Doubly Logarithmic Communication Algorithms

for Optical Communication Parallel Computers*

Leslie Ann Goldberg, Sandia National Labs®
Mark Jerrum, University of Edinburgh?
Tom Leighton, MIT3
Satish Rao, NEC Research Institute?

ABSTRACT In this paper we consider the problem of interprocessor communication on
parallel computers that have optical communication networks. We consider the Completely
Connected Optical Communication Parallel Computer (OCPC), which has a completely
connected optical network and also the Mesh of Optical Buses Parallel Computer (MOB-
PC), which has a mesh of optical buses as its communication network. The particular
communication problem that we study is that of realizing an h-relation. In this problem,
each processor has at most h messages to send and at most i messages to receive. It is clear
that any 1-relation can be realized in one communication step on an OCPC. However, the
best previously known p-processor OCPC algorithm for realizing an arbitrary h-relation
for h > 1 requires ©(h + log p) expected communication steps. (This algorithm is due to
Valiant and is based on earlier work of Anderson and Miller.) Valiant’s algorithm is optimal

only for h = Q(log p) and it is an open question of Geréb-Graus and Tsantilas whether

* A preliminary version of this paper appeared in the proceedings of the 5th annual

ACM Symposium on Parallel Algorithms and Architectures.
1 Algorithms and Discrete Math Department, Sandia National Labs, MS 1110, PO Box

5800, Albuquerque, NM 87185-1110 USA, E-mail: lagoldb@cs.sandia.gov. This work was

performed at Sandia National Laboratories and was supported by the U.S. Department of

Energy under contract DE-AC04-76DP00789.
2 Department of Computer Science, The University of Edinburgh, The King’s Buildings,

Edinburgh EH9 3JZ United Kingdom, E-mail: mrj@decs.ed.ac.uk. This work was performed
while the author was visiting the NEC Research Institute at Princeton NJ, USA. The work
was supported by grant GR/F 90363 of the UK Science and Engineering Research Council

and by Esprit Working Group “RAND”.
3 Mathematics Department and Laboratory for Computer Science, MIT, Cambridge,

MA 02139 USA, E-mail: ftl@math.mit.edu. Supported by Air Force contract AFOSR-

F49620-92-J-0125 and DARPA contracts N00014-91-J-1698 and N00014-92-J-1799.
1 NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 USA, E-mail:

satish@research.nj.nec.com

there is a faster algorithm for A = o(logp). In this paper we answer this question in the
affirmative by presenting a ©(h + loglog p) communication step randomized algorithm
that realizes an arbitrary h-relation on a p-processor OCPC. We show that if h < logp
then the failure probability can be made as small as p~® for any positive constant «. In the
final section of our paper we use the OCPC algorithm as a sub-routine in a ©(h + loglog p)
communication step randomized algorithm that realizes an arbitrary h-relation on a p-
processor MOB-PC. Once again, we show that if A < log p then the failure probability

can be made as small as p~® for any positive constant «.

1. Introduction

The p-processor Completely Connected Optical Communication Parallel Computer (p-
OCPC) consists of p processors, each of which has its own local memory. The p processors
can perform local computations and can communicate with each other by message passing.
A computation on this computer consists of a sequence of communication steps. During
each communication step each processor can perform some local computation and then
send one message to any other processor. If a given processor is sent one message during
a communication step then it receives this message successfully, but if it is sent more than

one message then the transmissions are garbled and it does not receive any of the messages.

The OCPC was first introduced as a model of computation by Anderson and
Miller [AM 88], who called this model the Local Memory PRAM. Since then it has been
studied by Valiant [Val 90] (who called the model the S*PRAM), by Geréb-Graus and
Tsantilas [GT 92|, and by Gerbessiotis and Valiant [GV 92] (who also called the model
the S*PRAM). The feasibility of the OCPC from a engineering point of view is discussed
in [AM 88, GT 92, and Rao 92]. See also the references in [McC 92].

In the first part of this paper we study the problem of interprocessor communication
on an OCPC. In particular, we study the problem of realizing h-relations. An h-relation
(see [Val 90]) is a communication problem in which each processor has up to h mes-
sages that it wishes to send to other processors (assumed distinet). The destinations of
these messages can be arbitrary except that each processor is the destination of at most
h messages. The goal is to design a fast p-OCPC algorithm that can realize an arbitrary
h-relation. Anderson and Miller [AM 88] have observed that an h relation can easily be
realized in A communication steps if all of the processors are given total information about

the h-relation to be realized.f A more interesting (and perhaps more realistic) situation

1 To see this, model the communications between the p processors viewed as sources,
and the p processors viewed as destinations, as the edges of a bipartite graph of order 2p.

Since the graph has maximum degree h, it is edge colorable with h colors, which can be

2

arises if we assume that initially each processor only knows about the messages that it
wants to send and the processors learn about the h-relation only by receiving messages

from other processors. This is the usual assumption, and the one that will be made here.

An OCPC algorithm for realizing h-relations is said to be direct if it has the property
that the only messages that are exchanged by the processors are the original messages of
the h-relation and these messages are sent only to their destinations. In this paper we

prove the following:

1. The expected number of communication steps taken by any direct algorithm for real-

izing h-relations on a p-OCPC is Q(h + logp).
2. An arbitrary h-relation can be realized on a p-OCPC in ©(h +loglog p) commu-

nication steps. (Valiant has shown that an arbitrary h-relation can be realized in
O(h + log p) communication steps. In this paper we describe a ©(h + loglog p) com-
munication step randomized algorithm that realizes an arbitrary h-relation on a p-
OCPC and we show that if A < log p then the failure probability can be made as

small as p~® for any positive constant «.)

It is easy to see that any 1-relation can be realized in one communication step on an
OCPC. Anderson and Miller [AM 88] were the first to consider the problem of realizing
h-relations for h > 1. They discovered a direct p-OCPC algorithm that runs for ©(h)
communication steps and delivers most of the messages in an arbitrary h-relation. In par-
ticular, the expected number of messages remaining after Anderson and Miller’s algorithm
is run is O(p). Anderson and Miller were interested in the special class of h-relations in
which each of the messages with a given destination has a unique label ¢ in the range
1 < ¢ < h. For this class of h-relations Anderson and Miller also discovered a deter-
ministic O(h + log p) communication step algorithm that delivers all of the messages in
any h-relation that contains only O(p) messages. Thus, their algorithms can be combined
to obtain an algorithm that realizes an arbitrary h-relation from their special class in

O(h +log p) expected communication steps.

Valiant [Val 90] considered the general problem of realizing h-relations for h > 1. He
discovered a ©(h +log p) expected communication step p-OCPC algorithm that realizes
an arbitrary h-relation. Valiant’s algorithm consists of the first phase of Anderson and
Miller’s algorithm followed by a second phase which redistributes the remaining O(p)
messages using parallel prefix, sorts them, and then sends them to the correct destinations.

The second phase of Valiant’s algorithm takes ©O(h 4 log p) communication steps.
Prior to this work, Valiant’s algorithm was the fastest known OCPC algorithm that

can realize an arbitrary h-relation for h > 1. It is not direct, however. The fastest

interpreted as time steps.

known direct OCPC algorithm for realizing arbitrary h-relations is due to Geréb-Graus
and Tsantilas [GT 92] and runs in ©(h + log ploglog p) expected communication steps.
In this paper we show that every direct OCPC algorithm for realizing h-relations takes
Q(h + log p) expected communication steps. Furthermore, we describe a ©(h + loglog p)
communication step p-OCPC algorithm that can realize an arbitrary h-relation and we
show that if h < logp then the failure probability can be made as small as p~% for any
positive constant «. (The © notation does not hide any large constants in the running

time of our algorithm.)

In this paper we also consider a model of computation known as the Mesh of Opti-
cal Buses Parallel Computer (MOB-PC). The p x p MOB-PC consists of p? processors,
organized in a p X p array. The processors can perform local computations and can com-
municate with each other by message passing. As in the case of the OCPC, a computation
on this computer consists of a sequence of communication steps. During each communica-
tion step each processor can perform some local computation and then send one message.
Unlike the OCPC, the MOB-PC has the restriction that the destination of each message
must be in the row or the column of its sender. (The reason for considering the MOB-PC
is that this restriction makes it much easier to build than a p-OCPC (see [Rao 92]).) As
in the case of the OCPC, if a given processor is sent one message during a communication
step then it receives this message successfully, but if it is sent more than one message then

the transmissions are garbled and it does not receive any of the messages.

The p X p mesh of buses is a member of a class of networks studied by Wittie [Wit 81]
and suggested by Dowd as a method for optical interconnects [Dow 91]. Rao studied the
MOB-PC in [Rao 92] and used a result of Leighton and Maggs to show that for A > log p
an arbitrary h-relation can be realized on a p x p MOB-PC in 6(h) communication steps.
In this paper we describe a O(h + loglog p) communication step randomized algorithm
that realizes an arbitrary h-relation on a p x p MOB-PC and we show that if A < logp

then the failure probability can be made as small as p~® for any positive constant «.

In order to motivate both our lower bound for direct OCPC algorithms and our
OCPC algorithm (which is a sub-routine in our MOB-PC algorithm) consider the following
experiment on an OCPC. Suppose that two processors P; and P; are both trying to send
messages to a third processor P; and that they adopt the following direct strategy. During
each communication step processors P; and P; both flip fair coins. If P;’s coin comes
up “heads” then P; sends its message to Py. Similarly, if P;’s coin comes up “heads”
then P; sends its message to P;. On any given communication step Py has probability %
of successfully receiving a message. Therefore the probability that P; has not received
any messages after ¢ communication steps is 27, Now suppose that we use a similar
strategy to realize a 2-relation in which each processor is the destination of two messages.

After ¢+ communication steps we will expect to have p2~! processors that have received

4

no messages at all. Therefore it will take Q(logp) communication steps to realize the

2-relation.

Intuitively, the reason that so much time is needed is that the events are “too inde-
pendent”. In particular, the fact that most of the other messages are already delivered
will not make it easier for P; and P; to send their messages to P;. In order to obtain
a sub-logarithmic OCPC algorithm we adopt the following strategy. We divide the set of
p destinations into disjoint “target groups”. During the first part of our algorithm we send
each message in the h-relation to a randomly chosen processor within the target group
containing its destination. As more and more messages are delivered to a given target
group the probability that any remaining message is successfully delivered to the group in
one communication step increases. Once all of the messages have been delivered to their

target groups we solve the smaller problem of realizing an h-relation within each target
group.

Our OCPC algorithm consists of four procedures. The first three procedures deliver
the messages to their target groups and the last procedure realizes smaller h-relations

within the target groups.

The methods that we use to deliver messages to target groups rely upon the fact that
the number of messages being sent to each group is small compared to the size of the
group. The first procedure of our algorithm (the “thinning” procedure) establishes this
condition by delivering most of the messages in the h-relation to their final destinations.
The thinning procedure i1s a direct OCPC algorithm and it is based on Anderson and
Miller’s algorithm. Proving that it satisfies the appropriate conditions requires a proba-

bilistic analysis of dependent events. To do the analysis we use the “method of bounded

differences” [McD 89, Bol 88].

After the thinning procedure has terminated the number of messages remaining will
be O(p/(hloglogp)) with high probability. The purpose of the second procedure (the
“spreading” procedure) is to re-distribute these messages so that each sender has at most
1 message to send. After the spreading procedure terminates the third procedure delivers
the remaining messages to their target groups. The bulk of the messages are delivered
using a probabilistic tool called “approximate compaction”. After the approximate com-
paction terminates the number of messages that have not been delivered to their target
groups will be O(p/log? p) with high probability. Each remaining message is copied log p
times and the processors are re-allocated so that log p processors can work together to send
each message to its target group. (The approximate compaction technique and the copying
technique were first used in PRAM algorithms such as those described in [CDHR 89] and
in [GM 91] and [MV 91]. In this work we require a smaller failure probability for approxi-

mate compaction than previous authors because our target groups are only polylogarithmic

5

in size and we need to bound the probability of failure in any group.)

At the end of the third procedure the communication problem that remains con-
sists of one h-relation within each target group. These h-relations could be realized
in O(h + loglog p) communication steps by simultaneously running the second phase of
Valiant’s algorithm within each target group, substituting a deterministic EREW sort-
ing algorithm such as Cole’s parallel merge sort (see [Col 88]) for the randomized sorting

algorithm that Valiant uses.

Our fourth procedure is an alternative algorithm for realizing the h-relations within
the target groups. It does not rely on efficient deterministic O(log p)-time EREW sorting
and 1t is therefore likely to be faster in practice. The algorithm is as follows. Each target
group 1s sub-divided into disjoint sub-groups. Our “thinning”, “spreading”, and “deliver
to target group” procedures are run simultaneously in each target group to deliver the mes-
sages in that group to the appropriate sub-groups. The communication problem remaining
with each sub-group is an h-relation and this h-relation is realized using the second phase
of Valiant’s algorithm in which the sorting is done by Bitonic sort. With high probability
the proportion of target groups for which this strategy delivers all of the messages is at
least 1 — 1/log®p for a sufficiently large constant ¢. The processors from these target
groups are then re-allocated and used to help the unsuccessful target groups finish realiz-
ing their h-relations. After the processors are re-allocated each unsuccessful target group
sorts its messages using an enumeration sort due to Muller and Preparata [MP 75] which
1s fast in practice as well as in theory. The sorted messages are then delivered to their

destinations.

The structure of this paper is as follows. In Section 2 we describe the OCPC algorithm
in detail. We demonstrate that it uses ©(h + loglog p) communication steps and we prove
that if A < log p then the probability that any messages are left undelivered can be made as
small as p~® for any positive constant . In Section 3 we give the proof of the lower bound
for direct OCPC algorithms. Finally, in Section 4 we describe the MOB-PC algorithm.
We demonstrate that it uses ©(h + loglog p) communication steps and we prove that if
h < log p then the probability that any messages are left undelivered can be made as small

as p~ @ for any positive constant «.
2. The OCPC Algorithm

Before we can define the OCPC algorithm we must describe the partition of the set of p
processors into disjoint “target groups”. The size of each target group will be a polynomial
in log(p). To be precise, let ¢; denote a sufficiently large integer (the size of ¢; will depend
upon the failure probability that we wish to obtain) and let k& denote [log® p]. We will

divide the p processors into approximately p/k target groups, each of size about k. To

6

simplify the presentation we will assume that k divides pt and we will define the (th
target group, for (in the range 0 < ¢ < n/k, to be the set {Pys,..., Preyr—1}. We
will define the target group of any given message to be the target group containing the
destination of the message and we will say that the message is destined for that target
group.

The algorithm consists of the following four procedures:

e Thinning. At the beginning of the algorithm the number of messages destined for
any given target group may be as high as hk. The goal of the thinning procedure is
to deliver most of the messages to their final destinations so that by the end of the
procedure the number of undelivered messages destined for any given target group is
at most k/(h[czloglogp|) for a sufficiently large constant cy. If h < logp then this
can be done in O(h + log(h)logloglog(p)) steps with probability at least 1 —p™¢

where the constant in the running time depends upon « and ¢s.

e Spreading. At the end of the thinning procedure there will only be O(p/(hloglog p))
undelivered messages. However, some senders may have as many as h undelivered
messages. The spreading procedure spreads these out so that each sender has at
most one to send. This can be done in O(h + loglog p) communication steps with

—

probability at least 1 — p~® where the constant in the running time depends upon «.

e Deliver to Target Groups. This procedure delivers all of the undelivered messages
to their target groups. After it terminates each sender will have at most 2 undelivered
messages to send and the destination of each undelivered message will be within the
target group containing its sender. The procedure can be implemented in ©(log log p)

—

communication steps with probability at least 1 — p~™® where the constant in the

running time depends upon «.

e Deliver within Target Groups. This procedure delivers all messages to their final
destinations. It can be implemented deterministically in ©(h 4 loglog p) steps by
running the second phase of Valiant’s algorithm twice in each target group. However
this implementation may be slow in practice. In section 2.4 we describe an alternate
implementation which runsin ©(h + loglog p) communication steps and succeeds with

probability at least 1 — p~®. (The constant in the running time depends upon «.)

We will use the following tool in the implementation of our algorithm. (For similar

tools see [CDHR 89, GM 91, and MV 91].)

Definition 1. The (s,3,A) approximate compaction problem is defined as follows.

1 The case in which k does not divide p presents no real difficulty. In this case the
target groups should be defined in such a way that all but one of the groups has size k

and the size of the remaining group is between k and 2k.

7

Given
o a p-OCPC in which at most s senders each have one message to send,
e a set of Bs receivers which is known to all of the senders,

deliver all but up to A of the messages to the set of receivers in such a way that each
receiver receives at most one message. (During the delivery messages may only be sent

from the original senders to the s receivers.)

Lemma 1. For any positive constant « there is a positive constant co such that the
(s, [ezloglog p], A) approximate compaction problem can be solved in O(loglog p) com-
munication steps with failure probability at most a~V?® 4 s~(A+1)

Using the (s, 3, A) approximate compaction algorithm we can accomplish a variety
of tasks. For example (following [CDHR 89] and [GM 91]) we use the algorithm to allo-
cate |log p| processors to each message once the number of undelivered messages is reduced

to p/|logp| ? . We use the following definition in the proof of lemma 1.

Definition 2. The (s,3,A) approximate collection problem is defined to be the same
as the (s, 3, A) approximate compaction problem except that we remove the requirement

that each receiver receives at most one message.

Lemma 2. For any positive constant « there is a positive constant ¢, such that the
(5,36, A) approximate collection problem can be solved in at most [c}loglogp| commu-

nication steps with failure probability at most a~V* 4 s~(A+1)

Proof of Lemma 1. Let « be any positive constant and let ¢o = 36¢, + 1, where ¢}
is the constant associated with « in Lemma 2. Suppose that we are given an instance of
the (s, [czloglog p], A) approximate compaction problem. Partition the set of receivers
into [chloglogp| disjoint sets Ry, Ra, ..., each of size at least 36s. Since the (s,36,A)
approximate collection problem can be solved in at most [¢} loglog p| communication steps
with failure probability at most a~V* 4+ s~ A+ there is an algorithm with this failure
probability that delivers all but up to A of the messages to the receivers in R; in only
[¢} loglog p] steps. To solve the (s, [c2loglogpl], A) approximate compaction problem
simply run this algorithm substituting the set R; for Ry on the ¢th communication step

of the algorithm. o

Proof of Lemma 2. We say a sender is active initially if it contains a message. Our

algorithm proceeds in a number of similar communication steps, where in step ¢ each

T In fact there is a positive constant co such that the (s, ¢z, A) approximate compaction
problem can be solved in O(loglog s) communication steps with small failure probability

but lemma 1 is sufficient for our purposes.

active sender sends its message to a random location in the set of receivers. Each sender

that successfully transmitted a message is considered nactive.

Let m denote 36s. We must show that there are at most A active messages when

the algorithm terminates. We use the following claim.

Claim 1. Let ¢ be a positive integer. If there at most m/r active senders left at step 1,
then the probability that there will be f = max{[m/r®/*], A 4+ 1} or more active senders
left at step i + 2¢ is at most (2e//r)</ .

We prove Claim 1 by imagining that in a certain step the m/r active senders make
their random choice of destination in some fixed order. For there to be f active senders
that do not transmit their message, there must be [f/2] times at which a sender chooses
the same receiver as one chosen by a previous sender in this order. The probability of
choosing the same receiver as a previous sender is at most (m/r)/m = 1/r. Thus, the

probability of [f/2] such events occurring is bounded above by

m/r [£/21 [£/21 /1 [#/2]
() <G 0)

(%
= (max{ m/e:m, A+1}>m
(oo

IA

/2
m/r3/2 >f
()"

We proceed by computing the probability that f active senders remain after 2¢ steps.
It is easy to verify that the probability that f senders remain active after 2¢ steps in
our algorithm is less than the probability that f senders remain active if each of the
2¢ successive steps is implemented by sending from all the processors that were active at
the initial step. In this situation, the successive steps are independent thus the probability

that there are f senders that never got a message through on any of the steps is at most

the probability above raised to the 2¢th power. This proves Claim 1.
Now we define ry = 36, r; = r3/ f; = max {(m/r:;/zw A—I—l}, and ¢+ = min{j :

J—1
f; = A +1}. The algorithm will run for ¢ +1 “supersteps” 0,1,...,¢, each superstep
consisting of 2¢ steps as described above, with ¢ a constant to be chosen later. Observe
that the number of supersteps, and hence the total number of steps, is O(loglog s) and is

therefore O(loglog p).

We say that superstep j is successful if, starting with at most m/r; active senders,

it finishes with (strictly) fewer than f; active senders. Note that if supersteps 0,1,...,

9

are all successful, then the number of active senders remaining at the end of superstep j
is strictly less than f;. If all £ + 1 supersteps are successful then the number of active

senders remaining at the end is at most A, as required.

Using Claim 1, we can bound the probability that some superstep fails by
> ()"
&\

Notice that each term where r; < m'/? is at most (¢/3)8¢V* and every other term is at
most (16e%/(9s))°(A+1)/6 Thus the probability that some superstep fails is at most

() O

Observe that ¢t +1 = O(loglog s) so if ¢ is chosen to be big enough relative to « this is

at most a—V* + s—a(A+1) o required. o
We proceed by describing the implementation of the various steps of the algorithm.
2.1 Thinning

The thinning procedure is a direct OCPC algorithm which is based on Anderson and
Miller’s algorithm [AM 88]. It consists of O(logh) phases. Intuitively, the goal of the ith
phase is to reduce the problem of realizing a h/2'~!-relation to the problem of realizing
a h/2'-relation. That is, the ith phase should get so many of the messages delivered
that the remaining communication problem is “essentially” a h/2'-relation. After the last
phase the h-relation will be mostly realized except that there will be small number (at

most k/(h[ezloglogpl)) of undelivered messages destined for each target group.

Let c3 be a sufficiently large constant (depending on ¢; and ¢z and the constant « in
the desired failure probability) and let ¢; denote c3[h/2!=! +log h +logloglog p]. (t; de-
notes the number of communication steps in phase i.) Before phase ¢ it will be the case
that each participating sender has at most h/2'~! undelivered messages to send. During

phase ¢ each participating sender executes the following communication step t; times.

Choose an integer j uniformly at random
from the set {1,...,h/2:71}
If there are at least j undelivered msgs. to be sent

Send the jth undelivered msg. to its destination

After each communication step there is an acknowledgment step in which every receiver

that receives a message sends an acknowledgment back to the sender indicating that the

10

message was delivered successfully. At the end of phase ¢ any sender that has more than

h/2' undelivered messages left to send stops participating.

We will prove the following theorem.

«

Theorem 1. Suppose that h <logp. Then with probability at least 1 — p~
the number of undelivered messages destined for any given target group is at most

k/(h[csloglog p|) after the thinning procedure terminates.

In order to prove theorem 1 we will use the following notation. We will say that a
given message is “participating” at any point in time if it is undelivered at that time and
its sender is participating. We will say that a receiver is “overloaded” in phase ¢ if at
the start of phase ¢ the number of participating messages with that destination is more
than h/2°7'. We will say that the receiver becomes overloaded in phase i if it is not
overloaded in phases 1 through ¢ but it is overloaded in phase ¢ + 1. We will say that a
sender 1s “good” in phase ¢ if it does not have a message to send to an overloaded receiver.
For every target group T let S(T) denote the set containing all senders in the h-relation
with messages destined for T and let N(T') denote the set containing all destinations of
messages from processors in S(7T'). Finally, let S(N(T')) be the set containing all senders
with messages destined for members of N(T'). (Note that |S(T)| < h|T|, |N(T)| < h*|T|,
and |S(N(T))| < h*|T|.) The theorem follows from the following lemma.

Lemma 3. Suppose that h < logp. Let ¢ be an arbitrary phase of the thinning proce-
dure and let T be any target group. With probability at least 1 — p~(e+1)

1. At most |N(T)|/(h%[ecaloglogp]) receivers in N(T) become overloaded in phase i

2. At most |S(T)|/(h%[ezloglogp]) good senders in S(T) stop participating at the end
of phase 1.

Proof of Theorem 1. To see that the theorem follows from lemma 3 note that the
number of target groups is at most p/k and the number of phases is O(logh) so with
probability at least 1 —p~ (1.) and (2.) hold for all phases ¢ and target groups T .
Suppose that this is the case and consider any particular target group 7. A message
that is destined for T will be delivered by the thinning procedure unless either (1) there
is a phase in which its sender is not good (in which case the sender could possibly stop
participating) or (2) its sender stops participating even though it is good. The number of

messages that are destined for 7" and are not delivered is therefore at most

log(h) x (h*|N(T)|/(h®[ezloglog p]) +
h|S(T)|/(h* ez loglog p])).

This is at most k/(h[czloglogp]). o

The proof of lemma 3 will use the following “independent bounded differences inequal-

11

ity” of McDiarmid [McD 89]. (The inequality is a development of the “Azuma martingale

inequality”; a similar formulation was also derived by Bollobas as [Bol 88].)

Theorem 2. [McDiarmid] Let xy,...,2, be independent random variables, with
x; taking values in a set A; for each i. Suppose that the (measurable) function f :
[TA: — R satisfies |f(Z) — f(T')] < ¢; whenever the vectors T and T differ only in the
i th coordinate. Let Y be the random variable f(xq,...,x,). Then for any t > 0,

Pr(|Y —EY)| >t) <2exp(—2t2/3" ¢%). o

Proof of Lemmma 3. Suppose that h < log p, let ¢ be an arbitrary phase of the thinning
procedure, and let T be any target group. Let x; denote the sequence of integers randomly

chosen by processor P; during phase ¢.

We will start by proving that with probability at least 1 — p~(®T2) at most
|N(T)|/(RS ez loglog p]) receivers in N(T') become overloaded in phase i.

Let Y = f({z; | P; € S(N(T))}) be the number of receivers in N(T') that become
overloaded during phase ¢. Let R be any receiver in N(T') that is not overloaded in
phases 1 through ¢ and let s; denote the number of participating messages that are
destined for R at the jth communication step of phase i. (Note that these messages are
not necessarily sent on the jth communication step.) The probability that R receives a
message on this step is s; (2°71/h) (1 — 2i_1/h)8j_1. There is a positive constant p such
that this probability is greater than or equal to p for every s; that is greater than or equal
to h/2'. (Note that R cannot become overloaded in phase i if s; is ever less than h/2".)
Therefore, the probability that R becomes overloaded is at most

R/2'—1

>, (?)pj(l -

=0

Furthermore, as long as c¢3 is sufficiently large (i.e., ¢; is sufficiently large compared to j)
there is a constant ¢4 > 1 such that the above sum is at most c4_t" . Therefore the expected
number of processors in N(T) that become overloaded in phase i is at most N(T)ec; "

which is at most |N(T)|/(2h® [e2loglog p]) as long as c; is sufficiently large.

If the value of x; changes for any j then Y changes by at most h. Therefore, by
the bounded differences inequality of theorem 2, the probability that Y is greater than
|IN(T)|/(RhS[ealoglog p]) is at most

2exp(—2|N(T)|/(41'? [ezloglog p]” |S(N(T))| h*)).

12

This is at most p~(®T2) as long as the constant ¢; is sufficiently large (i.c., the target

groups are sufficiently large). (Here we use the fact that A < logp.)

We now prove that with probability at least 1 — p~(@*2) at most |S(T)|/(h® [¢sloglog p])
good senders in S(T') stop participating at the end of phase .

Let Y = f({z; | P; € S(N(T))}) be the number of good senders in S(T') that stop
participating at the end of phase ¢.

Let S be any good sender in S(T') that participates in phase i and let s; denote the
number of participating messages that S has to send at the jth communication step of
phase ¢. Let d;; denote the number of participating messages at the jth communication
step that have the same destination as the (th message that S has to send. (Since S is
good each dy ; is less than or equal to h/2:7!.) The probability that S sends a message
successfully on the jth communication stepis »_,~ (271 /h) (1 — 2i_1/h)d[’j 1 As before,
there is a positive constant p such that this probability is greater than or equal to p for
every s; that is greater than or equal to h/2°. Therefore, the probability that S stops
participating is at most

R/2'—1

> (?)pj(l —p)" 7.

J=0

As in the proof of the first part of the lemma, we conclude that the expected num-
ber of good senders in S(T') that stop participating at the end of phase i is at most
|S(T)|/(2h8 ez loglog p]).

If the value of z; changes for any j then Y changes by at most h*. Therefore, by

the bounded differences inequality of theorem 2, the probability that Y is greater than
|S(T)|/(h®[e2loglog p]) is at most

2exp(—2|S(T)°/(4h'"* [ezloglog p]” [S(N(T))| h*)).

This is at most p~(®T2) as long as the constant ¢; is sufficiently large (i.c., the target

groups are sufficiently large). (Once again, we use the fact that h < logp.) o
2.2 Spreading

Let a be any positive constant and let ¢y be the constant associated with « that is defined
in lemma 1. At the end of the thinning procedure there will be at most p/(h[csloglog p])
undelivered messages. We wish to spread these out so that each sender has at most
one to send. To do this we observe that there are at most p/(h[czloglogp]) senders
with undelivered messages. Suppose (without loss of generality) that h divides p and

partition the set of p receivers into h disjoint sets Ry,..., R, of size p/h. Perform

13

a (p/(h[cyloglogpl), [e2loglog p],0) approximate compaction to send the first message
from each sender to a unique processor in Ry . (The probability that this will succeed is

at least

1 a—\/p/(hf@loglog]ﬂ) — (p/(h]ezlog 10glﬂ))_a')

Finally, send the remaining messages to Rs,..., R, in ©(h) communication steps with no
contention using the following strategy. If the 1st message of sender ¢ was sent to the jth

cell of Ry by the approximate compaction then send the ¢th message of sender ¢ to the

jth cell of Ry for 1 < ¢ < h.
2.3 Deliver to Target Groups

Let a be any positive constant and let ¢y be the constant associated with « that is
defined in lemma 1. At the end of the spreading procedure each sender will have at most
one undelivered message to send and each target group will have at most k/(h[c2 loglog p])
undelivered messages to receive. Our goal is to deliver the messages to the target groups.
After this procedure terminates each processor will have at most 2 undelivered messages
to send and the destination of each undelivered message will be within the target group

containing its sender.

We have two methods for implementing this procedure in &(loglog p) communication
steps. The simpler method (which we describe here) involves making copies of messages

but the other method does not. The simpler of the two methods consists of two phases.

We first describe phase 1. Consider any target group 7'. At the start of the procedure
there are at most k/[czloglogp]| senders each of which has one message to send to the
target group. Let ¢ denote [logp|. We send all but up to k/¢* of these messages to T in
O(loglog p) steps by doing a (k/[c2loglog p|, [c2 loglog p|, k/(?) approximate compaction.
We can do this in parallel for each target group and the probability that it fails for any

target group 1s at most

(a=VE/Tetoslos T i (k /[y loglog p]) "/ 1)

3

which is sufficiently small as long as the constant ¢; in the definition of k is sufficiently

large.

We will use the phrase “completely undelivered” to describe all messages that were
undelivered before phase 1 and were not delivered to their target groups during phase 1.
At the end of phase 1 each sender has at most one completely undelivered message to send,
each member of each target group has received at most one message, and the number of
completely undelivered messages is at most p/¢*. Choose (disjoint sets Ry,..., Ry of

size |p/l]| from the set of p receivers and let); denote the set consisting of the jth

14

receiver from each of Ry,...,R;. Next, send all of the completely undelivered messages

to Ry by performing a (p/(?, [csloglog p],0) approximate compaction. (This fails with
probability at most a~VP/* 4 (p/¢?)”"".) Finally (for each j in parallel) the processors

in (); copy the message received at the jth receiver in Ry (if there is one) to the other

processors in (). (This takes O(loglogp) communication steps.)

At this point each completely undelivered message is stored at each of the ¢ processors
in (}; (for some j) and each processor stores at most one completely undelivered message.
The following communication step is now performed in parallel by all processors. If the
ith processor in (); has a completely undelivered message to send then it chooses an
integer uniformly at random from the set {v | (1 < < k) and (y mod ¢ = i)} and it
sends the message to the ~th processor in its target group. The probability that the
ith processor in); is unsuccessful is at most 1/¢ and this probability is independent of
the probability that the other processors in (); succeed so the probability that there is a
completely undelivered message that is not delivered at least once to its target group in

this communication step is at most p{~¢ which is sufficiently small.

For each j in parallel the processors in (); perform parallel prefix to select one of
the delivered copies. They then send messages “cancelling” any other copies that were
delivered to their target group. This takes O(loglogp) communication steps. Note that
each processor receives at most 2 messages during the procedure — one in phase 1 and

one in phase 2.
2.4 Deliver within Target Groups

When this procedure begins each sender has at most 2 undelivered messages to send and
the destination of each undelivered message is within the target group containing its sender.

Our goal is to deliver all of the undelivered messages.

This procedure can be implemented deterministically in ©(h + loglog p) steps by run-
ning the second phase of Valiant’s algorithm [Val 90] twice within each target group. The
algorithm within each target group is as follows. First we consider only one undelivered
message per sender. These messages are sorted by destination in ©(loglog p) communica-
tion steps using an EREW sorting algorithm such as Cole’s parallel merge sort [Col 88]t.
Then the sorted messages are delivered to their destinations without contention in ©(h)

communication steps. Next the process is repeated for the remaining undelivered messages.

In this section we describe an alternative implementation of the procedure. It does

not rely on efficient deterministic O(log p)-time EREW sorting and it is therefore likely to

T Valiant uses a randomized parallel sorting algorithm instead of using parallel merge
sort. We cannot do that here because we want to be able to claim that (with high proba-

bility) the messages are successfully (and quickly) sorted in all of our target groups.

15

be faster in practice.

The main idea is as follows. We start by sub-dividing each target group into target
sub-groups. We then run the “thinning”, “spreading”, and “deliver to target group”
procedures within each target group to deliver the messages to their target sub-groups.
If these three procedures succeed within a target group then each sender in the group
will have at most 2 undelivered messages to send and the destination of each undelivered
message will be within the target sub-group of its sender. We can now run the second
phase of Valiant’s algorithm twice within each target sub-group to deliver the messages in
the target group to their final destinations. Since the sub-groups are very small we can
use Bitonic sort (which is fast in practice) to do the sorting. With high probability the
proportion of target groups for which the “thinning”, “spreading”, or “deliver to target
group” procedures fail will be O(k~%). We now allocate a group of k* extra processors to
each of these target groups and we use these extra processors to sort the messages using a

counting sort that is fast in practice as well as in theory.

We now describe the procedure in more detail. The communication problem within
each target group can be viewed as the problem of realizing an h-relation on a k-OCPC.
Therefore we can run the “thinning”, “spreading”, and “deliver to target group” procedures
simultaneously within each target group. Before we can do that we must partition each
target group into target sub-groups. Let the size of the target sub-groups be k' = [log™ k]
where c¢5 is a constant that is sufficiently large that the probability that the “thinning”.
“spreading”, and “deliver to target group” procedures fail within a target group is at
most k7%. (In order to simplify the presentation in this section we will assume that &'
divides k. The case in which k' does not divide k is no more difficult — it is simply
messier. Similarly, we will assume that k* divides p.) After the “deliver to target group”
procedure terminates within each target group run the second phase of Valiant’s algorithm
twice within each target sub-group, using Bitonic sort to do the sorting. (This takes
O(h +log® k') communication steps.) If the “thinning”, “spreading”, and “deliver to
target group” procedures succeeded within a target group then all of its messages are now
delivered. (This will happen with probability at least 1 — k~%.)

We now describe the second part of the procedure — the allocation of extra processors
to help target groups that have not finished. Partition the set of target groups into p/k?
disjoint sets Si,...,5,/;2. Each set Sy contains k target groups and is called a target
super-group. Partition the set of target super-groups into k disjoint sets Cy,...,C;. Each
set Cy contains p/k® target super groups (and therefore p/k?* target groups) and is called
a collection of target super-groups. Note that with probability at least 1 — k exp(—p/3k%)
each collection of target super-groups contains at most 2p/k° un-finished target groups.
Suppose that this is the case. Each target group and each target super-group performs
a parallel prefix to determine whether or not it has finished. (This takes ©(loglog p)

16

communication steps.) Next each processor that is part of an un-finished target group
attempts to find a finished target super-group. In particular, if the processor is the jth
member of the target group then it chooses a target super-group uniformly at random from
C; and it sends a message to the first processor in the target super-group asking whether the
target super-group is finished. The probability that a given member of a given unfinished
target group fails to find a finished super-group is at most 3/k (the probability that the
super-group chosen is not finished is at most 2/k? and the probability that the query
is sent to the same destination as some other query is at most 2/k). Furthermore the
queries from any given target group are independent of each other so the probability that
every processor in a given unfinished target group fails to find a finished super-group is at

most (3/k)k and the probability that there exists an unfinished target group that fails to
find a finished super-group is at most p(3/k)k which is sufficiently small. Each unfinished

target group then performs a parallel prefix to choose a single finished super-group.

At this point each un-finished target group has identified a single finished super-group
containing k? processors. Consider the k% processors to be organized in a k by k matrix.
We now run Valiant’s algorithm twice in each un-finished target group. The message are
sorted using Muller and Preparata’s algorithm [MP 75] which works as follows. The ith
processor of the un-finished target group sends its message (if it has one) to all of the
processors in the ith row. (This takes ©(loglog p) communication steps.) If the processor
in the ith row of the ¢th column gets a message then it sends this message to all of the
processors in the ith column and the processors in the i¢th column perform parallel prefix
to determine its rank. (Again, this takes ©(loglog p) communication steps.) Finally (in 1
communication step) the message with rank ¢ is sent to the ith processor in the un-finished

target group.
3. A Lower Bound for Direct OCPC Algorithms

The algorithm described in the previous section often sends a message to a processor other
than its final destination, i.e., the algorithm is not direct. Using a non-direct strategy in a
network that allows direct routing may seem strange at first, and one might question its ne-
cessity. In this section we prove a lower bound that demonstrates that any sublogarithmic
OCPC algorithm must necessarily use non-direct routing.

Theorem 3. Let A be any direct (randomized) OCPC algorithm that can realize any

2-relation with success probability at least % Then there is a 2-relation which A takes

Qlog p) communication steps to realize.

Proof of Theorem 3. Consider any direct randomized OCPC algorithm that runs for
t < L% log p| steps. We shall construct a 2-relation p such that the probability that the

algorithm successfully realizes p is exponentially small (in p). In the 2-relation p, each

17

processor has at most one message to send.

Consider a processor P; that is not itself the destination of any messages and has a
single message to send to Py, but is blocked every time it attempts to transmit. Since
P; receives no external stimulus, we can imagine that P; selects its transmission strategy
at random in advance of the first time step. A strategy for P; to transmit to P; (under
the blocking regime) can be coded as a binary word of length ¢, where a 1 in position #

indicates that P; is to attempt to send its message at time step t'.

For convenience, assume that p is divisible by 4. The 2-relation p is the union of
p/4 subrelations, each consisting of a pair of sending processors attempting to send a
single message each to a common destination. The 3p/4 processors in the 2-relation are
distinct. The p/4 subrelations will be selected sequentially. Note that at any stage there
will be f > p/4 “free” processors from which the next pair of senders may be selected. To
make the selection, first choose a free destination processor P;. Observe that, since the
number of possible transmission strategies is 2, there must exist a strategy o € {0,1}!
such that the expected number of free senders that choose strategy o to send to Py under
the blocking regime is at least f27'. Thus there is a free sender, say P;, that chooses
strategy o with probability at least 27t > p~'/%; and a different free sender, say P;, that
chooses ¢ with probability at least

(F27'-1/(f-1) 227 = > p gyt

which is at least %p_l/:; for p > 24. Now add to p the subrelation that requires P; and P;
each to send a single message to Py.

Note that P; and P; select strategies independently, so the probability that they

both select o is at least %p_2/3; thus the probability that P; and P; fail to get rid of

-2/3

their messages is also at least %p Since there are p/4 subrelations forming p, the

probability that p is successfully realized is at most (1 — %p_2/3)p/4, which is less than
exp(—pH/3/8). o

It may be observed from the proof that a direct algorithm requires a logarithmic

number of steps to achieve even inverse polynomial success probability.

4. The MOB-PC Algorithm

In this section we describe a 6(h + loglog p) communication step algorithm that re-
alizes an arbitrary h-relation on a p x p MOB-PC. We show that if h < logp then the

failure probability can be made as small as p~® for any positive constant «.

As each row and each column of a p x p MOB-PC is itself a p-OCPC we start by
considering a p-OCPC. As in Section 2, we divide the p processors into target groups of

18

size k = [log p|. A target group h-relation is defined to be a communication problem
in which each processor has up to h messages that it wishes to send. The destinations
of these messages are target groups, and each target group is the destination of at most

hk messages. We will use the following lemma.

Lemma 4. Suppose that h < logp and let o be any positive constant. Then there is a
p-OCPC algorithm that can realize an arbitrary target group h-relation in O(h + loglog p)
steps with failure probability 3p=<.

Proof of Lemma 4: Suppose that we are given a target group h-relation. As in Sec-
tion 2, we will let S(T') denote the set containing all senders that have messages destined
for target group T'. Let M(S(T)) denote the set of messages that are to be sent by these
senders. Let each message choose a destination uniformly at random from within its tar-
get group. Let h' = 8eh +loglogp and let A" = h'/2. We will say that a message is
externally bad with respect to a target group T if the message has the same destination
as at least A" other messages that are not sent from senders in S(7T'). We will say that a
message is internally bad with respect to a target group 7' if it has the same destination as
at least h'" other messages that are sent from senders in S(T"). We will say that a sender
is initially good unless one or more of its messages is (externally or internally) bad. We

will prove the following claim.

Claim 2. With probability at least 1 — p™® every set S(T) contains at most
k/(2h'*[¢5loglog p]) senders that are not initially good.

Suppose that every set S(T') contains at most k/(2h’2 [eologlog p|) senders that are
not initially good and that we start to deliver messages to their destinations by running the
thinning procedure from Section 2.1 using h' as the value of the variable “h”. It is easy
to see that we can modify the proof of Lemma 3 to obtain the following. (The following

lemma is the same as Lemma 3 except for the factor of 2 in the denominator.)

Lemma 3'. Suppose that h' < logp. Let i be an arbitrary phase of the thinning pro-
cedure and let T be any target group. With probability at least 1 — p~(et1)

1. At most |[N(T)|/(21h'°[ealoglog p]) receivers in N(T) become overloaded in phase i

2. At most |S(T)|/(2h'°[¢zloglog p|) good senders in S(T) stop participating at the
end of phase 1.

We conclude that with probability at least 1 — 2p~* the number of messages that are

not delivered to a given target group is at most the sum of

1. k/(2h'[czloglog p]) (these messages may not be delivered because their sender is not
initially good)

19

2. k/(2h'[ezloglog p]) (these messages may not be delivered because their sender stops
participating or stops being good during the thinning).

We conclude that with probability at least 1 — 2p~“ the number of undelivered mes-
sages destined for any given target group is at most k/(h'[cz loglog p]) after the thinning
procedure terminates. Therefore, we can deliver the rest of the messages to their tar-
get groups using the “Spreading” procedure from Section 2.2 and the “Deliver to Target
Groups” procedure from Section 2.3. In the remainder of this section it will be important
to have our algorithm for realizing target group h-relations behave symmetrically with
respect to the different destinations within a target group. We can achieve this goal by

modifying the “Deliver to Target Group” procedure from Section 2.3 as follows.

1. In the first part of the procedure we deliver messages to their target groups using

“approximate collection” rather than “approximate compaction”.

2. In the second part of the procedure (the part involving copies) the “winner” is chosen
uniformly at random (rather than arbitrarily) from amongst the successfully delivered
copies.

We now finish the proof of Lemma 4 by proving Claim 2. Let T' be any target group.
We will show that the probability that M(S(T)) contains more than k/(4h’2 [¢q loglog p])
externally bad messages is at most %p_a (k/p). Then we will show that the probability
that M(S(T)) contains more than k/(4h'*[¢;loglog p]) internally bad messages is at most
50~ (k/p).

First we consider externally bad messages. We will say that a processor P is externally
crowded with respect to a target group T if there are at least h' messages which are not
in M(S(T)) and have destination P. A set of b members of a target group are all
externally crowded only if at least bh' messages have destinations in the set. Therefore,

the probability that there is a set of b members of a target group that are all externally

(1) VAV N
E/\b/\bh")\ k '
We can use Stirling’s approximation to show that for b = k/h"® this quantity

is at most (p/k)?‘k/h“B. Therefore, with probability at least 1 — (p/k)?"‘?/h”5 ev-

ery target group has at most k/h"® processors which are externally crowded with

crowded is at most

respect the 7T'. Suppose that this is the case. Then the probability that a mes-
sage in M(S(T)) chooses a destination which is externally crowded with respect to T
is at most h"7®. Using a Chernoff bound, we see that with probability at least
1 —exp(—|M(S(T))|/ (3 x h'"%)) at most 2|M(S(T))|/R"® messages in M(S(T)) choose

20

a destination which is externally crowded with respect to 7. Note that as long as
p is sufficiently large then 2[M(S(T))|/h"® < k/(4h'*[cyloglogp]). Also, as long as
IM(S(T))| > k/(4h'*[ezloglog p]) and B’ < logp and the constant ¢; is sufficiently large
the sum of (p/k)?"‘?/h”5 and exp(—|M(S(T))|/(3 x h"%)) is at most $p~* (k/p).

We now consider internally bad messages. We start by calculating an upper bound

on the probability that a message is internally bad. This probability is at most

S (s
) k

We can use Stirling’s approximation to show that this sum is O(Q_h”). So the expected
number of messages in M(S(T')) which are internally bad is O(|M(S(T))[2~"").

Let x; be a random variable which denotes the destination of the :th message
in M(S(T)) and let Y be a random variable denoting the number of internally bad mes-
sages in M(S(T)). (Y is a function of x,..., 2 (s(7)).) If we change one of the x;’s
then we change Y by at most h' 4+ 1. Therefore, by Theorem 2 (the bounded differences
inequality),

k
4h'*[¢q loglog p]

Pr(Y > k/(4h"*[csloglog p])) < 2exp (—z(- E(Y)) J(Ms@)| (" + 1>2>)

Since E(Y) < m (for big enough p) the probability is at most

2exp(—k/(32h"* [esloglog p|*h2(h" + 1)*)).

This quantity is at most %p_a (k/p) as long as ¢y is sufficiently large and h' is at

most log p. o

Now that we have proved Lemma 4 we are ready to describe our algorithm for realizing
h-relations on a p x p MOB-PC. We have already observed that each row and each column
of a MOB-PC is a p-OCPC. We will divide each row and each column of the MOB-PC into
target groups of size k. A block of the MOB-PC is defined to be a k x k sub-MOB-PC
in which each row is a row target group of the original MOB-PC and each column is a
column target group of the original MOB-PC. We will use the phrase column of blocks to
refer to a collection of p/k blocks which together make up k columns of the MOB. Finally,
we will sub-divide each column of blocks into p/k* super-blocks in which each super-block
consists of k blocks. (As in Section 2.4 we will simplify the presentation by assuming that

k* divides p. We will also assume that h < logp.)

21

The algorithm has five steps.

1. On each Row: Each message picks a random row target group and the messages are

routed to the target groups.

2. On each Column: FEach message chooses as its immediate destination the column
target group that intersects the row of its final destination. The messages are routed

to the target groups.

3. Within each Block: Each message chooses an immediate destination uniformly at
random from its row. The messages are routed to their immediate destinations using
the OCPC algorithm in each row. Each message that was successfully delivered to its
immediate destination chooses as its new immediate destination the processor which
i1s in its column and in the row of its final destination. The messages are routed
to their immediate destinations using the OCPC algorithm in each column. If the
block contains a message that was not successfully delivered to the row of its final
destination then we say that the block failed. Every processor in the block is notified
of the failure.

4. If any block of a super-block failed then we say that the super-block failed. Every
processor in the super-block is notified of the failure. Each failed block attempts to
allocate a super-block which has not failed from within its column of blocks. After
allocating a super-block, the failed block copies all of its messages to each of the blocks
in the super-block. Each of these blocks then repeats Step 3. If there is a block in
the super-block which does not fail then the first such block copies the (delivered)
messages back to the original failed block.

5. On each Row: Each message is routed to its final destination.

We will conclude the section by considering each of the five steps. For each step we
will discuss the method that is used to implement the step and also the failure probability
of the method.

At the beginning of Step 1 each processor has at most h messages. Each message
then picks a random row target group. Using a Chernoff bound we see that the probability
that a given target group is the destination of more than 2hk messages is at most e~"*/3
so the probability that there is such a target group is at most p x (p/k) x e~ "¥/3 which

® as long as ¢; 1s sufficiently large. Suppose that every target group is the

1s at most p~
destination of at most 2hk messages. Then we can use the method described in the proof
of Lemma 4 to deliver the messages to their target groups in O(h + loglog p) steps. The

probability that this method fails is at most 3p~ for any positive constant «.

At the beginning of Step 2 each processor has at most hy messages where hy is h
plus the number of time-steps used in Step 1. If it is also true that every target group is

the destination of O(hk) messages in Step 2 then we can use the method described in the

22

proof of Lemma 4 to deliver the messages to the target groups in O(h + loglog p) steps.
We will conclude our discussion of Step 2 by showing that with high probability each target
group is the destination of O(hk) messages.

Let T be any column target group and let C' be the column of T'. There are at
most hkp messages which have final destinations in rows which intersect 7. These are
the only messages which could be destined for T on Step 2. We will refer to them as the
set of “potentially relevant” messages. Each potentially relevant message will be destined
for T on Step 2 if and only if it is delivered to column C on Step 1. Therefore, our goal
is to prove that with high probability only O(hk) of the potentially relevant messages are

delivered to column C' on Step 1.

We start out by using a Chernoff bound to prove that with probability at least 1 —
exp(—hk?/3) only 2hk* of the potentially relevant messages select target groups that
intersect C' in Step 1. We refer to these messages as “relevant” messages. Our goal is
to prove that with high probability only O(hk) of the relevant messages are delivered to

column C on Step 1.
We will use the following theorem of Hoeftding which is included in McDiarmid’s
paper [McD 89].

Theorem 4. [Hoeffding] Let the random variables X;,...,X, be independent, with
0< X, <1 foreach i. Let X = %EiXi and p = E[X]. Then for 0 <t < 1—p,

1—p—t]P
1—p . .
1—p—t '

To apply Hoeffding’s inequality, let X; be hy ' times the number of relevant messages
that are delivered to row i of column C on Step 1. Observe that 0 < X; < 1 and that the

X;’s are independent. Note that X is (th)_l times the number of relevant messages that

B ptt
Pr(X >t+p) <

[17
p+t

are delivered to column C' in Step 1. Recall that the algorithm for realizing target group
h-relations behaves symmetrically with respect to the destinations forming a particular
target group; thus the expected number of relevant messages delivered to column C' on
Step 1is k™! times the expected number of relevant messages. Therefore, u is at most
2hk/(hsp). Let t denote 4hk/(hyp). Observe that t > 2y and that 0 < ¢ < 1 —pu. By
Hoeffding’s inequality, the probability that X is at least 6hk/hop is at most

ptt

1 1—p—t p
H —H < 3—tpetp — e—Q(tp)‘

pn+t 1—p—t -

We conclude that high probability at most 6hk messages are destined for any target

23

group during Step 2. In this case the messages can be delivered in O(h + loglog p) steps
using the method described in the proof of Lemma 4.

At the beginning of Step 3 each processor has at most hy messages where hs 1s h plus
the number of time-steps used in Steps 1 and 2. Using a Chernoff bound (as in Step 1)

—hk/3 each row of each block is

we see that with probability at least 1 — p x (p/k) X e
the destination of at most 2hk messages in Step 3. We now consider each particular
block. Following Rao [Rao 92] we can use a Chernoff bound to show that with probability
at least 1 — k? exp(—hs/3) the communication problem on each row is a 2hs relation.
Similarly, with high probability the communication problem on each column is a 2hg-
relation. Therefore, the probability of failure can be made as small as k=% . The processors
in the block use parallel prefix to notify each other of failure. Similarly, the processors in

each super-block use parallel prefix to notify each other of failure.

The implementation and analysis of Step 4 closely follows that of Section 2.4. The
probability that there is a failed block that fails to allocate a super-block is at most
(pz/kz)(?)/k)k. The probability that there is a super-block in which every block fails when
it repeats Step 3 is at most (pz/k3)(1/k3)k.

If Steps 1 through 4 are successful then at the start of Step 5 all of the messages will be
in the correct row. Furthermore, there will be at most h; messages at any processor, where
hs 1s h plus the number of time-steps used in steps 1-4. Since the communication problem
i1s an h-relation, each processor will be the destination of at most A messages. Therefore
the p-OCPC algorithm described in Section 2 can be used to deliver the messages on each
row. The probability that this algorithm fails is at most p (the number of rows) multiplied
by the probability that the p-OCPC algorithm fails, which is at most p~® for any positive
constant a.

In the introduction to this paper we pointed out that the MOB-PC is easier to build
than an OCPC because it restricts the number of processors that a given processor can
send to directly. Nevertheless, we have provided an algorithm for realizing h-relations on
a MOB-PC which is asymptotically as fast as the fastest known algorithm for realizing
h-relations on an OCPC. Similarly, we could define a new machine by replacing each row
and each column of a p x p MOB-PC with a p'/? x p!'/? MOB-PC. Our algorithm could
be used recursively to realize h-relations in O(h + loglog p) steps on the new machine.

Clearly, this recursion could be carried out to any constant depth.

References

[AM 88] R. J. Anderson and G. L. Miller, Optical Communication for Pointer Based Algo-
rithms, Technical Report CRI 88-14, Computer Science Department, University of

24

[Bol 88]

[CDHR 89

[Col 88]
[Dow 91]

[GT 92]

[GV 92]

[GM 91]

[MV 91]

[McC 92]

[McD 89]

[MP 75]

[Rao 92]

[Val 90]

[Wit 81]

Southern California, Los Angeles, CA 90089-0782 USA, 1988.
B. Bollobas, Martingales, Isoperimetric Inequalities and Random Graphs, in Combi-

natorics (eds A. Hajnal, L. Lovédsz, and V. T. Sés), Collog. Math. Soc. Jinos Bolya:
52 (North Holland 1988) 113-139.

B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, New Simulations between CRCW
PRAMs, Proc. Foundations of Computation Theory 7 , Lecture Notes in Computer
Science 380 (Springer-Verlag 1989) 95-104.

R. Cole, Parallel Merge Sort, STAM Journal of Computing 17(4) (1988) 770-785.
P. W. Dowd, High Performance Interprocessor Communication Through Optical

Wavelength Division Multiple Access Channels, Proceedings of the ACM International
Symposium on Computer Architecture 18 (1991) 96-105.

M. Geréb-Graus and T. Tsantilas, Efficient Optical Communication in Parallel Com-
puters, Proceedings of the ACM Symposium On Parallel Algorithms and Architectures
4 (1992) 41-48.

A. V. Gerbessiotis and L. G. Valiant, Direct Bulk-Synchronous Parallel Algorithms,
Proceedings of the Scandinavian Workshop on Algorithm Theory 3 (1992).

J. Gil and Y. Matias, Fast Hashing on a PRAM, Proceedings of the ACM-SIAM
Symposium On Discrete Algorithms 2 (1991) 271-280.

Y. Matias and U. Vishkin, Converting High Probability into Nearly-Constant Time
— with Applications to Parallel Hashing, Proceedings of the ACM Symposium On
Theory of Computing 23 (1991) 307-316.

W. F. McColl. General Purpose Parallel Computing, pre-print (1992).

C. McDiarmid, On the Method of Bounded Differences, Surveys in Combinatorics,
London Math. Soc. Lecture Notes Series 141 (Cambridge Univ. Press, 1989) 148-188.

D. E. Muller and F. P. Preparata, Bounds to Complexities of Networks for Sorting
and for Switching, Journal of the ACM 22 (1975) 195-201.

S. B. Rao, Properties of an Interconnection Architecture Based on Wavelength Dai-
vision Multiplexing, Technical Report TR-92-009-3-0054-2, NEC Research Institute,
4 Independence Way, Princeton, NJ 08540 USA, 1992.

L. G. Valiant, General Purpose Parallel Architectures, Chapter 18 of Handbook of
Theoretical Computer Science, Edited by J. van Leeuwen (Elsevier 1990) (see espe-
cially p. 967)

L. D. Wittie, Communication Structures for Large Networks of Microcomputers, [EEFE
Transactions on Computers C-30(4) (1981) 264-273.

25

