
Counting and sampling H-colourings ∗

Martin Dyer †

School of Computing

University of Leeds

Leslie Ann Goldberg‡

Dep’t of Computer Science

University of Warwick

Mark Jerrum§

Division of Informatics

University of Edinburgh

September 1, 2003

Abstract

For counting problems in #P which are “essentially self-reducible”, it is known that sampling
and approximate counting are equivalent. However, many problems of interest do not have such
a structure and there is already some evidence that this equivalence does not hold for the whole
of #P. An intriguing example is the class of H-colouring problems, which have recently been the
subject of much study, and their natural generalisation to vertex- and edge-weighted versions.
Particular cases of the counting-to-sampling reduction have been observed, but it has been an
open question as to how far these reductions might extend to any H and a general graph G.
Here we give the first completely general counting-to-sampling reduction. For every fixed H ,
we show that the problem of approximately determining the partition function of weighted H-
colourings can be reduced to the problem of sampling these colourings from an approximately
correct distribution. In particular, any rapidly-mixing Markov chain for sampling H-colourings
can be turned into an FPRAS for counting H-colourings.

1 Introduction

Jerrum, Valiant and Vazirani [14] showed that for self-reducible problems in #P, approximate
counting and approximate sampling are of similar computational complexity. In particular, a
problem has a fully polynomial randomised approximation scheme (FPRAS) if and only if it has
a fully polynomial approximate sampler (FPAS). The techniques of [14] have been applied even to
problems that do not seem to be self-reducible, and a generalization of [14] was given by Dyer and
Greenhill [5]. In general, however, the situation seems more complicated, as exemplified by the
following observation of Brightwell and Goldberg [1].

Observation 1 There exists a problem in #P which has an FPRAS but no FPAS, unless there is
a polynomial time algorithm for computing the discrete logarithm.

∗This work was partially supported by the EPSRC grant “Sharper Analysis of Randomised Algorithms: a Compu-
tational Approach”, the EPSRC grant GR/R44560/01 “Analysing Markov-chain based random sampling algorithms”
and the IST Programme of the EU under contract numbers IST-1999-14186 (ALCOM-FT) and IST-1999-14036
(RAND-APX). A preliminary version appeared in the proceedings of the 6th International Workshop on Random-
ization and Approximation Techniques in Computer Science.

†http://www.comp.leeds.ac.uk/∼dyer/, School of Computing, University of Leeds, Leeds LS2 9JT, United
Kingdom.

‡http://www.dcs.warwick.ac.uk/∼leslie/, Department of Computer Science, University of Warwick, Coventry,
CV4 7AL, United Kingdom.

§http://www.dcs.ed.ac.uk/∼mrj/, School of Informatics, University of Edinburgh, JCMB, The King’s Buildings,
Edinburgh EH9 3JZ, United Kingdom.

1

Proof. Consider the problem with instances (p, r, C(p, r), y), where C(p, r) is a certificate that p
is a prime with primitive root r, and y ∈ {1, . . . , p − 1}. The input can be verified in polynomial
time. (See Section 10.2 and Example 12.2 of [15].) The solution set is defined to be {x | 0 ≤ x ≤
p − 2, rx = y (mod p)}. This problem trivially has an FPRAS, since the solution set is always of
size 1 exactly. Furthermore, the problem is in #P, since rx mod p can be computed in polynomial
time. However, an FPAS would clearly give a polynomial-time solution to the discrete logarithm
problem. �

In fact, the proof of Observation 1 does not rely on the details of the discrete logarithm problem.
Any one-way permutation1 could be used to construct a #P-problem with an FPRAS but no FPAS.
Thus it seems likely that there exist problems in #P which have an FPRAS but no FPAS. On the
other hand, it is an open question as to whether, under any reasonable complexity assumption,
there exist problems in #P which possess an FPAS but no FPRAS. A candidate problem might be
the orbit-counting problem [8]. If a sampling algorithm were discovered which did not essentially
implement Burnside’s lemma, it would be unclear how to use it for approximate counting.

Despite these issues, it is widely believed that approximate counting and approximate sam-
pling are inter-reducible in polynomial time for most, or even all, “reasonable” problems in #P.
H-colouring2 provides a convenient setting for investigating this issue. It is not known whether
the H-colouring problem is self-reducible. Indeed, this is given as an open problem by Diaz [4].
However, we would like to understand the relationship between approximate counting and approx-
imate sampling for this problem. On the one hand, reductions between approximate counting and
sampling are known for several of the best-known instances of H-colouring. These include the
(usual) vertex-colouring problem [12] (see also section 3 below) and the independent set problem
or, more generally, its vertex-weighted version the hard core lattice gas model. (See, for instance,
Examples 3.3 and 3.4 in [5].) On the other hand, straightforward attempts to apply the method
of [14] to H-colouring seem to fail.

Dyer, Jerrum, and Vigoda [7] have shown how to extend the counting-to-sampling reduction
from the vertex-colouring setting to the H-colouring setting, but their proof works only if H is
dismantleable (which is quite a strong restriction, see [2]) and the input graph, G, has bounded
degree. This paper extends their result to any H and to general graphs G. We show that, for
every fixed H, the problem of approximately-counting H-colourings can be reduced to the problem
of sampling H-colourings from an approximately-correct distribution. Thus, the MCMC method
is applicable to H-colouring. In particular, any rapidly-mixing Markov chain for sampling H-
colourings can be turned into an FPRAS for counting H-colourings. In fact, we express our results
in the more general setting from Section 1.1 of [6] in which vertices and edges of H may have
weights. Thus, we show that an algorithm for sampling from the Gibbs distribution leads to an
FPRAS for the partition function.

The other direction is still open. The natural reduction from sampling H-colourings to counting
H-colourings suffers from the defect that the resultant counting sub-problems correspond to list
colouring problems rather than to unrestricted colouring problems. Thus, sampling may be reduced
to the problem of (approximately) counting list H-colourings, but possibly not to the (presumably
easier) problem of counting H-colourings. Thus, it is not clear for which graphs H negative sampling
results such as [3, 10] yield negative results for approximability. Approximate counting could be
easier than approximate sampling for H-colouring. Note that for almost every H, it is #P-hard to
exactly count H-colourings (see [6]).

1The definition of a “one-way permutation” is beyond our scope — think of a one-way function which, for each n,
is a permutation on inputs of size n. Details can be found in [11].

2See Section 2 for a precise definition of this and other basic notions mentioned in this introduction.

2

2 Definitions and Statement of Theorem 2

Our definitions are from Section 1.1 of [6]. Let H = (V (H), E(H)) be a fixed graph. We will allow H
to have self-loops, but not multiple edges between a pair of vertices. Let V (H) = {c1, . . . , ch}. We
refer to the vertices of V (H) as “colours”. Every colour cj has a weight λcj

> 0. If an unordered
pair of colours (ci, cj) is in E(H) then it has a weight λci,cj

> 0. Otherwise, it has zero weight, i.e.
λci,cj

= 0. Let λmax be the maximum of all vertex and edge weights in H.
Suppose that σ is a function from V (G) to V (H), where G is a simple graph, without multiple

edges or self-loops. We assign the weight wσ(G) to σ, where wσ(G) is given by

wσ(G) =
∏

v∈V (G)

λσ(v)

∏

(u,v)∈E(G)

λσ(u),σ(v).

Note that wσ(G) > 0 if and only if σ is a homomorphism from G to H. (A homomorphism from G
to H is just a function σ from V (G) to V (H) which has the property that for every edge (u, v)
of G, (σ(u), σ(v)) is an edge of H. A homomorphism from G to H is also known as an “H-colouring
of G”.) Let ΩH(G) be the set of H-colourings of G. That is,

ΩH(G) = {σ : V (G) → V (H) | wσ(G) > 0}.

The partition function ZH(G) is given by

ZH(G) =
∑

σ∈ΩH (G)

wσ(G). (1)

The Gibbs distribution on H-colourings of G is the distribution in which each colouring σ has
probability

πH,G(σ) =
wσ(G)

ZH(G)
.

If u is a vertex of G and ci is a colour in V (H), we use the notation ZH(G){u → ci} to denote∑
σ∈ΩH (G),σ(u)=ci

wσ(G). We will use similar notation when we want to restrict more vertices of G
to have particular colours.

As a technical matter, we can assume without loss of generality that there are not distinct
colours cα ∈ V (H) and cβ ∈ V (H) with identical edge weights. That is, we do not have cα and cβ

such that, for all i, λcα,ci
= λcβ ,ci

. It is straightforward to see that any two such colours can be
treated as a single colour with effective vertex weight λcα + λcβ

.
Since we are interested in computation (which is inherently discrete), we will assume that all

of the weights λcj
and λci,cj

are rational. Now suppose that K is the least common multiple of the
denominators of all of the positive weights. Consider what happens when replace the weights with
λ̂cj

= Kλcj
and λ̂ci,cj

= Kλci,cj
. The weight of a colouring is then ŵσ(G) = Kn+mwσ(G), where

n = |V (G)| and m = |E(G)|. Similarly, ẐH(G) = Kn+mZH(G) and π̂H,G(σ) = πH,G(σ). Thus, we
can assume without loss of generality that all weights λcj

and λci,cj
are natural numbers. We will

make this assumption in the rest of this paper. See [5] and [9] for a further discussion of this issue.
We will consider the complexity of the following problems.

Name. H-Partition.

Instance. A graph G.

Output. The value of the partition function ZH(G).

3

t

t t

t

t

ttt

t t t

t

t t

tt t t

tt tt

tt t

jJ
J

JJ

J
J

JJ

L
L
L
L
LL

�
�

�
�

�� Q
Q

Q
Q

Q
Q

Q
QQ

\
\

\
\

\\ L
L
L
L
LL

�
�

�
�

���
�

�
�

��

�
�

�
�

�
�

�
��

!!!!!!!!! �
�

�
��

aaaaaaaaa

Z
Z

Z
ZZJ
J

JJ

J
J

JJ

Z
Z

Z
ZZ
�

�
�

��

aaaaaaaaa!!!!!!!!!
�

�� @
@@

.

v

wNw1

uNu1

y

.

x

z

H G

b

a

Figure 1: An H-colouring problem.

Name. H-GibbsSample.

Instance. A graph G.

Output. An H-colouring σ of G chosen from distribution πH,G.

Note that if all vertex and edge weights of H are set to 1 then H-Partition is simply the
problem of counting H-colourings of G and H-GibbsSample is the problem of sampling an H-
colouring of G uniformly at random.

Figure 1 gives an example. The triangle xyz forces x to be coloured with a or one of its
neighbours. It follows that, for large N , there are Θ(10N) colourings where x is coloured a and v
is coloured b, and Θ(9N) other colourings. Thus “almost all” colourings are of the former type.

A randomised approximation scheme for H-Partition is a randomised algorithm that takes as
input a graph G and an error tolerance ε > 0, and outputs a number Ẑ ∈ N (a random variable of
the “coin tosses” made by the algorithm) such that

Pr
[
e−εZH(G) ≤ Ẑ ≤ eεZH(G)

]
≥

3

4
. (2)

The algorithm is a fully polynomial randomised approximation scheme, or FPRAS, if it runs in time
bounded by a polynomial in |V (G)| and ε−1.

In this paper we will simplify the presentation of our FPRAS by presenting it in a slightly
different form. Our randomised algorithm will take as input an n-vertex graph G and an error
tolerance ε > 0. With probability at least 1 − 2−n5

, it will succeed. In this case, the running time
will be bounded from above by a polynomial in n and ε−1. Also, it will output a number Ẑ ∈ N

such that

Pr
[
e−εZH(G) ≤ Ẑ ≤ eεZH(G)

]
≥

7

8
. (3)

If the algorithm fails, the running time might be as large as poly(n, ε−1) 2(
n′

2)|V (H)|n
′

, where
n′ ∈ O(n2). Note that the expected running time of our algorithm is at most a polynomial in n
and ε−1. Furthermore, our algorithm can be converted into a standard FPRAS by truncating long
runs after polynomially many steps (and outputting an arbitrary answer after truncation).

4

The total variation distance between two distributions π and π′ on a countable set Ω is given
by

dTV(π, π′) =
1

2

∑

ω∈Ω

|π(ω) − π′(ω)| = max
A⊆Ω

|π(A) − π′(A)|.

An approximate sampler [5, 13, 14] for H-GibbsSample is a randomised algorithm that takes
as input a graph G and an accuracy parameter ε ∈ (0, 1] and gives an output (a random variable)
such that the variation distance between the output distribution of the algorithm and the Gibbs
distribution πH,G is at most ε. The algorithm is a fully polynomial approximate sampler (FPAS) if
its running time is bounded from above by a polynomial in |V (G)| and log(ε−1).

Theorem 2 If there is an FPAS for H-GibbsSample then there is an FPRAS for H-Partition.

3 An easy reduction

Our general strategy will be to reduce G to a tree by removing edges one by one, but unfortunately
the reduction is not straightforward. We will need to attach “gadgets” to the vertices of G in
order to exclude some undesirable colourings. These are discussed in section 4 below. But first, to
illustrate some of the difficulties, we will sketch a simpler reduction, which suffices for two special
cases of counting unweighted H-colourings. These are problems in which either every or no vertex
of H has a loop. The usual vertex colouring problem provides an example.

Recall that h = |V (H)|. If G has h or fewer vertices, we will count its H-colourings by exhaustive
enumeration. Otherwise, by applying the pigeonhole principle to any subset of V (G) of size (h+1),
there must exist two vertices u, v ∈ V (G) such that

Pr (σ(u) = σ(v)) =
∑

σ:σ(u)=σ(v)

πH,G(σ) ≥
(
h+1

2

)−1
.

Take sufficiently many samples to locate any pair u, v with Pr(σ(u) = σ(v)) ≥ 1/h2. Now let Guv

be the graph obtained from G by identifying u and v as a single vertex uv. Parallel edges may be
removed from Guv since all edge weights of H are 1. However, there may be a loop on the vertex
uv, which means it must be coloured with a looped vertex of H. In the case where H has no looped
vertices, the situation does not arise (u and v will not be adjacent in G). In the case where H
has all looped vertices, the uv loop is no restriction and we may remove the loop. By sampling
colourings of G, we can estimate the ratio τuv = |ΩH(Guv)|/|ΩH(G)| ≥ 1/h2. Now we estimate
|ΩH(Guv)| recursively, and hence estimate |ΩH(G)| as |ΩH(Guv)|/τuv.

This reduction is clearly invalid if H has vertex weights, since the vertex uv must receive a
squared weighting in Guv. Thus G itself becomes vertex-weighted. To proceed further, we must
assume that we can sample H-colourings when G is a vertex-weighted graph. Similarly, if H has
edge weights, the parallel edges in Guv are significant, and we are soon obliged to deal with edge-
weighted G. Even in the case where all weights are 1, but H has both looped and unlooped vertices,
the reduction may be invalid, as illustrated by Figure 1. Here y, z ∈ V (G) are both coloured a with
frequency almost one-fifth. But, if we identify y and z, the vertex yz has a loop, signifying that it
can only be coloured with the looped vertex a ∈ V (H). If we ignore the loop on yz (in order to
make Gyz a simple graph), the number of H-colourings of Gyz explodes to Θ(25N), by colouring
both x and v with b. The ratio τyz is now an exponentially large quantity rather than a fraction.

In general, this reduction is valid if we assume that the class of graphs from which G can be
chosen includes the class from which H can be chosen. But this assumption is not true of the

5

H-colouring problem as usually stated, particularly in its weighted variants. Therefore we need to
proceed more carefully to obtain our reduction.

4 Gadgets

Let t = 2|V (H)|. Let P be a path of 2t edges from some vertex A to some vertex B. For
any colour ci ∈ V (H) and any colour cj ∈ V (H), recall that ZH(P){A → ci, B → cj} denotes∑

σ∈ΩH (P),σ(A)=ci,σ(B)=cj
wσ(P). Let δ(ci, cj) be the quantity

δ(ci, cj) =
ZH(P){A → ci, B → cj}

λci
λcj

.

The quantity δ(ci, cj) is the total weight of all H-colourings of P which start at colour ci and end at
colour cj except that we exclude the weight of the colours at the two endpoints. For any colour ci,
let δ(ci) = δ(ci, ci).

We will be assuming that H is connected and that it has more than one vertex. Thus, every
colour ci ∈ V (H) has at least one neighbour so δ(ci) > 0. If all vertices ci ∈ V (H) and cj ∈ V (H)
have δ(ci) = δ(cj) we will define δ∗(H) = 1. Otherwise, we define δ∗(H) to be the following positive
quantity.

δ∗(H) = min

{
log2

(
δ(ci)

δ(cj)

) ∣∣∣ ci ∈ V (H), cj ∈ V (H), δ(ci) > δ(cj)

}
.

We will use the following technical lemma (cf. [6]).

Lemma 3 If δ(ci) ≥ δ(cj) and j 6= i then δ(ci, cj) < δ(ci).

Proof. If ci dominates cj in the sense that λcicα > λcjcα for all α then the lemma follows from the
definition of δ. Suppose that ci does not dominate cj . Let W be a symmetric h×h matrix in which
the entry in row i and column j is λci,cj

. Let Λ be the diagonal matrix in which the entry in row i
and column i is λci

. Let Ψ be the positive diagonal matrix such that Ψ2 = Λ. Let [·]i denote the
ith column of a matrix and [·]ij its (i, j)th element. Note that

δ(ci, cj) = [(WΛ)2t−1W]ij = [Ψ−1(ΨWΨ)2tΨ−1]ij .

Since ΨWΨ is symmetric, it can be written as UT LU where L is diagonal and U is orthonormal
(i.e., UT U = I).

Now

δ(ci, cj) = [Ψ−1(ΨWΨ)2tΨ−1]ij = [Ψ−1UT L2tUΨ−1]ij = [LtUΨ−1]i
T
[LtUΨ−1]j

≤
√

[Ψ−1UT L2tUΨ−1]ii[Ψ−1UT L2tUΨ−1]jj =
√

δ(ci)δ(cj) ≤ δ(ci)

using Cauchy-Schwartz, with strict inequality unless [LtUΨ−1]i is a multiple of [LtUΨ−1]j . But
this condition is true if and only if [LUΨ−1]i is a multiple of [LUΨ−1]j , which is true if and only if
[Ψ−1UT LUΨ−1]i is a multiple of [Ψ−1UT LUΨ−1]j , i.e. [W]i is a multiple of [W]j . This is impossible
since ci does not dominate cj and there are not distinct colours with identical edge weights (see
Section 2). �

We will let δ′(H) be the following positive quantity.

δ′(H) = min

{
log2

(
δ(ci)

δ(ci, cj)

) ∣∣∣ i 6= j, δ(ci) ≥ δ(cj)

}
.

6

Finally, we let δ†(H) = min(δ∗(H), δ′(H)).
Let S be a subset of V (H) such that for every colour ci ∈ S and every colour cj ∈ S, δ(ci) =

δ(cj). Let δ(S) denote δ(ci) for ci ∈ S.
A graph H ′ with a designated vertex u′ is said to be “good” for S if it satisfies the following

properties.

i. For every c ∈ S, ZH(H ′){u′ → c} > 0, and

ii. for every colour c ∈ V (H) with δ(c) > δ(S), ZH(H ′){u′ → c} = 0.

Informally, (H ′, u′) is good for S if every colour c ∈ S can be applied to u′ in a valid colouring
but no vertex of higher δ-value can be applied to u′.

The set S is said to be “good” if there exists an (H ′, u′) which is good for S. If S is good then
κS is then defined to be the minimum number of vertices in a graph H ′ such that some pair (H ′, u′)
is good for S. κ is defined to be the maximum of κS over all good S. We will not assume that κ is
known in our algorithm, but we will refer to it in our analysis.

Suppose we have a (fixed-size) graph H ′ with a designated vertex u′ and we want to check

whether the pair (H ′, u′) is good for S. We do this by examining each of the (at most |V (H)||V (H′)|)
colourings in ΩH(H ′). Thus, we can check every graph H ′ of size at most n′ and every possible

designated vertex u′ by examining at most (n′)22(
n′

2)|V (H)|n
′

colourings.
As we observed in section 3, the function of these gadgets (H ′, u′) is to exclude unwanted

colourings. The triangle H ′ = xyz in Figure 1, with distinguished vertex u′ = x, illustrates the
phenomenon. It has colourings in which x can be coloured a, but none in which it can receive
the colour b of larger H-degree. Its attachment to G at x therefore excludes the (otherwise more
numerous) colourings of G in which x would be coloured b.

5 Proof of Theorem 2

Suppose that G has multiple connected components, say GA, GB and GC . It is immediate from
Equation (1) that ZH(G) = ZH(GA)ZH(GB)ZH(GC). Thus, we may assume without loss of
generality that G is connected. We will do so for the rest of the paper. For connected G, suppose
that H has multiple connected components, say HA, HB and HC . Inspection of Equation (1) reveals
that ZH(G) = ZHA

(G) + ZHB
(G) + ZHC

(G). Thus, we may assume without loss of generality that
H is also connected. We will do so for the rest of the paper.

Let n denote |V (G)|. As in Section 3, we avoid trivialities by assuming n ≥ h. In the reduction,
we will construct a sequence G0, G1, . . . , Gp of connected graphs. As long as there is no failure in
the (randomised) reduction, the following properties will hold.

(i) G0 = G,

(ii) ZH(Gp) can be calculated in polynomial time (polynomial in n), and

(iii) the construction of G0, . . . , Gp will take polynomial time.

Let

̺i =
ZH(Gi)

ZH(Gi+1)
.

Then
ZH(G) = ̺0̺1 · · · ̺p−1ZH(Gp).

We will estimate ZH(G) using the method of Jerrum, Valiant and Vazirani [14]. In particular,
we will define a quantity si for each i such that

7

(iv) either ̺i or ̺−1
i is an easily-computable multiple of si (so an approximation to si gives an

approximation to ̺i), and

(v) there is an experiment which can be performed using a perfect sampler for H-GibbsSample

with input Gi or Gi+1 for which the output is a 0/1 random variable with mean si, and

(vi) there is a polynomial q in n and ε−1 such that si
−1 ≤ q(n, ε−1).

It follows (see the proof of Proposition 3.4 of [13]) that O(q(n, ε−1) p ε−2) samples taken from an
approximate sampler for H-GibbsSample with accuracy parameter

O

(
ε

q(n, ε−1)p

)

give a sufficiently accurate approximation to si, and hence to ̺i. That is, if we use the sampler
with this many samples, and multiply our estimates of the ̺is, the resulting estimate of |ΩH(G)|
is within the required accuracy with probability at least 7/8.

As mentioned earlier, the overall probability of failure in our reduction (which could cause one
or more of (i)–(vi) to fail) will be at most m2−n6

≤ 2−n5

, where m = |E(G)|. Suppose that E(G) =
{e1, . . . , em}, and that the edges are ordered in such a way that the graph (V (G), {e1, . . . , en−1})
is a tree. We will use the notation u(ei) and v(ei) to denote the endpoints of the edge ei. We will
now describe the construction of the sequence G0, . . . , Gp.

In order to shorten our description of the reduction, we will break the sequence G0, . . . , Gp

into a number of subsequences. The rough intuition is that each subsequence does the job of
“removing” one edge of G (with the eventual goal of producing a tree, whose colourings we can
count directly). Removing the edge directly could cause the number of colourings to explode as
discussed in Section 3 so we use the subsequence to remove the edge in a more controlled manner.
In the following pages, we will show how to construct a subsequence

Γ0 = Gy,Γ1 = Gy+1, . . . ,Γ2r+2 = Gy+2r+2,

where y is a multiple of 2r + 2 for some number r to be chosen later. The sequence G0, . . . , Gp will
then be the concatenation of the subsequences. We will rely on some properties which will always
be true for the graph Γ0, which is the first graph in each subsequence. First, it will be the case
that for some j ∈ {n, . . . ,m}, the graph Γ0 = Gy is identical to (V (G), {e1, . . . , ej}) except that
every vertex u ∈ V (G) may have one or more gadgets attached to u in Γ0. Each gadget is simply
a graph H ′ of size at most κ + 1. Note that κ is O(1) as a function of n and m since H ′ does not
depend upon G. If a gadget H ′ is attached to vertex u then one of the vertices of H ′ is identified
with u. There are 2(m − j) gadgets in all, and these are distributed over the n vertices of G (so
some vertices may have multiple gadgets). Since m ≤

(
n
2

)
, Γ0 has O(n2) vertices. Another property

that will always be true is that Γ0 will be connected. As an invariant in the construction, we will
also guarantee that each graph Γi has at least one H-colouring. That is, we will guarantee that
ZH(Γi) > 0.

The first sequence of graphs that we will construct will start with Γ0 = G0 and j = m, so all of
the invariants will be true initially.

The rest of this section has the following structure. Parts 1A and 1B show how to construct
the subsequence Γ1, . . . ,Γ2r+2 given the starting graph Γ0. Part 1A shows how to do sampling
in order to build gadgets that will be used in the subsequence and Part 1B shows how to build
the subsequence itself. The sequence G0, . . . , Gp is simply the concatentation of the subsequences
constructed in Parts 1A and 1B. Part 2 shows how to finish the proof once G0, . . . , Gp is constructed.
In particular, it shows how |ΩH(Gp)| can be computed.

8

Recall that Γ0 looks like the graph (V (G), {e1, . . . , ej}) except for possibly some small gadgets.
Our goal in the subsequence Γ0, . . . ,Γ2r+2 will be to remove the edge ej .

Part 1A: Learning about the graph Γ0 and constructing H(S)
Before we can remove ej it will help us to know which colours in V (H) can be used to colour

u(ej) in Γ0. More particularly, we would like to know which colours in V (H) are good choices for
u(ej) when we modify Γ0 by attaching a certain structure to u(ej).

Thus, we will first define a graph Γ′
0 which is the same as Γ0 except that a certain structure

(which we will call F) will be attached to u(ej). We will then use our sampling oracle to study the
colourings of Γ′

0, paying particular attention to which colours are applied to vertex u(ej). Once we
know the colours, we will use this information in the construction of Γ1,Γ2, . . . We start with some
definitions. Let M be a straightforward upper bound for ZH(Γ0). In particular, we can take

M = |V (H)||V (Γ0)|λ|V (Γ0)|+|E(Γ0)|
max . (4)

Recall that t = 2|V (H)| and that δ†(H) is the minimum of the quantities δ∗(H) and δ′(H) from
Section 4. Let r be defined by the following equation.

r =

⌈
n7 + log2(M)

δ†(H)

⌉
.

For now, the reader should just think of r as being a sufficiently large polynomial in n. Let F be
the graph with the vertex set

V (F) = {f0} ∪
⋃

p∈[1,...,r],q∈[1,...,2t−1]

{fp,q}

and the edge set E(F) which is defined to be

⋃

p∈[1,...,r]

{(f0, fp,1)} ∪
⋃

p∈[1,...,r],q∈[1,...,2t−2]

{(fp,q, fp,q+1)} ∪
⋃

p∈[1,...,r]

{(fp,2t−1, f0)}.

F looks like a “flower” with vertex f0 at the centre and r petals. Each petal is a cycle of length 2t
which starts and ends at f0.

Let Γ′
0 be a graph constructed from Γ0 by attaching F . Vertex f0 of F should be identified with

vertex u(ej).
We now need some notation to describe the colourings of Γ′

0 and of Γ0. For any d ∈ N, let

ZH(Γ0){u(ej) → [d]} =
∑

c∈V (H),δ(c)=d

ZH(Γ0){u(ej) → c}.

Informally, ZH(Γ0){u(ej) → [d]} is the collective weight of all colourings in which u(ej) is coloured
with a colour with δ-value d.

Define δ to be the quantity such that ZH(Γ0){u(ej) → [δ]} > 0 but, for all d > δ, ZH(Γ0){u(ej) →
[d]} = 0. Informally, δ is the largest δ-value which can be applied to u(ej).

Let S+ be the set of all colours c with δ(c) = δ and ZH(Γ0){u(ej) → c} > 0. Let S− be{
c ∈ S+

∣∣ ZH(Γ0){u(ej) → c} ≥ (1/n)ZH(Γ0){u(ej) → [δ]}
}
. Thus, S+ is the set of all value-δ

colours which may be applied to u(ej) and S− is the set of “frequently used” ones. Note that S−

is non-empty since there are fewer than n colours.
We will now describe an experiment which can be performed on Γ′

0 to determine the “likely”
colours that colour vertex u(ej). In the reduction, we will perform the experiment to learn about

9

these colours. This knowledge will be used in the construction of Γ1. Suppose that we run H-

GibbsSample with input Γ′
0 and accuracy parameter γ = 2−n7

to collect s = 2n8 samples from
ΩH(Γ′

0). Let S be the collection of colours that are assigned to u(ej) in these samples.

We claim that, except with failure probability at most 2−n6

, we have S− ⊆ S ⊆ S+. To see that
the failure probability is this small first observe that the probability that a colour c with δ(c) < δ
is in S is at most

s

(
ZH(Γ′

0){u(ej) → c}

ZH(Γ′
0)

+ γ

)
. (5)

Since δ(c) is the total weight of all colourings of a “petal” of F in which u(ej) is coloured c, the
quantity (5) is at most

s

(
ZH(Γ0){u(ej) → c}δ(c)r

δr
+ γ

)
.

Since δ†(H) ≤ δ∗(H) (see the definition of δ∗(H) in Section 4), the definition of r guarantees that

the term
ZH(Γ0){u(ej)→c}δ(c)r

δr ≤ γ. Thus the probability that there exists a colour c with δ(c) < δ
in S is at most s |V (H)| 2γ.

Also, the probability that a colour c ∈ S− is left out of S is at most



1 −
1

n
+

∑

c:δ(c)<δ

ZH(Γ′
0){u(ej) → c}

ZH(Γ′
0)

+ γ




s

≤

(
1 −

1

2n

)s

≤ exp(−n7),

so the probability that such a colour exists is at most |V (H)| exp(−n7) and the sum of the failure
probabilities is s |V (H)| 2γ + |V (H)| exp(−n7) ≤ 2−n6

.
We have shown that, except with failure probability at most 2−n6

, we have S− ⊆ S ⊆ S+. The
reduction now begins searching for a graph H(S) with a designated vertex u′(S) which is good for S.
(See Section 4.) If we do not have failure, then the pair (H(S), u′(S)) exists and |V (H(S))| ≤ κ.
Recall that κ is a constant depending only on H, and not on our input Γ0. If there is no failure,
then our input Γ0 does provide an upper bound for |V (H(S))| since |V (H(S))| ≤ |V (Γ0)|. The
latter follows from the fact that (Γ0, u(ej)) is good for S. Thus we restrict the search to graphs
with at most |V (Γ0)| vertices and the expected time of the search is at most a polynomial in n.

Part 1B: Constructing the sequence Γ1, . . . ,Γ2r+2 from Γ0

In this part we will show how to construct Γ1, . . . ,Γ2r+2 assuming that we did not have failure
in Part 1A. Recall that Γ0 looks like the graph (V (G), {e1, . . . , ej}) except for possibly some small
gadgets. Our goal in constructing Γ1, . . . ,Γ2r+2 is to remove the edge ej . Removing the edge
directly could cause the number of colourings to explode as in Section 3. Instead, we gradually
build up some “scaffolding” gadgetry, which will prevent the number of colourings from exploding
when edge ej is removed. After removing ej , we have to take away the scaffolding, again working
gradually to keep the number of colourings under control. Ideally, we would like Γ2r+2 to look
exactly like Γ0 except for the removal of ej . What happens in the construction is that Γ2r+2 looks
like Γ0 except for the removal of ej and the addition of two O(1)-sized gadgets. We now describe
the construction in detail.

First, the graphs Γ1, . . . ,Γr are constructed. For i ∈ [0, . . . , r − 1], Γi+1 is constructed from
Γi by adding a length-2t cycle {u(ej), fi+1,1, . . . , fi+1,2t−1, u(ej)} where fi+1,1, . . . , fi+1,2t−1 are new
vertices.

For every σ ∈ ΩH(Γi), let ext(σ) be the non-empty set

ext(σ) = {σ′ ∈ ΩH(Γi+1) | ∀ v ∈ V (Γi), σ(v) = σ′(v)}.

10

(ext(σ) is non-empty because every colour in H has at least one neighbour.) For every σ′ ∈ ext(σ),
let ŵ(σ, σ′) = wσ′(Γi+1)/wσ(Γi). Note that ŵ(σ, σ′) ≥ 1 since all vertex and edge weights are
positive integers. Let si = ̺i. Note that (iv) is satisfied for the graph Γi since ̺i is si, so it is
clearly “an easily-computable multiple of si”. We now wish to establish (v) for the graph Γi. We
wish to exhibit an experiment which can be performed using a perfect sampler for H-GibbsSample

with input Γi or Γi+1 for which the output is a 0/1 random variable with mean si. Here is the
experiment: Choose σ′ from πH,Γi+1

. Let σ be the restriction of σ′ to V (Γi). Output 1 with

probability (ŵ(σ, σ′) |ext(σ)|)−1 and 0 otherwise. The probability that a 1 is output is

1

ZH(Γi+1)

∑

σ′∈ΩH(Γi+1)

wσ′(Γi+1)
1

ŵ(σ, σ′) |ext(σ)|

=
1

ZH(Γi+1)

∑

σ∈ΩH(Γi)

∑

σ′∈ext(σ)

wσ(Γi)
1

|ext(σ)|

=
ZH(Γi)

ZH(Γi+1)
= si.

Thus, (v) is satisfied. Finally, we must satisfy (vi). That is, we must show that there is a poly-
nomial q in n and ε−1 such that si

−1 ≤ q(n, ε−1). Since ZH(Γi+1) ≤ ZH(P)ZH(Γi) where P is a
length-2t path, we have s−1

i ≤ ZH(P), so (vi) holds. We have now completed the construction of
the graphs Γ1, . . . ,Γr and the argument that these graphs satisfy our requirements. Note that the
graph Γr is the same as the graph Γ′

0 which we considered in Part 1A.
Next, the graph Γr+1 is constructed from Γr by attaching H(S) to u(ej), identifying the ver-

tex u(ej) of Γr with the vertex u′(S) in the gadget H(S). That is V (Γr+1) = V (Γr) ∪ V (H(S)),
but |V (Γr+1)| = |V (Γr)| + |V (H(S))| − 1 since the vertex u(ej) of Γr is identified with the vertex
u′(S) of H(S). Also, E(Γr+1) = E(Γr) ∪ E(H(S)). Since |V (H(S))| ≤ κ, the construction of Γr+1

is fast.
We will now show that (iv), (v) and (vi) hold for Γr+1 (i.e., for i = r). Let sr = ̺−1

r ZH(H(S))−1.
Consider the following experiment. Choose σ from πH,Γr . Output 1 with probability

∑

σ′∈ext(σ)

ŵ(σ, σ′)

ZH(H(S))
,

where
ext(σ) = {σ′ ∈ ΩH(Γr+1) | ∀ v ∈ V (Γr), σ(v) = σ′(v)}

as above and ŵ(σ, σ′) = wσ′(Γr+1)/wσ(Γr). Output 0 otherwise. The probability that 1 is output
is

1

ZH(Γr)

∑

σ∈ΩH(Γr)

wσ(Γr)
∑

σ′∈ext(σ)

ŵ(σ, σ′)

ZH(H(S))
=

1

ZH(H(S))

1

ZH(Γr)
ZH(Γr+1) = sr.

We must now establish (vi).

s−1
r =

ZH(H(S))ZH (Γr)

ZH(Γr+1)
≤

ZH(H(S))ZH(Γr)∑
c∈S ZH(Γr){u(ej) → c}

, (6)

where the inequality follows from the fact that (H(S), u(ej)) is good for S. Now from our analysis

11

u(ej) u(ej)

v(ej) v(ej)

Γr+1

1 1

r
r

H(S) H(S)

Γr+2

H ′

w

Figure 2: The construction of Γr+2

in Part 1A we have ZH(Γr) = ZH(Γ′
0) ≤ 2δrZH(Γ0){u(ej) → [δ]}. Also, since S− ⊆ S,

∑

c∈S

ZH(Γr){u(ej) → c} ≥ δr
∑

c∈S−

ZH(Γ0){u(ej) → c}

≥ δr
∑

c∈S−

(1/n)ZH(Γ0){u(ej) → [δ]}, (7)

where the final inequality follows from the definition of S−. Thus,

s−1
r ≤

ZH(H(S))ZH(Γr)∑
c∈S ZH(Γr){u(ej) → c}

≤ ZH(H(S))2n,

which gives us (vi).
The graph Γr+2 is constructed from Γr+1 as follows. Let H ′ be a new copy of the gadget H(S).

Let w be the designated vertex of H ′ so that (H ′, w) is good for S. To form Γr+2, we join together
Γr+1 and H ′. Thus, V (Γr+2) = V (Γr+1) ∪ V (H ′). We do the “joining” by deleting the edges
(fi,2t−1, u(ej)) (for i ∈ [1, . . . , r]) and adding in edges (fi,2t−1, w) for each such i. Also, we delete
the edge (u(ej), v(ej)) and add in edge (w, v(ej)). See Figure 2.

Now let sr+1 = ̺r+1. Consider the following experiment. Choose σ′ from the distribution
πH,Γr+2

. If σ′(w) = σ′(u(ej)) then output 1 with probability (ZH(H ′){w → σ′(w)})−1. Otherwise
output a 0. The probability that 1 is output is

1

ZH(Γr+2)

∑

σ′∈ΩH(Γr+2),σ′(w)=σ′(u(ej))

wσ′(Γr+2)
1

ZH(H ′){w → σ′(w)}
= ̺r+1

= sr+1.

We must now establish (vi).
Now

ZH(Γr+2) =
∑

cα,cβ

ZH(Γr+2){u(ej) → cα, w → cβ}. (8)

12

Also,
ZH(Γr+2){u(ej) → cα, w → cβ} ≤ MZH(H(S))ZH (H ′)δ(cα, cβ)r,

where M is our upper bound for ZH(Γ0) from Equation (4). On the other hand, we have just
shown in our proof of (6) and (7) that

ZH(Γr+1) ≥ ZH(Γr+1){u(ej) → [δ]} ≥ δr(1/n).

Thus if cα 6= cβ

ZH(Γr+2){u(ej) → cα, w → cβ}

ZH(Γr+1)
≤

nMZH(H(S))ZH(H ′)δ(cα, cβ)r

δr

≤ nZH(H(S))ZH(H ′)γ, (9)

by the definition of r since δ†(H) ≤ δ′(H) (see the definition of δ′(H) in Section 4).
Finally,

ZH(Γr+2){u(ej) → cα, w → cα} ≤ ZH(Γr+1){u(ej) → cα}ZH(H ′)

≤ ZH(Γr+1)ZH(H ′). (10)

Putting together (8) and (9) and (10) we get

s−1
r+1 = ̺−1

r+1

=
ZH(Γr+2)

ZH(Γr+1)

≤
∑

cα 6=cβ

(
nZH(H(S))ZH (H ′)γ

)
+

∑

cα

ZH(H ′),

which gives us (vi).
For i ∈ {0, . . . , r − 2}, graph Γr+2+i+1 is constructed from graph Γr+2+i by deleting vertices

fi+1,1, . . . , fi+1,2t−1 (and the edges adjacent to these vertices).
To establish Property (v) we define a notion which is analogous to ext(σ). In particular, for

every σ ∈ ΩH(Γr+2+i+1) let bext(σ) be the non-empty set

bext(σ) = {σ′ ∈ ΩH(Γr+2+i) | ∀ v ∈ V (Γr+2+i+1), σ(v) = σ′(v)}.

For every σ′ ∈ bext(σ), let ŵ(σ, σ′) = wσ′(Γr+2+i)/wσ(Γr+2+i+1) ≥ 1. The following exper-
iment has mean sr+2+i = ̺−1

r+2+i. Choose σ′ from πH,Γr+2+i
. Let σ be the restriction of σ′

to V (Γr+2+i+1). With probability (ŵ(σ, σ′) |bext(σ)|)−1, output 1. Otherwise, output 0. Since
ZH(Γr+2+i) ≤ ZH(P)ZH(Γr+2+i+1), we have ̺r+2+i ≤ ZH(P), so (vi) holds.

Note that the graph Γ2r+1 is the same as the graph Γ0 except that the gadget H(S) has been at-
tached to u(ej) and the edge (u(ej), v(ej)) has been replaced with the path u(ej), fr,1, . . . , fr,2t−1, w, v(ej)
and the gadget H ′ has been attached to w.

Finally, the graph Γ2r+2 is constructed from Γ2r+1 by deleting vertices fr,1, . . . , fr,2t−1 (and the
edges adjacent to theses vertices).

The proof that Property (v) and Property (vi) hold is similar to what we have just done with
s2r+1 = ̺−1

2r+1. The new difficulty is showing that for every σ ∈ ΩH(Γ2r+2), the set

bext(σ) = {σ′ ∈ ΩH(Γ2r+1) | ∀ v ∈ V (Γ2r+2), σ(v) = σ′(v)}

13

is non-empty.
Suppose that σ is a colouring ∈ ΩH(Γ2r+2) in which u(ej) is coloured with colour a and w is

coloured with colour b. We must show that there is a colouring of the path u(ej), fr,1, . . . , fr,2t−1, w
in which u(ej) is coloured a and w is coloured b. We will do this by looking at two cases.
Case 1: H is a loopless bipartite graph. Recall that (by construction) Γ2r+1 has at least one
H-colouring. This means that Γ2r+1 is bipartite. Also, u(ej) and w are in the same part of the
vertex partition of Γ2r+1. The graph Γ2r+2 is still connected (by construction) with u(ej) and w in
the same part. This means that a and b are from the same side of H’s vertex partition. Since H
is connected, there is an even-length path from a to b of length at most |VH | − 1. Thus, there is a
walk of length 2t from a to b. (Take the path above and go back and forth on the last edge.)
Case 2: H is not a loopless bipartite graph, so it has an odd-length cycle of length at most
|V (H)|. In this case, let c be some node on the cycle. We will construct an even-length path from a
to b of length less than 2t: First go from a to c using at most |V (H)|−1 edges. Then go from c to b
using at most |V (H)| − 1 edges. Finally, if the constructed path has odd length, then go around
the odd-length cycle in the middle. The total number of edges is at most 3|V (H)| − 2 < 2t. Once
again, we can find a walk of length 2t from a to b by going back and forth on the last edge.

This completes the argument that Γ2r+2 is properly constructed and it completes the construc-
tion of Γ1, . . . ,Γ2r+2. Thus, we have constructed the sequence

Γ0 = Gy,Γ1 = Gy+1, . . . ,Γ2r+2 = Gy+2r+2

as required. Note that the graph Γ2r+2 is identical to (V (G), {e1, . . . , ej−1}) except that every
vertex u ∈ V (G) may have some gadgets attached to u in Γ2r+2. The gadgets that are present in
Γ2r+2 which were not present in Γ0 are the new gadget H(S) (of size at most κ) which is attached
to u(ej) and the new gadget consisting of vertex w and the graph H ′ (of total size at most κ + 1)
which is attached to v(ej). If j = n then we are finished and y + 2r + 2 = p. Otherwise, we start
Part 1A again with Γ0 = Gy′ = Gy+2r+2.

Part 2: Computing |ΩH(Gp)|
We have now shown how to construct G0, . . . , Gp. We have shown that our construction satisfies

(i), (iii), (iv), (v) and (vi). It remains to show that property (ii) is satisfied – namely, that we can
compute ZH(Gp) in polynomial time (polynomial in n).

By construction, Gp is identical to the tree T = (V (G), {e1, . . . , en−1}) except that every vertex
u ∈ V (G) may have some gadgets attached to u in Gp. Each gadget is a graph H ′ of size at
most κ + 1. One of the vertices of H ′ is identified with u. There are 2(m − n + 1) gadgets in all.

We can compute ZH(Gp) by dynamic programming. For each gadget (H ′, u′) and each colour c,
we first compute ZH(H ′){u′ → c}.

Now consider a rooted version of T . For each vertex v ∈ V (G), let Gp(v) denote the portion
of Gp corresponding to the sub-tree rooted at v in T (including attached gadgets). We can calculate
ZH(Gp(v)){v → c} using the values of ZH(Gp(v

′)){v → c′} for all children v′ of v in T and all
colours c′ ∈ V (H) and all quantities ZH(H ′){u′ → c′′}.

References

[1] G.R. Brightwell and L.A. Goldberg, personal communication.

[2] G.R. Brightwell and P. Winkler, Gibbs measures and dismantlable graphs, J. Combin. Theory
Ser. B 78(1) 141–166 (2000)

14

[3] C. Cooper, M. Dyer and A. Frieze, On Markov chains for randomly H-colouring a graph, Journal
of Algorithms, 39(1) (2001) 117–134.

[4] J. D́ıaz, H-colorings of Graphs, The Algorithmics Column, Bulletin of the EATCS 72 (October,
2001) 82–92.

[5] M. Dyer and C. Greenhill, Random walks on combinatorial objects. In J.D. Lamb and D.A.
Preece, editors, Surveys in Combinatorics, volume 267 of London Mathematical Society Lecture
Note Series, pages 101–136. Cambridge University Press, 1999.

[6] M.Dyer and C. Greenhill, The complexity of counting graph homomorphisms. Random Struc-
tures and Algorithms, 17 (2000) 260–289.

[7] M. Dyer, M. Jerrum and E. Vigoda, Rapidly mixing Markov chains for dismantleable constraint
graphs. In J. Nesetril and P. Winkler, editors, Proceedings of a DIMACS/DIMATIA Workshop
on Graphs, Morphisms and Statistical Physics, March 2001, to appear.

[8] L.A. Goldberg, Computation in permutation groups: counting and randomly sampling orbits.
In J.W.P. Hirschfeld, editor, Surveys in Combinatorics, volume 288 of London Mathematical
Society Lecture Note Series, pages 109–143. Cambridge University press, 2001.

[9] L.A. Goldberg, M. Jerrum and M. Paterson, The computational complexity of two-state spin
systems, Pre-print (2001).

[10] L.A. Goldberg, S. Kelk and M. Paterson, The complexity of choosing an H-colouring (nearly)
uniformly at random, To appear in STOC 2002.

[11] O. Goldreich, The Foundations of Cryptography - Volume 1, (Cambridge University Press,
2001)

[12] M. Jerrum, A very simple algorithm for estimating the number of k-colorings of a low-degree
graph, Random Structures and Algorithms, 7 (1995) 157–165.

[13] M. Jerrum, Sampling and Counting. Chapter 3 of Counting, Sampling and Integrating: Algo-
rithms and Complexity, Birkhäuser, Basel. (In preparation.)

[14] M.R. Jerrum, L.G. Valiant, and V.V. Vazirani, Random generation of combinatorial structures
from a uniform distribution, Theoretical Computer Science, 43 (1986) 169–188.

[15] C.H. Papadimitriou, Computational Complexity, (Addison-Wesley, 1994)

15

