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Abstract

We consider the complexity of approximating the partition function of the ferromagnetic
Ising model with varying interaction energies and local external magnetic fields. Jerrum and
Sinclair provided a fully polynomial randomised approximation scheme for the case in which
the system is consistent in the sense that the local external fields all favour the same spin.
We characterise the complexity of the general problem by showing that it is equivalent in
complexity to the problem of approximately counting independent sets in bipartite graphs,
thus it is complete in a logically-defined subclass of #P previously studied by Dyer, Goldberg,
Greenhill and Jerrum. By contrast, we show that the corresponding computational task for
the q-state Potts model with local external magnetic fields and q > 2 is complete for all of
#P with respect to approximation-preserving reductions.

1 Introduction

1.1 The Ising model and the Potts model

An Ising system is defined by a graph G = (V,E). Each edge (i, j) ∈ E has an associated
interaction strength Ji,j (a real number). Each vertex v ∈ V has an associated local external
magnetic field which corresponds to the parameter `v (a real number). A configuration of the
system is an assignment σ : V → {−1,+1} of “spins” to the vertices of G. We associate each
configuration σ with an energy

H(σ) = −
∑

(i,j)∈E

Ji,jσ(i)σ(j)−
∑
v∈V

`vσ(v). (1)

The partition function corresponding to “inverse temperature” β (a positive real number) is

Z(G, β, Ji,j , `v) =
∑

σ:V→{−1,+1}

exp(−βH(σ))

=
∑

σ:V→{−1,+1}

∏
(i,j)∈E

eβJi,jσ(i)σ(j)
∏
v∈V

eβ`vσ(v).

The system is ferromagnetic if every interaction energy Ji,j is non-negative.
The most commonly studied version of the Ising model (see, for example, [2]) is the version in

which the interaction energies Ji,j are uniform over the edges (i, j) ∈ E and the local magnetic
∗This work was partially supported by the EPSRC grant “Discontinuous Behaviour in the Complexity of Ran-

domized Algorithms”.
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fields `v are uniform over vertices v ∈ V . The general model is also studied, particularly in
the situation in which the interaction energies Ji,j and the local fields `v are random variables
(see [1, 6, 14]).

To avoid the exponentials in our notation, we define edge weights λi,j = exp(2βJi,j) and vertex
weights µv = exp(2β`v) so that we can rewrite the partition function as follows.

Z(G, λi,j , µv) =
∑

σ:V→{−1,+1}

∏
(i,j)∈E

λ
1
2 σ(i)σ(j)
i,j

∏
v∈V

µ
1
2 σ(v)
v (2)

=
∏

(i,j)∈E

λ
− 1

2
i,j

∏
v∈V

µ
− 1

2
v

∑
σ:V→{−1,+1}

∏
(i,j)∈E:σ(i)=σ(j)

λi,j

∏
v∈V :σ(v)=+1

µv. (3)

Note that the system is ferromagnetic if and only if every edge weight λi,j is at least 1. We
say that the system is consistent if the external field favours the same spin at all vertices. That
is, the system is consistent if µv is either uniformly at least 1 or uniformly at most 1.

Jerrum and Sinclair [13] have shown that the problem of exactly computing the partition func-
tion of an Ising system is #P-complete, even in the ferromagnetic case. They show that, in the
antiferromagnetic case, the partition function cannot even be computed approximately in poly-
nomial time unless NP = RP. However, they present an efficient algorithm for the ferromagnetic
case, which approximates the partition function, provided that the system is consistent. Theo-
rem 1, below, characterises the complexity of approximately computing the partition function of
a ferromagnetic Ising system that is not consistent. In particular, we show that this problem is
complete with respect to approximation-preserving reductions in a logically defined subclass of
#P from [7]. The subclass may be of intermediate complexity between those problems that have
a fully polynomial randomised approximation scheme and those problems that are complete for
#P with respect to approximation-preserving reductions. By contrast, the corresponding problem
for the Potts model with q > 2 spins is complete for #P in this sense — this is Theorem 2 below.
The theorem implies that there is no fully polynomial randomised approximation scheme (for the
ferromagnetic Potts model) unless NP = RP. Background on the complexity of approximate
counting is provided in Section 1.2.

First we give the definitions for the Potts model. In this model there are q spins and a
configuration is an assignment σ : V → {1, . . . , q} of spins to the vertices of the underlying
graph G = (V,E). In the most general version of the model, we have a distinct interaction strength
Ji,j for each edge (i, j) ∈ E and a distinct external field corresponding to a real number hv,c

associated to each vertex v and each possible spin c. Thus, the energy of a configuration σ (see
Equation (1)) is

H(σ) = −
∑

(i,j)∈E

Ji,j χ(σ(i), σ(j))−
∑
v∈V

hv,σ(v), (4)

where

χ(s, s′) =

{
+1, if s = s′;
−1, otherwise.

Letting λi,j = exp(2βJi,j) as before and letting µv,c = exp(βhv,c), we get

Z(G, λi,j , µv,c) =
∏

(i,j)∈E

λ
− 1

2
i,j

∑
σ:V→{1,...,q}

∏
(i,j)∈E:σ(i)=σ(j)

λi,j

∏
v∈V

µv,σ(v). (5)

A version of this model in which the interaction energy is uniform over edges (i, j) ∈ E and
the external field µv,c is uniform over vertices v (but varies with c) is studied in [3]. Note that the
q = 2 case of the partition function (5) is essentially the same as the partition function of the Ising
model (3). Furthermore, Jerrum and Sinclair’s inapproximability result for the antiferromagnetic
Ising model extends to the Potts model [15, page 138]. We will focus on the ferromagnetic case
in this paper.
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1.2 The complexity of approximate counting

A randomised approximation scheme is an algorithm for approximately computing the value of a
function f . The approximation scheme has a parameter ε > 0 which specifies the error tolerance.
For concreteness, suppose that f is a function from Σ∗ to R. For example, f might map an
encoding of a graph G to the number of independent sets of G. A randomised approximation
scheme for f is a randomised algorithm that takes as input an instance x ∈ Σ∗ (e.g., an encoding
of a graph G) and an error tolerance ε > 0, and outputs a number z ∈ Q (a random variable of
the “coin tosses” made by the algorithm) such that, for every instance x,

Pr
[
e−εf(x) ≤ z ≤ eεf(x)

]
≥ 3

4
. (6)

The randomised approximation scheme is said to be a fully polynomial randomised approximation
scheme, or FPRAS, if it runs in time bounded by a polynomial in |x| and ε−1. Note that the
quantity 3/4 in Equation (6) could be changed to any value in the open interval ( 1

2 , 1) without
changing the set of problems that have randomised approximation schemes.

Dyer, Goldberg, Greenhill and Jerrum [7] studied the complexity of approximate counting.
They identified three classes of counting problems that are interreducible under approximation-
preserving reductions. These are (i) the problems that admit an FPRAS, (ii) the problems that
are complete for #P with respect to approximation-preserving reducibility and (iii) a third class,
of intermediate complexity, that can be characterised as the hardest problems in a logically defined
subclass of #P. We will use the notion of approximation-preserving reduction from [7]. Suppose
that f and g are functions from Σ∗ to R. An “approximation-preserving reduction” from f
to g gives a way to turn an FPRAS for g into an FPRAS for f . An approximation-preserving
reduction from f to g is a randomised algorithm A for computing f using an “oracle” for g
(which we can think of as an unwritten sub-routine for g). The algorithm A takes as input a
pair (x, ε) ∈ Σ∗ × (0, 1), and satisfies the following three conditions: (i) every oracle call made
by A is of the form (w, δ), where w ∈ Σ∗ is an instance of g, and 0 < δ < 1 is an error bound
satisfying δ−1 ≤ poly(|x|, ε−1); (ii) the algorithm A meets the specification for being a randomised
approximation scheme for f (as described above) whenever the oracle meets the specification for
being a randomised approximation scheme for g; and (iii) the run-time of A is polynomial in |x|
and ε−1.

If an approximation-preserving reduction from f to g exists we write f ≤AP g, and say that f
is AP-reducible to g. If f ≤AP g and g ≤AP f then we say that f and g are AP-interreducible,
and write f ≡AP g.

We can now say a little bit more about the three classes identified by Dyer et al. [7]. The first
class, containing the problems that admit an FPRAS, are trivially AP-interreducible since all the
work can be embedded into the reduction (which declines to use the oracle). The second class is
the set of problems that are AP-interreducible with #SAT, which is defined as follows.

Name. #SAT.

Instance. A Boolean formula ϕ in conjunctive normal form.

Output. The number of satisfying assignments to ϕ.

All problems in #P are AP-reducible to #SAT. Zuckerman [16] has shown that #SAT cannot have
an FPRAS unless NP = RP. The same is obviously true of any problem in #P to which #SAT is
AP-reducible. See [7] for details. The third class is the set of problems that are AP-interreducible
with #BIS, which is defined as follows.

Name. #BIS.

Instance. A bipartite graph B.

Output. The number of independent sets in B, which we denote #IS(B). (An independent set is
a set of vertices that does not contain both endpoints of any edge.)
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Dyer et al. [7] have shown that this class includes a number of natural counting problems such as
counting downsets in a partial order, counting configurations in the 2-particle Widom-Rowlinson
model and counting configurations in the Beach model. Furthermore, these problems are complete
for the logically-defined complexity class #RHΠ1 with respect to AP-reducibility. No function AP-
interreducible with #BIS is known to admit an FPRAS, or to be AP-interreducible with #SAT.
Thus, it is possible that the complexity of this class of problems in some sense lies strictly between
the class of problems admitting an FPRAS and #SAT.

We will study the following computational problems.

Name. Ferromagnetic Ising.

Instance. A ferromagnetic Ising system consisting of a graph G, edge weights λi,j ≥ 1 and vertex
weights µv.

Output. The partition function Z(G, λi,j , µv).

Name. Ferromagnetic Potts(q).

Instance. A ferromagnetic Potts system consisting of a graph G, edge weights λi,j ≥ 1 and vertex
weights µv,c.

Output. The partition function Z(G, λi,j , µv,c).

Jerrum and Sinclair [13] gave an FPRAS for the physically realistic special case of Ferro-
magnetic Ising in which the system is consistent. We can now state our result, which is that the
general problem, in which the system may or not be consistent, is AP-interreducible with #BIS.

Theorem 1 Ferromagnetic Ising ≡AP #BIS.

Note that, for ease of presentation, Jerrum and Sinclair described their FPRAS for the special
case in which all of the vertex weights µv are identical. Their result does not require the vertex
weights to be identical, provided they are consistent – for a proof of this assertion, see the proof
of Theorem 1 of [10].

It is an open question [11] whether there is an FPRAS for the ferromagnetic Potts model for
any fixed q > 2 even in the zero-field case (in which every hv,c is equal to zero). We show that,
for fixed q > 2, there is unlikely to be an FPRAS for Ferromagnetic Potts(q). In particular,
we have the following.

Theorem 2 Suppose q > 2. Then Ferromagnetic Potts(q) ≡AP #SAT.

Corollary 3 Suppose q > 2. Then there is no FPRAS for Ferromagnetic Potts(q) unless
NP = RP.

1.3 Specifying the Input Parameters

In order to make our definitions of the problems Ferromagnetic Ising and Ferromagnetic
Potts(q) precise, we need to specify how the input parameters λi,j , µv and µv,c should be
encoded. Since we are interested in randomised approximation schemes (rather than in exact
counting algorithms), we lose no generality by insisting that these parameters be rational (see
Observation 4 below). Thus, we adopt this convention.

Observation 4 Consider the ferromagnetic Ising system given by G, λi,j and µv. Let ε be a
positive constant. Suppose that G has n vertices and m edges. Let k be any integer that exceeds
dlog10(n/ε)e and dlog10(m/ε)e. Let λ̂i,j be the rational number derived from λi,j by retaining the
first k + 1 digits in the decimal expansion of λ (and setting the other digits to zero). Define µ̂v

similarly. Then
e−εZ(G, λi,j , µv) ≤ Z(G, λ̂i,j , µ̂v) ≤ eεZ(G, λi,j , µv).
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Proof. Consider the decimal expansion of λi,j ≥ 1, namely λi,j =
∑∞

r=−∞ br10r, where br ∈
{0, . . . , 9}. Let s be the largest r such that br > 0. Let

λ̂i,j =
s∑

r=s−k

br10r.

Then

λ̂i,j = λi,j −
∑

r<s−k

br10r ≥ λi,j − 10s−k ≥ (1− 10−k)λi,j ≥ exp
(
− 1

10k−1

)
λi,j ≥ exp

(
− ε

m

)
λi,j .

Also
λ̂i,j ≤ λi,j ≤ exp

( ε

m

)
λi,j .

Thus, the contribution of all edges to the partition function only differs by at most an exp(ε/2)
factor if we use the approximate edge weights λ̂i,j instead of the actual ones. The approximation
of vertex weights is similar — if µv is less then 1 then we can keep k + 1 digits of the decimal
expansion of 1/µv.

1.4 Outline of the paper

Theorem 1 follows from Lemma 5 which is proved in Section 2 and from Lemma 8 which is proved
in Section 3. Theorem 2 is proved in Section 4.

2 Reduction from #BIS to Ferromagnetic Ising

The result of this section is the following.

Lemma 5 #BIS ≤AP Ferromagnetic Ising

The proof of Lemma 5 consists of two reductions which are given in Lemmas 6 and 7 be-
low. The first of these reduces #BIS to a “permissive” version of #BIS, which we refer to
as #PermissiveBIS(γ), where γ > 0 is a parameter to be explained presently. The second of
these reduces #PermissiveBIS(γ) to Ferromagnetic Ising. The instance of Ferromagnetic
Ising that is produced by the combined reduction has an underlying graph which is bipartite.

We start by defining #PermissiveBIS(γ). The usual version of #BIS is “hard core” in the
sense that a configuration is an independent set which is not allowed to contain adjacent (IN, IN)
pairs. In the permissive version, all assignments from vertices to {IN,OUT} are configurations.
However, configurations are given weights which discourage adjacent (IN, IN) pairs. In particular,
each edge between two vertices that are both assigned IN is weighted by a factor of γ2 < 1.

Name. #PermissiveBIS(γ).

Instance. A bipartite graph B with vertex set V .

Output. The quantity Zγ(B) =
∑

τ :V→{IN,OUT} γ2b(τ), where b(τ) denotes the number of (IN, IN)
edges in τ .

2.1 Reducing #BIS to #PermissiveBIS(1/4)

In this section we prove the following lemma, which shows that #BIS can be reduced to the
problem #PermissiveBIS(1/4). The constant 1/4 was chosen for convenience — other constants
would also work. Formally, our reduction applies to any graph (whether or not it is bipartite) but
we are interested in the application to bipartite graphs.

Lemma 6 #BIS ≤AP #PermissiveBIS(1/4)
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Let G = (V,E) be an instance of #BIS. Let n = |V |. For i ∈ V , let Si and Ti be disjoint sets
of size r = 6n. Construct an instance Ĝ = (V̂ , Ê) of #PermissiveBIS(1/4) as follows:

V̂ =
⋃
i∈V

Si ∪ Ti

and
Ê =

⋃
(i,j)∈E

Si × Sj ∪
⋃
i∈V

Si × Ti.

Let Ω be the set of configurations corresponding to Ĝ. That is, Ω is the set of assignments τ
from the vertex set V̂ to {IN,OUT}. We will define some subsets of Ω. For i ∈ V , let Ωsmall

i be
the set of configurations in which few vertices from Si ∪ Ti are mapped to IN. That is,

Ωsmall
i =

{
τ ∈ Ω : |{v ∈ Si ∪ Ti : τ(v) = IN}| < r/10

}
, and Ωsmall =

⋃
i∈V

Ωsmall
i .

Let Ωsplit
i be the set of configurations in which both Si and Ti have vertices which are mapped

to IN. That is,

Ωsplit
i = {τ ∈ Ω : IN ∈ τ(Si) and IN ∈ τ(Ti)}, and Ωsplit =

⋃
i∈V

Ωsplit
i .

Let Ωbad be the set of remaining configurations with (IN, IN) edges. That is,

Ωbad = {τ ∈ Ω− (Ωsmall ∪ Ωsplit) : τ has an (IN, IN) edge}.

Let Ωgood be the rest of the configurations: Ωgood = Ω− (Ωsmall ∪ Ωsplit ∪ Ωbad). For any subset
Ψ of Ω, let Y (Ψ) denote the contribution to the partition function Zγ(Ĝ) from configurations in
Ψ. That is, Y (Ψ) =

∑
τ∈Ψ γ2b(τ), where γ = 1/4. Let Y denote Y (Ω).

We start by deriving upper bounds for Y (Ωsmall), Y (Ωsplit) and Y (Ωbad). Let i be any vertex
in V . First note that since γ2 < 1, we have

Y (Ωsmall
i ) ≤

r/10∑
k=0

(
2r

k

) ∑
τ ′:bV−Si∪Ti→{IN,OUT}

γ2b(τ ′).

Also,
Y ≥

∑
τ∈Ω:τ(Si)={OUT}

γ2b(τ) = 2r
∑

τ ′:bV−Si∪Ti→{IN,OUT}

γ2b(τ ′),

so1

Y (Ωsmall
i ) ≤ 2−r

r/10∑
k=0

(
2r

k

)
Y ≤ 2−r

(
2re

r/10

)r/10

Y ≤ 4−nY. (7)

Similarly,

Y (Ωsplit
i ) ≤

r∑
k,`=1

(
r

k

)(
r

`

)
γ2k`

∑
τ ′:bV−Si∪Ti→{IN,OUT}

γ2b(τ ′)

≤ 2−r
r∑

k,`=1

(
r

k

)(
r

`

)
γ2k`Y

≤ 2−r
r∑

k,`=1

(
r

k

)(
r

`

)
γk+`Y

≤ 2−r(1 + γ)r(1 + γ)rY

≤ 4−nY. (8)
1To see that the second inequality is correct, note that

Pt
i=0

�n
i

�
≤
�

en
t

�t
. This upper bound on the sum of

binomial coefficients is well-known. For example, a proof is in [9] or [5].
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Every configuration τ ∈ Ωbad has an (IN, IN) edge between some sets Si and Sj and each of Si

and Sj have at least r/10 vertices mapped to IN by τ . Thus, every such τ has at least (r/10)2

(IN, IN) edges. This means that

Y (Ωbad) ≤ γ2(r/10)22n2rn ≤ 2−n2rn, (9)

where the final inequality assumes n sufficiently large (in fact n ≥ 2 suffices). Let t = 2n4−n

1−2n4−n .
From (7) and (8),

Y (Ωgood ∪ Ωbad) = Y (Ω− (Ωsmall ∪ Ωsplit)) ≥ (1− 2n4−n)Y = Y/(1 + t),

so, using (9),

Y ≤ (1 + t)Y (Ωgood ∪ Ωbad)

≤ (1 + t)(Y (Ωgood) + 2−n2rn)

≤ Y (Ωgood) + tY (Ωgood) + (1 + t)2−n2rn. (10)

Consider the configurations τ ∈ Ωgood. For every i ∈ V , there are two possibilities.

• τ(Si) = {OUT} and |{v ∈ Ti : τ(v) = IN}| ≥ r/10, or

• τ(Ti) = {OUT} and |{v ∈ Si : τ(v) = IN}| ≥ r/10.

Furthermore, (i, j) ∈ E implies that τ(Si) = {OUT} or τ(Sj) = {OUT} (or both). From this, we
see that each τ ∈ Ωgood points out an independent set of G — a vertex i ∈ V is in the independent
set if and only if τ(Ti) = {OUT}. Also, each independent set of G corresponds to exactly

` :=

 r∑
k=r/10

(
r

k

)n

configurations τ ∈ Ωgood. Using the bound from our earlier calculation from the derivation of (7),

(1− 4−n)2rn ≤ (1− 5−n)n2rn ≤ ` ≤ 2rn,

for n sufficiently large, so

2rn#IS(G)− 4−n2rn2n ≤ (1− 4−n)2rn#IS(G) ≤ `#IS(G) = Y (Ωgood) ≤ Y.

Also, using (10),

Y ≤ Y (Ωgood) + tY (Ωgood) + (1 + t)2−n2rn ≤ 2rn#IS(G) + t2rn2n + (1 + t)2−n2rn.

Combining these two equations, dividing by 2rn, and re-arranging, we get

Y

2rn
− (t2n + (1 + t)2−n) ≤ #IS(G) ≤ Y

2rn
+ 4−n2n

For n ≥ 6, this gives us
Y

2rn
− 1

4
≤ #IS(G) ≤ Y

2rn
+

1
4
.

This equation gives us a simple AP-reduction from #BIS to #PermissiveBIS(1/4): Given an
accuracy parameter ε and an instance G of #BIS, obtain an approximation Ŷ to Y satisfying

e−ε/21Y ≤ Ŷ ≤ eε/21Y,

and round Ŷ /2rn to the nearest integer. See the proof of Theorem 3 of [7] for details showing
that this provides a sufficiently accurate approximation to #IS(G). This concludes the proof of
Lemma 6.
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2.2 Reduction from #PermissiveBIS(1/4) to Ferromagnetic Ising

In this section we prove the following lemma.

Lemma 7 #PermissiveBIS(1/4) ≤AP Ferromagnetic Ising

Let B = (V (B), E(B)) be an instance of #PermissiveBIS(1/4), and denote by L and R the
bipartition of V (B). Let m = |E(B)|. For every vertex v ∈ V (B), let d(v) denote the degree of v
in B.

Construct an instance G of Ferromagnetic Ising as follows. For every vertex v ∈ V (B), let
Wv be a set of 2d(v) distinct vertices. The vertex set of G is

V (G) = V (B) ∪
⋃

v∈V (B)

Wv.

The edge set of G is
E(G) = E(B) ∪

⋃
v∈V (B)

v ×Wv.

For every edge (i, j) ∈ E(G), let λi,j = λ = 4. For every vertex v ∈ V (B), let µv = 1. For every
vertex v ∈ L and every vertex w ∈ Wv, let µw = 2

7 . Finally, for every vertex v ∈ R and every
vertex w ∈ Wv, let µw = 7

2 .
Consider a function τ : V (B) → {IN,OUT}. The function τ induces an assignment of spins to

vertices in V (B) as follows.

τ(i) σ(i)
i ∈ L IN +1
i ∈ L OUT −1
i ∈ R IN −1
i ∈ R OUT +1

Now let

Z ′(G, λ, µi) =
∑

σ:V (G)→{−1,+1}

∏
(i,j)∈E(G):σ(i)=σ(j)

λi,j

∏
i∈V (G):σ(i)=+1

µi

be the partition function of G, omitting some easily-computed scaling factors (see (3)). Consider
the contribution to Z ′(G, λ, µi) from configurations σ induced by a particular map τ . Note that
τ fixes the value of σ(i) for every i ∈ L ∪R.

First, consider a vertex i ∈ L. If σ(i) = +1 then the contribution from the vertices in Wi

and the edges connecting them to i is a factor of (1 + 2
7λ)2d(i). If σ(i) = −1, the contribution is

( 2
7 + λ)2d(i). Thus, the contribution of vertex i may be summarised as

[
(1 + 2

7λ)( 2
7 + λ)

]d(i)
(

1 + 2
7λ

2
7 + λ

)d(i)σ(i)

.

Similarly, the contribution for a vertex i ∈ R is

[
(1 + 7

2λ)( 7
2 + λ)

]d(i)
(

1 + 7
2λ

7
2 + λ

)d(i)σ(i)

.

Let
A = (1 + 2

7λ)( 2
7 + λ)(1 + 7

2λ)( 7
2 + λ)λ.
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Putting our observations together,

Z ′(G, λ, µi) = Am
∑

τ :V (B)→{IN,OUT}

[ ∏
i∈L

(
1 + 2

7λ
2
7 + λ

)d(i)σ(i)

×
∏
j∈R

(
1 + 7

2λ
7
2 + λ

)d(j)σ(j) ∏
(i,j)∈E(B)

λ(σ(i)σ(j)−1)/2

]
,

where the values σ(i) and σ(j) are induced by τ . Recalling that λ = 4, this simplifies to

Z ′(G, λ, µi) = Am
∑

τ

∏
i∈L

2−d(i)σ(i)
∏
j∈R

2d(j)σ(j)
∏

(i,j)∈E(B)

2σ(i)σ(j)−1

= Am
∑

τ

∏
(i,j)∈E(B)

2σ(i)σ(j)−1+σ(j)−σ(i).

Now observe

σ(i)σ(j)− 1 + σ(j)− σ(i) =

{
−4 if τ(i) = IN and τ(j) = IN;
0 otherwise

so Z ′(G, λ, µi) = AmZ1/4(B).
Lemma 7 follows from the fact that Z ′(G, λ, µi) is an easily-computed multiple of Z(G, λ, µi).

3 Reduction from Ferromagnetic Ising to #BIS

In this section we prove the following result.

Lemma 8 Ferromagnetic Ising ≤AP #BIS

We start by defining a restricted version of Ferromagnetic Ising.

Name. Restricted Ferromagnetic Ising.

Instance. A ferromagnetic Ising system consisting of a graph G = (V,E) in which every edge (i, j)
has edge weight λi,j = 4

3 and every vertex v ∈ V has µv ∈ { 1
2 , 1, 2}.

Output. The partition function Z(G, λi,j , µi).

The reduction corresponding to Lemma 8 is in two parts. First, in Section 3.1, we reduce
Restricted Ferromagnetic Ising to #BIS. Then, in Section 3.2, we reduce Ferromagnetic
Ising to Restricted Ferromagnetic Ising. The choice of the constant 4/3 in the definition of
Restricted Ferromagnetic Ising is not critical — other constants would also work (though
4/3 is convenient in the proof of Lemma 9). It is important that λi,j be greater than 1 since this
is the ferromagnetic case.

3.1 Reduction from Restricted Ferromagnetic Ising to #BIS

This section proves the following Lemma.

Lemma 9 Restricted Ferromagnetic Ising ≤AP #BIS.

Suppose that we are given an accuracy parameter ε and an instance G = (V,E) of Restricted
Ferromagnetic Ising with |V | = n and |E| = m. Let V+ be the set of vertices v ∈ V with
µv = 2 and let V− be the set of vertices v ∈ V with µv = 1

2 . Let r = d4m + 2n + log2 ε−1e. For
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every i ∈ V , let Si and Ti be disjoint sets of size r. For every (i, j) ∈ E, let si,j , ti,j , s′i,j and t′i,j
be vertices. Construct an instance Ĝ = (V̂ , Ê) of #BIS as follows.

V̂ =
⋃
i∈V

(Si ∪ Ti) ∪
⋃

(i,j)∈E

{si,j , ti,j , s
′
i,j , t

′
i,j} ∪ V+ ∪ V−.

Ê =
⋃
i∈V

(Si × Ti) ∪
⋃

i∈V−

(Si × {i}) ∪
⋃

i∈V+

(Ti × {i})

∪
⋃

(i,j)∈E

(
Si × {ti,j} ∪ Sj × {t′i,j} ∪ Ti × {si,j} ∪ Tj × {s′i,j} ∪ {(si,j , t

′
i,j), (s

′
i,j , ti,j)}

)
.

See Figure 1.

��
��

Tj

Sii s
s s′i,j

ti,js
Sj

Ti

s t′i,j

si,js��
��

��
��
��
��

Figure 1: Some of the edges of the instance Ĝ of #BIS, where i ∈ V−, j 6∈ V+∪V−, and (i, j) ∈ E.

Say an independent set τ : V̂ → {IN,OUT} is complete if τ(Si∪Ti) = {IN,OUT} for all i ∈ V ;
otherwise τ is incomplete. Denote by Y = #BIS(Ĝ) the total number of independent sets in Ĝ,
and by Y ′ the number of complete independent sets.

Let u = n2n−12r(n−1)24m+n. A crude upper bound on incomplete independent sets shows
Y −Y ′ ≤ u. The first factor of n in u represents the choice of a vertex i with τ(Si∪Ti) = {OUT}.
The 2n−12r(n−1) represents the number of configurations on the other n − 1 sets Sj ∪ Tj – one
of τ(Sj) and τ(Tj) is {OUT} and the other can be assigned arbitrarily. The remaining factor
corresponds to all assignments of the remaining vertices. Similarly, let ` = 2n(2r − 1)n. A lower
bound on the number of complete independent sets gives Y ′ ≥ `.

Note that for sufficiently large n (in fact, for n > 2) we have 4u/` ≤ ε, so

Y − Y ′ ≤ u ≤ ε

4
` ≤ ε

4
Y.

Therefore
Y e−ε/2 ≤ Y (1− ε

4
) ≤ Y ′ ≤ Y,

where the first inequality uses ε ≤ 1. Thus, a sufficiently accurate estimate for Y = #BIS(Ĝ) (say
with error bound δ = ε/2) is also a sufficiently accurate estimate for Y ′ (i.e., within e±ε). It only
remains to show that Y ′ is directly related to the partition function of the instance (G, V+, V−) of
Restricted Ferromagnetic Ising.

To each complete independent set τ : V̂ → {IN,OUT} in the #BIS instance Ĝ, there naturally
corresponds an Ising configuration

σ(i) =

{
+1, if IN ∈ τ(Si);
−1, if IN ∈ τ(Ti);

since τ is complete, these cases are exhaustive. Now fix σ : V → {+1,−1}, and consider the
number of independent sets τ in Ĝ associated with σ under the above correspondence. There are
(2r−1)n ways to choose the restriction of τ to the set

⋃
i∈V Si∪Ti. The number of ways to extend

τ to the other vertices is as follows.

10



Case Number of ways to extend τ to {si,j , s
′
i,j , ti,j , t

′
i,j}

σ(i) = σ(j) 4
σ(i) 6= σ(j) 3

Case Number of ways to extend τ to i
i ∈ V+, σ(i) = +1 2
i ∈ V+, σ(i) = −1 1
i ∈ V−, σ(i) = −1 2
i ∈ V−, σ(i) = +1 1

Collecting these observations,

Y ′ = (2r − 1)n (4× 3)m/2 2(|V+|+|V−|)/2
∑

σ:V→{−1,+1}

∏
(i,j)∈E

(
4
3

)σ(i)σ(j)/2 ∏
i∈V+

2σ(i)/2
∏

i∈V−

2−σ(i)/2.

Comparing with (2), it can be seen that Y ′, up to an easily computable factor, is exactly the
partition function Z(G, λi,j , µv). This completes the proof of Lemma 9.

3.2 Reduction from Ferromagnetic Ising to Restricted Ferromagnetic
Ising

This section contains the proof of the following Lemma

Lemma 10 Ferromagnetic Ising ≤AP Restricted Ferromagnetic Ising

Let G = (V,E) be an instance of Ferromagnetic Ising with edge weights λi,j and vertex
weights µv. Let n = |V | and m = |E|. We will construct an instance Ĝ = (V̂ , Ê) of Restricted

Ferromagnetic Ising with edge weights λ̂i,j = 4
3 and vertex weights µ̂i ∈ { 1

2 , 1, 2} such that

exp(−ε)Z(Ĝ, λ̂i,j , µ̂i) ≤ Z(G, λi,j , µi) ≤ exp(ε)Z(Ĝ, λ̂i,j , µ̂i).

The general strategy is to replace each edge (i, j) of G by a gadget Gi,j in Ĝ, all of whose
edges have the standard weight λ = 4

3 . The gadget will have effective weight λeff close to λi,j > 1.
In the terminology of Jaeger et al. [12], we first t-thicken the edge (i, j), and then `-stretch all
t edges so formed. (A formal description of the construction will be given presently.) We shall
see that, by a suitable choice of t and `, the ratio λeff/λi,j may be made close to 1; furthermore,
the construction is reasonably efficient, in the sense that a close approximation may be achieved
using relatively small values of t and `.

More formally, for ` ≥ 1, let P` be an `-edge path in which all edges have weight λ = 4
3 and

all vertices have weight 1. Let f` denote the contribution to the partition function Z(P`, λ, 1)
from the assignment (+1,+1) to the endpoints (by symmetry, this is the same as the contribution
from the assignment (−1,−1)) and let a` denote the contribution from the assignment (+1,−1).
Observe from (2) that these satisfy the recurrences

f` = λ1/2f`−1 + λ−1/2a`−1,

and
a` = λ−1/2f`−1 + λ1/2a`−1

with f1 = λ1/2 and a1 = λ−1/2. Thus, the solution is

f` =
λ−`/2

2
(
(λ + 1)` + (λ− 1)`

)
,
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and

a` =
λ−`/2

2
(
(λ + 1)` − (λ− 1)`

)
.

For a suitable choice of t ≥ 0 and ` > 1 (chosen below), let Gi,j be the graph with vertex set

Vi,j = {i, j} ∪
⋃

α∈[1,t],β∈[1,`−1]

vα,β

and edge set

Ei,j =
⋃

α∈[1,t]

(i, vα,1) ∪
⋃

α∈[1,t],β∈[1,`−2]

(vα,β , vα,β+1) ∪
⋃

α∈[1,t]

(vα,`−1, j).

Let all edges in Ei,j have weight 4
3 and all vertices in Vi,j have weight 1. Let

λeff =
(

f`

a`

)t

=
[
1 +

2
7` − 1

]t

.

Then the contribution to the partition function Z(Gi,j , λ, 1) for each possible assignment of spins
to i and j is as follows.

σ(i) σ(j) Contribution to Z(Gi,j ,
4
3 , 1)

+1 +1 at
`λeff

+1 −1 at
`

−1 +1 at
`

−1 −1 at
`λeff

We want to choose ` > 1 and t ≥ 0 so that

e−ε/(2m) ≤ λeff

λi,j
≤ eε/(2m). (11)

We can do this by first setting ` to be the smallest integer, greater than 1, such that

1 +
2

7` − 1
≤ eε/(2m);

then, with ` fixed to this value, setting t to be the largest integer such that[
1 +

2
7` − 1

]t

≤ λi,j .

(The condition ` > 1 is just there to ensure that we end up with a graph, and not a multigraph. If
t = 0, then the vertices i and j simply lose their direct connection.) It is clear that we have achieved
inequality (11), even the stronger one with eε/(2m) replaced by 1. Furthermore, ` = O(log(2m/ε))
and t = O((2m/ε) log λi,j). so the total number of edges in Gi,j is O((2m/ε) log(λi,j) log(2m/ε)).
Note that Gi,j is not the most efficient gadget — we’d be better off using different length stretches
on different branches of the thickening — but it is good enough for the purposes of constructing
an FPRAS.

Vertex weights may be handled similarly. Consider a vertex i with weight µi > 1. To construct
the gadget Gi that replaces i in Ĝ, we first attach t bristles to i, and then perform an `-stretch
on the bristles. All vertices have weight 1 except the end vertices (of degree 1) which have
weight 2 (one of our standard weights). From (2), the contribution to the partition function of
Z(Gi, λ, µ̂v) from assigning σ(i) = +1 is (f`21/2 + a`2−1/2)

t
. and the contribution from σ(i) = −1

is (f`2−1/2 + a`21/2)
t
. Let

µeff =
(

f`21/2 + a`2−1/2

f`2−1/2 + a`21/2

)t

=
[
1 +

2
3× 7` − 1

]t

.

As before, we may achieve e−ε/(2n) ≤ µeff/µi ≤ eε/(2n) using O((2n/ε) log(µi) log(2n/ε)) vertices
and edges in total. The case µi < 1 is handled similarly. Thus, we have established Lemma 9
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4 The Potts model

This section contains the proof of Theorem 2, which says that for q > 2,

Ferromagnetic Potts(q) ≡AP #SAT.

To establish this theorem, we need to show (i) Ferromagnetic Potts(q) ≤AP #SAT, and (ii)
#SAT ≤AP Ferromagnetic Potts(q). The first of these is straightforward. The paper [7]
shows that every problem in #P is AP-reducible to #SAT. While Ferromagnetic Potts(q)
is not itself in #P, it is easy to see how to reduce it to a #P problem. The idea is to multiply
all of the rational edge weights λi,j and vertex weights µv,c by the same positive integer so that,
after multiplication, they are all positive integers. This only changes the partition function by an
easily computable factor. If the weights λi,j and µv,c are positive integers, then the problem of
computing the quantity ∑

σ:V→{1,...,q}

∏
(i,j)∈E:σ(i)=σ(j)

λi,j

∏
v∈V

µv,σ(v)

is in #P, and, from Equation (5), the partition function of the original problem can be ap-
proximated using this quantity. In the remainder of the section, we show that #SAT ≤AP

Ferromagnetic Potts(q).
We start by considering the multiterminal cut problem from [4]. Given a graph G = (V,E)

and a set {s1, . . . , sq} of vertices in V (which we refer to as terminals), a multiterminal cut is a
set E′ ⊆ E whose removal disconnects the terminals in the sense that the graph (V,E −E′) does
not contain a path between any two distinct terminals. The size of the multiterminal cut is the
number of edges in E′. The problem Multiterminal Cut(q) is defined as follows.

Name. Multiterminal Cut(q).

Instance. A positive integer b, a connected graph G = (V,E), and q distinct vertices s1, . . . , sq

from V . The input is only valid if every multiterminal cut for G, s1, . . . , sq has size at least b.

Output. Is there a multiterminal cut for G, s1, . . . , sq of size b?

For fixed q > 2, Multiterminal Cut(q) is NP-complete. This result is due to Dahlhaus et
al [4]. The way that we have stated the problem Multiterminal Cut(q) is slightly unusual,
and some comments are in order. The result that we use from [4] is Theorem 3, which says that
following problem is NP-hard.

Name. Multiterminal Cut

Instance. A positive integer b, a graph G = (V,E), and 3 distinct vertices s1, s2, s3 from V .

Output. Is there a multiterminal cut for G, s1, s2, s3 of size at most b?

The NP-hardness proof given in [4] is a reduction from Simple Max Cut.

Name. Simple Max Cut.

Instance. A graph G and a positive integer k

Output. Is there a partition of the vertices of G into two sets V1 and V2 such that there are at
least k edges between V1 and V2?

In particular, Dahlhaus et al show how to take a graph G = (V,E) and construct a graph F with
terminals s1, s2, s3 such that, for any K, G has a cut of size at least K if and only if F, s1, s2, s3 has
a multiterminal cut of size at most 28|E|−K. Now if we go back to the proof of NP-completeness
of Simple Max Cut in [8], we find that we can constrain the input G so that (i) G is connected,
and (ii) every cut of G has size at most k. By construction, the graph F is also connected, and
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every multiterminal cut of F, s1, s2, s3 has size at least b = 28|E| − k. Thus, we have established2

the NP-hardness of Multiterminal Cut(3). As Dahlhaus et al. mention, it is easy to reduce
Multiterminal Cut(3) to Multiterminal Cut(q) for q > 3. In our case, since we want the
input graph to be connected, we join each of the terminals s4, . . . , sq by a single edge to s3.

Now consider the counting version of Multiterminal Cut(q), as follows.

Name. #Multiterminal Cut(q).

Instance. A positive integer b, a connected graph G = (V,E) and q distinct vertices s1, . . . , sq

from V . Every multiterminal cut for G, s1, . . . , sq has size at least b.

Output. The number of size-b multiterminal cuts for G, s1, . . . , sq.

Theorem 1 of [7] states that if a decision problem is NP-complete then the corresponding
counting problem is AP-interreducible with #SAT. This implies that #Multiterminal Cut(q)
is AP-interreducible with #SAT. We complete the proof of Theorem 2 by giving an AP-reduction
from #Multiterminal Cut(q) to Ferromagnetic Potts(q).

Fix q and let b, G = (V,E), and s1, . . . , sq be an input to #Multiterminal Cut(q). Let
n = |V | and m = |E|. Construct an instance of Ferromagnetic Potts(q) as follows. The
graph is G. Let λ = 8qn and let µ = 8λbqn. For all (i, j) ∈ E, let λi,j = λ. For all c ∈ {1, . . . , q},
let µsc,c = µ. For every other (v, c), let µv,c = 1.

Say that a Potts configuration σ : V → {1, . . . , q} is separating if, for every c ∈ {1, . . . , q},
σ(sc) = c. A separating configuration induces a multiterminal cut E′ for G, s1, . . . , sq in which E′ is
the set of edges that are bichromatic in σ. Every size-b multiterminal cut E′ corresponds to exactly
one separating configuration σ. The removal of E′ from E splits G into exactly q components (if
there were more components there would be a smaller multiterminal cut since G is connected).
For every spin c, the connected component containing sc is assigned colour c by σ.

Let N be the number of size-b multiterminal cuts. Each of these corresponds to a separating
configuration σ which contributes λm−bµc to Z(G, λi,j , µv,c).

The contribution to Z(G, λi,j , µv,c) from separating configurations that induce larger multiter-
minal cuts is at most qnλm−b−1µc.

Finally, the contribution to Z(G, λi,j , µv,c) from configurations which are not separating is at
most qnλmµc−1.

We conclude that

N ≤ Z(G, λi,j , µv,c)
λm−bµc

≤ N +
qnλm−b−1µc

λm−bµc
+

qnλmµc−1

λm−bµc
= N +

1
4
.

Thus (see the proof of Theorem 3 of [7]), the construction is an AP-reduction from #Multi-
terminal Cut(q) to Ferromagnetic Potts(q) and we have completed the proof of Theorem 2.

The parameters λ and µ that we used in the above reduction are exponential in n. The
reduction was written this way for easy presentation, but the large weights can be eliminated
using the method of Section 3.2.

In particular, the reduction requires the edges of G to have an effective weight λeff ≥ 8qn. This
can be achieved by replacing the edge with t parallel 2-edge paths, and giving each of the 2t new
edges a weight λ′ = 2. The effective weight is given by

λeff =
(

λ′2 + q − 1
2λ′ + q − 2

)t

=
(

1 +
1

q + 2

)t

,

so it suffices to make t equal to the ceiling of the logarithm (base 1 + 1/(q− 2)) of 8qn. This gives
a λeff which is between 8qn and 8qn(1+1/(q+2)). Similarly, the reduction requires each vertex sc

to have an effective weight µeffsc,c ≥ 8λb
effqn. This can be achieved by attaching the vertex sc to t

2It is possible to equip the input to Simple Max Cut with a “witness”, which could be used to check that the
instance has no cuts of size exceeding k. This could be translated into a witness for the input to Multiterminal
Cut(3).
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new vertices w1, . . . , wt. Each of the new edges is given weight λ′ = 2 and each of the new vertices
wi is given weight µwi,c = µ′ = 2. All of the weights µsc,c′ are set to 1 (even for c′ = c). Then

µeffsc,c =
(

λ′µ′ + q − 1
λ′ + µ′ + q − 2

)t

=
(

1 +
1

q + 2

)t

,

so t can be chosen appropriately, as before.
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