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Abstract

We consider the problem of sampling almost uniformly from the set of contingency
tables with given row and column sums, when the number of rows is a constant. Cryan
and Dyer [3] have recently given a fully polynomial randomized approximation scheme
(fpras) for the related counting problem, which employs Markov chain methods indirectly.
They leave open the question as to whether a natural Markov chain on such tables mixes
rapidly. Here we show that the “2 × 2 heat-bath” Markov chain is rapidly mixing. We
prove this by considering first a heat-bath chain operating on a larger window. Using
techniques developed by Morris and Sinclair [19, 20] for the multidimensional knapsack
problem, we show that this chain mixes rapidly. We then apply the comparison method
of Diaconis and Saloff-Coste [7] to show that the 2× 2 chain is also rapidly mixing.

1 Introduction

Given two vectors of positive integers, r = (r1, . . . , rm) and c = (c1, . . . , cn), an m × n
matrix [X[i, j]] of non-negative integers is a contingency table with row sums r and column
sums c if

∑n
j=1 X[i, j] = ri for every row i and

∑m
i=1 X[i, j] = cj for every column j. We
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write Σr,c to denote the set of all contingency tables with row sums r and column sums c.
We assume that

∑m
i=1 ri =

∑n
j=1 cj (since otherwise Σr,c = ∅) and denote by N the common

total, called the table sum.
In this paper, we consider the problem of sampling contingency tables almost uniformly

at random. No technique currently exists for polynomial-time sampling when the row and
column sums can be arbitrary. In this paper we consider a particular restriction, namely,
the case in which the number of rows is a constant. We focus on the Markov chain Monte
Carlo (MCMC) method for sampling, which has already been successfully used to sample
contingency tables, for other restrictions of the problem (see [8, 15, 2, 11]). We prove that
a natural Markov chain, which we refer to as M2×2, is rapidly mixing when the number of
rows is constant.

Before we give details of previous work on the MCMC method for sampling contingency
tables, we will first discuss recent work on approximate counting of contingency tables, when
the number of rows is constant. Cryan and Dyer [3] recently gave a fully polynomial ran-
domized approximation scheme (fpras) for approximately counting contingency tables in this
setting (i.e. for approximating |Σr,c| with given r, c). It was previously shown by Dyer et
al. [12] that the problem of exact counting is ]P -complete, even when there are only two rows.
(Barvinok [1] gave a polynomial-time algorithm to exactly count contingency tables when the
number of rows and the number of columns is constant.) It is well-known that for all self-
reducible problems, finding an fpras for approximate counting is equivalent to finding an fpaus
(fully polynomial almost uniform sampler) (see Jerrum et al. [17]). Contingency tables are
not known to be self-reducible - it is true that the existence of an fpaus for almost-uniform
sampling of contingency tables does imply an fpras for approximately counting contingency
tables (see, for example, [11]), but the other direction is not known to hold. It is shown in [3]
that the fpras does imply a sampling algorithm, though this algorithm depends on ε−1 rather
than on log ε−1. Recently Dyer [10] developed an elegant dynamic programming technique for
contingency tables with a constant number of rows. He applied this technique to design two
algorithms: an fpaus for uniformly sampling contingency tables with a constant number of
rows; an fpras for approximately counting the number of contingency tables when the number
of rows is constant. The running times of his algorithms significantly improve on the results
in [3].

The algorithm in [3] is a mixture of dynamic programming and volume estimation, and uses
Markov chain methods only indirectly. The sampling algorithm of [10] is based on dynamic
programming, and samples are generated by a probabilistic traceback through the dynamic
programming table. It does not use Markov chain methods at all. Therefore the question still
remains as to whether the MCMC method can be applied directly to this problem. In addition
to its intrinsic interest, this question has importance for two reasons. Firstly, previous research
in this area has routinely adopted the MCMC approach. Secondly, the MCMC method is
more convenient, and has been more widely applied, for practical applications of sampling.

We give here the first proof of rapid mixing for a natural Markov chain when the number
of rows m is a constant. This Markov chain, which we refer to as M2×2, was introduced by
Dyer and Greenhill [11]. During a step of the chain, a 2 × 2 subtable is selected uniformly
at random and is updated randomly. The subtable is updated according to the “heat bath”
method. In particular, a new subtable is chosen from the conditional distribution (the uniform
distribution, conditioned on the configuration outside of the subtable). In order to analyse
M2×2, we first introduce an alternative heat bath chain, MHB, which randomly updates a
larger subtable. In particular, for a constant dm which will be defined later, it updates a sub-
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table of size m× (2dm +1) (also following the “heat bath” method of selecting a new subtable
chosen uniformly at random, conditioned on the configuration outside of the subtable). We
use the multicommodity flow technique of Sinclair [24] to analyse the mixing time of MHB.
Using techniques developed by Morris and Sinclair [20] (see also [19]), we show that this chain
mixes in time polynomial in the number of columns and the logarithm of the table sum. In
Section 5 we compare MHB to M2×2 and hence show that M2×2 is also rapidly mixing.
This is the first proof that any chain converges in polynomial time even when the number
of columns, as well as the number of rows, is constant. Establishing mixing in this case is
one step of our proof. (See Pak [22] for an approach to this problem not using MCMC.) We
note further that our results provide an alternative (and very different) fpras for counting
contingency tables to that of Cryan and Dyer[3].

We now review previous work on the MCMC method for sampling contingency tables.
Contingency tables are important in applied statistics, where they are used to summarize

the results of tests and surveys. The conditional volume test of Diaconis and Efron [5] is
perhaps the most soundly based method for performing tests of significance in such tables.
The Diaconis-Efron test provides strong motivation for the problem of efficiently choosing a
contingency table with given row and column sums uniformly at random. Other applications
of counting and sampling contingency tables are discussed by Diaconis and Gangolli [6]. See
also Mount [21] for additional information, and De Loera and Sturmfels [4] for the current
limits of exact counting methods.

With the exception of [1, 3] (and a recent result of Dyer [10]), most previous work on
sampling contingency tables applies the MCMC method, as described in the survey of Jer-
rum and Sinclair [16]. This method, which has been used to solve many different sampling
problems, is based on a very simple idea. Suppose that we have a Markov chain on a finite set
of discrete structures Ω, defined by the transition matrix P . If the Markov chain is ergodic,
then it will converge to a unique stationary distribution $ on Ω, regardless of the initial state.
This gives a nice method for sampling from the distribution $: starting in any state, we run
the Markov chain for some “sufficiently long” number of steps. Then the final state is taken
as a sample. The key issue with using the MCMC method is determining how long the chain
takes to converge to its stationary distribution.

The first explicit definition of Markov chains for uniformly sampling contingency tables
apparently occurs in the papers of Diaconis and Gangolli [6] and Diaconis and Saloff-Coste [8],
although it is mentioned in [6] that this chain had already been used by practitioners. A single
step of the chain is generated as follows: an ordered pair of rows i1, i2 are chosen uniformly at
random from all rows of the table, and an ordered pair of columns j1, j2 are chosen uniformly
at random from all columns, giving a 2× 2 submatrix. The entries of the 2× 2 submatrix are
modified as follows:

X ′[i1, j1] = X[i1, j1] + 1 X ′[i1, j2] = X[i1, j2]− 1
X ′[i2, j1] = X[i2, j1]− 1 X ′[i2, j2] = X[i2, j2] + 1

If modifying the matrix results in a negative value for any X ′[i, j], the move is not carried
out. Diaconis and Gangolli proved that this Markov chain is ergodic, and the stationary
distribution of the chain is uniform on Σr,c. They did not attempt to bound the mixing time
of the chain, but it is clear that the mixing time is not better than pseudopolynomial in the
input. That is, the mixing time is at least a polynomial in N (rather than a polynomial
in log N). For a discussion of pseudopolynomial time and approximation algorithms, see
Chapter 8 of [26].
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Later Diaconis and Saloff-Coste [8] considered the case when the numbers of rows and
columns are both constant and proved that, in this case, their chain converges in time
quadratic in the table sum. Hernek [15] considered the case when the table has two rows
and proved that the same chain mixes in time polynomial in the number of columns and
the table sum. Chung et al. [2] showed that a slightly modified version of the Diaconis and
Saloff-Coste chain converges in time polynomial in the table sum, the number of rows and
the number of columns, provided that all row and column sums are sufficiently large.

The first truly polynomial-time algorithm (polynomial in the number of rows, the num-
ber of columns and the logarithm of the table sum) for sampling contingency tables was
given by Dyer, Kannan and Mount [12]. They took a different approach to the sampling
problem, considering Σr,c as the set of integer points within a convex polytope. They used
an existing algorithm for sampling continuously from a convex polytope, combined with a
rounding procedure, to sample integer points from inside the polytope. For any input with
row sums of size Ω(n2m) and column sums of size Ω(nm2), their algorithm converges to
the uniform distribution on Σr,c in time polynomial in the number of rows, the number of
columns, and the logarithm of the table sum. Their result was later refined by Morris [18],
who showed that the result also holds when the row sums are Ω(n3/2m log m) and the column
sums are Ω(m3/2n log n).

Using different techniques, Dyer and Greenhill [11] considered the problem of sampling
contingency tables when the table has only two rows. They considered the 2 × 2 heat-
bath chain M2×2 and showed that for two-rowed tables, the chain converges to the uniform
distribution on Σr,c in time that is polynomial in the number of columns and the logarithm
of the table sum.

Our paper can properly be viewed as extending Dyer and Greenhill’s results to any con-
stant number of rows. Thus, our main result is that M2×2 is rapidly mixing for any constant
number of rows. First, however, in Section 4, we examine MHB. Theorem 7 shows that this
chain is rapidly mixing. Theorem 8 of Section 5 bounds the mixing time of the M2×2 in
terms of the mixing time of MHB. Combining the two theorems gives the main result.

2 Definitions

First, we define the Markov chain M2×2. The state space is Σr,c. Given a contingency
table X ∈ Σr,c, a move is made as follows. With probability 1/2, the chain stays at state X.
With the remaining probability, a 2× 2 submatrix is chosen as follows. A pair of rows i1, i2
is chosen uniformly at random and a pair of columns j1, j2 is chosen uniformly at random.
The sub-matrix X[i1, j1], X[i1, j2], X[i2, j1], X[i2, j2] is then replaced with a sub-matrix chosen
uniformly at random from the set of 2 × 2 matrices with row sums X[i1, j1] + X[i1, j2] and
X[i2, j1] + X[i2, j2] and column sums X[i1, j1] + X[i2, j1] and X[i1, j2] + X[i2, j2].

The self-loop probability 1/2 in the definition of M2×2 is introduced for a technical reason
– it simplifies the comparison ofM2×2 andMHB in Section 5 by ensuring that the eigenvalues
of the transition matrix of M2×2 are not negative.

Next we define the Markov chain MHB. In Section 4 we will define a constant dm (which
depends upon m but not upon n or on the input vectors r and c). The state space is Σr,c.
Given a contingency table X ∈ Σr,c, a move is made as follows. With probability 3/4, the
chain stays at state X. With the remaining probability, an m× (2dm +1) submatrix is chosen
as follows. A set of 2dm + 1 columns j1, . . . , j2dm+1 is chosen uniformly at random from all
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columns of the table. The submatrix involving these columns is then replaced with submatrix
chosen uniformly at random from the set of all m × (2dm + 1) matrices with the same row
and column sums as the chosen submatrix.

The self-loop probability 3/4 in the definition of MHB is again introduced for a technical
reason – it ensures that the eigenvalues of the transition matrix of MHB are all at least 1/2,
which is useful in the comparison of M2×2 and MHB. It is not necessary to make the self-loop
probability be 3/4 — anything greater than 1/2 suffices.

3 Background

In this section we summarize the techniques that we will use to bound the mixing time of
MHB. Our analysis is carried out using the multicommodity flow approach of Sinclair [24]
for bounding the mixing time of a Markov chain. Sinclair’s result builds on some earlier work
due to Diaconis and Stroock [9].

In this section, and throughout the rest of the paper, we will use [n] to denote the set
{1, . . . , n}, when n is a positive integer. We will use wi to denote the ith component of a
multidimensional weight vector w.

The setting is familiar: we have a finite set Ω of discrete structures, and a transition
matrix P on the state space Ω. It is assumed that the Markov chain defined by P is ergodic,
that is, it satisfies the properties of irreducibility and aperiodicity (see Grimmett and Stirza-
ker [13]). It is well-known that any ergodic Markov chain has a unique stationary distribution,
that is, there is a unique distribution $ on Ω such that $P = $. Furthermore, for any choice
of initial state x ∈ Ω and any state y ∈ Ω, P t(x, y) → $(y) as t → ∞ (see Chapter 6 of
Grimmett and Stirzaker [13] for details). Sinclair also assumes that the Markov chain is re-
versible with respect to its stationary distribution, that is, $(x)P (x, y) = $(y)P (y, x) for all
x, y ∈ Ω.

For any start state x, we define the variation distance between the stationary distribution
and a walk of length t by V($,P t(x)) = (1/2)

∑
y∈Ω |$(y) − P t(x, y)|. For any 0 < ε < 1

and any start state x, let τx(ε) be defined as τx(ε) = min{t : V($,P t(x)) ≤ ε}. The mixing
time of the chain is given by the function τ(ε), defined as τ(ε) = max{τx(ε) : x ∈ Ω}.

The multicommodity flow approach is defined in terms of a graph GΩ defined by the
Markov chain. The vertices of GΩ are the elements of Ω, and the graph contains an edge (u →
v) for every pair of states such that P (u, v) > 0. We call this graph the Markov kernel. For
any x, y ∈ Ω, a unit flow from x to y is a set Px,y of simple directed paths of GΩ from x to y,
such that each path p ∈ Px,y has a positive weight αp, and the sum of the αp over p ∈ Px,y is 1.
A multicommodity flow is a family of unit flows F = {Px,y : x, y ∈ Ω} containing a unit flow
for every pair of states from Ω. The important properties of a multicommodity flow are the
maximum flow passing through any edge and the maximum length of a path in the flow. We
define the length L(F) of the multi-commodity flow F by L(F) = maxx,y max{|p| : p ∈ Px,y},
where |p| denotes the length of p. For any edge e of GΩ, we define F(e) to be the sum of
the αp weights over all p such that e ∈ p and p ∈ Px,y for some x, y ∈ Ω.

The following theorem is an amalgamation of the results of Sinclair [24]. See also the
closely-connected work of Diaconis and Stroock [9]. Note that all logarithms in this paper
are taken to be natural logarithms.

Theorem 1 (Sinclair [24]) Let P be the transition matrix of an ergodic, reversible Markov
chain on Ω whose stationary distribution is the uniform distribution. Suppose that the eigen-
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values of P are non-negative. Let F be a multicommodity flow on the graph GΩ. Then the
mixing time of the chain is bounded above by

τ(ε) ≤ |Ω|−1L(F) max
e

F(e)
P (e)

(log |Ω|+ log ε−1). (1)

Two key ingredients of our analysis ofMHB in Section 4 are the “balanced almost-uniform
permutations” and the “strongly balanced permutations” used by Morris and Sinclair [20] for
their analysis of the multidimensional knapsack problem. We will use an interleaving of a
balanced almost-uniform permutation and a strongly balanced permutation to spread flow
between each pair of states x, y ∈ Σr,c. The main idea is this: Given x and y we will use a
permutation π of the columns of x to define a path of contingency tables from x to y. We
will route flow from x to y along this path. Actually, π will be chosen from a distribution
and the amount of flow routed along the path corresponding to π will be proportional to the
probability with which π is generated.

We will use the following notation. If π is a permutation of the n columns of a contingency
table, π(i) will denote the original column (in {1, . . . , n}) which gets put in position i by the
permutation. Thus, π{1, . . . , k} = {π(1), . . . , π(k)} denotes the set of original columns that
get put in the first k positions by the permutation.

Definition 2 (Morris and Sinclair [20, Definition 3.2]) Let σ be a random variable tak-
ing values in Sn (i.e., σ is a permutation of {1, . . . , n}) and let λ ∈ R. Then σ is a λ-uniform
permutation if

Pr[σ{1, . . . , k} = U ] ≤ λ×
(

n

k

)−1

for every k with k ∈ [n] and every U ⊆ {1, . . . , n} of cardinality k.

Definition 3 (Morris and Sinclair [20, Definition 5.1]) Let w1, . . . , wn ∈ Rd be any d-
dimensional weights satisfying

∑n
j=1 wj = 0 (i.e.

∑n
j=1 wi

j = 0 for every i ∈ [d]). A permu-
tation σ of 1, . . . , n is `-balanced if

|
k∑

j=1

wi
σ(j)| ≤ `Mi

for all i ∈ [d] and k ∈ [n], where Mi = max1≤j≤n |wi
j |.

Checking the definition above, we see that a balanced permutation is one in which the
partial sums of the weights (in each dimension) do not vary too much, where the factor `
gives us a bound on this variation. Morris and Sinclair showed how to construct balanced
almost-uniform permutations when d is constant. (See also Theorem 3.2 in [19].)

Theorem 4 (Morris and Sinclair [20, Theorem 5.3]) For every positive integer d, there
exists a constant gd and a polynomial function pd such that for any set of weights {wj}n

j=1 in
Rd, there exists a gd-balanced, pd(n)-uniform permutation.
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The key points which we should keep in mind are (1) the distribution which Morris
constructs is “nearly” uniform (and has a fair amount of entropy) and (2) the permutations
satisfy some sort of balance property on multi-dimensional weights. Roughly, one should think
of these weights as corresponding to the columns of our contingency tables – the multiple
dimensions come from having multiple rows. Loosely speaking, the “balance” property of
these permutations will be used to construct our multicommodity flow to generate a path (or
a family of paths) of contingency tables to get from X to Y , each pair of tables along this
path differing by a single move of MHB.

Note that the construction of the gd-balanced, pd(n)-uniform permutation of Morris and
Sinclair is carried out by induction on the number of dimensions d. It is clear from the
construction that gd will be no greater than 4d+1 − 1, though it is not easy to see a way of
obtaining a smaller constant. We mention this because gm will appear in the exponent of n
when we bound the mixing time of our Markov chains (where m is the number of rows).

The “almost uniform” property will help ensure that the flow F(e) through any edge in GΩ

will not be too large (cf. Theorem 1). As mentioned before, we actually use a combination
of permutations, one of which is balanced and almost-uniform, and a second type called
“strongly balanced.”

Definition 5 (Morris and Sinclair [20, Definition 5.4]) Let w1, . . . , wn ∈ Rd be any d-
dimensional weights. Define µ = (µ1, . . . , µd) to be the vector of means of the wj weights (µi =
(
∑n

j=1 wi
j)/n for all i). A permutation σ of 1, . . . , n is strongly `-balanced if for all k ∈ [n]

and all i ∈ [d], there exists a set S ⊆ [n] with |S⊕{1, . . . , k}| < ` such that (
∑k

j=1 wi
σ(j)−kµi)

and (
∑

j∈S wi
σ(j) − kµi) have opposite signs (or either is 0).

The main difference between ordinary balance and “strong balance” is that the definition of
ordinary balance requires that the prefix sum

∑k
j=1 wi

σ(j) should be “close” to kµ for every
k. However strong balance requires that for every prefix k and every row i, it should be
possible to find a small number of columns so that removing those columns changes the sign
of (
∑k

j=1 wi
σ(j) − kµi).

Morris and Sinclair [20] adapted a result of Steinitz [25] (see also Grinberg and Sev-
ast’yanov [14]) to show that

Theorem 6 (Morris and Sinclair [20, Lemma 5.5]) For any sequence {wj}n
j=1 in Rd,

there exists a strongly 16d2-balanced permutation.

4 Analysis of the generalized chain

We fix r = (r1, . . . , rm), the list of row sums, and c = (c1, . . . , cn), the list of column sums,
and let Ω be the state space Σr,c of m × n contingency tables with these row and column
sums. Recall that N denotes the table sum

∑m
i=1 ri.

Recall that gm is the constant of Theorem 4 for balanced almost-uniform permutations for
columns of dimension m. Let dm = 2m(3gm + 1) + 1 + 34m3. We use PHB for the transition
matrix of the Markov chain MHB which was defined in Section 2.

In this section, our goal is to prove the following theorem.

Theorem 7 The mixing time τHB of MHB is bounded from above by a polynomial in n,
log N and log ε−1.
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In order to prove Theorem 7, we will show how to define a multicommodity flow F such
that the total flow along any transition (ω, ω′′) is at most 8fn2dm+1PHB(ω, ω′′), where f is an
expression that is at most poly(n) |Ω|. We will also ensure that L(F) is bounded from above
by a polynomial in n. Theorem 7 will then follow from (1) in Theorem 1. Constructing the
flow F is done in a two stage process. In Subsection 4.1, we will define a multicommodity
flow F∗. Then in Subsection 4.2, we will first prove that the total flow through any state ω
is at most f . Finally, also in Subsection 4.2, we will construct F by modifying F∗.

In the first subsection we define the multicommodity flow we use in our application of The-
orem 1. The construction uses the balanced, strongly-balanced, and almost-uniform properties
of permutations of (some of) the columns of the contingency tables.

The second subsection shows that, with the multicommodity flow we define, each edge of
the graph GΩ is not too congested, and each path length is small. Theorem 7 then follows
from Theorem 1.

4.1 Defining the flow

The construction of F in this subsection uses the methods of Morris and Sinclair [20] intro-
duced in Section 3.

Let k be the index of the largest column sum ck. Let X and Y be contingency tables in Ω.
Let Xj denote the jth column of X. We show how to route a unit of flow from X to Y .

The rough idea is as follows. We first define the notion of a column constrained table,
which is an m × n matrix that has the correct column sums for Σr,c, but may violate the
row sum constraints. We will choose a permutation π from an appropriate distribution. The
distribution from which π is chosen will be defined in terms of an interlacing of the random
balanced permutation of Theorem 4 and the strongly balanced permutation of Theorem 6. π
will be a permutation of most of the columns of the table. The permutation π will define a
path

Z0 = X, . . . , Zn′

(for some n′ < n) of column constrained tables, where each table Zh contains the column Yj

for j ∈ π{1, . . . , h} and the column Xj for all other j (so at each point, we swap another
column of X for the same column of Y ). In Subsection 4.1.1 we show that the balance
properties of π ensure that for any Zh, we can bring all the row sums below ri by deleting a
constant number of columns. Then in Subsection 4.1.2 we will show how to use this fact to
define a path

X = Z ′
0, . . . , Z

′
n′+1 = Y

where each Z ′
h is in Σr,c and there is a transition in MHB from each Z ′

h to Z ′
h+1. The amount

of flow that we will route along this path will be the proportional to the probability with
which π is chosen.

4.1.1 A first step towards building paths

We start building our path(s) from X to Y by first defining a path of column constrained
tables Z0 = X, . . . , Zn′ using an interlacing of the random balanced permutation of Theorem 4
and the strongly balanced permutation of Theorem 6. In Subsection 4.1.2, we will show how
to modify these columns, in a specific manner, to yield a new path of tables such that (i) the
new tables are contingency tables (i.e. they satisfy the row sums as well as the column sums)
and (ii) each successive pair along this path differs by a transition of MHB.
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Let RX
i be the set of indices for the 3gm + 1 largest entries of row i of X.

Let RY
i be the set of indices for the 3gm + 1 largest entries of row i of Y .

Let R =
(
∪iR

X
i

)
∪
(
∪iR

Y
i

)
∪ {k} be the union of all the RX

i and RY
i sets, together with

the index k (which was defined earlier to be the index of the largest column sum).
The cardinality of R is at most 2m(3gm + 1) + 1.
The columns in R are “reserved” columns that we identify before permuting the columns.

We do not permute these columns — we need them for something else. For every row i, define

Mi = min{max{X[i, j] : j 6∈ R},max{Y [i, j] : j 6∈ R}}
Li = {j : j 6∈ R,X[i, j] > Mi} ∪ {j : j 6∈ R, Y [i, j] > Mi}.

Note that by definition of Mi, we either have {j : j 6∈ R,X[i, j] > Mi} = ∅ or {j : j 6∈
R, Y [i, j] > Mi} = ∅, so each Li corresponds to a set of columns of X or a set of columns of
Y , but not both. Also from their definitions, we see that Mi ≤ X[i, j], for all j ∈ RX

i , and
Mi ≤ Y [i, j], for all j ∈ RY

i . Set L = ∪m
i=1Li and S = [n]− (L ∪R).

For every column j ∈ [n] − R, define the m-dimensional weight wj = Yj −Xj . Let µ be
the m-dimensional vector representing the mean of the wj∈[n]−R. Note that

µi =

∑
j∈[n]−R Y [i, j]−X[i, j]

n− |R|
=

∑
j∈R X[i, j]− Y [i, j]

n− |R|
.

Let π1 be a strongly 16m2-balanced permutation on the set of weights {wj}j∈L. This exists
by Theorem 6. Let π2 be a gm-balanced pm(|S|)-uniform permutation on {wj}j∈S . This exists
by Theorem 4. π2 is a random permutation. We interlace π1 and π2 in the same way as Morris
and Sinclair [20] do to get a permutation π on {wj}j∈[n]−R. For the benefit of the reader,
we restate the rule for performing this interlacing: Suppose that π(1), π(2), . . . , π(h) have
already been assigned and that π{1, 2, . . . , h} = π1{1, . . . , h1} ∪ π2{1, . . . , h2}. Then either
h1
h ≤ |L|

|L|+|S| or h2
h < |S|

|L|+|S| . We define π(h + 1) by

π(h + 1) =

{
π1(h1 + 1) if h1

h ≤ |L|
|L|+|S|

π2(h2 + 1) if h2
h < |S|

|L|+|S| .

This new permutation π satisfies inequalities (5.8) and (5.9) in Morris and Sinclair [20],
reproduced as inequalities (2) and (3) below and proved in [20]. (See also inequalities (3.8)
and (3.9) in [19].) These inequalities state that for every prefix h (h is the index of a column)
and every dimension i (i is the index of a row), there exist sets of column indices Vi,h and Wi,h

such that Vi,h differs from {1, . . . , h} by at most 17m2 indices and Wi,h differs from {1, . . . , h}
by at most 17m2 indices, and

∑
j∈Vi,h

wi
π(j) ≤ (h− 1)µi + 3gmMi for every i = 1, . . . ,m (2)

∑
j∈Wi,h

wi
π(j) ≥ (h− 1)µi − 3gmMi for every i = 1, . . . ,m. (3)

The sets Vi,h and Wi,h will play an important role for us later.
Now let n′ = n − |R|. For the permutation π constructed above we define the path

of tables X = Z0, Z1, ..., Zn′ as follows: For every h, Zh contains the columns Xj for j ∈

9



R ∪ π{h + 1, . . . , n′} and columns Yj for j ∈ π{1, . . . , h}. We see that Zn′ differs from Y by
at most 2m(3gm + 1) + 1 columns.

It is important to note that Z0, . . . , Zn′ may not be contingency tables in Σr,c since they
need not satisfy the row constraints. Thus, we cannot use this path directly to define our
flow from X to Y . Nevertheless, we may base our path on these tables. The important
point is that π and, in particular, (2) and (3) will allow us to turn Z0, . . . , Zn′ into a path
of contingency tables. In the remainder of this subsection, we will show that we do not
have to change too many columns to turn Zh into a contingency table. Subsequently in
Subsection 4.1.2 we will show that if we are careful about how we map Zh to a contingency
table, the resulting collection of paths will have good congestion.

We introduce the notation (J(X), J(Y )) to denote a set containing columns from X
and from Y : for sets of indices J(X) ⊆ [n] and J(Y ) ⊆ [n], (J(X), J(Y )) contains the
column Xj for each j ∈ J(X) and the column Yj for each j ∈ J(Y ). For any set of
columns (J(X), J(Y )), we represent the “row sum” for row i by rowi(J(X), J(Y )), which
has the value

∑
j∈J(X) X[i, j] +

∑
j∈J(Y ) Y [i, j].

Defining Jh(X) = R∪π{h+1, . . . , n′} and Jh(Y ) = π{1, . . . , h}, we see that Zh is the set
of columns (Jh(X), Jh(Y )). Each of the Zh tables is a column constrained table because, as
previously noted, it is possible that some rows i may have rowi(Jh(X), Jh(Y )) 6= ri. However,
all the column sums are satisfied by Zh.
Step 1: We show we can modify Zh by “deleting” at most dm columns (including all of
the Xj columns for j ∈ R) to bring the row sum for every row i below ri(1 − 1/n). We
also show a dual result - if we “add” at most dm columns to Zh this brings the row sum
for every row i above ri(1 + 1/n). The “adding” causes some column indices to appear in
both J(X) and J(Y ) so the resulting configuration isn’t much like a contingency table, but
the construction will be useful below. Let Vi,h and Wi,h be the sets of inequalities (2) and (3).

First, instead of considering Zh, consider (π([n′]−Vi,h)), π(Vi,h)). This set of columns is the
result of starting with the contingency table X, removing Xj for every reserved column j ∈ R,
and then adding the weights wj for j ∈ π(Vi,h). By (2), we know that |Vi,h⊕{1, . . . , h}| ≤ 17m2

and

rowi(π([n′]− Vi,h), π(Vi,h)) ≤ (ri −
∑
j∈R

X[i, j]) + (h− 1)µi + 3gmMi

= (ri −
∑
j∈R

X[i, j]) + 3gmMi

+
h− 1

n′
(
∑
j∈R

X[i, j]− Y [i, j])

= ri −
n′ − h + 1

n′
(
∑
j∈R

X[i, j])

−h− 1
n′

(
∑
j∈R

Y [i, j]) + 3gmMi

≤ ri(1−
1
n

) (a)

where the last step follows because (i) we know that Mi ≤ X[i, j] for every j ∈ RX
i , and RX

i ⊆
R, |RX

i | = 3gm + 1. Also maxj∈RX
i

X[i, j] ≥ ri/n. Thus 3gmMi + ri/n ≤
∑

j∈R X[i, j]; (ii)

10



similarly, 3gmMi+ri/n ≤
∑

j∈R Y [i, j]; (iii) the convex combination ((n′−h+1)
∑

j∈R X[i, j]+
(h− 1)

∑
j∈R Y [i, j])/n′ is at least 3gmMi + ri/n.

Now suppose we also “delete” π{1, . . . , h} ⊕ π{Vi,h} from (π([n′]− Vi,h), π(Vi,h)).
Let Bi,h = R ∪ (π{1, . . . , h} ⊕ π{Vi,h}).
Then

Jh(X)−Bi,h = π{h + 1, . . . , n′} ∩ π([n′]− Vi,h)
Jh(Y )−Bi,h = π{1, . . . , h} ∩ π(Vi,h).

By (a), we have rowi(Jh(X)−Bi,h, Jh(Y )−Bi,h) ≤ rowi(π([n′]−Vi,h), π(Vi,h)) ≤ ri(1−1/n).
Also, |Bi,h| ≤ 2m(3gm + 1) + 1 + 17m2.

For the dual result, consider (π([n′]−Wi,h) ∪R, π(Wi,h) ∪R). This set of columns is the
result of starting with the contingency table X, adding the Yj columns for j ∈ R, and then
adding the weights wj for j ∈ π(Wi,h). By (3), we know that |Wi,h ⊕ {1, . . . , h}| ≤ 17m2 and

rowi(π([n′]−Wi,h) ∪R, π(Wi,h) ∪R) ≥ (ri +
∑
j∈R

Y [i, j]) + (h− 1)µi − 3gmMi

= (ri +
∑
j∈R

Y [i, j])− 3gmMi +

h− 1
n′

(
∑
j∈R

X[i, j]− Y [i, j])

= ri +
n′ − h + 1

n′
(
∑
j∈R

Y [i, j]) +

h− 1
n′

(
∑
j∈R

X[i, j])− 3gmMi

≥ ri(1 +
1
n

) (b)

where the last step follows because (i) 3gmMi + ri/n ≤
∑

j∈R X[i, j]; (ii) 3gmMi + ri/n ≤∑
j∈R Y [i, j]; (iii) convex combination.
Suppose we add π{1, . . . , h} ⊕ π{Wi,h} to (π([n′]−Wi,h) ∪R, π(Wi,h) ∪R).
Let Ci,h = R ∪ (π{1, . . . , h} ⊕ π{Wi,h}).
Then

Jh(X) ∪ Ci,h = π{h + 1, . . . , n′} ∪ π([n′]−Wi,h) ∪R

Jh(Y ) ∪ Ci,h = π{1, . . . , h} ∪ π(Wi,h) ∪R.

By (b), we have rowi(Jh(X) ∪ Ci,h, Jh(Y ) ∪ Ci,h) ≥ rowi(π([n′] −Wi,h) ∪ R, π(Wi,h) ∪ R) ≥
ri(1 + 1/n). Also, |Ci,h| ≤ 2m(3gm + 1) + 1 + 17m2.

Finally, define Dh to be a set of dm column indices, including any column that is in
(∪iBi,h) ∪ (∪iCi,h). This is possible because dm = 2m(3gm + 1) + 1 + 34m3. In addition to
the set R (of size 2m(3gm + 1) + 1), each set Bi,h contains up to 17m2 indices as does each
set Ci,h.

Consider Zh with all of the columns in Dh “deleted”. This is the table

Z∗
h =def (Jh(X)−Dh, Jh(Y )−Dh).
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Since Bi,h ⊆ Dh for every i, we have rowi(Jh(X) −Dh, Jh(Y ) −Dh) ≤ ri(1 − 1/n) for all i.
Also define

Z̄∗
h =def (Jh(X) ∪Dh, Jh(Y ) ∪Dh).

Since Ci,h ⊆ Dh for every i, we have rowi(Jh(X) ∪Dh, Jh(Y ) ∪Dh) ≥ ri(1 + 1/n) for all i.
Note that Dh contains all of R, including the index k.

4.1.2 Going from Zh to an element of Ω

Having defined the set Dh, we now show how to change Zh into a contingency table. This
is a crucial step, actually turning the tables Z0, . . . , Zn′ into a path of elements of Ω that
joins the two contingency tables X and Y . The most critical part in the construction of this
multicommodity flow is to ensure that the flow on any edge e ∈ GΩ is not too large. Therefore
it will be important to prove that we do not map too many of the column constrained tables
Zh to any given element of Ω. We will see below that we will need to be careful in mapping
column constrained tables which have large column sums for some of the “deleted” columns
Dh.
Step 2: We now show how to convert Zh into an element of Ω. We focus on the “deleted”
columns Dh, and show that by changing only the entries of the columns in Dh, we can obtain
a contingency table Z ′

h ∈ Σr,c. We also show a dual result: that if we define Z̄h to be the
set of columns which contains Xj for every Yj column in Zh and contains Yj for every Xj

column in Zh, we can show the same result for Z̄h (we can construct a Z̄ ′
h in Σr,c by changing

at most dm columns).
First let r̂i = rowi(Jh(X) − Dh, Jh(Y ) − Dh), the partial row sum for row i of Zh with

the Dh columns removed. Define si = ri − r̂i for all i, the sum for row i of the subtable that
was removed from Zh.

Note that si ≥ ri/n for all i.
Let Nh =

∑m
i=1 si =

∑
j∈Dh

cj , by construction. We have two cases to consider.

Case 1: First suppose Nh < 2(mdm)2. It is well-known that whenever the total of the row
sums equals the total of the column sums, there is at least one contingency table satisfying
these row and column sums (see Diaconis and Gangolli [6]). For this case we choose any
set of modified values Z ′

h[i, j] for j ∈ Dh such that
∑m

i=1 Z ′
h[i, j] = cj for all j ∈ Dh and∑

j∈Dh
Z ′

h[i, j] = si for all 1 ≤ i ≤ m. Note that because Nh < 2(mdm)2 we have si <

2(mdm)2 for all i and therefore ri < 2n(mdm)2 for all i.
Case 2: Alternatively, assume that Nh ≥ 2(mdm)2. As above, we are guaranteed that there
is some set of Z ′

h[i, j] values for j ∈ Dh that satisfy the row and column sums. But, for this
case, we need something stronger – we show how we can modify the values of Zh[i, j] for
the j ∈ Dh columns in a structured way to obtain a subtable Z ′

h satisfying the induced row
sums si and the column sums cj . Performing the modification in this carefully structured
way allows us to ensure that the congestion on edges in GΩ in our multicommodity flow is
not too large, a point we return to following the definitions in the next paragraph.

By our previous definition of Dh, we already know that k is the index of the largest column
sum cj for j ∈ Dh. Let ` be the index of the biggest si value. For every i 6= ` and every
j ∈ Dh − {k}, we define ai,j in terms of the overall row sums and the column sums.

ai,j =def bmin{ri, cj}/n(dm)2c
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Since Zh[i, j] is either X[i, j] or Y [i, j], we know Zh[i, j] ≤ min{ri, cj}. Therefore, for every
i 6= ` and every j ∈ Dh − {k}, we can write

Zh[i, j] = Q[i, j](ai,j + 1) + R[i, j]

for non-negative integers Q[i, j], R[i, j], where Q[i, j] < n(dm)2 and 0 ≤ R[i, j] ≤ ai,j . Q[i, j]
and R[i, j] are uniquely determined by Zh[i, j]. We will show that by changing only the values
of the Q[i, j] to new values Q′[i, j], we can obtain a subtable Z ′

h satisfying the row sums s
and the column sums. As promised, however, we first give the reason why we want to view
the entries of Zh in this way, focusing on the importance of changing only the Q[i, j] terms
to obtain the subtable Z ′

h.
Our analysis of the flow we construct will rely on bounding the number of column con-

strained tables Zh that can be transformed into the contingency table Z ′
h. In particular, for

each particular choice of Dh, we bound the number of tables Zh that can be transformed
into Z ′

h. If the subtable sum Nh is less than 2(mdm)2, then ri < 2n(mdm)2 for every i and
therefore, for every j ∈ Dh and every row i, there are at most 2n(mdm)2 possible origi-
nal values for Zh[i, j]. On the other hand, when Nh ≥ 2(mdm)2, we do not have an upper
bound on the original entries of the subtable. However, the method above for constructing
the Z ′

h[i, j] values using ai,j gives an indirect upper bound for the number of Zh that could be
converted to Z ′

h. For any true contingency table Z ′
h and any selection of Dh columns which

gives Nh ≥ 2(mdm)2, we can calculate ai,j for all i 6= ` and all j ∈ Dh − {k}. Then, for every
row i 6= ` and every column j in Dh−{k}, we can find the original value of R[i, j] using that
R[i, j] = Z ′

h[i, j] mod (ai,j + 1). By the definition of ai,j , there are at most n(dm)2 possible
values for the original Q[i, j], so there are only (n(dm)2)(m−1)(dm−1) different ways of filling in
the entire subtable on the Dh−{k} columns. The fact that there are at most poly(n) possible
values for the original Q[i, j] cells is the key that makes our analysis work in Section 4.2.

We now return to our proof, since we still need to show that we can choose values Q′[i, j]
which ensure that the new Z ′

h[i, j] values will satisfy row sums si and column sums cj . Recall
our assumption that Nh ≥ 2(mdm)2. It is well-known (see Dyer et al. [12]) that the row and
column sums are satisfied by any integer matrix Z ′

h which has Z ′
h[i, j] ≥ 0 for all i, j, where

the Z ′[i, j] also satisfy the following inequalities:

∑
i6=`

Z ′
h[i, j] ≤ cj for every j ∈ Dh − {k} (4)

∑
j∈Dh−{k}

Z ′
h[i, j] ≤ si for every i 6= ` (5)

∑
i6=`

∑
j∈Dh−{k}

Z ′
h[i, j] ≥ Nh − s` − ck (6)

Now define Q′[i, j] in terms of the induced row sums and the original column sums:

Q′[i, j] =def bsicj/Nh(aij + 1)c

for all i 6= ` and all j ∈ Dh − {k}. For those values of i and j, we set Z ′
h[i, j] = Q′[i, j](ai,j +

1) + R[i, j]. Note that Q′[i, j] ≥ 0 for all i, j. We now prove that inequalities (4), (5), and (6)
are satisfied for these Z ′[i, j].
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Inequality (4):∑
i6=`

Z ′
h[i, j] =

∑
i6=`

Q′[i, j](ai,j + 1) +
∑
i6=`

R[i, j]

=
∑
i6=`

bsicj/Nh(aij + 1)c(ai,j + 1) +
∑
i6=`

R[i, j]

≤
∑
i6=`

sicj/Nh +
∑
i6=`

R[i, j]

≤
∑
i6=`

sicj/Nh +
∑
i6=`

ai,j

= cj(1− s`/Nh) +
∑
i6=`

bmin{ri, cj}/n(dm)2c

≤ cj(1− s`/Nh) + cj(m− 1)/n(dm)2

≤ cj(1− 1/m + 1/ndm)
≤ cj .

The last two steps use the facts that (i) s`/Nh ≥ 1/m (because s` is the largest row sum) and
(ii) dm > m.

Inequality (5): The early steps are similar to the proof for inequality (4). We get∑
j∈Dh−{k}

Z ′
h[i, j] ≤ si(1− ck/Nh) +

∑
j∈Dh−{k}

bmin{ri, cj}/n(dm)2c

≤ si(1− ck/Nh) + (dm − 1)ri/n(dm)2

≤ si(1− 1/dm) + si/dm

≤ si

where the second last step uses the facts that (i) ck/Nh ≥ 1/dm (because ck is the largest
column sum in the subtable) and (ii) si ≥ ri/n.

Inequality (6):∑
i6=`

∑
j∈Dh−{k}

Z ′
h[i, j] =

∑
i6=`

∑
j∈Dh−{k}

Q′[i, j](ai,j + 1) +
∑
i6=`

∑
j∈Dh−{k}

R[i, j]

=
∑
i6=`

∑
j∈Dh−{k}

bsicj/Nh(ai,j + 1)c(ai,j + 1) +
∑
i6=`

∑
j∈Dh−{k}

R[i, j]

≥
∑
i6=`

∑
j∈Dh−{k}

sicj/Nh −
∑
i6=`

∑
j∈Dh−{k}

(ai,j + 1) +
∑
i6=`

∑
j∈Dh−{k}

0

= (Nh − s`)(Nh − ck)/Nh −
∑
i6=`

∑
j∈Dh−{k}

(ai,j + 1)

= (Nh − s` − ck) + s`ck/Nh −
∑
i6=`

∑
j∈Dh−{k}

(ai,j + 1).

Next, note that

s`ck/Nh ≥ Nh/(mdm)∑
i6=`

∑
j∈Dh−{k}

(ai,j + 1) ≤ mdm + m(Nh − ck)/n(dm)2 ≤ mdm + Nh/(ndmm),
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by definition of the ai,j and because dm ≥ m2. Therefore, to show that inequality (6) holds,
it suffices to show

Nh/(mdm) ≥ mdm + Nh/(ndmm). (7)

We note the following statements:

Nh/(mdm) ≥ mdm + Nh/(ndmm)
⇐⇒ Nh(1− 1/n)/(mdm) ≥ mdm

⇐= Nh/2 ≥ (mdm)2 (using that n ≥ 2)
⇐⇒ Nh ≥ 2(mdm)2.

This last statement holds by our previous assumption on Nh, therefore inequality (7) holds,
and hence (6) is true, as required.

Therefore, in parallel with our path of column constrained tables, we have a path X =
Z ′

0, . . . , Z
′
h, . . . , Z ′

n′ such that Z ′
h differs from Zh in only dm columns and Z ′

0, Z
′
1, . . . are true

contingency tables. We can add a final step to change Z ′
n′ (using one step of the Markov

chain) into Y . The amount of flow from X to Y that is routed along this path is proportional
to the probability that π is chosen. Since n′ ≤ n, we see that the length of this path from X
to Y is at most n + 1.

Remember that the column constrained table Zh contains exactly n columns and that
Xj ∈ Zh ⇔ Yj 6∈ Zh. Also, Zh is the pair (Jh(X), Jh(Y )). Then if we define Z̄h by the pair
of sets (Jh(Y ), Jh(X)), Z̄h also contains exactly n columns and Xj ∈ Z̄h ⇔ Xj 6∈ Zh. Now to
calculate the row sums of Z̄h, consider Z̄h with the columns of Dh removed. Then

rowi(Jh(Y )−Dh, Jh(X)−Dh) = rowi(([n]− Jh(X))−Dh), ([n]− Jh(Y ))−Dh)
= rowi([n]− (Jh(X) ∪Dh), [n]− (Jh(Y ) ∪Dh)
= 2ri − rowi(Jh(X) ∪Dh, Jh(Y ) ∪Dh)
≤ ri(1− 1/n)

because we proved that rowi(Jh(X) ∪Dh, Jh(Y ) ∪Dh) ≥ ri(1 + 1/n) in Step 1.
Therefore, for Z̄h, there also exists a set of dm columns (the same set of indices Dh) such

that we can obtain a true contingency table Z̄ ′
h ∈ Σr,c by modifying these columns in the

structured way described above.

4.2 Analysis of the multicommodity flow

Next we show that the flow through any state Z ′ ∈ Ω is at most poly(n) |Ω|. (Remark: We
actually bound all of the flow except that due to pairs (X, Y ) where Z ′ = Y . The total flow for
all such pairs is only |Ω|. Hence showing a bound of the form poly(n) |Ω| for the flow between
remaining pairs where Z ′ 6= Y provides us a similar bound for the total flow through Z ′.)
We assume Z ′ occurs as Z ′

h for some pairs of contingency tables (X, Y ) and some values of h
and π{1, . . . , h}. Again, we write Z̄h for the column constrained table with Xj for j ∈ Jh(Y )
and Yj for j ∈ Jh(X). We claim that if we are given Z ′

h and

(1) Z̄ ′
h ∈ Ω, a true contingency table obtained by changing dm of the columns of Z̄h;

(2) the value of h and the set π{1, . . . , h} of columns already changed from X to Y in Zh;
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(3) The set Dh of dm columns of Zh which were modified to obtain Z ′
h (note that the

columns of Z̄h that were modified are also the columns in Dh);

(4) The index ` of the largest induced row sum s` for the subtable of Zh on Dh and the
index `′ of the largest induced row sum for the subtable of Z̄h on Dh;

(5) Two possibilities.
(i) If Nh < 2(mdm)2, then we are given the original values of Zh[i, j] for all i, for
all j ∈ Dh. Note we have Zh[i, j] ≤ 2(mdm)2;
(ii) Otherwise if Nh ≥ 2(mdm)2, we are given the original integers Q[i, j] obtained
from Zh[i, j] for every i 6= ` and every j ∈ Dh−{k}. Note we have 0 ≤ Q[i, j] < n(dm)2;

(5′) Two possibilities.
(i) If Nh < 2(mdm)2, then we are given the original values of Z̄h[i, j] for all i, for
all j ∈ Dh. Note we have Z̄h[i, j] ≤ 2(mdm)2;
(ii) Otherwise if Nh ≥ 2(mdm)2, we are given the original integers Q̄[i, j] obtained
from Z̄h[i, j] for every i 6= `′ and every j ∈ Dh−{k}. Note we have 0 ≤ Q̄[i, j] < n(dm)2;

then we can construct X and Y . We refer to the information in (1)-(5′) as an “encoding” (for
X and Y at the element Z ′ ∈ Ω).

First we concentrate on recovering Zh. From (3) we know the submatrix Dh which has
to be modified to obtain Zh from Z ′

h. Since we know the Dh columns, we can calculate Nh.
If Nh < 2(mdm)2, then the information in (5) tells us the original Zh[i, j] values for j ∈ Dh

and this gives us the entire column constrained table Zh. If Nh ≥ 2(mdm)2 then we use (4)
to identify `. For every i 6= ` and j ∈ Dh − {k} we calculate ai,j from ri and cj and we
calculate R[i, j] = Z ′

h[i, j] mod (ai,j + 1). Finally, by (5) we have the original values of Q[i, j]
for all i 6= ` and all j ∈ Dh − {k}. Therefore we calculate Zh[i, j] = Q[i, j](ai,j + 1) + R[i, j].
We can also calculate Zh[`, j] for j ∈ Dh − {k} by subtracting the other values of Zh[i, j]
(which we just calculated) from cj . We still need to find the values Zh[i, k], but we defer this
for the moment.

In a similar way, we use (3), (4) and (5′) to obtain all columns except column k of Z̄h

from Z̄ ′
h (given to us in (1)).

We now have all the columns except for column k of Zh and Z̄h. Zh contains column Xj

for every j ∈ Jh(X) = R ∪ π{h + 1, . . . , n′} and contains column Yj for every j ∈ Jh(Y ) =
π{1, . . . , h}. Z̄h contains column Xj for every j ∈ Jh(Y ) = [n] − Jh(X) and column Yj for
every j ∈ Jh(X) = [n]−Jh(Y ). By (2), we are given π{1, . . . , h}. Then the contingency table
X is the set of columns where

Xj =
{

column j of Zh for j ∈ [n]− π{1, . . . , h}
column j of Z̄h for j ∈ π{1, . . . , h}.

The contingency table Y is the set of columns where

Yj =
{

column j of Zh for j ∈ π{1, . . . , h}
column j of Z̄h for j ∈ [n]− π{1, . . . , h}.

Thus for any Z ′
h ∈ Ω, we can construct all columns of X and Y except column k. Column k

of each of these can then be recovered using the original ri values. Thus, for any Z ′
h ∈ Ω,

we can construct X and Y for any pair (X, Y ) whose path passes through Z ′
h, given the

encoding (1)-(5′).
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Now we bound the flow through our given Z ′
h. Note that the flow through Z ′

h is (bounded
by) the number of possible choices for (1) and for (3)-(5′), times the amount of flow given by
all possible choices for π{1, . . . , h} (given by (2)).

Since Z̄ ′
h ∈ Ω, there are |Ω| choices for (1).

There are
(

n
dm−1

)
possible Dh sets (choices for (3)), since Dh always contains k.

There are m2 choices for (4).
Depending on the value of Nh, either there are at most n(dm)2 possible values for the

original value of Zh[i, j] for j ∈ Dh (obtained via Q[i, j]), or there are at most 2(mdm)2

possible values for the original value of Zh[i, j] for j ∈ Dh. Therefore there are at most
(2n(mdm)2)mdm possible sets of Zh[i, j] for (5). The same upper bound holds for (5′).

The total number of choices for (4)-(5′) is m2(2n(mdm)2)2mdm . We will write this as
Cmn2mdm , where Cm is the constant 22m(dm)m2(mdm)4mdm .

Recall that we are shipping one unit of flow from X to Y for all ordered pairs (X, Y ) ∈ Ω2,
and we want to find an upper bound on the amount of flow that passes through a given element
Z ′ ∈ Ω. The portion of flow from X to Y passing through Z ′ is determined by the distribution
on the choices of permutations in (2). The permutation π defines the sequence Z0, . . . , Zn′

which, in turn, defines Z ′
0, . . . , Z

′
n′ . We want to know how much flow passes through Z ′

h for
the choices (1),(3)-(5′) of the encoding. Therefore, we see the amount passing through Z ′

h is
bounded above by

|Ω|Cm

(
n

dm − 1

)
n2mdm

∑
h

∑
U : |U |=h

Pr[π{1, . . . , h} = U ]

where Pr[π{1, ..., h} = U ] is the probability that U is the set of the first h columns to be
changed.

Therefore (as in [20]), we need to bound
∑

h

∑
U : |U |=h Pr[π{1, . . . , h} = U ] for each

particular possibility for parts 1,3,4,5, and 5’ of the encoding. As explained before, these
parts of the encoding determine Zh and Z̄h (apart from column k). Zh and Z̄h together give
us the set {Xj , Yj} for any j 6= k, but they don’t tell us which of the two columns is Xj and
which is Yj . The relevant parts of the encoding also determine Dh. For the given value of Dh,
there are at most 2dm−1 possibilities for R (which must include column k), and we shall sum
over all of them. We then upper bound the flow coming from all permutations π{1, . . . , h}
on the columns of [n] − R. There are at most (2(n − |R|))m ≤ (2n)m possibilities for the
vector M giving the Mi values and we like likewise sum over all such choices. For each choice
of (possible) values {Mi} we can compute from Zh and Z̄h the set Li = {j : j 6∈ R,X[i, j] >
Mi} ∪ {j : j 6∈ R, Y [i, j] > Mi}. Note that this gives us S = [n] − (L ∪ R) as well. By our
remark on page 9, we know that each Li consists solely of columns of X, or solely of columns
of Y . Therefore there are only two possibilities for assigning all the Li columns to X or Y
(2m choices for all of L = ∪iLi).

Let h2 = h− |π{1, . . . , h} ∩ L|. We bound the flow passing through Z ′
h below. Note that

the first summation is over all (2(n−|R|))m possibilities for M and all 2m possible assignments
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of L.

|Ω|Cm

(
n

dm − 1

)
n2mdm

∑
R,M,L,h2

∑
U⊆S: |U |=h2

Pr[π2{1, . . . , h2} = U ]

≤ |Ω|Cm

(
n

dm − 1

)
n2mdm2dm−1(2n)m2mn

∑
U⊆S: |U |=h2

Pr[π2{1, . . . , h2} = U ]

≤ |Ω|Cm

(
n

dm − 1

)
n2mdm2dm−1(2n)m2mn

∑
U⊆S: |U |=h2

pm(|S|)/
(
|S|
h2

)

≤ |Ω|Cm

(
n

dm − 1

)
n2mdm2dm−1(2n)m2mn

(
|S|
h2

)
pm(|S|)/

(
|S|
h2

)
≤ |Ω|Cm

(
n

dm − 1

)
n2mdm2dm−1(2n)m2mnpm(|S|),

which is poly(n) |Ω|.
Thus we know that the flow through any state is bounded by a quantity f which is

at most poly(n) |Ω|. In the application of Morris and Sinclair [20] this is already sufficient
to prove polynomial time mixing, since the term P (e) in the denominator of (1) is only
polynomially small. However, for our heat-bath chain PHB, this term may be exponentially
small, and a further argument is required to establish rapid mixing.

To this end, let e = (ω, ω′) (ω, ω′ ∈ Ω2) be a (directed) transition of MHB, with transition
probability PHB(e). Suppose that fe units of flow are shipped along e in the multi-commodity
flow F∗ defined above. We will construct a new flow F in which these fe units are dispersed,
travelling from ω to ω′ via a “random destination” ω′′.

Let B be the set of columns on which ω and ω′ disagree and let W be the set of all size
m × (2dm + 1) heat-bath windows which include B. Let Ω′′ be the set of all contingency
tables ω′′ such that

1. There is a U ∈ W which contains all the columns on which ω and ω′′ differ, and

2. There is a U ′ ∈ W which contains all the columns on which ω′ and ω′′ differ.

For each ω′′ ∈ Ω′′, the flow F will route fe/|Ω′′| flow from ω to ω′ via ω′′. Note that this
construction doubles the length of our flow paths, but no more. Hence, the length of the
longest path in the new flow F is at most 2(n + 1).

The quantity shipped through (ω, ω′′) in F from the original transition e in the multi-
commodity flow F∗ is fe/|Ω′′|, which is at most 4fen

2dm+1PHB(ω, ω′′). To see this, let K be
the (non-empty) set of columns on which ω and ω′′ differ. For every heat-bath window U , let
Ωω(U) denote the set of contingency tables which agree with ω, except possibly on window U
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and write

PHB(ω, ω′′) =
1
4

∑
U⊇K

1(
n

2dm+1

) 1
|Ωω(U)|

≥ 1
4

∑
U⊇K,U∈W

1(
n

2dm+1

) 1
|Ωω(U)|

≥ 1
4

∑
U⊇K,U∈W

1(
n

2dm+1

) 1
|Ω′′|

≥ 1
4

1(
n

2dm+1

) 1
|Ω′′|

,

where the last inequality follows from the fact that ω′′ ∈ Ω′′, so there is at least one U in the
summation.

We call the transition (ω, ω′′) a type 1 transition and a transition (ω′′, ω′) a type 2 tran-
sition.

We can now give an upper-bound for the total type 1 flow along the transition (ω, ω′′). For
each e = (ω, ω′), we ship at most 4fen

2dm+1PHB(ω, ω′′) flow. Let f be the bound from above
on the total flow that leaves node ω in our original multicommodity flow F∗ (so f =

∑
e fe

where the sum is over transitions e which start at ω). Then the total amount routed via ω′′

in F is at most 4fn2dm+1PHB(ω, ω′′).
Using a symmetric argument, we can show that the total type 2 flow along the transition

(ω′′, ω′) in F is at most 4fn2dm+1PHB(ω′′, ω′).
Thus, the total flow in F along transition (ω, ω′′) is at most 8fn2dm+1PHB(ω, ω′′). Using

the fact that the longest flow-carrying path length is at most 2(n + 1), this is now sufficient
for the right hand side of (1) to be polynomially bounded, since the (possibly small) PHB(e)
term cancels. This completes the proof of Theorem 7.

5 Mixing of the 2× 2 chain

Theorem 7 shows that the Markov chain MHB is rapidly mixing. In this section we use the
comparison method of Diaconis and Saloff-Coste [7] to show that the 2×2 chain M2×2 is also
rapidly mixing. We briefly describe the comparison method, in the context of contingency
tables, adapted from [7]. For more details and other examples of applications of this method,
see [7], Randall and Tetali [23], and Vigoda [27].

5.1 Setting up the comparison

Recall that PHB denotes the transition matrix of the Markov chain MHB which was analyzed
in Section 4. Let E(PHB) be the set of edges (excluding loops) in the Markov kernel of that
chain. That is, E(PHB) = {(X, Y ) : X 6= Y and PHB(X, Y ) > 0}. Let P2×2 denote the
transition matrix of M2×2 and let E(P2×2) denote the edge-set of its Markov kernel.

For every (X, Y ) ∈ E(PHB) we define a set of paths ΓX,Y where each γ ∈ ΓX,Y is a path
X = η0, η1, . . . , ηk = Y , such that (ηi, ηi+1) ∈ E(P2×2) for all i ∈ {0, . . . , k−1}. Let |γ| denote
the length (number of edges) of the path. We also define a flow fX,Y , which is a function
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from ΓX,Y to the positive reals satisfying the condition∑
γ∈ΓX,Y

fX,Y (γ) = 1. (8)

It is important to note that this flow need only be defined for pairs (X, Y ) ∈ E(PHB), not for
all pairs (X, Y ).

For each (Z,Z ′) ∈ E(P2×2), define the quantity

AZ,Z′ =
1

P2×2(Z,Z ′)

∑
(X,Y )∈E(PHB)

∑
γ∈ΓX,Y such
that (Z,Z′)∈γ

|γ|fX,Y (γ)PHB(X, Y ).

We use the comparison theorem of Diaconis and Saloff-Coste, which says1 that

τ2×2(ε) ∈ O(τHB(ε) log(|Σr,c|) max
(Z,Z′)∈E(P2×2)

AZ,Z′).

In our construction of the flow, we ensure that the length of each path γ ∈ ΓX,Y is bounded
by a constant. Thus, the theorem of Diaconis and Saloff-Coste tells us that to establish rapid
mixing, we need only define fX,Y for every (X, Y ) ∈ E(PHB) such that Equation (8) is satisfied
and also, for all (Z,Z ′) ∈ E(P2×2), the following is satisfied:

1
P2×2(Z,Z ′)

∑
(X,Y )∈E(PHB)

∑
γ∈ΓX,Y such
that (Z,Z′)∈γ

fX,Y (γ)PHB(X, Y ) ≤ poly(n). (9)

It helps us to re-work Equation (9) before defining the flows. For (X, Y ) ∈ E(PHB), let
W(X, Y ) be the set of all m× (2dm + 1) “windows” such that X and Y agree outside of W ,
where a “window” is just a set of m rows and 2dm + 1 columns. Note that

PHB(X, Y ) =
1
4

∑
W∈W(X,Y )

1(
n

2dm+1

) 1
|ΩX(W )|

,

where ΩX(W ) is the set of all contingency tables that agree with X outside of W . We may
view PHB(X, Y ) as (a multiple of) the average of the quantities 1/|ΩX(W )| over all windows
W ∈ W(X, Y ). Therefore, there is some W (X, Y ) ∈ W(X, Y ) such that

PHB(X, Y ) ≤ 1
|ΩX(W (X, Y ))|

. (10)

The essential idea to keep in mind in what follows is that routing the unit flow fX,Y from X
to Y is done using paths of contingency tables that differ from one another solely on (a 2× 2
part of) this specially chosen window W (X, Y ) that satisfies (10).

For each m×(2dm +1) window W , let EW = {(X, Y ) : (X, Y ) ∈ E(PHB) and W (X, Y ) =
W}. Later, when we define our flows, we do the following for every fixed window W : For

1The statement of the theorem in this form is from Vigoda [27] and Randall and Tetali [23]. The derivation
of Proposition 4 in [23] required the eigenvalues of PHB to be at least 1/2, which is why we added the self-loops
to MHB. (Actually, bounding the eigenvalues above zero by any amount suffices.) The comparison uses the
fact that the eigenvalues of P2×2 are positive since this method provides a lower bound for 1 − λ1(P2×2) in
terms of 1− λ1(PHB), and in these situations those differences directly relate to mixing times.
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every (X, Y ) ∈ EW , we define a flow fX,Y such that Equation (8) is satisfied. We also ensure
that for all (Z,Z ′) ∈ E(P2×2), the following is satisfied:

1
P2×2(Z,Z ′)

∑
(X,Y )∈EW

∑
γ∈ΓX,Y such
that (Z,Z′)∈γ

fX,Y (γ)PHB(X, Y ) ≤ poly(n). (11)

Since there are only polynomially-many windows W , by summing over all of them we see that
Equation (11) implies Equation (9), and ensures rapid mixing of M2×2.

For each window W , Section 5.2 shows how to define a flow f∗X,Y for every (X, Y ) ∈ EW

such that ∑
γ∈ΓX,Y

f∗X,Y (γ) = 1

and the total flow through any contingency table Z ∈ Σr,c is in O(|ΩX(W )|). At the end of
Section 5.1 we will define fX,Y by modifying f∗X,Y . Let f∗X,Y (Z) denote the amount of flow
passing through the contingency table Z in the flow f∗X,Y . Let f∗(Z) =

∑
(X,Y )∈EW

f∗X,Y (Z).
Similarly, let fX,Y (Z,Z ′) denote the amount of flow passing through the transition (Z,Z ′) in
the flow fX,Y . Let f(Z,Z ′) =

∑
(X,Y )∈EW

fX,Y (Z,Z ′). Our construction of fX,Y from f∗X,Y

will ensure that for every (Z,Z ′) ∈ E(P2×2), we have

f(Z,Z ′) ≤ 4f∗(Z)P2×2(Z,Z ′)
(

n

2

)(
m

2

)
. (12)

Thus, the left-hand-side of (11) is equal to

1
P2×2(Z,Z ′)

∑
(X,Y )∈EW

∑
γ∈ΓX,Y such
that (Z,Z′)∈γ

fX,Y (γ)PHB(X, Y )

≤ 1
P2×2(Z,Z ′)

∑
(X,Y )∈EW

∑
γ∈ΓX,Y such
that (Z,Z′)∈γ

fX,Y (γ)
1

|ΩX(W )|
(13)

=
1

P2×2(Z,Z ′)
· 1
|ΩX(W )|

∑
(X,Y )∈EW

fX,Y (Z,Z ′)

=
f(Z,Z ′)

P2×2(Z,Z ′)
· 1
|ΩX(W )|

≤
4f∗(Z)

(
n
2

)(
m
2

)
|ΩX(W )|

≤ poly(n). (14)

Inequality (13) comes from (10), where ΩX(W ) = ΩX(W (X, Y )), and from our definition
of EW . The first inequality in (14) comes from Equation (12) which we establish shortly,
and the second inequality in (14) comes from the fact that f∗(Z) ∈ O(|ΩX(W )|), which
is established in Section 5.2. We will then have shown that Equation (11) is satisfied, as
required, so M2×2 is rapidly mixing on Σr,c.

We finish this section by showing how to construct fX,Y given the flow f∗X,Y , thereby
establishing (12). The method is similar to (but simpler than) the one that we used at the
end of Section 4.2.
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Recall that E(P2×2) excludes self-transitions of the form (Z,Z). Thus, for each (Z,Z ′′) ∈
E(P2×2), there is a unique 2 × 2 window U(Z,Z ′′) on which Z and Z ′′ disagree. Let
ΩZ(U(Z,Z ′′)) denote the set of all contingency tables that agree with Z (and Z ′′) every-
where outside of the 2×2 window U(Z,Z ′′). Let f∗X,Y (Z,Z ′′) be the flow that passes through
(Z,Z ′′) in f∗X,Y . For each Z ′ ∈ ΩZ(U(Z,Z ′′)), some of this flow is allocated to the path
Z,Z ′, Z ′′. In particular, f∗X,Y (Z,Z ′′)/|ΩZ(U(Z,Z ′′))| flow is sent this way.

Now fX,Y (Z,Z ′) ≤ 2
∑

Z′′∈U(Z,Z′)

f∗X,Y (Z,Z′′)

|ΩZ(U(Z,Z′′))| , where the first “2” comes from the fact
that we must consider paths Z,Z ′, Z ′′ above, and also paths that end in edge Z,Z ′. The
right-hand side is at most

2
f∗X,Y (Z)

|ΩZ(U(Z,Z ′))|
≤ 4f∗X,Y (Z)P2×2(Z,Z ′)

(
n

2

)(
m

2

)
,

so (12) holds.
By considering all m× (2dm + 1) sized windows which contain the two columns on which

Z and Z ′ differ, we can see that for each (Z,Z ′) ∈ E(P2×2), we have

AZ,Z′ ≤ C

(
n

2

)(
n− 2

2dm − 1

)
where the constant C accounts for the maximum length of any (X, Y ) path for (X, Y ) ∈
E(PHB), and the constant factors arising in the bound for the flow f∗(Z) over a single m ×
(2dm + 1) window W . Therefore, we have the following theorem:

Theorem 8
τM2×2(ε) ∈ O(τMHB

(ε) log(|Σr,c|)n2dm+1).

5.2 Defining f ∗(X, Y )

In this section we define a flow f∗X,Y for every (X, Y ) ∈ EW such that
∑

γ∈ΓX,Y
f∗X,Y (γ) = 1

and the total flow through any contingency table Z, due to pairs in EW , is in O(|ΩX(W )|).
Throughout this entire section, we therefore focus on some fixed m × (2dm + 1) sized

window W of the larger m × n table. Without loss of generality (and to make our notation
simpler in what follows), we assume that W includes the first 2dm + 1 columns of the table.
This window W has induced row sums ρi (for i ∈ [m]) and induced column sums ζj (for
j ∈ [2dm + 1]). For convenience we also set δ = 2dm + 1.

Let ρ = (ρ1, . . . , ρm), ζ = (ζ1, . . . , ζδ) be the lists of induced row and column sums. Let
Σρ,ζ denote the set of m × δ contingency tables with rows sums ρ and column sums ζ, and
let NW denote the table sum. Let Υ,Ψ ∈ Σρ,ζ . We show how to route a unit of flow between
Υ and Ψ using a path of contingency tables that differ by moves of M2×2. This flow lifts in
the obvious fashion to transitions (X, Y ) ∈ E(PHB), giving us the flow f∗X,Y required in the
previous section. In other words, we simply use the exact same sequence of 2× 2 transitions
on the window W (X, Y ), keeping everything outside this window fixed (where X and Y agree
anyway).

If NW < (2mδ)2 then |Σρ,ζ | ∈ O(1), so it does not really matter how we route flow between
Υ and Ψ. For example, it suffices to fix each square in the contingency table in lexicographic
order. Each path in the resulting flow is of length O(1) and there are O(1) pairs (Υ,Ψ) of
contingency tables, so the desired bound is easily established. This is similar to, but simpler
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than, what we do later in Section 5.2.3. Thus, from now on we assume NW ≥ (2mδ)2 and we
show how to construct a flow between Υ and Ψ in Σρ,ζ .

Without loss of generality we may assume that the row totals are sorted into non-
descending order and that the column totals are also sorted into non-descending order. There-
fore ρm is the largest row sum and ζδ is the largest column sum.

As we did in Section 4.1.2, we view the space Σρ,ζ of contingency tables as the (m−1)(δ−1)-
dimensional space of integer matrices Φ that satisfy Φ[i, j] ≥ 0 for all i ∈ [m − 1] and all
j ∈ [δ − 1], and also satisfy the following inequalities (see Dyer, Kannan and Mount [12]):

m−1∑
i=1

Φ[i, j] ≤ ζj for every j ∈ [δ − 1] (15)

δ−1∑
j=1

Φ[i, j] ≤ ρi for every i ∈ [m− 1] (16)

m−1∑
i=1

δ−1∑
j=1

Φ[i, j] ≥ NW − ρm − ζδ. (17)

Let

αi,j =
⌊

min{ρi, ζj}
m2δ2

⌋
(18)

for all i ∈ [m− 1], j ∈ [δ − 1].
Note that

max
j∈[δ−1]

αi,j = αi,δ−1 for all i;

max
i∈[m−1]

αi,j = αm−1,j for all j;

max
i∈[m−1],j∈[δ−1]

αi,j = αm−1,δ−1.

For any contingency table Φ ∈ Σρ,ζ , and any i ∈ [m− 1], j ∈ [δ − 1], we can write

Φ[i, j] = Q[i, j](αi,j + 1) + R[i, j],

for a unique integer R[i, j] satisfying 0 ≤ R[i, j] ≤ αi,j , and a unique integer Q[i, j].
For all i ∈ [m− 1], j ∈ [δ − 1] we define

Q∗[i, j] =
⌊

ρiζj

NW (αi,j + 1)

⌋
. (19)

Let Υ,Ψ ∈ Σρ,ζ . We are almost ready to start building a path from Υ to Ψ that uses
transitions of M2×2. We use the following lemma:

Lemma 9 Let Φ∗[i, j] be defined by

Φ∗[i, j] = Q∗[i, j](αi,j + 1) + R[i, j]
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for any non-negative integers R[i, j] ≤ αi,j, for all i ∈ [m− 1], j ∈ [δ − 1]. Also, we set

Φ∗[i, δ] = ρi −
δ−1∑
j=1

Φ∗[i, j] for i ∈ [m− 1],

Φ∗[m, j] = ζj −
m−1∑
i=1

Φ∗[i, j] for j ∈ [δ − 1],

and Φ∗[m, δ] = ζδ −
m−1∑
i=1

Φ∗[i, δ].

Then
(i) Φ∗ ∈ Σρ,ζ .
(ii) Under the assumption that NW ≥ (2mδ)2, we have the following:

Φ∗[i, δ] ≥ (αi,δ−1 + 1) for all i ∈ [m− 1]
Φ∗[m, j] ≥ (αm−1,j + 1) for all j ∈ [δ − 1]
Φ∗[m, δ] ≥ 2(αm−1,δ−1 + 1).

Proof: (i) It suffices to show that the inequalities (15), (16) and (17) hold for the defined
values of Φ∗[i, j] with i ∈ [m − 1] and j ∈ [δ − 1]. (Then the definitions of Φ∗[i, δ],Φ∗[m, j],
and Φ∗[m, δ] are such that the entire m× δ table satisfies the row and column sums ρ and ζ,
respectively.)

This proof is analogous to that given in Case 2 in Section 4.1.2 when we showed that
Inequalities (4), (5), and (6) held there, so we do not repeat that proof here.

(ii) By definition,

Φ∗[i, δ] = ρi −
δ−1∑
j=1

Φ∗[i, j]

= ρi −
δ−1∑
j=1

(⌊
ρiζj

NW (αi,j + 1)

⌋
(αi,j + 1) + R[i, j]

)

≥ ρi −
δ−1∑
j=1

(
ρiζj

NW
+ αi,j

)

=
ρiζδ

NW
−

δ−1∑
j=1

αi,j

≥ ρiζδ

NW
− δρi

m2δ2

≥ ρi

δ
− ρi

m2δ

≥ ρi

mδ
≥ 2αi,δ−1.

Then, if αi,δ−1 ≥ 1 we automatically have Φ∗[i, δ] ≥ (αi,δ−1 + 1). However, if αi,δ−1 = 0 then
αi,j = 0 for all j ∈ [δ − 1], and there are two subcases to consider. The first subcase is when
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ρiζδ < NW . Then ρiζj < NW for all j ∈ [δ − 1], and Φ∗[i, j] = 0 for all j ∈ [δ − 1]. Therefore
Φ∗[i, δ] = ρi ≥ 1. If ρiζδ ≥ NW , then the fourth line of the derivation above (with αi,j = 0)
gives Φ∗[i, δ] ≥ ρiζδ/NW ≥ 1. So in either subcase we have Φ∗[i, δ] ≥ 1 = (αi,δ−1 + 1).

Using a similar argument we conclude that

Φ∗[m, j] ≥ (αm−1,j + 1).

By definition

Φ∗[m, δ] = ζδ −
m−1∑
i=1

Φ∗[i, δ]

= ζδ −
m−1∑
i=1

ρi −
δ−1∑
j=1

Φ∗[i, j]


= (ρm + ζδ −NW ) +

m−1∑
i=1

δ−1∑
j=1

(⌊
ρiζj

NW (αi,j + 1)

⌋
(αi,j + 1) + R[i, j]

)

≥ (ρm + ζδ −NW ) +
m−1∑
i=1

δ−1∑
j=1

(⌊
ρiζj

NW (αi,j + 1)

⌋
(αi,j + 1)

)

≥ (ρm + ζδ −NW ) +
m−1∑
i=1

δ−1∑
j=1

(
ρiζj

NW
− (αi,j + 1)

)

=
ρmζδ

NW
−

m−1∑
i=1

δ−1∑
j=1

(αi,j + 1)

≥ ρmζδ

NW
− m(NW − ζδ)

m2δ2
− (m− 1)(δ − 1)

≥ NW

mδ
− NW

mδ2
− (m− 1)(δ − 1)

≥ NW

4mδ
+ (

NW

2mδ
− NW

mδ2
) + (

NW

4mδ
− (m− 1)(δ − 1))

≥ 2ζδ−1

4mδ
+ 0 + (δ + m− 1)

≥ 2αm−1,δ−1 + 2,

as required. 2

Definition 10 If Φ is a contingency table such that Q[i, j] = Q∗[i, j] for every i ∈ [m − 1],
j ∈ [δ − 1], then we say that Φ belongs to the inner domain of Σρ,ζ .

Now we consider a pair Υ,Ψ ∈ Σρ,δ. For every i ∈ [m− 1], j ∈ [δ − 1], we write

Υ[i, j] = QΥ[i, j](αi,j + 1) + RΥ[i, j],

for the unique integer RΥ[i, j] that satisfies 0 ≤ RΥ[i, j] ≤ αi,j .
Similarly, for every i ∈ [m− 1], j ∈ [δ − 1], we write

Ψ[i, j] = QΨ[i, j](αi,j + 1) + RΨ[i, j],
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for the unique RΨ[i, j] satisfying 0 ≤ RΨ[i, j] ≤ αi,j .
The routing from Υ to Ψ proceeds in two stages. In the first phase, we route flow from

Υ to the table Υ∗ in the inner domain of Σρ,ζ such that Υ∗[i, j] = Q∗[i, j](αi,j + 1) + RΥ[i, j]
holds for every i ∈ [m− 1], j ∈ [δ − 1]. Note that Υ∗ ∈ Σρ,ζ using the previous lemma.

By defining a similar path between Ψ and Ψ∗ and then reversing all the edges, we can
route flow from some Ψ∗ in the inner domain of Σρ,ζ to Ψ such that Ψ∗[i, j] = Q∗[i, j](αi,j +
1) + RΨ[i, j] holds for every i ∈ [m− 1], j ∈ [δ − 1]. Similarly, we also have Ψ∗ ∈ Σρ,ζ .

In the second phase of the routing we show how to route flow from Υ∗ to Ψ∗ by changing
the RΥ[i, j] to the RΨ[i, j] values.

5.2.1 Phase 1

We show how to route Υ to Υ∗ in the inner domain of Σρ,ζ , by only changing Q[i, j] values
at any step. For our analysis, we define the following metric on pairs Φ,Φ′ ∈ Σρ,ζ :

d(Φ,Φ′) = d1(Φ,Φ′) + d2(Φ,Φ′) + d3(Φ,Φ′) + d4(Φ,Φ′) where

d1(Φ,Φ′) =
m−1∑
i=1

δ−1∑
j=1

|Φ[i, j]− Φ′[i, j]|

d2(Φ,Φ′) =
NW + 1
3NW

(
m−1∑
i=1

|Φ[i, δ]− Φ′[i, δ]|

)

d3(Φ,Φ′) =
NW + 1
3NW

δ−1∑
j=1

|Φ[m, j]− Φ′[m, j]|


d4(Φ,Φ′) =

NW + 1
3NW

|Φ[m, δ]− Φ′[m, δ]|.

This metric is used to show the path we construct is moving us closer to Υ∗, and that the
length of this path from Υ to Υ∗ is bounded by a constant.

We route Υ to Υ∗ as a series of moves. Let Υ′ denote some interim contingency table on
the path from Υ to Υ∗. We choose our next move on this path from amongst four cases.
Case (a): Suppose that Υ′[m, δ] < (αm−1,δ−1+1). Then we perform a move to make Υ′[m, δ]
bigger (because we need to “leave room” for our other cases).

We now show there is at least one ` ∈ [m− 1] such that Υ′[`, δ] ≥ Υ∗[`, δ] + (α`,δ−1 + 1).
Note that by Lemma 9, in this case Υ′[m, δ] < Υ∗[m, δ] − (αm−1,δ−1 + 1). Suppose (for

contradiction) that there is no ` as described above, so that

Υ′[i, δ] < Υ∗[i, δ] + (αi,δ−1 + 1) for i ∈ [m− 1].

By definition

Υ∗[i, δ] = ρi − (
δ−1∑
j=1

Υ∗[i, j])

= ρi −

δ−1∑
j=1

(⌊
ρiζj

NW (αi,j + 1)

⌋
(αi,j + 1) + RΥ[i, j]

) .

26



Now

Υ′[m, δ] = ζδ − (
m−1∑
i=1

Υ′[i, δ])

> ζδ −
m−1∑
i=1

ρi −

δ−1∑
j=1

Υ∗[i, j]

+ (αi,δ−1 + 1)


= (ζδ + ρm −NW ) +

m−1∑
i=1

δ−1∑
j=1

Υ∗[i, j]

− (αi,δ−1 + 1)

 . (20)

Expanding
∑m−1

i=1 ((
∑δ−1

j=1 Υ∗[i, j])− (αi,δ−1 + 1))

=
m−1∑
i=1

δ−1∑
j=1

(⌊
ρiζj

NW (αi,j + 1)

⌋
(αi,j + 1) + RΥ[i, j]

)
− (αi,δ−1 + 1)


≥

m−1∑
i=1

δ−1∑
j=1

(
ρiζj

NW
− (αi,j + 1)

)
− (αi,δ−1 + 1)


= (NW − ρm − ζδ) +

ρmζδ

NW
−

m−1∑
i=1

δ−1∑
j=1

(αi,j + 1)−
m−1∑
i=1

(αi,δ−1 + 1)

≥ (NW − ρm − ζδ) +
ρmζδ

NW
− m(NW − ζδ)

m2δ2
− (m− 1)(δ − 1)− mζδ−1

m2δ2
− (m− 1)

≥ (NW − ρm − ζδ) +
NW

mδ
− NW

mδ2
−mδ + δ

≥ (NW − ρm − ζδ) +
NW

2mδ
−mδ + δ

≥ (NW − ρm − ζδ) +
NW

4mδ
+ δ

≥ (NW − ρm − ζδ) + (αm−1,δ−1 + 1) (21)

where the second last line follows since NW ≥ (2mδ)2, and the last line follows from the
definition of αi,j and because δ ≥ m ≥ 2.

Combining (20) and (21), we have a contradiction to our original assumption that Υ′[m, δ] <
(αm−1,δ−1 +1). Therefore it must be that Υ′[`, δ] ≥ Υ∗[`, δ]+(α`,δ−1 +1) for some ` ∈ [m−1].

Similarly, there must be some k ∈ [δ − 1] such that Υ′[m, k] ≥ Υ∗[m, k] + (αm−1,k + 1).
In this case we add the transition (Υ′ → Υ′′) to our path from Υ to Υ∗, where Υ′′ is

identical to Υ′ except for the following entries:

Υ′′[`, k] = Υ′[`, k] + (α`,k + 1) Υ′′[`, δ] = Υ′[`, δ]− (α`,k + 1)
Υ′′[m, k] = Υ′[m, k]− (α`,k + 1) Υ′′[m, δ] = Υ′[m, δ] + (α`,k + 1)

Now we show that d(Υ′′,Υ∗) < d(Υ′,Υ∗).
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d1(Υ′′,Υ∗) =
∑m−1

i=1

∑δ−1
j=1 |Υ′′[i, j]−Υ∗[i, j]| ≤ d1(Υ′,Υ∗) + (α`,k + 1)

d2(Υ′′,Υ∗) = NW +1
3NW

(∑m−1
i=1 |Υ′′[i, δ]−Υ∗[i, δ]|

)
= d2(Υ′,Υ∗)− NW +1

3NW
(α`,k + 1)

d3(Υ′′,Υ∗) = NW +1
3NW

(∑δ−1
j=1 |Υ′′[m, j]−Υ∗[m, j]|

)
= d3(Υ′,Υ∗)− NW +1

3NW
(α`,k + 1)

d4(Υ′′,Υ∗) = NW +1
3NW

|Υ′′[m, δ]−Υ∗[m, δ]| = d4(Υ′,Υ∗)− NW +1
3NW

(α`,k + 1)

The equation for d4 follows from Lemma 9.
So d(Υ′′,Υ∗) ≤ d(Υ′,Υ∗)+(α`,k+1)−(α`,k+1)(NW +1)/NW ≤ d(Υ′,Υ∗)−(α`,k+1)/NW <

d(Υ′,Υ∗).
Case (b): We execute (b) whenever Case (a) does not hold and when either Υ′[`, δ] < Υ∗[`, δ]
for some ` ∈ [m − 1] or Υ′[m, j] < Υ∗[m, j] for some j ∈ [δ − 1]. Without loss of generality,
assume the former. If this is the case, then there must be at least one k ∈ [δ − 1] such
that Υ′[`, k] > Υ∗[`, k]. Since we only change Q[i, j] values during our routing, we know
that Υ′[`, k] ≥ Υ∗[`, k] + (α`,k + 1). Also, since we are not in Case (a), we know Υ′[m, δ] ≥
(αm−1,δ−1 + 1) ≥ (α`,k + 1).

In this case we add the transition (Υ′ → Υ′′) in our path from Υ to Υ∗, where Υ′′ is
identical to Υ′ except for the following entries:

Υ′′[`, k] = Υ′[`, k]− (α`,k + 1) Υ′′[`, δ] = Υ′[`, δ] + (α`,k + 1)
Υ′′[m, k] = Υ′[m, k] + (α`,k + 1) Υ′′[m, δ] = Υ′[m, δ]− (α`,k + 1)

Now we show d(Υ′′,Υ∗) < d(Υ′,Υ∗).

d1(Υ′′,Υ∗) =
∑m−1

i=1

∑δ−1
j=1 |Υ′′[i, j]−Υ∗[i, j]| = d1(Υ′,Υ∗)− (α`,k + 1)

d2(Υ′′,Υ∗) = NW +1
3NW

(∑m−1
i=1 |Υ′′[i, δ]−Υ∗[i, δ]|

)
≤ d2(Υ′,Υ∗) + NW +1

3NW
(α`,k − 1)

d3(Υ′′,Υ∗) = NW +1
3NW

(∑δ−1
j=1 |Υ′′[m, j]−Υ∗[m, j]|

)
≤ d3(Υ′,Υ∗) + NW +1

3NW
(α`,k + 1)

d4(Υ′′,Υ∗) = NW +1
3NW

|Υ′′[m, δ]−Υ∗[m, δ]| ≤ d4(Υ′,Υ∗) + NW +1
3NW

(α`,k + 1)

where the expression for d2(Υ′′,Υ∗) follows because Υ′[`, δ] ≤ Υ∗[`, δ]− 1.
Therefore d(Υ′′,Υ∗) ≤ d(Υ′,Υ∗)− (α`,k +1)+(α`,k +1)(NW +1)/NW −2(NW +1)/3NW .

This is at most d(Υ′,Υ∗)+(α`,k+1)/NW−2(NW +1)/3NW . Then because α`,k ≤ NW /(δm)2,
we have d(Υ′′,Υ∗) ≤ d(Υ′,Υ∗)+1/(mδ)2 +1/3NW −2/3, and using NW ≥ (2δm)2, we obtain
d(Υ′′,Υ∗) < d(Υ′,Υ∗).
Case (c): We execute (c) when Cases (a)-(b) do not hold and either Υ′[`, δ] > Υ∗[`, δ] for
some ` ∈ [m − 1] or Υ′[m, j] > Υ∗[m, j] for some j ∈ [δ − 1]. Assume the former without
loss of generality. Then there must exist some k ∈ [δ − 1] such that Υ′[`, k] < Υ∗[`, k],
and since we can only change the Υ[`, k] values by factors of (α`,k + 1), we have Υ′[`, k] ≤
Υ∗[`, k] + (α`,k + 1). Note that since Υ′[`, δ] > Υ∗[`, δ] and using part (ii) of Lemma 9,
we know Υ′[`, δ] ≥ (α`,δ−1 + 1) ≥ (α`,k + 1). Because Case (b) does not hold, we know
Υ′[m, k] ≥ Υ∗[m, k], and, from part (ii) of Lemma 9, this is at least (αm−1,k +1) ≥ (α`,k +1).
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Therefore we can perform the transition (Υ′ → Υ′′), where Υ′′ is identical to Υ′ except
for the following entries:

Υ′′[`, k] = Υ′[`, k] + (α`,k + 1) Υ′′[`, δ] = Υ′[`, δ]− (α`,k + 1)
Υ′′[m, k] = Υ′[m, k]− (α`,k + 1) Υ′′[m, δ] = Υ′[m, δ] + (α`,k + 1)

As before, we now show d(Υ′′,Υ∗) < d(Υ′,Υ∗).

d1(Υ′′,Υ∗) =
∑m−1

i=1

∑δ−1
j=1 |Υ′′[i, j]−Υ∗[i, j]| = d1(Υ′,Υ∗)− (α`,k + 1)

d2(Υ′′,Υ∗) = NW +1
3NW

∑m−1
i=1 |Υ′′[i, δ]−Υ∗[i, δ]| ≤ d2(Υ′,Υ∗) + NW +1

3NW
(α`,k − 1)

d3(Υ′′,Υ∗) = NW +1
3NW

∑δ−1
j=1 |Υ′′[m, j]−Υ∗[m, j]| ≤ d3(Υ′,Υ∗) + NW +1

3NW
(α`,k + 1)

d4(Υ′′,Υ∗) = NW +1
3NW

|Υ′′[m, δ]−Υ∗[m, δ]| ≤ d4(Υ′,Υ∗) + NW +1
3NW

(α`,k + 1)

where the bound on d2(Υ′′,Υ∗) follows using that Υ′[`, δ] ≥ Υ∗[`, δ] + 1.
Case (d): This is the case when Υ′[i, δ] = Υ∗[i, δ] for all i ∈ [m− 1] and Υ′[m, j] = Υ∗[m, j]
for all j ∈ [δ − 1] (so neither Case (b) nor (c) holds), but Υ′[`, k] 6= Υ∗[`, k] for some ` ∈
[m− 1], k ∈ [δ− 1]. We also assume Case (a) does not hold, otherwise we would not consider
Case (d). In this case we will specify two transitions of M2×2, Υ′ → Υ′′ and Υ′′ → Υ′′′, so
that d(Υ′′′,Υ∗) < d(Υ′,Υ∗).

Assume without loss of generality that Υ′[`, k] > Υ∗[`, k]. Hence, there must be some
k′ ∈ [δ − 1] such that Υ′[`, k′] < Υ∗[`, k′].

Now because we only change Q[i, j] values on the path from Υ to Υ∗, Υ′[`, k] > Υ∗[`, k]
implies Υ′[`, k] ≥ Υ∗[`, k] + (α`,k + 1), and Υ′[`, k′] ≤ Υ∗[`, k′] + (α`,k′ + 1).

By Lemma 9 and Υ′[m, δ] = Υ∗[m, δ] we know Υ′[m, δ] ≥ (α`,k + 1). Therefore we can
perform the transition (Υ′ → Υ′′), where Υ′′ is identical to Υ′ except for the following entries:

Υ′′[`, k] = Υ′[`, k]− (α`,k + 1) Υ′′[`, δ] = Υ′[`, δ] + (α`,k + 1)
Υ′′[m, k] = Υ′[m, k] + (α`,k + 1) Υ′′[m, δ] = Υ′[m, δ]− (α`,k + 1)

By Lemma 9 we also know Υ′[`, δ] ≥ (α`,k′ + 1) and Υ′[m, k′] ≥ (α`,k′ + 1). Then we can
perform the transition (Υ′′ → Υ′′′) by changing the following entries:

Υ′′′[`, k′] = Υ′′[`, k′] + (α`,k′ + 1) Υ′′′[`, δ] = Υ′′[`, δ]− (α`,k′ + 1)
Υ′′′[m, k′] = Υ′′[m, k′]− (α`,k′ + 1) Υ′′′[m, δ] = Υ′′[m, δ] + (α`,k′ + 1)

Finally we show d(Υ′′′,Υ∗) < d(Υ′,Υ∗).

d1(Υ′′′,Υ∗) = d1(Υ′,Υ∗)− (α`,k + α`,k′ + 2)

d2(Υ′′′,Υ∗) = d2(Υ′,Υ∗) + NW +1
3NW

|α`,k − α`,k′ |

d3(Υ′′′,Υ∗) = d3(Υ′,Υ∗) + NW +1
3NW

(α`,k + α`,k′ + 2)

d4(Υ′′′,Υ∗) = d4(Υ′,Υ∗) + NW +1
3NW

|α`,k − α`,k′ |.

Therefore

d(Υ′′′,Υ∗) = d(Υ′,Υ∗)− (2/3− 1/3NW )(α`,k + α`,k′ + 2) + (2/3 + 2/3NW )|α`,k − α`,k′ |
≤ d(Υ′,Υ∗)− (2/3− 1/3NW )(α`,k + α`,k′ + 2) + (2/3 + 2/3NW )(α`,k + α`,k′)
≤ d(Υ′,Υ∗) + (α`,k + α`,k′)/NW − (2− 1/NW )(2/3)
≤ d(Υ′,Υ∗) + 2/m2δ2 − (2/3)
< d(Υ′,Υ∗).
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By a repeated application of these cases, we construct a path joining Υ to some Υ∗ that
is in the inner domain of Σρ,ζ . As mentioned, we can also construct such a path joining Ψ to
some Ψ∗ in the inner domain, and then reverse all of the edges. Following a brief analysis of
the flow for this first phase in the next section, we show how to join pairs of elements in the
inner domain.

5.2.2 Analysis of flow for Phase 1

The definition of αi,j defines an equivalence class on the set Σρ,ζ , where Φ ≡ Φ′ if and only if
Φ[i, j] = Φ′[i, j] mod (αi,j + 1) for every i ∈ [m− 1], j ∈ [δ − 1] (i.e. all the remainders R[i, j]
and R′[i, j] are the same).

Note that by definition of the αi,j values, and since Φ[i, j] ≤ {ρi, ζj} for all i ∈ [m−1], j ∈
[δ−1] for every Φ ∈ Σρ,ζ , any equivalence class contains at most (m2δ2)mδ contingency tables
(there are at most m2δ2 choices for each Q[i, j] with i ∈ [m− 1], j ∈ [δ − 1]). Therefore each
equivalence class contains a constant number of contingency tables.

The routing scheme given in Cases (a)-(d) defines a path Υ = Φ0,Φ1, . . . ,Φt = Υ∗ from Υ
to Υ∗, for every Υ ∈ Σρ,ζ . We know Φh lies in the same equivalence class as Υ and Υ∗ for
every h. By our analysis of Cases (a)-(d), we know that for every h ≥ 0, either d(Φh+1,Υ∗) <
d(Φh,Υ∗) or d(Φh+2,Υ∗) < d(Φh,Υ∗). This means we can define a subsequence of the path
{Φh} such that (i) the subsequence contains at least every second element of {Φh}, and (ii) no
contingency table ever appears twice in the subsequence. Thus the length of the path from Υ
to Υ∗ is at most 2(m2δ2)mδ.

To analyse the amount of flow from Phase 1 that may pass through Φ ∈ Σρ,ζ , we rely
on the fact that for any Υ ∈ Σρ,ζ the path from Υ to Υ∗ lies in the equivalence class of Υ.
Therefore, for any fixed Ψ, there are at most (m2δ2)mδ different contingency tables Υ that
may pass through Φ on the way to Υ∗. Also, by our bound on the length of the path, we
know that for any fixed Ψ and Υ, Φ may occur at most (m2δ2)mδ times on the path from Υ
to Υ∗.

Putting all of this information together, we see that for any fixed Ψ, the flow through
any Φ during Phase 1 is at most (m2δ2)2mδ. This implies the total flow through Φ during
Phase 1 is at most |Σρ,ζ | (m2δ2)2mδ.

5.2.3 Phase 2

In this phase we describe how to route Υ∗ to Ψ∗, i.e. route flow between any pair of elements
in the inner domain of Σρ,ζ . We know that

Υ∗[i, j] = Q∗[i, j](αi,j + 1) + RΥ[i, j]
Ψ∗[i, j] = Q∗[i, j](αi,j + 1) + RΨ[i, j]

for all i ∈ [m− 1], j ∈ [m− 1], where Q∗[i, j] was defined in (19).
In this phase we route Υ∗ to Ψ∗ in (m − 1)(δ − 1) steps, by “fixing” one remainder at a

time. The key to this approach is part (i) of Lemma 9, which shows that for any remainders
R[i, j] satisfying R[i, j] ≤ αi,j for i ∈ [m− 1], j ∈ [δ − 1], if Φ is defined by

Φ[i, j] = Q∗[i, j](αi,j + 1) + R[i, j]

for i ∈ [m−1], j ∈ [δ−1], then Φ ∈ Σρ,ζ (where Φ[m, j] and Φ[i, δ] are defined as in Lemma 9
to satisfy the row and column sums).
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Suppose we order the “boxes” of the m × δ contingency tables in lexicographic order:
(1, 1), (1, 2), . . . , (1, δ−1), (2, 1), . . . , (m−1, 1), . . . , (m−1, δ−1). Let h = (h1, h2) denote any
point in this lexicographic order, and we use h+ to denote the successor to h in this ordering.

Then we can define a series of tables

Υ∗ = Φ(1,1),Φ(1,2), . . . ,Φh, . . . ,Φ(m−1,δ−1) = Ψ∗

by

Φh[i, j] =


Ψ∗[i, j] if (i, j) is less than or equal to h (and i 6= m and j 6= δ)
Υ∗[i, j] if (i, j) ≥ h+ (and i 6= m and j 6= δ)

ρi −
∑δ−1

j=1 Φh[i, j] if j = δ

ζj −
∑m−1

i=1 Φh[i, j] if i = m.

By part (i) of Lemma 9 we know that Φh ∈ Σρ,ζ for all h, and therefore Φh → Φh+ is a
transition of M2×2. (“Fixing” the (i, j) remainder, i.e. changing RΥ[i, j] into RΨ[i, j], uses a
transition of M2×2 that involves the four “boxes” (i, j), (i, δ), (m, j), and (m, δ).)

Note that if we define a dual table Φ̄h by

Φ̄h[i, j] =


Υ∗[i, j] if (i, j) is less than or equal to h (and i 6= m and j 6= δ)
Ψ∗[i, j] if (i, j) ≥ h+ (and i 6= m and j 6= δ)

ρi −
∑δ−1

j=1 Φ̄h[i, j] if j = δ

ζj −
∑m−1

i=1 Φ̄h[i, j] if i = m.

then Lemma 9(i) also tells us that Φ̄h ∈ Σρ,ζ .
Therefore we have a path of length (m− 1)(δ − 1) connecting Υ∗ to Ψ∗ in Σρ,ζ .

5.2.4 Analysis of flow for Phase 2

We bound the amount of flow from Phase 2 that can pass through any Φ ∈ Σρ,ζ . Similar to
Section 4.2, we do this using an encoding. Suppose that we are given

(1) A pair of indices h = (h1, h2) specifying that Φ occurs as Φh on the path from Υ∗ to Ψ∗

during phase 2;

(2) The dual contingency table Φ̄h;

(3) The integers QΥ[i, j] for all i ∈ [m], j ∈ [δ];

(4) The integers QΨ[i, j] for all i ∈ [m], j ∈ [δ].

Then we can construct the original pair of tables Υ and Ψ exactly. The information in (1)
and (2) first allows us to reconstruct Υ∗ and Ψ∗. Then using Υ∗, we may reconstruct RΥ[i, j]
for all i, j since we know (or may compute) Q∗[i, j]. Knowing RΥ[i, j], together with the
information in (3), we can find Υ exactly, and in a like manner we can reconstruct Ψ. There
are at most (m2δ2)mδ possible values for the QΥ[i, j], and the same number for the QΨ[i, j].

Therefore, for any Φ ∈ Σρ,ζ , the total amount of flow that may pass through Φ during
Phase 2 is at most (mδ)(m2δ2)2mδ|Σρ,ζ |.
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5.2.5 Finishing up

Combining Phases 1 and 2, the length of any (Υ,Ψ)-path is at most 4(mδ)2mδ +(m−1)(δ−1).
The total amount of flow that can pass through any Φ ∈ Σρ,ζ is at most |Σρ,ζ |(2(mδ)4mδ +
mδ(m2δ2)2mδ).

This establishes the condition on the flow f∗ that was cited in Section 5.1. As explained
in that section we can alter this flow to get the new flow f , letting us establish Theorem 8,
proving rapid mixing of M2×2 on the set of m× n contingency tables Σr,c.
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