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ABSTRACT Optical communication is likely to significantly speed up parallel computation
because the vast bandwidth of the optical medium can be divided to produce communi-
cation networks of very high degree. However, the problem of contention in high-degree
networks makes the routing problem in these networks theoretically (and practically) diffi-
cult. In this paper we examine Valiant’s h-relation routing problem, which is a fundamental
problem in the theory of parallel computing. The h-relation routing problem arises both in
the direct implementation of specific parallel algorithms on distributed-memory machines
and in the general simulation of shared memory models such as the PRAM on distributed-
memory machines. In an h-relation routing problem each processor has up to h messages
that it wishes to send to other processors and each processor is the destination of at most h
messages. We present a lower bound for routing an h-relation (for any A > 1) on a com-
plete optical network of size n. Our lower bound applies to any randomized distributed
algorithm for this task. Specifically, we show that the expected number of communica-

tion steps required to route an arbitrary h-relation is Q(h + v/loglogn ). This is the first
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known lower bound for this problem which does not restrict the class of algorithms under

consideration.

1. Introduction

In current distributed-memory parallel computers, a number of processors equipped with
private local memory communicate by sending messages via a network of communication
links. Current technology restricts the network to be of low degree: each processor in
the network can communicate directly with only a few others, and the remainder must be
reached indirectly by routing messages along a sequence of links. The emerging technology
of optical communication challenges the assumption that the network must be of low
degree. In particular, the huge bandwidth of the optical medium can be divided so that
each processor has its own channel for receiving messages and each processor can send
on any channel. Even though such an interconnection network is a complete graph, there
remains the problem of contention: no processor can receive messages simultaneously from
two other processors without corruption. The problem of avoiding contention is much more
difficult in high-degree networks (such as optical networks) than in traditional low-degree

networks.

The problem of routing in optical networks is captured mathematically by the OCPC
model. In an n-processor completely connected Optical Communication Parallel Computer
(n-OCPC) n processors with local memory are connected by a complete network. A
computation on this computer consists of a sequence of communication steps. During
each communication step each processor can perform some local computation and then
send one message to any other processor. If a processor is sent a single message during a
communication step then it receives this message successfully, but if it is sent more than

one message then the transmissions are garbled and it receives none of them.

Eshaghian [5, 6] first studied the computational aspects of parallel architectures with
complete optical interconnection networks. The OCPC model is an abstract model of
computation which formalizes important properties of such architectures. It was first
introduced by Anderson and Miller [1] and Eshaghian and Kumar [7], and has subsequently
been studied by several authors including Valiant [22], Geréb-Graus and Tsantilas [12], and
Gerbessiotis and Valiant [11] (though not always under the name OCPC). Aside from its
importance as a model for optical communication, the OCPC has the attraction of being a
clean, mathematically appealing model that allows us to study a single issue, namely the
resolution of contention between independent processors, in isolation from other factors. It
has recently been observed that the n-processor OCPC is equivalent to an ERCW PRAM

with n global memory cells. Thus our results carry over to that model. For details, see [20].

In this paper we study a fundamental communication problem for multiprocessor com-
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puters: that of routing h-relations. This problem arises both in the direct implementation
of specific parallel algorithms [1], and in the simulation of shared-memory models, such
as the PRAM, on more realistic distributed-memory models [22]. An h-relation routing
problem [22] is a communication problem in which each processor has up to h messages
that it wishes to send to other processors. The destinations of these messages can be
arbitrary except that each processor is the destination of at most h messages. The goal is

to design a fast algorithm for the n-OCPC that can route an arbitrary h-relation.

Anderson and Miller [1] have observed that an h-relation can easily be routed in h
communication steps if all of the processors are given total information about the h-
relation to be routed. A more interesting (and more realistic) situation arises if we assume
that each processor initially knows only about the messages that it wants to send, and
that processors learn about the the rest of the h-relation only through receiving messages

from other processors. This is the usual assumption, and the one that will be made here.

Valiant [22], building on work of Anderson and Miller [1], developed a randomized
algorithm that routes an arbitrary h-relation in O(h + logn) steps, on average. Subse-
quently, Goldberg, Jerrum, Leighton, and Rao [13] presented a more complex randomized
algorithm for the same task that runs in O(h + loglogn) steps and has failure probability
n~% for any constant «. The latter algorithm is asymptotically the fastest known, and it
would be interesting to discover whether it is the best possible. Our attention therefore

turns to lower bounds.

Goldberg et al. [13] proved a lower bound for a restricted class of algorithms known
as direct, in which a processor may only send messages directly to their final destination.
(Thus the only freedom a processor has is in its choice of when to attempt to send its
messages.) They proved that for any (randomized) direct algorithm there is a 2-relation
that takes Q(logn) steps to route with success probability %, thus showing that even in
a completely connected network it is advantageous to route messages indirectly. Subse-
quently, MacKenzie, Plaxton and Rajaraman [19] generalized this result by showing that
for any (randomized) direct algorithm and any h > 2 there is an h-relation that takes
Q(h 4+ loghlogn) expected steps to route. (This bound is tight as the randomized di-
rect algorithm of Geréb-Graus and Tsantilas [12] routes h-relations in O(h + log hlogn)
expected steps.)

Obtaining a lower bound for unrestricted algorithms has proved a much greater chal-
lenge, owing, no doubt, to the rich variety of strategies that are available to a non-direct
algorithm. (Some of the possibilities will be glimpsed in Section 2.) Indeed, no lower bound
beyond the trivial Q(h) was previously known. The new result in this paper is a lower
bound on the number of steps required to route 2-relations on an n-OCPC. We prove that

for any randomized algorithm there i1s a 2-relation such that the expected number of steps
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required to route the relation is Q(y/loglogn ). (See Theorem 1 for a precise statement of
the result.) Our result implies that for any kA > 1 the number of steps required to route
an arbitrary h-relation is Q(h + /Toglogn ). We note that our lower bound also holds
for routing ¢ + 1-relations in the c-collision OCPC model studied by Dietzfelbinger and
Meyer auf der Heide [2].

Our proof technique is based on one used in MacKenzie [18] (see also [16]). The
technique is a novel extension to the random restriction method which Furst, Saxe and
Sipser [10] used to prove circuit lower bounds. In this extension the choice of which inputs
to randomly restrict at each stage depends on a careful analysis of the appropriate step of
the algorithm under consideration. Although the random restriction method was first used
to obtain a deterministic lower bound, we obtain a randomized lower bound by proving
that the induction hypothesis in the random restriction method holds with high probability
(and not merely with non-zero probability). Other randomized lower bounds were obtained

by this method in Hastad [15].

The gap between the current upper and lower bounds on routing h-relations deserves
comment. Section 4 indicates why a lower bound of the form Q(y/loglogn ) is the limit of
the current technique. An example presented in that section points to an issue that must
be faced in any attempt to improve the current lower bound. It appears that some new

idea is necessary to make further progress on this front.
2. Some Preliminary Observations

Imagine that two processors p and ¢ wish to deliver a single message each to a common
destination processor within O(loglogn) steps. Assume that p and ¢ do not know each
other’s identity. A simple strategy is for p and g each to flip a coin and attempt to
transmit its packet to the destination processor if the coin comes up “heads.” After
O(loglog n) steps, the probability that p and ¢ have failed to transmit their packets is
at least (log n)_o(l). If n*Y) pairs of processors simultaneously employ this strategy to
deliver their messages to separate destinations, the probability that they all succeed is

negligible. Some more subtle approach is required.

One possibility, suggested by Rao, is the following. Suppose the processors are as-
signed binary sequence numbers, and that the numbers assigned to p and ¢ are pyps...p,
and q1q2...q,, where r ~ logn. By simultaneously sending messages to processors
pip2---Pry20...0 and g1z ...¢,/20...0, respectively, processors p and ¢ may discover
whether their sequence numbers differ in the first r/2 bits. After about loglogn experi-
ments of this general form, and using binary search, p and ¢ can agree on a bit position at
which their sequence numbers differ; this bit can then be used to determine a priority for
the processors, and hence resolve the conflict. Note that this method (with slight modifi-

cation) could be used by n) pairs of processors simultaneously. Observe that p and ¢

4



are not sending messages in order to get the content of the message to another processor,

but to learn some information about the competing processor.

A second strategy is replication of messages. In O(loglogn) binary replication steps,
p and ¢ can each prime a set of O(logn) processors with the message they are required
to transmit. These two sets of processors then use the naive coin-flipping strategy to
attempt to send their cloned messages to a common target set of size O(logn). In just a
constant number of attempts, the probability that either a p-message or a g-message fails
to get through is reduced to n=%*") where the implicit constant is arbitrary. Finally, the
messages in the target set can be funneled into the destination processor by a procedure
which is an inverse to the cloning phase. Note that the failure probability is much smaller
here than for the naive strategy, and can be expected to remain small when many pairs of

processors simultaneously attempt to send to distinct targets.

These two examples indicate the subtle strategies that are available to indirect algo-
rithms. With these in mind, it is possible to give a little of the flavor of the lower bound
argument. After t-steps, some set of processors (of size at most exponential in ¢) will be
aware that processor p or ¢ has a packet to send. Viewing the situation crudely, these
“agents” for p and ¢ can act in one of two modes, or possibly a mixture: (a) they can
send messages to some narrow set of destinations that is only weakly dependent on the
identity of the source processor, or (b) they can send to a wide destination set, or one that

1s strongly dependent on the identity of the source processor.

The first strategy sketched above operates purely in mode (a), while the second strat-
egy relies on mode (b) to recruit the processors that are required in the replication phase.
The key point is that the effectiveness of mode (a) is limited by the collisions that in-
evitably occur, while mode (b) is limited in its ability to “advance messages towards their

Y

destination.” The lower bound proof to be described in Section 3 analyses the tradeoff
between these modes. That both strategies described above are effective suggests that
the whole range of the tradeoff must be examined, and explains some of the technical

complexity of the proof.
3. The Lower Bound Argument
3.1. Definitions and Goals

Our goal is to establish the following.
Theorem 1. Let A be a randomized algorithm that routes 2-relations on an n-OCPC.

Then there is a 2-relation on which the expected number of communication steps used

by A is at least \/loglogn/4.}

1 All logarithms in this paper are to the base 2.
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The first step in the proof of Theorem 1 will be to reduce to the case of deterministic A.
A certain restricted class of 2-relations (to be defined presently) will be termed “relevant.”
We will use a weak form of a theorem of Yao (as stated in [9]) to show that Theorem 1

reduces to proving the following.

Theorem 2. Let A be a deterministic algorithm that allegedly routes 2-relations in
T = y/loglogn/2 steps. Let the input to A be drawn u.a.r. from the set of relevant
2-relations. Then the probability that A successfully routes the input is at most %

To define the class of relevant 2-relations, we make the following definitions, which will
be explained below. (For the purpose of the proof, we define “h-relation” in a restricted
way. In the h-relations that we consider, a processor can receive up to h messages, but

can send at most one message. )

Definition: A partial h-relation is a function from the set {1,...,n} of processors to

{0,1,%}. o
Definition: An h-relation is a partial h-relation in which no processor is mapped
to ‘x’. o

Intuitively, we think of the n-OCPC as being partitioned into n*/> ranges containing

nl/5

processors each. If an h-relation maps a processor to 1 then this processor has a
message to send and if it maps a processor to 0 then this processor does not have a message
to send. The destination of each message is the first processor in the range containing the

sending processor. We can now make the following definitions.

Definition: A relevant 2-relation is an h-relation in which exactly two processors in

each range are mapped to ‘1. o

Definition: A partial h-relation f is a refinement of a partial h-relation f' (this is
denoted by f < f')if f'(p) = 1 implies f(p) = 1, and f'(p) = 0 implies f(p) = 0. o

Definition: A partial relevant 2-relation is a partial h-relation that has a refinement

which is a relevant 2-relation. o

Definition: f, is the partial h-relation that maps every processor to ‘*’. o

3.2. Generating a random 2-relation

Algorithm RANDOMSET can be used to randomly generate a relevant 2-relation
one processor at a time. It is called with a partial relevant 2-relation f and a set P of
processors which are mapped to ‘*’ by f. The processors in P are randomly mapped
to ‘0’ or ‘1’ in such a way that the resulting function f’ is a partial relevant 2-relation and

the following claim holds.



Function RANDOMSET(f, P)
Let f' = f
For each p € P
Let s = |{q | ¢is in the range of p and f(q) = ‘*’}|
If no processors in the same range as p are mapped to ‘1’ by f
With probability 2/s set f'(p) =1
With probability 1 —2/s set f'(p) =0
If one processor in the same range as p is mapped to ‘1" by f
With probability 1/s set f'(p) =
With probability 1 —1/s set f'(p )
Otherwise set f'(p) = 0
Return f'
End RANDOMSET
Claim 3. An h-relation f generated solely by calls to RANDOMSET is a relevant 2-

relation generated uniformly at random (u.a.r.) from the set of relevant 2-relations.

Proof:  Straightforward. o

3.3. Defining the knowledge set and t-good partial h-relations

Now we make some definitions that deal with the running of a deterministic algo-
rithm A on an n-OCPC when the input is an h-relation f.

Definition: The (0, f)-trace of processor p is the tuple < p, f(p) >. The (¢, f)-trace
of processor p (for t > 0) is the tuple < p, f(p), A1,...,A¢ > in which A; is the message
that processor p receives at step j if such a message exists and A; is the null symbol

otherwise. o

Note that we lose no generality by assuming that if p sends a message on step ¢ then
it sends its entire (¢ — 1)-trace. (Since each processor is allowed to know the algorithms
that the other processors run we can simulate an algorithm which sends different messages

by an algorithm which sends traces using the same pattern of communications.)

Definition: Processor p is a direct (¢, f)-receiver of processor ¢ if either p = ¢ or

when A is run with input f. p receives a message from ¢ in the first ¢ steps. o

Definition: Processor p is an indirect (7, f)-receiver of ¢ if either p is a direct (¢, f)-
receiver of ¢, or when A is run with input f, there is some processor k and some time-step
t' < t such that k is an indirect (#, f)-receiver of ¢ and p receives a message from k
during steps ' +1,...,t. O

Definition: A set S of processors is a (t,g)-dependency set of a processor p if g
is a partial h-relation and for any relevant 2-relations f; and f» which refine g and

have fi(q) = f2(q) for every processor q € S, the (¢, f1)-trace of p is the same as the
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(t, f2)-trace of p. o

The intuition behind the above definition is that p is not dependent on processors
outside S, since these could not affect its trace. Note that if S’ and S" are (¢,9)-
dependency sets of a processor p then sois S’ NS, so p has a unique (t, g)-dependency

set of minimum size.

Definition: The (¢, ¢)-knowledge set of a processor p is the smallest (¢, g)-dependency
set of p. o

Suppose that g is a partial h-relation and that f is a relevant 2-relation which refines
g. Note that if g(p) = ‘%’ and ¢ has a (¢, g)-dependency set which excludes p then ¢
cannot be an indirect (#, f)-receiver of p. Also note that if g(p) # ‘%’ then p is not in the
(t, g)-knowledge set of any processor. We now define the following constants and functions

of n:
Definition: k; = 3', 5o = n'/?, w; = s}/ki/Qlk?, ri = st, and s; = wllg (for ¢ >
1). o
Recall that T = (/loglogn/2. We will use the following facts.
Fact 4. For large enough n and t < T, s, > olog!/*n
Proof: Note that for + > 1 we have

se = (7/3)71 7977, /(T30
Let a(t) denote 1/(7t3(;)) It is easy to prove (by induction on t) that
s¢ > (7/3) 29— 2t/T g0,

Therefore
sp > (7/3)—2/79—2T/72a(T)10g n/5‘

T
2

To see that the claim follows note that 3(2) < (log n)(10g3)/4 and (log3)/4 < 2/3. o

Fact 5. For large enough n and t < T, 3k, < wiﬁ.
Proof:  Using Fact 4, for large enough n and ¢t < T we have

1/3
3kt — kt—i—l < 3«/10glogn < 210g n < Stp1 = wi/7 O

Fact 6. r,g/w?/7 > 55

Proof: Immediate from the definitions. o

Definition: A t-good partial h-relation is a partial h-relation f which satisfies the

following three conditions.



1. r; ranges have sy processors that are mapped to ‘*’” by f, and no processors that are
mapped to ‘1’ by f, while the remaining ranges have no processors mapped to “*’ by

f, and two processors that are mapped to ‘1’ by f.
2. The (¢, f)-knowledge set of each processor p has size at most one.
3. Each processor ¢ is in the (¢, f)-knowledge set of at most k; processors. o

Condition (2) captures a crucial idea, which can be traced to Fich et al. [§], and
may be expressed informally as follows. Suppose that A is run on input g, where ¢ is a
2-relation that refines f. Then the entire state of the n-OCPC at time ¢ depends in a

particularly simple way on the restriction of g to the processors p with f(p) = “*’.

3.4 Refining partial 2-relations with CONSTRUCT

At the heart of our proof is a randomized procedure CONSTRUCT(t, f) that takes
a time t and a partial 2-relation f and returns a new partial 2-relation f' that is a re-
finement of f. Aside from the parameters ¢ and f, CONSTRUCT depends implicitly
on the algorithm A, in particular on the action of A at time step ¢ + 1. (The approach
here is similar to that used by MacKenzie in the context of lower bounds for load balanc-
ing [18].) The procedure CONSTRUCT has two important properties, the first of which
is concerned with invariance. Namely, we will show that If ¢+ < T and CONSTRUCT
is called with parameters (¢, f), where f is t-good, then with high probability, CON-
STRUCT will return a partial 2-relation f' that is (¢ + 1)-good. The second property
i1s that CONSTRUCT is unbiased. Specifically, suppose that GENERATE is a procedure
that starts with the partial 2-relation fo = f., and applies CONSTRUCT T times to gen-
erate a sequence of partial relevant 2-relations fo = f. > f1 > --- > fr > f in which
each fi = CONSTRUCT(¢, fi—1) is a refinement of f;_;, and f is a relevant 2-relation
generated u.a.r. from the set of refinements of fr. We will show that the relevant 2-relation
f produced by GENERATYE is uniformly distributed. From invariance, we will also be able
to conclude that with high probability, the partial 2-relation fr is T-good.

Before describing algorithm CONSTRUCT, we note that the proof of Theorem 2
follows quickly from the properties of CONSTRUCT that we have described, provided we
are prepared to set aside a minor technical complication, which is dealt with later in this
section. With high probability, the partial 2-relation fr produced by GENERATE has
many ranges with no processors mapped to ‘1’ by fr. In these ranges the target processor
has a (T, fr)-knowledge set of size at most one; thus the target processor can have received

at most one of the messages destined for it.

We now describe algorithm CONSTRUCT which is called with a time ¢ and a partial
2-relation f, and which randomly refines f based on the action of algorithm A at step
t+ 1. Let the jth range be denoted R; and let S; denote the set of processors in R,
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that are mapped to ‘*’ by f. Let J be the set of indices j such that [S;| > 0.

Definition: A processor p zero-affects a processor ¢ if there is a processor p’ such
that p is in the (¢, f)-knowledge set of p', and for any relevant 2-relation ¢ which refines
f and has ¢g(p) = 0: when A is run with input g, processor p' sends to g on step ¢t + 1. o

The notion of p one-affecting processor ¢ is defined analogously. Whenever it is
the case that a processor p is zero-affected or one-affected by a processor ¢ there is a
risk that the (¢ 4 1, f)-knowledge set of p will grow to size greater than one. Recall that
the aim of CONSTRUCT is to produce a refinement f' of f that is (¢ 4+ 1)-good; in
particular this entails arranging that the (¢ + 1, f')-knowledge set of p has size at most
one. CONSTRUCT’s strategy is to nominate, for each range R; with j € J, a certain
subset of S;. The subsets are chosen in such a way that each processor p is affected by at
most one processor in the subsets. Then CONSTRUCT randomly selects a refinement f’
of f such that the undetermined part of f' lies precisely over the union of the subsets

that were nominated.

We now describe CONSTRUCT in detail. Let W} be a subset of S; which is as large
as possible and has the property that if two processors p; and p; are in W]’ and zero-
affect the same processor ¢, then two processors in S; — W]’ also zero-affect processor q.
Let W]’/ be a subset of W]’ which is as large as possible and has the property that if two
processors p; and ps are in W]’/ and one-affect the same processor ¢, then all processors

in W} one-affect processor q.
For each processor p in range R; we define the set AFFECTS(p) as follows.
1. If p isin the (¢, f)-knowledge set of any processor ¢ then put ¢ in AFFECTS(p).

2. If p zero-affects any processor ¢ and there are not two processors in S; — W]’ which

zero-affect ¢ then put ¢ in AFFECTS(p).

(The intuition here is that if there are two processors in S; — W]’ which zero-affect
q and all of the processors in S; — W]’ are mapped to ‘0’ there will be a collision at

processor ¢ at step ¢t +1 so ¢ will not be affected by p.)

3. If p one-affects any processor ¢ and there is some processor in W]’/ which does not

one-affect ¢ then put ¢ in AFFECTS(p).

(The intuition here is that if every processor in W]’/ one-affects ¢ and all of the
processors in S; — W]’/ are mapped to ‘0’ there will be a collision at processor ¢ at
step t+ 1 so ¢ will not be affected by p.)

Let W; be a subset of W]’/ which is as large as possible and has the property that for
any two processors p; and p; in W;, AFFECTS(p;) N AFFECTS(p,) is empty. (Intu-
itively, at this point, we would like each processor to be affected by at most one processor

in each W; )
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In CONSTRUCT, we will split J into groups Ji, Js, ..., J¢ each of size rt/w?ﬁ, with
the last group possibly smaller. For each group J; CONSTRUCT will construct a set
Vi containing some of the processors from up to one of the ranges in .J;. The sets will
have the property that if two processors p and p’ are in |J, Vi, then AFFECTS(p) N
AFFECTS(p') is empty. Intuitively, this means that no processor could be affected by
two processors in |J; V;. We will let V' denote |J, V;. CONSTRUCT will produce f

by making random assignments to the processors which are not in V. We will say that

algorithm CONSTRUCT is successful if each set V; has size wiﬁ.

Function CONSTRUCT(t, f)
For each i € {1,...,(}

Let V; = 0

For each 5 € J;
Let S =10
Let S' =

While |S| < w;/" and [W; — S — §'| > 0
Let p be the lowest numbered processor in W; — S — 5’
If there is no p' € V3 U---UV;_; such that
AFFECTS(p) N AFFECTS(p') # 0 Then
Let S = SU{p}
Else
Let S = S"U{p}
Let f = RANDOMSET(S; — S, f)
If f maps any processor in S; — 5 to ‘1’ Then
Let f = RANDOMSET(S, f)
Next j
Else
Let V; = 8§
For each remaining j' € J;
Let f = RANDOMSET(S;, f)
Next 1
Let f' = f
Return f'
End CONSTRUCT
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3.5. Analysis of CONSTRUCT

Claim 7. If f is t-good then |AFFECTS(p)| < 3k, for each p.
Proof:  Since f is t-good, each p isin the (¢, f) knowledge set of at most k; processors.

Each of these k; processors can cause p to zero-affect at most one other processor and to

one-affect at most one other processor. o

Claim 8. If f is t-good then each processor q is in at most 3 sets AFFECTS(p) with
pe W

Proof:  Since f is t-good, the (¢, f)-knowledge set of ¢ has size at most one. Therefore,
q is added to at most one set AFFECTS(p;) using the first part of the definition of
AFFECTS(p). By the construction of W, ¢ is added to at most one set AFFECTS(p2)
using the second part of the definition of AFFECTS(p). Finally, by the construction of
W', q is added to at most one set AFFECTS(p3) using the third part of the definition
of AFFECTS(p). o

Claim 9. If f is t-good then for each j € J we have |Wj| > |S;|/(2k; +1).

Proof:  We use the following procedure, which we call Procedure A:

Procedure A
For each j € J

Let S' =0

Let S = 5;

While |S| > 0

Select a processor p € S
Let S =S5—p

Let S = S"U{p}
For each processor ¢ which p zero-affects
Let Z = {v|v zero-affects ¢ and v € S}
If Z > 1 Then
Let py,ps be two processorsin Z
Let S =S5 —{p1,p2}
Else
If Z =1 Then
Let p; be the processor in Z
Let S =S —{p:}
End A

Using procedure A we can construct a set S’ C 5; such that if two processors p; and

p2 are in S’ and zero-affect the same processor ¢, then two processors in S; — S also
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zero-affect processor ¢. Procedure A starts by setting S = S;. Since f is t-good each
processor p € S zero-affects at most k; processors. So for each iteration of the while loop

at most 2k; + 1 processors are removed from S with exactly one of them placed in S’.
Thus [S'| > |S;|/(2k: +1). By the definition of W}, [W]| > [S'| > |S;|/(2k: +1). o
Claim 10. If f is t-good then for each j € J we have [W]'| > |W;|1/kf/kt.
Proof: For p € Wj, let D(p) be the set of processors which p one-affects. Then
|ID(p)| < k. A sunflower is defined as a collection of sets such that if an element is in
two of the sets, then it is contained in all of the sets. The Erdés-Rado Theorem ([4], see
also [17]) says: Let t and m be positive integers and let F' be a family of sets such that
every element of F' has size at most ¢ and |F| > t!(m — 1)t. Then F' contains a sunflower
of size m. If welet F' be the family of sets D(p) for p € W](, then F' contains a sunflower
of size (|W;|/kt!)1/kt > |W;|1/kf/kt. If two processors p; and ps correspond to two sets
in this sunflower and they one-affect the same processor ¢, then (by the definition of D(p)
and sunflower) all p corresponding to sets in this sunflower one-affect ¢, and since W]’/ 18
the largest set of processors which satisfy this property, |W}'| > |W;|1/kf/kt. o

A construction similar to the one used in the proof of Claim 10 was used by Grolmusz

and Ragde [14].
Claim 11. If f is t-good then for each j € J we have |[W;| > [W]'|/Tk;.

Proof: Construct a graph G = (W], E) where (p,q) € E if AFFECTS(p) N
AFFECTS(q) is non-empty. Then an independent set S in this graph has the property
that for py, p, in S, AFFECTS(p;) N AFFECTS(p2) is empty. Then W; is simply the
largest independent set in this graph. By Turan’s Theorem, [W;| > [W/'|*/(|[W!'| + 2|E]).
By Claim 7 and Claim 8, for each p € W}, [AFFECTS(p)| < 3k, and each ¢ is in at
most 3 sets AFFECTS(p). Thus each p € W}’ is an end-point of at most 6k; edges in E
and therefore |E| < 3k, |[W}'|. We conclude that [W;| > [W|/Tk;. o

A construction similar to the one used in the proof of Claim 11 was used by Fich,

Meyer auf der Heide and Wigderson [8].

Corollary 12. If f is t-good then for each j € J we have |W;| > wy.

Proof:  Since f is t-good |S;| = s¢. Then the corollary follows from Claim 9, Claim 10,
and Claim 11. o

Claim 13. If f is t-good then the number of groups used by algorithm CONSTRUCT
15 w?ﬁ

Proof:  This follows from the definition of ¢-good and from the fact that the size of the
/7

: 4
groups is r¢/w,’" . o

Claim 14. If f is t-good and t < T then the while loop in algorithm CONSTRUCT

always terminates with |S| = wiﬁ.
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Proof:  We will show that if f is #-good then |S| < w%ﬁ implies |[W; —S —S'| > 0.
Suppose that some vertex p in W, cannot be added to S. Then for some p' € V; U--- U
Vi—1 we have AFFECTS(p) N AFFECTS(p') # (. But the size of each set V, is at
1/7

most w;’" and ¢ is at most the number of groups, which is equal to w?ﬁ by Claim 13.

Furthermore, for each p' € V4 U---UV;_1, |AFFECTS(p')| < 3k;. So at most 3ktw?/7

members of R; will be put in S'. By Fact 5, 3ktw?/7 < we — wiﬁ for t < T and large

enough n. We conclude using Corollary 12 that if |S| < wiﬁ then |[W; — S5 — 5| >

wt—(w%ﬁ)—(wt—w%ﬁ) =0.o

Claim 15. If f is t-good and t < T then the probability that CONSTRUCT is suc-

cessful is at least 1 — n—2.

Proof: We have already shown in the proof of Claim 14 that if f i1s ¢-good and ¢t < T
then the while loop in algorithm CONSTRUCT always terminates with |S| = wiﬁ. It

remains to show that with probability at least 1 — n~? each group 7 has a range j such

that the function f returned by the call “Let f = RANDOMSET(S; — S, f)” does not

4

map any processor in S; — S to ‘1. Assume that this is true for groups 1 to ¢ — 1. For

1 <v<i—-1,let X, be the random variable equal to the index of the first such range

in group v. For 1 < j < rt/w?ﬁ, let Y;; be a binary random variable which is 1 when

’”t/w:}/7

range j is such a range for group . Let Z; = Zj:l Y; ;. Note that Z; is zero if

and only if group i does not have such a range. Note that for j # j', Y;; and Y;
are independent. By construction, for any by,...,b,—1 € [1, rt/w?ﬁ], using the facts that

sp > 2log!/"n (from Fact 4), and 7‘,5/10;1/7 > s (from Fact 6), and assuming n is large,
PI’(ZZ == 0|Xi—1 == bi—la---aXl == bl)
v T
= Pr (Z]Z/I ¢ Y;’J == 0|Xi—1 == bi—la---aXl == b1>
rt/w4/7
= Pr mj:l ¢ (Y;’J == 0)|Xl_1 == bi—la---aXl == b1

- w4/7
= H]:/1 ¢ Pr(lfl,] == 0|Xi—1 = bl‘_17...7X1 = bl)

Wil ’”t/w?/7
1- )
()

IN
TN
| =
|
o
N’
w

IA A
|

The probability of failing in any group can then be bounded by
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a/7
S Pr(Z =01Ziy =1,...,Z = 1)
a/7

= X 261,...,bi_16[1,rt/w4/7] Pr(Z; = 0|X;—1 = bi—1,..., X1 = b1)

t

Pr(Xi—l = bi—lv"'le = bl)

Wi
n—3 Zl:tl Ebl,... bi_1€[1,rt/wf/7] PI’(XZ‘_l = bi—17 .. 7X1 = bl)

)

IA

4/7 _
—wt/n3

< n?. 0o

Corollary 16. If f is t-good and algorithm CONSTRUCT is successful then after CON-
STRUCT is executed ryy1 ranges have s;y1 processors that are mapped to ‘x’ by f', and
no processors that are mapped to ‘1’ by f', while the remaining ranges have no processors

mapped to ‘x” by f', and two processors that are mapped to ‘1’ by f'

Proof: Immediate from the definition of successful and from Claim 13.o

Claim 17. If f is t-good then after CONSTRUCT is executed every processor ¢ that
is in the (t 4+ 1, f')-knowledge set of a processor p has p € AFFECTS(q).

Proof: By the definition of dependency sets, we can form a (¢t 4+ 1, f') dependency
set D of p by taking the union of the (t, f)-knowledge set of p and the (¢, f)-knowledge
sets of all processors p’ satisfying the following: there is some refinement g of f which
is a relevant 2-relation and on which p' sends to p on step ¢ + 1. Note that D is the
union of the (¢, f)-knowledge set of p and the set of processors that zero-affect p and
the set of processors that one-affect p. If ¢ is in the (¢, f)-knowledge set of p then p is
in AFFECTS(q) by the first part of the definition of AFFECTS. Suppose that ¢; is a
processor in some range j which zero-affects p and that p ¢ AFFECTS(¢;). By the second
part of the definition of AFFECTS we know that there are two processors in S; — W]’
which zero-affect p. If both of these are mapped to ‘0’ by f' then for any refinement of f’
processor p has a conflict at step t +1 so D — ¢ is a (t + 1, f')-dependency set of p. If,
on the other hand, one of these is mapped to ‘1’ by f' then algorithm CONSTRUCT maps
every member of the range of ¢; to ‘0" or ‘1’ so D — ¢ is a (t + 1, f')-dependency set of
p. (Recall that if f'(q1) # ‘%’ then ¢ cannot be in the (¢ + 1, f')-knowledge set of any
processor.) Similarly, suppose that ¢, is a processor in some range j which one-affects p
and that p ¢ AFFECTS(¢2). By the third part of the definition of AFFECTS we know
that every processor in W' one-affects p. If all of the processorsin S; — W' are mapped
to ‘0" by f' then for any refinement of f' that is a relevant 2-relation processor p has a
conflict at step t +1 so D — g2 isa (¢t + 1, f')-dependency set of p. If, on the other hand,
one of these is mapped to ‘1" by f' then algorithm CONSTRUCT maps every member of
the range of ¢2 to ‘0’ or ‘1’ so D — ¢z is a (t + 1, f')-dependency set of p. o
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Claim 18. If f is t-good and algorithm CONSTRUCT is successful then after CON-
STRUCT is executed the (t 4 1, f')-knowledge set of every processor p has size at most

one.

Proof:  We know from Claim 17 that every processor p has a (¢t 4+ 1, f')-dependency
set D which contains only those processors ¢ such that p € AFFECTS(q). Suppose that

Y

two processors ¢ and ¢’ have f'(q) = f'(¢') = ‘*’. (If a processor ¢ is not mapped to
“x” by f' then it is not in the (¢ + 1, f')-knowledge set of any processor so it is not in the
(t+1, f')-knowledge set of p.) Then ¢ must be in some W; C W' C W} and ¢’ must be
in some W; C W]{f C W]{, and both ¢ and ¢' are in the set V' constructed by algorithm
CONSTRUCT. If j = j', then the definition of W; guarantees that AFFECTS(q) N
AFFECTS(¢') = 0, implying that p is in just one of these sets, and thus either ¢ or ¢’
is not in D. If, on the other hand, j # j' by the construction of V., AFFECTS(¢q) N
AFFECTS(¢') = 0, implying p is in just one of these sets, and thus either ¢ or ¢' is not

in D. Thus |[D| <1.0o

Claim 19. If f is t-good then after CONSTRUCT is executed each processor q is in
the (t 4+ 1, f')-knowledge set of at most ki1 processors.

Proof:  Let ¢ be a processor which is in the (¢ + 1, f')-knowledge set of a processor p.
By Claim 17, p € AFFECTS(¢q). But by Claim 7, |[AFFECTS(q)| < 3k; = ky41. The

claim follows. o

Lemma 20. If t < T and CONSTRUCT is called with parameters (t,f), where f
is t-good, then with probability at least 1 — n=? CONSTRUCT will return a partial
2-relation f' that is (t + 1)-good.

Proof:  This follows from Claim 15, Corollary 16, Claim 18, and Claim 19. o

3.6. Function GENERATE

We use the following function, which calls CONSTRUCT to generate a sequence of
partial relevant 2-relations fo = f. > f1 > -+ > fr > f in which each f; is a refinement

of fi—1, f is a refinement of fr, and f is a relevant 2-relation generated u.a.r.
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Function GENERATE
Let fo = f«
Let f = fo
Let t =0
While ¢t < T Do
If for some p, f(p) = ‘*’ Then
Let f; = CONSTRUCT(¢, f)
Else
Let fi = f
t=t+1
f=1r
Let P = {plf(p) = "*'}
Return RANDOMSET(f, P)
End GENERATE

Lemma 21. The relevant 2-relation f produced by GENERATE is uniformly dis-
tributed.

Proof: The Lemma follows from Claim 3. o

Lemma 22. With probability at least 1 —n~1, the partial 2-relation fr is T -good.

Proof: Let Z, be a random variable which is equal to 1 when CONSTRUCT succeeds
at step t. Then the probability of failing at any step ¢ < T can then be bounded by

T
N Pr(Z =020 =1,...,7 =1).

t=1

By Lemma 20, this is at most Tn~% which is at most n~!. o

We now prove the following theorem.

Theorem 2. Let A be a deterministic algorithm that allegedly routes 2-relations in
T = y/loglogn/2 steps. Let the input to A be drawn u.a.r. from the set of relevant
2-relations. Then the probability that A successfully routes the input is at most %
Proof:  We will generate a relevant 2-relation by running algorithm GENERATE. By
Lemma 21, algorithm GENERATE generates relevant 2-relations u.a.r. GENERATE also
produces a sequence fo > --- fr > --- f in which f is the final relevant 2-relation. By
Lemma 22, fr will be T-good with probability at least 1 —1/n.

Suppose that fr is T-good. Then there is a range R that has a set .S of sy processors
which are mapped to ‘*’ by fr. R has no processors which are mapped to ‘1’ by fr. Let

d denote the first processor in range R. (d is the destination of the messages in range
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R.) The (T, fr)-knowledge set of d contains at most one processor. There are three cases

which must be examined concerning fr:

CASE 1: The (T, fr)-knowledge set of d contains a processor ¢ which is a member
of §:

We wish to bound the probability that A succeeds, given that fr isin Case 1. Let F;
denote the set of relevant 2-relations which refine fr and map ¢ to ‘1’ and let Fy denote
the set of relevant 2-relations which refine fr and map ¢ to ‘0’. One can see by examining
algorithm RANDOMSET that the probability that f isin F; is 2/sp and the probability

that f isin Fp is 1 —2/s7. We now examine the following sub-cases concerning f.
CASE 1A: fisin Fi:

We wish to bound the probability that A succeeds, given that f is in F;. There is
a particular trace 7 which is the (T, f')-trace of d for every input h-relation f' € Fj.
Since A runs in T steps processor d uses this trace 7 to deduce the pair of messages that
were destined for d in every input h-relation that is in F;. But there are s — 1 such
pairs of messages, each of which is equally likely to come up in a randomly chosen member
of F1. So the probability that A is successful given that f isin F; is at most 1/(sp —1).

CASE 1B: f isin Fy:

We wish to bound the probability that A succeeds, given that f is in Fy. There is
a particular trace 7 which is the (T, f')-trace of d for every input h-relation f' € Fj.
Since A runs in T steps processor d uses this trace 7 to deduce the pair of messages that
were destined for d in every input h-relation that is in Fy. But there are (STz_l) such
pairs of messages, each of which is equally likely to come up in a randomly chosen member

of F1. So the probability that A is successful given that f is in F; is at most 1/(8T2_1).

Therefore the probability that A succeeds given that fr is in Case 1 is at most
(2/s7)(1/(s7 — 1)) + (1 — 2/s7)(1/(°*; ")) which is at most 2/(*%,").
CASE 2: The (T, fr)-knowledge set of d contains a processor ¢ which is not a member
of §:

Similar arguments to those used in Case 1 show that the probability that A succeeds
given that fr isin Case 2 is at most 1/(°7).
CASE 3: The (T, fr)-knowledge set of d is the empty set:

Similar arguments to those used in Case 1 show that the probability that A succeeds
given that fr isin Case 3 is at most 1/(°7).

Finally, we conclude that the probability that A successfully routes f in T steps is
at most the sum of 1/n ( an upper bound on the probability that fr is not T-good, by
Lemma22) and (1 —1/n) X 2/(8T2_1) (an upper bound on the probability that A succeeds
given that fr is T-good). We can use Fact 4 to show that this quantity is at most 1/2.
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Therefore, with probability at least 1/2, an f drawn u.a.r. from the set of relevant

2-relations will not be routed by algorithm A in T steps. o
Corollary 23. Let A be a deterministic algorithm that routes 2-relations. Let the input

to A be drawn u.a.r. from the set of relevant 2-relations. Then the expected number of
communication steps used by A is at least \/loglogn/4.

Proof:  The corollary follows from the fact that /loglogn/4 < (1/2)(T' +1). o

The following weak form of a theorem of Yao is stated (and proved) in Fich, Ragde
and Wigderson’s paper [9]
Theorem 24 [Yao]. Let Ty be the expected running time for a given probabilistic al-
gorithm solving problem P, maximized over all possible inputs. Let T, be the average

running time for a given input distribution, minimized over all possible deterministic al-
gorithms to solve P. Then Ty > T,. o

We now prove the following theorem:

Theorem 1. Let A be a randomized algorithm that routes 2-relations on an n-OCPC.
Then there is a 2-relation on which the expected number of communication steps used
by A is at least \/loglogn/4.

Proof: Corollary 23 shows that the average running time for the uniform distribution on
relevant 2-relations, minimized over all deterministic algorithms, is at least /loglogn/4.

Theorem 1 now follows from Theorem 24. o
4. The prospect for tightening the bound

Recall the situation in which two processors p and ¢ each have a single message to trans-
mit to a common destination. Consider the following OCPC “algorithm” which is a
parallel version of a strategy comsider in Section 2. In ©O(y/loglogn) steps, p and ¢
recruit k = @(exp(\/W)) “agents” to help discover a bit position at which the
binary sequence numbers for p and ¢ differ. This is done using the method of Section 2,
but with k-way search in place of binary search: a p-agent and a g¢-agent simultane-
ously attempt to transmit a message to processors with sequence numbers of the form
0...0pit1---Pigr/x0...0 and 0...0qit1 .- Giyr/x0...0, respectively, and hence discover
whether the sequence numbers of p and ¢ differ on a particular block of r/k bits. This
would seem to give a O(y/loglogn ) algorithm for delivering the messages.

Of course, the catch is that a p-agent that finds a block on which the sequence num-
bers of p and ¢ differ is unable to alert the other p-agents to the discovery, at least,
not sufficiently quickly to obtain an improvement over the original binary search strategy.
Unfortunately, the lower bound argument presented here is oblivious to a cheating “algo-
rithm” in which an agent that finds an appropriate block broadcasts its discovery to the

other agents in one step. The problem is that in the lower bound argument, the behavior
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of a processor is considered to be a function of a partial 2-relation f that provides far

more information than a processor could in reality know.
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