiting-time is O(1), provided that the users
are given an upper bound on n.

We conclude by observing that the technique of Goldberg and MacKenzie [3] can be used
to extend Theorem 3 so that it applies to a non-geometric version of binary-exponential
backoff, which is closer to the version used in the Ethernet. (Instead of deciding whether to
send on each step independently with probability 2%, the user simply chooses the number of
steps to wait before sending uniformly at random from [1,...,2%].) The ideas are the same
as those used in the proof that follows, but the details are messier. Our result can also be
extended along the lines of [7] to show that, when A is sufficiently low, the expected average
message waiting time is finite.?

ZNote that it can be misleading to view the infinitely-many-users model as the limit (as n tends to infinity) of
the n-users model. For example, the “polynomial backoff” protocol is known to be unstable (for any positive \)
in the infinitely-many-users Poisson-arrivals model [8, 9], but it is stable (for any A < 1) in the n-users model
[7]. Thus, Aldous’s result does not rule out the possibility that there is a positive constant A* such that the
n-user binary exponential backoff protocol is stable whenever A < A*.

3The word “stable” is not used consistently in the literature. For example, [7] incorporates the expected



3 The stability proof

In this section, we will prove Theorem 3. Let « be a sufficiently large positive constant and
let n be a constant in the range (0,.25). Suppose that the arrival rate X is a’nlfﬂ for some
o' > a. We will show that, if n is sufficiently large, the Markov chain corresponding to the
binary exponential backoff protocol is positive recurrent.

The most common tool for proving that a Markov chain is positive recurrent is Foster’s

theorem.?

Theorem 4 (Foster) A time-homogeneous irreducible aperiodic Markov chain X with a
countable state space A is positive recurrent iff there exists a positive function f(p), p € A, a
number € > 0, and a finite set C C A, such that the following inequalities hold.

Ef(X(t+1) — F(XW) | X(®) =p] < —e pgC 1)
E[f(X(t+1) | X()=p] < oo, peC. (2)

Basically, the idea is to use a “potential function” f to follow the progress of the chain. The
chain is positive recurrent iff there is a potential function f which

1. usually decreases (Equation 1), and

2. cannot increase much (Equation 2)

in a single step. Equation 1 implies that, from any state p € C, the expected time to reach C
from p is at most f(p)/e. This (combined with Equation 2) implies that the expected return
time to C is finite, which in turn implies that the chain is positive recurrent. (For more
details, see [2].)

In practice, it can be difficult to find a potential function satisfying the criteria in Foster’s
theorem. We will use the following generalisation of the theorem due to Fayolle, Malyshev
and Menshikov [2].

Theorem 5 (Fayolle, Malyshev, Menshikov) A time-homogeneous irreducible aperiodic
Markov chain X with a countable state space A is positive recurrent iff there exists a positive
function f(p), p € A, a number € > 0, a positive integer-valued function k(p), p € A, and a
finite set C C A, such that the following inequalities hold.

E[f(X(t+EX(@) - (X)) | X(#) =p] < —ek(p), pgC (3)
E[f(X(t+ k(X (1)) | X(t) =p)] < o0, peC. (4)

average waiting time into the definition of “stability”. Recall that in this paper, as in [5], stability means
positive recurrence.

*A Markov chain is said to be time-homogeneous if its transition probabilities are fixed (for all time). It is
wrreducible if, for every pair of states (x,y), it is possible, in some number of steps, for the chain to move from
state = to state y. It is aperiodic if, for any state z, the greatest common divisor of the set

{t | the chain can move from state z to state x in exactly t steps}

is one. See [6] for details. The Markov chain corresponding to the binary exponential backoff protocol is
time-homogeneous, irreducible, and aperiodic.



The reason that the generalisation is easier to use than Foster’s theorem is that, while it
may be difficult to find a potential function f which (usually) goes down in a single step, it
may be easier to find one which goes down over several steps. In the generalised version of
the theorem, it is only necessary to show that from a state p, the potential goes down by a
factor of k over k steps, where k is allowed to depend upon p.

We will now define the potential function that we will use. The value y in the potential
function is a constant in the range [,0.5 —n). Let f(X(¢)) be the following function of the
state just before step t.

FX(B) = an? 10y 1) + 3 240,
=1 =1

We use the following notation, where 8 = 3. For a state X(¢), let m(X(¢)) denote
the number of users i with ¢;(¢) > 0 and b;(¢t) < lg3 + lgn, and let m/(X(¢)) denote the
number of users ¢ with ¢;(t) > 0 and b;(t) < (1 —n — p)lgn + 1. We will take € to be
1 —2/a and C to be the set consisting of the single state ((0,...,0),(0,...,0)). We define
E(((0,...,0),(0,...,0))) =1, so Equation 4 is satisfied. For every state p ¢ C, we will define
k(p) in such a way that Equation 3 is also satisfied. We give the details in three cases.

3.1 Case 1: m/'(X(¢)) =0 and m(X(t)) < n' "~

For every state p such that m'(p) = 0 and m(p) < n'=77# we define k(p) = 1. We wish to
show that, if p # ((0,...,0),(0,...,0)) and X (t) = p, then E[f(X(t+ 1)) — f(X(1))] < —e.
First, we give some intuition as to why the potential f is expected to drop in a single step.
In this case (since m/(X(¢t)) = 0) all users which have messages to send have large backoff
counters. Furthermore (since m(X(¢t)) < n!~"#) most backoff counters (all but at most
n!="~H) are very large. This means that collisions are fairly unlikely. The expected drop in f
mainly comes from the fact that if user i does send (which happens with probability 27%)
and succeeds (which is fairly likely), then f drops by 2% — 1. The proof that f is expected to
go down comes from a careful analysis of a single step and uses the same general approach
as the one used in the proof of Lemma 5.7 of [7]. For convenience, we use m as shorthand
for m(X (¢)) and we use £ to denote the number of users i with ¢;(¢) > 0. Without loss of
generality, we assume that these are users 1,...,£. We use p; to denote the probability that
user i sends on step t. (So p; = 27%® if i € [1,...,4] and p; = A/n otherwise.) We let
T denote [[;—;(1 — p;) and we let S denote » ;- 15’@. Note that the expected number of
successes at step t is ST. Let I, ;+ be the 0/1 indicator random variable which is 1 iff there
is an arrival at user ¢ during step ¢ and let I, ;; be the 0/1 indicator random variable which
is 1 iff user ¢ succeeds in sending a message at step t. Then

n

BIF(X(+ 1)) — FX)] = an? 83 (BlLusd] — Bllyad) + 3 (B2t - 280},
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= an? THENF L+
where o; in Equality 5 denotes the probability that user i collides at step ¢ and 7; denotes the
probability that user ¢ sends successfully at step ¢. (To see why Equality 5 holds, note that
with probability o;, b;(t + 1) = b;(¢t) + 1, with probability m;, b;(t + 1) = 0, and otherwise,
bi(t + 1) = b;(t).) We now find lower bounds for S and T. First,

S:ipi

n—A
§ i L, A8
- 6nm—1 Afzn—_f) (™
Next,
r = [0-»)
> (gt 0
z 1= 2n1737*# - ggnm a A(nn_ . ®)

Combining Equations 6, 7 and 8, we get the following equation.

E[f(X(t+1)) — f(X(1)] < an® T FA+ 0+ % _ o)
m —m AXn—1¢ m A — ¢
(1_2n1—n—u_ fn (n )> <(0m2_"_“+1)(ﬁn_1+ fl_A))Jrze).

We will let g(m,#¢) be the quantity in Equation 9 plus € and we will show that g(m,¥) is
negative for all values of 0 < m < n'~77# and all £ > m. In particular, for every fixed
positive value of m, we will show that

1. g(m,m) is negative,
2. g(m,n) is negative, and

3. %g(m, £) > 0. (g(m,¥£) is concave up as a function of £ for the fixed value of m so g(m,¥)
is negative for all £ € [m,n].)



We will handle the case m = 0 similarly except that m = ¢ = 0 corresponds to the start state,
so we will replace Item 1 with the following for m = 0.

g(0,1) is negative.
The details of the proof are now merely calculations.
1. g(m,m) is negative:

g(m,m)><2o/n2 2 (Bn—1) (o n> —n") =
(721 2 aa? + 2n — 2m — 2n(T21HY £ o2 — 2 (72148) o2 3
+28n° +2n219) e g —2nM3) o B— MY 20 B!
—2nCm ) g —am? — 2n(310) o o2 4 20 (2T e 4+ 6mn
+ 202 o/ B—2n( 2 ) 2 0! + 20 i B!
nCM ) maa’ —2n? + 200 ) o g —28n% 4 2pT ) o
+ 0t o/ B+6m2Bn—88n°m+nt ") mapa + 20T E) am
— 20 o — 30D 2 ! B4+ AnT Y mBal + 20 2 0 8
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— 4t o, B—4 n(=113) 1,2 Ba — n(HRt3) ;2 (12 4 9 (F142) 2

Dt mo’ +28nm

Since 4 p < .5, the dominant term is —2n(=31"#+6) ama’. Note that there is a positive
term (n{~ 2”+5)m aa'?) which could be half this big if m is as big as n! 7 # (the upper
bound for Case 1), but all other terms are asymptotically smaller.

2. g(m,n) is negative:

g(m,n) x2a' Bn(Bn—1)=
2an 3 g2 _2anr2 324 B2nd + 24/ Bn?
—2manCT ) G B 20 Bnm + o BrPmPa+m2nt o g
+ 2mntHt2) of B2 — 2t o' B4 2mantT R o) 41 60/ nm
+4d Bn® —4a'n? =20 200" — 20/ m? —4d BnPm+ 2ed B2 n?

—2ed Bn

Since n + 4 < .5 and B > 2, the term —2¢/3?n® dominates 4+4a'An3. For the same
reason, the term —2man("" #1t3)o/3 dominates the two terms +2man(""1#t3)q' and
+ao/n?m?a. The other terms are asymptotically smaller.

3. %g(m,ﬂ) > 0:

0? 1 A an(=1=t2) L 1) )
Fsatm. by = (¢ 2y (LT DA )




1’. ¢(0,1) is negative:

9(0,1) x &/ Bn?72M (o/ n? —n") =
—n(Z2n=utd) o o) — (2 o gy p(nmet2) o g 4 B2
— M2 e o 42072113 o2 — (204 o2 g 4 9 (1) g o
+ (2 g2 4 pnit) o gy p(nH2) of o (52nmntd)

+n(21 ) 0 B0 + 46— 30D of — 580 — 30T o 8

Since o/(1 —€) > a(l —€) > 1, n+pu < .5, and g > 7, the term —n(~2HDa23(1 — ¢)
dominates the term +n(~""#+t49 a8, The other terms are asymptotically smaller.

3.2 Case 2: m(X(t)>n'"""* or m'(X(t)) > n.

For every state p such that m(p) > n'="7# or m'(p) > n*, we will define an integer k (which
depends upon p) and we will show that, if X (¢) = p, then E[f(X(t + k)) — f(X(¥))] < —¢k,
where e =1 —2/a.

For convenience, we will use m as shorthand for m(X(¢)) and m' as shorthand for m'(X (¢)).
If m > n'=7"# then we will define r = m, W = n""#[lgr]278, A= W, b =lgf +lgn and
v = n. Otherwise, we will define r =m', W =[lgr]27 8, A=0,b=(1—-n—p)lgn+1, and
v = 2[n'="7#], In either case, we will define k = 4(r + v)[lgr].

The intuition behind the proof is as follows. First, since many users have small backoff
counters, it is fairly likely that a collision occurs on the first step. So we do not expect
the potential f to drop in a single step. Instead, we study the evolution of the system over
k steps. With sufficiently high probability, the backoff counters get driven up during the first
O(rlogr) steps. (We refer to these steps as “the preamble”.) During the remaining steps,
the backoff counters stay reasonably high except during steps which occur shortly after

1. arrivals (but there are likely to be few of these since we only run for k steps), and
2. successful sends (which help to reduce f).

We refer to these as “exceptional steps”. Without loss of generality, there are few of them,
since otherwise there are many successes and the potential goes down. Although the backoff
counters stay high (as we just explained), most of them do not get too high, since we only run
for k steps. So the probability of success during any given step which is not exceptional or in
the preamble is high. Finally, with sufficiently high probability, there are at least W successes,
and this reduces the potential.

A technical difficulty in the proof is clarifying the independence between some of the
events and for this reason, it is helpful to identify “preamble steps” (steps in 7), “exceptional
steps” (steps in 71), and also “following steps”. (The formal definition of “following steps” is
given later. Typically, these steps follow at least W successes). The details of this partition
of steps will be described later.

Let 7 be the set of all steps {t,...,t + k — 1} and let S be the random variable which
denotes the number of successes that the system has during 7. Let p denote Pr(S > W).
Then we have

n t+k
E[f(X(t+k) = fF(X®)] < an® T xk—an®> " HES]+ Y Y B[ — b1
=1t =t+1



< an® TEXE —an® TP Wp + kn
S —Ek,
where the final inequality holds as long as ap > 2'% and n is sufficiently big (see the Appendix).
Thus, it suffices to find a positive lower bound for p which is independent of n. We do this
with plenty to spare. In particular, we show that p > 1 —5 x 1075,

We start with a technical lemma, which describes the behaviour of a single user.

Lemma 6 Let j be a positive integer, and let § be a positive integer which is at least 2.
Suppose that q;(t) > 0. Then, with probability at least 1 — jg%ifj?), either user i succeeds in

at least one of the steps in the interval [t,...,t +07[lgj] — 1], or bi(t + d5[lg5]) > [lgj].

Proof:  Suppose that user 7 is running in an externally-jammed channel (so every send
results in a collision). Let X, denote the number of steps ¢ € [t,...,t + [071g(y)]] with
bi(t') = z. We claim that Pr(X, > d[lgj]2°!) < 5792 This proves the lemma
since nggklé[lgjuzfl < d0j[lgj]. To prove the claim, note that Xg < 1, so Pr(Xy >
5lg712=1) =0 < 579/Cn2) For z > 0, note that

Pr(X, > 0[lgj]2°" 1) < (1 — 27Z)5Ugﬂ22‘1 < j0/2In2)
O

Next, we define some events. We will show that the events are likely to occur, and,
if they do occur, then § is likely to be at least W. This will allow us to conclude that
p > 1—5x1075 which will finish Case 2. We start by defining B = [W]+[A], k' = 4r[lgr],
and k" = 4B[lg B]. Next, we give names to some of the steps in 7 = {¢,...,t + k — 1}. Let
7o be the preamble of 7 consisting of steps {t,...,t+ k' — 1}. For every i, let 7/(i) be the set
of times in 7 when user ¢ will “definitely” send. In particular, t' € 7'(4) if and only if

1. b;(¢') =0 and ¢;(t') > 0, or
2. bi(t') = 0 and there is an arrival at user i at ¢'.

7o will be the suffix of following steps in 7. In particular, ¢ € 75 if and only if there are
at least B pairs (t”,1) with ¢ < ' and t" € 7'(i). (Informally, by the time 79 is entered,
there will have been at least B “definite sends”, some of which may have coincided in time.)
Note that 79 is a random variable. Finally, 7y will be a (possibly non-contiguous) subset
of 7 — 79 — . Informally, 7 will contain all steps which occur during or shortly after
“definite sends.” Formally, 7; will be the set of all # € 7 — 7y — 75 such that, for some 7,
') N[t — k" + 1,¢'] # 0. See Figure 1.

We can now define the events E1-E4.

E1l. There are at most A arrivals during 7.

E2. Every station with ¢;(¢) > 0 and b;(t) < b either sends successfully during 7y or has
bi(t+ k') > [lgr].

E3. At least half of the stations with ¢;(¢) > 0 and b;(¢) < b have b;(t') < b+ [lglg(r)] + 6
for all ' € 7.



Preamble Following

steps steps
7o 71 1 T2
B S EE— - - -
Sl % I TIIIIiiizy
t t+k —1 / / 7‘ t+k—-1
arrival success success

Figure 1: A possible outcome for the random variables 7y, 71 and 79. For illustration, we
assume that there are no arrivals or successes during the last k" steps of the preamble.

E4. For all ¢ € 7'() and all " > t' such that ¢ € 7 — 79 — 71 — 7o, either ¢;(t") = 0 or
bi(t") > [lg B.

Next, we show that E1-E4 are likely to occur.
Lemma 7 If n is sufficiently large then Pr(E1) < 1075,

Proof: The expected number of arrivals in 7 is Ak. If m > n' "7 # then A = n"#[lgr]278 >
2)\k. By a Chernoff bound, the probability that there are this many arrivals is at most
e /3 < 1075, Otherwise, A = 0 and Ak = o(1). Thus, Pr(E1) > (1 —X/n)™ > 1 - Xk >
1—1075. O

Lemma 8 If n is sufficiently large then Pr(E2) < 1075,

Proof:  Apply Lemma 6 to each of the r users with 6 = 4 and j = r. Then Pr(E2) <
1 _
r-hEr <1075, O

Lemma 9 If n is sufficiently large then Pr(E3) < 107°.

Proof: Note that £ < 16vlgr. Also note that the probability of a given user i sending at
step t' when b;(t') = b+ [Iglg(r)] + 6 is at most 1/(64v 1gr). Thus the probability that user
i sends at all in the k steps of 7 is at most 1/4. By a Chernoff bound, the probability that
over half of the r users with ¢;(t) > 0 and b;(¢t) < b send when b;(t') = b+ [lglg(r)] + 6 for
some ' € 7 is at most e ©(") < 1075, 0

Lemma 10 If n is sufficiently large then Pr(E4) < 1075,

Proof: We can apply Lemma 6 separately to each of the (up to B) pairs (¢#',7) with § =4
and j = B. The probability that event E4 does not hold is at most B%% <107°. O

We now wish to show that Pr(S < W | E1 AE2 AE3 A E4) < 107°. We begin with the
following lemma.
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Lemma 11 Given any fized sequence of states X (t),..., X (t 4+ z) which does not violate E2
or E4, and satisfiest +z € T — 19 — 11 — T2, qi(t + 2) > 0, and b;(t + z) < b+ [lglg(r)] + 6,
the probability that user i succeeds at step t + z is at least W.
Proof: The conditions in the lemma imply the following.

e There are no users j with ¢;(t + z) > 0 and b;(t + z) < [Ig B] (since E4 holds).

e There are at most B users j with b;(t+2) < [lgr] (since E2 holds and at most B users
succeed or have new arrivals).

e There are at most r + B users j with b;(t+2) < b (since r started that way and at most
B succeed or have new arrivals).

e There are at most m + B users j with b;(t + z) < lg 8 + lgn (for similar reasons).

Thus, the probability that user i succeeds is at least

1 B 1\" 1\m=r 1 n—m—B
—(b+[lglg(r)]+6) (1 _ _ _ = _
: (-5) (-2 (-5) (%)

1 111( n—m—B)
> ciofphmmzm e
— 201gr27444 Bn
S 1
= 2M2bgy’

|

Corollary 12 Given any fized sequence of states X(t),..., X (t + z) which does not violate
E2, E3, or B4, and satisfiest + z € T — 19 — 7| — To, the probability that some user succeeds

at step t + z is at least gég;f; > 21817;1gr'

Proof: Since t + z & 79, at least » — B of the users i with ¢;(t) > 0 and b;(¢) < b have
not succeeded before step ¢ + z. Since E3 holds, at least /2 — B of these have b;(t + 2z) <
b+ [lglg(r)] + 6. For all i and ', the event that user i succeeds at step t + z is disjoint with
the event that user i’ succeeds at step ¢ + z. Finally, note that (r/2) — B > r/4 and 2° < 4v.
O

Lemma 13 If n is sufficiently large then Pr(S < W | EL A E2 A E3 A E4) < 1075,

Proof: If El is satisfied then 75 does not start until there have been at least W successes.
Since |1 — 19 — 11| > k — k' — BE" > v[lgr]/2, Corollary 12 shows that the probability of
having fewer than W successes is at most the probability of having fewer than W successes
in v[lgr]/2 Bernoulli trials with success probability 2181’;—1@”. Since W is at most half of the
expected number of successes, a Chernoff bound shows that the probability of having fewer

than W successes is at most exp(—g—ﬂ%) <107°. O

We conclude Case 2 by observing that p is at least 1 —Pr(E1) —Pr(E2) — Pr(E3) — Pr(E4) —
Pr(S < W | E1AE2AE3 A E4). By Lemmas 7, 8, 9, 10, and 13, this is at least 1 —5 x 1075.
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3.3 Case 3: 0<m/(X(t) <n*and m(X(t)) < n'~17H,

For every state p such that 0 < m/(p) < n?* and m(p) < n' " #, we will define k =
32m’ (p)[lg m/(p)]+ [n'~"7#]. We will show that, if X (t) = p, then E[f(X (t+k))—f(X(t))] <
—ek.

The intuition behind the proof in this case is similar to that of Case 2 except that we do
not have enough small backoff counters to achieve W successes (as in Case 2) even though we
may have too many to make the potential drop in a single step (as in Case 1). We study the
evolution of the system over k steps. The backoff counters are likely to be driven up in the
first ©(m'logm’) steps. After that, we are likely to have a single success, which is enough to
make the potential drop.

Once again, we will use m as shorthand for m(X (¢)) and m' as shorthand for m'(X(¢)).
Let 7 = {t,...,t + k — 1}, let S be the number of successes that the system has in 7. Let p
denote Pr(S > 1). As in Case 2, E[f(X(t +k)) — f(X(1))] < an? T HAk — an?® T Fp + kn,
and this is at most —ek as long as ap > 9. Thus, we will finish by finding a positive lower
bound for p which is independent of n.

Since m’ > 0, there is a user -y such that b,(t) < (1—n—p)lgn+ 1. Let &' = 32m/[lgm’]
and 79 = {t,...,t + k' — 1}. We will now define some events, as in Case 2.

E1l. There are no arrivals during 7.

E2. Every station with ¢;(¢) > 0 and b;(¢t) < (1 —n — p)lgn + 1 either sends successfully
during 79 or has b;(t + k') > [lgm/].

E3. by(t') < (1—n—p)lgn+7forallt €.

Lemma 14 If n is sufficiently large then Pr(E1) < 107°.

Proof:  As in the proof of Lemma, 7,

nk
Pr(El) > (1 — 5) >1—-Me>1-107°,

n
O
Lemma 15 Pr(E2) < 107°.
Proof: We use lemma 5 with § = 32 and 7 = m/ to get
o ! ﬂg ml—| -5
O

Lemma 16 If n is sufficiently large then Pr(E3) < 107°.
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Proof: For E3 to be violated, user v must make at least 6 attempts, one each with backoff
counter [(1 —n —p)lgn+r] for r € {1,...,6}. The probability of this happening is

_ JAN
< =[(1=n—p)lgn]—r
Pr(E3) < <6> ,1;[1 2

6 6
(5 ) e
6 nl-n—u
2ent=n—H \6
(6n1”“23 )

< 107°.

|

Lemma 17 Given any fized sequence of states X (t),..., X (t+ z) which does not violate E1,
E2, or E3 such that t + z € T — 19 and there are no successes during steps [t,... .t + z — 1],
the probability that user v succeeds at step t + z is at least W

Proof: The conditions in the statement of the lemma imply the following.
e g (t+2z)>0and by(t+2) < (l—n—p)lgn+T7.
e There are no users j with b;(t + z) < [lgm/].
e There are at most m' users j with b;(t +2) < (1 —n—p)lgn + 1.
e There are at most m users j with b;(¢t + z) <lg 3+ Ign.

e There will be no arrivals on step ¢ + z.

The probability of success for user v is at least

1 \m -1 1 m—m' 1 \n—-m
9—((1—n—p)lgn+7) <1 _ _> (1 _ 7> <1 _ _>
m' 2nl-—n—u Bn

1 111
2Tnl-n1-1 442
1
212 1—n—p”

Lemma 18 If n is sufficiently large then Pr(S < 1| E1 ANE2A E3) < e /21

Proof: Lemma 17 implies that the probability of having no successes is at most the proba-
bility of having no successes in |7 —7o| Bernoulli trials, each with success probability W
Since |7 — To| > n'~"7H, this probability is at most

1 nl=—n—u )
(1 4) <12

912 l-n—pu

We conclude Case 3 by observing that
p > 1 —Pr(El) — Pr(E2) — Pr(E3) — Pr(S < 1| E1 AE2 AE3).
By Lemmas 14, 15, 16, and 18, this is at least 1 —3 x 107° — e~ /2> > .0002.
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4 Improvements

In this paper, we showed that n-user Binary Exponential Backoff is stable as long as the
arrival rate is O(n~(75+9)) for any constant § > 0. A natural question is whether the protocol
remains stable for higher arrival rates. In particular, it would be very interesting to know
whether it is stable for some constant arrival rate.

Recall Foster’s Theorem (Theorem 4) and Fayolle, Malyshev and Menshikov’s generalisa-
tion of it (Theorem 5) from Section 3. Both theorems show that the relevant Markov chain is
positive recurrent if and only if there is a potential function f satisfying the given conditions.
Thus, if it turns out that binary exponential backoff is stable for higher arrival rates, the
same proof technique could be used to prove the theorem.

On the other hand, finding an appropriate potential function might get increasingly dif-
ficult as the arrival rate gets higher. Furthermore, the number of cases that need to be
considered may grow. Using our particular potential function, and our choice of cases to be
considered,? we cannot prove stability for rates higher than about n=". We suspect that
our analysis would have to be improved substantially to show that the protocol is stable for
any constant arrival rate. In particular, the analysis technique that we use in Case 2 seems
too weak. After the preamble 7y, the backoff counters are suitably high but still we do not
show that a constant factor of the remaining steps have successes. Showing this (if indeed it
is true!) would require a careful analysis of the situation immediately following each success,
perhaps along the lines of the “capture” analysis in [7].
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Appendix: Supplementary Calculations for Case 2
Here we show the inequality
an® RNk — an® TP Wp + kn < —ek

holds when ap > 2'3 and n is sufficiently large.

Case A: (m > n'"7#) In this case, r = m, W = n™H[lgr]278, v = n, and k = 4(r +
v)[lgr]. Then, since k < 8n[logm|, for large n,

an®> T HNE — an®> T EFWp + kn

< an® TR (A nt ) T e — 28R TR W 4 kn
< (afd)ntTRE — 2Bp2 T T R logm]278 4+ kn
< (a/a)n' P (4(m + n)[logm]) — 2°n?[logm] + 4(m + n)[logm]n
< 8n2 H[logm] — 32n%[logm] + 8n?[log m]
< —16n%logm]
< —=2nk
< —¢k.
Case B: (m < n'™#, m' > n?) In this case, r = m', W = [lgr]27%, and v =

2[n!'="7#], and k = 4(r + v)[lgr]. Note that by definition, m’ < n'="=#. Then, since
k < 12[nt=""#][logm'], for large n,

an? 1 HAE — an®TTFWp + kn

an® 1 (o/nt T T — 2B TTEW 4 kn

(oo )n'7HE — 21302717 logm/ 1278 + kn

(o )n' 7H(4(m! 4 2[n' =1 F ) [log m/]) — 25?1 #[log m/]
+4(m + 2[n'="7H]) [log m'n

ININIA

< 12nt KR logm']) — 25021 [log m'] + 12n[n! =" H] [log m/]
< 120t H M Tlog m']) — 32n% 1 #log m/T 4 13n% 1 #[log m/]

< —18n* " H[logm/

< —nk

< —eck.
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